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Abstract

In this thesis we study the effective field theory of modified gravity on cos-
mological and spherically symmetric backgrounds.

First, we study the effective field theory of modified gravity on the cos-
mological background. Modification of gravity usually generates at least one
scalar propagating degree of freedom which is responsible for dark energy.
We take into account multiple scalar fields χI (I = 1, 2 · · · , N − 1) charac-
terized by the Lagrangians P (I)(YI) with YI = ∂μχI∂

μχI in addition to the
dark energy field φ. These additional scalar fields χI can model the per-
fect fluids of radiation and non-relativistic matter. The Lagrangian involves
three dimensional geometric quantities appearing in the 3+1 decomposition
of space-time. We expand a general action up to second order in the pertur-
bations of geometric scalars and additional scalar fields. In doing so we derive
propagation speeds of scalar and tensor perturbations as well as conditions
for the absence of ghosts. Our analysis covers a wide range of gravitational
theories– not only Horndeski theory but also its recent generalizations. The
theories beyond Horndeski induce non-trivial modifications to all the prop-
agation speeds of N scalar fields, but the modifications to those for the
matter fields χI are generally suppressed relative to that for the dark energy
field φ. We apply our general results to the covariantized Galileon with an
Einstein-Hilbert term in which partial derivatives of the Minkowski Galileon
are replaced by covariant derivatives. Unlike the covariant Galileon with
second-order equations of motion in general space-time, the scalar propaga-
tion speed squared c2s1 associated with the field φ becomes negative during
the matter era for late-time tracking solutions, so the two Galileon theories
can be clearly distinguished at the level of linear cosmological perturbations.

Secondly, on the static and spherically symmetric background, we con-
sider perturbations of such a background endowed with a metric tensor and
a scalar field in the framework of the effective field theory of modified grav-
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ity. We employ the previously developed 2+1+1 canonical formalism of a
double Arnowitt-Deser-Misner (ADM) decomposition of space-time, which
singles out both time and radial directions. Our building block is a general
gravitational action that depends on scalar quantities constructed from the
2+1+1 canonical variables and the lapse. Variation of the action up to first-
order in perturbations gives rise to three independent background equations
of motion, as expected from spherical symmetry. The dynamical equations of
linear perturbations follow from the second-order Lagrangian after a suitable
gauge fixing. We derive conditions for the avoidance of ghosts and Lapla-
cian instabilities for the odd-type perturbations. We show that our results
not only incorporate those derived in the Horndeski theories but they can
be applied to more generic theories beyond Horndeski as in the case of the
effective field theory of modified gravity on the cosmological background.
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Chapter 1

Introduction

In 1998, the late-time cosmic acceleration was discovered from the observa-
tions of type Ia supernovae (SN Ia) in high redshifts [1, 2] and the source
for this acceleration was dubbed “dark energy”. In Ref. [2], Perlmutter et
al. showed that the dark energy exists at the 99% confidence level by using
42 high-redshift and 18 low-redshift SN Ia data (see figure 1.1). The latest
observations of the cosmic microwave background (CMB) have shown that
about 68% of the present energy of the Universe is dominated by dark energy
[3]. The simplest origin for this present-day acceleration is the cosmologi-
cal constant, but the vacuum energy appearing in particle physics is vastly
larger than the observed energy scale of dark energy [4]. In detail, summing
up zero-point energies of all normal modes of some field and taking the cut-
off scale of the momentum at the Planck scale, the vacuum energy density is
theoretically estimated to be ρvac ∼ 1074 GeV4 while the observed value of
dark energy is ρobs ∼ 10−47 GeV4.

If the origin of dark energy is not the cosmological constant, there is a
possibility that the accelerated expansion of the Universe is driven by a scalar
field [5, 6] or some modification of gravity [7, 8, 9, 10, 11, 12, 13, 14, 15]. The
former is called modified matter theories, and the latter, modified gravity
theories.

Interestingly, the recent combined analysis based on the observations of
SN Ia, CMB, and Baryon Acoustic Oscillations (BAO) showed that the cos-
mological constant is in mild tension with the data [3, 16] as shown in figure
1.2. Especially, CMB measurement by Planck [3] combined with data of
the WMAP polarization [16] and the SN Ia (from SNLS [17]) showed that
the dark energy equation of state, which characterizes the dark energy w, is
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Figure 1.1: The effective apparent luminosity mB versus the redshift z for
several SN Ia data. The dashed curves are the theoretical prediction for mB

when the cosmological constant Λ exists while the solid curves correspond
to that without the cosmological constant. Perlmutter et al. found that the
observational data in the high redshift regime favor the existence of the dark
energy. This figure is taken from Ref. [2].
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Figure 1.2: Observational constraints on the constant dark energy equation
of state w for several combinations of observational data, i.e. CMB, SN Ia,
BAO and WMAP polarization. This figure is taken from Ref. [3].
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1.1 Horndeski theories and their generalization Capter 1

constrained to be w = −1.13+0.13
−0.14 (95 %CL) for constant w. In GR, includ-

ing the cosmological constant and modified matter theories, it is generally
difficult to explain w < −1 unless a ghost mode is introduced, but the mod-
ification of gravity allows a possibility of realizing such an equation of state
while avoiding ghosts and instabilities [18].

1.1 Horndeski theories and their generaliza-

tion

The modification of gravity is usually associated with the propagation of a
scalar degree of freedom coupled to non-relativistic matter (see Refs. [18] for
reviews). Most of the dark energy models based on modified gravity–such as
f(R) gravity [8, 9, 10], Brans-Dicke theory [12, 19], and Galileons [13, 14, 20,
21]– belong to the category of the Horndeski theory [22, 23, 24], i.e., the most
general scalar-tensor theory with second-order equations of motion. These
models realize the late-time cosmic acceleration through the modification
of gravity at large distances, i.e. cosmological scales. In the Horndeski
theory, the conditions for avoiding ghosts and Laplacian instabilities of scalar
and tensor perturbations have been derived in Refs. [25, 26, 27] on the flat
Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmological background in
the absence/presence of matter. Imposing these conditions and studying the
background dynamics as well as the growth of density perturbations [28],
we can test for theoretical consistent models of dark energy with numerous
observational data.

On the other hand, the dark energy models based on modified gravity are
required to recover Newtonian gravity at short distances for the consistency
with local gravity tests in the Solar System. There are several ways to sup-
press the propagation of the fifth force induced by a scalar degree of freedom
φ. One of them is the Vainshtein mechanism [29], under which non-linear
scalar-field self interactions appearing e.g., in Galileon gravity, lead to the
decoupling of the scalar field from baryons inside the radius much larger than
the solar system [30]. Another is the chameleon mechanism [31] applicable
to f(R) gravity [32] and Brans-Dicke theory [12], under which the fifth force
outside a spherically symmetric body is suppressed by the formation of a
thin shell inside the body with a large effective mass of the scalar field. For
the purpose of understanding the screening mechanism of the fifth force in
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1.1 Horndeski theories and their generalization Capter 1

general, the equations of motion in the Horndeski theory were derived on
the spherical symmetric background [33, 34, 35]. The stability of static and
spherically symmetric vacuum solutions in the same theory was also studied
in Ref. [36] by considering the odd-parity mode of perturbations (associated
with tensor perturbations). The analysis of the even-parity perturbations,
which is much more involved due to a non-trivial coupling between the scalar
field and gravity, was recently performed in Ref. [37]. The spherically sym-
metric background solutions of viable modified gravity models need to ac-
commodate the screening mechanism of the fifth force, while satisfying the
stability conditions against perturbations.

If the derivatives higher than second order appear in the equations of mo-
tion, the corresponding theory is usually prone to a ghost-like (Ostrogradski)
instability [38] related with the Hamiltonian unbounded from below. The
Horndeski Lagrangian was constructed to be manifestly free from the Ostro-
gradski instability. Recently, Gleyzes, Langlois, Piazza, and Vernizzi (GLPV)
proposed the generalization of Horndeski theories in which the higher or-
der derivatives could appear in general space-time [39]. Interestingly, they
showed that, on the flat FLRW background, the perturbation equations of
motion in the generalized version of Horndeski theories are also of second
order with one scalar propagating degree of freedom [39]. This second-order
property also holds for the odd-type perturbations on the spherically sym-
metric and static background [40]. In GLPV theories, the presence of symme-
tries in space-time allows for the absence of derivatives higher than quadratic
order.

A concrete example classified into GLPV theories is the covariantized ver-
sion of the original Galileon–whose Lagrangian is derived by replacing partial
derivatives of the Minkowski Galileon [13] with covariant derivatives– belongs
to a class of GLPV theories [39]. This is different from the covariant Galileon
[14] in which gravitational counter terms are added to eliminate derivatives
higher than second order in general space-time. In other words, the covari-
ant Galileon falls in a class of Horndeski theories, while the covariantized
Galileon does not.

For the unified description of modified gravitational theories, there is
another approach based on the effective field theory (EFT) which can deal
with modified gravity models even beyond Horndeski theories.
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1.2 The EFT approach on the cosmological

background

The EFT of cosmological perturbations is a powerful framework to deal with
the low-energy degree of freedom of dark energy in a systematic and unified
way [41]-[65]. This approach is based on the expansion of a general four-
dimensional action about the flat FLRW background in terms of the per-
turbations of three-dimensional geometric scalar quantities appearing in the
3+1 Arnowitt-Deser-Misner (ADM) [66] decomposition of space-time. Such
geometric scalars involve the traces and squares of the extrinsic curvature
Kμν and the three-dimensional intrinsic curvature Rμν ≡ (3)Rμν as well as
the lapse function N . The Lagrangian generally depends on a scalar field φ,
but such dependence can be absorbed into the lapse dependence by choosing
the so-called unitary gauge in which the field perturbation δφ vanishes.

The EFT formalism can incorporate a wide variety of modified gravita-
tional theories known in the literature, e.g. Horndeski theories.1 In the EFT
approach time derivatives are of second order by construction, but there exist
spatial derivatives higher than second order in general [50, 51]. In Ref. [52],
the conditions for the absence of such higher-order spatial derivatives have
been derived by expanding the action up to second order in the perturbations
of geometric scalars. In fact the Horndeski theory satisfies such conditions,
so the resulting second-order Lagrangian is simplify expressed by the sum of
time and spatial derivatives ζ̇2 and (∂ζ)2 of curvature perturbations ζ with
time-dependent coefficients [52]. This feature also holds in GLPV theories
[39].

In order to study the cosmological dynamics based on GLPV theories, we
need to take into account matter fields (such as non-relativistic matter and
radiation) other than the scalar field φ responsible for dark energy. In the
presence of an additional scalar field χ with a kinetic energy Y = ∂μχ∂

μχ,
the conditions for eliminating derivatives higher than second order have been
derived in Ref. [68] for the action depending on χ and Y as well as on other

1While the Horndeski theory is Lorentz-invariant, the EFT approach can also cover
Lorentz-violating theories such as Hořava-Lifshitz gravity [67] where spatial derivatives
higher than second order appear in the action. This is first shown in Ref. [60], but the
contributions of those terms to the second-order action of cosmological perturbations were
not explicitly computed for scalar perturbations. In Ref. [64], we studied the second-
order cosmological perturbation in the EFT approach of modified gravity including those
higher-order spatial derivatives.
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ADM scalar quantities. In Ref. [68] the authors also obtained conditions for
the avoidance of ghosts and Laplacian instabilities associated with scalar and
tensor perturbations. In GLPV theories it was recognized that the matter
propagation speed cm is affected by the scalar degree of freedom χ [39], but
this is not the case for Horndeski theories [27, 68].

In Chapter 2 of this thesis we study the effective field theory of modified
gravity in the presence of multiple matter fields on the flat FLRW back-
ground. In addition to the dark energy field φ, we take into account scalar
fields χI (I = 1, 2, · · · , N − 1) with the Lagrangians P (I)(XI) depending on
YI = ∂μχI∂

μχI . This prescription can accommodate the perfect fluids of
radiation and non-relativistic matter [69, 70]. Expanding the action up to
second order in the perturbations of geometric scalars and multiple matter
fields, we obtain propagation speeds of scalar and tensor perturbations as
well as no-ghost conditions. We apply our general results to Horndeski and
GLPV theories. We obtain an algebraic equation for the propagation speeds
of multiple scalar fields and estimate to what extent the difference arises by
going beyond Horndeski theories.

We then apply our results to two different theories– covariantized Galileon
and covariant Galileon. Although the background equations of motion for
the covariantized Galileon are exactly the same as those for the covariant
Galileon. At the level of perturbations, however, these two theories can be
clearly distinguished from each other. For the covariantized Galileon the
propagation speed squared c2s1 of the field φ becomes negative in the deep
matter era for late-time tracking solutions, whereas in the covariant Galileon
it remains positive. We also show that the matter sound speeds squared
of the fields χI for the covariantized Galileon are similar to those for the
covariant Galileon.

1.3 The EFT approach on the spherically sym-

metric background

The EFT of modified gravity on the isotropic cosmological background allows
a possibility of dealing with the theories beyond Horndeski in a systematic
and unified way. If we try to apply a similar formalism to the spherical
symmetric background, there is another spatial direction singled out by the
ADM decomposition besides the temporal direction. The EFT of modified
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gravity with the singled-out radial direction is first worked out in Ref. [40].
There are several ways to deal with the perturbations of spherically sym-

metric and static space-times. Some of the approaches monitor the metric
perturbations and they heavily rely both on the decomposition of the per-
turbations into even and odd modes (under parity transformations on the
sphere) and on a full gauge fixing. This line of research includes the pioneer-
ing work of Regge, Wheeler and Zerilli [71, 72], leading to the Regge-Wheeler
equation for the odd modes and the Zerilli equation for the even modes of
general relativistic black hole perturbations. The discussion of perturbations
in the Horndeski class of theories presented in Refs. [36, 37] falls into this
class.

We employ yet another formalism based on the s+1+1 decomposition,
where s is an arbitrary positive integer [73, 74] (developed with the applica-
tion to braneworld models in mind). This ADM inspired formalism, based on
a double foliation of space-time, relies on a canonical rather than a covariant
approach. The clear advantage of this procedure is a much lower number of
variables. In comparison with the metric perturbation formalism (for s = 2)
the number of variables is the same, nevertheless the variables in the 2+1+1
ADM formalism carry canonical interpretation, which is a clear virtue when
it comes to the EFT approach.

In Chapter 3, we study the EFT of modified gravity on a static and spher-
ically symmetric background by employing the 2+1+1 ADM formalism. In
the gravitational action, we take into account all the possible scalar combi-
nations constructed from geometric quantities. We show that the Horndeski
and GLPV theory can be accommodated in our general framework, by explic-
itly rewriting the corresponding Lagrangians in terms of the 2+1+1 covariant
variables as in the case of the EFT on cosmological background. The three
independent background equations of motion are derived in simple forms,
which will be useful for the study of the screening mechanism in general
modified gravitational theories.

We also obtain the second-order Lagrangian for odd-type perturbations
in the EFT framework to discuss the stability of spherically symmetric and
static vacuum solutions. We derive conditions for avoiding ghosts/Laplacian
instabilities and apply our results to both Horndeski and GLPV theories
(including covariantized Galileon and covariant Galileon). We defer the study
of the even-type perturbations to a follow-up work due to its non-triviality
and complexity.
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1.4 Contents of this thesis

This thesis is organized as follows.
Chapter 2 is devoted for the EFT of modified gravity on the cosmological

background in the presence of multiple matter fields.

• In Sec. 2.1 we provide the basic tools to understand the late-time cosmic
acceleration on the cosmological background. We derive the condition
for the equation of state of the dark energy to realize such an acceler-
ation and show the evolution of the equation of state in several dark
energy models.

• In Sec. 2.2 we briefly review the EFT approach of modified gravity on
the cosmological background. Introducing geometric scalar quantities
appearing in the ADM formalism we provide a general action that
depends on such scalars. In the presence of the matter we expand
the action up to linear order in cosmological perturbations and derive
equations of motion for the background.

• In Sec. 2.3 we show how the EFT action accommodates Horndeski and
GLPV theories on the flat FLRW space-time. We apply the general re-
sults in the previous section to these theories and derive the background
equations of motion.

• In Sec. 2.4 we introduce multiple scalar fields associated with matter
components. We first expand the action up to second order in cosmo-
logical tensor perturbations and derive conditions to avoid ghost and
Laplacian instability for the tensor perturbations. Next we expand the
action up to second order in scalar perturbations and derive condi-
tions for the absence of spatial derivatives higher than second order.
These conditions are automatically satisfied in Horndeski and GLPV
theories. Under these conditions, we derive no-ghost conditions and an
N -th order algebraic equation for the scalar propagation speed squared
c2s.

• In Sec. 2.5 we study the cosmology based on the two Galileon theories
(covariantized and covariant Galileons). We discuss how these theories
can be distinguished from each other, paying particular attention to
the evolution of the scalar propagation speeds.

9



1.4 Contents of this thesis Capter 1

• In Sec. 2.6 we conclude this chapter.

In Chapter 3 the EFT of modified gravity on the spherically symmetric
background is discussed.

• In Sec. 3.1 we briefly review how the screening mechanism suppress
the modification of gravity at short distances taking the Vainshtein
mechanism as an example.

• In Sec. 3.2 the basic elements of the 2+1+1 ADM decomposition will
be reviewed as a brief summary of the formalism developed in Refs. [73,
74].

• In Sec. 3.3 we present a variational principle for a general action in uni-
tary gauge expressed in terms of scalars constructed from the geometric
quantities arising in the 2+1+1 decomposition. Varying the action up
to first order in perturbations allows us to derive three equations of
motion for the background.

• In Sec. 3.4 we express the Lagrangians of both Horndeski and GLPV
theories in terms of the variables appearing in the 2+1+1 formalism
and show that they belong to the sub-class of our general framework.

• In Sec. 3.5 we explore the diffeomorphism gauge freedom in dealing
with perturbations on the static and spherically symmetric background.
After choosing the unitary gauge δφ = 0, there is still a remaining gauge
degree of freedom associated with the time component of a coordinate
transformation vector ξμ. We show that this residual gauge degree
of freedom does not affect the odd-type perturbations studied in this
chapter.

• In Sec. 3.6 we derive the second-order perturbed Lagrangian density for
the odd-mode perturbations expressed in terms of a dynamical scalar
variable and its derivatives.

• In Sec. 3.7 we discuss conditions for the absence of ghosts and Lapla-
cian instabilities and apply the results to both Horndeski and GLPV
theories. We also specialize our results for two covariant Galileon mod-
els.

• In Sec. 3.8 we conclude this chapter.

10
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Finally, Chapter 4 gives a summary of this thesis.
Throughout this thesis, we use the metric signature (−,+,+,+) and units

c = � = kB = 1. Mpl is the reduced Planck mass defined as Mpl ≡ 1/(8πG)
where G is the gravitational constant. We denote time derivatives by a dot
and the derivatives along the singled-out spatial direction by a prime. All
quantities defined on the background will carry an overbar.

In Chapter 2 Greek and Latin indices denote components in space-time
and in a three-dimensional space-adapted basis, respectively.

In Chapter 3 we use the abstract index notation, hence tensors defined
on the full space-time and on the 2-dimensional surface carry the same set
of Latin indices, but the latter obey certain projection conditions.

11



Chapter 2

Effective field theory of
modified gravity on the
cosmological background

In this Chapter we investigate the EFT of modified gravity on the cosmolog-
ical background in the presence of matter fields [61].

2.1 The basis of the late-time cosmic acceler-

ation

First of all we briefly review the basics tools to study the late-time cosmic
acceleration and the representative examples of the dark energy models in
this section.

2.1.1 Basic tools to study the late-time cosmic accel-
eration

The cosmological principle, which states that the Universe is homogeneous
and isotropic at large distances, is supported by several observations such as
CMB. The line-element that describes a 4-dimensional homogeneous, isotropic
and flat space-time is called the FLRW space-time and is given by

ds2 = −dt2 + a(t)2δijdx
idxj , (2.1)

12
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where a is a scale factor representing a size of the Universe. Using this
metric and deriving the Einstein equations we obtain the following Friedmann
equations:

3M2
plH

2 = ρ , (2.2)

2M2
plḢ = −(ρ+ P ) , (2.3)

where H ≡ ȧ/a is a Hubble parameter. Here ρ and P respectively correspond
to the energy density and the pressure of the matter component described
by the perfect fluid with the equation of state

w ≡ P

ρ
, (2.4)

which is 0 for non-relativistic matter and 1/3 for radiation.
Let us consider the case where the Universe is dominated by a single

component with a constant equation of state. Solving the equations (2.2)
and (2.3) we obtain the following solution

a = (t− ti)
2/[3(1+w)] , (2.5)

where ti is an integration constant. In the matter era when non-relativistic
matter (w = 0) gives the dominant contribution in the universe, Eq. (2.5)
reduces to a ∝ t2/3 and the expansion of the Universe slows down during
the matter era. In order to realize the cosmic acceleration we require ä < 0
which reduces to the condition

w < −1

3
. (2.6)

Note that the above condition cannot be satisfied for the ordinary matter
such as non-relativistic matter or radiation since their equations of state are
positive. Although the cosmological constant (w = −1) satisfies the above
condition, this model is plagued by the energy scale problem as we mentioned
in Sec. 1. In the rest of this section we briefly review the viable alternative
models based on modified matter theories and modified gravity theories.

