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Twistor holomorphic affine surfaces and
projective invariants
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Abstract. We study affine immersions with twistor lifts. Using a decompo-
sition of a connection, we obtain several projective invariants for such affine
immersions. In particular, affine immersions with holomorphic twistor lifts are
considered. We can show the property that an affine immersion has holomor-
phic twistor lifts is invariant under projective transformations and characterize
immersions with holomorphic twistor lifts by vanishing of some of projective
invariants. In the case of compact affine surfaces with holomorphic twistor lifts,
we see a quantization phenomenon for one of the projective invariants which we
obtain. Moreover, we prove that a real analytic twistor holomorphic affine sur-
face with the symmetric Ricci tensor with respect to both complex structures
is totally geodesic or totally umbilic.
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§1. Introduction.

The twistor space is important and useful to study conformal geometry since
we can translate certain conformal objects into complex ones. It is also im-
portant for the study of surfaces in even dimensional Riemannian manifolds
(see [1], [2] and [3], for example). Some notions related to the twistor spaces
can be considered in affine differential geometry replacing by projective ob-
jects instead of conformal ones. For example, the independence of the almost
complex structure on the twistor space under conformal transformations can
be replaced by the projective invariance. Then it is interesting to study affine
immersions with holomorphic twistor lifts, which are invariant under projec-
tive transformations of the ambient manifolds. Using the decomposition of
connections (see [5]), we obtain several projective invariants for affine immer-
sions with twistor lifts. Consequently, an affine immersion with holomorphic
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twistor lift can be characterized by the vanishing of some of these invariants.
In the case of compact affine surfaces with holomorphic twistor lifts, we see a
quantization phenomenon for one of the projective invariants which we obtain
(Theorem 4.3).

In Riemannian geometry, twistor holomorphic immersions with vanishing
normal connection are totally umbilic, which are one of the simplest twistor
holomorphic surfaces, and hence, the rank of the first normal space is 0 or
1. However, corresponding conditions do not imply this property in affine
differential geometry. In fact, we can find an example (Example 4.4) of a
twistor holomorphic affine surface with vanishing transversal connection whose
rank of first normal space equals to 2. On the other hand, we can show that
a real analytic twistor holomorphic affine surface with the symmetric Ricci
tensor with respect to ±-both complex structures is totally geodesic or totally
umbilic surface whose rank of the first normal space is 1 (Corollary 4.12).

In Section 2, we recall fundamental facts for the decomposition of connec-
tions on complex vector bundles. We study the twistor space and define the
twistor lift for affine immersions in Section 3. In Section 4, we consider twistor
holomorphic surfaces.

The author would like to express his sincere gratitude to Professor Naoto
Abe for his constant encouragement and helpful advices. He also would like
to thank the referee for carefully reading and improving this paper. This work
is partially supported by JSPS KAKENHI Grant Number 23540081.

§2. Complex vector bundles.

Throughout this paper, all manifolds and maps are assumed to be smooth
unless otherwise mentioned. Let E be a vector bundle over a manifold M and
Ex the fiber of E over x ∈ M . We write TM (resp. T ∗M) for the tangent
(resp. cotangent) bundle of M . For vector bundles E, E′ over M , we denote
the homomorphism bundle whose fiber is the space of linear mappings Ex to
E′

x by Hom(E,E′), and set End(E) := Hom(E,E). Let φ : N → M be a
smooth map and F a fiber bundle over M . The pull back bundle of F over N
by φ is denoted by φ#F . The set of all connections of a vector bundle E is
denoted by C(E). The space of all sections of a fiber bundle F is denoted by
Γ(F ). Let Λk(E) be the set of all E-valued k-forms on M .

In this section, we summarize the fundamental results for the decomposition
of connection on a complex vector bundle (see [5]) and prove several lemmas
which we use in the later sections. Let M be an almost complex manifold
with an almost complex structure J and E a vector bundle over M with
I ∈ Γ(End(E)) satisfying I2 = −id and D ∈ C(E). We do not assume that I
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is parallel with respect to D in general. We define

D′
Xζ :=

1

2
(DXζ − IDJXζ), D′′

Xζ :=
1

2
(DXζ + IDJXζ)

for X ∈ TM and ζ ∈ Γ(E). It is easy to see D = D′ +D′′.
The connection D on E induces the connection D̄ on End(E), which is

given as follows. For S ∈ Γ(End(E)), D̄XS ∈ Γ(End(E)) is defined by

(D̄XS)(ζ) := [DX , S](ζ) = DXS(ζ)− S(DXζ)

for X ∈ TM and ζ ∈ Γ(E). Let ∇ ∈ C(TM) be a torsion free connection
on M . Also we can define the connection (we use the same letter D̄) on
T ∗M ⊗ End(E), that is,

(D̄XT )Y ζ := DX(TY ζ)− T∇XY ζ − TY (DXζ) = [DX , TY ](ζ)− T∇XY ζ

= (D̄XTY )(ζ)− T∇XY ζ

for T ∈ Γ(T ∗M ⊗ End(E)). We define DI ∈ C(E) by

DI
Xζ := DXζ − 1

2
I(D̄XI)(ζ)

for X ∈ TM and ζ ∈ Γ(E). Then we have

DI′
Xζ =

1

2
(D′

Xζ − ID′
XIζ), DI′′

X ζ =
1

2
(D′′

Xζ − ID′′
XIζ)

for X ∈ TM and ζ ∈ Γ(E). Set

AD′
X ζ :=

1

2
(D′

Xζ + ID′
XIζ), AD′′

X ζ :=
1

2
(D′′

Xζ + ID′′
XIζ),

for X ∈ TM and ζ ∈ Γ(E). We see that D′ = DI′+AD′ and D′′ = DI′′+AD′′,
and hence D = DI′ + DI′′ + AD′ + AD′′. It is easy to see that AD′, AD′′ ∈
Λ1(End(E)). Note that I is parallel with respect to DI . The operators AD′

and AD′′ are explicitly given as follows :

AD′
X =

1

4
(I(D̄XI) + (D̄JXI)), AD′′

X =
1

4
(I(D̄XI)− (D̄JXI))

for X ∈ TM . Let RD be the curvature form of the connection D.

