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Abstract

We investigate the effect of two kinds of boundary conditions on the motion of an interface in

Hele-Shaw cell, which is known as Hele-Shaw problem. The validity of Young–Laplace equation

that was traditionally employed as a boundary condition for this problem, has been discussed,

because the discrepancies in the motion of interface between theories and experiments exist.

Then some corrections to the Young–Laplace equation have been introduced in order to obtain

the more appropriate boundary condition. In the Thesis, we perform the weakly nonlinear

analysis for Hele-Shaw problem using two kinds of boundary conditions.

First, we investigate the boundary conditions including the effect of viscous normal stress

(VNS). Mode coupling equation is derived and weakly nonlinear analysis is carried out. The

analytical results indicate that the effect of VNS enhances the instability of the interface.

The approximated numerical solutions for the mode coupling equation are obtained from the

analytical formulae. These results show that the nonlinear features of perturbed interfaces

appeared more clearly than those in the previous studies. We thus conclude that the boundary

condition with VNS clearly enhances the instability of the interface, and plays an important

role for the nonlinear behaviours of the interface.

Second, we investigate the boundary condition including the effect of wetting layer of the

displaced fluid in the Hele-Shaw cell. The mode coupling equation is derived for the boundary

conditions in similar to the case of VNS. Then the weakly nonlinear analysis is carried out

based on the boundary condition including the wetting effect. Considering the analytical and

numerical results, we find that this boundary condition facilitates the instability more largely

than the boundary condition with VNS effect. Nonlinear features of the unstable interface

appear more clearly than those in the previous results by the Young–Laplace equation.

Thus we find that the corrections to the Young–Laplace equation enhance the instability

of the interface in Hele-Shaw cell. Our results in the Thesis demonstrate the important role of

the boundary conditions for the viscous fingering patterns.
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Chapter 1

Introduction

1.1 Pattern Formation in Nature

Nature is full of patterns: shape of a snow crystal, wind ripples on deserts, stripes of zebras

and so on. We can see such patterns all over the world and have a question about mechanisms

of their formation.

For example, historically, J. Kepler, who is famous for his laws about the progression of the

planets, was interested in the reason why all snow crystals have hexagonal shapes in the early

17th century [1]. More recently, U. Nakaya studied their processes of growth systematically. He

is well known as the first person to succeed in making artificial snow crystals. He revealed that

shapes of snow crystals are determined by the condition of parameters of vapor, supersaturation,

and temperature [2]. This was expressed as the Nakaya diagram (see, for instance, [3]). He is

also famous for his words, ‘snow is a letter from the sky’.

Such investigations about the patterns in nature are not only for the snow crystals. For

instance, in the beginning of twentieth century, D. Thompson studied the form of animals,

such as morphologies of fishes, from the mathematical point of view [4]. I. Prigogine and co-

workers proposed that patterns or structures are organized in open systems far from equilibrium,

known as dissipative systems [5]. A. Turing revealed that spatially inhomogeneous patterns are

spontaneously formed under certain conditions for the diffusion coefficients of reaction-diffusion

equations [6]. These researches are innovative and still investigated in a wide variety of fields

of science. In fact, Belousov-Zhabotinsky reaction is one of the most well-known examples,

whose spiral patterns are formed in a two-component chemical reaction-diffusion system [7, 8].
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Figure 1.1: Skin patterns of a fish, due to

Kondo and Asai [9]

Formations of skin patterns of animals such as spots

of panthers or stripes of zebras are widely studied as

examples of patters due to Turing instability in the

field of statistical physics, mathematics and com-

puter science as well as biology. In 1995, Kondo

and Asai suggested that skin patterns of a marine

angelfish, Pomacanthus (Fig. 1.1), is determined by

Turing instability [9].

Another example is the morphologies of bacte-

ria colonies. It is well known that bacteria, Bacillus

subtilis, form different types of their colonies from

circular to fractal patterns like the ones by diffu-

sion limited aggregation (DLA). These patterns are determined by their surroundings; the

concentration of nutriment and the hardness of medium [10].

Among the investigations about the pattern formation, T. Terada was one of the first

researchers who focus on the patterns in our daily life. He is famous as a researcher to study from

geophysics to statistical physics, and also known as an essayist. In his essay [11] he remarked

about the morphology of kompeito, formation of a crack of dry paste, and relationship between

sparks of the sparkling fireworks and lightning. His simple and unique viewpoints about these

phenomena give a wide variety of research topics even now.

Here, the meaning of the term ‘pattern’ should be clear. According to the Oxford Dic-

tionary of English, ‘pattern’ means ‘a regular and intelligible form or sequence discernible in

the way in which something happens or is done’. This indicates that patterns exist where we

recognize them; when we look at a shape of an interface or some repetitive structures in a

system, we frequently guess there are some mechanisms beneath them, and eager to under-

stand them. In general, it is known that pattern formations are caused by some instabilities.

As mentioned above, Turing instability leads to the wavy patterns represented as Belousov-

Zhabotinsky reaction. Rayleigh–Taylor instability, due to a difference between the densities of

fluids, causes mushroom-like patterns. It is also well known that Kelvin–Helmholtz instability,

due to a difference between the tangential velocities of fluids, causes triangle-wave patterns,

which sometimes can be seen as forms of clouds . From these examples it can be mentioned in

common that if the interfaces once become unstable, and perturbations develop rapidly, and

finally some patterns are formed. Among these instabilities and patterns, one of the simplest

and widely studied example is the Saffman–Taylor instability and viscous fingering phenomena
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[12].

1.2 Hele-Shaw Problem

1.2.1 Viscous Fingering in the Rectangular Geometry

Saffman–Taylor instability, named after P. G. Saffman and G. I. Taylor, occurs due to a dif-

ference in viscosity between the fluids. They revealed that if the fluid with smaller viscosity

displaces the one with larger viscosity then the interface becomes unstable and the growth of

a lot of finger-like patterns appear as shown in Fig. 1.2. This phenomena is well known as

‘viscous fingering’.

Experimental and theoretical studies on viscous fingering are classified into two groups: the

rectangular geometries [12]-[17] explained below, and the radial ones [18]-[22] to be introduced

in the next subsection.

Figure 1.2: Fingering in a rectangular Hele-

Shaw cell by Tabeling et al. [17]

In fact, Taylor [23] and Lewis [24] already

showed the similar instability of an interface

between two fluids with different densities.

They pointed out that the interface becomes

unstable if the less dense fluid displaces the

more dense one, and fingering patterns are

formed. After a while, Saffman and Taylor

showed that such fingering phenomena occur

due to the differences in viscosities of the flu-

ids in a Hele-Shaw cell [12]. Here Hele-Shaw

cell is an experimental instrument which con-

sists of two parallel plates with a narrow gap

so that one can observe two-dimensional hy-

drodynamical phenomena. It is named after H. S. Hele-Shaw, who was an engineer in the end of

19th century. He was interested in a method to visualize stream lines and invented a Hele-Shaw

cell in 1897 after some trials and errors [25]. The Hele-Shaw cell is illustrated later in Fig. 2.2.

Hele-Shaw carried out experimental studies by using the Hele-Shaw cell and reported that the

flow is laminar at all velocities if the gap of the cell is sufficiently narrow [25]. Hele-Shaw cell

has been used in a wide variety of fields of science such as hydrodynamics, soft matter physics,

3



(a) A flat interface in Hele-Shaw cell (b) Beginning of growth of a finger

(c) Tip-spreading of the finger (d) Tip-splitting of the finger

Figure 1.3: The process of the fingering phenomena

and granular materials physics.

In the original experiment due to Saffman and Taylor [12], air is injected from one end of the

rectilinear Hele-Shaw cell filled with glycerine, The air displaces the glycerine, and the interface

is driven by the pressure and translating in the cell. This type of studies are referred to as the

rectangular geometry. In this situation, it is known that an interface becomes unstable, and

fingering patterns are formed by the following mechanism (Fig. 1.3). Let us consider a Hele-

Shaw cell filled with viscous fluid. First the less viscous fluid is injected into the Hele-Shaw

cell from the left, then an initially flat interface is driven to the right, as shown in Fig. 1.3(a).

If the interface becomes locally convex, as depicted in Fig. 1.3(b), the pressure gradient at the

tip is larger than the other part of the interface. This means that the convex part tends to be

more convex to become a finger, which is similar to the Gibbs-Thomson effect for the crystal

growth. Once fingers are formed then their tips become blunt and spreading as in Fig. 1.3(c),

and finally the tips split (Fig. 1.3(d)), and the split fingers grow independently. It is known

that tip-spreading and splitting appearing in these processes are features of viscous fingering

phenomena [26]. In addition, Saffman and Taylor revealed that there exists a single stable

finger translating in the cell with a constant velocity [12]. This is called Saffman–Taylor finger,

and its behaviour is qualitatively understood by their analysis via the complex potential in [12].
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1.2.2 Viscous Fingering in the Radial Geometry

So far we described the case that the less viscous fluid is injected from an end of the Hele-Shaw

cell, as shown in Fig. 1.2, whose type is referred to as the rectangular geometry.

Figure 1.4: An example of the radial fingering,

by Paterson [19]

On the other hand, in the case of the radial ge-

ometry, the less viscous fluid is injected from

a point source on the cell plate (Fig. 1.4). As

the less viscous fluid is injected, an initially

circular interface becomes unstable and forms

a radial fingering pattern. Figure 1.4 shows

one of the typical experimental snapshots for

the radial case [19]. Compared with the rect-

angular geometry, in the radial geometry it

is an essential difference that there is no sta-

ble single-finger pattern like a Saffman–Taylor

finger. Investigations in the radial geometry

originally began as a model of injection into

the underground soil [18], known as enhanced

oil recovery in engineering [27, 28]. When we

draw petroleum from underground, it is often

necessary to keep oil pressure high in order to remain the flow from oil fields. For this purpose,

water or some chemical solutions are usually injected into the oil field by using a pipe. This

is the typical enhanced oil recovery method. Since the injection is from the end of the pipe

and the injected fluids are spreading radially, it is more appropriate to consider in the radial

geometry for this case.

In addition to these two groups, there are investigations about intermediate configurations.

Thomé et al. investigated fingering patterns in the sector geometry [21]. In Fig. 1.4 one can

observe some sector-like patterns formed by spreading fingers. It is worthwhile to investigate

this type of geometry as a complement to the rectangular and radial ones.

1.2.3 Hele-Shaw Problem

In the previous subsections, we introduced viscous fingering phenomena in the Hele-Shaw cell.

In this Thesis we focus on the viscous fingering in the case of radial geometry. However, it is to

be noted that investigations about motions of interfaces in Hele-Shaw cells are not limited to
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the fingering phenomena. For instance, the shape of a moving bubble in a horizontally placed

Hele-Shaw cell is also investigated [29]. For the case of the perpendicular cell, this is known

as the rising bubble problem [30, 31]. Another example is the finite source/sink model studied

by P. Ya. Polubarinova-Kochina [32] and L. A. Galin [33]. The interface motion in radial

geometry introduced in the previous subsection corresponds to the case of the source for this

model. In their studies, Kochina [32] and Galin [33] used conformal mappings from the unit

disk onto the fluid region, and independently derived equations about the time evolution of

the interfaces, which is known as the Polubarinova-Galin equation [34]. The finite source/sink

model is a simplified model of the oil industry [32], [33] and the moulding of molten polymer

[35].

Thus, there are a variety of problems related with the motions of interfaces in Hele-Shaw

cells. In general, such problems, concerned with an interface motion in the Hele-Shaw cell, are

referred to as Hele-Shaw problems. Hele-Shaw problem is often studied as a one-phase free

boundary problem by regarding the less viscous fluid as the inviscid one. On the other hand,

two-phases Hele-Shaw problem is sometimes referred to as Muskat problem. In the Thesis,

we simply refer these two problems as the Hele-Shaw problem, and study only the case of

two-phases.

