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Chapter 1

Introduction

This thesis is based on [11,12].

As stated by [3,19], nonlinear Schrédinger equations occur naturally in fields such as nonlinear optics and
plasma physics. The phenomenon of blow-up of solutions, which we deal with in this thesis, used to be less
emphasised in physics. This is because a finite-time blow-up is a theoretical phenomenon that loses smoothness
and generates a singularity at a certain finite time, but in reality no singularity occurs. There is also a lack
of model validity in the neighbourhood of this blow-up time, as the assumptions made when modelling the
nonlinear Schrédinger equation are not fulfilled. In other words, this leads to the expectation that in the
neighbourhood of the theoretical blow-up time there are perturbations that in reality suppress the blow-up.
Once an blow-up is foreseen and its conditions determined, it may be possible to reconstruct a non-blow-up
solution from that front. This is very useful when analysing problems with non-integrable systems that do not
have an analytical solution. In addition, even if the solution does not ultimately blow up in reality, its effects
do not disappear. In order to ensure that the blow-up is controlled and to study the behaviour that follows, it
is essential to be able to analyse the behaviour in the neighbourhood of the blow-up time properly.

In mathematical analysis, the studies of the nonlinear Schrédinger equation have mainly focused on the
locally well-posedness of initial value problems, the stability of solitary wave, the scattering for solutions, and
the blow-up of solutions. However, there has been little investigation of the detailed behaviour of blow-up
solutions, and other than the classical generalisation, the results are only for some several equations. These
results will be presented in Section 1.1. In the following parts, the equations treated in this thesis and their
properties will be presented.

In this thesis, we consider the following nonlinear Schrédinger equation with real-valued potentials:

du

o +Au+|u/Vu—Vu=0 (NLS)

1
in RY, where V satisfies the following condition:
N 0o N N
Ve LP(RY) + L*°(R™) leandp>5 . (1.1)
It is well known that (NLS) is locally well-posed in H*(RY) from [6, Proposition 3.2.2, Proposition 3.2.5,

Theorem 3.3.9, and Proposition 4.2.3]. Namely, the following properties hold:

e For any ug € H'(RY), there exists a maximal solution u € C((Ty, T*), H'(RN))NC*((T,,T*), H*(RM))
for (NLS) with u(0) = ug. Moreover, the solution is unique.

e There is a blow-up alternative:
T implies i t = 00.
< oo fmplies lim[[u(t) 5 = o
e The solution depends continuously on the initial values. Namely, for a sequence (ugn)nen in HH(RY)
such that g, — ug in H'(RY) as n — oo, let u, and u be solutions for (NLS) with u,(0) = ug,, and

u(0) = ug, respectively. Then for any bounded closed interval I C (T, T*), u,, are defined on I if n is
sufficiently large and

Uup, —u in C(I, H'(RY))

holds, where T, and T™ are infimum and supremum of the maximal interval of u, respectively.

7



8 CHAPTER 1. INTRODUCTION

Furthermore, the mass (i.e., L?-norm) and energy E of the solution are conserved by the flow, where

1 2 1 244 1
E(u) := B [Vull; — m\m”%% + 5 /}RN V(@)|u(z)|*dz.
N

We define Hilbert spaces ©* by
=P = {ue HERY)[[e]*u € 2R}, lullde = llullF + 2] *ull3.

We call $3! the virial space. If ug € X1, then the solution u for (NLS) with u(0) = ug belongs to C'((Ty, T*), %)
from [6, Lemma 6.5.2].
Moreover, we consider the following condition instead of (1.1):

N
V e LP(RN) + L= (RY) (p >2and p > 2) : (1.2)
Under this condition, if ug € H?(R"), then the corresponding solution u belongs to C((T.,T*), H*(RY)) N
CY((T.,T*), L*(RY)). Furthermore, if ug € X2, then the solution u for (NLS) with u(0) = ug belongs to
C((Ty,T*),¥?) and |z|Vu € C((T\, T*), L2(RY)) from the same proof as in [6, Lemma 6.5.2].

1.1 Previous results

Firstly, results based on the general theory of blow-up for the nonlinear Schrodinger equation are presented.
In [6, Theorem 6.5.4], the virial identity is used to give sufficient conditions for the solution to blow up. Applied
to (NLS), if up € X! and

1
V+§x-VVZO a.e. mRY,  E(ug) <0,

then the corresponding solution blows up at a finite time. However, the assumptions in the main result Theorem
3.1 allow the choice of potentials and initial values that do not satisfy the conditions, and in Theorem 4.1 the
potential in fact do not satisfy the conditions. In particular, Theorem 4.1 shows that for any given energy
level it is possible to construct a blow-up solution with the energy. Therefore, although it is a relatively simple
sufficient condition, it is not very wide in its application.

Secondly, [6, Theorem 6.5.13] gives an estimate from below of the blow-up rates of finite-time blow-up
solutions. Applied to (NLS), if V' = 0 (i.e., mass-critical problem) and a solution v for (NLS) blows up as t /T
(< 00), then

>_ -
[Vu(®)ll2 2 G t /T).
This result derives concrete information namely the blow-up rate. However, as discussed (1.3), it has been shown
that blow-up rates of finite-time blow-up solutions for the critical mass is |7 — ¢|~! in the critical problem.

The generalisations above do not describe the detailed behaviour of blow-up solutions. On the other hand,
specific information may be known about some blow-up solutions of several equations. Firstly, we describe the
results regarding the mass-critical problem:

du

i +Au+|u/F¥u=0, (tz)eRxRY. (CNLS)

It is well known ( [2,9,21]) that there exists a unique classical solution @ for

CAQHYQ-[0QIFQ=0, QeH'RY), Q>0, Qisradial

which is called the ground state. If ||ullz = ||Q|l2 (lullz < |@Qll2; llullz > [|Q||2), we say that w has the critical
mass (subcritical mass, supercritical mass, respectively).

We note that Eeit(Q) = 0, where E;j; is the energy with respect to (CNLS). Moreover, the ground state
@ attains the best constant in the Gagliardo-Nirenberg inequality

4
2+4 2\ (Il \ ™ 2
||UH2+% < (1 + N) <||Q||2 [Vol;  for ve HY(RY).
2

L vngy
Ecri =5 -
t(v) > 5 Vol (1 (”QQ >

Therefore, for all v € H}(RY),




1.1. PREVIOUS RESULTS 9

holds. This inequality and the mass and energy conservations imply that all subcritical-mass solutions for
(CNLS) are global and bounded in H!(RY).
Regarding the critical-mass case, we apply the pseudo-conformal transformation

1 1 |2
U —7,:i:f et
It| = t t

to the solitary wave solution u(t,z) := Q(x)e'*. Then we obtain

u(t,x) —

1 i lel?
S(tr) = e () e teh
|t\7 t

which is also a solution for (CNLS) and satisfies

1
I1S@lly = 1Ry, 1VS@Ily ~ il
Namely, S is a minimal-mass blow-up solution for (CNLS). Moreover, S is the only finite time blow-up solution
for (CNLS) with critical mass, up to the symmetries of the flow (see [13]).
Regarding the supercritical-mass case, there exists a solution u for (CNLS) such that

(t 0). (1.3)

log|log|T* —tH

IFu(t)l, ~ |~

(t T7)

(see [15,16]).
Secondly, we describe previous results regarding the following nonlinear Schrodinger equation with a real-
valued potential:

du

y + Au+ \u|%u ~V(z)u=0, (t,z)cR xR, (PNLS)

i
Carles and Nakamura [5] deal with the case where V is a Stark potential, i.e., V(x) = £ -z for some & € RV,
Carles [4] deals with the case where V(z) = +w?|z|? for w € R. By using the Avron-Herbst formula for the
former and the generalised lens transform for the latter, solutions for (CNLS) can be transformed into solutions
for (PNLS). Therefore, in these cases, the minimal-mass blow-up solution for (PNLS) can be constructed from
the minimal-mass blow-up solution S for (CNLS). The results are therefore similar to the result of the mass-
critical problem. Moreover, Csobo and Genoud [7] and Mukherjee, Nam, and Nguyen [17] deal with N > 3
and V(z) = —ﬁ for some 0 < ¢ < %. Although these results use a different ground state from @, as
in the mass-critical problem, they obtain the minimal-mass blow-up solution by applying a pseudo-conformal
transformation.
Banica, Carles, and Duyckaerts [1] presents the following result for

i%+Au+g(z)|u\%u7V(x)u:O, (t,z) € R x RV, (INLS)

Theorem 1.1 (Banica, Carles, and Duyckaerts [1]). Let N = 1 or 2, V € C?(R",R), and g € C*(RY,R).
Assume (2)°V e L2[®RY) (18 < 2), (Z)" g € L®[RY) (|8] < 4), and

ox
dg 0%g .
=1 — = = 1< < .
9(0) =1, Dz, (0) Du,08 0)=0 (1<jk<N)

Then there exist T' > 0 and a solution u € C((0,7T), %) for (INLS) such that

=0 (t\0),

Zl

w(t) — 1 z —x(t) o 52 —i6( 1)tV (0)
) A(t)’XQ< A(t) )

where 6 and ) are continuous real-valued functions and z is a continuous R¥-valued function such that

O(r) =7+o(r) asT— 400,
At) ~tand |z(t)] =o(t) ast\,0.
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Results of [4,5,7,17] construct blow-up solutions by applying the pseudo-conformal transformation to the
ground states. In contrast to these, the seminal work Raphaél and Szeftel [18] constructs a minimal-mass
blow-up solution for

Z%Z +Au+k(w)|u|%u =0, (t,z)cRxRY

without using the pseudo-conformal transformation. Le Coz, Martel, and Raphaél [10] based on the methodology
of [18] obtains the following results for

du

o T Aut lu|¥u+ [uP =0, (t,2) R xR, (DPNLS)

i

Theorem 1.2 (Le Coz, Martel, and Raphaél [10]). Let N =1,2,3,1 <p < 1+ =, and & = +. Then for any
energy level Ey € R, there exist ¢y < 0 and a radially symmetric initial value ug € H'(RY) with

[uollz = 1Qll2,  E(uo) = Ep
such that the corresponding solution w for (DPNLS) with u(ty) = uo blows up at ¢ = 0 with a blow-up rate of

C(p) + ot 70(t)

IVu(®)ll2 = )
[t
where o = m and C(p) > 0.
Theorem 1.3 ( [10]). Let N =1,2,3,1 <p <1+ %, and + = —. If an initial value has critical mass, then

the corresponding solution for (DPNLS) with u(0) = ug is global and bounded in H*(RY).

This result means that minimal-mass blow-up solutions do not exist ( [10, Lemma 1.2]).

These results show that the perturbation term, which is a small power-type nonlinearity, affects the exis-
tence and non-existence of the minimal-mass blow-up solution, and furthermore affects the blow-up rate of the
minimal-mass blow-up solution if it exists.

1.2 Organisation of this thesis

This thesis is henceforth structured as follows.
Firstly, in Chapter 2, the definitions and properties of the symbols used in this thesis are described, as well
as the lemmas necessary for the proofs of the main results. The proof of Lemma 2.2 is given in Chapter 5.
Next, in Chapter 3, the result is described for the case where the potential V' is smooth.
Finally, in Chapter 4, the results are described for the case where the potential V is a inverse power potential.



Chapter 2

Preliminaries

2.1 Notations

Let

We define

(1,0)2 = Re /RN w(z)o(x)de, lull, = (/RN |u(:c)|pdx>; ,
1

= 1 \z|2+% for z € C.
2+ 4

By identifying C with R?, we denote the differentials of f and F by df and dF, respectively. We define

A::g+x~v, L+:A+1<1+2>Q§’, L =-A+1-QF.