2.1.2 Quintessence

As an example of the modified matter theories, let us consider the so-called
“quintessence” model [5, 75]. This model contains a canonical scalar field

13
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φ with a potential V (φ). Unlike the cosmological constant the equation
of state of quintessence varies with time. In order to realize the late-time
cosmic acceleration the effective mass of the field must be very light such as
mφ ∼ H0 ∼ 10−33eV where H0 is today’s Hubble parameter.

The quintessence model is described by the action

S =

∫
d4x

√−g
[
M2

pl

2
R− 1

2
gμν∂μφ∂νφ− V (φ)

]
+ SM , (2.7)

where g is a determinant of the metric gμν , R is the Ricci scalar and SM is the
matter action. Here the first term is the so-called Einstein-Hilbert term which
gives the Einstein tensor after varying with respect to the metric. The second
and the third terms correspond to the kinetic and the potential terms of the
scalar field, respectively. Varying the Lagrangian (2.7) with respect to the
metric we obtain the Friedmann equations (2.2) and (2.3) with ρ = φ̇2/2+V
and P = φ̇2/2− V . Then the equation of state (2.4) reduces to

wDE =
φ̇2/2− V

φ̇2/2 + V
. (2.8)

As long as the potential V varies slowly and the evolution of the field is suffi-
ciently slow so that |φ̇2| � |V |, the condition (2.6) is satisfied and the cosmic
acceleration arises. The evolution of wDE is obtained by using Eq. (2.8) with
(2.2) and (2.3) after specifying the form of the potential.

The evolution of wDE depends on the shape of the potential V . Broadly
speaking, they are classified into (i) “freezing” models and (ii) “thawing”
models [76].

(i) Freezing models
An example of the representative potential that belongs to this class is
the inverse power-low potential V = M4+nφ−n. In this class the field
rolls along the potential in the past and slows down once the system
enters the cosmic acceleration regime.

(ii) Thawing models
An example of the representative potential that belongs to this class
is V = M4 cos2(φ/f) which appears in the context of a dynamical
supersymmetry breaking. In this class the field is nearly frozen around
the potential maximum, but once the Hubble parameter become as
small as the effective mass of the field it starts to evolve.
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Figure 2.1: Evolution of wDE for the freezing and the thawing models versus
the redshift z. The green dashed line represents the cosmological constant.

In figure 2.1 we show an example of the evolution of wDE for the freezing
and the thawing models. Although the recent observation tends to favor
wDE < −1, the equation of state for quintessence is restricted to be wDE > −1
as is obvious from Eq. (2.8). One possibility to realize wDE < −1 in the
context of quintessence is introducing a ghost mode [77]. However in this
case the energy of the system is not bounded below and the so-called ghost
instability occurs.

2.1.3 Modified gravity

As examples of dark energy models based on modified gravity, we briefly
review the f(R) gravity and the covariant Galileon in the following. Both
models allow a possibility of realizing wDE < −1 around today while avoiding
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ghost instabilities.

f(R) gravity

This model is the simplest extension of general relativity in which the Einstein-
Hilbert term is generalized as a function of the Ricci scalar:

S =
M2

pl

2

∫
d4x

√−gf(R) + SM . (2.9)

As long as f,RR ≡ d2f/dR2 �= 0 holds there is a gravitational scalar degree of
freedom. In order to understand that let us consider the equivalent action

S =
M2

pl

2

∫
d4x

√−g [f(χ) + f,χ(χ)(R− χ)] + SM . (2.10)

Varying this action with respect to χ we obtain

f,χχ(R− χ) = 0 , (2.11)

which leads χ = R as long as f,χχ �= 0. Inserting back this solution into
Eq. (2.10) we recover the original action (2.9). Redefining a scalar field
φ = f,χ(χ) Eq. (2.10) can be written as the following

S =

∫
d4x

√−g
[
M2

pl

2
φR− V (φ)

]
+ SM , (2.12)

where V ≡ (M2
pl/2)[φχ(φ) − f(χ(φ))] corresponds to the potential term.

Here the first term represents a coupling between the scalar field and the
metric field. This type of coupling is called a non-minimal coupling. Note
that the non-minimal coupling give rise to an interaction between the scalar
field and the baryon at short distances where the curvature R becomes large.
However this interaction should be suppressed for the consistency with local
gravity tests in the Solar System. In f(R) gravity the so-called chameleon
mechanism can be at work in the high density local region [31, 32].

The action (2.12) needs to satisfy the conditions φ = f,R(R) and m2
φ ≡

d2V/dφ2 > 0, to avoid a ghost instability for the tensor perturbation and
a tachyonic instability, respectively. An example of viable models satisfying
above conditions is

f(R) = R− λR0
(R/R0)

2n

(R/R0)2n + 1
, (2.13)
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where n, λ and R0 are positive constants [9]. If R0 is of the order of H0,
Eq. (2.13) approximately behaves as the cosmological constant, f(R) 	
R − λR0 at the early stage of the cosmological history (R � R0). Once
R becomes as small as R0 around the present epoch Eq. (2.13) differs from
the cosmological constant. In the asymptotic future the system approaches
the de Sitter point characterized by f,R(R) = 2f(R) where the scale factor
grows exponentially.

Varying the action (2.9) with respect to the metric we obtain the modified
Friedmann equations on the cosmological background. Moving the extra
terms appearing due to the modification of gravity into the right-hand sides
of the Friedmann equations, one can write these equations in the form of
Eqs. (2.2) and (2.3) and define the energy density and the pressure of the
effective dark energy. Using Eq. (2.4) with (2.2) and (2.3) we can calculate
the evolution of wDE. In figure 2.2 we show the evolution of wDE in the
model (2.13). As we mentioned in Chapter 1, wDE < −1 is realized around
the present epoch while the conditions to avoid the ghost and the tachyonic
instabilities are kept to be satisfied.

Covariant Galileon

In the Dvali-Gabadadze-Porrati (DGP) braneworld scenario [7], in which
the cosmic acceleration is realized by a gravitational leakage to the extra
dimension, the field self-interaction of the form (∇φ)2�φ appears. This non-
linear term has nice feature to recover GR in a local region through the
so-called Vainshtein mechanism1 while this model exhibits a ghost mode [78].

The self-interacting Lagrangian (∇φ)2�φ appearing in the DGP model
satisfies the Galilean symmetry ∂μφ→ ∂μφ+bμ in the Minkowski background.
Imposing the Galilean symmetry in the flat space-time one can show that the
field Lagrangian consists of five terms L1, · · · , L5, where the term (∇φ)2�φ
corresponds to L3 [13]. In Refs. [14] these terms were extended to covariant
forms in the curved space-time as

S =

∫
d4x

√−g
[
M2

pl

2
R +

5∑
i=1

ciLi

]
+ SM , (2.14)

1We will briefly review this mechanism in Sec. 3.1
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Figure 2.2: Evolution of wDE for the f(R) gravity and the covariant Galileon
model versus the redshift z. The green dashed line represents the cosmolog-
ical constant.
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with

L1 = φ , L2 = (∇φ)2 L3 = (∇φ)2�φ ,
L4 = (∇φ)2 [

2(�φ)2 − 2φ;μνφ
;μν −R(∇φ)2/2] ,

L5 = (∇φ)2[(�φ)3 − 3(�φ)φ;μνφ
;μν

+2φ;μ
νφ;ν

ρφ;ρ
μ − 6φ;μφ

;μνφ;ρGνρ] , (2.15)

where ci are model parameters, a semicolon represents a covariant deriva-
tive and Gνρ is the Einstein tensor. The cosmological dynamics of covariant
Galileon theory except for the term L1 are studied in Refs. [20, 21]. There
exist de Sitter (dS) solutions responsible for dark energy driven by the field
kinetic energy. Unlike in the case of the DGP model there exist the viable
space of model parameter ci in which the appearance of ghosts and instabil-
ities of scalar and tensor perturbations can be avoided.

In figure 2.2 the evolution of wDE in the covariant Galileon model is
shown. In the past there exist a tracker solution characterized by wDE =
−2. The epoch at which the solutions approach the tracker depends on
the initial conditions. The system finally approaches the de Sitter attractor
(wDE = −1) characterized by φ̇ = constant. In Ref. [86] it was shown that
the observations favor the late-time tracking solution which approaches the
tracker only around the present epoch.

As we have seen in this section there exist several viable models which
realize wDE < −1 without exhibiting ghost instabilities in modified gravita-
tional theories. In the following chapter we investigate the EFT of modified
gravity which can deal with almost all the viable models in a systematic and
unified way.

2.2 The general EFT action of modified grav-

ity

In the following we briefly review the EFT of modified gravity on the cosmo-
logical background.

We first employ the 3+1 decomposition in the ADM formalism described
by the line element

ds2 = gμνdx
μdxν = −N2dt2 + hij(dx

i +N idt)(dxj +N jdt) , (2.16)
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where N is the lapse, N i is the shift vector, and hij is the three-dimensional
metric. A unit normal vector orthogonal to constant time hypersurfaces Σt is
given by nμ = (−N, 0, 0, 0) with the normalization nμn

μ = −1. The extrinsic
curvature of Σt is defined by

Kμν ≡ hλμh
σ
ν nσ;λ = nν;μ + nμn

λnν;λ . (2.17)

In the second equality of Eq. (2.17) we have used the fact that the three-
dimensional metric hμν can be expressed as hμν = gμν + nμnν . The extrinsic
curvature can be expressed in terms of a temporal derivative of the induced
metric hij and spatial derivative of the shift vector as

Kij =
1

2N

(
ḣij −∇(3)

i Nj −∇(3)
j Ni

)
, (2.18)

where ∇(3)
i represents a three-dimensional covariant derivative associated

with the induced metric hij.
The internal geometry of the hypersurfaces is characterized by the three-

dimensional Ricci tensor Rμν ≡ (3)Rμν . Similar to the definition of the
four-dimensional Ricci curvature, Rij is defined by the three-dimensional

Christoffel symbol (3)Γk
ij = hkl(∇(3)

i hlj + ∇(3)
j hli − ∇(3)

l hij)/2. The three
dimensional Ricci scalar R is related with the four dimensional Ricci scalar
R via the Gauss-Coddazi relation as

R = R−K2 + S + 2(Knμ − aμ);μ , (2.19)

where aμ is the so-called acceleration defined as aμ ≡ nνnμ;ν = hνμN;ν/N .
The EFT of cosmological perturbations advocated in Refs. [41]-[52] is

based on the combination of geometric scalar quantities:

K ≡ Kμ
μ , S ≡ KμνK

μν ,

R ≡ Rμ
μ , Z ≡ RμνRμν , U ≡ RμνK

μν , (2.20)

as well as the lapse N .
The action of general modified gravitational theories that depends on the

above mentioned scalar quantities is given by

S =

∫
d4x

√−g L (N,K,S,R,Z,U ; t) + SM , (2.21)
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where L is a Lagrangian. SM is the matter action with energy density ρM
and pressure PM . The dependence of the lapse N and the time t is included
since we are in mind considering the existence of a scalar degree of freedom
φ associated with the modification of gravity. Under the unitary gauge in
which the constant field hypersurfaces coincide with the constant time hyper-
surfaces, the scalar field reduces simply to the function of time φ = φ(t) and
its kinetic term can be expressed in terms of the lapse as X = −N−2φ̇(t)2.
Thus the φ and X dependence in the Lagrangian L can be interpreted as the
N and t dependence. We will give a more detailed explanation in Sec. 2.3.

On the flat FLRW background, the equations of motion can be derived
by expanding the action (2.21) up to first order in perturbations. The back-
ground line element (2.1) corresponds to N̄ = 1, N̄i = 0 and h̄ij = δij.
Substituting this background metric into Eq. (2.18) and the definition of
Rμν we obtain

K̄μν = 3Hh̄μν , R̄μν = 0 . (2.22)

Thus the background value of ADM variables defined in Eq. (2.20) leads

K̄ = 3H , S̄ = 3H2 , R̄ = Ū = Z̄ = 0 , (2.23)

where H ≡ ȧ/a is the Hubble parameter. Then we first define the following
perturbations for the scalars composed of the extrinsic curvature

δK = K − 3H , δS = S − 3H2 = 2HδK + δKμ
ν δK

ν
μ . (2.24)

where δKμν = Kμν − Hhμν . Secondly, the scalars composed of the three-
dimensional Ricci tensor appear only as perturbations:

δR = δ1R+ δ2R , δZ = δRμ
νδRν

μ , (2.25)

where δ1R and δ2R represent the first oder and the second order perturba-
tions in δR, respectively. Finally the mixture term U of the extrinsic and
the intrinsic curvature can be expressed as

δU = HR+Rμ
νδK

ν
μ . (2.26)

We now expand the Lagrangian L in Eq. (2.21) up to first order in per-
turbations as

L = L̄+ LNδN + LKδK + LSδS + LRδR+ LZδZ + LUδU +O(2) , (2.27)

21



2.2 The general EFT action of modified gravity Capter 2

where a lower index of L denotes the partial derivatives with respect to
the scalar quantities evaluated at the background, e.g., LN = ∂L/∂N . In
order to derive the first-order Lagrangian, we first compute the combination
LKδK + LSδS in Eq. (2.27). Making use of the second and third relations
of Eq. (2.24) and defining the quantity

F ≡ LK + 2HLS , (2.28)

it follows that
LKδK + LSδS = F(K − 3H) +O(2) , (2.29)

up to first order. Since K = nμ
;μ from Eq. (2.17), the term FK is partially

integrated to give∫
d4x

√−gFK = −
∫
d4x

√−gF;μn
μ = −

∫
d4x

√−g Ḟ
N
, (2.30)

up to a boundary term. Expanding the term N−1 = (1+δN)−1 up to second
order, Eq. (2.29) reduces to

LKδK + LSδS = −Ḟ − 3HF + ḞδN +O(2) . (2.31)

Substituting Eq. (2.31) into (2.27) and integrating by parts the linear order
Lagrangian leads

L = L̄− Ḟ − 3HF + (Ḟ + L,N)δN , (2.32)

where we ignored the last three terms in Eq. (2.27) since they reduce to total
derivatives at the linear order in perturbations.

In summary, the first-order action is given by S =
∫
d4x

√−g L+SM with
the Lagrangian

L = L̄− Ḟ − 3HF + (Ḟ + L,N)δN . (2.33)

We define the Lagrangian density as L =
√−gL = N

√
hL where h is the

determinant of the three-dimensional metric hij. Then, the zeroth-order and
first-order Lagrangian densities read

L0 = a3(L̄− Ḟ − 3HF) , (2.34)

L1 = a3(L̄+ L,N − 3HF)δN + (L̄− Ḟ − 3HF)δ
√
h . (2.35)
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Varying the first-order Lagrangian density (2.35) in terms of δN and δ
√
h,

we obtain the following equations of motion

L̄+ LN − 3HF = ρM , (2.36)

L̄− Ḟ − 3HF = −PM . (2.37)

Once we specify the form of the Lagrangian and substituting it into these
general results, we can easily derive the equations of motion on the cosmo-
logical background.

Expanding the action (2.21) up to second order in cosmological pertur-
bations about the flat FLRW background, we obtain the equations of motion
for the background and linear perturbations. Before doing so, we shall review
the theories that belong to the action (2.21).

2.3 Horndeski and GLPV theories in the EFT

language

In this section we show that Horndeski and GLPV theories can be fully
expressed in terms of ADM variables introduced in the action (2.21).

Let us consider four-dimensional Horndeski theories characterized by the
Lagrangian [22, 24, 23, 25]

L =
5∑

i=2

LH
i , (2.38)

with

LH
2 = G2(φ,X), (2.39)

LH
3 = G3(φ,X)�φ, (2.40)

LH
4 = G4(φ,X)R− 2G4X(φ,X)

[
(�φ)2 − φ;μνφ;μν

]
, (2.41)

LH
5 = G5(φ,X)Gμνφ

;μν +
1

3
G5X(φ,X)

× [
(�φ)3 − 3(�φ)φ;μνφ

;μν + 2φ;μνφ
;μσφ;ν

;σ

]
, (2.42)

where�φ ≡ (gμνφ;ν);μ, and Gi (i = 2, 3, 4, 5) are functions in terms of a scalar
field φ and its kinetic energy X = gμν∂μφ∂νφ with the partial derivatives
GiX ≡ ∂Gi/∂X and Giφ ≡ ∂Gi/∂φ. R and Gμν are the Ricci scalar and the
Einstein tensor in four dimensions, respectively.
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Horndeski theory covers a wide variety of gravitational theories with a
single scalar degree of freedom. First of all, the k-essence scalar field [6, 79]
in the framework of GR is described by the functions G2 = P (φ,X), G3 =
0, G4 =M2

pl/2, G5 = 0, whereMpl is the reduced Planck mass. The canonical
scalar field with a potential V (φ) corresponds to a particular function G2 =
−X/2− V (φ).

Brans-Dicke (BD) theory [19] with a potential V (φ) is characterized by
the functions G2 = −MplωBDX/(2φ)− V (φ), G3 = 0, G4 =Mplφ/2, G5 = 0,
where ωBD is the BD parameter. The metric f(R) gravity [8, 10] and dilaton
gravity [80] correspond to the particular cases of BD theory with ωBD = 0
and ωBD = −1, respectively.

The covariant Galileon [14] corresponds to the functions G2 = β2X, G3 =
β3X, G4 =M2

pl/2+ β4X
2, G5 = β5X

2, where βi (i = 2, 3, 4, 5) are constants.
A scalar field whose derivatives couple to the Einstein tensor in the form
Gμν∂

μφ∂νφ [81, 82] can be accommodated by the functions G2 = −X/2 −
V (φ), G3 = 0, G4 = 0, G5 = cφ, where c is a constant and V (φ) is a field
potential.

In what follows, we translate the Horndeski Lagrangian series LH
2−5 into

the EFT language. In unitary gauge the constant time hypersurfaces cor-
respond to the constant φ hypersurfaces on the cosmological background.
Thus unit normal vector orthogonal to the constant time hypersurfaces can
be written as

nμ = −γφ;μ , γ =
1√−X . (2.43)

Taking the covariant derivative of nμ and using the expression (2.17), it
follows that

φ;μν = −1

γ
(Kμν − nμaν − nνaμ) +

γ2

2
φ;λX;λnμnν , (2.44)

Then the term �φ is expressed as

�φ = −1

γ
K +

φ;λX;λ

2X
. (2.45)

Remembering that the scalar field corresponds to time in unitary gauge
and its kinetic term can be written in terms of the lapse as X = −φ̇2/N2,
the Lagrangian LH

2 is simply written as

LH
2 = G2(t, N) . (2.46)
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Using Eq. (2.45) the Lagrangian LH
3 reduces to

LH
3 = 2(−X)3/2F3X −XF3φ , (2.47)

where we introduced an auxiliary function F3(φ,X) which satisfies G3 =
F3 + 2XF3X . Note that equations of motion can be written in terms of G3

and its derivatives without using F3 as we will see later.
Substituting Eqs. (2.19), (2.44) and (2.45) into Eq. (2.41) the Lagrangian

LH
4 can be written in terms of ADM variables as

LH
4 = G4R+ (2XG4X −G4)(K

2 − S)− 2
√−XG4φK . (2.48)

In a similar way the Lagrangian LH
5 can be expressed as [52]

LH
5 =

1

2
XG5φ(K

2 − S)− 1

3
(−X)3/2G5XK3

+
1

2
X(G5φ − F4φ)R−√−XF5

(
U − 1

2
KR

)
, (2.49)

where F5(φ,X) is an auxiliary function satisfying G5X = F5/(2X)+F5X and

K3 ≡ K3 − 3KKijK
ij + 2KijK

ilKj
l . (2.50)

Up to quadratic order in perturbations, the term K3 is given by

K3 = 3H
(
2H2 − 2KH +K2 − S)

+O(3) . (2.51)

As in the case of Eq. (2.47) equations of motion can be written in terms of
G5 and its derivatives in spite of this auxiliary function.

Combining Eqs. (2.46)-(2.49), the Horndeski Lagrangian series can be
fully expressed in terms of the ADM scalar quantities as [52]

L = A2 + A3K + A4(K
2 − S) + B4R+ A5K3 +B5 (U −KR/2) , (2.52)

where

A2 = G2 −XF3φ , A3 = 2(−X)3/2F3X − 2
√−XG4φ ,

A4 = 2XG4X −G4 +XG5φ/2 , B4 = G4 +X(G5φ − F5φ)/2 ,

A5 = −(−X)3/2G5X/3 , B5 = −√−XF5 . (2.53)
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From Eq. (2.53) the coefficients A4, B4, A5, B5 in Horndeski theories are
related with each other as

A4 = 2Y B4X − B4 , A5 = −Y B5X/3 . (2.54)

The GLPV theories [39] correspond to the Lagrangian (2.52) in which
the conditions (2.54) do not necessarily hold. Thus Horndeski and GLPV
theories are subclasses of the EFT of modified gravity. Note that even in the
case of GLPV theories derivatives higher than second order do not appear
in the quadratic action for cosmological perturbations as we will see in the
next section.

Substituting the Lagrangian (2.52) into Eqs. (2.36) and (2.37), the back-
ground equations of motion are given as

A2 − 6H2A4 − 12H3A5 + 2φ̇2
(
A2X + 3HA3X + 6H2A4X + 6H3A5X

)
= ρM ,

(2.55)

A2 − 6H2A4 − 12H3A5 − Ȧ3 − 4ḢA4 − 4HȦ4 − 12HḢA5 − 6H2Ȧ5 = −PM .