1.2.4 Radial Fingering Patterns and Related Phenomena

As mentioned above, an interface motion in the Hele-Shaw cell is associated with some appli-

cations such as oil recovery or moulding. In this subsection, we introduce the other examples

which are often related with the radial fingering. First example is the growth of a dendrite

crystal. In general, anisotropy originating from the molecular structure of the crystal plays an

important role on the morphology of the crystal. In the case of viscous fingering, it is known

that if an anisotropy of growth velocity is introduced, then fingering patterns change into the

dendrite shapes. In many cases, such anisotropy is produced by trenches, which are engraved

in the Hele-Shaw cell. Along with the trenches, fingers grow more rapidly and the shape of the

interface is no more circular. Under such a situation, it is observed that side branches are pro-

duced from the finger as in Fig. 1.5. Therefore, Hele-Shaw problem is often studied in relation

to the morphologies of snow crystals [36]-[38]. Actually, it is not only matter of the appearances;

their mechanisms are closely related to each other. As will be seen in Chapter 3, Hele-Shaw

problem results in solving the Laplace equation for the velocity potential under two boundary

conditions. On the other hand, crystal growth obeys the heat diffusion equation, which is
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equivalent to the Laplace equation for the stationary case, under the similar types of boundary

conditions. Thus, viscous fingering is close to the dendrite patterns of the crystal growth.

Figure 1.5: Viscous fingering with

anisotropy, by Chen [38]

Another example is the patterns formed by bacte-

rial colonies mentioned in Introduction, which resembles

closely to the radial fingering patterns [10]. As men-

tioned above, bacteria known as Bacillus subtilis form

their colonies with patterns as shown in Figs. 1.6 and 1.7

[39]. It is interesting to note that these patterns seem

to be quite similar to the viscous fingering patterns in a

Hele-Shaw cell in Fig. 1.4. Moreover, though it is beyond

the scope of the Thesis, this problem was also studied as

the motion of curves in the context of the integrable hier-

archy [40], and was associated with string theory [34, 41],

or quantum Hall regime [42]. Thus, Hele-Shaw problems

are old and new problems to be studied further. In spite of its quite simple formulation, the

Hele-Shaw problem certainly covers a wide variety of phenomena (for more examples, see [43]).

This is the reason why Hele-Shaw problems have been intensively studied both in the theoretical

and the experimental fields of physics.

Figure 1.6: Fractal patterns of bacterial

colonies, by Ohgiwari et al. [39]

Figure 1.7: Circular patterns of bacterial

colonies, by Ohgiwari et al. [39]
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1.2.5 Contents of the Thesis

Motivated by the universal properties of the Hele-Shaw problem mentioned above, we investi-

gate the morphologies of radial fingering patterns in the Hele-Shaw theoretically. The contents

of the Thesis are as follows.

In Chapter 2, we briefly review the fundamental formulations of mathematical fluid dy-

namics. There, we begin with the conservation laws, and derive the basic equations for fluid

dynamics and constitutive equations for incompressible Newtonian fluids. Then Hele-Shaw

equation, which is a governing equation for flows in the Hele-Shaw cell, is derived.

In Chapter 3, a theoretical approach to Hele-Shaw problem is introduced. First, it is

indicated that the Hele-Shaw problem leads to the Laplace equations for velocity potentials

of fluids. Second, the boundary conditions for Laplace equations are introduced, and their

validities are discussed. Finally, we explain the mode coupling equation proposed in the previous

studies. This equation was derived and often used by Miranda and co-author [44].

In Chapter 4, we describe one of our original results. Some problems about boundary condi-

tions that have been studied so far are pointed out and discussed. We employ the new boundary

condition including the effect of viscous normal stress terms, and derive the extended mode

coupling equation. Numerical solutions obtained by integrating the extended mode coupling

equation support the validity of our model.

The other kind of boundary condition is investigated in Chapter 5. We obtain our results

from the present boundary condition, which is derived from the wetting phenomena of Hele-

Shaw cells. Both analytical and numerical results are shown, and the relationship between the

models in Chapters 4 and 5 is discussed.

Finally, conclusion in the Thesis is given in Chapter 6.
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Chapter 2

Governing Equations for Hele-Shaw

Flow

In this chapter, we begin with the fundamental formulation of fluid dynamics, and then proceed

to the derivation of governing equations for flows in a Hele-Shaw cell. First the definition of fluid

and two methods to describe the fluid, Lagrangian and Eulerian descriptions, are introduced.

Then we see that the conservation laws with the convection theorem lead the fundamental

equations of fluid dynamics. Second, the constitutive equations for the incompressible Newto-

nian fluid is considered. Finally, the governing equations for Hele-Shaw flow are derived from

these equations.

2.1 Fundamentals in Fluid Dynamics

First of all, let us give the definition of the fluid; it is used in common as a material which has

flowing behaviour, i.e., deforms easily to external forces, such as liquid and gas. Assume that

a macroscopic feature of a system varies with the scale L, and the mean free path of molecules

consisting of the system is l. If L � l holds, then the system can be regarded as the homoge-

neous material which has a continuously-distributed mass. This is the continuum hypothesis

[45], and material which satisfies this hypothesis is referred to as the continuum. Continuum is

roughly classified into three groups: elastic, plastic, and fluid. Usually, both elastic and plastic

materials are referred to as ‘solid’, which deform ‘a little’ by external forces. On the other

hand, ‘fluid’ deforms ‘largely’ under such an external force, and is distinguished from ‘solid’
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thereby. However, it should be noted that such a classification is rather naive because a lot

of fluids around us also show the elastic or plastic features. For instance, mayonnaise behaves

as a plastic under a small stress; it does not happen, as everybody knows, that mayonnaise

diffuses spontaneously and wet all over the dish. On the contrary, if a large stress is added to

squeeze the tube, then mayonnaise shows fluidity. This is an example of the Bingham plastic,

named after E. C. Bingham who proposed its mathematical formulation [46]. Another example

is a mixture of cornstarch and water, known as a dilatant (or a shear-thickening) material.

A dilatant material behaves as a fluid at a small stress, while behaves like a rigid body with

a large stress [47]. Because of this property, we can walk on the surface of a pool filled with

cornstarch-water mixture without sinking down, as long as we step the surface strongly enough.

These examples tell us that it is not so easy to define if a continuum is simply a ‘fluid’ or a

‘solid’: what we can say seems that the continuum exhibits fluid-like or solid-like behaviour

under some conditions. Compared with the examples above, the water and the air behave more

simply. They deform by infinitesimal external forces: more correctly, their rate of deformations

are proportional to the shear stresses. Such fluids are known as Newtonian fluids, which are

introduced in the following subsection. These relationships between the shear stresses and the

rate of deformations determine the characteristic features of the fluids. For the Newtonian fluid,

the relationship is linear. While for the Bingham plastics or dilatant fluids, the relationships

are nonlinear, which cause their complicated behaviours as shown in the above examples. In

addition, an ideal fluid is defined as an imaginary material which has no resistance to shear

stresses.

2.1.1 Lagrangian and Eulerian Description

In order to describe a motion of a fluid, what we have to know is the velocity vector v =

(v1, v2, v3) of the flow. These three components of v are determined by solving the conservation

laws of mass, momentum, and energy, as shown in the following subsections. In addition

to the velocity vectors, thermodynamical states of the fluid have to be determined by two

thermodynamical variables, typically the pressure P and the density ρ, out of five. Thus we

should deal with these five unknown hydrodynamical quantities: three components of velocity

vector and two thermodynamical variables. Now the flow can be completely determined in

principle since we have five equations for five unknown variables: conservation equations for

mass, energy, and three components of momentum.

There are two well-known methods to describe the velocity vector of the flow: Lagrangian
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and Eulerian descriptions (for instance, [45]). Lagrangian description is to investigate how the

hydrodynamical quantities of a fluid particle are varying with the flow. This method is, in other

words, to observe motions of a marker on the fluid and know about the flow thereby. Here, we

should notice that the term ‘fluid particle’ represents a small fragment of the fluid within the

regime where the continuum hypothesis holds. In a Lagrangian description, the independent

variable of the velocity vector v is time t and each fluid particle is identified by the continuous

label a. One simple example of a is the position vector at t = 0. Then the velocity can be

represented as .

v = (v1(a, t), v2(a, t), v3(a, t)) .

Lagrangian description is convenient in some special cases, however, usually it is inconvenient

since the spatial variance of the flow is not obtained directly. In many cases, we are more

interested in how the flow is at each point of the field. This is an Eulerian description, that

investigates how the hydrodynamical quantities at any point vary with time. This method is,

that is to say, to observe the physical quantities of the flow on a buoy floating at any point. In

general, Eulerian description is used because each particle of fluid is essentially the same in the

most cases, and therefore it is more convenient to understand the flow by the field rather than

the particles. In Eulerian description, the independent variables are position x of the field and

time t. Then the velocity can be represented as

v = (v1(x, t), v2(x, t), v3(x, t)) .

Following is the important transformation between the Lagrangian and the Eulerian de-

scriptions:

D

Dt
=

∂

∂t
+ v · ∇, (2.1.1)

which is known as the material (or substantial) time derivative.

Here, in order to define the motions of fluid mathematically, we consider a domain consisted

of the same fluid particles. Let Ω0 and Ωt be domains in E3 at t = 0 and t, respectively. It is

assumed that fluid particles which is included in an initial domain Ω0 is translating and remains

to be included Ωt at time t. Then ‘fluid motion’ is equivalent to hold

Ωt = Ht Ω0. (2.1.2)

Here Ht is a smooth transformation on the closure Ω0. The schematic picture of this relationship

(2.1.2) is as depicted in Fig. 2.1. By using the transformation Ht, the motion of free surface F
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Figure 2.1: The motion of fluid

is also expressed as

F (t) = Ht F (0). (2.1.3)

Here F (0) and F (t) denote the surface at t = 0 and t, respectively [48].

2.1.2 Convection Theorem

One of the most fundamental theorems in fluid dynamics is the following one [48]:

Convection Theorem

If Ωt is a fluid domain, and if f(x, t) ∈ C1(Ωt), then

d

dt

∫
Ωt

f dV =

∫
Ωt

(
Df

Dt
+ f ∇ · v

)
dV , (2.1.4)

where dV denotes the volume element.

From this theorem, the following corollary implies.

Corollary 2.1.1

With Ωt and f as in the convection theorem, let Ω1 be the fixed domain in E3 which

coincides with Ωt at t = t1 and has a regular surface ∂Ω1. Then at an arbitrary time t1

d

dt

∫
Ωt

f dV

∣∣∣∣
t=t1

=
∂

∂t

∫
Ω1

f dV +

∫
∂Ω1

f v · n dS, (2.1.5)

where n is the unit outward normal, and dS the surface element on ∂Ω1.
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A proof is given in Appendix. By using Eqs. (2.1.4) and (2.1.5) to the conservation equations

introduced in the following subsections, fundamental equations will be derived such as the

continuity equation and the equation of motion.

2.1.3 Mass Conservation

This postulate represents that mass of fluid initially included in a domain is conserved, neither

increasing nor decreasing spontaneously. Let ρ(x, t) be defined on the closure of any fluid

domain Ωt = HtΩ0 so that for all t∫
Ωt

ρ dV = m(Ω0) > 0, (2.1.6)

where m denotes the mass of the fluid which is determined by the initial domain Ω0, and ρ

represents its density. From Eqs. (2.1.4) and (2.1.6), it follows

d

dt

∫
Ωt

ρ dV =

∫
Ωt

(
Dρ

Dt
+ ρ∇ · v

)
dV

= 0. (2.1.7)

Similarly, Eq. (2.1.5) to Eq. (2.1.6) yields

d

dt

∫
Ωt

ρ dV

∣∣∣∣
t=t1

=
∂

∂t

∫
Ω1

ρ dV +

∫
∂Ω1

ρ v · n dS

=

∫
Ω1

(
∂ρ

∂t
+ ∇ · (ρv)

)
dV

= 0. (2.1.8)

Here we uses the Gauss’ divergence theorem∫
∂Ω1

v · n dS =

∫
∂Ω1

∇ · v dV . (2.1.9)

Eqs. (2.1.7) and (2.1.8) give the following relations.