Lemma 2.1. We have

TrRD
X,Y I = TrRDI

X,Y I +
1

2
Tr(D̄XI)(D̄Y I)I(2.1)

for X, Y ∈ TM .
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Proof. By a straightforward calculation, we have

RD
X,Y = RDI

X,Y +
1

4
(D̄XI)(D̄Y I)−

1

4
(D̄Y I)(D̄XI) +

1

2
I(RD̄

X,Y I)

for X, Y ∈ TM . Hence it holds

TrRD
X,Y I = TrRDI

X,Y I +
1

2
Tr(D̄XI)(D̄Y I)I.

Note that the first Chern form c1(E,DI) is given by

4πc1(E,DI)(X,Y ) = TrRDI

X,Y I(2.2)

for all X, Y ∈ TM . Since

16TrAD′
X AD′

X = Tr(D̄XI)(D̄XI) + 2TrI(D̄XI)(D̄JXI)(2.3)

+Tr(D̄JXI)(D̄JXI)

16TrAD′′
X AD′′

X = Tr(D̄XI)(D̄XI)− 2TrI(D̄XI)(D̄JXI)(2.4)

+Tr(D̄JXI)(D̄JXI),

we have

8(TrAD′
X AD′

X +TrAD′′
X AD′′

X ) = Tr(D̄XI)(D̄XI)(2.5)

+Tr(D̄JXI)(D̄JXI)

and

2(TrAD′
X AD′

X − TrAD′′
X AD′′

X ) = TrRD
X,JXI − TrRDI

X,JXI(2.6)

for X ∈ Γ(TM).

Next assume that a vector bundle E is decomposed into E = E1 ⊕ E2

and a complex structure I preserves the decomposition. Then the complex
structure Ii on Ei (i ∈ {1, 2}) can be naturally defined. We can also define the
connection Di on each Ei by Di

Xξi = πiDXιiξ for X ∈ TM and ξ ∈ Γ(Ei),
where πi : E → Ei is the projection and ιi : Ei → E is the inclusion (i ∈
{1, 2}). Moreover, define Bj

Xξi := πj(DXιiξi) for X ∈ TM and ξi ∈ Γ(Ei)
(i, j ∈ {1, 2} and i ̸= j). Then we have

DXξ = ι1D
1
Xπ1(ξ) + ι2B

2
Xπ1(ξ) + ι2D

2
Xπ2(ξ) + ι1B

1
Xπ2(ξ)

for X ∈ TM and ξ ∈ Γ(E). By a straightforward calculation, we have
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Lemma 2.2. We have

(D̄XI)(ιiξi) = ιi(D̄
i
XIi)(ξi) + ιj(B

j
XIiξi − IjB

j
Xξi)

for X ∈ TM and ξi ∈ Γ(Ei) (i, j ∈ {1, 2} and i ̸= j).

Using this lemma, we obtain

Lemma 2.3. We have

DI
Xιiξi = ιi(D

i Ii
X ξi)−

1

2
ιj(B

j
Xξi − IjB

j
XIiξi)

for X ∈ TM and ξi ∈ Γ(Ei) (i, j ∈ {1, 2} and i ̸= j).

Hence we see that DI ̸= ι1D
1 I1π1 + ι2D

2 I2π2 in general. But, by Lemmas
2.1 and 2.3, we have the following lemma.

Lemma 2.4. For all X, Y ∈ TM , we have

TrRDI

X,Y I = TrRD1I1

X,Y I1 +TrRD2I2

X,Y I2.

Proof. By a straightforward calculation, we have

πiR
D
X,Y ιiξi = RDi

X,Y ξi +Bi
XBj

Y ξi −Bi
Y B

j
Xξi

for X, Y ∈ TM and ξi ∈ Ei (i, j ∈ {1, 2} and i ̸= j). From Lemma 2.3, it
holds that

πi(D̄XI)(D̄Y I)(ιiξi)

= πi(D̄XI)(ιi(D̄i
Y Ii)(ξi) + ιjB

j
Y Iiξi − ιjIjB

j
Y ξi)

= (D̄i
XIi)(D̄i

Y Ii)(ξi) +Bi
XIj(B

j
Y Iiξi − IjB

j
Y ξi)− IiB

i
X(Bj

Y Iiξi − IjB
j
Y ξi)

= (D̄i
XIi)(D̄i

Y Ii)(ξi) +Bi
XIjB

j
Y Iiξi +Bi

XBj
Y ξi

−IiB
i
XBj

Y Iiξi + IiB
i
XIjB

i
Y ξi

for X, Y ∈ TM and ξi ∈ Ei (i, j ∈ {1, 2} and i ̸= j). Therefore, we obtain

TrRD
X,Y I = Trπ1R

D
X,Y ι1I1π1 +Trπ2R

D
X,Y ι2I2π2

= TrRD1

X,Y I1 +TrB1
XB2

Y I1 − TrB1
Y B

2
XI1

+TrRD2

X,Y I2 +TrB2
XB1

Y I2 − TrB2
Y B

1
XI2

and

Tr(D̄XI)(D̄Y I)I

= Tr(D̄1
XI1)(D̄1

Y I1)I1 + 2TrB1
XB2

Y I1 − 2TrB1
Y B

2
XI1

+Tr(D̄2
XI2)(D̄2

Y I2)I2 + 2TrB2
XB1

Y I2 − 2TrB2
Y B

1
XI2,

which mean the conclusion from Lemma 2.1.
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§3. Twistor spaces, twistor lifts and projective invariants.