(2.56)

Substituting the functions Ai of Eq. (2.53) into Eqs. (2.55)-(2.56), we re-
produce the background equations of motion in Horndeski theories [25, 28]
derived by the direct variation of the action (2.38) with (2.39)-(2.42).

Equations (2.55) and (2.56) do not contain the functions B4 and B5.
This means that, at the background level, the theories with same values of
A2, A3, A4, A5 but with different values of B4 and B5 cannot be distinguished
from each other. In fact, this happens for the covariantized Galileon and
the covariant Galileon mentioned in Introduction. However, it is possible
to distinguish between such theories at the level of perturbations. We shall
address this issue in Sec. 2.5.

2.4 Cosmological perturbations and propaga-

tion speeds of tensor and scalar modes

In this section, we derive no-ghost conditions and scalar propagation speeds
for the theory described by the Lagrangian L(N,K,S,R,Z,U ; t) in the pres-
ence of multiple scalar fields χI (I = 1, 2, · · · , N − 1). As we already men-
tioned, we choose the unitary gauge in which the perturbation of the field φ
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vanishes (δφ = 0). The k-essence Lagrangian P (I)(YI) with a kinetic energy
YI ≡ gμν∂μχI∂νχI can describe the perturbation of a barotropic perfect fluid
[69, 70, 68]. Let us then consider the theory with N scalar fields (φ and
χ1, · · · , χN−1) given by the action

S =

∫
d4x

√−g
[
L(N,K,S,R,Z,U ; t) +

N−1∑
I=1

P (I)(YI)

]
, (2.57)

which covers the theory (2.38) with (2.52) as a special case. The energy
density ρ(I) and the equation of state wI of the scalar field χI are given,
respectively, by

ρ(I) = 2YIP
(I)
YI

− P (I) , wI =
P (I)

2YIP
(I)
YI

− P (I)
, (2.58)

where P
(I)
YI

= ∂P (I)/∂YI . Then, the total energy density ρM and the pressure
PM of the scalar fields χ1, · · · , χN−1 read

ρM =
N−1∑
I=1

[
2YIP

(I)
YI

− P (I)
]
, PM =

N−1∑
I=1

P (I) . (2.59)

Combining Eqs. (2.36) and (2.37), we obtain

LN + Ḟ =
N−1∑
I=1

2YIP
(I)
YI
. (2.60)

In Sec. 2.5.1 we will show that the above k-essence description can accom-
modate non-relativistic matter and radiation by choosing specific forms of
P (1)(Y1) and P

(2)(Y2).
In Ref. [68] the conditions for eliminating derivatives higher than quadratic

order were derived for the two-field action

S =

∫
d4x

√−g L(N,K,S,R,Z,U , χ1, Y1; t) .

In this case, the higher-order spatial derivatives do not appear under the cer-
tain conditions which we will show later. The mixture of temporal and spatial
derivatives higher than second order can be eliminated under the conditions
LKY1 +2HLSY1 = 0 and LRY1 +HLUY1 = 0 [68]. For the separate Lagrangian
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L(N,K,S,R,Z,U ; t)+P (1)(Y1), these two conditions are automatically sat-
isfied. This is also the case for the action (2.57) of N scalar fields. In the
following we study the second order perturbations for the action (2.57).

We now expand the action (2.57) up to second order in perturbations. In
doing so, we express the three-dimensional metric hij and the shift Ni in the
form [83]

hij = a2(t)e2ζ ĥij , ĥij = δij + γij + γilγlj/2 , det ĥ = 1 ,

Ni = ∂iψ ≡ ∂ψ/∂xi , (2.61)

where ζ and ψ are the scalar perturbations and γij is the tensor perturbation
satisfying traceless and transverse conditions γii = ∂iγij = 0.

The second-order action for the tensor mode is the same as that derived
in Refs. [52, 68]:

S
(2)
h =

∫
d4x

a3

4
LS

[
γ̇2ij − c2t

(∂kγij)
2

a2

]
, (2.62)

where the propagation speed ct is given by

c2t =
E
LS

, E ≡ LR +
1

2
L̇U +

3

2
HLU . (2.63)

The tensor ghosts and Laplacian instabilities are absent under the conditions

LS > 0 , (2.64)

E > 0 . (2.65)

For the scalar perturbations the second-order action can be written in the
form S

(2)
s =

∫
d4xL2, with the Lagrangian density

L2 = δ
√
h[(Ḟ + LN)δN + Eδ1R] + a3[(LN + LNN/2)δN

2 + Eδ2R
+AδK2/2 + BδKδN + CδKδ1R+ (D + E)δNδ1R
+Gδ1R2/2 + LSδKμ

ν δK
ν
μ + LZδRμ

νδRν
μ] + LM

2 , (2.66)

where

A ≡ LKK + 4HLSK + 4H2LSS , B ≡ LKN + 2HLSN ,

C ≡ LKR + 2HLSR + LU/2 +HLKU + 2H2LSU ,

D ≡ LNR − L̇U/2 +HLNU , G ≡ LRR + 2HLRU +H2LUU .(2.67)
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Substituting Eq. (2.61) into (2.18) and the definition of the intrinsic curvature
it follows that

δRij = −(δij∂
2ζ + ∂i∂jζ) ,

δ1R = −4a−2∂2ζ ,

δ2R = −2a−2[(∂ζ)2 − 4ζ∂2ζ] ,

δK i
j = (ζ̇ −HδN)δij − δik(∂kNj + ∂jNk)/(2a

2) ,

δK = 3(ζ̇ −HδN)− ∂2ψ/a2 . (2.68)

Using these relations and Eqs. (2.24)-(2.26) the second order Lagrangian
density can be expressed in terms of the variables in the perturbed metric as

L2 = a3
[
1

2
(2LN + LNN + 9AH2 − 6BH + 6LSH2)δN2

+(B − 3AH − 2LSH)

(
3ζ̇ − ∂2ψ

a2

)
δN + 4(3CH −D − E)∂

2ψ

a2
δN

−(3A+ 2LS)ζ̇
∂2ψ

a2
− 12Cζ̇ ∂

2ζ

a2
+

(
9

2
A+ 3LS

)
ζ̇2 + 2E (∂ζ)

2

a2

+
1

2
(A+ 2LS)

(∂2ψ)2

a4
+ 4C (∂

2ψ)(∂2ζ)

a4
+ 2(4G + 3LZ)

(∂2ζ)2

a4

]
+ LM

2 ,

(2.69)

with the notation ∂2ζ ≡ ∂j∂jζ (the quantities with the same lower index j
are summed). Here the last three terms in the square brackets exhibit spatial
derivatives higher than second order. These higher order derivatives vanish
under the conditions [52]

A+ 2LS = 0 , C = 0 , 4G + 3LZ = 0 , (2.70)

or explicitly,

LKK + 4HLSK + 4H2LSS + 2LS = 0 , (2.71)

LKR + 2HLSR +
1

2
LU +HLKU + 2H2LSU = 0 , (2.72)

4
(
LRR + 2HLRU +H2LUU

)
+ 3LZ = 0 . (2.73)

It is clear that the Lagrangian (2.52) satisfies these three conditions (2.71)-
(2.73) even without the restriction (2.54), so the linear perturbation equa-
tions of motion on the FLRW background do not contain derivatives higher
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than second order both in Horndeski and GLPV theories. Hereafter we focus
on the subclass of the EFT in which Eqs. (2.71)-(2.73) are satisfied.

The Lagrangian density LM
2 corresponds to the contribution coming from

the matter fields χI :

LM
2 ≡

N−1∑
I=1

[
P

(I)
YI
δ
√
h δ1YI + a3

(
P

(I)
YI
δ2YI + P

(I)
YIYI

δ1Y
2
I /2 + P

(I)
YI
δNδ1YI

)]
,

(2.74)
where the first-order and second-order contributions to YI are given, respec-
tively, by

δ1YI = 2χ̇2
IδN − 2χ̇I

˙δχI , (2.75)

δ2YI = − ˙δχ
2

I − 3χ̇2
IδN

2 + 4χ̇I
˙δχIδN +

2χ̇I

a2
∂jψ∂jδχI +

1

a2
(∂δχI)

2 , (2.76)

with (∂δχI)
2 ≡ ∂jδχI∂jδχI . On using Eq. (2.60), one can eliminate some of

the terms involving ζ. On using Eq. (2.68) and the relation δ
√
h = 3a3ζ, the

Lagrangian density (2.69) can be expressed as

L2 = a3
[
1

2
(2LN + LNN − 6HW + 12H2LS)δN2 +W

(
3ζ̇ − ∂2ψ

a2

)
δN

− 4(D + E)∂
2ζ

a2
δN + 4LS ζ̇

∂2ψ

a2
− 6LS ζ̇2 + 2E (∂ζ)

2

a2

+
N−1∑
I=1

{
(2χ̇2

IP
(I)
YIYI

− P
(I)
YI

)(χ̇2
IδN

2 − 2χ̇I
˙δχIδN + ˙δχ

2

I)

− 6χ̇IP
(I)
YI
ζ ˙δχI − 2χ̇IP

(I)
YI
δχI

∂2ψ

a2
+ P

(I)
YI

(∂δχI)
2

a2

}]
, (2.77)

where
W ≡ LKN + 2HLSN + 4HLS . (2.78)

Varying the Lagrangian density (2.77) with respect to δN and ∂2ψ, we
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obtain the Hamiltonian and momentum constraints

(2LN + LNN − 6HW + 12H2LS)δN +W
(
3ζ̇ − ∂2ψ

a2

)
− 4(D + E)∂

2ζ

a2

+
N−1∑
I=1

2χ̇I(P
(I)
YI

− 2χ̇2
IP

(I)
YIYI

)( ˙δχI − χ̇IδN) = 0 , (2.79)

WδN − 4LS ζ̇ +
N−1∑
I=1

2χ̇IP
(I)
YI
δχI = 0 . (2.80)

Solving Eqs. (2.79)-(2.80) for δN , ∂2ψ and substituting the resulting relations
into Eq. (2.77), the second-order Lagrangian density can be written in the
form

L2 = a3
(
�̇X tK �̇X − 1

a2
∂j �X tG∂j �X − �X tB �̇X − �X tM �X

)
, (2.81)

where K, G, B, M are N×N matrices, and the vector �X is composed from
the dimensionless multiple fields, as

�X t = (ζ, δχ1/Mpl, · · · , δχN−1/Mpl) . (2.82)

Here Mpl is the reduced Planck mass.
The two matrices K and G determine no-ghost conditions and the scalar

propagation speeds. Their components are given by

K11 =
2LS
W2

(
g2 +

8LS
M2

pl

N∑
I=2

χ̇2
I−1KII

)
,

KII =
[
2χ̇2

I−1P
(I−1)
YI−1YI−1

− P
(I−1)
YI−1

]
M2

pl , K1I = KI1 = −4LSχ̇I−1

MplW KII ,(2.83)

G11 = −1

2

(
Ċ3 +HC3 + 4E

)
,

GII = −P (I−1)
YI−1

M2
pl , G1I = GI1 =

C3χ̇I−1

4LSMpl

GII , (2.84)

where 2 ≤ I ≤ N and other components are 0. The functions g2 and C3 are
defined by

g2 ≡ 4LS(2LN + LNN) + 3(LKN + 2HLSN)2 , (2.85)

C3 ≡ −16LS(D + E)
W . (2.86)
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For the derivation of G11 we have used the property that∫
d4x aC3ζ̇∂2ζ =

∫
d4x (a/2)(Ċ3 +HC3)(∂ζ)2 , (2.87)

up to a boundary term.
If the symmetric matrix K is positive definite, the scalar ghosts are ab-

sent. The necessary and sufficient conditions for the positivity of K are that
the determinants of principal submatrices of K are positive, i.e.,

2LS
W2

	∏
I=2

KII

(
g2 +

8LS
M2

pl

N∑
J=	+1

χ̇2
J−1KJJ

)
> 0 (� = 1, 2, · · · , N) ,

(2.88)
where

∏	
I=2KII = 1 for � = 1 and

∑N
J=	+1 χ̇

2
J−1KJJ = 0 for � = N . Under

the tensor no-ghost condition (2.64), all the N conditions (2.88) hold for
g2 > 0 and KII > 0 (I = 2, 3, · · · , N). Hence the scalar ghost is absent for

g2 = 4LS(2LN + LNN) + 3(LKN + 2HLSN)2 > 0 , (2.89)

2χ̇2
IP

(I)
YIYI

− P
(I)
YI

> 0 (I = 1, 2, · · · , N − 1). (2.90)

The dispersion relation following from the Lagrangian (2.81) in the limit
of a large wave number k with a frequency ω is given by

det
(
ω2K − k2G/a2

)
= 0 . (2.91)

Introducing the scalar sound speed cs as ω
2 = c2s k

2/a2, Eq. (2.91) reduces to

N∏
I=1

(
c2sKII −GII

) − N∑
I=2

[(
c2sK1I −G1I

)2 N∏
J �=I,J≥2

(
c2sKJJ −GJJ

)]
= 0 .

(2.92)
For the theory described by the Lagrangian (2.52), it follows that

D + E = B4 + B4N − 1

2
HB5N , LS = −A4 − 3HA5 . (2.93)

We recall that in Horndeski theories the relation (2.54) holds, and hence
D + E = LS . Then, the term C3 in Eq. (2.86) reads

C3H = −16L2
S

W , (2.94)
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where the lower index “H” represents the values in Horndeski theories. Sub-
stituting the relation (2.94) into Eq. (2.84) and using Eq. (2.83), the propa-
gation speed csH in Horndeski theories satisfies

c2sHK1I −G1I = −4LSχ̇I−1

MplW
(
c2sHKII −GII

)
. (2.95)

Plugging Eq. (2.95) into Eq. (2.92), we obtain the following algebraic equa-
tion [

c2sHK11 −G11 −
(

4LS
MplW

)2 N∑
I=2

χ̇2
I−1

(
c2sHKII −GII

)]

×
N∏
I=2

(
c2sHKII −GII

)
= 0 , (2.96)

whose solutions are given by

c2sH1 =
G11 − [4LS/(MplW)]2

∑N
I=2 χ̇

2
I−1GII

K11 − [4LS/(MplW)]2
∑N

I=2 χ̇
2
I−1KII

=
W2

2LSg2

[
G11 +

16L2
S

W2

N∑
I=2

χ̇2
I−1P

(I−1)
YI−1

]
, (2.97)

c2sHI =
GII

KII

=
P

(I−1)
YI−1

P
(I−1)
YI−1

− 2χ̇2
I−1P

(I−1)
YI−1YI−1

(I = 2, 3, · · · , N) . (2.98)

The matter sound speed squared (2.98) coincides with that derived in Ref. [84]
in the context of single-field k-inflation. In Horndeski theories, each csHI

(I ≥ 2) is not affected by other scalar fields. The presence of the matter
fields χI gives rise to modifications to the first propagation speed csH1, which
was already derived in Ref. [68] for N = 2.

In GLPV theories where the conditions (2.54) are not satisfied, we cannot
write Eq. (2.92) in the separate form like Eq. (2.96). On using the propa-
gation speeds (2.97) and (2.98), Eq. (2.92) can be written in the following
form:
N∏
I=1

(
c2s − c2sHI

)
= −8LS

g2

( C3W
16L2

S
+ 1

) N∑
I=2

[
χ̇2
I−1P

(I−1)
YI−1

×
{
2c2s + c2sHI

( C3W
16L2

S
− 1

)} N∏
J �=I,J≥2

(c2s − c2sHJ)

]
, (2.99)
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where, for N = 2,
∏N

J �=I,J≥2(c
2
s − c2sHJ) = 1. Since C3 �= −16L2

S/W in GLPV

theories, the right hand side of Eq. (2.99) does not vanish. Hence c2s differs
from the value c2sHI . This means that not only the propagation speed csH1

but also the matter sound speeds csHI (I ≥ 2) are affected by the presence
of other scalar fields. When N = 2, Eq. (2.99) reduces to

(
c2s − c2sH1

) (
c2s − c2sH2

)
= −8LS

g2

( C3W
16L2

S
+ 1

)
χ̇2
1P

(1)
Y1

×
[
2c2s + c2sH2

( C3W
16L2

S
− 1

)]
, (2.100)

which agrees with Eq. (22) of Ref. [39].2

Let us consider the case in which the deviation of C3 from the value
−16L2

S/W is small, i.e.,

C3 = −16L2
S

W (1 + δC3) , |δC3| � 1 . (2.101)

Under this approximation we write the two solutions for c2s in Eq. (2.99), as

c2s1 = c2sH1 + δc2s1 , (2.102)

c2sI = c2sHI + δc2sI (I = 2, 3, · · · , N) . (2.103)

Substituting Eq. (2.102) into Eq. (2.99), we obtain

δc2s1 	
N∑
I=2

ξI−1 δC3 , (2.104)

where

ξI ≡
16LSχ̇2

IP
(I)
YI

g2
. (2.105)

2In Ref. [39], replacing φ ↔ χ, the definition of the first propagation speed squared is
given by

c̃2sH1 =
W2

2LSg2

[
G11 +

( C3
4LS

)2

χ̇2
1P

(1)
Y1

]
,

whereas the definition of c2sH2 is the same as ours. In the Horndeski limit C3 → −16L2
S/W,

c2sH1 is identical to c̃2sH1.
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When we substitute Eq. (2.103) into Eq. (2.99), we employ the approximation
|δc2sI | � c2sHI , whose validity should be checked after deriving the solution of
δc2sI . It then follows that

δc2sI 	 − c2sHI

2(c2sHI − c2sH1 − δc2s1)
ξI−1δC2

3 (I = 2, 3, · · · , N). (2.106)

If the quantities |ξI−1| (I ≥ 2) are much larger than 1, it is possible
to have |δc2s1| of the order of 1 even for |δC3| � 1. In fact, this happens
for the cosmology of the covariantized Galileon studied in Sec. 2.5. On the
other hand, δc2sI (I ≥ 2) contains an additional suppression factor δC3. In
the cosmological epoch where the field χI−1 (I ≥ 2) dominates the energy
density of the Universe, we have δc2s1 	 ξI−1 δC3 from Eq. (2.104). Provided
that the terms |δc2s1| and |c2sHI − c2sH1| are at most of the order of 1, it follows
that |δc2sI | � c2sHI . This discussion implies that the deviation from Horndeski
theories may potentially lead to a considerable modification to c2sH1, but the
modification to c2sHI (I ≥ 2) should be suppressed. In Sec. 2.5.4 we shall
study this issue for concrete models of dark energy.

2.5 Application to Galileon theories

The covariant Galileon advocated in Ref. [14] belongs to a class of the Horn-
deski Lagrangian (2.38) with the functions

G2 =
c2
2
X , G3 =

c3
2M3

X , G4 =
M2

pl

2
− c4
4M6

X2 , G5 =
3c5
4M9

X2 ,

(2.107)
where c2,3,4,5 are dimensionless constants and M is a constant having a di-
mension of mass. In this case the auxiliary functions F3 and F5 can be chosen
as F3 = c3Y/(6M

3) and F5 = 3c5Y
2/(5M9), respectively. Then, the covari-

ant Galileon [dubbed Model (A)] corresponds to the Lagrangian (2.52) with
the functions

Model (A) : A2 =
c2
2
X , A3 =

c3
3M3

(−X)3/2 ,

A4 = −M
2
pl

2
− 3c4

4M6
X2 , A5 =

c5
2M9

(−X)5/2 ,

B4 =
M2

pl

2
− c4

4M6
X2 , B5 = − 3c5

5M9
(−X)5/2 . (2.108)
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The Lagrangian of the original Galileon [13] was constructed such that
the field equations of motion satisfy the Galilean symmetry ∂μφ→ ∂μφ+bμ in
Minkowski space-time. In curved space-time, the covariantized version of the
Minkowski Galileon follows by replacing partial derivatives of the field with
covariant derivatives. Although this process generally gives rise to deriva-
tives higher than second order, the equations of motion for the covariantized
Galileon remain of second order on the isotropic cosmological background.
Taking into account the Einstein-Hilbert term (M2

pl/2)R, the Lagrangian of
the covariantized Galileon [dubbed Model (B)] is given by

Model (B) : A2 =
c2
2
X , A3 =

c3
3M3

(−X)3/2 ,

A4 = −M
2
pl

2
− 3c4

4M6
X2 , A5 =

c5
2M9

(−X)5/2 ,

B4 =
M2

pl

2
, B5 = 0 . (2.109)

The additional terms −c4X2/(4M6) and −3c5(−X)5/2/(5M9) appearing in
the terms B4 and B5 of the covariant Galileon Lagrangian (2.108) correspond
to the gravitational counter terms that eliminate derivatives higher than
second order in general space-time.

2.5.1 Background cosmology

Even though the coefficients B4 and B5 in Model (B) are different from those
in Model (A), the coefficients Ai (i = 2, 3, 4, 5) are the same in both cases.
Hence the background cosmological dynamics in Model (B) are exactly the
same as those in Model (A). Substituting the functions Ai of Eqs. (2.108)
and (2.109) into Eqs. (2.55) and (2.56), we obtain the equations of motion

3M2
plH

2 = ρDE + ρM , (2.110)

3M2
plH

2 + 2M2
plḢ = −PDE − PM , (2.111)

where the energy density ρDE and the pressure PDE of the “dark” component
are given by

ρDE = −1

2
c2φ̇

2 +
3c3Hφ̇

3

M3
− 45c4H

2φ̇4

2M6
+

21c5H
3φ̇5

M9
, (2.112)

PDE = −1

2
c2φ̇

2 − c3φ̇
2φ̈

M3
+

3c4φ̇
3

2M6

[
8Hφ̈+ (3H2 + 2Ḣ)φ̇

]
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−3c5Hφ̇
4

M9

[
5Hφ̈+ 2(H2 + Ḣ)φ̇

]
. (2.113)

Equations (2.110) and (2.111) coincide with those derived in Refs. [20, 21]
for the covariant Galileon. The dark energy equation of state is defined by
wDE ≡ PDE/ρDE.