Dρ

Dt
+ ρ∇ · v = 0, (2.1.10)

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.1.11)

These equations (2.1.10) and (2.1.11) are known as the continuity equation in the Lagrange

and the Eulerian descriptions, respectively. In some cases, ρ can be regarded as an invariant
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with respect to the motion of the fluid, which is

Dρ

Dt
= 0. (2.1.12)

Fluids obeying Eq. (2.1.12) are referred to as incompressible. Thus the continuity equation for

the incompressible fluids can be written simply as

∇ · v = 0. (2.1.13)

It should be noted that a fluid with ρ = const. is incompressible, however, the converse does

not always hold; even though ρ(x, t) varies in Eulerian description, it is referred to as an

incompressible fluid as far as it satisfies Dρ/Dt = 0. A fluid can be considered as incompressible,

if its velocity v is small enough compared to the sound speed.

2.1.4 Momentum Conservation

Conservation laws of the linear and the angular momentum are also the most fundamental and

as important as the conservation law of mass. From the linear momentum theorem, which is

essentially identical to the Newton’s second law, the equation of motion for fluids is derived.

On the other hand, from the angular momentum theorem, the symmetry of stress tensor is

derived. For an arbitrary system with material flow through it, Newton’s second law states

that the rate of change of the linear momentum is equal to the sum of the external forces acting

on a system

d

dt

∫
Ωt

ρ v dV =

∫
Ωt

ρf dV +

∫
∂Ωt

T (n) dS, (2.1.14)

where T (n) = n ·T is the normal stress vector, and n is the unit outward normal to ∂Ωt. Here

T is the stress tensor of the fluid. The left hand side of Eq. (2.1.14) represents the rate of

change of the linear momentum, and the first and second terms in the right hand side express

the body force ρf acting on each volume element of the fluid and the normal stress T (n) acting

on the surface of the fluid, respectively. Due to the Gauss’ divergence theorem, Eq. (2.1.14)

becomes,

d

dt

∫
Ωt

ρ v dV =

∫
Ωt

ρf dV +

∫
∂Ωt

∇ · T dV (2.1.15)
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By using Eqs. (2.1.4) and (2.1.10), the left hand side of Eq. (2.1.15) can be transformed as

d

dt

∫
Ωt

ρ v dV =

∫
Ωt

(
D(ρ v)

Dt
+ ρ v∇ · v

)
dV

=

∫
Ωt

(
Dρ

Dt
v + ρ

Dv

Dt
+ ρ v∇ · v

)
dV

=

∫
Ωt

ρ
Dv

Dt
dV . (2.1.16)

Therefore, Eqs. (2.1.15) and (2.1.16) imply∫
Ωt

ρ
Dv

Dt
dV =

∫
Ωt

ρf dV +

∫
∂Ωt

∇ · T dV (2.1.17)

for any domain Ωt, and then the equation of motion is derived as

ρ
Dv

Dt
= ∇ · T + ρf . (2.1.18)

Equation (2.1.18) is also known as Cauchy’s momentum equation.

Similarly to the linear momentum in the above, we consider a conservation law of the angular

momentum. It is written as

d

dt

∫
Ωt

ρ x × v dV =

∫
Ωt

x × ρf dV +

∫
∂Ωt

x × T (n) dS. (2.1.19)

This conservation equation (2.1.19) leads to the symmetry of the stress tensor

Tij = Tji, (i, j = 1, 2, 3) (2.1.20)

where Tij is (i, j)-component of the stress tensor (for the proof, see [48]).

It should be emphasized that conservation laws for mass (Eq. (2.1.6)), linear momentum

(2.1.14), and angular momentum (Eq. (2.1.19)) hold for all continuum. However, symmetry of

the stress tensor does not always hold; for instance, flow in some polarized media whose field

couples with the body of fluid.

2.1.5 Constitutive Equation for Newtonian Fluids

Conservation laws in the previous subsection are the most fundamental since they hold for any

kinds of fluids. However, these laws do not give us any information about the characteristic

features of fluids such as water, mayonnaise, and cornstarch-water mixture, as mentioned in the

beginning of this section. The differences between the feature of such a fluid are caused by the
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relationship between stress and rate of deformation. Here, we consider the most fundamental

case that the rate of deformation is proportional to the stress, known as the Newton’s law. Such

fluids, for instance water, air, and oil, are referred to as Newtonian fluids. In this subsection,

constitutive equation for Newtonian fluid is derived.

In general, the stress can be related with the hydrostatic pressure for a fluid at rest as

T = −p̄ I, (2.1.21)

where I is an identity tensor, and p̄ = p̄(x, t) is defined by the isotropy of the stress in fluid at

rest as

p̄ =
1

3
trT, (2.1.22)

which is referred to as the hydrostatic pressure of the fluid. Here, it should be noted that the

hydrostatic pressure p̄ is defined from a kinetic point of view, and therefore it is not always

equal to the thermodynamical pressure p [48, 49]. For the case of an ideal fluid, it is known

that p̄ is identical to p, and its constitutive equation is

T = −p I. (2.1.23)

Then, because of the Galilean relativity, it is expected that the equation (2.1.23) also holds

for unidirectionally uniform flow, such that the velocity v of fluid in a domain Ωt is constant.

This equation (2.1.23) can be extended for a general flow, as

T = −p I + τ , (2.1.24)

where τ represents the deviation from a unidirectional flow. As indicated below, τ shall be

referred to as the viscous stress tensor if p̄ is related to the thermodynamical pressure p.

Now we see that the effect of the body forces f can be included into pressure. Since the

linear momentum conservation (2.1.14) for unidirectional flow yields

d

dt

∫
Ωt

ρ v dV =

∫
Ωt

ρ
Dv

Dt
dV

=

∫
Ωt

ρf dV +

∫
∂Ωt

n · T dS

=

∫
Ωt

ρf dV −
∫

∂Ωt

pn dS

= 0 (2.1.25)
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by substituting the constitutive equation (2.1.21) for unidirectional flow, and Dv/Dt = 0 for

the uniform flow. Therefore, because of the Gauss’ divergence theorem,∫
Ωt

ρf dV =

∫
∂Ωt

pn dS

=

∫
Ωt

∇ p dV . (2.1.26)

As a result we can obtain the following hydrostatic law [45, 48]:

ρf = ∇ p. (2.1.27)

This law (2.1.27) determines the hydrostatic pressure for the case of uniform, unidirectional

flow.

For the class of the external force with a potential Φ, f = −∇Φ, if the motion is incom-

pressible or ρ depends only on Φ, then the external force need not be explicitly considered by

defining p̃ in place of p̄

p̃ = p −
∫ x

ρ∇Φ · dx. (2.1.28)

In fact, substituting Eqs. (2.1.24) and (2.1.28) into the momentum conservation (2.1.14), we

have

d

dt

∫
Ωt

ρ v dV =

∫
Ωt

ρf dV +

∫
∂Ωt

n · T dS

=

∫
Ωt

ρf dV +

∫
∂Ωt

(−p I + τ ) · n dS

=

∫
Ωt

ρf dV −
∫

∂Ωt

(
p̃ I +

∫ x

ρ∇Φ · dx + τ

)
· n dS

=

∫
∂Ωt

(−p̃ I + τ ) · n dS. (2.1.29)

Therefore, it is more convenient to use p̃ defined by

p̃ = p −
∫ x

ρ∇Φ · dx

= −1

3
trT −

∫ x

ρ∇Φ · dx (2.1.30)

instead of p, which is referred to as the mean hydrodynamic pressure. Usually, in fluid dynamics,

the word ‘pressure’ indicates the mean hydrodynamic pressure (2.1.30) [48]. Therefore, in this

Thesis ‘pressure’, denoted by p as customary, represents the mean hydrodynamic pressure p̃.
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The general form of the constitutive equation is

T = −p I + τ (e), (2.1.31)

where τ (e) is a tensor function of the rate of strain tensor e, whose component is defined as

eij =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)
. (i, j = 1, 2, 3) (2.1.32)

As mentioned above, the characteristic features of fluids are determined by the functional form

of τ . Especially, if τ is linear with respect to e, known as the Newton’s law, then the fluid

is referred to as the Newtonian fluid. Air, water and oil are examples of the Newtonian fluid.

On the other hand, coal tar, mayonnaise, and polymer solution are categorized as the non-

Newtonian fluid. Thus, the Newtonian fluid is characterized by the explicit representation of

τ

τ = λ(tr e) I + 2μe, (2.1.33)

which is known as the Navier–Poisson’s law [49]. Here, μ and λ denote the shear viscosity and

the second viscosity, respectively.

Next, we see the condition that pressure p̄, introduced from a kinematic point of view, is

equivalent to the thermodynamical pressure p,. Let the components of the deviatoric stress be

τ ′
ij = Tij − 1

3
Tkkδij

= Tij + p̄ δij, (2.1.34)

and the deviatoric rate of strain tensor be

e′ij = eij − 1

3
ekkδij. (2.1.35)

Since Tij is given by Eq. (2.1.31), it follows

τ ′
ij = (p̄ − p)δij + λ ekkδij + 2μeij

= (p̄ − p)δij +

(
λ +

2

3
μ

)
ekkδij + 2μe′ij. (2.1.36)

Because of their definition, diagonal components of τ ′ and e′ are zero, and therefore for the

case that i = j in Eq. (2.1.36)

(p̄ − p) + κ tr e = 0. (2.1.37)
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Here the coefficient κ is defined as

κ = λ +
2

3
μ, (2.1.38)

which is known as the bulk viscosity. Therefore, the relationship between p̄ and p is

p̄ = p − κ tr e. (2.1.39)

As a result, the condition that p̄ is identical to p is either κ = 0 or tr e = 0. The former

condition, κ = 0, is known as the Stokes’ hypothesis which is not always satisfied due to [50].

On the other hand, the latter means the fluid is incompressible since tr e = div v [51]. Hence,

for the incompressible fluids

p̄ = p (2.1.40)

holds. In such a case, τ ′
ij becomes

τ ′
ij = 2μe′ij

= 2μeij − 1

3
ekkδij

= 2μeij. (2.1.41)

Finally, the constitutive equation for an incompressible Newtonian fluid is

T = −p I + 2μe. (2.1.42)

2.1.6 Navier-Stokes Equations

By substituting the constitutive equation (2.1.42) into the equation of motion (2.1.18), the

governing equation for the incompressible Newtonian fluid is derived as follows:

ρ
Dv

Dt
= ρf + ∇ · T

= ρf −∇p + 2μ∇ · e, (2.1.43)

which is known as the Navier-Stokes equations. When we consider the case of no external force,

Eq. (2.1.43) is written as

ρ
Dv

Dt
= −∇p + μ∇2v. (2.1.44)

It should be emphasized that the Navier-Stokes equations (2.1.44) are obtained by using the

constitutive equation (2.1.42), so that they only hold for Newtonian fluids. In this Thesis,

we deal with the incompressible Newtonian fluid, and investigate the motion of an interface

between two Newtonian fluids.
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2.2 Hele-Shaw Equation

2.2.1 Derivation of Hele-Shaw Equation

In this subsection, we derive a governing equation for flows in the Hele-Shaw cell, which is found

in the famous text of hydrodynamics by Lamb [52]. The governing equation, hereafter called

Hele-Shaw equation, can be derived from the incompressible Navier-Stokes equations without

external forces (2.1.44). Take the x1-, x2-, and x3-axis as shown in Fig. 2.2, and let the velocity

of flow be v = (v1, v2, v3) where vi is the xi component of the flow (i = 1, 2, 3). Then the

b

Vx3x

x2

x1

Figure 2.2: The schematic picture of a flow in the Hele-Shaw cell

incompressible Navier-Stokes equations are

∂v

∂t
+ (v · ∇)v =

1

ρ

(−∇p + μ∇2v
)
, (2.2.1)

∇ · v = 0. (2.1.13)

We assume that the flow is steady and parallel to the x1x2-plane:

∂v1

∂t
=

∂v2

∂t
= 0, (2.2.2)

v3 = 0. (2.2.3)

With these assumptions the Navier-Stokes equations (2.2.1), (2.1.13) lead to(
v1

∂

∂x1

+ v2
∂

∂x2

)
v1 = −1

ρ

∂p

∂x1

+
μ

ρ
∇2v1, (2.2.4)

(
v1

∂

∂x1

+ v2
∂

∂x2

)
v2 = −1

ρ

∂p

∂x2

+
μ

ρ
∇2v2, (2.2.5)

0 = −1

ρ

∂p

∂x3

(2.2.6)
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with boundary conditions

v1|x3=0 = v1|x3=b = 0,

v2|x3=0 = v2|x3=b = 0,

where b is the gap between the two plates of the Hele-Shaw cell. Now we consider the case

when b is sufficiently small and the flow is slow. Then, it is reasonable to neglect the derivatives

with respect to x1 and x2 compared to those with respect to x3;

∂vi

∂xj

= 0,
∂2vi

∂xj
2

= 0, (i, j = 1, 2).