Let V be a real vector space of dimension 2n. A complex structure on V is
an endomorphism J : V → V such that J2 = −id. We denote the set of all
complex structures on V by W (V ). Let GL(V ) be the general linear group
acting on V . Choose J0 ∈ W (V ) and set GL(V, J0) := {A ∈ GL(V ) | AJ0 =
J0A}. It is clear that GL(V, J0) is the general linear group of V as a complex
vector space with respect to J0. We have

W (V ) ∼= GL(V )/GL(V, J0).

The tangent space to W (V ) at J can be identified with the vector subspace
{a ∈ gl(V ) | aJ = −Ja}, where gl(V ) is the Lie algebra of GL(V ). We define
an almost complex structure J on W (V ) by

J (a) =
1

2
[J, a]

for a ∈ TJW (V ). Note that we have J (a) = (1/2)[J, a] = (1/2)(Ja − aJ) =
Ja = −aJ for all a ∈ TJW (V ).

Let (M̃, ∇̃) be a 2n-dimensional manifold M̃ with a torsion free affine
connection ∇̃. We define the twistor space Z(M̃) of M̃ by

Z(M̃) :=
∪
x∈M̃

W (TxM̃).

The bundle projection p : Z(M̃) → M̃ and the connection ∇̃ induce the
horizontal subbundle of TZ(M̃). The almost complex structure JZ

∇̃ on the

twistor space is defined by (JZ
∇̃)J(X) = (J(p∗(X)))hJ for all horizontal vectors

X at J ∈ Z(M̃) and (JZ
∇̃)J(Y ) = J (Y ) for all vertical vectors Y at J ∈ Z(M̃),

where ( · )h stands for the horizontal lift and J is the almost complex structure
defined above.

To prove the invariance of this almost complex structure under the projec-
tive changes of connections, we recall the fundamental facts for the tangent
bundle TE of a vector bundle p : E → P with a connection D of E. Let
KD : TE → E be the connection map with respect to D. The horizontal
lift Xh of X ∈ TP can be characterized by the equations KD(Xh) = 0 and
p∗(X

h) = X. On the other hand, the vertical lift ξv of ξ ∈ E can be char-
acterized by the equations KD(ξv) = ξ and p∗(ξ

v) = 0. Let (x1, . . . , xm) be
a local coordinate system on U ⊂ P , where m = dimP . Take (e1, . . . , er) a
local frame of E and denote its dual frame (ω1, . . . , ωr), where r = rankE.
Setting pi = xi ◦ p (i = 1, . . . ,m), we can consider a local coordinate sys-
tem (p1, . . . , pm, ω1, . . . , ωr). In terms of this local coordinate system, for
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X =
∑m

i=1X
i ∂
∂xi ∈ TP and ξ ∈ E, the both lifts can be described by

(Xh)u =
∑
i

Xi(p(u))
∂

∂pi

∣∣∣∣
u

−
∑
i,k,l

Xi(p(u))ωl(u)Γk
il

∂

∂ωk

∣∣∣∣
u

(3.1)

and

(ξv)u =
∑
k

ωk(ξ)
∂

∂ωk

∣∣∣∣
u

(3.2)

at u ∈ E, where
Γk
il = ωk(D ∂

∂xi
el).

Hence we can calculate

(Xh)u =
∑
i

Xi(p(u))
∂

∂pi

∣∣∣∣
u

−
∑
k,l

ωl(u)ωk(DXp(u)
el)

∂

∂ωk

∣∣∣∣
u

(3.3)

=
∑
i

Xi(p(u))
∂

∂pi

∣∣∣∣
u

−
∑
l

ωl(u)(DXp(u)
el)

v

for X ∈ TP .
Here we give the following operators. Let E and E′ be complex vector bun-

dles with complex structures I ∈ Γ(End(E)) and I ′ ∈ Γ(End(E′)) respectively.
For T ∈ Λ1(Hom(E,E′)), we set

T
(2,0)
X ξ :=

1

4
(TXξ − I ′TJXξ − I ′TXIξ − TJXIξ),

T
(1,1)+
X ξ :=

1

4
(TXξ + I ′TJXξ − I ′TXIξ + TJXIξ),

T
(1,1)−
X ξ :=

1

4
(TXξ − I ′TJXξ + I ′TXIξ + TJXIξ),

T
(0,2)
X ξ :=

1

4
(TXξ + I ′TJXξ + I ′TXIξ − TJXIξ).

for all X ∈ TM and ξ ∈ E.

Lemma 3.1. For two connections ∇̃1, ∇̃2 ∈ C(TM̃), set T := ∇̃1 − ∇̃2. If
T (0,2) = 0 for all J ∈ Z(M̃), then we have JZ

∇̃1 = JZ
∇̃2.