Namely, A is the generator of L?-scaling, and L, and L_ come from the linearised Schrédinger operator around
Q. Then

L-Q=0, L.AQ=-2Q, L_|2[’Q=—4AQ, Lip=|e’Q, L-2Q=-VQ

hold, where p € S(RY) is the unique radial solution for L, p = |z|2Q. Note that there exist Cq, ko > 0 such

that
(4 a

for any multi-index .. Furthermore, there exists ;1 > 0 such that for all u € H*(RY),

< Co(l + [z])"Q(x).

<. |(5) oo

(Ly Reu,Reu) + (L_Imu, Imu)

1 2
>l — & ((Rew Q)2 + |(Rew,2Quf* + (Rew [o"Q)2” + (1mu, %) (2.)
(e.g., see [14,15,18,20]). We denote by ) the set of functions g € C°(RN \ {0}) NC(RY) N HL ;(RY) such that

ACs, ke >0, 2| > 1= ’(;@) g(z)| < Co(1 + |z])"Q(x)

for any multi-index a. Moreover, we defined by )’ the set of functions g € ) such that
g€ H*RY) and Age CRY).
Finally, we use the notation < and 2 when the inequalities hold up to a positive constant. We also use
the notation ~ when < and 2 hold. Moreover, positive constants C' and e are sufficiently large and small,

respectively.

11



12 CHAPTER 2. PRELIMINARIES

2.2 Lemmas

In this section, the key lemmas in the proofs of the main results are described.
Firstly, we consider a more general Schrodinger equation

i% +Au+g(u) =0, (t,z) eRxRY, (GNLS)

For g = g1 + - - - + g, we consider the following assumptions:
(a) There exists G; € C'(H'(RY),R) such that G = g;.
(b) There exist 75, p; € [2,2*) such that for any M < oo, there exists L(M) < oo such that

llgj (w) = g; (W)l ,, < L(M)[[u =],

for all u,v € H*(RY) such that |Jul|z: + ||[v]|z: < M.

(c) For any u € H(RY),
Imgj(u)a =0 ae. inRY.

Here, p’ is the Holder conjugate and 2* is the Sobolev conjugate, i.e., 2* := % (N >3),2":=00 (N =1,2).
Then the following property analogous to continuous dependence holds:

Lemma 2.1. Let g = g1 + -+ + gi satisfy (a), (b), and (c). For (¢n),eny € H'(RY) and ¢ € H'(RY), let
u, and u be solutions for (GNLS) with u,(0) = ¢, and u(0) = ¢, respectively. Moreover, we assume that
©n — ¢ in L>(RY) and that for any bounded closed interval J C (T%(¢), T*(¢)), there exists m € N such that
SUD,, >, lwn || oo (1, 1r1) < 00. Then

=1 i1 L5 ((~Toin (). Tuas(2)). L2(®Y)) (1 )
In particular, u, (t) — u(t) weakly in HY(RY) for any ¢ € (T\ (), T*(¢)).
Proof. We may assume that 71,75 > 0 and J = [T}, Ts]. Then we define

M = |Jul|poo (g 1y + Sl>lp 1unllLoo (7m0
Furthermore, we define
t
Gi(u)(t) == Z/O T(t = s)g;(u(s))ds, H(u)(t) :=Tt)e+ Gi(u)t)+ -+ Ge(u)(t),

where T (¢) := €2, Similarly, we define G;(u,,) and H(u,,). According to Duhamel’s principle, we have u = H (u)
and u, = H(uy,).

Let n > m and 0 < T' < min{Ty,T2}. Moreover, let (q,7), (¢;,7;), and (v;, p;) be admissible pairs. Then,
according to the Strichartz estimate and (b), we have

IT@)on = TO)@llLa@.Lry < Cllgn — @l L2,

1 _ 1

1G;(un) = G (W)l La((-1,7),27) < C(M)TW;' Y un — U||L‘I.7((_T,T),LU‘)-
For v,w € C([-T,T), H'(RY)), we define

k

d(v,w) = |[v = wll e (-r,7).22) + D 0 = wllLos 12y,
j=1

Then we have

2
»Q‘H

J

k -
A(1un, w) = d(H(un), H(w)) < Cllpn = ¢l + d{un, u)C(M) Y T

&

1
Since there exists T'(M) > 0 such that C(M) Z?Zl T(M)"3 < 1 we obtain

1w — || Loo (= (an),r(00)),22) < A(un,u) < Cllon —@llgz =0 (n— 00),

which yields the conclusion.
Finally, (u,(t))nen is bounded in H'(RYM) and converges to u(t) in L2(RY) for any t € (T.(p), T*(p)).
Therefore, (u,(t))nen weakly converges to u(t) in H'(RY). O
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Let be P75, € V', A >0, b€ R, and K € Ny and define
P(y; /\,b) — Q(y) + Z (b2j/\(k+l)apj-t-k(y) + ib2j+1/\(k+1)apjtk(y)) )
0<j+h<K
Then the following lemma holds. The proof is described in Chapter 5.

Lemma 2.2 (Decomposition). There exists [,C > 0 such that the following statement holds. Let I be an
interval and § > 0 be sufficiently small. We assume that u € C(I, HY(RY)) N CY(I, H1(RY)) satisfies

N
2

Vtel,

‘)\(t) w (t, M)y — w(t)) e 1O — QHHl <4

for some functions A : I — (0,0),v: I — R, and w: I — RY. Then there exist unique functions NI — (0, 00),
b:I —R,5:1—R/27Z, and w(t) : I — RY such that

1 XD = z +®(t) eﬁ@%ﬂa(t)
u@@—Xng%Amﬁm)m)G - ) o |

hold, where | - |g/2-7 is defined by
|C|]R/27TZ = lréfZ |C + 27Tm|a

and that £ satisfies the orthogonal conditions
(£,iAP), = (&,|y[*P), = (5,ip), =0, (£,yP)2=0
on I. In particular, A, b, 7, and @ are C* functions and independent of X, 7, and w.

Remark 2.3. In particular, if w and P(-; A\,b) are spherically symmetrical, then @ = 0.

2.3 Outline of proofs

We prove main theorems by using a simplified version with modification of the method of Le Coz, Martel, and
Raphaél [10], which is based on seminal work of Raphaél and Szeftel [18]. We proceed in the following steps:

Step 1. For a solution u for (NLS), we consider the following transformation:

1 I gy r+w(s) ds 1
v(s,y)e 1 i =—"r — = . 2.2
o) (s,9) y o) FTAEBYBE (2.2)

u(t,z) =

v|z

Then v satisfies

0= z% + Av — v+ f(v) — N2V (\y — w)v + modulation terms.
s

Step 2. We construct a blow-up profile P as an approximate solution for

i%—P + AP — P+ f(P) = NV(\-—w)P+0
S

ly|?
Yl p—
1 0,

2
where Q%P is a some correction term.

Step 3. Let v = P + ¢ for some error function €. Then we obtain the equation of e:

ly|?

0= ly®
1

Ozzas

+Ac—e+ f(P+e)— f(P)— NV (\y —w)e + -2~ + modulation terms + error terms.

Step 4. By using the modulation terms and e, we estimate the parameters A, b, v, and w.

Step 5. We construct a sequence of suitable solutions for (NLS) and show that the limit of the sequence is the
desired minimal-mass blow-up solution.






Chapter 3

Case of smooth potentials

3.1 Problem and Main result

In this chapter, for the potential V' in the equation

i% + Au+ [u|¥u—Vu =0, (NLS)
we assume the following:
N 9] N N
Ve LP(R™) + L>°(R™) <p>2andp>2), (3.1)
Ve C (RY),
VV, V2V € LYRY) + L=®(R") (¢ >2and ¢> N).

Then we obtain the following result:

Theorem 3.1 ( [12]). Let the potential V satisfy (3.1), (3.2), and (3.3). Then there exist tp < 0 and a initial
value uy € X! with

uoll2 = | Q|2

such that the corresponding solution w for (NLS) with u(tg) = uo blows up at ¢t = 0. Moreover,

u(t,x) —

-0 (t 0

1 0 (ac + w(t)) eﬂv# ‘”ﬁ?”tﬁ?” in)
At)> A(t)

holds for some C* functions A : (t9,0) — (0,00), b,7 : (tg,0) — R, and w : (¢y,0) — RY such that

»1

At =1t (1 +0(1)), b(t)=[t|(L+0o(1), ~()~ [t |wt)=O0(t)
ast /0.

Firstly, the assumptions in Theorem 3.1 are weaker than those in Theorem 1.1 with g = 1. Theorem 3.1 has
no restrictions on spatial dimensions. On the other hand, according to the lack of regularity of the nonlinearity
|u|%u7 Theorem 1.1 requires the restriction N = 1 or 2. Although Theorem 3.1 is also affected by the lack
of regularity, we overcome this difficulty by using the properties of the ground state. In Theorem 3.1, the
assumption (3.2) plays an important role. We use to (3.2) to apply Taylor’s theorem to V. When V' does not
satisfy (3.2), blow-up rates should change as the result of Le Coz, Martel, and Raphaél [10] or Theorem 4.1.

Secondly, we improve some parts of the arguments in Le Coz, Martel, and Raphaél [10] and Raphaél and
Szeftel [18]. Although the authors of [10,18] introduce the Morawetz functional ( [10, Section 5] and [18, Lemma
3.3]) and apply a truncation procedure to the functional, we avoid using the functional by modifying the
definition of €. As a result, without the truncation, we work directly in the virial space ¥'. Moreover, the
authors of [10] use the continuous dependence on the initial value for (DPNLS) in H*(RY) for some s € [0, 1).
Although this continuous dependence is an important fact in the proof of the main result in [10], it is not obvious
for (NLS). Therefore, instead of proving the continuous dependence for (NLS) in H*(RY) for some s € [0, 1),
we use Lemma 2.1, which gives a kind of the continuous dependence. Consequently, we provide a simpler and
more general proof.

15



16 CHAPTER 3. CASE OF SMOOTH POTENTIALS

3.2 Proof of Theorem 3.1

The error term V¥ is defined by
U(y; A w) = A2V Ay — w)Q(y)

for A > 0 and w € RY. Moreover, we define x by
N
ki=1——>0.
q

Without loss of generality, we may assume that V(0) = 0.

Proposition 3.2. There exists a sufficiently small constant ¢’ > 0 such that

ee’lyle < AP 4 AR [w]? (3.4)
2
for 0 < A < 1 and w € RY. Moreover, for any radial function ¢ € L?(RY),

(2, 9)a] S Nl + A (W + |w]?) .

Proof. For the sake of simplicity, we assume V2V € L4(RY).
By using Taylor’s theorem and V(0) = 0, we write

oV _ 30V !

A —— oz, Ay —w) = oz (0) + Ny —w) - (Vng) (t(A\y — w))dr.

Therefore, we have

[T ()] < NNyl + [w) Q) + A (Alyl + [w])? /|V2 T(A\y — w))| dTQ(y)
[VE()] < A2 A+ Jy]) + [w]) Q(y)

+ N1+ |y|) + |w]) /|v2 T(Ay — w))| drQ(y)

According to (3.3) and the exponential decay of @ from [6, Theorem 8.1.1], there exists a sufficiently small
constant € > 0 such that

N

eIV (700 — w)) (1 + y) QW)||, S 77T AT V2V Q¥ 24,

Therefore,

1
V| SN+ fwl) + 42 (A + ) / i dr A 4 A w2,
0

Iy\\pH

Finally, since (y@Q, )2 = 0 for any radial function ¢ € L?(R"), we obtain

(63

.00 = ~¥w VO(Q ekt X [ 3 (0w S 0w - w0 (1=

la|=2 2

Therefore, we obtain conclusion. O
Remark 3.3. For the estimate of (3.4) in [12], there is a term A'**|w|?, but this is correct for \*|w|?.