Hence equations (2.2.4) - (2.2.6) are rewritten as

∂p

∂x1

= μ
∂2v1

∂x3
2
,

∂p

∂x2

= μ
∂2v2

∂x3
2
,

0 =
∂p

∂x3

Integrating the first two equations twice with boundary conditions above, we get

v1 = − 1

2μ
x3(b − x3)

∂p

∂x1

,

v2 = − 1

2μ
x3(b − x3)

∂p

∂x2

.

The cross section of flows in the Hele-Shaw cell is parabolic which is known as the Poiseuille

flow as shown in Fig.2.3. It is easy to get the mean value of flow over x3

ṽ1 ≡ 1

b

∫ b

0

v1dx3 = − b2

12μ

∂p

∂x1

,

ṽ2 ≡ 1

b

∫ b

0

v2dx3 = − b2

12μ

∂p

∂x2

,

where ṽi is the integral mean of vi (i = 1, 2). Thus we obtain the governing equation for flows

in the Hele-Shaw cell,

ṽ = − b2

12μ
∇p. (2.2.7)

Note that ṽ, the integral mean of v, is the velocity vector for two-dimensional flow. Hereafter,

we identify ṽ with v. Equation (2.2.7) is often referred to as the Hele-Shaw equation.
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x2

x3

Figure 2.3: The cross section of a flow in the Hele-Shaw cell

2.2.2 Darcy’s Law

The equation (2.2.7) reminds us of the Darcy’s law, which is concerned with an averaged flow

through a porous medium [45];

v̄ = −k

μ
∇p, (2.2.8)

where v̄ is a flux, which is defined as a fluid through a unit area at a unit time, k is the perme-

ability of the medium, and μ is the viscosity of the fluid. This law was found experimentally

in 1855 by Darcy, who was a French scientist and engineer [53]. In the two-dimensional case

Darcy’s law is the same form as the Hele-Shaw equation (2.2.7) with k = b2/12, so that Eq.

(2.2.7) is also referred to as the Darcy’s law. Certainly, this law (2.2.8) resembles closely to

the Hele-Shaw equation (2.2.7), however their origins are slightly different. As shown in the

previous subsection, Hele-Shaw equation (2.2.7) is derived by averaging the flow with respect to

x3-direction. On the other hand, Darcy’s law (2.2.8) represents the linear relationship between

the macroscopically averaged flow and the pressure, which is analogous to the Ohm’s law in the

electrodynamics. In fact, if the porosity of the medium is statistically homogeneous, then the

flow through the medium can be regarded as an ensemble of the microscopic Poiseuille flow,

and hence this law holds. The more rigorous derivation can be found, for instance, in the work

by Neuman [54].

Due to its simple formulation, Darcy’s law is often used especially in the soil engineering in

order to investigate, for instance, the flows of groundwater, and the enhanced oil recovery [55].

However, this law holds only within the linear regime for the averaged flow and the pressure.

If the inertial term in the LHS of the Navier–Stokes equations (2.1.44) is taken into account,
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the relationship between the flow and the pressure becomes

−μ

k
v̄ − ρ

k′ |v̄|2 = ∇p, (2.2.9)

where k′ denotes the inertial permeability. Equation (2.2.9) is known as Forchheimer equation,

and also intensively investigated [56].
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Chapter 3

Analytical Method

3.1 Hele-Shaw Problem and Laplace Equation

Now we consider two-phase Hele-Shaw problem, which is concerned with the motion of an

interface between the fluid i (i = 1, 2). As shown in the previous chapter, flows in a Hele-Shaw

cell obey the following Darcy’s law

vi = − b2

12μi

∇pi (i = 1, 2), (3.1.1)

where subindex i denotes the fluid i (i = 1, 2). This implies ∇ × vi = 0, so that there exists

the velocity potential φi such that

vi = −∇φi (i = 1, 2). (3.1.2)

Here we consider the case that the fluid is incompressible, i.e.,

∇ · vi = 0 (i = 1, 2). (3.1.3)

From Eqs. (3.1.2) and (3.1.3), the Laplace equation for φ is derived,

∇2φi = 0 (i = 1, 2). (3.1.4)

Thus, Hele-Shaw flows can be determined by solving the Laplace equations for φi under appro-

priate boundary conditions.
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3.2 Free Boundary Problem and Boundary Conditions

3.2.1 Kinematic Boundary Condition

In general, an arbitrary surface F in the fluid is represented as F(x, t) = 0. Here we assume

that the fluid particles on a surface at t remain on the same surface at any t1 > t, which means,

DF
Dt

≡ ∂F
∂t

+ vi · ∇F

= 0 (i = 1, 2). (3.2.1)

Then, dividing both side by |∇F| (�= 0) leads to

∂F/∂t

|∇F| + vi · ∇F
|∇F| = 0 (i = 1, 2). (3.2.2)

Since the unit normal vector n to the surface F is defined by ∇F/|∇F|, then the normal

velocity V of the surface F is defined by (−1/|∇F|) (∂F/∂t) and

V = vi · n (i = 1, 2), (3.2.3)

Eq. (3.2.1) or (3.2.3) is known as the kinematic boundary condition. This boundary condition

is expected to hold for quite general cases, and employed in the most of free boundary problems.

3.2.2 Dynamical Boundary Condition

Along with the kinematic boundary condition, a dynamical boundary condition is employed in

order to solve the Laplace equation. As the dynamical boundary condition, an equation about

the pressure discontinuity at the interface is usually used. In general, this condition is derived

for the case of a two-dimensional curved interface F in E3 as follows.

Let us consider an interface F and an infinitesimal area D bounded by a closed contour ∂D

on F , as depicted in Fig. 3.1. Suppose that D′ and ∂D′ are projections of D and ∂D to the

tangential plane of F at some point O, respectively. Moreover, suppose that F is expressed

as x3 = F(x1, x2) around O and surface tension σ is constant on F . Since the force acting on

a side of the contour ∂D is

dF = (−σn) × dx

= − σ√
1 + |∇F|2 (−Fx2dx3 − dx2,Fx1dx3 + dx1,−Fx1dx2 + Fx2dx1) (3.2.4)
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x1

O
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Figure 3.1: Forces acting on a curved interface

where dx = (dx1, dx2, dx3) is the line element on ∂D, and the normal vector n is defined

explicitly by

n =
1√

1 + |∇F|2 (−Fx1 ,−Fx2 , 1), (3.2.5)

whose the direction is toward the center of curvature, as seen in Fig. 3.1. In Eq. (3.2.4),

subindex xi of F denotes the derivative with respect to xi (i = 1, 2, 3).

If a domain D is sufficiently small, then D is well approximated by D′, and hence dx3 ≈ 0.

Thus we have only to consider the x3-component in Eq. (3.2.4). Therefore, the net force F

acting on the area D is parallel to the x3-axis, whose strength is

|F | =

∮
∂D

(−σn) × dx

� −σ

∮
∂D′

(−Fx1dx2 + Fx2dx1)√
1 + |∇F|2

� −σ

∮
∂D′

(Fx2 ,−Fx1)√
1 + |∇F|2 · dx′ (3.2.6)

where dx′ is the line element on ∂D′. By using the Stokes’ theorem, Eq. (3.2.6) can be trans-

formed as

|F | � −σ

∫
D′

∇× (Fx2 ,−Fx1)√
1 + |∇F|2 · dS′. (3.2.7)
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Therefore, in general, the net force for the interface F expressed by F(x, t) = 0 is

|F | � −σ

∫
D

(∇ · n) dS

= −σKδS, (3.2.8)

where K = ∇·n denotes the total curvature, and δS represents the area of D. Equation (3.2.8)

means that a domain on the interface is subjected to the force σK per unit area, caused by the

surface tension. Therefore, for a static interface between the inner fluid (fluid 1) and the outer

fluid (fluid 2), balance of the forces acting on the domain D can be written as

p1δS − σKδS = p2δS (3.2.9)

Thus, for a unit area, Young–Laplace equation can be derived as

p1 − p2 = σK. (3.2.10)

This equation (3.2.10) expresses that surface tension causes the pressure discontinuity, and

the difference is determined by the curvature of the interface. This coincides with what are

experimentally observed.

For the case of the Hele-Shaw problem, the right hand side of Eq. (3.2.10) is rewritten as

p1 − p2 = σ

(
2

b
+ H

)
, (3.2.11)

by considering the cell is thin enough. Here b denotes the thickness of the gap of the Hele-Shaw

cell, and H is the two-dimensional curvature in the plane parallel to the Hele-Shaw cell.

Equation (3.2.11) has been used in common in the most studies for Hele-Shaw problem.

However, it should be emphasized that Young–Laplace equation (3.2.10) is derived from an

assumption that a static interface is in an equilibrium state. Therefore, for a dynamic interface,

or nonequilibrium system, the derivation above does not always hold. In fact the validity of

Young–Laplace equation has been studied [14, 15, 57]. There, the corrections to the Young–

Laplace equation are investigated. The more detailed discussions are seen in Chapters 4 and

5.

3.3 Our Model and the Mode Coupling Equation

3.3.1 Theoretical Model for Hele-Shaw Problem

In this subsection, a theoretical model for radial Hele-Shaw problem is introduced by following

the previous studies due to Paterson [19], and Miranda and Widom [44]. Let the system
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be composed of two immiscible, incompressible viscous fluids in a Hele-Shaw cell. Hereafter

vi = vi(r, θ, t), pi = pi(r, θ, t) and ∇ represent, respectively, the velocity vector, and the pressure

of fluids i = 1 and 2, and the differential operator in the polar coordinates (r, θ).

The schematic configuration of the Hele-Shaw cell and the interface is depicted in Fig. 3.2.

Here b is the thickness of the gap of the Hele-Shaw cell, and μ1 and μ2 denote the dynamic

O

Figure 3.2: The Hele-Shaw cell and interface of fluids

viscosity coefficients of the inner (i = 1) and the outer (i = 2) fluids, respectively. It is known

that the Saffman–Taylor instability occurs only when μ1 < μ2 [12]. Imagine that fluid 1 is

injected with a constant rate Q from the centre O into the cell which was initially filled with

fluid 2. Let the unperturbed interface at t > 0 be a circle of radius R(t) with a centre O and

the initial interface that of R(t = 0) = R0, so that

R(t) =

√
R2

0 +
Q

π
t. (3.3.1)

Then the perturbed interface can be represented as

R = R(t) + ζ(θ, t) (3.3.2)

with the interface perturbation amplitude ζ(θ, t), where θ is the polar angle.

3.3.2 Kinematic Boundary Condition in Our Model

The backgrounds and the model for theoretical studies of the Hele-Shaw problem have been

almost prepared. Now, as a last step of preparations, useful analytical method for Hele-Shaw
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problem is introduced. Miranda and Widom carried out first the weakly nonlinear analysis

in [44]. There, they derived mode coupling equation introduced below, which is a nonlinear

ordinary differential equation for perturbation of an interface. One of the merits of their

analysis is that the time evolution of a perturbed interface is directly calculated based on the

mode coupling equation. This is quite convenient to study the pattern formation for radial

fingering phenomena. Following the argument due to Miranda and Widom, we derive of the

mode coupling equation in this subsection.

As explained in the previous sections, the problem to be solved consists of Laplace equations

∇2φi = 0 (i = 1, 2) and two boundary conditions: the kinematic boundary condition and the

Young–Laplace equation for the interface R.