Proof. Denote the horizontal subbundle and vertical subbundle of TZ(M̃) by
H1 (resp. H2) and V with respect to ∇̃1 (resp. ∇̃2). So we have TJZ(M̃) =
H1

J ⊕VJ = H2
J ⊕VJ at each point J ∈ Z(M̃). Let hi and vi be the projections

onto Hi and V with respect to the decomposition Hi⊕V (i = 1, 2). It is easy to
see hi+vi = id and vivj = vj for any i, j ∈ {1, 2} and i ̸= j. Using these equa-
tions, we have vi+vjhi = vj for any i, j ∈ {1, 2} and i ̸= j. From the definition
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of JZ
∇̃i , we have JZ

∇̃i(X) = J(viX) + (Jp∗(X))hi for X ∈ TJZ. It holds that

the H1-horizontal components of JZ
∇̃i(X) (i = 1, 2) coincide. In fact, we have

h1(J
Z
∇̃1(X)) = (Jp∗(X))h1 and h1(J

Z
∇̃2(X)) = h1((Jp∗(X))h2) = (Jp∗(X))h1

for all tangent vectors X on Z(M̃). So it is need to show v1(J
Z
∇̃1(X)) =

v1(J
Z
∇̃2(X)). To prove this equation, it is sufficient to see J(v1Y

h2) = v1(JY )h2

at J ∈ Z(M̃) for all Y ∈ TM . In fact, we can obtain

v1(J
Z
∇̃1(X)) = J(v1X)

and

v1(J
Z
∇̃2(X)) = v1(Jv2X) + v1(J(p∗X))h2

= J(v1 + v2h1)X + v1(J(p∗X))h2

= J(v1X)− J(v1h2X) + v1(J(p∗X))h2 .

Then v1(J
Z
∇̃1(X)) = v1(J

Z
∇̃2(X)) if and only if J(v1h2X) = v1(J(p∗X))h2 . It

is easy to see (∇̃1)̄Xϕ− (∇̃2)̄Xϕ = [TX , ϕ] for ϕ ∈ Γ(End(TM̃)) and X ∈ TM .
By the definitions of the horizontal and the vertical lifts and (3.3), it holds
that

J(v1Y
h2) = −J(Y h1 − Y h2) = (J [TY , J ])

v,

and similarly v1(JY )h2 = ([TJY , J ])
v at J ∈ Z(M̃). Since T (0,2) = 0 for all

J ∈ Z(M̃), we have JZ
∇̃1 = JZ

∇̃2 .

Corollary 3.2. If connections ∇̃1 and ∇̃2 are projectively equivalent, then
JZ
∇̃1 = JZ

∇̃2.

Proof. If ∇̃1 and ∇̃2 are projectively equivalent, there exist a 1-form σ such
that the difference tensor T satisfies TXY = σ(X)Y +σ(Y )X for X, Y ∈ TM .
It is easy to see T (0,2) = 0 for all J ∈ Z(M̃).

Then we are allowed to write JZ for JZ
∇̃ with no confusions in projective

geometry.

We define the twistor lift for an almost complex submanifold in an even-
dimensional manifold in affine differential geometry, which is similar to Rie-
mannian one. We need to recall the definition of affine immersions with
transversal bundle. Let (M,∇) and (M̃, ∇̃) be smooth manifolds with tor-
sion free affine connections and f : M → M̃ an immersion. In this paper,
we omit the symbol of the differential map f∗ for an immersion f . An im-
mersion f : M → M̃ is called an immersion with a transversal bundle N if
f#TM̃ = TM ⊕ N holds. Let πTM and πN be the projections from f#TM̃
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onto TM and N , respectively. We say that f : M → M̃ is an affine im-
mersion with a transversal bundle N if f is an immersion with a transver-
sal bundle N and πTM ((f#∇̃)XY ) = ∇XY for all X, Y ∈ Γ(TM), where
f#∇̃ is the pull back connection of ∇̃ by f . Set α(X,Y ) := πN ((f#∇̃)XY ),
SξX := −πTM ((f#∇̃)Xξ) and ∇N

Xξ := πN ((f#∇̃)Xξ) for X, Y ∈ Γ(TM)
and ξ ∈ Γ(N). Then α, S and ∇N are called the affine fundamental form,
the affine shape operator and the transversal connection, respectively. We see
that

(f#∇̃)XY = ∇XY + α(X,Y ) and (f#∇̃)Xξ = −SξX +∇N
Xξ

for X, Y ∈ Γ(TM) and ξ ∈ Γ(N). We refer to [6] and [7] for affine immer-
sions. Let I be an almost complex structure on M . Assume that M̃ is a
2n-dimensional manifold. Consider an affine immersion f : (M,∇) → (M̃, ∇̃)
with a transversal bundle N . We assume that there exists a complex structure
IN on N . Note that we do not assume ∇̄I = 0, ∇̄NIN = 0 in general. We
define Ĩ by Ĩ(X) = I(X) and Ĩ(ξ) = IN (ξ) for X ∈ TM and ξ ∈ N . The
section Ĩ ∈ Γ(f#(Z(M̃))) is called a twistor lift of f (or M). Hereafter we
often omit the symbol f# for the induced objects for f if there is no confusion.