Next, we give a uniform estimate of the modulation terms.
Let so be sufficiently large. Given t; < 0 which is sufficiently close to 0, we define s; := —t;~! and
A1 = by = 5171, Let u(t) be the solution for (NLS) with an initial value

1 T _iby =2
w(tr,z) == —Q () R (3.5)
)\17 /\1
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Note that u € C((Ty,T*),X2(RY)) and |z|Vu € C((T\, T*), L>(R")). Moreover,

Im u(ty, 2)Vau(ty, z)dx =0
RN
holds. Moreover, u satisfies the assumption in Lemma 2.2 in a neighbourhood of ¢;. Therefore, by applying
Lemma 2.2 with P = @ (i.e. Pj . = 0 for all j, k) to u, there exist decomposition parameters \;,, by, , i, , Wy,
and &;, such that

1 ~ x + @n (t)> - bf14m %+i%l (t)
u(t,r) = =—x (@ +¢ t,——— e u® , 3.6
(t.2) A, ()7 (@+2u) ( A, () (3.6)
(1., iAQ), = (gtl’ |y|2Q)2 = (E1+1p)y =0, (E4,,yQ)2 =0 (3.7)

hold in the neighbourhood of ¢;. We define the rescaled time s;, by
(t) /t1 1 d
s =5 — - T.
" VRS WTSE

Moreover, let I;; be the maximal interval of the existence of the decomposition such that (3.6) and (3.7) hold
and we define

Jsl = Sty (Itl) .

Then, since sy, : Iy, — Jg, is strictly monotonically increasing, we can define inverse function s;, ~' : Js, — I, .
Furthermore, we define

ttl = Stl_lv >\t1 (S) = S\tl (ttl (S)), btl (8) = l;tl (ttl (8))7
Yir (8) = it (e, (8))s wy, (8) 1= Wy, (tr, (8)), et,(8,y) == &, (t, (), 9)

for s € J,,. In addition, although it is an abuse of the symbol, we define

U(s,y) == U(y; A(s), w(s)).

For the sake of clarity in notation, we often omit the subscript ;. Additionally, for sufficiently large s1 (> so),
we define

s’ := max {so,inf Jg, } .
Let K be sufficiently large and L and M be defined by
L-—3+ ! 1<M<2(L-1)
T2 K’ '

Moreover, we define s, by
s, :=1inf{o € (¢, s1] | (3.8) holds on [o, s1]},

where

{ etoli & MRl < 2 .

IsA(s) — 1] < s7M, |sb(s) — 1| <s™M,  |w(s)| < s~ 3.
Note that for all s € (s., s1], we have
1= s7M) < A(s),b(s) < s7H(1 +s7M).

In Lemma 3.12, we will show that sg = s’ = s, holds for any s; > s if sq is sufficiently large.
By direct calculations, we obtain

\I/:i%—kAs—s—i—f(Q—kE)—f(Q)—)\2V()\y—w)5 (3.9)

—i(/l\g)9\+b>A(Q+s)+<1—> @+e)+ (glsﬂ 2) W +e)

i)\ 2 0 bo
(554 ) @ 4150 V@49 + 535 wQ e

on Js, . Finally, we define
10X 8b Oy Ow
M — 41— .

In order to obtain a uniform estimate of the modulation terms, the following lemma, is first presented.
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Lemma 3.4. For all s € (s, 1],
|(Tme(s), VQ)a| < 572 (3.10)
Proof. According to a direct calculation, we have

%Im u(t,x)Vu(t, z)de = =2 (Vu(t), Vu(t)), = (VVu(t), u(t)) .
RN

Moreover, according to (3.3) and (3.6), we obtain

(V) u®)] = [((FV)A by - 50)(@ + (1)), Q +E1))|
(14205 1QU + (A +1) (IQUmr + IE@ ) 1)1
1

S
<
Accordingly, we obtain

‘Im/RNu( (s), 2)Va(t(s), ¢)de| <

/ A0)? [(VVu(t(0), ult(0)))| do

N/ 2do <571
S

2(1m =(s), VQ)a + (e(5):iV(s))2 + 5 | wlQ) + (sl dy

Therefore, we obtain

= Alm u(t(s), z)Vu(t(s), z)dx
RN

=0 (s7?)
Moreover, from (3.8) and the orthogonal conditions (3.7), we obtain
2(e(s),i9=(s))2 +b | y1QW) + <(o) P dy = 2e(s), Ve + [ plelon) Py
R R
=0(s7%).
Consequently, we obtain (3.10). O

Lemma 3.5 (Estimation of modulation terms). For all s € (s,, s1],

2(e(s), Q)2 = — ()13, (3.11)
|Mod(s)| < 573, (3.12)

ob 10
5T + b2+ ‘)\6 + b‘ sk, (3.13)

Proof. According to the mass conservation, we have

2 2 2 2
2(&,Q)y = llully = IRz = llellz = = llellz

meaning (3.11) holds.
For v = AQ, i|y|*Q, p, or y,;Q, the following estimates hold:

1f(@Q+e) = (@ —df@QE] Slel’, IV (g —w)e,v)a] S (A + X7 [w]?) e

By differentiating the orthogonal conditions (3.7) with respect to the time variable s, we obtain

d . Oe
0= % (Z€,AQ)2 = (Zas, AQ>2 (314)
_ d . . 2 _ % o2
& P, = (i52ivPe) (3.15)
d . [ .0e
= % fie.p), = ap) (3.16)
d Oe

= s (ig,iy;Q)y = (iasJij>2~ (3.17)
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For the first line of (3.9),
—Aete—(f(Q+e) = [(Q)+NV(\y—w)e
=Ly Ree+iL_Tme — (f(Q+¢) — f(Q) — df(Q)(e)) + XV Ay — w)e
holds. Therefore, we have

z% =L, Reec+iL_Ime— (f(Q+¢)— f(Q) —df(Q)(e)) + N>V (\y — w)e

(10X 0 b 2
+z<)\as+b> AQ+e) — (laD (Q+¢) - <a +b2) WG+ o)
10X ly|2 1 ow 160w
+ <s+b> bT(Qqu)sz%~V(Q+s)f§Xg~y(Q+€)+\If.
From (3.14), we have
(Ly Ree +iL_Tme, AQ), = (Ree, Ly AQ), = —2(Ree,Q), = —2(5,Q), = ||l

Therefore,

il (5 +#) = (5 +#) Yrene).

(15 - L Roe —iLoTme 4 £(Q+6) - £(Q) ~ Q) ~ XV~ w)e

(/l\g)\—&-b)A(Q—i—a)—&-(l—éW)(Q—i—) (nger)'gff_(igi*b) |y|2(Q+e)

150
”X@'V(QJFEHiXaﬂ (Q+€)—\I’,AQ>
3.

2
and according to orthogonal conditions (3.7), Equation (3.9), Proposition 3.2, and Lemma 3.4, we see that
’81)

SV S5 s ~(3+%)|Mod(s)|.

For (3.15), (3.16), and (3.17), we similarly obtain

1 1 8
15 —|—b‘ + ’1 - Z‘ < 5720 4 = (51%) Mod(s)), ’“’

< -3 —1M .
]S s ()

Note that Lemma 3.4 is used to obtain % from (3.17). Therefore,
[Mod(s)| < 572 + € |Mod(s)| .
For detail of the proof of the inequality, see [10, Lemma 4.1]. Consequently, we obtain (3.12) and (3.13). O
Let m, €1, and ey satisfy
mpey

16 °
where p is from the coercivity (2.1) of Ly and L_. Moreover, we define

1<1+el<%§L, 0<en<

(s.2) = 5 el + exb(o)? lulel = [ (PIQE) + £() = FIQW)) — dF(Q)) () dy

£ 267 [ VO~ wls)le)dy,
RN
1

S(s,e) = OR

H(s,e).
Lemma 3.6 (Coercivity). For all s € (s, s1],

H(s,e) > *II 17 + 26 Illylell

holds. Moreover,

Loy 2 2 2 ! 2

N o - 1 < N o 1

i (el + et Nlglel2) < 8(s,€) S 5 (el + 02 olell?)
holds.
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Proof. Firstly, we have

[, (FQw + <) - F@w) - dr@u)t)

= 0 (Jlels + 1el3:¥)

S—
|
| =
IS8
[\v]
|
—~
Q
—
N
S—
=
—~
[0
—~
<
\.\/
™
—~
<
S—
S—
N~~~
U
<

Furthermore, according to (3.1), we have

X o V(hy —w)le(y)Pdy| < ellelF.

Finally, since
le 7 /RN *F(Q(y)(e(y),e(y))dy = (L+ Ree,Ree), + (L-Ime,Ime),
we obtain Lemma 3.6. O
Lemma 3.7. For all s € (s, 1],
(f(Q+e) = F(Q), Ae)o| S NlellFn, (3.18)
A2 (V(hy —w)e, Ae)y| S 570 (Jlellzp + ?llylell3) - (3.19)

Proof. For (3.18), see [10, Section 5.4] or Lemma 4.16. For (3.19), a direct calculation shows
1
(VO — w)e, Ae)y = —2 (g~ (TV)(y — w)e, <),

Therefore, from (3.3), we obtain (3.19). O
Lemma 3.8 (Derivative of H in time). For all s € (s., 1],

462

d m 2 _
(0,206 2 0 (22l + (G + 14 ) b el + €50,

Remark 3.9. The term Cs~* is present in [12], but has been corrected to C's~(+1),
Proof. Firstly,

D prs.es) = W s e + (zgf@,ds»,ig;(s))z,

%g@@):—A5+5+2QFWP6—LﬂQ+s%—ﬂQD4nVVQy—wk

=L Ree+iL_Ime + 26b%|yl’e — (F(Q +¢) — £(Q) — df(Q)(2)) + N2V (\y — w)e,

oOH 10\
(e =2 el + 1500 [ VO - wlefdy
118)\ . s, 1 1low )
+2)\8/\/ (V) Ay — w)|ePdy QA/ LIV~ w)lePdy

holds. Additionally, we define

2 2
Modep, v :=i (18)\+b> Av — ( 87)0 <8b +b2> 1yl v+ <1a)\+b> bMv

A0 9s 9 4 A Os 2
1 0w 160w
s VYT anas
Then,
0e OH 9 19
5 = Be — 2e2b%|y|*e + Modop(Q +¢) + T
holds.

Then, we have
ob
2eab s [lels > —2e2(1+ )8 [lylell3 -
According to (3.1), (3.3), and Lemma 3.7, we have

OH .
5 2 201+ b’ llylells — eb (llellZ + 62 [llyl<ll3) -
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. OH 2 (PN
Next, since G- € L (R ),

OH O |
de’ de )
holds.

For (i%—g, —2€gb2|y|2€)2,

OH
(Zas’ —262b2|y|2€>

Therefore, we have

= 4eab*(iVe,ye) + (i(1Q + ¢l ¥ = QF)Q, —2ex?yf%e) .
2

0H
(Zag" —262b2y|25) ,
For (l%—g, Mod,y, Q)Q, by using orthogonal properties (3.7) and Lemma 3.5, we have

OH OH OH | 1|(.0H 9Q OH
(Zas”AQL (Zaﬂl (’aa'y' Q>2 U\(Zae”ay)g * (ayQ)

Therefore, based on the definition of Mod,, @ and (3.12), we have

OH
<'Lag, MOdOp Q) ,

For (i%, Mod,p 6)2, by Lemma 3.7, we have
(z’aH,iAs>
Oe 5
OH 4 4 .
(Z(%v‘g)Q_ ((|Q+‘€| _Q )Q7ZE)2'
(,8H 5)
1=
de "/,

< deab? [|lylell, || Vell2 + Ceab?||e]3

< deab? [[lylell, [|Vell2 + eblle]]3-

+

+

< [Mod(s)| ([e]l3 +s72) < eblle]|3 + Cs™°.