Due to Miranda and Widom [44], the general solutions of Laplace equations (3.1.4) are given

by the Fourier power series as follows:

φ1 = φ1
0 +

∑
n�=0

φ1n(t)
( r

R

)|n|
einθ, (0 ≤ r ≤ R) (3.3.3)

φ2 = φ2
0 +

∑
n�=0

φ2n(t)

(
R

r

)|n|
einθ, (R ≤ r) (3.3.4)

with

φ0
i = − Q

2π
log

( r

R

)
+ Ci (i = 1, 2), (3.3.5)

where Ci denotes the constant independent of both r and θ. Similarly, the interface perturbation

amplitude ζ(θ, t) is represented in terms of the Fourier power series

ζ(θ, t) =
∞∑

n=−∞
ζn(t)einθ. (3.3.6)

Here it is required that ζ0(t) satisfies the following constraint

ζ0(t) = − 1

R(t)

∑
n�=0

|ζn(t)|2, (3.3.7)

derived from the condition that the area S = πR(t)2 of the fluid 1 is conserved independent of

the perturbation ζ(θ, t).

In order to derive a time evolution equation for perturbation ζn(t), Eqs. (3.3.3)-(3.3.6)

should be substituted into boundary conditions. Since the interface grows radially, it is conve-

nient to carry out all calculations in the two-dimensional polar coordinate system. Then the

kinematic boundary condition (3.2.3) is written as follows:

∂R
∂t

=

[
1

r2

∂R
∂θ

∂φi

∂θ
− ∂φi

∂r

]
r=R

(i = 1, 2). (3.3.8)
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Substituting (3.3.3) and (3.3.4) into (3.3.8), we have up to the second order in ζ for φ1

Q

2πR
+ ζ̇ =

1

R2
ζθ

∑
n�=0

(in)φ1neinθ +
1

R3
ζζθ

∑
n�=0

(in)(|n| − 2)φ1neinθ

+
Q

2πR

(
1 − ζ

R
+

ζ2

R2

)

− 1

R

∑
n�=0

|n|φ1n

(
1 + (|n| − 1)

ζ

R
+

1

2
(|n| − 1)(|n| − 2)

ζ2

R2

)
einθ, (3.3.9)

and for φ2

Q

2πR
+ ζ̇ =

1

R2
ζθ

∑
n�=0

(in)φ2neinθ +
1

R3
ζζθ

∑
n�=0

(in)(−|n| − 2)φ2neinθ

+
Q

2πR

(
1 − ζ

R
+

ζ2

R

)

+
1

R

∑
n�=0

|n|φ2n

(
1 − (|n| + 1)

ζ

R
+

1

2
(|n| + 1)(|n| + 2)

ζ2

R2

)
einθ, (3.3.10)

since Rt = Q/2πR. The dot over t means the time derivative and the subindex of ζθ the

differentiation with respect to θ. Now let us express (3.3.8) in the form μ1φ1 ± μ2φ2 up to the

second order in ζ. Adding (3.3.9) multiplied by μ1 and (3.3.10) multiplied by μ2 and making

use of (3.3.6), we deduce for n �= 0

μ1φ1n + μ2φ2n = − R

|n|(μ1 − μ2)ζ̇n − (μ1 − μ2)
Q

2πR|n|ζn

+(μ1 + μ2)
∑
n′ �=0

sgn(nn′)
(

ζ̇n′ζn−n′ +
Q

2πR2
ζn′ζn−n′

)

−(μ1 − μ2)
∑
n′ �=0

1

|n| ζ̇n′ζn−n′ , (3.3.11)

where sgn(nn′) is the sign function defined by

sgn(nn′) =

⎧⎪⎪⎨
⎪⎪⎩

1 (nn′ > 0),

−1 (nn′ < 0).

30



Similarly, by subtracting (3.3.10) multiplied by μ2 from (3.3.9) multiplied by μ1, it is obtained

μ1φ1n − μ2φ2n = − R

|n|(μ1 + μ2)ζ̇n − (μ1 + μ2)
Q

2πR|n|ζn

+(μ1 − μ2)
∑
n′ �=0

sgn(nn′)
(

ζ̇n′ζn−n′ +
Q

2πR2
ζn′ζn−n′

)

−(μ1 + μ2)
∑
n′ �=0

1

|n| ζ̇n′ζn−n′ . (3.3.12)

3.3.3 Dynamical Boundary Condition in Our Model

Similarly in the previous subsection, Eqs. (3.3.3)-(3.3.6) are substituted into Young–Laplace

equation

p1 − p2 = σ

(
2

b
+ H

)
. (3.2.11)

It is well-known that the curvature H can be explicitly calculated from the unit normal vector

n to the interface R

n = ((n)r, (n)θ) =
1√

r2 + r2
θ

(r,−rθ)

∣∣∣∣∣
r=R

. (3.3.13)

Here and in what follows (·)r and (·)θ are the r- and θ-component of (·), respectively. In

addition, because of Darcy’s law the relationships between pi and φi are

pi =
12μi

b2
φi (i = 1, 2). (3.3.14)

Therefore, by substituting Eqs. (3.3.3)-(3.3.6) with Eqs. (3.3.13) and (3.3.14) into Young–

Laplace equation (3.2.11), and it is obtained as

12

b2

{
(μ1 − μ2)

(
− Q

2π

)(
ξ − 1

2
ξ2

)
+

∑
n�=0

[(μ1φ1n − μ2φ2n) + |n|ξ(μ1φ1n + μ2φ2n)]

}

= σ

[
2

b
+

1

R

{
1 − (ξ + ξθθ) +

(
ξ2 +

1

2
ξ2
θ + 2ξξθθ

)}]
, (3.3.15)

where ξ = ζ/R for convenience.

As indicated before, the validity of Young–Laplace equation has been discussed and in-

vestigated in [14, 15, 20, 57]. There are two contexts of researches to modify Young–Laplace

equation; the one taking the viscous normal stress terms into consideration due to Kim et al.

[57], and the other taking into account the effects of a wetting layer in the Hele-Shaw cell which
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is proposed by Park and Homsy [15]. In fact, Miranda and co-authors also reported analytical

results by employing corrected Young–Laplace equation in their recent studies [58, 59]. How-

ever, for instance in [58], the corrected terms seem to be not enough from the theoretical point

of views. On the other hand, there appears to be corrected to excess in [59]. Putting off further

discussions about these points to the following chapters, in the rest of this chapter we derives

the mode coupling equation based on the basic Young–Laplace equation.

3.3.4 Mode Coupling Equation

Substituting (3.3.11) and (3.3.12) into the left hand side of (3.3.15) and keeping up to the

quadratic terms in ζ, we obtain

ζ̇n =

{
Q

2πR2
(A|n| − 1) − α

R3
|n|(n2 − 1)

}
ζn

+
∑
n′ �=0

|n|
R

{
QA

2πR2

(
1

2
− sgn(nn′)

)
− α

R3

(
1 − n′

2
(3n′ + n)

)}
ζn′ζn−n′

+
∑
n′ �=0

1

R
{A|n| (1 − sgn(nn′)) − 1} ζ̇n′ζn−n′ , (3.3.16)

where parameters are defined as

A =
μ2 − μ1

μ2 + μ1

,

α =
b2σ

12(μ1 + μ2)
.

The principal term of Eq. (3.3.16) is a linear part

ζ̇n =

{
Q

2πR2
(A|n| − 1) − α

R3
|n|(n2 − 1)

}
ζn. (3.3.17)

By substituting Eq. (3.3.17) into the last term in the right hand side of Eq. (3.3.16), then

Eq. (3.3.16) is rewritten as

ζ̇n = λ(n)ζn +
∑
n′ �=0

γ(n, n′)ζn′ζn−n′ , (3.3.18)
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which is equivalent to Eq. (3.3.16) within the second order in ζn, where

λ(n) =
Q

2πR2
(A|n| − 1) − α

R3
|n|(n2 − 1), (3.3.19)

γ(n, n′) =
1

R

[
Q

2πR2

{
A|n|

(
A|n′|(1 − sgn(nn′)) − 1

2

)
− (A|n′| − 1)

}

− α

R3

{
|n|

(
1 − 1

2
nn′ − 3

2
n′2

)
+ (A|n|(1 − sgn(nn′)) − 1) |n′|(n′2 − 1)

}]
.

(3.3.20)

Equation (3.3.18) with Eqs. (3.3.19) and (3.3.20) is also referred to as the mode coupling

equation [44]. In Eq. (3.3.18), λ(n) and γ(n, n′) express the linear growth of perturbation ζn

and the strength of coupling with other modes, respectively. In the following chapters, we

see how the original mode coupling equation (3.3.18) is modified by the correction to Young–

Laplace equation.
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Chapter 4

Weakly Nonlinear Analysis with the

Effect of Viscous Normal Stress

In the previous chapter, it was indicated that the validity of Young–Laplace equation (3.2.11)

has been controversial, for instance, in [14, 15, 20, 57, 58]. In this Chapter we introduce the

improvement of Young–Laplace equation, and derive the new mode coupling equation based on

this improved Young–Laplace equation. Then weakly nonlinear analysis is carried out, and the

numerical results are shown, which are the extension of the previous studies due to Miranda

and co-authors [44, 58].

4.1 Balance of Normal Stress

4.1.1 Validity of Young–Laplace Equation

As mentioned previously, the effort to improve Young–Laplace equation has been still continued.

Young–Laplace equation was employed first in the pioneering work due to Saffman and Taylor

[12] and Chouke et al. [13], and widely used in the almost all later investigations [19, 44].

However, as emphasized before, it seems to be inappropriate as a boundary condition for Hele-

Shaw problem.

One of the reasons is a discrepancy between the theoretical and experimental results about

the widths of the Saffman–Taylor finger in rectangular Hele-Shaw cells. Let the ratio of the

width of the finger to the width of the cell be λ. As mentioned in Chapter 1, Saffman and Tay-
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lor experimentally revealed that λ is selected to be 1/2 for a Saffman–Taylor finger, however,

the value of λ remains undetermined analytically in the case that the surface tension effect is

important [12]. After then McLean and Saffman proceeded the Saffman–Taylor’s analysis in

[14], and obtained the dependence of λ on the surface tension parameter, which qualitatively

agrees with observation. However, their numerical results seemed not to satisfy the quantita-

tive agreement; they indicated that this is caused by employing Young–Laplace equation, and

suggested the modified form of the boundary condition.

Another reason seems to be simpler and more essential; Young–Laplace equation is derived

from the balance of the net force for a static interface, as shown in subsection 3.2.2. There is

no guarantee that this equation also holds for a dynamic interface or a nonequilibrium system,

where the balance of static pressure and surface tension does not always hold. In fact, a

boundary condition for the dynamic interface has been addressed in [45, 60]. They remarked

that the balance of stress should be considered instead of Young–Laplace equation.

4.1.2 Balance of Normal Stress

Let Ti be stress tensors for fluid i. Then, the normal stress balance at the interface between

fluids 1 and 2 is

n · T2 · n − n · T1 · n = σ

(
2

b
+ H

)
. (4.1.1)

For the case of Newtonian fluid, stress tensors have been already derived in subsection 2.1.5 as

Ti = −piI + 2μiei (i = 1, 2) (4.1.2)

with ei being the rate of strain tensor for fluid i whose (j, k)-component (ei)jk is given as

(ei)jk =
1

2

(
∂(vi)j

∂xk

+
∂(vi)k

∂xj

)
(j, k = 1, 2). (4.1.3)

Here the index j of (·)j means the j-component with respect to the two dimensional Cartesian

coordinates (x1, x2), respectively. The curvature H is supposed to be negative for the convex

domain.

Then the normal stress balance (4.1.1) can be written simply as

p1 − p2 + [2μ1n · e1 · n − 2μ2n · e2 · n]r=R = σ

(
2

b
+ H

)
. (4.1.4)

It is clear that Eq. (4.1.4) is the more general boundary condition than Young–Laplace equation

(3.2.11). Actually, if each of fluids moves without deformation, in other words ei = 0 (i = 1, 2),
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then the balance of the normal stress (4.1.4) reduces to Young–Laplace equation (3.2.11).