For the matter component labelled by the lower index “M” in Eqs. (2.110)-
(2.111), we take into account radiation and non-relativistic matter. The per-
fect fluids of radiation and non-relativistic matter can be modeled by two
scalar fields χ1 and χ2, respectively, with the Lagrangians

P (1)(Y1) = b1Y
2
1 , (2.114)

P (2)(Y2) = b2(Y2 − Y0)
2 , (2.115)

where b1, b2, and Y0 are constants. If we add a constant term Λ to the
Lagrangian (2.115), this corresponds to the unified model of dark matter
and dark energy proposed by Scherrer [85].

From Eq. (2.58) the energy density and the equation of state of radiation
are given, respectively, by ρr = 3b1Y

2
1 and wr = 1/3. The no-ghost condition

(2.90) is satisfied for b1 > 0. In Horndeski theories including Model (A),
Eq. (2.98) shows that the sound speed squared of radiation is given by

c2sH2 =
1

3
. (2.116)

In Model (B), the radiation sound speed squared c2s2 deviates from c2sH2 with
the difference estimated by Eq. (2.106).

The energy density and the equation of state of non-relativistic matter
following from Eq. (2.115) are given, respectively, by

ρm = b2(Y2 − Y0)(3Y2 + Y0) , wm =
Y2 − Y0
3Y2 + Y0

. (2.117)

Provided that Y2 is close to Y0, the field χ2 behaves as non-relativistic matter
with wm 	 0. Then, the no-ghost condition (2.90) is satisfied for b2 >
0. From the continuity equation ρ̇m + 3H(1 + wm)ρm = 0, we obtain the
dependence ρm ∝ a−3 for ε ≡ (Y2 − Y0)/Y0 � 1 and hence ε ∝ wm ∝ a−3.
The matter energy density can be expressed as ρm = 16b2Y

2
0 wm/(1− 3wm)

2.
In Horndeski theories, the sound speed squared of non-relativistic matter
reads

c2sH3 =
Y2 − Y0
3Y2 − Y0

=
2wm

1 + 3wm

, (2.118)
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which is much smaller than 1 for wm � 1. The matter sound speed squared
c2s3 in Model (B) is subject to change relative to c2sH3 given above. The
presence of an additional pressure affects the gravitational growth of matter
perturbations. For the successful structure formation, we require that c2s3 �
1 during the matter-dominated epoch.

The background cosmology based on Eqs. (2.110) and (2.111) has been
studied in detail in Refs. [20, 21]. In what follows we shall briefly review
the background dynamics and then study how the two Galileon theories
can be distinguished from each other at the level of perturbations. A de
Sitter solution (H = HdS = constant) responsible for the late-time cosmic
acceleration can be realized for a constant field velocity φ̇dS. Normalizing
the mass M as M3 =MplH

2
dS and defining the dimensionless variable xdS ≡

φ̇dS/(HdSMpl), the coefficients c2 and c3 are related with the quantities α ≡
c4x

4
dS and β ≡ c5x

5
dS, as

c2x
2
dS = 6 + 9α− 12β , c3x

3
dS = 2 + 9α− 9β . (2.119)

We also introduce the following dimensionless variables:

r1 ≡ φ̇dSHdS

φ̇H
, r2 ≡ H

HdS

(
φ̇

φ̇dS

)5

, (2.120)

which are normalized as r1 = r2 = 1 at the de Sitter fixed point. The
Friedmann equation (2.110) can be written in the form

Ωm = 1− Ωr − ΩDE , (2.121)

where Ωm ≡ ρm/(3M
2
plH

2), Ωr ≡ ρr/(3M
2
plH

2), and

ΩDE ≡ ρDE

3M2
plH

2
= −1

2
(2+3α−4β)r31r2+(2+9α−9β)r21r2−

15

2
αr1r2+7βr2 .

(2.122)
The autonomous equations of motion for the variables r1, r2, and Ωr are
presented in Appendix A (see also Ref. [21] for detail). The variation of the
Hubble parameter is known by H ′/H = −5r′1/(4r1)−r′2/(4r2), where a prime
represents the derivative with respect to ln a.

There exists a so-called tracker solution characterized by r1 = 1, along
which the field velocity evolves as φ̇ ∝ H−1 [20, 21]. Along the tracker, the
variable r2 grows as r′2 = 2r2(3− 3r2 + Ωr)/(1 + r2) from the regime r2 � 1
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to the de Sitter fixed point characterized by r2 = 1 and Ωr = 0. The dark
energy equation of state on the tracker is given by

wDE = − Ωr + 6

3(1 + r2)
, (2.123)

which evolves as wDE = −7/3 → −2 → −1 during the cosmological sequence
of radiation (Ωr 	 1, r2 � 1), matter (Ωr � 1, r2 � 1), and de Sitter
(Ωr � 1, r2 = 1) epochs. However, the tracker equation of state (2.123) is
in tension with the joint data analysis of Sn Ia, CMB, and BAO because of
the large deviation of wDE from −1 during the matter era [86].

The solutions that approach the tracker at late times can be consistent
with the observational data. In this case, the variable r1 is much smaller
than 1 during the early stage of the cosmological evolution. In the regime
r1 � 1, the variables r1 and r2 approximately obey the differential equations

r′1 	
9 + Ωr + 21βr2

8 + 21βr2
r1 , r′2 	

3 + 11Ωr − 21βr2
8 + 21βr2

r2 . (2.124)

Provided that |βr2| � 1, we obtain the solutions r1 ∝ a5/4, r2 ∝ a7/4 during
the radiation era and r1 ∝ a9/8, r2 ∝ a3/8 during the matter era. When
r1 � 1, the dark energy equation of state is given by

wDE 	 − 1 + Ωr

8 + 21βr2
. (2.125)

In the regime |βr2| � 1, wDE evolves from the value −1/4 (radiation era) to
the value −1/8 (matter era). Once r1 approaches 1, the solutions enter the
tracking regime characterized by the equation of state (2.123). Provided that
the approach to the tracker occurs at low redshifts, wDE takes a minimum
value larger than −1.3 and then it approaches the de Sitter value −1 in the
asymptotic future. Such late-time tracking solutions are consistent with the
combined data analysis of Sn Ia, CMB, and BAO [86].

2.5.2 No-ghost conditions

Let us discuss no-ghost conditions for tensor and scalar perturbations in
Models (A) and (B). From Eq. (2.64) the tensor ghost is absent for LS =
−A4 − 3HA5 > 0, whose condition is the same in both Models (A) and (B).
This property also holds for no-ghost conditions of the scalar mode, because
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Eq. (2.88) does not involve the functions B4, B5 and their derivatives. We
recall that, for the matter fields characterized by the Lagrangians (2.114) and
(2.115), the conditions (2.90) are satisfied for b1 > 0 and b2 > 0, respectively.

In the following, let us consider the case in which the sign of φ̇ does not
change during the cosmic expansion history, i.e., r1 > 0 and r2 > 0. On using
the variables r1 and r2, the no-ghost conditions (2.64) and (2.89) for tensor
and scalar modes are given, respectively, by

LS = [2 + 3r2(αr1 − 2β)]M2
pl/4 > 0 , (2.126)

g2 = 3M4
plH

2
dS

√
r2/r51

×{(72α2 + 81β2 − 150αβ + 30α− 36β + 4)r41r2

+ [8β − 6α− 4− (162α2 + 24β2 − 180αβ + 36α− 12β)r2]r
3
1

+ [36α− 36β + 8 + (90α2 − 162β2 + 162αβ + 36β)r2]r
2
1

− 12α(3 + 16βr2)r1 + 105β2r2 + 40β} > 0 . (2.127)

In the regime r1 � 1 and r2 � 1 the condition (2.126) is satisfied, while
another condition (2.127) translates to

β > 0 . (2.128)

In order to satisfy Eqs. (2.126) and (2.127) in the tracking regime (r1 = 1
and 0 < r2 ≤ 1), we require that

−2 < 3(α− 2β) < 2 . (2.129)

The conditions (2.128) and (2.129) need to obey for avoiding tensor and
scalar ghosts.

2.5.3 Tensor propagation speeds

Since E = B4+ Ḃ5/2 for the Lagrangian (2.52), the tensor propagation speed
squared c2t = E/LS is different between the two Galileon theories. For Model
(A) it is given by [20, 21]

c2t =
2r1(2− αr1r2)− 3β(r1r

′
2 + r2r

′
1)

2r1[2 + 3r2(αr1 − 2β)]
[Model (A)], (2.130)

which is close to 1 for r2 � 1. At the de Sitter fixed point we have c2t =
(2−α)/(2+ 3α− 6β), so we require α < 2 to avoid the Laplacian instability
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of tensor perturbations under the condition (2.129). During the transition
from the regime r1 = 1, r2 � 1 to the regime r1 = 1, r2 = 1, it happens that
c2t has a minimum. Imposing that c2t > 0 at the minimum, it follows that
α < 12

√
β − 9β − 2 [20, 21].

For Model (B) we have E = M2
pl/2, so the tensor propagation speed

squared is simply given by

c2t =
2

2 + 3r2(αr1 − 2β)
[Model (B)] . (2.131)

Under the no-ghost condition (2.126), c2t is positive. As long as the tensor
perturbation is concerned, the viable parameter space of Model (B) is not
restrictive compared to that of Model (A).

2.5.4 Scalar propagation speeds

Model (A)

The covariant Galileon model (A) belongs to a class of Horndeski theories,
so the three scalar propagation speeds squared c2s follow from Eqs. (2.97)-
(2.98) with I = 2, 3. Among them the sound speed squared c2s2 and c2s3 of
radiation and non-relativistic matter are given, respectively, by Eqs. (2.116)
and (2.118). On using the relation

χ̇2
IP

(I)
YI

= −1

2
(ρ(I) + P (I)) = −3

2
M2

plH
2(1 + w(I))Ω(I) , (2.132)

where w(I) and Ω(I) are the equation of state and the density parameter of
the field χI , the first propagation speed squared c2s1 follows from Eq. (2.97),
as

c2s1 = −W2M2
pl

4LSg2

[(
1− H ′

H

)
C̃3H + C̃ ′

3H +
4EH
M2

pl

+
48L2

SH
2

W2
{Ωr(1 + wr) + Ωm(1 + wm)}

]
,(2.133)

where C̃3H = HC3H/M2
pl, EH = [2r1(2 − αr1r2) − 3β(r1r

′
2 + r2r

′
1)]M

2
pl/(8r1),

and

W =M2
plHdS(r

5
1r2)

−1/4
[
2− 21βr2 + 15αr1r2 − (2 + 9α− 9β)r21r2

]
.

(2.134)
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Note that the matter density parameter Ωm can be eliminated by using the
relation (2.121). The evolution of c2s1 in three asymptotic regimes is given by
[20, 21]:

c2s1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

40
(Ωr + 1) [(i) r1 � 1, r2 � 1] ,

8 + 10α− 9β + Ωr(2 + 3α− 3β)

3(2− 3α + 6β)
[(ii) r1 = 1, r2 � 1] ,

(α− 2β)(4 + 15α2 − 48αβ + 36β2)

2(2 + 3α− 6β)(2− 3α + 6β)
[(iii) r1 = 1, r2 = 1] .

(2.135)

In the regime (i) we have c2s1 = 1/20 and 1/40 during the radiation and
matter eras, respectively, so there is no Laplacian instability. If the solutions
enter the tracking regime (ii) during the radiation era, we require the stability
condition 10 + 13α − 12β > 0. Taking into account the condition (2.129),
the de Sitter fixed point (iii) is stable for α > 2β. The theoretically viable
parameter space is shown in figure 1 of Ref. [20]. The evolution of matter
density perturbations and observational constraints on the covariant Galileon
from large-scale structures have been studied in Ref. [87].

Model (B)

In the case of Model (B), we need to solve the coupled equation (2.92) for
N = 3, i.e.,(

c2sK11 −G11

) (
c2sK22 −G22

) (
c2sK33 −G33

) − (
c2sK12 −G12

)2 (
c2sK33 −G33

)
− (

c2sK13 −G13

)2 (
c2sK22 −G22

)
= 0 . (2.136)

The solutions to this third-order equation for c2s are given by

c2s = − a2
3a1

+u++u− , − a2
3a1

+u+ω+u−ω2 , − a2
3a1

+u+ω
2+u−ω , (2.137)

where ω = −(1 +
√
3 i)/2, u± = [(−q ± √

q2 + 4p3/27)/2]1/3, p = a3/a1 −
a22/(3a

2
1), q = 2a32/(27a

3
1)− a2a3/(3a

2
1) + a4/a1, and

a1 = K11K22K33 −K2
12K33 −K2

13K22 , (2.138)

a2 = K2
12G33 +K2

13G22 −K11K22G33 −K11G22K33 −G11K22K33

+2K12G12K33 + 2K13G13K22 , (2.139)
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a3 = K11G22G33 +G11K22G33 +G11G22K33 −G2
12K33 −G2

13K22

−2K12G12G33 − 2K13G13G22 , (2.140)

a4 = G2
12G33 +G2

13G22 −G11G22G33 . (2.141)

When q2 + 4p3/27 < 0, all the solutions (2.137) are real.
One of the solutions c2s1 in Eq. (2.137) is associated with the propagation

speed squared of the dark energy field φ. In three asymptotic regimes it is
given by

c2s1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

40
(3Ωr − 1) [(i) r1 � 1, r2 � 1] ,

16− 15(α− 2β) + Ωr(4− 3α + 6β)

6(2− 3α + 6β)
[(ii) r1 = 1, r2 � 1] ,

α− 2β

2 + 3α− 6β
[(iii) r1 = 1, r2 = 1] .

(2.142)

Under the no-ghost condition (2.129), the propagation speed squared c2s1 in
the regime (ii) is positive. The de Sitter fixed point (iii) is stable for

α > 2β . (2.143)

In the regime (i) we have c2s1 = 1/20 for Ωr = 1, but c2s1 = −1/40 for Ωr =
0. This means that the perturbations are plagued by short-scale Laplacian
instabilities during the matter era for late-time tracking solutions. As long
as the solutions approach the tracker by the end of the radiation era, it
is possible to avoid the Laplacian instability of scalar perturbations. We
recall however that only the background trajectories approaching the tracker
around the end of the matter era are consistent with the joint data analysis
of Sn Ia, CMB, and BAO [86]. Then the solutions need to be in the regime
(i) during most of the matter era, in which case the Laplacian instability
cannot be avoided.

In the regime (i), the quantity csH1 defined by Eq. (2.97) evolves as

c2sH1 =
1

40
(7Ωr + 11) , (2.144)

which is positive. The difference between (2.144) and c2s = (3Ωr − 1)/40 in
Eq. (2.142) should be induced from the term δC3 in Eq. (2.101). This term
can be expressed as

δC3 = − 3r2(αr1 − 2β)

2 + 3r2(αr1 − 2β)
, (2.145)
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which means that |δC3| � 1 in the regimes (i) and (ii). For radiation, the
quantity ξ1 defined by Eq. (2.105) evolves as ξ1 = −2/(15βr2) in the regime
(i) and hence |ξ1| � 1. From Eq. (2.104) we then have δc2s1 = −2/5 during
the radiation era, so that c2s1 = c2sH1 + δc2s1 = 1/20. For non-relativistic
matter, the evolution of the quantity ξ2 is given by ξ2 = −1/(10βr2) and
hence δc2s1 = −3/10 during the regime (i) of the matter era. Hence we
obtain the negative propagation speed squared c2s1 = c2sH1 + δc2s1 = −1/40.
Interestingly, even if the difference between C3 and C3H is small in the regime
(i), the modification to c2sH1 cannot be negligible. From Eq. (2.106) the
corrections δc2sI (I = 2, 3) to c2sH2 and c2sH3 of radiation and non-relativistic
matter are suppressed relative to δc2s1 by the additional factor δC3, so the
deviations of c2s2 and c2s3 from the values (2.116) and (2.118) are very small
in the regime (i).

Evaluating the term ξ2 for non-relativistic matter along the tracker (r1 =
1), the correction δc2s1 to c

2
sH1 after the onset of the matter-dominated epoch

is given by

δc2s1 	
3(α− 2β)(1− r2)

(2− 3α + 6β)(1 + r2)
. (2.146)

In the regime (ii) we have δc2s1 	 3(α−2β)/(2−3α+6β), while δc2s1 vanishes
at the de Sitter point (iii). From Eq. (2.106) the correction δc2s3 to the matter
sound speed squared c2sH3 (= O(wm) � 1) on the tracker can be estimated as

δc2s3 	
c2sH3

c2sH3 − c2sH1 − δc2s1

9(α− 2β)2r2Ωm

2[2 + 3r2(α− 2β)](1 + r2)(2− 3α + 6β)
, (2.147)

which is suppressed both in the regimes (ii) and (iii). The correction δc2s3 can
provide some contribution to c2sH3 around r2 = O(0.1), but δc2s3 is still much
smaller than 1 due to the multiplication of the small term c2sH3 in Eq. (2.147).

In Fig. 2.3 we plot the evolution of the scalar propagation speeds squared
c2s1, c

2
s2, and c3s3 for the initial conditions r1 � 1 and r2 � 1 in the deep

radiation-dominated epoch. In this case, the dark energy equation of state
wDE starts to evolve from −1/4 (radiation era) to −1/8 (matter era) and
then it reaches a minimum −1.1 around the redshift z = 0.3. This late-time
tracking behavior is consistent with the observational data of Sn Ia, CMB,
and BAO at the background level [86].

From Fig. 2.3 we find that the first propagation speed squared c2s1 evolves
from the value 1/20 in the radiation era, which is followed by the decrease
to the value close to −1/40 in the matter era. The solution stays in the
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Figure 2.3: Evolution of the scalar propagation speeds squared c2s1, c
2
s2, c

2
s3 and

the dark energy equation of state wDE versus the redshift z = 1/a−1 in Model
(B). We choose the model parameters α = 0.3 and β = 0.14 with the initial
conditions r1 = 5 × 10−11, r2 = 8 × 10−12, Ωr = 0.999995, and wm = 10−3

at z = 6.0 × 108. This case corresponds to the late-time tracking solution
that approaches the tracker (r1 = 1) at low redshifts. During most of the
radiation and matter eras the solution is in the regime r1 � 1 and r2 � 1, in
which case the first propagation speed squared is given by c2s1 	 (3Ωr−1)/40.
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regime (i) during most of the matter-dominated epoch. The period during
which the solution is in the regime (ii) is short, so c2s1 soon approaches the
value 9.7× 10−3 at the de Sitter fixed point (iii) after its temporal variation
around z � O(1). Figure 2.3 shows that the sound speeds squared c2s2 and
c3s3 of radiation and non-relativistic matter are close to the values 1/3 and
0, respectively. This result is consistent with the analytic estimation given
above. For the parameters used in the numerical simulations of Fig. 2.3, we
find that the deviation of c2s2 from the value 1/3 is less than the order of 10−4

in the matter era.

2.6 Conclusions

We have studied the cosmology of the recently proposed generalized Horn-
deski theories on the flat FLRW background. The Lagrangian of these theo-
ries is simply expressed in terms of three-dimensional scalar quantities con-
structed in the 3+1 ADM decomposition of space-time. In Horndeski theories
there are particular relations (2.54) between the coefficients Ai and Bi, but
GLPV theories are not subject to this restriction. On the isotropic cosmo-
logical background, the perturbation equations of motion in GLPV theories
are of second order with one scalar degree of freedom.

In the presence of multiple scalar fields φI (I = 1, 2, · · · , N−1) described
by the Lagrangians P (I)(XI), we have expanded the action (2.57) up to
quadratic order in perturbations of the ADM scalar quantities. We have in
mind the application to dark energy with additional perfect fluids of radiation
and non-relativistic matter. The second-order action for tensor perturbations
is given by Eq. (2.62) with the propagation speed squared c2t = E/LS , so the
tensor ghosts and Laplacian instabilities are absent for LS > 0 and E > 0.
We have derived the second-order Lagrangian density for scalar perturbations
of the form (2.81), which explicitly shows the absence of derivatives higher
than second order.

The positivity of the N ×N matrix K implies that the scalar ghosts do
not appear under the conditions (2.88). The scalar propagation speeds cs
obey the algebraic equation (2.92). In Horndeski theories this equation can
be written as the separate form (2.96), so the solutions to c2s are simply given
by Eqs. (2.97)-(2.98). In GLPV theories the propagation speeds squared are
coupled each other in the form (2.99), whose right hand side vanishes in the
Horndeski limit. Under the condition that the deviation of the term C3 from
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the Horndeski value −16L2
S/W is small, we have estimated the propagation

speeds in Eqs. (2.102)-(2.106). Compared to the modification δc2s1 to the
first sound speed squared c2sH1 associated with the dark energy field χ, the
corrections δc2sI (I = 2, 3, · · · , N) to the matter sound speeds squared c2sHI

are generally suppressed.
We have applied our results in Sec. 2.4 to the cosmology based on the

covariantized Galileon (a class of GLPV theories) and the covariant Galileon
(a class of Horndeski theories) in the presence of perfect fluids of radiation
and non-relativistic matter. These two theories give rise to the background
equations of motion exactly the same as each other, so we cannot distinguish
them at the background level.