< lellzn + 611 - [ell3-

Next,

Therefore, we have

< llell3-

Next, since

OH  0Oe Oe il
(1575 ), =tttz 1@+ - 1@ 5 ) =5 (Gr0u=weee) .
Oe _ @ % _
(r@+a50) == (r@+a.52) . (r@.52) -o
and
o) Y Z _ 1), 29 Oe
(r@+a-r@.55) =~ (re+a-r@.52) - (ra.5)
(oo ). )
(r@+a-r@.52) +(r@e.52) .
we have
1‘(2,81[[71,85) < g—(2L-1)
A 0" 0y; )4~
Finally,

OH Oe . 4 4 .
(285 ,yje)2 = -2 (8yj,ze>2 + <<|Q+5\ -Q ) Q,zyje>2.
OH
"oe 1 I° )

Therefore, we have

< llelif-

< llell3 + 572

21
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According to the definition of Mod,, € and (3.12), we have

oOH
O\ od,
‘(Zas’ odp5>2

< € Mod(s)] ([l + 82 llwlel3 + Cs~+V)
< b (llellzr + b7 [lylel3) + Cs™EFF2).
Finally, we have

< 57 B,

Consequently, we have

’(.GH Oe

iS00 ) | < deab? Nlylelly 9l + b (el + B2yl ]3) + Cs~ G+
0e’ 0s )/,

< dexb? |lylelly [|Vell2 + eb (llelFrn + blllyle3) + Cos~+E)

and

d _
T H(s,2(5) = —2e2(1 + )p° llylells — ebllelF — 4e2b® Il - lelly Vel — eb (llellFn + U2 [lyle]3) — Cbs™H)

2€ _
> <21+ -+ ex)eat? llylell; = <20Vl - b (el + 0 lplel}) - Cbs~3+2.

O
We define " by
12
=T
Lemma 3.10 (Derivative of S in time). For all s € (s., s1],
d S N b 2 b2 2 —(2L+K")
2:5(s,6(8)) 2 1 Ul + b7 Mllylell; — s :
Proof. According to (3.12) and Lemmas 3.7 and 3.8, we have
d b 1 /10X 1 d
£S(s,5(s)) = m/\—mH(s,e(s)) — My ()\6'5 + b) H(s,e(s)) + /\fmﬁH(s,a(s))
b mp  4deg m 2 - K’
> (=22 ) el + (g — (1 ) cat? el = 525440 )
Therefore, we obtain Lemma 3.10. O
Lemma 3.11. There exists a sufficiently small €3 > 0 such that for all s € (s, 1],
2 2 o - "
le(s) 17 + () lllyle(s)ll < s~ ), (3.20)
|sA(s) — 1] < (1 —e3)s™M, (3.21)
lsb(s) — 1] < (1 —e3)s™ ™, (3.22)
lw(s)] < s72 (3.23)

Proof. By using Lemmas 3.6 and 3.10 as in the proof of [10, Lemma 6.1], we see that (3.20). Indeed, we prove
(3.20) by contradiction. Let C; > 0 be sufficiently large and define

st := inf {O’ € (84, 51] ‘ H€(T)||§{1 —|—b(7—)2 |Hy|5(T)H§ < CTT_(2L+"“/) (r € [0,51])},
Then s¢ < s; holds. Here, we assume that s; > s,. Then we have
le(sp)lZ + b(st) [llyle(s)]|? = Cpsy L=,

Let define
2 2 — ’
sy = sup {or € (su,m1] | (@)l +5(r)* lnle(r)IE = 7B (7 [sp,0])}.
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Then s; > s; holds. Furthermore,

”5(51)”?.11 + b(Si)Z H|y|g(si)”§ — 317(2L+n ).
Then, according to Corollary 3.6 and Lemma 3.10, we have

C1 2 2 2 Cy 2 2 2

S 1 < < —= 1

(el + 57 ) < S(s.2) < <2 (el + 02 lnlelZ)
Chb

” d
~1v 2 2 2 —(2L+K") < =
O (el + 02 il — s~ 2) < L (s, ()

for s € (s«,s1]. Here, S(-,e(-)) is monotonically increasing on [sy, s;]. Therefore, we have

C1Cysy 1 = 1 (Jle(sp) s+ bs1)? Ilyl=(sp)I3) < Alsp)™S (51, 2(51)) < A(s)™S (s, 2(51)

A(s)™ 2 9 5 AGD™ v oran
= 1 b = (2L+k")
< )\(Si)mcz (Hs(sﬂHH + b(s3) |||y|€(s¢)||2) /\(si)mCQSi
—(2L—m+x")
) —(2L+m/).

< (1+¢)C% (Si St
St
Accordingly, we have C1Ct < (1 + €)C5, which yields a contradiction if C; is sufficiently large. Consequently,
st < s.. Moreover, since s, < st clearly holds by definition, we have s, = s;. Therefore, (3.20) holds.
We prove (3.21). Since

di (sA)‘ <s H14e) (s_M + C’s_(QL_l)) < (14 €)s™(MHD
s

and \(s1) = 51~ %, we have

S1 1
[sA—1] < / (1+e)o~ Mgy < %S_M.

Therefore, (3.21) holds since M > 1. Next, we prove (3.22). Since

‘i - 1‘ S /Sl o~ @k gy < gL

from (3.13), we have
|sb — sA| < s72ED),

Consequently, we have

1
|sb— 1| < |sb — sA| + [sA — 1] < %s*M + 527D,

Therefore, (3.22) holds. Finally, since

S1 S1
o (s)| g/ |Mod(a)|da§/ o3do < 572,
S S

we obtain (3.23). O
Consequently, (3.8) holds on [sg, s1]:
Lemma 3.12. If s is sufficiently large, then s, = s’ = s¢ for any s; > sp.

Proof. From Lemma 3.11, s, = s’ is obvious.

We prove s’ < sg by contradiction. Assume that for any sg > 1, there exists s; > sg such that s’ > sg.
In the following, we consider the initial value (3.5) in response to such s; and the corresponding solution u for
(NLS).

Let t' :=inf I,. Then s’ = inf J,, > s¢ holds. Furthermore, we have

N
2

A(s) = u(s, M(s)y — w(s))e ) — Q(y) < o
4

for all s € (s, s1]. Since ty, ((¢, s1]) = (¥, t1], we have
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for all t € (¢/,t1]. We consider three cases ~t/ >T,, t' =T, > —00, and t' = —oo.
Firstly, assume ¢’ > T.. Then X and X are bounded on (s',s1] and (¢, 1], respectively, according to (3.8)
and s, = s’. Then, by setting ¢ sufficiently close to ¢/, we have

PoFu Ay —a)e 0 - Q)| <.
Therefore, there exists the decomposition of u in a neighbourhood of ¢ according to Lemma 2.2. Its existence
contradicts the maximality of Iy, .
Next, assume ¢’ = T, > —oo. Then ||Vu(t)||2 = oo (¢ \ t') holds according to the blow-up alternative.
Also, [[Vu(s)]l2 = 00 (s Ny s’) holds. Then since

[u(s)ll2 + A(s)[[Vuls)ll2 S 1,
we have A(s) — 0 (s Ny s'). Therefore, we obtain

IsA(s) — 1] =1, s M ¢ M<

CRVED}

DN | =

which contradicts (3.21).
Finally, assume ¢’ = —oo. Then there exists a sequence (s, ),ecn that converges to s’ such that lim,, . A(s,) =

oo holds. Therefore, we obtain
I50A(sn) — 1] = 00, s ™ 58 ™M <1 (n— o),

which contradicts (3.21).
Consequently, we obtain s’ < sq. O

The estimates obtained with Lemmas 3.11 and 3.12 are in the time variable s. Therefore, they need to be
rewritten in the time variable ¢t. To do so, for any ¢; sufficiently close to 0, each decomposition parameters must
be defined on a sufficient interval.

Lemma 3.13. Let sy be sufficiently large. Then there exists ty < 0 such that
[to, t1] C st ([s0, 1)), [se ()" = [tl] S 1HMFH (¢ € [to, 1))
hold for all t; € (tg,0).

Proof. Firstly, [t, (s0),t1] = s¢, *([s0, s1]) holds. For all s € [sg, s1], we have
s1
ty —ty(s) =5t -5t —|—/ 072 (oM, (0) +1) (o), (o) — 1) do

since —s; ! = t; = t;,(s1). Therefore, we have

%s‘l < st (1 — 33_M) <ty (9)] < s71 (1 + SS_M) <2571,

Accordingly, we obtain 3 [t;, (s)| < s7! <2t (s)|. According to sy, ~! = t;,, we obtain
%|t| < s, ()7 <20t (3.24)
Consequently, according to (3.24), we obtain
f|t| _ Stl(t)71| < 3sy, (1)~ MHD) < g gM+L |y M+L
Furthermore, since
i (50) =l (50)| < — g0, (te (50)) ™" = — 5507
and sg is independent of ¢; according to Lemma 3.12, we obtain Lemma 3.13. O

Lemma 3.14 (Conversion of estimates). For any t; € (to,0) and t € [to, t1],
Ao () = [t (1+ €5, (1)) b () = [t] (1 + 5., () [, (O] S 11,
&, @)l S [t1PH, ylee, @)l < [e*F 5
hold for some functions €5, and ¢;, . Furthermore,
sb1 sl1

sup )e;\M (t)‘ SM, sup ‘eg,tl(t)‘ < M.
t1€[t,0) t1€[t,0)
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Proof. Firstly, we define €5, (¢) := ’\tllt‘(t) — 1. According to (3.24) and Lemma 3.13, we have

< 1 1
€5 t‘z(s A t—1> + — 1] < M.
50,0 = | (500300 = 1) 5 + S~ S M
Similarly, we define ¢, (t) := bt‘lt(lt) — 1 and obtain estimates of by, (t) and by, (t). O

Finally, this chapter ends with the proof of Theorem 3.1.

Proof of Theorem 8.1. Let (tn)nen C (to,0) be a increasing sequence such that lim,, » t, = 0. For each n € N,
let u,, be the solution for (NLS) with the initial value

b1 |z|?
1NQ< < )el a7
A1 n? /\l’n
at t,,, where by , = A1, =55,

According to Lemma 2.2, there exists the decomposition

Up (tn, ) 1=

L= —tn.

- - . 2
T + Wy (t)) e_ibnzl(t) \1J[wn(i2)\ +iFn (1)

ualt.) = 5 (1t _(Q+2) (t, 0 e

n(t)2

on [tg,t,]. Then (un(to))nen is bounded in X!, Therefore, up to a subsequence, there exists uq(to) € 3! such
that
Un (tg) — Uso(tg) weakly in X'

Moreover, from Fréchet-Kolmogorov theorem, we see that
Un (to) = uso(to) in L2(RY)  (n — o0).