Therefore, it seems to be reasonable to employ the normal stress balance (4.1.4) for a dynamic

case.

This boundary condition (4.1.4) has not been paid much attention except for the work by

Kim et al. [57]. In [57], the third and fourth terms in the left hand side of Eq. (4.1.4) were

referred to as viscous normal stress. Hereafter, following Kim et al., we also refer to these terms

as viscous normal stress, or shortly, VNS. By employing Eq. (4.1.4), they attained the more

satisfactory results than the previous results in [15, 20]. They also referred to the splitting of

fingers, however, their main topic was not in the context of pattern formation and morphology

of interfaces. Moreover, their work [57] was limited to the linear analysis, which is applicable

only to the earlier stage of fingering phenomena , and did not give us enough answer to the

patten formed by an unstable interface.

Recently, Gadêlha and Miranda [58] carried out weakly nonlinear analysis based on the

normal stress balance (4.1.4). However, their boundary condition is not complete; only a part

of VNS terms is included. Therefore, as a next step, it is quite natural to develop the nonlinear

analysis based on the normal stress balance properly. In the following section, we proceed with

employing Eq. (4.1.4), which contains the VNS terms completely as reported in [61].

4.2 Extended Mode Coupling Equation

In this section, the mode coupling equation taking the effect of VNS terms into account is

considered. The model for radial Hele-Shaw problem was shown in Fig. 3.2.

In the polar coordinates, the components of ei are given as follows:

(ei)rr =
∂(vi)r

∂r
,

(ei)rθ = (ei)θr =
r

2

∂

∂r

(vi)θ

r
+

1

2r

∂(vi)r

∂θ
,

(ei)θθ =
1

r

∂(vi)θ

∂θ
+

(vi)r

r
(i = 1, 2).
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Accordingly, Eq. (4.1.4) becomes

p1 − p2 + 2μ1

[
(n)2

r

∂2φ1

∂r2
+ (n)r(n)θ

(
1

r

∂2φ1

∂r∂θ
− 1

r2

∂φ1

∂θ

)
+ (n)2

θ

(
1

r2

∂2φ1

∂θ2
+

1

r

∂φ1

∂r

)]
r=R

− 2μ2

[
(n)2

r

∂2φ2

∂r2
+ (n)r(n)θ

(
1

r

∂2φ2

∂r∂θ
− 1

r2

∂φ2

∂θ

)
+ (n)2

θ

(
1

r2

∂2φ2

∂θ2
+

1

r

∂φ2

∂r

)]
r=R

= σ

(
2

b
+

r2 + 2r2
θ − rrθθ

(r2 + r2
θ)

3/2

)
r=R

(4.2.1)

with φ1 and φ2 being given by (3.3.3) and (3.3.4), respectively. Here we emphasize that the

condition (4.2.1) includes the complete VNS effect, in comparison with the one in [58].

The following process is similar to the case of the original mode coupling equation. Since

pi are related with φi by Eq. (3.3.14), we obtain by substituting Eqs. (3.3.12) and (3.3.11) into

Eq. (4.2.1),

{1 + 2ε|n|(A + |n|)} ζ̇n =

{
Q

2πR2
(A|n| − 1) − α

R3
|n|(n2 − 1) + ε

Q

πR2
(A|n| − n2)

}
ζn

+
∑
n′ �=0

|n|
R

{
QA

2πR2

(
1

2
− sgn(nn′)

)
− α

R3

(
1 − n′

2
(3n′ + n)

)

−ε
Q

πR2

(
A(3nn′ − 4n′2 + 1) + |n|(A|n| + 1)sgn(nn′) − n′

|n′|(4n
′ − n)

)}
ζn′ζn−n′

+
∑
n′ �=0

1

R

{
A|n| (1 − sgn(nn′)) − 1 − 2ε|n| {|n|(A|n| + 1)sgn(nn′)

+(A + |n|) − n′

|n′|(4n
′ − n) + A|n′|(2n′2 − nn′ + 2)

}
ζ̇n′ζn−n′ .

Parameter ε introduced here represents the effect of VNS defined by

ε = ε(t) =
b2

12

1

R(t)2
. (4.2.2)

In addition let the Hele-Shaw cell be so thin (i.e., ε 
 1) that we can use an approximation

{1 − 2ε|n|(A + |n|)}−1 � 1 + 2ε|n|(A + |n|).

Then, keeping the first order term in ε, we finally obtain the time evolution equation for the

perturbation amplitude ζn(t):

∂ζn

∂t
≡ ζ̇n = Λ(n)ζn +

∑
n′ �=0

Γ(n, n′)ζn′ζn−n′ , (4.2.3)
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where

Λ(n) =
Q

2πR2
(A|n| − 1) − α

R3
|n|(n2 − 1)

+εn2 Q

πR2
(A|n| − A2 − 2) + 2ε

α

R3
n2(n2 − 1)(A + |n|), (4.2.4)

Γ(n, n′) =
1

R

[
Q

2πR2

(
A|n|

{
A|n′|(1 − sgn(nn′)) − 1

2

}
− (A|n′| − 1)

)

− α

R3

(
|n|

(
1 − 1

2
nn′ − 3

2
n′2

)
+ {A|n|(1 − sgn(nn′)) − 1} |n′|(n′2 − 1)

)]

+
ε

R

[
− Q

πR2

(
An2|n′|(1 − A2)sgn(nn′) + A|n|

{
−4n′2(n′ + 1) +

1

2
|n|(A + |n| + 4n′) + 1

}

+A|n|(A|n′| − 1)
{
|n|(A + |n|) + |n′|(2n′2 − nn′ + 2)

}

− n′2(A|n′| − A2 + 2) {A|n|(1 − sgn(nn′)) − 1}
)

+2
α

R3

(
n2(A + |n|)

(
1 − 1

2
nn′ − 3

2
n′2

)
+ n2|n′|(n′2 − 1)(1 − A2)sgn(nn′)

+A|n||n′|(n′2 − 1)
{
|n|(A + |n|) + |n′|(2n′2 − nn′ + 2)

}

− |n|n′(n′2 − 1)(4n′ − n) + n′2(n′2 − 1)(A + |n′|) {A|n| (1 − sgn(nn′)) − 1}
)]

. (4.2.5)

Hereafter we refer to the Eq. (4.2.3) with Eqs. (4.2.4) and (4.2.5) as the extended mode

coupling equation. As will be seen in the next section, Λ(n) and Γ(n, n′) represent the linear

growth rate and the coupling coefficient of the n-th mode perturbation amplitude, respectively.

Note that both Λ(n) and Γ(n, n′) are the extended formulae of those derived by Miranda and

co-authors [44, 58] and Kim et al. [57] in the following sense. When ε = 0, (4.2.4) and (4.2.5)

are the same as those in [44, 58], while for the nonzero ε the effect of VNS is taken into

consideration. Since ε is defined as Eq. (4.2.2), the terms with ε in Eqs. (4.2.4) and (4.2.5)

represent the 3-dimensional variation of the interface, which was not taken into account in the

previous studies [44, 58]. In comparison with those of Kim et al. theirs contain only one-Fourier

mode, so that their result is only for the linear evolution, that is Γ(n, n′) = 0. Thus we see

that the extended mode coupling equation (4.2.3) is certainly a generalized one compared with

those in the previous studies [44, 57, 58].
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4.3 Analysis of the Results

In this section we analyze how these results with nonzero ε affect the behaviours of the interfaces.

In the previous section we derived equation (4.2.3) for ζn, when the interface in problem was

represented by the sum of the non-perturbed radius and the perturbation

R = R(t) + ζ(θ, t), (3.3.2)

ζ(θ, t) =
∞∑

n=−∞
ζn(t)einθ. (3.3.6)

Now we are at the stage to study the time evolution of the interface. First we consider the linear

evolution, that is, (4.2.3) without Γ(n, n′). In this case the interface is merely a superposition

of the n-th mode perturbation. Second we study (4.2.3) itself with nonlinear term. In this

case, the behaviour of the interface becomes more complex because of the mode coupling of

the nonlinear term in (4.2.3). We discuss the difference between the linear and the nonlinear

evolutions, especially including the effect of the viscous normal stresses.

4.3.1 Linear Approximated Perturbation

The time evolution equation that we discuss in this subsection is as follows.

ζ̇n = Λ(n)ζn (4.3.1)

with Λ(n) being defined by (4.2.4). It is easy to see that the solution of (4.3.1) is given by

ζn(t) = ζn(0) exp

(∫ t

0

Λ(n) dt′
)

.

Obviously if Λ(n) < 0, then ζn(t) decays with t and the interface remains stable; while, if

Λ(n) > 0 the perturbation grows exponentially, which means the interface instability. By noting

that Λ is dependent on R(t), the instability condition is given by the relationship R(t) > Rc(n),

where the critical radius Rc(n) is derived from the equation Λ(n) = 0,

Rc(n) =
2πα

Q

|n|(n2 − 1){1 − 2ε|n|(A + |n|)}
A|n| − 1 + 2εn2(A|n| − A2 − 2)

.

It should be noted that the existence of Rc(n) is guaranteed by the implicit function theorem.

Hence up to the first order in ε, Rc(n) is equal to

Rc(n) =
2πα

Q

|n|(n2 − 1)

A|n| − 1

(
1 − 2ε|n|2An2 − 3|n| − A

A|n| − 1

)
. (4.3.2)
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In the pioneering work by Paterson [19], fluids 1 and 2 are air and glycerine, respectively, whose

viscosities are μ1 = 1.8 × 10−5 g/(cm · s) and μ2 = 5.21 g/(cm · s), so that one can regard the

Atwood number A = (μ2 − μ1)/(μ2 + μ1) as A = 1.

Hereafter we proceed with our discussion under this assumption A = 1. Then (4.3.2)

becomes

Rc(n) =
2πα

Q
|n|(|n| + 1)

{
1 − 2ε|n|2n

2 − 3|n| − 1

|n| − 1

}
. (4.3.3)

Following the argument in [44], we consider the following approximation of the solution of

equation (4.3.1):

ζ lin
n (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζn(0) (R(t) < Rc(n)),

ζn(0)

(
R

Rc

)|n|−1+εf(n)

exp

[
(|n| − 1 + εf(n))

(
Rc

R
− 1

)]

(R(t) > Rc(n)),

(4.3.4)

where f(n) = 2n2(|n|−3) represents the 3-dimensional effect due to the viscous normal stresses.

In this aspect our result seems to be the natural extension of equation (28) in [44].

4.3.2 Weakly Nonlinear Evolution

In this subsection, based on the approximated solution (4.3.4) we consider the extended mode

coupling equation (4.2.3). Again following Miranda and Widom [44], we consider equation

(4.2.3) with the quadratic terms ζn′(t)ζn−n′(t) replaced by ζ lin
n′ (t)ζ lin

n−n′(t), that is

ζ̇n = Λ(n)ζn + Ξ(n, t), (4.3.5)

Ξ(n, t) =
∑
n′ �=0

Γ(n, n′)ζ lin
n′ (t)ζ lin

n−n′(t). (4.3.6)

Here Λ(n) and Γ(n, n′) are defined by (4.2.4) and (4.2.5), respectively. Due to Miranda and

Widom [44], (4.3.5) can be approximately solved as

ζn(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζn(0) (R(t) < Rc(n)),

ζ lin
n (t)

{
1 +

∫ t

tc(n)

Ξ(n, t′)
ζ lin
n (t′)

dt′
}

(R(t) > Rc(n)),

(4.3.7)
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which corresponds to (32) in [44]. In (4.3.7) above tc(n) is defined as R(tc(n)) = Rc(n).

From the form of the linear approximated solution (4.3.4), it is obvious that ζ lin
n = ζ lin

−n in

(4.3.7). Therefore the approximated solution ζ(θ, t) can be written without loss of generality

as

ζ(θ, t) =
∞∑

n=∞
ζn(t)einθ

= ζ0 +
∞∑

n�=0

{(ζn + ζ−n) cos(nθ) + i(ζn − ζ−n) sin(nθ)}

= ζ0 + 2
∞∑

n�=0

ζn cos(nθ),

so that the perturbed interface is approximated by

R = R(t) + ζ0 + 2
∞∑

n�=0

ζn(t) cos(nθ).