At the level of perturbations, however, different choices of the functions
B4, B5 give rise to different values of E , C3 defined respectively by Eqs. (2.63)
and (2.86). As a consequence, the first scalar propagation speed squared c2sH1

in Eq. (2.97) differ in these two theories. Moreover, in GLPV theories, there is
a correction term δc2s1 to c

2
sH1 estimated approximately by Eq. (2.104). Indeed

the first scalar propagation speed squared c2s1 in the covariantized Galileon
becomes negative (−1/40) in the deep matter era for late-time tracking so-
lutions, while in the covariant Galileon c2s1 = c2sH1 = 1/40. Hence the former
is plagued by the small-scale instability problem of dark energy perturba-
tions, while the latter has a theoretically consistent parameter space. The
matter sound speeds squared of radiation and non-relativistic matter for the
covariantized Galileon are close to the values (2.98) in the Horndeski limit.

We have thus provided a general scheme for studying the evolution of
background and perturbations in dark energy models based on GLPV the-
ories. These results will be useful in both placing model-independent con-
straints on the properties of dark energy/modified gravity and in imposing
bounds on individual models. For the latter, it may be of interest to search
for theoretically and observationally allowed parameter spaces in the covari-
antized version of the extended Galileon scenario advocated in Refs. [88, 89].
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Chapter 3

Effective field theory of
modified gravity on the
spherically symmetric
background

In the previous chapter we studied the EFT of modified gravity on the cos-
mological background. That framework is useful to study the cosmological
dynamics of the dark energy model based on modified gravity in addition to
their stability conditions in a systematic and unified way.

Although the modification of gravity realizes the late-time cosmic accel-
eration, there must be a mechanism which suppresses the modification of
gravity at short distances since local gravity tests in the Solar System agree
with general relativity in high precision. In order to understand this mecha-
nism and confront several models with the Solar System constraint, one need
to study modified gravity on the spherically symmetric background. The
EFT of modified gravity on the spherically symmetric background [40] can
be a powerful framework to study these screening mechanism in a systematic
and unified way.

3.1 The basis of the screening mechanism

Before investigating the EFT of modified gravity on the spherically symmet-
ric background, we briefly review the screening mechanism in this section.
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We start with the following action

S =

∫
d4x

√−g
[
M2

pl

2
e−2Qφ/MplR +

f(φ)

2
X − g(φ)

2M3
X�φ

]
+ SM , (3.1)

where the exponential coupling in the first term is related with a dilaton field
appearing in the low-energy effective string theory [90], for instance, and Q
is a coupling constant of the order of unity. The third term in Eq. (3.1) is
the so-called Galileon term appearing in the covariant Galileon as L3. Due
to the existence of this non-linear term the Vainshtein mechanism can be at
work and the modification of gravity can be suppressed inside the Vainshtein
radius rV . We assume thatf(φ) and g(φ) are slowly varying dimensionless
functions of the order of unity, such that

|Mplf,φ/f | � 1 , |Mplg,φ/g| � 1 . (3.2)

On the spherically symmetric background the line element is given as

ds2 = −e2Ψ(r)dt2 + e2Φ(r)dr2 + r2(dθ2 + sin2 θ dϕ2) , (3.3)

where Ψ(r) and Φ(r) are functions with respect to the distance r from the
center of symmetry. Varying the action (3.1) with respect to the metric one
can derive equations of motion on the spherically symmetric background. On
the weak gravitational background characterized by the conditions |Φ| � 1
and |Ψ| � 1, and assuming that the terms appearing from the modification
of gravity should be suppressed at short distances, the equation of motion
for the scalar field reduce to

d

dr
(r2φ′) =

r[2QF/Mpl + (f − 2M−3g,φX)φ′r − 5M−3gX]

2F [(f − 2M−3g,φX)r − 4M−3gφ′]
ρmr

2

−f,φXr
2 + 4M−3g,φXφ

′r + [(f,φ −M−3g,φφX/2)r
2 + 6M−3g]φ′2

(f − 2M−3g,φX)r − 4M−3gφ′ r .

(3.4)

The qualitative behavior of solutions in Eq. (3.4) is different depending on
the radius r. The behavior of solutions changes at the radius rV characterized
by ∣∣f − 4M−3g,φX(rV )

∣∣ rV = 4M−3 |gφ′(rV )| , (3.5)

Hence there should be thwo different regimes: (a) r � rV , (b) r � rV . In
the following we shall derive the solutions to Eq. (3.4) in each regime.
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(a) r � rV

In this regime linear terms coming from the first and the second term in
Eq. (3.1) give dominant contributions to Eq. (3.4). Then it reduces as

d

dr
(r2φ′) 	 Q

Mplf
ρmr

2 . (3.6)

As long as the function f is nearly constant Eq. (3.6) is integrated to give

φ′(r) 	 QMpl

f

rg
r2
, (3.7)

where we have introduced the Schwarzschild radius rg of the source, as

rg ≡ 1

M2
pl

∫ r

0

ρmr̃
2dr̃ . (3.8)

Substituting the solution (3.7) into the equations of motion for the metric
field, i.e. modified Einstein equations, one can show that the effective gravi-
tational coupling can be represented as Geff 	 GN(1 + 2Q2/f) where GN is
Newton’s gravitational constant [61]. This correction term is of the order of
unity as long as Q and f are of O(1) so that the gravitational coupling is
strongly modified relative to GR in this regime.

Under the approximation that the solution (3.7) is valid at r = rV , it
follows that

rV 	
∣∣∣∣4gQMplrg

f 2M3

∣∣∣∣1/3 . (3.9)

If the model (3.1) is responsible for the late-time cosmic acceleration the
mass M is related to the today’s Hubble radius rc = H−1

0 ≈ 1028 cm via
M ≈ (M−1

pl r
2
c )

−1/3. Using this relation and assuming f and g are of the order

of unity Eq. (3.9) reduces to rV ≈ (|Q|r2gr2c )1/3. For the Sun (rg ≈ 105 cm)
one has rV ≈ 1020 cm for |Q| = O(1) which is much larger than the Solar
System scale.

(b) r � rV

In this regime the non-linear self interaction term, i.e. the Galileon term,
gives the dominant contribution to Eq. (3.4), and it simply reduces as

d

dr
(r2φ′) 	 3

2
rφ′ . (3.10)
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Integrating Eq. (3.10) and matching with the exterior solution (3.7) at r = rV
we obtain

φ′(r) 	 QMplrg
fr2V

(
r

rV

)−1/2

. (3.11)

Compared to the solution (3.7) the field derivative varies more slowly in the
regime r � rV . This is the region in which the Vainshtein mechanism is at
work.

Substituting the interior solution (3.11) into the modified Einstein equa-
tions and solving them for Φ(r) and Ψ(r), one can estimate the modifications
to the Newtonian gravitational potentials. In Ref. [61] we obtained

Φ 	 rg
2r

[
1− 2Q2

f

(
r

rV

)3/2
]
, (3.12)

Ψ 	 − rg
2r

[
1− 4Q2

f

(
r

rV

)3/2
]
. (3.13)

Clearly the second terms on the r.h.s. of the square brackets of Eqs. (3.12)
and (3.13) are much smaller than unity in the regime r � rV , so that the
fifth force is suppressed.

We define the post-Newtonian parameter γ, as

γ ≡ −Φ/Ψ . (3.14)

The present tightest experimental bound on γ is |γ − 1| < 2.3 × 10−5 [91].
Using the solutions (3.12) and (3.13) this constraint translates into

2Q2

|f |
(
r

rV

)3/2

< 2.3× 10−5 . (3.15)

For r much less than rV the bound (3.15) can be satisfied even for |Q| = O(1).
In the following sections we investigate the EFT of modified gravity on the

spherically symmetric background. This framework can be used, for instance,
to study the screening mechanism such as the Vainshtein mechanism we
briefly reviewed for the model (3.1) in this section.

3.2 The 2+1+1 formalism

We assume that the 4-dimensional space-time allows for a double foliation in
the 2+1+1 formalism, e.g., it can be foliated both by constant time hypersur-
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faces Σt and by constant spatial coordinate hypersurfaces Σr. The time-like
unit congruence na (satisfying nana = −1) is orthogonal to Σt, while the unit
vector la of the singled-out spatial direction (satisfying lala = 1) is orthogo-
nal to Σr. For convenience we choose them mutually orthogonal (nala = 0).
The 2-surface orthogonal to both congruences is labeled as Σtr.

In terms of the 4-dimensional metric gab and the unit vectors mentioned
above, the induced metric hab on the 2-dimensional space is given by

hab = gab + nanb − lalb , (3.16)

which satisfies the orthogonal relations nahab = 0 and lahab = 0.
Time evolution proceeds along the integral lines of the congruence(

∂

∂t

)a

= Nna +Na , (3.17)

whereNa andN are the shift vector and lapse function related to the foliation
Σt. The singled-out spatial evolution proceeds along(

∂

∂r

)a

=Mla +Ma , (3.18)

whereMa andM represent the shift vector and lapse function associated with
the singled-out spatial direction. In contrast with N and Na, the scalar M
and vector Ma represent true gravitational degrees of freedom, contributing
to the spatial 3-metric.

The shift vectors are restricted as Mana = Mala = Nana = Nala =
0, so they have only two independent components each. The gravitational
sector is described by {hab,Ma,M,Na, N}, a set of one variable less than the
number of variables contained in gab. This is because mutually perpendicular
foliations are chosen through the condition nala = 0.

In order to accommodate the possibility that the perturbations may affect
the perpendicularity of the foliations, we consider the 4-dimensional metric
in the system adapted to the coordinates (t, r, xa) (here xa being coordinates
adapted to Σtr) in full generality [73]:

ds2 = (NaN
a +N 2 −N2)dt2 + 2Nadtdx

a + 2 (NaM
a +NM) dtdr

+habdx
adxb + 2Madx

adr + (MaM
a +M2)dr2 . (3.19)

The requirement of a double foliation (of both vector fields n and l being
vorticity-free), as shown in the Appendix of Ref. [73], imposes a propor-
tionality of the metric functions M and N . The easiest way to obey this
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constraint is to chose N̄ = 0, equivalent to the perpendicularity of the foli-
ations on the background. The latter condition can be fulfilled even in the
presence of the perturbations by a suitable gauge fixing:

N = 0 . (3.20)

The embedding of the co-dimension 2 surfaces is characterized by two
types of extrinsic curvatures, related to each of the normal vector fields na

and la:
Kab = hcah

d
b∇cnd , Lab = hcah

d
b∇cld , (3.21)

where ∇ denotes the g-metric compatible connection.
There are also two normal fundamental forms

Ka = hbal
c∇cnb , La = −hbanc∇clb , (3.22)

and two normal fundamental scalars

K = lalb∇anb , L = nanb∇alb (3.23)

to consider1. To summarize, the covariant derivatives of the normal vectors
can be expressed as

∇anb = Kab + laKb + lbKa + lalbK + naαb , (3.24)

∇alb = Lab + naLb + nbLa + nanbL+ laβb , (3.25)

where αa and βa are the curvatures of the congruences na and la, defined by

αb = nc∇cn
b = Db (lnN)− Llb , (3.26)

βb = lc∇cl
b = −Db (lnM) +Knb . (3.27)

Occasionally, both αa and βa will be referred as accelerations.
From the symmetric property of the extrinsic curvatures and the relation

nala = 0, it has been shown in Ref. [73] that Ka = La holds. The quantities
Lab and L are expressed in terms of r-derivatives and the covariant derivatives
Da associated with hab as [73]

Lab =
1

2M

(
∂hab
∂r

− 2D(aMb)

)
, (3.28)

L = − 1

MN

(
∂N

∂r
−MaDaN

)
. (3.29)

1The sets (Kab, Ka, K) and (Lab, La, L) can also be interpreted as the tensorial, vecto-
rial and scalar contributions in the 2+1 split of the extrinsic curvatures of the hypersurfaces
perpendicular to the congruences na and la, respectively.
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Hence they are just convenient abbreviations for spatial derivatives.
By contrast, the quantities Kab, Ka and K give the time evolution of hab,

Ma and M , respectively [73]:

Kab =
1

2N

(
∂hab
∂t

− 2D(aNb)

)
, (3.30a)

Ka =
1

2MN

(
∂Ma

∂t
− ∂Na

∂r
+M bDbN

a −N bDbM
a

)
, (3.30b)

K =
1

MN

(
∂M

∂t
−NaDaM

)
, (3.30c)

so that they are velocity-type variables.
Thus the coordinates in the velocity phase-space are

{hab,Ma,M ;Kab,Ka,K} . (3.31)

This is a feature that any 2+1+1 covariant Lagrangian description of modi-
fied gravity should take into account.

Note that the time and spatial derivatives along the singled-out directions
of any tensor T a1...ar

b1...bs
which has vanishing contraction with both na and la in

all indices are defined as projected Lie-derivatives [73, 74]:

∂

∂t
T a1...ar
b1...bs

≡ ha1c1 ...h
ar
cr h

d1
b1
...hdsbs

(4)L ∂
∂t
T c1...cr
d1...ds

≡ L ∂
∂t
T a1...ar
b1...bs

= NLnT
a1...ar
b1...bs

+ LNT
a1...ar
b1...bs

, (3.32)

∂

∂r
T a1...ar
b1...bs

≡ ha1c1 ...h
ar
cr h

d1
b1
...hdsbs

(4)L ∂
∂r
T c1...cr
d1...ds

≡ L ∂
∂r
T a1...ar
b1...bs

= MLlT
a1...ar
b1...bs

+ LMT a1...ar
b1...bs

, (3.33)

where (4)LV and LV hold for the 4-dimensional and 2-dimensional Lie-derivatives
along any vector congruence V . For a scalar quantity S, one has

∂

∂t
S = N (na∇a)S +NaDaS , (3.34)

∂

∂r
S = M (la∇a)S +MaDaS . (3.35)

From the above expressions, it is immediate to see that the time and spa-
tial derivatives along the singled-out direction of scalars which are constant
on Σtr (such that the last terms in Eqs. (3.34) and (3.35) vanish) are also
expressible as projected covariant derivatives, a property we will employ in
what follows.
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3.3 Equations of motion on the spherically

symmetric background

We consider general gravitational theories with a single scalar degree of free-
dom φ. On the background the scalar field has only radial dependence.
As will be discussed in detail in Sec. 3.5, we choose a radial unitary gauge
φ = φ(r). Then the kinetic term of the scalar field can be expressed in terms
of the radial lapse M and the radial derivative of the field. Hence we render
the scalar field into the gravitational sector (the radial lapse) and into the
explicit radial dependence of the action. We will therefore consider an action
principle with the Lagrangian depending on variables constructed from the
metric alone, however with explicit radial dependence allowed.

3.3.1 Action principle

We elaborate the variational principle developed for a cosmological setup
[52] in a way that it applies to a spherically symmetric background. For
this purpose we employ scalar quantities related to the velocity phase-space
variables (3.31) emerging in the 2+1+1 decomposition. We introduce the
gravitational action

SEFT =

∫
d4x

√−g LEFT (N,L;M,K;M,K;R, K,κ, L, λ; r) , (3.36)

where we have denoted the gravitational Lagrangian by LEFT and

R ≡ (2)Ra
a , M ≡MaM

a , K ≡ KaKa = LaLa ,

K ≡ Ka
a , κ ≡ Ka

bK
b
a , L ≡ La

a , λ ≡ La
bL

b
a . (3.37)

Here (2)Rab is the 2-dimensional Ricci tensor.
The action (3.36) depends on the lapse and the velocity phase-space vari-

ables (3.31) discussed in the previous section. Symmetry allows us to use
fewer variables. While the scalar sector {M ;K} is fully included, the vecto-
rial sector {Ma;Ka} appears through the quantities {M;K}. The tensorial
sector {hab;Kab} also appears through R (which in two dimensions is the
only independent component of the Riemann curvature tensor constructed
from hab) and the quantities K,κ. Besides, the scalars {L, L, λ} formed from
spatial derivatives of N and hab are also introduced.
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In comparison to the corresponding action of the cosmological setup [52],
the action (3.36) does not depend on the variable Z ≡ (2)Rab

(2)Rab , as in
two dimensions the intrinsic curvature has only one degree of freedom. In
particular, the relation (2)Rab = (R/2)hab holds, so that Z = R2/2. By
contrast, the extrinsic curvatures Kab and Lab of the 2-dimensional surface
have two independent components respectively (related to the two sectional
curvatures), hence we keep κ (denoted S in Ref. [52]) and the new variable
λ.

In summary, we have taken into account scalars equivalent to the variables
of the velocity phase-space. As the action contains a Lagrangian density√−g LEFT, scalars representing spatial derivatives have been also included.
Instead of the induced 2-metric hab, we have included the 2-dimensional
scalar curvature (in two dimensions the curvature generated by the metric
is equivalent to the scalar curvature). Finally, we included the scalars κ, K
and λ for later convenience, as they also appear in the 2+1+1 version of the
twice contracted Gauss equation [73]:

R = (4)R +K2 − κ − 2K+ 2KK − L2 + λ+ 2LL+ 2αbβb

+2∇a(α
a − βa −Kna + Lla) . (3.38)

Note that Eq. (3.38) contains a 4-dimensional covariant derivative and is
not completely written in 2-dimensional language, but it is adequate for our
work. The expression for the Ricci scalar fully translated into 2-dimensional
language can be found in Ref. [74]2.

3.3.2 Background equations of motion

In what follows, we will proceed in deriving the equations of motion by taking
variations of the action on a spherically symmetric and static background.
Under the assumption of spherical symmetry, the line element (3.19) contains
only two free functions of (t, r) and it simplifies to

ds̄2 = −N̄2dt2 + M̄2dr2 + r2dΩ2 , (3.39)

where dΩ2 = dθ2+(sin2 θ)dϕ2 is the surface element of the unit sphere. Since
N̄a = M̄a = 0, it follows that M̄ = K̄ = 0. The one-forms na and la are given

2After the change in notation, (R, (4)R, hab) ↔ (R , R̃ , gab), one can show the equiv-
alence between Eq. (3.38) in this paper and Eq. (A1) in Ref. [74].
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by na = (−N, 0, 0, 0) and la = (0,M, 0, 0), respectively. Note that these
expressions of na and la stay valid to first order in the perturbations. The
extrinsic curvatures obey K̄ab = K̄h̄ab/2 and L̄ab = L̄h̄ab/2, hence κ̄ = K̄2/2
and λ̄ = L̄2/2. If the background is further time-independent, then the
relations K̄ = κ̄ = K̄ = 0 hold. Other non-vanishing geometric quantities
are given by

R̄ =
2

r2
, L̄ = − N̄ ′

N̄M̄
, L̄ =

2

M̄r
, λ̄ =

2

M̄2r2
. (3.40)

We expand the action (3.36) up to second order in perturbations of the
geometric scalar quantities. In doing so, we define the variation of the velocity
phase-space variables in the action as the difference between the background
and perturbed variables. In particular, we have

δR ≡ R− 2

r2
, δL ≡ L+

N̄ ′

N̄M̄
, δL ≡ L− 2

M̄r
, δλ ≡ λ− 2

M̄2r2
,

(3.41)
and

δK ≡ K , δκ ≡ κ , δM ≡ M , δK ≡ K , δK ≡ K . (3.42)

Alternatively, from the definitions of the variables, we obtain the following
explicit expressions

δλ = La
bL

b
a − L̄a

bL̄
b
a =

2

M̄r
δL+ δLa

bδL
b
a ,

δM = MaMa − M̄aM̄a = δMaδM
a ,

δK = KaKa − K̄aK̄a = δKaδKa ,

δκ = Ka
bK

b
a − K̄a

bK̄
b
a = δKa

bδK
b
a . (3.43)

Hence the variablesM, K and κ (which vanish on the background) are second
order, while λ (non-vanishing on the background) is changed by the pertur-
bations at both first and second order. We also see that the scalar variables
λ and L are not independent at first-order accuracy.