Let uo, be the solution for (NLS) with the initial value us (tg) and 7™ be the supremum of the maximal
existence interval of u.,. Moreover, we define T := min{0,7*}. For any 7" € [to,T), we have [ty,T’] C [to,tn]
if n is sufficiently large. Then there exists ng such that

sup [[un |l oo (jto,7,51) S (L4177 (1+ [to]®)

n>ng
holds. According to Lemma 2.1,
Uy — Uso 10 O([te, T'], LA(RN))  (n — o)
holds. In particular, u,(t) — us(t) in £ for any ¢ € [tg, T'). Furthermore, we have

[too (B)ll2 = lluce(to)lle = lim fun(to)llz = lm_[lun(tn)ll2 = Q]2

According to weak convergence in 3! and Lemma 2.2, we decompose o t0

Uoo (t, ) = =

1
Aso(t)

on [tg,T). Furthermore, as n — oo,

(@ 2 (1, ZE D) ot
Ao (t)

v|Z

An(t) = Aoo(t),  Dult) = boo(t),  Wp(t) = Woo(t), e 5 giTe(t)
En(t) = Eoo(t) weakly in X!
hold for any t € [tg,T). Therefore, we obtain
Moo (8) = [t (1 + €5 4(1)), boo (t) = [t (1 4+ €54(t)),  |iae(t)] S It

~ L+% - L5 —1
ool S T2, lyléso()ll2 S L7727, Gx,o(t)‘ < [t

ot)] S I

from the uniform estimates in Lemma 3.14. Consequently, we obtain Theorem 3.1. O






Chapter 4

Case of inverse power potential

4.1 Problem and Main results

In this chapter, we consider the following equation

0
iZh 4 Aut \u|%uj:

5 u=0, (NLS)

1
a7
where

N
O<U<min{4,1}. (4.1)

Then we obtain the following results.

Theorem 4.1 ( [11]). Assume (4.1). Then for any energy level Ey € R, there exist t; < 0 and a radially
symmetric initial value uy € X! with

[uoll2 = [|Qll2;  E(uo) = Eo

such that the corresponding solution w for (NLS) with + = + and u(ty) = uo blows up at ¢ = 0. Moreover,

1 T _i 2 =2 +iy(t)
ut)— — P (t,— e T 202
H O-30F (+55)

holds for some blow-up profile P and C! functions X : (t9,0) — (0,00) and b, : (t9,0) — R such that

=0 (t,0)

»1

P(t) = Q inX', A(t) = C1(0)[t| T (14 0(1)),
b(t) = Calo) 1155 (1+0(1)), (1)~ =0 (115)
ast /0.
On the other hand, the following holds when + = —.

Theorem 4.2 ( [11]). Assume N > 2 and 0 < 0 < 1. If ug € HL (RY) such that ||u0||2 = [|@Q]]2, the

corresponding solution u for (NLS) with 4+ = — and u(0) = ug is global and bounded in H!(RY).

As in Theorem 1.3, this result means that there is no spherically symmetric minimal-mass blow-up solution.
In terms of blow-up rate expectations, we compare (NLS) and (DPNLS). We consider the transformation
(2.2). Then v for solution u for (DPNLS) satisfies

v
0=i—+Av—v+ |v|%11 + A\*w|P~ v + modulation terms + error terms

Os

with o =2 — %(p —1). Theorem 1.2 states that there exists a minimal-mass blow-up solution with a blow-up

rate |t|_ﬁ with + = +, and Theorem 1.3 states that there exists no minimal-mass blow-up solution with
+ = —. On the other hand, v for solution u for (NLS) satisfies

v + modulation terms + error terms

0
O:i—v+Av—U+|v|%v:t)\“

1
s ly|>

27
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with @ = 2 — 20. Therefore, we expect (NLS) to behave similarly to (DPNLS) regarding blow-up solutions.
Namely, there may exist a minimal-mass blow-up solution with a blow-up rate of |t\7ﬁ with £ = 4, and
there may exist no minimal-mass blow-up solution with + = —. Moreover, the method in this paper could also
be applied to nonlinear terms of the form |z| =27 |u|P~tu.

In results [4,5,7,17], the blow-up solutions are explicitly constructed by applying a special transformation
to the solitary wave. In contrast, (NLS) has no such transformation. Therefore, we need a non-classical method
that does not use the pseudo-conformal transformation such as [10] or [18]. As a result, we have constructed a
blow-up solution with a non-trivial rate |¢t|” ™. In particular, Theorem 4.1 is the first result for an unbounded
potential without algebraic properties.

The potential in Theorem 3.1 is smooth and the blow—up rate is [t|~!. In contrast, the potential in Theorem
4.1 is singular at the origin and the blow-up rate is [¢|” ™7 . The smoothness at the origin (or more precisely at
the blow-up point) is what makes the difference between the two blow-up rates.

In terms of blow-up rates, we construct a blow-up solution with a rate of |t|” T+ . Here, we have ||~ ™
|t|=% as o — 1. This blow-up rate is different from the rate [¢|~! in results in [7, 17]. If 0 =1, then the inverse
power potential term cannot be treated as a perturbation because the scaling is balanced by the Laplacian
unlike o < 1 and (DPNLS). Consequently, when o = 1, by using a different ground state from the one used in
this paper and the pseudo-conformal transformation, we obtain a blow-up solution with a blow-up rate [¢t|~1.
Moreover, since Cy(0) — o0 as ¢ — 1, the limit dose not make sense.

In the proof of Lemmas 4.17 and 4.18, we use %2 regularity of the error function . Therefore, we assume
(4.1) is for the error function ¢ to belong to ¥2. However, the behaviour of blow-up in Theorem 4.1 is described
in 1. Accordingly, it may be not essential.

4.2 Construction of blow-up profile

For K € N, we define
Sk={ (k) eN|j+k<K }.

Proposition 4.3. Let K, K’ € N be sufficiently large. Let A(s) > 0 and b(s) € R be C! functions of s such
that A(s) + |b(s)] < 1.

(i). Ezistence of blow-up profile. For any (j,k) € ¥k k-, there exist P;k, P €Y, Bir €ER and ¥ € H(RY)
such that P satisfies

QP \yl2
Zf + AP —-P+ f(P)+ )¢

where @ = 2 — 20, and P and 6 are defined by

Yp_w,

Pla) = Q)+ 3 (Be)PAEHI P () + (N8 I Py ).
(U, k)EX k4 k7

0(s):= > b(s)PA(s)FTVg; .

(j,k‘)EZKJrK/

Moreover, for some sufficiently small ¢ > 0,

ee/ly\\pHHl <A (‘18/\ +b‘ ’—H}Q D +(b2+)\a)K+2

holds.

(ii). Mass and energy properties of blow-up profile. Let define

Prpn(s,2) = /\(Sl)gp <5, )\(xs)) e it )\‘(I‘)2 +iv(s).
Then
‘d HISES (‘1‘9’\“}’ ‘erz ‘>+(b2+/\a)m2’
’jE(PAb ) < ;(‘“”M‘ ‘+b2 ‘ (b2+AQ)K+2>
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hold. Moreover,

228 A (B2 4 A°)
SE(Prn) - QI (5 - 5o )| s 20 (12)
holds, where
dollly—° QI3
B:=Poo=—Tr1m5—-
lylQlI3

Remark 4.4. Incorrect construction of profile in [11] has been corrected. In the definition of ® in [11],

b2j)\(k+2)aﬁPfk and iijH)\(’H‘QWﬁPJTk are added only when j = 0 and & = K + K’, but in reality they

must be added when j + k = K + K’. As a result, Proposition 4.10 is required.

Proof. See [10, Proposition 2.1] for details of proofs.
We prove (i). We set

Z:= > pENeph i N pINeps
(4,k)EX k4 k7 (4,k)EX k4 k7

Then P = Q + A*Z holds. Moreover, let set

O(s):= > bs)A(s)FTDech, (4.3)
(j,k)EEKJrK/
and we consider
0P o 1 ly[?
i— +AP—-P+ f(P)+ A P+60=—P+06Q =0,
s ly|2” 4

where Pj‘k, P e Y’ and Bj , cj'k € R are to be determined.
Firstly, we have

oP j
im—=—i Y ((k+Da+2)p A py

0s ]
(J,k) €S e 4 kv
. 241y (k4+1)a m 35— 2y (k+1)a 55+ ap
+i ) BT Fifi ™+ D b Fie +®0,
J,k>0 J,k>0

where

10X .
(I)(%) = ( + b) Z (k+ 1)ab2j)\(k+1)a(ipj,rk _ ijTk)
(

j,k)GEK+K/

b .
+ (2 b~ 9) o B IAEDA;ipE — (2] + 1)bP;)
’ () et

oP
and for j,k > 0, F,% % consists of ij,tk, and Bj p for (j',k') € Egy ks such that ' <k —1and j <j+1or

P
k' <k and j' < j—1. Only a finite number of these functions are non-zero. In particular, Fjak = belongs to )’

and
T+ ; - 55—
FG =@+a+ )P, Fi =0

v

for any j > 0.
Next, we have
AP—P+[PIvP=— > p#EAtrhep pho—i 3" ppEz\GEDer_po
(J:k)EX Ky kv (J:k)EX k4 i
+ Z b2j)\(k+1)aFJ{,k+ +3 Z b2j+1)\(k+1)aFij}c— _~_q)f7
J;k20 4.k>0
where
K+K'+1 1
O =fQ+XZ) = Y, HAFQOAZ XZ)
k=0

and for j,k > 0, FJ{’ki consists of @, Pf’k,, and By for (j', k") € ¥4k such that &’ < k—1 and j° < j. Only

a finite number of these functions are non-zero. In particular, ij}f belongs to )’ and ijjbi =0 for any j > 0.
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Next, we have

o 1

. 1 ) 1

A P= <b2j)\(k+1)a F(-T7+ + ib2j+1)\(k+1)a F«?’,) 7

ly> %;O lyl2e "k ly2r 7+

where (
Q j=k=0
_ 0 (k=0)
FiF =20 (j>1,k=0) , F7; { _
g Phoy (k>1) " Fioy (h21)
Finally, we have

‘y4| P = Z bZJ)\(k+1)a6j,k%Q + Z b2j)\(k+1)aFj9,,k+ +'L Z b2j+1)\(k+1)o¢F9
(j,k)GEK+K/ 7,k>0

J:,k=20
and for j, k > 0, F g * consists of Q, P

, » and By g for (57, k') € Xy such that k' < k—1and j° < j. Only
a finite number of these functions are non-zero. In particular FoE belongs to )’ and Feoi =0 for any j >0
Here, we define

F _Fab’ + FLE 4 F)E,
<I>>K+K/ _ Z IR Z PTG
(3,88 k4 k7 (4:F)EE k4 i
b= o 4+ df 4 KK Z (ij)\(k+2) 1 P+k: b2t (+2)a_~ 1 —k>
sn S e y[2e " 7
Then ®>K+X" ig a finite sum and we obtain
oP
iy HAP =P+ f(P) 4\ |y| P+0Q
: Iyl2 1
= Y v (L Ph 4B+
(4,k)ES Ky k7

LD DR (—LPJ-,k—(<k+1)a+2j)PT i +Fj,k>
(4,k)ES k4K
+ .