Here ζ0 is determined by the constraint (3.3.7).

Figures 4.1 and 4.2 depict the trajectories of R plotted with a variation of t. The parameters

are the same as those used in Paterson’s experiments, i.e., b = 0.15 cm, Q = 9.3 cm3/s, σ =

63 dynes/cm and R0 = 0.05 cm [19]. The initial perturbation is in the n-dependent random

phase with amplitude R0/500, which are the same as in [44]. Here the modes n are chosen as

n = 5, 10, 15. It should be noted that this choice of n is not necessarily sufficient by considering

the real phenomena, in which the other modes naturally exist. However, such a simplification

is useful in order to clarify how the VNS terms affect the fingering patterns, especially the

splitting of the fingers. Figure 4.1 depicts the time evolution of the perturbed interfaces

without VNS effect, which is the same as the previous results based on the Young–Laplace

equation (3.2.11). In Fig. 4.1, the dotted curves represent the interfaces at t = 5, 15 and 25 sec,

while the solid curves represent the ones at t = 10, 20 and 30 sec, from the centre outward,

respectively. One can see that the interface is nearly a circle until t = 10 sec, then it becomes

unstable (t = 15, 20 sec) and some fingers grow (t = 25, 30 sec) in the figure. On the other hand,

Fig. 4.2 shows the evolution of the interface with VNS effect, under the same parameters and

initial conditions as Fig. 4.1. The time interval of each curve is also 5 sec. From these figures,

one can recognize the qualitative difference between the cases with and without VNS; more

fingers appear in Fig. 4.2, and some of them have wider tips than those in Fig. 4.1. Moreover,

some tips of fingers in Fig. 4.1 appear to split into two in Fig. 4.2. This is also shown in Fig. 4.3,

which the interfaces with and without VNS at t = 30 sec are compared. These behaviours of the
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Figure 4.1: Interface growth without VNS from t = 5 to 30 sec. The modes are chosen as

n = 5, 10, 15.
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Figure 4.2: Interface growth with VNS from t = 5 to 30 sec. The modes are chosen as n =

5, 10, 15.
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Figure 4.3: Comparison of the interfaces at t = 30 sec with and without VNS

44



interface seem to coincide with the nonlinear features of the fingering phenomena pointed by

Homsy in [26], which consist of the repetitive processes of fingers’ tip-spreading and splitting.

Figures 4.4 and 4.5 also show the nonlinear evolution without VNS and with VNS, respec-

tively. In these cases, the modes n are chosen as n = 6, 12, 18, which is different from those

of Figs. 4.1 and 4.2. All the parameters and the initial conditions are the same, while the

difference of mode n causes the difference of the number of the fingers. The time intervals of

curves in Figs. 4.4 and 4.5 correspond to those in Figs. 4.1 and 4.2. Similarly to the Figs. 4.1

and 4.2, one can convince again that the interface becomes more unstable and the tip splitting

occurs more often in the case of taking VNS into consideration. This can be seen by comparing

the interfaces with and without VNS at t = 30 sec, as depicted in Fig. 4.6.

As shown in Figs. 4.3 and 4.6, the perturbed interface becomes more unstable and perturba-

tion amplitude has a large value when the VNS effect is taken into consideration. Analytically,

such differences are caused by the strength of the coupling between the main mode n and the

other modes n′, appeared in Γ(n, n′) defined by (4.2.5). Our analysis with VNS corresponds

to the case of nonzero ε in (4.2.5), while the previous analysis neglecting VNS is equivalent to

the case ε = 0. This indicates that the effect of VNS increases the value of the nonlinear term

Ξ(n, t) in the extended mode coupling equation (4.3.5). The larger value of Ξ(n, t) leads to the

larger deviation of ζn(t) from ζ lin
n (t) in (4.3.7) than that without VNS.

Hence we may conclude that VNS definitely affects the nonlinear behaviour of the radially

growing interface, and therefore it should not be neglected.

4.4 Conclusions

In this chapter we focused on the effects of VNS upon a radial growth of the interface in

a Hele-Shaw cell. As mentioned in the previous section, VNS is defined by viscosity and

the velocity gradient, so that it may affect instability of a radially growing, and deforming

interface. Under such a background, we employed the normal stress balance (4.1.1) due to [57]

as one of the boundary conditions, instead of the traditional Young–Laplace equation. Then,

in Section 4.2 we derived the extended mode coupling equation (4.2.3) up to the second order

in the perturbation amplitudes ζn(t), which includes the VNS effects in the complete form. We

emphasize that the extended mode coupling equation (4.2.3) is a generalized one compared with

those in [44, 57, 58]. When we neglect the nonlinear term, the extended mode coupling equation

(4.2.3) and the linear growth rate (4.2.4) are the same as (17) and (18) in [57], respectively.
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Figure 4.4: Interface growth without VNS from t = 5 to 30 sec. The modes are chosen as

n = 6, 12, 18.
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Figure 4.5: Interface growth with VNS from t = 5 to 30 sec. The modes are chosen as n =

6, 12, 18.
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Figure 4.6: Comparison of the interfaces at t = 30 sec with and without VNS.
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Similarly, it can be easily shown that the extended mode coupling equation (4.2.3) is the same

as Eq. (18) in [44] for the case of ε = 0, i.e., neglecting the VNS terms.

Following the analysis in [44, 58], we numerically calculated the time evolution of the weakly

nonlinear interfaces with and without VNS as depicted in Figs. 4.1-4.6. The differences between

the interfaces with and without VNS at the same time are shown in Figs. 4.3 and 4.6. Judging

from these figures, nonlinear features of the viscous fingering such as tip-spreading and splitting

can be seen in the case of considering the effect of VNS. These suggest that VNS certainly affects

the instability on a radially growing interface and it seems to be more appropriate to take VNS

into consideration.

Therefore, we can conclude that VNS significantly affects such nonlinear features on the

radial fingering phenomena. Finally, we emphasize that the VNS effect should be included in

a lot of models which have been considered by Young–Laplace equation.
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Chapter 5

Weakly Nonlinear Analysis with the

Effect of Wetting Layer in Hele-Shaw

Cell

In this chapter we introduce another appropriate boundary condition, which contains the effect

of wetting layer in Hele-Shaw cells. As mentioned in Chapter 4, it has been doubted whether

Young–Laplace equation (3.2.11) is valid or not, especially, when the effect of surface tension is

not negligible. McLean and Saffman pointed out that the discrepancies between theoretical and

experimental results are caused by Young–Laplace equation, and proposed the expected form of

the boundary condition in [14]. Subsequently, Park and Homsy obtained an improved boundary

condition explicitly [15]. As will be explained in the next section, their boundary condition

includes the wetting layer effect of displaced fluid. Employing their boundary condition, we

derive an extended mode coupling equation and carry out weakly nonlinear analysis.

5.1 Boundary Condition including the Effect of Wetting

Layer

By following the work due to McLean and Saffman, Park and Homsy focused on the thin

wetting film of the displaced fluid adherent to a Hele-Shaw cell, as shown in Fig. 5.1. In

[15], they derived the boundary condition by dividing the interface into three regions: the
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clear-original-fluid region (Region I), the capillary-static region (Region II), and the constant-

film-thickness region (Region III), as shown in Fig. 5.1. Then they accomplished an asymptotic

analysis to correct the Young–Laplace equation in terms of the power of the capillary number

Ca.

Wetting layer Fluid 1
Fluid 2

Region IRegion III

Region II

Interface

Figure 5.1: The wetting layer on the cell and three regions

The boundary condition proposed by Park and Homsy [15] is

p1 − p2 = σ

[
2

b
+

π

4
H

]
+

2σJ

b
Ca2/3, (5.1.1)

where J = 3.8, H is the two-dimensional curvature of the plane parallel to the cell, and σ is

the surface-tension coefficient. Moreover, Ca = μ2U/σ is the capillary number with U being

the characteristic velocity determined by Darcy’s law as

U =
b2

12μ2

∇φ2 · n. (5.1.2)

The first and second terms on the right hand side in (5.1.1) is caused by a capillary static

effect. It should be noted that the coefficient π/4 in the second term is different from that in

the Young–Laplace equation

p1 − p2 = σ

(
2

b
+ H

)
. (3.2.11)

In Eq. (5.1.1), the third term comes from the effect of moving meniscus at the interface, which

is negligible if the flow is sufficiently slow.

The applicability of this boundary condition (5.1.1) is verified in accordance with the exper-

imental results for the case of radial geometry, for instance, in [20]. There, it was shown that
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the relationship between capillary number Ca and the most unstable wavelength of the growing

interface; the relationship was improved by employing the boundary condition (5.1.1), com-

pared with those by using the Young–Laplace equation (3.2.11). These results are considered

enough to indicate the validity of the new boundary condition (5.1.1).

Although this boundary condition has been employed in numerous theoretical and experi-

mental works to improve the previous results obtained by applying the Young–Laplace equation

[16, 20, 62], it has never been applied to radial geometry, except in a study by Martyushev and

Birzina [63]. They carried out a linear analysis and clarified the relationship between the radius

of the interface R(t) and that of the cell R∞. However, they did not investigate how the wetting

layer affects the interface patterns.

Accordingly, it should be necessary to carry out a nonlinear analysis based on the boundary

condition (5.1.1) that takes the wetting effect into consideration. Therefore the objectives of

this chapter are as follows: (i) to carry out a weakly nonlinear analysis on the perturbation of

the interface under the boundary condition (5.1.1), and (ii) to visualize the time evolution of

the perturbed interfaces with and without the wetting effect (see also [64]).

It is significant to compare the results obtained by boundary condition including the wetting

effect with those by boundary condition including the VNS effect.

5.2 Derivation of the Mode Coupling Equation

In this section, the mode coupling equation is derived under the boundary condition proposed

by Park and Homsy [15]. The derivation is similar to that shown in Chapter 3, by following

[44]. By substituting the general solution φi (3.3.3) and (3.3.4) and perturbation ζ into the

kinematic boundary condition (3.3.8) and the boundary condition (5.1.1), and then eliminating

φin, the following mode coupling equation can be obtained:

ζ̇n = Λ(n)ζn +
∑
n′ �=0

Γ(n, n′)ζn′ζn−n′ , (5.2.1)
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where

Λ(n) =
Q

2πR2
(A|n| − 1) − π

4

α

R3
|n|(n2 − 1) − ε

J ′α
b5/3σ2/3

(
Q

2πR

)2/3

|n|(A|n| − 1), (5.2.2)

Γ(n, n′) =
1

R

[
Q

2πR2

(
A|n|

{
A|n′|(1 − sgn(nn′)) − 1

2

}
− (A|n′| − 1)

)

−π

4

α

R3

(
|n|

(
1 − 1

2
nn′ − 3

2
n′2

)
+ {A|n|(1 − sgn(nn′)) − 1} |n′|(n′2 − 1)

)]

−ε
|n|
R

J ′α
(bσ)2/3

(
Q

2πR

)2/3[
A|n||n′|(sgn(nn′) − 1) +

A|n|
b

(
1

2
− sgn(nn′)

)
+

A

2
|n′| − 11

6

−1

2

(
3A − 1 − 1

|n′|
)

n′(n − n′) − 1

3R2
(2A|n′| − 5 + 3A|n − n′|(A|n′| − 1))

+
1

b
(A|n′| − 1)(|n| + |n′|)

(
A(1 − sgn(nn′)) − 1

|n|
)

+
2π

Q

π

4

α

R3

{
|n′|(n′2 − 1)(A|n − n′| − 1) + (A|n′| − 1)|n − n′| ((n − n′)2 − 1

)}]
.

(5.2.3)

Here, J ′ = (3.8 · 4)/(3 · 121/3) and ε = ε(t) = b2/12R(t)2 is the thickness parameter of the

cell. Note that ε is dependent on t and is effective during the early stages of the interface

growth. In addition, A = (μ2−μ1)/(μ2 +μ1) is the viscosity contrast and α = b2σ/12(μ1 + μ2).