We study influences of projective changes for geometric objects of affine im-
mersions. On M̃ , we take two torsion free affine connections ∇̃1 and ∇̃2 which
are projectively equivalent, that is, there exist a 1-form σ on M̃ satisfying

∇̃2
XY = ∇̃1

XY + σ(X)Y + σ(Y )X

for X, Y ∈ Γ(TM̃). By a straightforward calculation, we have

∇̃2Ĩ′
X Y = ∇̃1Ĩ′

X Y +
1

2
(σ(X)Y + σ(Y )X(3.4)

−σ(ĨX)ĨY − σ(ĨY )ĨX),

∇̃2Ĩ′′
X Y = ∇̃1Ĩ′′

X Y +
1

2
(σ(X)Y + σ(ĨX)ĨY ),(3.5)

A∇̃2′
X Y = A∇̃1′

X Y +
1

2
(σ(Y )X + σ(ĨY )ĨX),(3.6)

A∇̃2′′
X Y = A∇̃1′′

X Y(3.7)

for X, Y ∈ Γ(TM̃). Since the affine fundamental form α (resp. the affine
shape operator S) can be viewed as an element of Λ1(Hom(TM,N)) (resp.
Λ1(Hom(N,TM))), we have the following lemma.

Lemma 3.3. Let f : M → M̃ be an affine immersion with a transversal
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bundle N and a twistor lift Ĩ. We have

∇̃Ĩ′
XY = ∇I′

XY + α(2,0)(X,Y ),

∇̃Ĩ′′
X Y = ∇I′′

X Y + α(1,1)+(X,Y ),

A∇̃′
X Y = A∇′

X Y + α(1,1)−(X,Y ),

A∇̃′′
X Y = A∇′′

X Y + α(0,2)(X,Y )

and

∇̃Ĩ′
Xξ = −S

(2,0)
ξ X + (∇N )I

N ′
X ξ,

∇̃Ĩ′′
X ξ = −S

(1,1)+
ξ X + (∇N )I

N ′′
X ξ,

A∇̃′
X ξ = −S

(1,1)−
ξ X +A∇N ′

X ξ,

A∇̃′′
X ξ = −S

(0,2)
ξ X +A∇N ′′

X ξ

for X ∈ Γ(TM) and ξ ∈ Γ(N).

By the equations (3.4)-(3.7) and Lemma 3.3, we have the following propo-
sition.

Proposition 3.4. Let f : M → M̃ be an affine immersion with a transver-
sal bundle N and a twistor lift Ĩ. The following objects are invariant under
projective change of ∇̃ : α, A∇′′, ∇̄NIN , S(1,1)+ and S(0,2).

From Lemma 2.1 and Proposition 3.4, we have the following corollary.

Corollary 3.5. For X, Y ∈ TM , TrR∇N

X,Y I
N is invariant under projective

change of ∇̃. In particular, TrR∇NIN

IN (= 4πc1(N,∇NIN )) is given by pro-
jective invariants.

Proof. If ∇̃1 and ∇̃2 are projective equivalent connections described by σ,
then we have 2∇N

Xξ = 1∇N
Xξ + σ(X)ξ for all ξ ∈ Γ(N), where i∇N is the

connection on N induced by ∇̃i (i = 1, 2). Then it holds that TrR
1∇N

X,Y IN =

TrR
2∇N

X,Y IN . By Lemma 2.1 and Proposition 3.4, TrR∇NIN

IN is given by
projective invariants.

The Ricci tensor of a connection ∇̃ is denoted by Ric∇̃, which is not neces-
sary symmetric. For a (0, 2)-tensor ρ on M , set ρs(X,Y ) := (1/2)(ρ(X,Y ) +
ρ(Y,X)) for X, Y ∈ TM . We define a symmetric (0, 2)-tensor Φ on M by

Φ(X,Y ) := −Tr((f#∇̃)¯X Ĩ)(f#∇̃)¯Y Ĩ)− (f#∇̃)¯IX Ĩ)(f#∇̃)¯IY Ĩ))

+
4

2n− 1
((f∗Ric∇̃)s(X,Y ) + (f∗Ric∇̃))s(IX, IY ))

−2TrR∇I

X,IY I + 2TrR∇I

IX,Y I
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for X, Y ∈ TM . It is easy to see that Φ(X,Y ) = Φ(IX, IY ) for all X and
Y ∈ TM .

Lemma 3.6. Let f : M → M̃ be an affine immersion with a transversal
bundle N and a twistor lift Ĩ. Then we have

16TrAf#∇̃′′
X Af#∇̃′′

X − 4TrR∇NIN

X,IX IN + 4TrW ∇̃
X,IX Ĩ = −Φ(X,X)

for all X ∈ TM , where W ∇̃ is the projective curvature tensor of ∇̃.

Proof. By (2.4) and Lemma 2.4, we have

16TrAf#∇̃′′
X Af#∇̃′′

X

= Tr((f#∇̃)¯X Ĩ)((f#∇̃)¯X Ĩ) + Tr((f#∇̃)¯IX Ĩ)((f#∇̃)¯IX Ĩ)

−4TrR∇̃
X,IX Ĩ + 4TrR∇NIN

X,IX IN + 4TrR∇I

X,IXI

for all X ∈ TM . The projective curvature tensor W ∇̃ of ∇̃ is given by

W ∇̃
X,Y Z = R∇̃

X,Y Z − (P (X,Y )− P (Y,X))Z − (P (Y,Z)X − P (X,Z)Y )

for X, Y , Z ∈ TM̃ , where

P (X,Y ) =
1

(2n)2 − 1

(
2nRic∇̃(X,Y ) +Ric∇̃(Y,X)

)
.