Next we expand the Lagrangian in the action (3.36) up to first order in
perturbations. In doing so, we keep in mind that M, K and κ are second-
order quantities, while at first order δλ is related to δL. This leaves us with
the following Taylor expansion:

LEFT (N,L;M,K;M,K;R, K,κ, L, λ; r)
= L̄EFT + LEFT

N δN + LEFT
L δL+ LEFT

M δM + LEFT
K δK

+ LEFT
R δR+ LEFT

K δK + FδL , (3.44)

57



3.3 Equations of motion on the spherically symmetric backgroundCapter 3

where we introduced the notations LEFT
G ≡ ∂LEFT/∂G for any

G = N,L;M,K;M,K;R, K,κ, L, λ , (3.45)

evaluated on the background, and

F ≡ LEFT
L +

2LEFT
λ

M̄r
. (3.46)

In what follows, we explore further relations among the scalar variables.
On using Eq. (3.16), we have that L = hab∇alb = ∇al

a+ L̄+ δL. Integrating
by parts the term

√−gFδL in the action and dropping the total covariant
divergence term, finally employing Eq. (3.35) and the expression (3.40) of L̄,
we obtain∫

d4x
√−gFδL = −

∫
d4x

√−gF
′

M̄

(
1− δM

M̄

)
+

∫
d4x

√−gF
(
− N̄ ′

N̄M̄
+ δL − 2

rM̄

)
, (3.47)

where we have also expanded M−1 up to first order. In the same way, using
δK = K = ∇an

a − δK, integrating by parts, dropping the total covariant
divergence term and taking into account Eq. (3.34), it follows that∫

d4x
√−g LEFT

K δK = −
∫
d4x

√−g LEFT
K δK . (3.48)

Then the Lagrangian (3.44) is decomposed as

LEFT = L̄EFT
0 + δLEFT , (3.49)

where we have denoted

L̄EFT
0 = L̄EFT − F ′

M̄
− (N̄ ′r + 2N̄)F

N̄M̄r
, (3.50)

and

δLEFT = LEFT
N δN +

(
LEFT
L + F)

δL+

(
LEFT
M +

F ′

M̄2

)
δM

+
(
LEFT
K − LEFT

K

)
δK + LEFT

R δR . (3.51)
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It can be proven that the zeroth-order Lagrangians L̄EFT
0 and L̄EFT differ

only by a total covariant divergence, which can be dropped.
The Lagrangian density is given by L =

√−g LEFT, with
√−g = NM

√
h

and
√
h = r2 sin θ. It can be decomposed into a background contribution

L̄0 =
√−ḡ L̄EFT

0 and a first-order contribution δL = L − L̄0 as follows:

δL =
√−ḡ δLEFT + L̄EFT

0 δ
√−g . (3.52)

Up to first order in perturbations the metric is given by

ds21 = − (
N̄2 + 2N̄δN

)
dt2 + 2M̄δNdtdr + 2δNadtdx

a

+
(
h̄ab + δhab

)
dxadxb + 2δMadx

adr +
(
M̄2 + 2M̄δM

)
dr2 ,(3.53)

and hence

δ
√−g =

√−ḡ
2

ḡabδgab =
√−ḡ

(
δN

N̄
+
δM

M̄
+

1

2
h̄abδhab

)
. (3.54)

We assume the form hab = e2ζ h̄ab, where ζ is the curvature perturbation.
This is consistent with allowing only scalar perturbations and suitably fixing
the gauge, like in the cosmological case [52, 68], see also the discussion of
scalar perturbations in Sec. 3.5. Hence the perturbed and unperturbed met-
rics are related by a conformal transformation and the respective curvature
scalars can be expressed as

R = e−2ζ
(R̄ − 2h̄abD̄aD̄bζ

)
, (3.55)

which to linear order gives

δR = −2ζR̄ − 2h̄abD̄aD̄bζ . (3.56)

In the generalized Stokes theorem, the integral of a differential form ω over
the boundary of an oriented manifold S is equivalent to the integral of the
exterior derivative of ω over the manifold S, i.e. ∫

S dω =
∫
∂S ω. Since there

is no boundary of a boundary, the rhs of the generalized Stokes theorem
vanishes when S is some closed surface, e.g., the 2-sphere as in our case.
Using this and integrating the second term on the rhs of Eq. (3.56), we
obtain ∫

d4x
√−g LEFT

R
(−2h̄abD̄aD̄bζ

)
= −2

∫
dtdrN̄M̄r2LEFT

R

∫
dθ dϕDa

(√
h̄h̄abD̄bζ

)
= 0 . (3.57)
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Hence the variations in the scalar curvature and conformal factor are related
by the simple expression

δR = −4ζ

r2
. (3.58)

Remarkably, the same expression emerges for restricting to spherically sym-
metric perturbations. Non-spherically symmetric modes in the perturbations
do not contribute to the background equations of motion.

Similarly, to linear order in perturbations, we obtain

1

2
h̄abδhab = 2ζ , (3.59)

which, when employing Eq. (3.58) and the first equation (3.40), becomes

1

2
h̄abδhab = −δRR̄ . (3.60)

With this, we have completed the program of rewriting the linear-order vari-
ation exclusively into terms containing the variation of the scalar variables
in the action.

In what follows we further reduce this set at linear order. Substitution of
Eqs. (3.54) and (3.60) into the first-order Lagrangian density (3.52) leads to

δL =
√−ḡ

[
LEFT

N δN +
(
LEFT
L + F)

δL+

(
LEFT
M +

F ′

M̄2

)
δM

+
(
LEFT
K − LEFT

K

)
δK + LEFT

R δR
]

+ L̄EFT
0

√−ḡ
(
δN

N̄
+
δM

M̄
− δR

R̄
)
. (3.61)

By using Eqs. (3.29) and (3.30c), it follows that

δL =
N̄ ′

N̄M̄

(
−δN

′

N̄ ′ +
δN

N̄
+
δM

M̄

)
, (3.62)

δK =
˙δM

N̄M̄
. (3.63)
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Plugging these expressions into Eq. (3.61) and integrating by parts, we obtain

δL =
√−ḡ

[{
LEFT
N +

(
LEFT
L + F)′
M̄N̄

+
(N̄ ′r + 2N̄)

(
LEFT
L + F)

N̄2M̄r

}
δN

+

{
LEFT
M +

F ′

M̄2
+
N̄ ′ (LEFT

L + F)
N̄M̄2

}
δM + LEFT

R δR
]

+ L̄EFT
0

√−ḡ
(
δN

N̄
+
δM

M̄
− δR

R̄
)
. (3.64)

Variation of the three scalars δN , δM , and δR leads, respectively, to

L̄EFT + N̄LEFT
N +

(N̄ ′r + 2N̄)LEFT
L

N̄M̄r
+
LEFT
L

′

M̄
= 0 , (3.65)

L̄EFT + M̄LEFT
M − 2F

M̄r
+
N̄ ′LEFT

L
M̄N̄

= 0 , (3.66)

L̄EFT − F ′

M̄
− (N̄ ′r + 2N̄)F

N̄M̄r
− 2LEFT

R
r2

= 0 , (3.67)

which are the equations of motion on the spherically symmetric and static
background. For a given Lagrangian, they can be used for discussing the
screening mechanism of the fifth force mediated by the scalar degree of free-
dom. In Appendix B, we show that, in the Horndeski theory, the background
equations of motion following from Eqs. (3.65)-(3.67) coincide with those de-
rived in Refs. [61, 36] by the direct variation of the Horndeski action. In
doing so, we need to express the Horndeski action in terms of the variables
used in the 2+1+1 decomposition. In the next section we shall address this
issue in both Horndeski and GLPV theories.

3.4 2+1+1 decomposition of Horndeski and

GLPV theories

In what follows, we prove that, assuming a spherically symmetric and static
background, both the Horndeski theory [22] and its recent GLPV [39] gener-
alization are accommodated in the framework of the EFT of modified gravity.

In unitary gauge, the unit normal vector orthogonal to the constant φ
hypersurfaces (which coincide with the constant r hypersurfaces) can be ex-
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pressed as

la = γ∇aφ , γ =
1√
X
. (3.68)

By virtue of Eq. (3.25), the covariant derivative of ∇aφ = γ−1la reads

∇a∇bφ = γ−1 (Lab + naLb + nbLa + nanbL+ laβb + lbβa) +
γ2

2
∇cφ∇cXlalb .

(3.69)
Finally, the term �φ = gab∇a∇bφ becomes

�φ = γ−1(L− L) + ∇cφ∇cX

2X
. (3.70)

With the help of these formulas, we will rewrite both the Horndeski and
GLPV Lagrangians in terms of the 2+1+1 variables of the action (3.36).

3.4.1 The Horndeski class of theories

The Horndeski theories, the most general scalar-tensor theories with second-
order equations of motion [22], can be given as a series of the Lagrangians
(2.38).

The analysis of the background gravitational dynamics in the Horndeski
theory have been presented in Refs. [33, 35, 61] on the spherically sym-
metric space-time and specialized for the weak gravity regime, allowing for
confrontation with solar-system tests. In the presence of non-linear scalar-
field self interactions, the Vainshtein mechanism can be efficient enough to
suppress the propagation of the fifth force inside the solar system, provided
that the non-minimal derivative coupling to the Einstein tensor is suppressed
[33, 35, 61]. At a technical level, this translates into constraining the magni-
tude of the function G5 in the LH

5 contribution of the Horndeski Lagrangian
to be subdominant as compared to the LH

4 contribution. For the consistency
with solar-system tests, we will consider the subclass of the Horndeski theory
with LH

5 = 0 in the following.
The Lagrangian LH

2 depends on the lapse M according to

LH
2 = G2(φ,X(M)) , X(M) =

φ′2

M2
. (3.71)

As for the Lagrangian LH
3 = G3�φ, we introduce an auxiliary function

F3(φ,X) [52] such that
G3 ≡ F3 + 2XF3X . (3.72)
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Integrating the term F3�φ by parts, using Eq. (3.70) for the term 2XF3X�φ,
the Lagrangian LH

3 reduces to

LH
3 = 2X3/2F3X(L− L)− F3φX . (3.73)

By using Eqs. (3.38), (3.69) and (3.70), the Lagrangian LH
4 can be expressed

as

LH
4 = G4

(R−K2 + κ
)
+ (G4 − 2XG4X)

[
L2 − λ− 2LL+ 2K− 2KK

+2Da (lnN)Da (lnM)] + 2
√
XG4φ(L− L) . (3.74)

Thus we have shown that the Horndeski Lagrangians LH
2,3,4 are fully expressed

in terms of 2+1+1 covariant quantities introduced in the action (3.36).

3.4.2 GLPV theories

We proceed to apply our formalism to GLPV theories which we have studied
on the cosmological background in Sec. 2. In a manifestly covariant form,
the Lagrangian which characterizes GLPV theories is given as

LGLPV =
5∑

i=2

LGLPV
i , (3.75)

where the series of Lagrangians LGLPV
2−5 are given by [39]

LGLPV
2 = A2(φ,X) , (3.76)

LGLPV
3 = [C3(φ,X) + 2XC3X(φ,X)]�φ+XC3φ(φ,X) , (3.77)

LGLPV
4 = B4(φ,X)R− B4(φ,X) + A4(φ,X)

X

[
(�φ)2 −∇a∇bφ∇a∇bφ

]
+
2 [B4(φ,X) + A4(φ,X)− 2XB4X(φ,X)]

X2

× (∇aφ∇bφ∇a∇bφ�φ−∇aφ∇a∇bφ∇cφ∇b∇cφ
)

+ [C4(φ,X) + 2XC4X(φ,X)]�φ+XC4φ(φ,X) , (3.78)

LGLPV
5 = G5(φ,X)Gab∇a∇bφ− |X|3/2A5(φ,X)

[
(�φ)3 − 3(�φ)∇a∇bφ∇a∇bφ

+2∇a∇bφ∇c∇bφ∇c∇aφ
]
+
XB5X(φ,X) + 3A5(φ,X)

|X|5/2
×

[
(�φ)2∇aφ∇a∇bφ∇bφ− 2�φ∇aφ∇a∇bφ∇b∇cφ∇cφ
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−∇a∇bφ∇a∇bφ∇cφ∇c∇dφ∇dφ+ 2∇aφ∇a∇bφ∇b∇cφ∇c∇dφ∇dφ
]

+C5(φ,X)R− 2C5X(φ,X)
[
(�φ)2 −∇a∇bφ∇a∇bφ

]
, (3.79)

where

C3 =

∫
dX

A3

2|X|3/2 , C4 = −
∫
dX

B4φ

|X| ,

C5 =
XG5φ − |X|1/2B5φ

2
, G5 = −

∫
dX

B5X

|X|1/2 , (3.80)

with A2,3,4,5 and B4,5 arbitrary functions of a scalar field φ and its kinetic
termX. The Lagrangians (3.76)-(3.79) arise as an extension of the Horndeski
theory by generalizing the Horndeski Lagrangians written in terms of the
ADM variables in the isotropic cosmological setup [39].

The Horndeski theory corresponds to

A4 = −B4 + 2XB4X , (3.81)

A5 = −XB5X

3
, (3.82)

under which the terms on the second line of Eq. (3.78) and those in the second
and third lines of Eq. (3.79) vanish. Then, the Horndeski Lagrangians (2.39)-
(2.42) can be recovered by moving some of the terms (such as XC3φ(φ,X))
in the Lagrangian L GLPV

i (i = 3, 4, 5) to the previous Lagrangian LGLPV
i−1 .

In comparison to the Horndeski Lagrangians characterized by the func-
tions G2,3,4,5, the theories (3.79) have two additional functions included in
A2,3,4,5 and B4,5. Apparently, the equation of motion for the scalar field al-
lows for derivatives higher than second order. In the presence of higher-order
derivatives3, the theory can be plagued by Ostrogradski instabilities associ-
ated with the propagation of the extra degrees of freedom [38]. In the GLPV
theory, however, a careful counting of the degrees of freedom in the Hamil-
tonian formulation on the isotropic cosmological background4 indicates that
no additional degrees of freedom would arise.

3Although such a higher-order dynamics is non-standard in physics, it has not been
unaccounted either. An example for such a dynamics is provided by the (spin-orbit con-
tribution to the) Lagrangian of spinning binary black holes. In this case the Lagrangian
depends on the relative acceleration of the black holes, which leads to a third-order Euler-
Lagrange equation [92].

4In Ref. [39] this has been performed after the scalar degree of freedom is transferred
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As in the discussion of the Horndeski theory, we will also drop the con-
tribution of LGLPV

5 . The Lagrangians LGLPV
2,3,4 can be expressed as

LGLPV
2 = A2 , (3.83)

LGLPV
3 = A3 (L− L) , (3.84)

LGLPV
4 = B4

(R−K2 + κ
) − 2 (B4 − 2XB4X) [KK −Da (lnN)Da (lnM)]

−A4

(
L2 − λ− LL+ 2K

)
, (3.85)

fully rewritten in terms of the 2+1+1 covariant variables of the action (3.36).
Hence LGLPV

2,3,4 also belong to the class of the EFT of modified gravity. This
illustrates that the latter accommodates theories beyond Horndeski.

In Appendix B we show the background equations of motion, as derived
from Eqs. (3.65)-(3.67) for the GLPV Lagrangians (3.83)-(3.85). Under the
conditions (3.81) and (3.82), the equations of motion coincide5 with those
derived in Refs. [36, 61] in the Horndeski theory. In general, however, they
differ from each other.

Thus we have shown that there are theories which at the level of the
background are second order and more generic than the Horndeski theory.
This seems to contradict the generic claim that the Horndeski theory rep-
resents the most generic second-order scalar-tensor dynamics. We have to
keep in mind however that we are considering a spherically symmetric and
static background. These additional symmetries may render some of the re-
quirements imposed in order to achieve second-order dynamics unnecessarily
restrictive.

Further, we comment that, under spherical symmetry and staticity im-
posed in the generic EFT of modified gravity, the tensorial sector is always
governed by second-order dynamics. As we consider a static background, the
equations of motion (3.65)-(3.67) represent constraints, containing no time
derivatives. Due to the additional spherical symmetry, higher-order deriva-
tive terms could emerge only as radial derivatives. This could happen, if
the Lagrangian LEFT involves second radial derivatives. Nevertheless, this
is forbidden by the very nature of the action. Indeed, the Lagrangian only

into the lapse and coordinate associated with the constant φ hypersurfaces. For the spatial
hypersurfaces considered there, the usual lapse N and the time t were employed. On the
spherically symmetric background the constant φ-surfaces have spherical topology, so in
this case the scalar degree of freedom is transferred into M and r.

5In order to manifestly see this, one has to redefine the functions Ai and Bi. These
redefinitions will be discussed in Appendix A in the case when LGLPV

5 is dropped.
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depends on scalars constructed algebraically from the variables of the 2+1+1
formalism involving the induced metric, extrinsic curvatures, normal funda-
mental vectors and forms. The latter are related to first temporal and radial
derivatives, as Eqs. (3.28)-(3.30c) explicitly show. No second-order deriva-
tives of the metric are included in these variables. Hence the background
equations of motion (increasing the differential order of the Lagrangian at
most by one) are free from third or higher order radial derivatives of the
chosen variables of the action.

Nevertheless, at the level of perturbations, to be discussed in the rest of
this chapter, their second-order evolution cannot be guaranteed a priori.

3.5 Gauge transformations and fixing

In this section we discuss the simplifications achieved by suitably employing
the available gauge degrees of freedom (diffeomorphism invariance). In doing
so, we will adapt the radial coordinate r to the hypersurfaces of constant
scalar field even in the perturbed case by requiring

δφ = 0 . (3.86)

Next, we will simplify the perturbations of the induced 2-metric to a mere
conformal rescaling. Finally we will adopt a gauge which maintains the
geometrical interpretation of the variables as arising in the 2+1+1 canonical
formalism (e.g., assure N = 0 even in the presence of perturbations).

In a manner analogous to the Helmholtz theorem, any vector Va =
Va (t, r, θ, ϕ) on a sphere can be decomposed by using scalar potentials as
follows:

Va = D̄aVrot + Eb
aD̄bVdiv , (3.87)

where Vrot = Vrot (t, r, θ, ϕ) and Vdiv = Vdiv (t, r, θ, ϕ) are arbitrary scalars
generating a rotation-free part and a divergence-free part, respectively. Here
Eab =

√
h̄ εab and εab stands for the antisymmetric tensor density, defined

as εθϕ = 1 [36]. Similarly, any rank-2 symmetric tensor Tab = Tab (t, r, θ, ϕ)
on a sphere can be decomposed in terms of a scalar and a vector potential,
e.g., Tscalar and Ta, as Tab = h̄abTscalar +

(
D̄aTb + D̄bTa

)
/2. Applying the

decomposition (3.87) to Ta, the tensor Tab is uniquely expressed in terms of
the scalar functions Tscalar, Trot and Tdiv, as

Tab = h̄abTscalar + D̄aD̄bTrot +
1

2

(
Ec

aD̄cD̄b + Ec
bD̄cD̄a

)
Tdiv . (3.88)
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We apply these decompositions to the metric perturbation (3.53), such
that the perturbed quantities can be expressed as

δNa = D̄aP + Eb
aD̄bQ , (3.89a)

δMa = D̄aV + Eb
aD̄bW , (3.89b)

δhab = h̄abA+ D̄aD̄bB +
1

2

(
Ec

aD̄cD̄b + Ec
bD̄cD̄a

)
C . (3.89c)

Here the perturbations Q, W and C correspond to either divergence-free
terms or to derivatives of such terms (these terms have non-vanishing curls),
whereas P , V , A, and B represent either rotation-free terms or derivatives of
such terms. As first shown in Ref. [71], after expanding in terms of spherical
harmonics, the elements of the first set become odd modes under the parity
transformation on the sphere. The quantities of the second set, together with
δN , δN , and δM of Eq. (3.53), behave as even modes.

In what follows we concentrate on the evolution of these 10 variables,
conveniently characterizing the perturbations from the parity point of view.
At first, we remark that some of them could be eliminated by making use of
the allowed diffeomorphism freedom. In doing so, we consider an infinitesimal
coordinate transformation x̃a = xa + ξa. For the infinitesimal displacement
ξa we write the time and radial component as ξt and ξr respectively, while
the infinitesimal displacement along the sphere is decomposed as

ξa = D̄aξ + EbaD̄bη , (a = θ, ϕ) . (3.90)

Then, the perturbed metric in the new coordinate system becomes δ̃gab =
δgab +∇aξb +∇bξa.

The perturbations transform as

δ̃N = δN − N̄ ξ̇t − N̄ ′ξr , (3.91a)

δ̃N = δN − N̄2

2M̄
ξt

′
+
M̄

2
ξ̇r , (3.91b)

δ̃M = δM + M̄ ′ξr + M̄ξr ′ , (3.91c)

P̃ = P − N̄2ξt + ξ̇ , (3.91d)

Q̃ = Q+ η̇ , (3.91e)

Ṽ = V + M̄2ξr + ξ′ − 2

r
ξ , (3.91f)

W̃ = W + η′ − 2

r
η , (3.91g)
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Ã = A+
2

r
ξr , (3.91h)

B̃ = B + 2ξ , (3.91i)

C̃ = C + 2η . (3.91j)

Additionally, the linear perturbation δφ of a scalar field φ(t, r, θ, ϕ) = φ̄(r)+
δφ(t, r, θ, ϕ) transforms under an infinitesimal coordinate transformation as

δ̃φ = δφ− φ̄′ξr . (3.92)

In the isotropic cosmological setting, the key ingredient in deriving the
EFT of modified gravity is the 3 + 1 decomposition with the time slicing
determined by hypersurfaces of the uniform scalar field [52]. In an analogous
way, we consider here the hypersurfaces of constant φ as defining the radial
slicing with r = const, in a choice which simplifies the EFT of modified
gravity on the spherically symmetric background. Therefore, we first fix the
gauge ξr to obtain δ̃φ = 0. Due to this gauge choice, the action (3.36) does
not explicitly include the scalar field as a variable.

Next, we fix the two gauge degrees of freedom ξ and η such that the
anisotropic contributions to δhab disappear, i.e., B̃ = C̃ = 0. By doing
so, the perturbed and unperturbed induced metrics are simply related by a
conformal transformation as hab = (1 + Ã)h̄ab. After redefining Ã = e2ζ − 1,
the perturbed induced metric coincides with the one employed in Sec. 3.3.
Finally, we also need to fix the gauge ξt to achieve δ̃N = 0 [see Eq. (3.20)]6.

In summary, the gauge fixing is given by

ξt =

∫
dr

2M̄

N̄2

(
δN +

M̄

2
ξ̇r

)
+ F (t, θ, ϕ) ,

ξr =
δφ

φ̄′ , ξ = −B
2
, η = −C

2
, (3.93)

where F (t, θ, ϕ) is an integration function, yet to be fixed 7.
6Even if we would not choose δN = 0, preserving at the level of perturbations the more

general linear relation between N and M , Eq. (C2) of the Appendix C of Ref. [73] would
consume this gauge degree of freedom.