For each (j,k) € X4k, we choose recursively Pfk €Y and Bj, c*k € R that are solutions for the systems

LP+ Ft -3 ‘y|2
+ j gk T

o+
Q- ‘y|20 Fli = Q=0
(S.k) 1
L P —F +((k+ )oz—i—Z])P+ o T =0
and satisfy

. 1 .
C;kzo (J+Fk < K), W jk" |‘ijik|€Loo(RN) (J+k:K+K/)'
Such solutions (PJ 1o Pigeo

ks € k) are obtained from the later Prop081t10ns 4.7 and 4.8 and Corollary 4.11.
In the same way as [10, Proposmon 2.1], for some sufficiently small ¢ > 0, we have
10X

0b
SA ==+ — +b* -0
w5 (ool =),
\u\@fH < A( (K+K'+2)a

’ apP
e€ \y|(1)m

lylp>K+K’

)

‘ee

K+K'+2
S (P A) T
Moreover,

|y\@QH b2 n )\O()KJrZ
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holds. Therefore, we have

e
where ¥ := & — OQ).
Next, we prove only (4.2) of (ii). The rest is the same as in [10]. We have

5/|y“IIHH1 5)\04 (‘ +b‘ ’+b2 ‘) (b2+)\a)K+2

! « [e A® —o «@ —o 2

NE(Pynn) =5 IVQ+ V215 = [ F@+x2)dy = % Q@+ Alul 2
b, . e a b2 a 2
*§(ZQ+Z>\ Z,AQ + A AZ)2+§H|Q|Q+/\ [yl Z]l; -

Here,

sIvalE= [ F@u. (VQXV2) = QX2 + [ dF@W"Z)dy,
RN

RN

1 o2 1L 2 2p . _
5 =@l = g vl 5—, (iQ,AQ)2 =0
hold and we have

(Q,)\QZ)2 _ Z b2j)\(k+1)0¢ (Q,PJTIC)2 _ O()\Oz(bQ + )\(x)))

(4,k) €Sk 4 g7y JHE>1

BIAZAQ) = —b S pHIAKiDe (P]fk7AQ)2 = O(B2\).

(j,k)GEKJrK/

Therefore, we have
N B(Pris) = - /R (F@Q+X°2) - F(Q) — dF(Q)(X"Z)) dy

- ||| |Q||2 + < IIIyIQllz +OA (0" + %))

and
|, (F@+x2) = F(Q) ~ aF (@ 2)) dy = 00%)

Consequently, we have the conclusion. O

In the rest of this section, we construct solutions (Pj ko Ei s Bikes €5 +) € V'? x R? for systems (Sj,k) in the
proof of Proposition 4.3.

Proposition 4.5. For any ¢ € H~!(RY) such that <z/;, gTQj> =0(j=1,...,N), there exists ¢ € H*(R") such

that Ly¢ =+ in H-1(RY). Similarly, for any 1 € H~1(RY) such that (,Q) = 0, there exists ¢ € H!(R"Y)
such that L_p = in H-}(RY).

Proof. Let ¢4 be the ground state of L, and u4 be the eigenvalue of ¢;. Then py < 0 and we may assume
¢+ |l2 = 1. Let define Hy that are subspaces of H'(RY) by

1
Q 99 } , H_:= Span{Q}L,

H, = Span {¢+, L e
then Hi are Hilbert spaces and
3C: > 0Vp € Hy, (Lrg, ) > Cillolin
hold, where double sign correspond. Therefore, from the Lax-Milgram theorem,
Ve HY 3oy € Hy, Lygy =1 in HY

hold, where double sign correspond.
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Here, let <¢, ng> =0,p:=p+ %qﬁ% and X := x — (x,04)0+ — (x, VQ) - VQ for each y € H'(RY).
Then x € H; and we have

(Lo, x) = o, Lyx) = (@, Ly X + 1 (X, 94 )b4)

=(L+&, %) + <%¢+,u+(x7¢+)¢+>
=, x)-
This means that L, = in H~}(RY).
The same is proved in the case of (¢, Q) = 0. O

Proposition 4.6. For any 1, x € ), there exists ¢ € Y such that Lip = ¢ + |y| 2. Similarly, for any
¥, x € Y such that (¢ + |y| 77, Q) = 0, there exists ¢ € Y such that L_¢ = + |y|~*7x.

Proof. We prove only for Ly. Since ¥ C H] (RY), the existence of H'-solution is clearly from Proposition
4.5.

Firstly, based on a classical argument of elliptic partial differential equations, we have ¢ € C(RY \ {0}).
From the maximum principal,

oo > 01121 () oto)] < Cott+ )00

holds for any multi-index a. Since ¢ + |y|~27x € LP(RY) for some p > max{%,1}, we have ¢ € L>®(RY)
(see [8, Theorem 8.15]). Furthermore, since

4 1
—Ap+p= <1+ )QN<p+1/J+| |20x€Lp(RN)

we have ¢ € W2P(RYN) — CO7(RY) for some v € (0,1). Namely, ¢ € V. O
Proposition 4.7. The system (S} ;) has a solution (P] o Pfk,ﬂjyk,c;rk) € V? x R2.

Proof. We solve

ly|?
L+P+ FJTk_ﬁJvk Q_||20 ik _JkQ_O
(Sik)

F>~ =0.

L_Pj kT |y|20 gk

e~ Fi+ ((k+ Da+2)) P,

For (S, 1), we consider the following two systems:

LyPf, —Ff —B; - F>T =0
+ T Bk, Q % =0,

- 4 20~k
(S5.r) ) o 1
L_P, —F + (k+Da+2j)P} - WF].’;C =0.
and

chy

+ _ p+t+ >

, P =Pil — =5 AQ,
(Sj,k) N+
3 - 3 ((k+1)a+2])cj7k )
Piyw="Pip— @~ S ly*Q.

Then by applying (57 ;) to a solution for (S;.1), we obtain a solution for (S; ).
Firstly, we solve

+40,0 ™ BO>OTQ - |y|20

L_Pyy+aPyfy=0.

~ =0,
(S0.0) ¢

For any fy,0 € R, there exists a solution ]30+)0 € Y from Proposition 4.6. Let

do|llyl 7 QlI3

Boo =
lylQl3
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Then since

(50), =5 (2. n0) = 3 (3

there exists a solution ]5(;0 € V. By taking C({O = 0, we obtain a solution (P(fo»P(io,ﬁO,O,C(to) € V% x R? for
(S0,0)- Here, let H(jo, ko) denote by that

2 olllyl- "Q|2> —o,

V(j, k) € Exirr, k <koor (k=koand j < jo)
= (S,,1) has a solution (Pj ko Py Biker € ) EVEx R

From the above discuss, H(1,0) is true. If H(jo, ko) is true, then ij ko is defined and belongs to Y. Moreover,
for any fj, k., there exists a solution ]5;’,60. Let be By, .k, such that

_ 1 .
< F]U ko ((k0+ )a+2JO)Pjo ko — | |2[7Fj0,k’g’Q>:0

Then we obtain a solution ﬁjg ko Here, we define

P (0
. PR (o + ko # K +1),
o ko = 0 (jo+ko =K +1, and PO ko(o) #0),
1 (]0+]€0—K+1 andPOkO(O):O),
0 (jo + ko < K)
N 0 (jo+ko=K+1, and P jo kO(O) #£0),
Cj(),k‘() = 1 (JO + ko K + 1 and PO kO (O) = 0)7
2P}, (0) .
—50) (jo + ko > K +2).

Then we obtain a solution for (Sj, x,). This means that H(jo + 1,ko) is true if jo + ko < K + K’ — 1 and
H(0,kg + 1) is true if jo + kg = K + K'. In particular, H(0, K + K’ + 1) means that for any (j, k) € Xk k-,
there exists a solution (P] o P]7k7ﬁj7k,cjk) € V? x R2.

Furthermore, ijfk( ) #0 for j+k=K+1 and ijfk(O) =0 for j+ k> K + 2 hold. O

Proposition 4.8. For ijfk,
P e H*RY) and AP} € C(RV).
Namely, P, € )'.

Proof. Firstly, since ij’[k €Y and P . is solution for (Sj k), APfk € L?(RY). Therefore, ij’[k € H2(RY).
Regarding Aij,Ek € C(RY), proving y - VP]ik € C(RY) is sufficient. Firstly,

2
Yy 1
L+(ZI'VP;1€):?J'V(ka"‘ﬁjyk| | Q+| |20ij kQ)

ly|?

+2(F]Tk+ﬂjk Q+| |2U FOE+¢hQ)

4 a 4 (4 4_
_2ij,§+2 (N + 1> QNP;,C -~ (N + 1) QW 1y'VQPfk

holds. Since |y|~27y - VF;T;:F € LP(RY) for some p > max{%,1}, we have L (y- VPj‘fk) € LP(RY). Therefore,
we have y - VPJTﬁ',C € C(RY). Similarly, we have y - VP, € C(RM). O

Proposition 4.9. For any 0 < j < K + 1, there exists k; > 1 such that
+

1. 1055

r2 IR e Oy

(RY)

for any k > k;, where r = |y|.
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Proof. We prove only for P;k.
Let f; := P]TK_j+k for k € N. Then f1(0) # 0 and f(0) = 0 for k > 2 hold. Moreover, Let

r2

+
19~ Gr—in@-

4 4
Fj = fi — (1 * N> QN fi = Fifye_jn — Bik—jish

If »~2f) converges to non-zero as r — —+0 for some ¢ € [0,20) or r~%f; converges as r — 40 for some
g > 20, then erl% converges to 0 as 7 — +0. Indeed, if N = 1, then f;, € W2P(RY) < C1(RY) for some
p > 1. Therefore, since f} is an even function, %(O) = 0 holds. On the other hand, for N > 2,

1 0 0 1
(rN—l fk+1> = Flpq1 — TTafk (4.4)

rN-19p or

holds. If r~7f; converges as r — +0 for some ¢ > 20, then r~2° f;, is bounded. Therefore, for some sufficiently
large p, we have fr, 1 € W2P(RY) — CHRYM). Accordingly, rN’lag“—r“ converges to 0 as r — +0. On the
other hand, if r~7f; converges to non-zero as r — 40 for some ¢ € [0, 20), the right hand of (4.4) diverge 400
or —oo as r — +0. Therefore, TN’18%—7T1 N’w%—jl
in [—o0, 00]. Let

is increasing or decreasing as r — +0, meaning r converges

0 fr+1
or |’

C:= lim vV 7!
r——40

Then for any € > 0, there exists 7o > 0 such that ’% > (C —e)r~ =1 for any 7 € (0,79). On the other

hand, fry1 € W2P(RN) — WHN(RYN) for some p > & and ’%

= |V fi+1|. Therefore, we have

o C—€
> \Y% Ndy > C ——_dr.
> /B(O,To) Vi@l de 2 N/o PNV

Since fom r~NIN=Ddr = 0o, we obtain C' — € < 0. Consequently, we have C' < 0, meaning C = 0.
Let 01 := 0 and Cy := f1(0). Moreover, let

—Ch
1—0o+ < T (N—2=on)) (% <0)
Okt1 = { otox (on<o) Cit1 1= { 20141 (N=2(a—ov))

1 (o > 0) "’ Fk+1(0)*20;[(""'7(7)0’C (or > 0)

In particular, o = min{1,(1 —o)(k — 1)} and Cy # 0 if o) < 0. Then

fk(r) = Ck (45)

. 1
lim
r—+0 72k

holds. For k =1, it clearly holds. Moreover, for k > 2,
1 Ofk

im ——————(r) = 20%C
r—=+0 72061 Jr (r) Wk

holds. Indeed, if (4.5) holds for some k, then TN_l% converges to 0 as » — +0 in both cases o, < ¢ and
o) > o from the above discuss. We assume o < o. Since

1 8 N—1 afk+1 _ 1 1
rN-19p (r or = Fien = r2(c—0ok) p20% P

for any € > 0, there exists g > 0 such that

(—Ck _ G)TN7172(0'70';V) < % (er 8{;:1) < (—Ck +€)TN7172(076;V)

for any r € (0,79). Integrating in [0, 7], we have

(_Ck _ 6)7.172(0'70‘)9) - afk+1 (_Ck _|_6)T172(afcrk)
N—-2c—o0r) — Or = N-—=20—op)

Integrating in [0, ] again, we have

(_Ck _ 6)T2—2(a—ok)
(2—2(c—0ok))(N —2(c — 01))

(—Ck: +€)r2—2(0—0k)
(2—2(c —op))(N —2(0 — o))’

< fi1 <
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Therefore, we have

1 0 . 1
fk+1 (r) = 20k+1ck+17 rllm 7fk+1(7’) = CkJrl.