It holds that

TrR∇̃
X,IX Ĩ = TrW ∇̃

X,IX Ĩ +
1

2n− 1

(
(f∗Ric∇̃)(X,X) + (f∗Ric∇̃)(IX, IX)

)
for all X ∈ TM . Then the conclusion can be obtained.

From Corollary 3.5, Lemma 3.6 and the polarization for Φ, the following
proposition can be obtained.

Proposition 3.7. Let f : M → M̃ be an affine immersion with a transversal
bundle N and a twistor lift Ĩ. Then Φ is invariant under projective change of
∇̃.

On a complex manifold M of dimRM = 2, we can choose a volume form Ω
on M , which satisfies Ω(X, IX) ̸= 0 for all nonzero X ∈ TM . For a symmetric
(0, 2)-tensor s on M , we define

aΩ(s) =
s(X,X) + s(IX, IX)

Ω(X, IX)

for a nonzero X ∈ TM . It is easy to see that aΩ(s) is independent of the
choice of X. Note that aΩ(s)Ω = aΩ′(s)Ω′ if Ω′ = cΩ for c ̸= 0.
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Theorem 3.8. Let f : M → M̃ an affine immersion with a transversal bundle
N and a twistor lift Ĩ. If M is a compact surface, then∫

M
aΩ

(
−Tr((f#∇̃)¯Ĩ)((f#∇̃)¯Ĩ) +

4

2n− 1
(f∗Ric∇̃)s

)
Ω(3.8)

is a projective invariant.

Proof. We have

aΩ(
1

2
Φ)Ω = aΩ

(
−Tr((f#∇̃)¯Ĩ)((f#∇̃)¯Ĩ) +

4

2n− 1
(f∗Ric∇̃)s

)
Ω

−16πc1(TM,∇I)

Since the left hand side of the above equation is a projective invariant and the
Chern class is a topological invariant of M , we obtain the conclusion.

Note that −aΩ(Tr((f
#∇̃)̄ Ĩ)((f#∇̃)̄ Ĩ)) is a corresponding object to the

(vertical) energy density of Ĩ in the Riemannian case up to a constant.

§4. Twistor holomorphic affine surfaces.

In this section, we consider twistor holomorphic surfaces. Let f : (M,∇, I) →
(M̃, ∇̃) be an affine immersion with a transversal bundle N and a twistor lift
Ĩ. If the twistor lift satisfies Ĩ∗ ◦ I = JZ ◦ Ĩ∗, then f (or M) is called a twistor
holomorphic immersion (or submanifold). By the definition of JZ , f is twistor
holomorphic if and only if it holds that

(f#∇̃)¯IX Ĩ = Ĩ(f#∇̃)¯X Ĩ(4.1)

for all X ∈ TM , which is equivalent to Af#∇̃′′
= 0. In fact, taking the vertical

components of (Ĩ∗ ◦ I)(X) = (JZ ◦ Ĩ∗)(X) for X ∈ TM , we have (4.1). It is
easy to obtain the following equations

((f#∇̃)¯X Ĩ)(Y ) = (∇̄XI)(Y ) + α(X, IY )− INα(X,Y )(4.2)

and

((f#∇̃)¯X Ĩ)(ξ) = (∇̄N
XI)(ξ)− SIN ξX + ISξX(4.3)

for all X, Y ∈ Γ(TM) and ξ ∈ Γ(N). Using (4.1)-(4.3), we have the following
proposition.

Proposition 4.1. Let f : M → M̃ be an affine immersion with a transversal
bundle N and a twistor lift Ĩ. Then f is twistor holomorphic if and only if
the following conditions hold : (1) A∇′′ = 0, (2) A∇N ′′ = 0, (3) α(0,2) = 0,
(4) S(0,2) = 0.
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Although the following corollary is a direct consequence of Corollary 3.2,
we can also obtain it by Propositions 3.4 and 4.1.

Corollary 4.2. The property that f is twistor holomorphic is invariant under
projective change of ∇̃.

By Lemma 3.6, Theorem 3.8 and (2.2), we have the following theorem.

Theorem 4.3. Let ∇̃ be a projectively flat connection on M̃ and (M,∇, I) a
compact surface with a complex structure I. Let f : M → M̃ be a twistor holo-
morphic affine immersion with a transversal bundle N . Then the projective
invariant (3.8) in Theorem 3.8 is an integer multiple of 16π.

Proof. From the assumptions, it follows that Af#∇̃′′
= 0 and W ∇̃ = 0. By

Lemma 3.6, we have

aΩ

(
−Tr((f#∇̃)¯Ĩ)((f#∇̃)¯Ĩ) +

4

2n− 1
(f∗Ric∇̃)s

)
Ω

= 16πc1(TM,∇I) + 16πc1(N,∇NIN ).

An isometric immersion from an oriented surface with horizontal twistor
lift is called superminimal. The volume of superminimal surface in an even
dimensional unit sphere is an integer multiple of 2π, which is essentially proved
in [2]. See also [5]. Using Theorem 4.3, we can obtain this result.

In the case of the isometric immersions, there are many twistor holomorphic
immersions (see [3] and [4]). We give examples of twistor holomorphic affine
immersions.