Equation (5.2.1) is similar to the equation derived by Miranda and Widom [44] when ε is equal

to zero. Moreover, the analytic results by Martyushev and Birzina [63] are identical to our

results when Γ(n, n′) = 0; therefore our analysis for the mode coupling equation (5.2.1) can be

considered as an extension of those of Martyushev and Birzina.

5.3 Analysis of the Extended Mode Coupling Equation

5.3.1 Linear Approximated Solution

In this section, we seek for a solution of the mode coupling equation (5.2.1) derived above.

First, by following [44], the linear equation can be solved as

ζ̇n = Λ(n)ζn, (5.3.1)
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which is obtained by neglecting the coupling term in equation (5.2.1). Equation (5.3.1) can be

easily solved as

ζn(t) = ζn(0) exp

(∫ t

0

Λ(n)dt

)
. (5.3.2)

If Λ(n) > 0, the solution increases as t increases, which means the interface is unstable. Other-

wise, if Λ(n) < 0, the solution decays, which corresponds to a stable interface. The condition

Λ(n) = 0 leads to the critical radius Rc = Rc(n) which is a root of

(
R − π2α

2Q

|n|(n2 − 1)

A|n| − 1

)3

=
2πb

Q

(
J ′α|n|
12σ2/3

)3

R.

Therefore, Λ(n) > 0 is equivalent to Rc(n) > R(t); that is, the instability of the interface is

determined by the magnitude relationship of R(t) and Rc(n). By following the analysis due to

Miranda and Widom [44], the linear approximated solution of the linear equation (5.3.1) can

be obtained as

ζ lin
n (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζn(0) (R(t) < Rc),

ζn(0)

(
R

Rc

)A|n|−1

exp

[
(A|n| − 1)

(
Rc

R
− 1

)]

(R(t) > Rc).

(5.3.3)

Note that the form of this solution (5.3.3) is identical to the form obtained by Miranda and

Widom; however, the definition of Rc(n) itself is different from theirs.

5.3.2 Nonlinear Approximated Solution

In this section, we derive the nonlinear approximated solution of the mode coupling equation

(5.2.1). By applying the method used by Miranda and Widom [44] again, the following mode

coupling equation, whose coupling term ζn′ζn−n′ is replaced by ζ lin
n′ ζ lin

n−n′ , is obtained:

ζ̇n = Λ(n)ζn + Ξ(n, t), (5.3.4)

Ξ(n, t) =
∑
n′ �=0

Γ(n, n′)ζ lin
n′ (t)ζ lin

n−n′(t). (5.3.5)

Here, Λ(n) and Γ(n, n′) are defined as (5.2.2) and (5.2.3), respectively. Then, the nonlinear

approximated solution of the equation (5.3.4) can be expressed by the linear equation (5.3.3)

54



as follows:

ζn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζn(0) (R(t) < Rc),

ζ lin
n (t)

{
1 +

∫ t

tc(n)

Ξ(n, t′)
ζ lin
n (t′)

dt′
}

(R(t) > Rc),

(5.3.6)

where tc(n) is the critical time defined by R(tc(n)) = Rc(n). If Ca = 0 in Γ(n, n′), the solution

(5.3.6) corresponds to the one obtained by Miranda and Widom [44]. Therefore, our solution

(5.3.6) is an extension of their solutions. Based on this nonlinear approximated solution (5.3.6),

we can numerically calculate the time evolution and thereby visualize the behaviour of the

perturbed interface R = R(t) + ζ(θ, t) from t = 3 to 18 sec, as depicted in Figs. 5.2 (without

the wetting effect) and 5.3 (with the wetting effect). The parameters are chosen as b = 0.15 cm,

Q = 9.3 cm3/s, σ = 63 dynes/cm, and R0 = 0.05 cm, which are the same as those used in

Paterson’s experiments [19]. The amplitude of the initial perturbation is R0/500, and the

modes of the perturbation are set to n = 4, 8, and 12. Here these modes are chosen in order

to reveal the effect of wetting layer on the nonlinear features of viscous fingering such as finger

tip-splitting. However it is to be noted that the modes other than n = 4, 8, and 12 can be

included in the phenomena. It is necessary to examine which mode will be dominant among

the all possible modes.

In both figures, the time interval of each curve is 5 sec. Without the wetting effect, the

interface remains circular, except at t = 18 sec, which the circle is only slightly unstable as

shown in Fig. 5.2. In contrast, the appearance is quite different for the case in which the

wetting effect is included. The interface remains stable during the earlier stages of growth,

and gradually becomes unstable (at t = 13 sec). Eventually, each tips of the four-fold fingers

are split into three (at t = 18 sec), as seen in Fig. 5.3. This tip-splitting of fingers, which is

often observed in such experiments, is considered to be one of the typical nonlinear features of

viscous fingering [19]. Figures 5.2 and 5.3 suggest that the nonlinear features are caused by the

wetting effect. In other words, we can conclude that our model reflects the nonlinear behaviour

of the interface effectively.

Finally, Fig. 5.4 shows the time evolution of the interface including the VNS effect under the

same initial condition used in Figs. 5.2 and 5.3 (see also numerical results by the author [64]).

Comparing Fig. 5.4 with Figs. 5.2 and 5.3, we found that the effect of wetting layer enhances

the instability more than that of VNS. The splitting of the fingers is seen in Fig. 5.3 at 18 sec,
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Figure 5.2: Time evolution of the interface without the wetting effect, from t = 3 to 18 sec.

The modes are chosen as n = 4, 8, 12.
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Figure 5.3: Time evolution of the interface with the wetting effect, from t = 3 to 18 sec. The

modes are chosen as n = 4, 8, 12.
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while it is not yet clearly seen in Fig. 5.4.

5.4 Conclusions

In this study, we investigate the Hele-Shaw problem with a boundary condition which includes

the effect of the wetting layer of a displaced fluid. This boundary condition was originally

proposed by Park and Homsy in their pioneering work [15], for the rectangular geometry; they

also carried out a linear analysis of the interface. Although the boundary conditions for the

Hele-Shaw problem are still controversial [62], the effect of the wetting layer on the fingering

patterns has not been investigated.

In this chapter, we focused on the pattern formation of the interface and accomplish a

weakly nonlinear analysis under the effect of the wetting layer. In order to clarify how the time

evolution of the interface is affected by the wetting effect, a mode coupling equation was derived

from the boundary condition. The mode coupling equation derived by Miranda and Widom

[44] is based on the Young–Laplace equation, which is valid for the rigid motion of an interface

without any deformation. In contrast to the one by employing Young–Laplace equation, our

mode coupling equation reflects the deformation of the interface effectively, and therefore our

equation is considered to be an actual extension of the equation derived by Miranda and Widom

[44]. Moreover, the numerical results shown in Figs. 5.2 and 5.3 support the tip-splitting of the

fingers for the case that the wetting effect works, which is one of the typical nonlinear features

of viscous fingering phenomena. Consequently, these facts imply that the effect of the wetting

layer in the cell plays a significant role on the nonlinear behaviour of an unstable interface.

Finally, it should be noted that we do not have any criteria so far to conclude which

boundary condition is more appropriate.This will be done by comparing the present results

with the experiments in future work.
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Figure 5.4: Time evolution of the interface with the VNS effect, from t = 3 to 18 sec. The

modes are chosen as n = 4, 8, 12.
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Chapter 6

Concluding Remarks

In this Thesis, we investigate the effect of boundary condition for the Hele-Shaw problem.

The validity of Young–Laplace equation has been doubted for ages, because of some qualitative

difference between the theoretical and experimental results. In addition to this, Young–Laplace

equation is derived on the postulate that the interface is static, or translates rigidly without

any deformation. These facts require us to seek for the more appropriate boundary conditions.

The boundary condition which take VNS terms into account is naturally followed from the

normal stress balance at the interface. Then mode coupling equation including this VNS effect

is derived. In Chapter 4 it was confirmed that VNS terms clearly affect the instability of the

interface; the interface tends to become more unstable than that for the case of Young–Laplace

equation. Moreover, the nonlinear features of viscous fingering, such as tip splitting, can be

seen in the numerical results. From these results, it is concluded that the boundary condition

with VNS is more realistic for interpretation of experiments than the Young–Laplace equation.

Next, another boundary condition with the wetting layer effect is considered. In similar to

the boundary condition with VNS, the mode coupling equation is derived. In Chapter 5, results

similar to those in Chapter 4 were obtained by weakly nonlinear analysis, which suggest that

the interface is more unstable than the one obtained by Young–Laplace equation. Numerical

results show the nonlinear features, as seen in Chapter 4 as well. Thus, the boundary condition

including the effect of wetting layer is considered to be more appropriate than Young–Laplace

equation for considering the experiments.

However, so far it is difficult to conclude which boundary condition, with VNS or wetting

effect describes fingering phenomena more appropriately. Based on the present study, we expect

the difference between the time dependence of the effect of VNS and the effect of wetting layer.
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It will be examined by experimental observations.

There remains a lot of open problems to study in the morphologies of growing interfaces in

Hele-Shaw cells.
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Appendix

Proof of the convection theorem

Convection theorem

If Ωt is a fluid domain in E3, and if f(x, t) ∈ C1(Ω̄t), then

d

dt

∫
Ωt

f dV =

∫
Ωt

(
Df

Dt
+ f ∇ · v

)
dV , (A.1)

where dV denotes the volume element.

Corollary 2.1.1

For Ωt and f as in the convection theorem, let Ω1 = Ωt1 at any fixed t1 with a regular boundary

∂Ω1. Then

d

dt

∫
Ωt

f dV

∣∣∣∣
t=t1

=
∂

∂t

∫
Ω1

f dV +

∫
∂Ω1

f v · n dS

holds, where n is the unit outward normal to ∂Ω1, and dS is the surface element on ∂Ω1.

Proof

From postulating Ωt = HtΩ0 with Ω0 being a bounded fixed reference domain, it follows that∫
Ωt

f dV =

∫
Ω0

g(a, t)J(a, t) dV0,

where a is the Lagrangian coordinates which represent the position of a fluid particle at t = 0,

i.e., a ∈ Ω0. In the above, f(x, t) = g(a, t), x = x(a, t) ∈ Ωt and J = det (∂xi/∂ak) is the
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Jacobian determinant. Thus

d

dt

∫
Ωt

f dV =
∂

∂t

∫
Ω0

g(a, t)J(a, t) dV0

=

∫
Ω0

∂

∂t
(g(a, t)J(a, t)) dV0,

since ∂(gJ)/∂t is continuous. Since

∂(gJ)

∂t
= J

Df

Dt
+ f

∂J

∂t
,

and it is easily shown that ∂J/∂t = Jdiv v, then

d

dt

∫
Ωt

f dV =

∫
Ω0

∂

∂t
(g(a, t)J(a, t)) dV0

=

∫
Ω0

(
J

Df

Dt
+ f Jdiv v

)
dV0,

from which (A.1) follows.

Corollary (2.1.1) is proven from Convection theorem by noticing that

Df

Dt
+ f div v =

∂f

∂t
+ div (fv),

and that ∫
Ω1

div (fv) dV =

∫
∂Ω1

(f v) · n dS

by the Divergence theorem.
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Principes à Suivre et des Formules à Employer dans les Questions de Distribution d’eau, Paris,

Victor Dalmont, 1856.

[54] S. P. Neuman, Theoretical Derivation of Darcy’s Law, Acta Mech., 25 (1977) 153.

[55] S. Whitaker, Flow in Porous Media I: A Theoretical Derivation of Darcy’s law, Transport in

Porous Media, 1 (1986) 3-25.

[56] S. Whitaker, The Forchheimer Equation: A Theoretical Development, Transport in Porous media,

25 (1996) 27-61.

[57] H. Kim, T. Funada, D. D. Joseph, G. M. Homsy, Viscous Potential Flow Analysis of Radial

Fingering in a Hele-Shaw Cell, Phys. Fluids 21 (2009) 074106.
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