7In the particular case where P exhibits the radial dependence P (t, r, θ, ϕ) =

N̄ (r)
2
F (t, θ, ϕ), the remaining gauge transformation t̃ = t+F (t, θ, ϕ) could be employed

to eliminate P̃ . In general, however, this is not possible, so another fixing of the function
F would be necessary in order to avoid the appearance of any non-physical gauge mode,
similar to the one of the synchronous gauge in cosmology.
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With the new notation for the conformal factor in the transformation of
the induced metric

δhab =
(
e2ζ − 1

)
h̄ab , (3.94)

the line element up to first-order accuracy can be written as

ds21 = − (
N̄2 + 2N̄δN

)
dt2 + 2δNadtdx

a + 2δMadx
adr

+
(
M̄2 + 2M̄δM

)
dr2 + e2ζ h̄abdx

adxb , (3.95)

where δNa and δMa are given in terms of parity-related scalars through
Eqs. (3.89a) and (3.89b). In the above expression we have omitted the tildes
for notational simplicity, and we will do so hereafter.

We now discuss how the gauge fixing affects the even and odd modes.
First, we stress that the residual gauge freedom in F does not affect the
odd-parity perturbations as it does not appear in the transformation of the
odd-sector variables (C,Q,W ), as seen from Eqs. (3.91). In fact all these
variables transform only in terms of η, which has been fixed such that C
could be eliminated. Then the other two odd-sector variables stay arbitrary,
unaffected by the three other gauge choices.

Finally, we comment on the elimination of the even-sector variable δN .
By doing so, the interpretation of the Lagrangian variables in terms of the
geometric quantities defined in the 2+1+1 formalism continues to hold even
in the presence of perturbations. Such a condition is equivalent to imposing
hypersurface-orthogonality of the vector field la. The last requirement could
be relaxed such that the vector la acquires vorticity at a perturbative level.
However, this would imply to develop a more involved formalism, allowing
at least for a new scalar, a new vectorial and a new tensorial degree of
freedom (and all the scalars formed from them). Then we can choose another

gauge P̃ = 0, as commonly used in past works. Such a generalization of the
formalism for the even-parity perturbations is left for a subsequent work.

3.6 Odd-mode perturbation dynamics

We proceed with the analysis of the odd-parity perturbations by expanding
the action up to second order to discuss the dynamical evolution of them.
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3.6.1 Second-order perturbed Lagrangian

We expand the action (3.36) at second order for the odd-type perturbations
in order to derive linear perturbation equations of motion. As the even and
odd sectors decouple in the second-order perturbed Lagrangian, at a formal
level, we could just switch off all even-type variables as

P = V = δN = δM = ζ = 0 . (3.96)

Then the second-order contribution to the Lagrangian density for the odd
modes is given by

δ2L
odd = L̄EFT

0 δ2
√−g + δ

√−gδLEFT +
√−ḡ δ2LEFT , (3.97)

where δ2 represents second-order variations.
The second-order contribution to the line element reads

δ2
(
ds2

)
= (δNaδN

a − δN2)dt2 + 2δNaδM
adtdr

+
(
δMaδM

a + δM2
)
dr2 + 2ζ2h̄abdx

adxb . (3.98)

By employing Eqs. (3.95) and (3.98), it follows that

δ2
√−g =

√−ḡ
2

[
ḡabδ2gab +

1

4

(
ḡabḡcd − 2ḡacḡbd

)
δgabδgcd

]
= 0 . (3.99)

Thus the first term on the rhs of Eq. (3.97) vanishes identically. Similarly the
second term on the rhs of Eq. (3.97) vanishes, since by virtue of Eq. (3.54)
the first-order variation δ

√−g consists only of even-mode contributions.
Next we expand the Lagrangian up to second order. Before doing so, we

note that the linear and quadratic perturbations of L, L, K, K and R arise
from even modes only [see Eqs. (3.29), (3.30) and (3.55)], so they do not con-
tribute to the odd-mode dynamics. As a result, the second-order Lagrangian
for the odd-type perturbations becomes extremely simple (depending on 4
variables only out of 11):

δ2L
EFT = LEFT

M δ2M+ LEFT
K δ2K+ LEFT

κ
δ2κ + LEFT

λ δ2λ . (3.100)

Substituting Eqs. (3.89a) and (3.89b) into Eqs. (3.29) and (3.30), then
integrating by parts (employing once again the generalized Stokes theorem
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for manifolds without boundaries), the second-order factors in δ2L
EFT can

be explicitly expressed in terms of the odd-type variables:

δ2M =
(
D̄W

)2
, δ2λ =

1

2M̄

[(
D̄2W

)2 − 2

r2
(
D̄W

)2]
,

δ2κ =
1

2N̄2

[(
D̄2Q

)2 − 2

r2
(
D̄Q

)2]
,

δ2K =
1

4N̄2M̄2

[(
D̄Ẇ

)2

+
(
D̄Q′)2 − 2D̄aẆ D̄aQ

′

+
4

r

(
D̄aẆ D̄aQ− D̄aQD̄aQ

′
)
+

4

r2
(
D̄Q

)2]
, (3.101)

where the notations D̄2 ≡ D̄aD̄a and
(
D̄f

)2 ≡ D̄afD̄af have been introduced
for f ≡ (Q,W ).

Substituting Eqs. (3.99)-(3.101) and δ
√−g = 0 into the second-order

Lagrangian density (3.97) for the odd modes, we finally obtain

δ2L
odd =

√−ḡ
{
a1

(
D̄Ẇ − D̄Q′ +

2

r
D̄Q

)2

+ a2

[(
D̄2Q

)2 − 2

r2
(
D̄Q

)2]

+ a3
(
D̄2W

)2
+ a4

(
D̄W

)2 }
, (3.102)

where the coefficients ai (i = 1, · · · , 4) are

a1 =
LEFT
K

4N̄2M̄2
, a2 =

LEFT
κ

2N̄2
, a3 =

LEFT
λ

2M̄2
, a4 = LEFT

M − 2

r2
a3 .

(3.103)
From the second-order Lagrangian density (3.102), we will derive the equa-
tions of motion for the odd-sector perturbations in the next subsection. We
remark that the Lagrangian density (3.102) is quadratic in the odd-mode
perturbations Q and W , so in what follows we will refer to this Lagrangian
contribution as quadratic.

3.6.2 Perturbation equations in the harmonics expan-
sion

We rewrite the quadratic action S2 =
∫
d4x δ2L odd in the following form

δ2L
odd =

√−ḡ
[
−a1

(
Ẇ −Q′ +

2

r
Q

)
D̄2

(
Ẇ −Q′ +

2

r
Q

)
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+a2QD̄
2

(
D̄2 +

2

r2

)
Q+WD̄2

(
a3D̄

2 − a4
)
W

]
,(3.104)

in which we have dropped covariant total divergence terms. The resulting
equations of motion derived by varying W and Q are given, respectively, by

D̄2Ψ(1) = 0 , Ψ(1) ≡ a1
∂

∂t

(
Ẇ −Q′ +

2Q

r

)
+

(
a3D̄

2 − a4
)
W , (3.105)

and

1√−ḡr2
∂

∂r

[√−ḡa1r2D̄2

(
Ẇ −Q′ +

2

r
Q

)]
− a2D̄

2

(
D̄2 +

2

r2

)
Q = 0 .

(3.106)

Since
√−ḡ = N̄M̄

√
h̄ = N̄M̄r2 sin θ and D̄a is the covariant derivative

compatible with the metric hab, it follows that D̄a

√−ḡ = 0. On using this
identity and the fact that r2D̄2 has no radial dependence (i.e., it commutes
with ∂/∂r), Eq. (3.106) reads

D̄2Ψ(2) = 0 , Ψ(2) ≡ 1√−ḡ
∂

∂r

[√−ḡa1
(
Ẇ −Q′ +

2

r
Q

)]
−a2

(
D̄2 +

2

r2

)
Q .

(3.107)
Hence Eqs. (3.105) and (3.107) are of the form D̄2Ψ(i) = 0 with i = 1, 2.
These are fourth-order coupled differential equations, but in the expressions
of Ψ(i) they contain time and radial derivatives up to second orders alone.

In the following, we expand the angular part of the odd-mode perturba-
tions f ≡ (Q,W ) in terms of spherical harmonics, i.e.,

f(t, r, θ, ϕ) =
∑
l,m

flm(t, r)Y
m
l . (3.108)

A similar decomposition of the differential expressions Ψ(i) (i = 1, 2) is given
by

Ψ(i)(t, r, θ, ϕ) =
∑
l,m

Ψ
(i)
lm(t, r)Y

m
l . (3.109)

Each mode obeys the identity

r2D̄2
[
Ψ

(i)
lm(t, r)Y

m
l

]
+ l (l + 1)

[
Ψ

(i)
lm(t, r)Y

m
l

]
= 0 . (3.110)
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The differential order of Eqs. (3.105) and (3.107) can be reduced by two,
i.e., ∑

l,m

l (l + 1)Ψ
(i)
lm(t, r)Y

m
l = 0 , (i = 1, 2), (3.111)

or explicitly ∑
l

l (l + 1)Ψ
(1)
l = 0 , (3.112)∑

l

l (l + 1)Ψ
(2)
l = 0 , (3.113)

with

Ψ
(1)
l ≡ a1

∂

∂t

(
Ẇl −Q′

l +
2

r
Ql

)
−

[
a3
l (l + 1)

r2
+ a4

]
Wl , (3.114)

Ψ
(2)
l ≡ 1√−ḡ

∂

∂r

[√−ḡ a1
(
Ẇl −Q′

l +
2

r
Ql

)]
+ a2

l (l + 1)− 2

r2
Ql . (3.115)

Note that we have introduced the notations fl ≡
∑

m flmY
m
l . The fl modes

are orthogonal to each other due to the orthogonality of spherical harmonics,
so that Ψ

(1)
l and Ψ

(2)
l vanish for l �= 0. Hence we have derived a sequence

of second-order differential equations Ψ
(i)
l = 0 (i = 1, 2) holding for each

non-zero l.
There exists a second time derivative of Wl in Eq. (3.112), so this corre-

sponds to a dynamical equation of motion for Wl. The variable Ql appears
only algebraically in the second-order Lagrangian density (3.102) and through
a first temporal derivative in Eq. (3.112). Since Eq. (3.113) contains only a
first time derivative of Wl with no time derivatives of Ql, this is a constraint
equation in the Lagrangian sense. In Sec. 3.6.4 we shall address the issue of
a true dynamical degree of freedom for general l by using a method of the
Lagrange multiplier. Before doing so, we shall discuss the specific cases of
l = 0, 1 in the next subsection.

3.6.3 Monopolar and dipolar perturbations

Monoploar mode (l = 0)

The monopolar perturbations trivially obey Eqs. (3.112)-(3.113), so they do
not contribute to the dynamics. In fact, after integrations by parts, the
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quadratic odd-mode Lagrangian density (3.102) can be written in a form
containing exclusively Laplacian terms:

δ2L
odd =

√−ḡ
[
− a1

(
Ẇ −Q′ +

2

r
Q

)(
D̄2Ẇ − D̄2Q′ +

2

r
D̄2Q

)

+ a2
(
D̄2Q

) (
D̄2 +

2

r2

)
Q+

(
D̄2W

) (
a3D̄

2 − a4
)
W

]
,

(3.116)

all of which identically vanish for l = 0. In the following we consider only
perturbations without a monopolar contribution.

Dipolar mode (l = 1)

For the dipolar perturbations, the last term of Eq. (3.89c), which contains
the term C, vanishes due to the identity (3.110). Hence there is no need to
eliminate C by gauge fixing, so that the respective gauge degree of freedom
can be used up as

η = −r2
∫
dr
W1

r2
+ r2C0(t, θ, ϕ) , (3.117)

where C0(t, θ, ϕ) is an integration function. With this choice, W̃1 = 0 and

Q̃1 = Q1 + r2Ċ0(t, θ, ϕ). Omitting tildes as before and noting that the last
term of Eq. (3.113) also vanishes due to the identity (3.110), Eqs. (3.112)-
(3.113) is simplified as

∂

∂t

(
Q′

1 −
2

r
Q1

)
= 0 , (3.118)

∂

∂r

[√−ḡ a1
(
Q′

1 −
2

r
Q1

)]
= 0 . (3.119)

The dynamical degree of freedom W does not appear in Eqs. (3.118)-
(3.119), suggesting that dipolar perturbations are non-dynamical. Indeed,
direct integration of Eqs. (3.118)-(3.119) leads to

Q1 = r2C1(θ, ϕ)
∫

dr√−ḡa1r2 + r2C2(t, θ, ϕ) , (3.120)
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where C1,2 are integration functions. The remaining gauge degree of freedom
can be exploited as Ċ0 = −C2, so the time dependence is completely elimi-
nated from the dipolar odd-mode perturbations. As discussed in Ref. [72],
the time-independent contribution to Q1 appearing as the first term on the
r.h.s. of Eq. (3.120) is related to the angular momentum induced by the
dipolar perturbation.

3.6.4 Dynamical degree of freedom for l ≥ 2

The Lagrangian density (3.104) possesses first and second derivatives, which
appear quadratically. Hence some of the terms would be of fourth order in
spatial derivatives by partial integration (while the time derivatives remain of
second order). This is why the perturbation Eqs. (3.105) and (3.107) involve
fourth-order spatial differentiations. For l ≥ 2 these equations of motion
reduce to the form Ψ

(1)
l = 0 and Ψ

(2)
l = 0 under the expansion of spherical

harmonics, where Ψ
(i)
l (i = 1, 2) are given by Eqs. (3.112) and (3.113).

As we already mentioned in Sec. 3.6.2, the first equation (Ψ
(1)
l = 0)

describes the dynamical evolution of the variableWl, whereas the second one
(Ψ

(2)
l = 0) corresponds to a constraint involving a second spatial derivative

of the field Ql. Since the latter constraint equation is not directly solved
for Ql, it is difficult to derive a closed-form differential equation for Wl by
eliminating the Ql-dependent terms appearing in the equation Ψ

(1)
l = 0. This

obstacle can be circumvented by using the method of a Lagrange multiplier.
In fact, this method was employed to study the linear perturbations on a
spherically symmetric background in modified Gauss-Bonnet gravity [93] and
it was further applied to Horndeski theory [36].

Introducing the Lagrange multiplier vector Y a, the Lagrangian density
equivalent to Eq. (3.102) is given by

δ2L
odd =

√−ḡ
{
a1

[
2Y aD̄a

(
Ẇ −Q′ +

2

r
Q

)
− Y 2

]
+ a2

[(
D̄2Q

)2 − 2

r2
(
D̄Q

)2]
+ a3

(
D̄2W

)2
+ a4

(
D̄W

)2}
,

(3.121)

where Y 2 = Y aYa. Variation of Eq. (3.121) with respect to Y a leads to
Ya = D̄a[Ẇ − Q′ + (2/r)Q]. Substituting this relation into Eq. (3.121), we
recover the original Lagrangian density (3.102).
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Defining the Lagrange multiplier potential Z as Y a = D̄aZ, the La-
grangian density (3.121) is characterized by two scalar fields W and Q plus
the auxiliary scalar field Z. Varying Eq. (3.121) in terms of W and Q, we
obtain

D̄2
[
a1Ż +

(
a3D̄

2 − a4
)
W

]
= 0 , (3.122)

D̄2

[
1√−ḡ

∂

∂r

(√−ḡa1Z
) − a2

(
D̄2 +

2

r2

)
Q

]
= 0 . (3.123)

For l ≥ 2 the D̄2 operators acting on the square brackets can be formally
omitted, so the l-th multipolar components Wl and Ql obey the following
equations:

Wl =
a1r

2

a3l (l + 1) + a4r2
Żl , (3.124)

Ql = − r2

a2 (l + 2) (l − 1)
√−ḡ

∂

∂r

(√−ḡ a1Zl

)
, (3.125)

where Zl is the l-th component of Z.
Equations (3.124) and (3.125) show that both Wl and Ql are directly

known from Zl. On using the last of Eq. (3.103), we can also write Eq. (3.124)
of the form

Wl =
r2

a3 (l + 2) (l − 1)

(
a1Żl − LEFT

M Wl

)
. (3.126)

Substituting Eqs. (3.125) and (3.126) into the l-th component of the mul-
tipolar decomposition of the Lagrangian density (3.121), using Y a = D̄aZ,
and integrating it by parts, we finally obtain

δ2L
odd
l =

l(l + 1)
√−ḡ

(l + 2)(l − 1)

×
[
−a

2
1

a3
Ż2

l −
a21
a2
Z ′2

l − a1(D̄Zl)
2 − UH(r)Z2

l +
a1
a3
LEFT
M WlŻl

]
,

(3.127)

where the potential UH(r) is given by

UH(r) = −a1 ∂
∂r

[
1√−ḡa2

∂

∂r

(√−ḡa1
)] − 2a1

r2
, (3.128)
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or more explicitly,

UH(r) = −a
2
1

a2

[
N̄ ′′

N̄
+
M̄ ′′

M̄
− N̄ ′2

N̄2
− M̄ ′2

M̄2
− 2

r2
+
a′′1
a1

− a′1a
′
2

a1a2

+

(
a′1
a1

− a′2
a2

)(
N̄ ′

N̄
+
M̄ ′

M̄
+

2

r

)]
− 2a1

r2
. (3.129)

The superscript in UH(r) has been introduced to point out that in the Horn-
deski limit it reduces to the potential (24) of Ref. [36]. Using the relation
D̄2Zl = −l(l + 1)Zl/r

2, the third term in the square bracket of Eq. (3.127)
is equivalent to −a1l(l + 1)Z2

l /r
2 up to a boundary term.

The last term in the square bracket of Eq. (3.127) gives rise to a con-
tribution Ż2

l with a coefficient including the multipolar index l by virtue
of Eq. (3.124). In this case the propagation speeds are different for each
multipolar mode, so the global interpretation of the perturbation Zl and
its propagation speeds become far from trivial. Hence, in the following, we
impose the following condition

LEFT
M = 0 . (3.130)

In fact, this is satisfied both in the Horndeski theory and in the GLPV theory
(i = 2, 3, 4 for our cases of interest).

Under the condition (3.130) the second-order Lagrangian density is ex-
pressed solely by the quantity Zl and its time and spatial derivatives, in
a mode-independent way. As a result, Zl is a master variable governing
the dynamics of the odd-mode perturbations. Comparing Eqs. (3.122) and
(3.123) with Eqs. (3.105) and (3.107), respectively, there is the correspon-
dence Z → Ẇ − Q′ + 2Q/r, which also arises by varying the Lagrangian
density (3.121) for the Lagrange multiplier potential Z. While Q and W
were eliminated from the Lagrangian density by their respective equations of
motion, Eqs. (3.124) and (3.125), we stress that this third equation of motion
Z = Ẇ −Q′+2Q/r was not exploited for deriving Eq. (3.127). In fact, after
the substitution of Eqs. (3.124) and (3.125), the Lagrangian density (3.127)
already contains the dynamics of the third field Z. If we were to make the
additional substitution Zl → Ẇl−Q′

l+2Ql/r, the Lagrangian density (3.121)
would reduce to a boundary term δ2L odd = −(∂/∂r)(

√−ḡa1Ql(l+1)Zl/r
2),

which is irrelevant to the true dynamics of perturbations.
On using the equations of motion following from the variation of Eq. (3.127)

with respect to Zl, we can discuss the stability of the odd-type perturbations.
In the next section we shall address this issue.
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3.7 No-ghost conditions and avoidance of Lapla-

cian instabilities

In the previous section we have seen that in an expansion with respect to
spherical harmonics there is no monopolar contribution to the odd modes
and the dipolar mode is non-dynamical. In the following we proceed with
the stability analysis of quadrupolar and higher multipolar contributions to
the odd-mode perturbations (l ≥ 2), governed by the quadratic Lagrangian
density (3.127) under the condition (3.130).

3.7.1 Generalized Horndeski class

We categorize theories satisfying the condition (3.130) as the generalized
Horndeski class (including the GLPV theory). In this case the quadratic
Lagrangian could depend on the odd-mode variable W , which generates the
odd-mode contribution to δMa through Eq. (3.89b). Nevertheless, the La-
grangian for the background dynamics does not depend on the particular
combination M ≡ MaM

a. Whenever Eq. (3.130) holds, the quadratic La-
grangian density (3.127) leads to a second-order differential equation for the
decoupled master variable Zl and the usual stability conditions can be im-
posed on this equation.