Example 4.4. Let U be an open set of R2 and consider a graph immersion
f : U → R4 given by

f(x, y) = (x, y, F (x, y), G(x, y))

with a transversal bundle N = Span{ξ1, ξ2}, where F,G : U → R are smooth
functions and ξ1 = (0, 0, 1, 0), ξ2 = (0, 0, 0, 1). A complex structure I (resp.
IN ) of U (resp. N) is defined by I∂x = ∂y and I∂y = −∂x (resp. INξ1 = ξ2
and INξ2 = −ξ1). We can see S = 0, and hence, R∇ = 0 and R∇N

= 0.
Moreover we have ∇̄NIN = 0 and α(∂u, ∂v) = Fuvξ1 + Guvξ2, where u, v ∈
{x, y}. Then f is twistor holomorphic if and only if Fxx− 2Gxy −Fyy = 0 and
Gxx + 2Fxy − Gyy = 0. For example, when F (x, y) = x2 and G(x, y) = xy,
we have α(∂x, ∂x) = 2ξ1, α(∂x, ∂y) = ξ2 and α(∂y, ∂y) = 0. Then it holds
that α(0,2) = 0 and α(2,0)(∂x, ∂x) = 4ξ1 ̸= 0. Moreover the first normal space
satisfies dimN1(x) = 2 for all x ∈ U .



338 K. HASEGAWA

An affine immersion is said to be totally umbilic if there exists ρ ∈ Γ(N∗)
satisfying S = ρ ⊗ idTM . Note that any totally umbilic immersions satisfy
S(0,2) = 0 and S(1,1)+ = 0.

Example 4.5. Let (M,∇, I) be a surface with a complex structure I and a
connection ∇, and f : M → R3 an affine immersion with the transversal bun-
dle Span{f}. Consider the canonical totally geodesic embedding ι : R3 → R2n

(n ≥ 2). We take parallel fields ξ1, . . . , ξ2n−3 with respect to the standard con-
nection on R2n such that (N :=)Span{f, ξ1, . . . , ξ2n−3} is a transversal bundle
for ι ◦ f . Define a complex structure IN on N by IN (f) = ξ1, I

N (ξ1) = −f ,
IN (ξ2) = ξ3, I

N (ξ3) = −ξ2, . . . , I
N (ξ2n−4) = ξ2n−3, I

N (ξ2n−3) = −ξ2n−4.
Then we have α(X,Y ) = Ric∇(X,Y )f , Sf = idTM and Sξi = 0 (i =
1, . . . , 2n − 3) for the affine immersion ι ◦ f . Therefore ι ◦ f : M → R2n

is a twistor holomorphic immersion if and only if Ric∇ is I-invariant, that is,
Ric∇(IX, IY ) = Ric∇(X,Y ) for all X, Y ∈ TM . Note that ι ◦ f satisfies
α(2,0) = 0 and α(0,2) = 0 if Ric∇ is I-invariant.

In the case of the isometric immersions, a twistor holomorphic surface in
R4 with a flat normal connection is a open part of a plane or the standard 2-
sphere, that is, it is totally umbilic. In this case, it holds the first normal space
satisfies rankN1 = 0 or 1. Example 4.4 implies that a twistor holomorphic
affine surface with a flat transversal connection is not necessary rankN1 ≤ 1.
We give a characterization of totally geodesic or totally umbilic surface with
rankN1 = 1 for twistor affine holomorphic surfaces. To prove this, we show
some lemmas.

Lemma 4.6. Let M be a surface with a complex structure I and a connection
∇. For non zero X ∈ TM , take ω ∈ T ∗M satisfying ω(X) = 1 and ω(IX) = 0.
Then we have

Ric∇(X,X) = ω(IR∇
X,IXX),

Ric∇(IX, IX) = ω(R∇
X,IXIX),

Ric∇(X, IX) = ω(IR∇
X,IXIX),

Ric∇(IX,X) = ω(R∇
X,IXX).

Lemma 4.7. Let f : M → Rm be an affine immersion. If the affine funda-
mental form α of f satisfies α(X, IX) = 0 for all X ∈ TM , then α satisfies

2(∇̄N
Xα)(Y, Z) = α((∇̄ZI)(X), IY ) + α(IX, (∇̄ZI)(Y ))

+α((∇̄IY I)(IX), IZ)− α(X, (∇̄IY I)(Z))

+α((∇̄XI)(Y ), Z)− α(IY, (∇̄XI)(Z))

for all X, Y and Z ∈ TM .
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Proof. From a straightforward calculation,

(∇̄N
Xα)(IY, IZ) = (∇̄N

Xα)(Y, Z)− α((∇̄XI)(Y ), IZ)

−α(IY, (∇̄XI)(Z))

for all X, Y , Z ∈ TM . Using the Codazzi equation for α, we have

(∇̄N
IY α)(X, IZ) = −(∇̄N

IY α)(IX,Z) + α((∇̄IY I)(IX), IZ)

−α(X, (∇̄IY I)(Z))

= −(∇̄N
Z α)(IX, IY ) + α((∇̄IY I)(IX), IZ)

−α(X, (∇̄IY I)(Z))

= −(∇̄N
Z α)(X,Y ) + α((∇̄ZI)(X), IY )

+α(IX, (∇̄ZI)(Y )) + α((∇̄IY I)(IX), IZ)

−α(X, (∇̄IY I)(Z))

for all X, Y , Z ∈ TM . Using the Codazzi equation for α again, we have the
desired conclusion.

By Lemma 4.7, we have

Lemma 4.8. Let f : M → Rm be an affine immersion. Assume that the
affine fundamental form α of f satisfies α(X, IX) = 0 for all X ∈ TM . Then
for any non negative integer l, the all covariant derivatives of α of order l are
in the first normal space N1(x) at each point x of M .

By Lemma 4.7, we have the following.