540 720841

lim

r—+0 r20k+1-1 Jr

On the other hand, we assume oy > ¢. Then for any € > 0, there exists 7o > 0 such that

0

or or

0
(Fioy1(0) — 02(ox=a)oy — €>TN—1 < = ( N-1 fk+1> < (Fry1(0) — 02(ox=a) 0y 4 G)TN—l

for any r € (0,79). Integrating in the same way as for o < o, we have

Fk+1(0) B 02(01670')01C _ er _ O frs1 - Fk+1(0) _ OZ(kaa)Ck + Gr,
N - oOr - N

Moreover, since
Fk+1(0) - OQ(Uk_U)Ck — 67_2

Frs1(0) — 02(0’k-0’)0k + 672
2N ’

2N

< fr1 <

we have

1 Ofkn : 1

(1) = 204 41C+1, lim o fr+1(r) = Cry1.

lim
=40 r20k+1

r—+0 r20kt1-1 Jr

Consequently, we obtain Proposition 4.9 if k; > :— + K +1—7 > 0.

Proposition 4.10. For any j > K 4+ 2 and k£ > 0,

hold.

Proof. Firstly, we consider

(S50)
FOm =0.

|y|20 3,0

L_ P0+(a+2j)P

From Proposition 4.8, the solutions PjE for (Sj0) are continuous functions. In particular, since F; 7 i

Y o,
LyPlo— Q@ -1 +a+ P, 5JO| i Q_| |20'FJ0+ ;0@ =0,

35

= 0 when

j > 1, we see that Pfo € C?*(RN) when j > 2. Moreover, since Pi +(0) =0 when j +k > K + 2 and P 7. are

spherlcally symmetrical, we obtain
P (y) ~ |yl
as ly| — 0 when j > K + 2.
Next, for some k > 0, we assume that
Pry) ~ [y?

holds as |y| — 0 when j > K + 2. Since Pj:f:k-&-l is the solutions for

2
+ + |yl 1 o + —
L Py = Fyla — ﬂj,k+1TQ TP P =@ =0,
(Sjkt1) .
L Py —Fry +(E+2)a+2))Pf,, — G s P = 0.
and P; k+1(0) = 0, we obtain
L 0 ( Na10 +
N 1o, (T o Lik ) = Gl
where r := |y| and
+ + + r? Lot +
Gik =Pk = |1 + Q¥ Pl = ey Bint1 7@ 3 Pk = @
1

G =P - Qv P —Fip +(k+2)a+ 2J)P] k1T 3o =5 Pk

Consequently, the rest can be proved in the similar way as Proposition 4.9.
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Corollary 4.11. For some sufficiently large K’,
1 10P5,
7P:i: - Js LX(RY
2k g © (R™)

for any j,k > 0 such that j + k = K + K’.

Proof. Let K’ := maxo<j<x4+1{k; + 1} > 2. If j > K + 2, then it is obvious from Proposition 4.10. On the
other hand, if j < K + 1, it holds from Proposition 4.9 since k > K’ — 1 > k;. O

4.3 Proof of Theorem 4.1

We expect the modulation terms to be sufficiently small. Namely, we expect the parameters A and b in the
decomposition to approximately satisfy

10X b

——4b=_—+b—-0=0.

A Os + s +
Therefore, the approximation functions Aapp and bapp of the parameters A and b will be determined by the
following lemma:

Lemma 4.12. Let

)‘ﬂpp(s) = <;é 2ﬂ ) 57%3 bapp(s) = 3

Then (Aapp, bapp) is a solution for

in s> 0.

Furthermore, the following lemma determines A(s1) and b(s;) for a given energy level Ey and a sufficiently
large s1.

Lemma 4.13. Let define Cy := IHS\%IP and 0 < \g < 1 such that % + Coro> @ > 0. For \ € (0, Ao), we set
E 2

1

Ao
F(N) ::/ du.
A M%+1 /%-FCO/J?*O‘

Then for any s; > 1, there exist by, Ay > 0 such that

A2 by ‘ 1 y
Yo 4T -1 <Ss1i7 24517, F(A)=s1, E(Prp.,) = Eo.
)‘?tpp(sl)7 bapp(sl) ! ! ( 1) 1 ( 1 1,7) 0
Moreover,
2
F(\) — <A + 23
arg /25
2—«a
holds.

Proof. The method of choosing A\; and the estimate of F are the same as in [10]. In brief, since F(A) — oo as
A — 0, there exists such a A\; from the intermediate value theorem.
Setting h(b) := \i2E(Py, 4.-), from (4.2), we have

2606)\1(1) +O()\1a(b2+/\1a))

9 _
28
2—«

1
o) =g Iyl (# -

IR (12 = b (52)? = 522 0% = Aa(52)%) ) + OO (4 7))

Then since A; is sufficiently small if s; is sufficiently large, we have

2
p M= /\12E0 + O()\12a) <0,
2—«
2B
22—«

1
M(O) = \2Eo =~ IyIQIB

1
h(1) — \?Ey = g|Hy|Q||§ (1 — A= )\12(]0> +OMT(1+ M) >0.
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Therefore, there exists by € (0,1) such that h(b;) = \;>Ey and we have

|bl2 - bapp(51)2’ < )‘12 + A% = Aapp(s1)*] + A ® (|b12 - bapp(51)2’ + Aapp(s1)* + >‘1a>

4 5
Ss1m @ 482,
Consequently, we have the conclusion. O

Let s; be sufficiently large and define

For ¢; < 0 that is sufficiently close to 0, we define

@

S1 ‘= |C_1t1|7m.

Additionally, let A; and by be given in Lemma 4.13 for s; and 73 = 0. Let u be the solution for (NLS) with
+ = + with an initial value

1 T —i2L lz|2
u(ty, z) = Py, b, 0(z) = )\% P (s, )\1> e ML
1

Then u satisfies the assumption of Lemma 2.2 in a neighbourhood of ¢;. By applying Lemma 2.2 to u, there
exists a decomposition (A, by, , 4, , €, ) such that

1 N O )2 >+t (t)
U(t,l’) - = N (P + étl) <ta ~) € 4 Aty (1) h ’ (46)
)\tl (t)7 )\tl (t)

(gtlaiAP)Q = (ét17 |y|2p)2 = (§t13ip)2 = 0 (47)

in the neighbourhood of ¢;. The rescaled time s;, is defined by

t1 1
S, (1) := 81 — = dr.
nty=si - | o

Then we define an inverse function sy, ! : 4, (I) — I. Moreover, we define
by, == St171a /\tl (S) = S‘(ttl (5))7 btl (5) = B(ttl (S))a
Tt (8) = ;y(th (S)), €ty (Say) = g(ttl (8),2./).

For the sake of clarity in notation, we often omit the subscript ¢;. In particular, it should be noted that
u € O((T,, T*),2(RY)) and |z|Vu € C((Ty, T*), L*(RY)). Furthermore, let I;, be the maximal interval such
that a decomposition as (4.6) is obtained and we define

Jsl = S(It1)~

Additionally, for sufficiently large s1(> s¢), let

s’ := max {so,inf Jg, } .

Let 14
0<M<min{7—2}
2"«
and s, be defined by
s, :=inf {o € (s',51] | (4.8) holds on [o,s1]},
where
RCOLIN
)‘app(s)%

le()I7 +b(s)?lllyle(s)]15 < 572,

bs) _ 1‘ <s™ (4.8)

Finally, we define
10X ob

Mod(s):i= | ~=— +b,— +b>—0,1— =L ).
od(s) <)\83+ "9 T ’ 68)
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By direct calculation, we obtain

.O¢ o |Z/\2
7\1/:@8—+A5—s+f(P+s)ff( )+ A || e+60-=— (4.9)
10X oy
()\6 +b) AP+¢e)+ (1_85) (P+¢)
b s lyI” 10 Iyl2
+(8s+b 9> 4(P—i—) X%M b——(P+¢)
holds on Jg, .
Lemma 4.14. For s € (s, 1],
(), Q1 £ 575D, [ Mod(s)] < 575H, el g 57+
hold.
Proof. Let
Sux 1= inf{ $ € [84, $1] ‘ [((7), P)o| < 7~ *+2) holds on [s, s1]. }
We work below on the interval [s.., $1].
According to the orthogonality properties (4.7), we have
d . .Oe . O(AP)
= — AP), = i—,AP — 4.1
0 I (ie, AP), (z " >2 + (zs, 95 )2 (4.10)
d ,. . o Oe | .. 90P
- = P = (i= P i 4.11
= (e P), = (i52ioPp) + (iP5 (1.11)
d Oe
= — (1 = ) —— . 4.12
i e, = (i50) (4.12)
For (4.10), we have
AP
e, OAP) _ e, Q(A(’AZ) = O(s~ ) £ O(s71 | Mod(s)]) (4.13)
os /, 0Os 9

and from Lemma (4.9),

< Oe )
0s’ 5
1 2
€ — 97|y| €

- (L+Res+iL_ fme = (f(P+e) = f(P) = df(Q)(e) = X"z 4

+i <18A+b>A(P+s) (187> (P+¢e)— (aber? 9> |y|2(P+5)

A0 0s 0s 4

1 OA ly|®
+()\a +b)b (P €)+\I/,AP)2.

According to APfk € HY(RY) N C(RY) and Proposition 4.3,

1
|(L+ Ree,AP),| + |(iL-Ime,AP),| + ’ ()\a G 5,AP>
2

(iAP,AP), = (P,AP), =
(T, AP), = O(s2K+2) )+ O(s™Y Mod(s)]),
(ly>P,AP), = —[llylQll5 + O(s™?)

hold. Here, we have

f(P+e)=f(P)—df(Q)() = f(P+e)—f(P)—df(P)(e) + df (P)(e) — df (Q)(e)-
Firstly, we consider (f(P +¢) — f(P) — df(P)(¢)) AP. For N < 3, according to Taylor’s theorem, we have
|(F(P+2) = f(P) = df (P)(2)) AP| < (1+ [y]")(P + |e) ¥ ~1[e*Q

4

S A+yM@Q+I[Nv Q.

2
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On the other hand, we assume N > 4. If Q < 3|A*Z|, then 1 < A¥(1 + |y|*). Therefore, we have

[(f(P+¢) — f(P) — df(P)(£)) AP| S X*(1 + [y|")(QF + || ¥)]e|Q.

If 3|A*Z| < @ and @ < 3|e|, then we have

|(F(P+2) = J(P) = df (P)(e) AP| S (1+]y|")Q¥ |e]*.
If 3e] < Q, then P — || > £Q > 0. According to Taylor’s theorem, we have

_— 4

[(f(P+¢) = f(P) = df (P)(€)) AP| S (1 + |y|*)(P — | ¥ [e]Q
< A+ [yM)QV el

Therefore, we have
(f(P+e) = f(P) = df (P)(), AP), = O(s~ K F2)).

The same calculation for (df (P)(e) — df (Q)(g)) AP yields
(df (P)(e) — df (Q)(e), AP), = O(s~ K +2)),

Accordingly, we have
O _ 1 ob 2 —(K+2) -1
(150:47), = =3Il (G, +# = 6) + 0t~ + 0(s | Mo (o)

and by (4.10) and (4.13),

b
5+ b2 — 0 =0(s~E+2) £ O(s7 Mod(s)]).