The condition for avoidance of the scalar ghost (no negative kinetic term)
is satisfied for a3 < 0, i.e.,

LEFT
λ < 0 . (3.131)

For the modes with the large wave numbers along the radial or tangential
directions, many terms of Eq. (3.127) are suppressed. In particular, UH(r) as
well as the third (for radial modes) or second (for tangential modes) terms
are sub-dominant in the high-frequency limit. In these two regimes the dis-
persion relations following from the Lagrangian density (3.127) are given,
respectively, by

ω2 +
a3
a2
k2r = 0 , ω2 +

a3
a1
k2Ω = 0 , (3.132)

where ω is the angular frequency, kr and kΩ are the wave numbers along
the radial and tangential directions respectively. Introducing proper time
τ =

∫
N̄dt and tortoise coordinate r∗ =

∫
M̄dr, the squared sound speeds of
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fluctuations along the radial and tangential directions read

c2r ≡
M̄2k2r
N̄2ω2

= −M̄
2a3

N̄2a2
= −L

EFT
λ

LEFT
κ

, c2Ω ≡ k2Ω
N̄2ω2

= − a3
N̄2a1

= −2LEFT
λ

LEFT
K

,

(3.133)
respectively. Under the no-ghost requirement (3.131), the conditions for the
absence of Laplacian instabilities, i.e., c2r > 0 and c2Ω > 0, take a remarkably
simple form

LEFT
κ

> 0 , LEFT
K > 0 . (3.134)

These simple stability conditions acquire geometrical significance, as K is
the length squared of the normal fundamental vector, while κ and λ are the
traces of the squares of the two extrinsic curvature tensors of the spheres.
These are quantities appearing in the 2+1+1 decomposition of the covariant
derivatives of the two normal vectors to the spheres, Eqs. (3.24)-(3.25). The
additional quantities of these decompositions are the normal fundamental
scalars and accelerations. They however do not contribute to the stability
conditions for the odd modes as the normal fundamental scalars L and K
are even-mode variables, while the accelerations αa and βa appear in the
action only through the curvature scalar R under divergences. Hence their
rotation-free part alone survives under the Helmholtz decomposition, which
again generates the even modes.

The stability conditions (3.131) and (3.134) can be further specified for
the particular case of the Horndeski theory with LH

2,3,4 and the GLPV theory
with LGLPV

2,3,4 discussed in Sec. 3.4. For this we first remark that, according to
Eqs. (3.74) and (3.85), only the contributions LH

4 and LGLPV
4 depend on the

variables λ, κ and K.
In the Horndeski theory, the stability conditions (3.131) and (3.134) read

−LH
λ =

1

2
LH
K = G4 − 2XG4X > 0 , LH

κ
= G4 > 0 . (3.135)

The first of these conditions exactly corresponds to Eq. (25) or Eq. (28)
of Ref. [36] (these two conditions coincide when LH

5 = 0). The second is
the condition imposed in Ref. [36] for avoiding gradient instabilities, when
LH
5 = 0. Since X > 0, the first condition (3.135) gives information beyond

the second one only for G4X > 0.
In the GLPV theory, the stability conditions reduce to

LGLPV
λ = −1

2
LGLPV

K = A4 < 0 , LGLPV
κ

= B4 > 0 . (3.136)
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It is easy to see that, in the Horndeski limit characterized by Eq. (3.81),
these reduce to Eq. (3.135).

3.7.2 Stability conditions for covariant Galileon mod-
els

Covariantized Galileons

The original Galileon model advocated in Ref. [13] is composed of five La-
grangians invariant under the Galilean symmetry ∂μφ → ∂μφ + bμ in the
Minkowski background. The equations of motion remain of second order by
virtue of this symmetry. In the curved background, the original Galileon
model can be covariantized by replacing coordinate derivatives with covari-
ant derivatives. This “covariantized Galileon” belongs to a particular case of
the GLPV theory given by the Lagrangians (3.76)-(3.78) with the functions

A2 = c2X , A3 = c3X
3/2 , A4 = −M

2
pl

2
− c4X

2 , B4 =
M2

pl

2
,

(3.137)
where c2,3,4 are constants. Here we have taken into account the Einstein-
Hilbert term M2

plR/2 in the Lagrangian, where Mpl is the reduced Planck
mass.

In general space-time, the theory described by (3.137) contains derivatives
higher than second order. On the flat isotropic cosmological background,
however, the equations of motion for the background and linear perturbations
are second order without a new propagating degree of freedom [39]. This
result was obtained by considering the constant-time hypersurfaces, such
that the scalar field plays the role of time. A similar argument may also
work for the spherically symmetric background due to the high degree of
symmetry, in which case the scalar field takes the role of a radial coordinate
r. In fact, substituting Eq. (3.137) into the background equations of motion
(B.1)-(B.3), we obtain

M2
pl

r

(
1

r
− 1

M̄2r
+

2M̄ ′

M̄3

)
+ c2X +

3c3X

M̄2

(
φ′M̄ ′

M̄
− φ′′

)
−2c4X

M̄2r

(
X

r
− 10XM̄ ′

M̄
+

8φ′φ′′

M̄2

)
= 0 , (3.138)

M2
pl

r

(
1

r
− 1

M̄2r
− 2N̄ ′

M̄2N̄

)
− c2X − 3c3Xφ

′

M̄2

(
2

r
+
N̄ ′

N̄

)
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−10c4X
2

rM̄2

(
1

r
+

2N̄ ′

N̄

)
= 0 , (3.139)

M2
pl

M̄2

[
M̄ ′

M̄r
− N̄ ′′

N̄
− N̄ ′

N̄

(
1

r
− M̄ ′

M̄

)]
+ c2X +

3c3X

M̄2

(
φ′M̄ ′

M̄
− φ′′

)
−2c4X

M̄2

[
XN̄ ′′

N̄
− 5XM̄ ′

M̄r
+

4φ′φ′′

M̄2r
+
N̄ ′

N̄

(
X

r
− 5XM̄ ′

M̄
+

4φ′φ′′

M̄2

)]
= 0 ,

(3.140)

which are of second order. The equations of motion for the odd-mode pertur-
bations are also of second order. The stability conditions (3.136) translate
to

c4

(
X

Mpl

)2

> −1

2
. (3.141)

The radial and tangential sound speeds read

c2r = 1 + 2c4

(
X

Mpl

)2

, c2Ω = 1 , (3.142)

respectively.

Covariant Galileons

Higher-order derivatives present for the covariantized Galileon in a general
curved space-time can be eliminated by including a non-minimally coupled
gravitational contribution to the Lagrangian [14]. The Galileon model with
second-order equations of motion is dubbed “covariant Galileon”. This is a
sub-class of the Horndeski Lagrangians (2.39)-(2.41) with the choice

G2 = ĉ2X , G3 = ĉ3X , G4 =
M2

pl

2
+ ĉ4X

2 , (3.143)

where ĉ2,3,4 are constants.
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From Eqs. (B.1)-(B.3) the background equations of motion are given by

M2
pl

r

(
1

r
− 1

M̄2r
+

2M̄ ′

M̄3

)
+ ĉ2X +

2ĉ3X

M̄2

(
φ′M̄ ′

M̄
− φ′′

)
+
6ĉ4X

M̄2r

(
M̄2X

3r
+
X

r
− 10XM̄ ′

M̄
+

8φ′φ′′

M̄2

)
= 0 , (3.144)

M2
pl

r

(
1

r
− 1

M̄2r
− 2N̄ ′

M̄2N̄

)
− ĉ2X − 2ĉ3Xφ

′

M̄2

(
2

r
+
N̄ ′

N̄

)
+
30ĉ4X

2

M̄2r

(
−M̄

2

5r
+

1

r
+

2N̄ ′

N̄

)
= 0 , (3.145)

M2
pl

M̄2

[
M̄ ′

M̄r
− N̄ ′′

N̄
− N̄ ′

N̄

(
1

r
− M̄ ′

M̄

)]
+ ĉ2X +

2ĉ3X

M̄2

(
φ′M̄ ′

M̄
− φ′′

)
+
6ĉ4X

M̄2

[
XN̄ ′′

N̄
− 5XM̄ ′

M̄r
+

4φ′φ′′

M̄2r
+
N̄ ′

N̄

(
X

r
− 5XM̄ ′

M̄
+

4φ′φ′′

M̄2

)]
= 0 .

(3.146)

Compared to the covariantized Galileon, the difference arises from the B4-
dependent terms in Eqs. (B.1) and (B.2). The stability conditions (3.135)
translate to

−1

2
< ĉ4

(
X

Mpl

)2

<
1

6
, (3.147)

which is different from Eq. (3.141). The radial and tangential speeds of sound
are given, respectively, by

c2r =
M2

pl − 6ĉ4X
2

M2
pl + 2ĉ4X2

, c2Ω = 1 , (3.148)

where c2r differs from Eq. (3.142).
We have shown that the background and perturbation equations of mo-

tion for both the covariantized Galileon (3.137) and the covariant Galileon
(3.143) are of second order on the spherically symmetric background. Their
perturbations propagate identically along the spheres, but with different
propagation speeds in the radial direction.
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3.8 conclutions

In Chapter 3, We have studied the perturbations about a spherically sym-
metric and static background in the framework of the EFT of modified grav-
ity. Since spherical symmetry selects a preferred radial direction besides the
time direction, we employed a more intricate 2+1+1 decomposition which is
briefly introduced in Sec. 3.2. Due to the double foliation, there are two sets
of extrinsic curvatures in the formalism. Some of them are related to tempo-
ral derivatives (Kab , Ka , K), the others to radial derivatives (Lab , La , L).
We have started from a general action that depends on scalars formed from
these quantities, the metric variables of the constant time hypersurfaces (hab,
Ma, M) and the lapse N .

We choose the gauge N = 0 to ensure the perpendicularity of the fo-
liations on the spherical symmetric space-time. Then, the dynamics of the
radial and temporal components proceeds in a hypersurface-orthogonal man-
ner without vorticities. By this gauge choice, it is possible to avoid an un-
necessary increase in the number of variables associated with vorticity-type
quantities. A second gauge fixing is the radial unitary gauge φ = φ(r), which
switches off the perturbations of the scalar field (δφ = 0). In this case, the
scalar field is absorbed in the gravitational sector (into the radial lapse M)
and an explicit radial dependence of the action.

In Sec. 3.3 we started from the gravitational action (3.36) which incor-
porates a general system of a single scalar degree of freedom. Despite the
relatively large number of scalar variables, variation of the action gives rise
to three independent equations of motion at the background level. They
are derived by the changes in the lapse δN , in the radial lapse δM , and in
the scalar curvature on the sphere δR, respectively. Equations (3.65)-(3.67)
represent the most generic set of equations of motion in modified gravity
theories on the spherically symmetric and static background.

In Sec. 3.4 we have expressed the Horndeski and GLPV Lagrangians
in terms of the 2+1+1 variables, proving that they belong to the class of
the EFT of modified gravity studied in this thesis. We also derived the
background equations of motion explicitly for both under spherical symmetry
and staticity. Under these symmetries the GLPV background is also second
order, as in the case of the Horndeski theory.

In Sec. 3.6 we expanded the action up to second order for the odd mode
perturbations and derived the linear perturbation equations of motion, with
the even and odd modes decoupled. In this study we focused on the analysis
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for the odd-parity mode of perturbations. The originally fourth-order dif-
ferential equations were reduced to second order by employing a multipolar
expansion into spherical harmonics. We derived the second-order Lagrangian
density for odd-mode perturbations of the form (3.127).

In Sec. 3.7 we derived the stability conditions. Under the condition
(3.130), which is satisfied for both Horndeski and GLPV theories, the La-
grangian density is expressed solely by a dynamical scalar variable Zl and its
derivatives. We established extremely simple conditions for avoiding ghosts
and Laplacian instabilities. The propagation speed of odd-mode perturba-
tions depends on the direction of propagation. More specifically, the radial
sound speed and the sound speed along the spheres are different, generalizing
the corresponding result established for the Horndeski theory [36].

As applications of our general stability analysis, we have i) confirmed
the corresponding results for the Horndeski theory, ii) obtained the stability
conditions for the recently proposed GLPV theory, iii) derived and com-
pared both the tangential and the radial speeds of sound for two types of
Galileon theories: “covariantized Galileon” (derived by replacing coordinate
derivatives with covariant derivatives in the original Galileon model) and
“covariant Galileon” with second-order dynamics in general space-time (ob-
tained by adding a new term to eliminate higher-order derivatives). Although
the background equations of motion are similar in the two Galileon theories,
the stability conditions associated with the radial propagation speed cr are
different. This can be traced back to the terms B4 and B5 appearing in
the Lagrangians (3.78) and (3.79) being different in these two theories. In
the Horndeski theory B4 and B5 are related to the other terms A4 and A5

according to Eqs. (3.81) and (3.82), however in general no such restriction
appears in the GLPV theory.

Recently, the cosmology based on the two Galileon theories was studied
in Ref. [34] on the flat Friedmann-Lemâıtre-Robertson-Walker background.
It was shown that the propagation speeds of the field φ for covariant and
covariantized Galileons are different due to the different values of B4 and B5

in the two theories. On the isotropic cosmological background, the equations
of motion for linear perturbations also remain of second order. In spite
of the possible presence of derivatives higher than second order on general
backgrounds, the GLPV theory remains healthy on both the static spherically
symmetric and the isotropic cosmological backgrounds.

It is possible to extend our work to several interesting directions. First,
the background equations of motion (3.65)-(3.67) can be generally applied
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to the discussion of the screening mechanism of the fifth force mediated by
the scalar field φ. Second, the analysis of even-parity perturbations, which is
much more involved than that of odd-parity modes, will be useful to discuss
the full stability of the EFT of modified gravity on the spherically symmetric
and static background. Third, the construction of theoretically consistent
dark energy models in the framework of the GLPV theory will be also in-
triguing. We leave these issues for future works.
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Chapter 4

Sumarry

In this thesis we have investigated the EFT approach to modified gravity on
cosmological and spherically symmetric backgrounds. The EFT of modified
gravity is a powerful framework to deal with the low-energy degree of freedom
of dark energy in a systematic and unified way.

In order to study the cosmological dynamics of modified gravity we need
to take into account matter fields, e.g. non-relativistic matter and radiation
in addition to the scalar field φ associated with the modification of gravity.
In Chapter 2 we studied the EFT of modified gravity on the cosmological
background in the presence of multiple scalar fields χI (I = 1, 2 · · · , N − 1)
[34]. These additional scalar fields χI can model non-relativistic matter and
radiation. Expanding the general action up to second order in the perturba-
tions of geometric scalars and multiple matter fields, we derived propagation
speeds of scalar and tensor perturbations as well as no-ghost conditions. Ap-
plying our general results to Horndeski and GLPV theories, we obtained an
algebraic equation for the propagation speeds of multiple scalar fields and
showed that the theories beyond Horndeski induce non-trivial modifications
to all the propagation speeds of N scalar fields. This modification to the dark
energy field φ can be large compared to that for the matter fields χI . Then
we applied our general results to the two different theories, the covariantized
Galileon (a class of GLPV theories) and the covariant Galileon (a class of
Horndeski theories), in the presence of non-relativistic matter and radiation.
Though these two theories give completely same equations of motion at the
level of background, the differences show up at the perturbation level. We
estimated the scalar propagation speeds squared in the several epochs of cos-
mological history in these two theories. For the covariantized Galileon we
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found that the propagation speed squared c2s1 of the field φ becomes negative
in the deep matter era for late-time tracking solutions, while for the covariant
Galileon it remains positive. We also showed that the matter sound speeds
squared of the fields χI for the covariantized Galileon are similar to those for
the covariant Galileon.

The modification of gravity realize the late-time cosmic acceleration at
large distances, whereas that should be suppressed at short distances since
the Solar System agree with general relativity in high precision. In order to
understand the latter mechanism and confront several models with the So-
lar System constraint, one need to study modified gravity on the spherically
symmetric background. The EFT of modified gravity on the spherically
symmetric background [40] which we investigated in Chapter 3 provide a
powerful framework to study the above issue in a unified way. Compared
to the case of the cosmological background, there is particular spatial direc-
tion singled out by the ADM decomposition besides the temporal direction.
Thus we employed the 2+1+1 decomposition to single out both radial and
temporal directions from the four-dimensional space-time. Taking the radial
unitary gauge, in which the scalar field φ associated with the modification
of gravity reduces to a function of radius, a contribution of the scalar field
is embedded on the constant radius hypersurfaces. Then we constructed the
general EFT action of modified gravity in terms of the 2+1+1 ADM geo-
metrical variables. As in the case of the EFT of modified gravity on the
cosmological background, we showed that our general action accommodates
theories beyond Horndeski. Expanding the action up to linear order for the
perturbations we derived the background equations of motion which can be
used for discussing the screening mechanism of the fifth force mediated by
the scalar degree of freedom. We also expanded the action up to second order
for the odd-parity perturbations and derived linear perturbation equations of
motion as well as the stability conditions. We applied our general results to
both Horndeski and GLPV theories and specialized them for the two distinct
theories, covariantized Galileon and the covariant Galileon.

Our general EFT formalism can be applied to a vast range of dark energy
models based on modified gravity. We expect that our general results will be
useful for the constructions of viable dark energy models that are consistent
with several observations and experiments both at large and short distances.
We hope that we will be able to approach the origins of dark energy.
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The autonomous equations in
two Galileon theories

In both Models (A) and (B) described by the functions (2.108) and (2.109),
the variables r1, r2, and Ωr obey the following equations of motion

r′1 =
1

Δ
(r1 − 1) r1 [r1 (r1(−3α + 4β − 2) + 6α− 5β)− 5β]

× [
2 (Ωr + 9) + 3r2

(
r31(−3α + 4β − 2)

+ 2r21(9α− 9β + 2)− 15r1α + 14β
)]
, (A.1)

r′2 = − 1

Δ
[r2(6r

2
1(r2(45α

2 − 4(9α + 2)β + 36β2)− (Ωr − 7)(9α− 9β + 2))

+ r31(−2(Ωr + 33)(3α− 4β + 2)

− 3r2(−2(201α + 89)β + 15α(9α + 2) + 356β2))

− 3r1α(−28Ωr + 123r2β + 36) + 10β(−11Ωr + 21r2β − 3)

+ 3r41r2(9α
2 − 30α(4β + 1) + 2(2− 9β)2) + 3r61r2(3α− 4β + 2)2

+ 3r51r2(9α− 9β + 2)(3α− 4β + 2))], (A.2)

Ω′
r =

2

Δ
Ωr[r

2
1(4(Ωr − 1)(9α− 9β + 2) + 6r2(−15α2 + 36αβ + 4(2− 9β)β))

− 2r31((Ωr − 1)(3α− 4β + 2) + 9r2(18(α + 1)β + α(9α + 2)− 36β2))

+ 12r1α(−3Ωr + 22r2β + 3)− 10β(−4Ωr + 21r2β + 4)

+ r41r2(549α
2 + α(330− 840β) + 2(2− 9β)2) + 3r61r2(3α− 4β + 2)2

− 12r51r2(9α− 9β + 2)(3α− 4β + 2)],

(A.3)
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where

Δ ≡ 2r41r2[72α
2 + 30α(1− 5β) + (2− 9β)2]

+4r21[9r2(5α
2 + 9αβ + (2− 9β)β) + 2(9α− 9β + 2)]

+4r31[−3r2
(−2(15α + 1)β + 3α(9α + 2) + 4β2

) − 3α + 4β − 2]

−24r1α(16r2β + 3) + 10β(21r2β + 8). (A.4)
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Equations of motion in the
Horndeski and GLPV theories
on the spherically symmetric
and static background

In this Appendix we present the background equations of motion for the
spherically symmetric and static GLPV theory (including the Horndeski the-
ory). Substituting the Lagrangians (3.83)-(3.85) into Eqs. (3.65)-(3.67), it
follows that

A2 − φ′A3φ + X̄ ′A3X

M̄
+

2A4

M̄2r

(
1

r
− 2M̄ ′

M̄

)
+

4
(
φ′A4φ + X̄ ′A4X

)
M̄2r

+
2B4

r2
= 0 , (B.1)

A2 − 2X̄A2X − 2X̄A3X

M̄

(
2

r
+
N̄ ′

N̄

)
+

2
(
A4 + 2X̄A4X

)
M̄2r

(
1

r
+

2N̄ ′

N̄

)
+
2
(
B4 − 2X̄B4X

)
r2

= 0 , (B.2)

A2 − φ′A3φ + X̄ ′A3X

M̄
− 2A4

M̄2

[
N̄ ′′

N̄
+
M̄ ′

M̄r
− N̄ ′

N̄

(
1

r
− M̄ ′

M̄

)]
+
2
(
φ′A4φ + X̄ ′A4X

)
M̄2

(
1

r
+
N̄ ′

N̄

)
= 0 , (B.3)
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where X̄ represents the background value of the kinetic term X, i.e., X̄ =
φ′2/M̄2. The last terms on the lhs of Eqs. (B.1)-(B.2), which include B4

and its derivative with respect to X, originate from the non-vanishing two-
dimensional scalar curvatureR on the spherically symmetric and static back-
ground. In the Horndeski theory B4 is entirely determined by A4 and X,
while in the GLPV theory it is not. Hence the equations of motion for the
GLPV theory generally differ form those for the Horndeski theory1.

Under the condition (3.81) and by redefining the functions A2, A3 and
B4 in terms of the new functions G2, F3 and G4 as follows

A2 = G2 − F3φX , A3 = 2X3/2F3X + 2
√
XG4φ , B4 = G4 , (B.4)

the sum of the Lagrangians LGLPV
2,3,4 manifestly reduces to that of LH

2,3,4. Ap-
plying the same condition and redefinitions to the equations of motion (B.1)-
(B.3), we obtain those for the Horndeski theory. In order to compare them
with the equations of motion derived in Ref. [61] by a method entirely intrin-
sic to the Horndeski theory, we further need the conversion in the notations
(N̄ , M̄ , X, G3)→(eΨ(r), eΦ(r), −2X, −G3), after which a full agreement is
reached.

1On the flat isotropic cosmological background the scalar curvature of the constant time
hypersurfaces identically vanishes. We verified that no B4 terms appear in the background
equations of motion of the GLPV theory, which then coincide with those of the Horndeski
theory at the background level.
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