Lemma 4.9. Let f : M → Rm be an affine immersion. Assume that the
affine fundamental form α of f satisfies α(X, IX) = 0 for all X ∈ TM . If the
dimensions of first normal spaces at any points of M are constant, then N1 is
a parallel subbundle of N .

Using above lemmas, we can obtain the following theorem.

Theorem 4.10. Let (M,∇, I) be a connected surface with a complex structure
I such that the Ricci tensor Ric∇ of ∇ is symmetric. Let f : M → Rm is a
real analytic affine immersion satisfying α(X, IX) = 0 for all X ∈ TM and
[Sξ, I] = 0 for all ξ ∈ N . Then we see that
(1) f is totally geodesic, that is, α = 0 or
(2) There exist a 3-dimensional affine subspace V in Rm satisfying f(M) ⊂ V ,
and f : M → V is a non degenerate totally umbilic immersion such that Ric∇

is I-invariant .
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Proof. Since α(X, IX) = 0 for all X ∈ TM , we have dimN1(x) ≤ 1 at any
x ∈ M . At first, we show that the dimensions of the first normal spaces are
constant on M . Assume that there exists a point x ∈ M satisfying αx = 0,
that is, dimN1(x) = 0. We may assume that f(x) = 0. Take a 1-form ω on
R2n satisfying Kerω = f∗(TxM) and set φ = ω ◦ f . In fact, we see X1φ =
ω(f∗X1) = 0, X2X1φ = ω(α(X2, X1)), X3X2X1φ = ω((∇̄N

X3
α)(X2, X1) +

α(∇X3X2, X1)+α(X2,∇X3X1)) and so on. Note that (∇̄N
X3

α)(X2, X1) belongs
to N1. Hence, for any for any non negative integer l, we have (Xl · · ·X1φ)x = 0
for any X1, . . . , Xl ∈ Γ(TM) by Lemma 4.8. Since f is real analytic, we have
φ(M) = {0}, that is, f is totally geodesic. Then we can conclude that the
dimensions of the first normal spaces are constant on M . Since dimN1 is
constant on M , N1 is a smooth subbundle of N and parallel with respect to
∇N by Lemma 4.9. Form the assumption of α, it holds that rankN1 ≤ 1. If
rankN1 = 0, then we have α = 0, and hence, f is totally geodesic.

We assume rankN1 = 1. By the reduction theorem for affine immer-
sions (see [6]), there exist a 3-dimensional affine subspace V in R2n satisfying
f(M) ⊂ V . Then f : M → V is non degenerate because of rankN1 = 1
and dimM = 2. Next we show that f : M → V is totally umbilic. Take
an arbitrary non zero tangent vector X at any point of M . By the Gauss
equation, we have R∇

X,IXX = −Sα(X,X)IX. Let ω be the one form sat-
isfying ω(X) = 1 and ω(IX) = 0. From the assumption [Sξ, I] = 0 for
all ξ ∈ N , we have Ric∇(X, IX) = ω(Sα(X,X)IX) and Ric∇(IX,X) =
−ω(Sα(X,X)IX) by Lemma 4.6. Since the Ricci tensor of ∇ is symmetric,
we have ω(Sα(X,X)IX) = 0. Therefore it holds that there exists µ(X) ∈ R
satisfying Sα(X,X)X = µ(X)X. Defining µ(X) = 0 when X = 0, we can
obtain a function µx : TxM → R for each x ∈ M . We define

µ̃(Y, Z) =
1

2
(µ(Y + Z)− µ(Y )− µ(Z))

for all tangent vectors Y and Z. By a straightforward calculation, we have
µ(aX+ bIX) = (a2+ b2)µ(X). So we see that µ̃ is a symmetric tensor. Hence
f : M → V is an isotropic affine immersion in the sense of Vrancken [8]. In
particular, since dimV = 3, f : M → V is totally umbilic, which means that
Ric∇ is I-invariant.

The assumptions α(X, IX) = 0 for all X ∈ TM and [Sξ, I] = 0 for all
ξ ∈ N in Theorem 4.10 are invariant under projective transformations. In the
case of isometric immersions, these conditions are equivalent each other. Note
that if M is an isometrically immersed surface in M̃ satisfying α(X, IX) = 0
for all X ∈ TM , then M is totally umbilic.

Corollary 4.11. Let (M,∇, I) be a connected surface with a complex structure
I such that the Ricci tensor of ∇ is symmetric and f : M → R2n a real analytic



TWISTOR HOLOMORPHIC AFFINE SURFACES 341

affine immersion with a twistor lift. If α(2,0) = 0, α(0,2) = 0, S(0,2) = 0 and
S(1,1)+ = 0, then we have the same conclusion as in Theorem 4.10.

Proof. Using α(2,0) = 0 and α(0,2) = 0, we have α(X, IX) = 0 for all X ∈ TM .
Moreover [Sξ, I] = 0 for all ξ ∈ N by S(0,2) = 0 and S(1,1)+ = 0. From Theorem
4.10, we have the conclusion.

If f : M → R2n a twistor holomorphic affine immersion with respect to I
and −I, then we see that (1) IN is parallel, (2) α satisfies α(X, IX) = 0 for
all X ∈ TM , (3) S satisfies [Sξ, I] = 0 for all ξ ∈ N . Then we obtain

Corollary 4.12. If f : M → R2n is a real analytic affine immersion from
a connected surface with a complex structure I and symmetric Ricci tensor
which is twistor holomorphic with respect to I and −I, then we have the same
conclusion as in Theorem 4.10.
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