The same calculations for (4.11) and (4.12) yield

1)
A Os

+b=0(s"E+D) L O(s7H Mod(s)]), 1- ? = O(s~E+2) £ O(s7| Mod(s)]).
S

Consequently, we have
[ Mod(s)| S s~ Jle W) < 5=,

Finally, since
1P(s1)113 = [1P()3 + 2(e(s), P(s)2 + ()13,

we have

d

ARG

s1
< g7 2K —|—/ (T_2| Mod(7)| + 7_2(K+2)) dr

< 57(K+3).

|(e(5), P(s))2] < lle(s)13 +/Sl dr

Therefore, if sg is sufficiently large, then we have s,. = s,. Moreover, we have

I(e(5), Q)2 < |((5), P(s))2] + A¥ |(e(s), Z)g| < s~ HE+2),

Let m > 0 be sufficiently large and define

b(s)?
2

H(s,e) := % lel 7 + llylell; — /RN (F(P(s,y) +e(y)) — F(P(s,y)) — dF(P(s,y))(e(y))) dy

1 @ —o_||2
_§>‘(S) H|y| E||27
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Lemma 4.15 (Estimates of S). For s € (s., s1],
lellFr + 6% lllylells + O(s™>FF2) S Hs,e) < llellzn + b7 llylell3
hold. Moreover,
1 _ 1
o (13 + 82 lyl=l3 + O(s72542)) < 8(s,2) < 7 (Hell3s + 0 1yl
A A
hold.

Proof. If N < 3, then we have

‘F(P +e) — F(P) — dF(P)(e) — %CFF(P)(E, €)

S (IPIF=1 el 371 e
For N > 4, if 2|¢| > |P|, then we have

‘F(P &)~ F(P) — dF(P)(&) — 3 F(P)(e,)| £ |el ¥+,

If 2[¢| < |P|, then |P| > 0 and |P| — |e| > £|P|. Therefore, we have

\F(P +6) = F(P) ~ dF(P)(e) ~ 5 F(P),)| 5 (1P|~ [e)) ¥~ ef* < [el # 2,

Therefore, we obtain
1
L (P42~ FP) = ar(P)0) - 5EF(PIE2) ) dy = ol
RN
Similarly, if N < 3, then we have

‘;CFF(P)(E,E) _ %sz(Q)(a,a) A (QF 1+ ez 1) e 2]

For N >4, if 2|]A*Z| > @, then we have

SPF(PEE) ~ 5EFQUE )| S Nz P

If 2(A\*Z| < Q, then Q — [A\*Z| > 3Q. Therefore, we have

SEFPIEE) - JEFQE)] S0 @ N 2D 2] 5 (4 e

and
[, (GEFPIe0) - 3 PFQE) ) dy = oflelfy).

Accordingly, we have
el 3 — / d’F(Q)(e,e)dy = (L4 Ree,Ree) 4+ (L_Ime,Ime)
RN
1

> pllellFn — m ((Ree, Q)3 + (Ree, [y[*Q)3 + (Ime, p)3)

_ 2 l 2 2p), )@ 27\.\2 N2
pllell e . (€. Q)3 + ((e, [y P)2 (. 1yl 2)2)" + (e, ip)3

= pllellFn + O(s2F+2),

Consequently, we have the lower estimate of H. The rest is obvious. O

Lemma 4.16. For s € (s, s1],
(f(P+e) = f(P), Ae)y| < llellp + 577

holds.
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Proof. Calculated in the same way as in [10, Section 5.4], we have
V(F(P+e¢)— F(P)—dF(P)(e))
=Re (f(P+¢)V (P+E&) — f(P)VP —df(P)(e)VP — f(P)Vg)
=Re ((f(P+e) = f(P) = df(P)(c)) VP + (f(P +¢) - f(P)) VE)

and
(F(P+2) = F(P).AS) = Re [ (7(P-+2) = £(P)) Asdy
—Re [ (5 (P +2) = (P)E - (1P +0) = F(P) =~ df(P))y- TP
RN
N (F(P+¢)— F(P) — dF(P)()) )dy.
Firstly,
(F(P+2) = F(PYE + [F(P+2) = F(P) — dF(P))] S0 +1y)QF + |e| )2

holds.

Next, we consider (f(P +¢) — f(P) — df(P)(g))y - VP. For N < 3, we have
(F(P+2) = f(P) = df (P)(e))y - VP| S (1+]y")(@Q+|e) ¥ ' [e[*Q.
For N >4, if Q < 3|]A*Z|, then 1 < A%(1 + |y|*). Therefore, we have
(F(P+e) = f(P) = df (P)(e)) y- VP| S N1+ [y")(QF + [e]¥)]e|Q.

If 3|]A*Z| < Q and Q < 3|e|, we have

(f(P+e) = f(P) = df(P)(e)y- VP| S (1+ |y|")Q~ el
If 3le] < @, then P — |e| > £Q > 0. Therefore, we have

[(f(P+¢) = f(P) = df(P)(e))y - VP|  (1+ |y|")Q~ |e]*.
Consequently, we have the conclusion. O

Lemma 4.17 (Derivative of H in time). For s € (s, s1],

d —
gH(s,e(S)) Z —b (Hg\@{l + b2 |||y‘5||§) + 020K +2))

holds.

Proof. Firstly, we have

OH 0 0
S .e(0) = G (s, () + (15 5,500,155 ).
Here,

OH A
E = —A€+E+b2|y|25 - (f(P+5) - f(P)) - |y|205

=L, Ree+iL_TIme+ V|yl’c — (f(P +¢) — f(P) —df(Q)(e)) — |;\;057
OH _ 0b OP . _ @A" 10
Ok 0l ~Re | (1P +e) = S(P) = dr(PY) Gy — 25" 3 el

hold. Therefore, we have

OH . _ _
S 2 B llylell3 = s~2blelFn + O(s™5).

Let define

(10X oy ob |ly|? 10X |ly|?
Modopv.—z<)\as+b>/\v (1 88>U (88+b 9) 4v+ )\68+b b2v.
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Then

0 OH 20,12 lyl?
Uy " bly|“e 945—1— odop(P +¢)+ ¥

holds. Moreover, we have

S

2

Secondly, we have

H
(iﬁas(s’g)’ —b2|y|2€>2 = — 2b% (iVe, ye), + (z (|P Fel¥ - |p|%) P, _ng‘y|2€>2
== 2% (iVe, ye)y + 0% |lell + 57°)
2 =0 (IIVell3 + blllylel3) + O®*[lellf +s7°%).

Since 6 ~ b?, we also have

OH _9|3/|2 > b (Ivel2 - p2 2) 1+ O(n2le|l? —3K
iz (5,6), =052 | 2 =b([Vellz + ¥lllylelz) + O@°lellzn +5%).
2

Thirdly, from Lemma 4.14,

OH

(Z'%Z:(575(3))7M0d0pp> — O(s~ 2K+, (iag(s’g(s)),qj> — O(s~2(K+2)

2 2

hold.
Finally, since

((f(P+e) = f(P), Ae)o| + [ (F(P +e) = f(P),ilyle),| = OllellFn) + O(s7%F)

from Lemma 4.16, we have

OH - . . i
(Zagsvs(s)),Modop ) = o (b (llelZn + B2 lylell3) ) +O(s~CK+2),

Consequently, we have the conclusion. O

Lemma 4.18 (Derivative of S in time). Let m > 0 be sufficiently large. Then

805, 2 s (Il + 87 lylel3 + O(s~2+9))

holds for s € (sx, s1].

Proof. From Lemma 4.17, we have

d 10X 1 1 d
$S(575(5)) = Xa*)\*mH(S,é‘)JF /\T@d*H(S £(s))
1(9)\ 1 b 1 d

b mC 2 2 2 / 2 2 2 —(2K+3)
> — | — ) _ ) |
> Am( 5 (IlaIIH +b ||\y|a||2) C (||g||H +b |||y\g||2)+o(8 )

Therefore, we have the conclusion if m is sufficiently large. O
We confirm (4.8) on [sg, s1].

Lemma 4.19 (Re-estimation). For s € (s., s1],

le(s)l[7r: +b(s)? lyle(s)ll5 < s~ 5H2), (4.14)
As)3 b(s)

——1 -1 < o 4.15

Aapp(8) 2 ‘ * bapp(5) ~E e ( )

holds.
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Proof. We prove (4.14) by contradiction. Let Cy > 0 be sufficiently large and define

st i=inf {0 € (suys1] | () + b2 yle(R)I < Crr 254D (7 € o, s}

Then s; < s; holds. Here, we assume that sy > s,. Then we have

le(s:) 17 + b(st)? lyle(sp) |3 = Cysyp 20D,
Let define
2 2 _
sy = sup {7 € (sey1] | 1) s + (0 Mlyle ()} = 7720540 (7 € [sp, 0] }

Then we have s; > s;. Furthermore,

2 2 —
lle(sp) 7 +b(s)? llyle(sp)lly = s 25D,

Then according to Lemma 4.15 and Lemma 4.18, we have

C _ Cs
1(||e||H1+b2u|y|sH2 C's204 ) < 5(5,2) < 7= (Ilelfn +0° lylel3)

d
s 2 _ «—2(K+1) < 2
oo (1ol + 8 lglel - 57200 < 4L 5(s,),

n (8«,s1]. Therefore, we have

C1(Cy = O™ = (el +b(s0)? [ple(sn) 3 - C'sy~200)
0oy <lo0)
Msi)™S(sz.2(s2))
X

<y Z): (e300 + b5 Iyl

(s1)
<Cz/\EST§ 5y~ 2(K+1)

)

A s¢)™
_2m_o(F41)
St~ 5 —2(K+1)
< 202 — Sy
51—_27 s 2(K+1)

and since K — ™ > 0, we have
C1(Cy — C") <2Cs.

43

Since C; is sufficiently large, it is a contradiction. Therefore, s; < s,. On the other hand, s; > s, is clearly.

Accordingly, s. = s;.
Next, since

B(Paoo @)~ Bol < | [ | EPuag(odr| < [ oo sdttar g Ui,
S1 S=T S
we have
28 b? 28 8
b2 — Y — CpN? <)\2( e E(Pxpy)|+ |E(Pxp,y) — Eol
2—a X2 2-a Ily1QI% " |||y\QH2

<s 74
From (4.16) and the definition of F, we have
%}'(A(s)) - 1‘ <572
Therefore, we have
|s = F(A(s))| < 57

since F(A(s1)) = s1. From definition A,pp,, we have

(4.16)
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and .
)‘(5)7g 1)< )‘(S)EQ )‘app(sg)2 <sTT 4 2%
Aapp (8) > Xapp(8)7 || Als)2
Finally, from (4.16) and the definitions of Aypp and bapp, we have
‘b(s)2 - bapp(8)2’ <s7h g s727F 4 ga

and
b(s)
bapp(s)

Consequently, we obtain (4.15).

E.

—1‘§sé+32

Similar to the proof of Lemma Lemma 3.12, the following lemma are obtained.

Lemma 4.20. If s is sufficiently large, then s, = s’ = s.

We rewrite the uniform estimates obtained for the time variable s in Lemma 4.19 into uniform estimates for

the time variable ¢.

Lemma 4.21. If s is sufficiently large, then there is ¢ty < 0 that is sufficiently close to 0 such that for ¢; € (¢, 0),

o, 2] © e, ([so, 1))y |Conn (075 = Jtl] S 1% (1 € [to, 1)
holds.
Proof. Since t;,(s1) =t and s; = [C~'t;| 7=, we have
Aty (7) A (T

[ (82

Aapp(T)

Mﬂ%+0

_a _a
=ty (s1) =ty () +C(s1' 7% —s'7%)
= [t (s)] = Cs™ %"
Therefore, we have
— 51 1 —
|t (8)] — Cs™ =" 5/@ Napp(7)27 Mdr 5/@ T Mar < ms (452+M)
Accordingly,
4—a . _4-a
[t (8)] = s™ o, e, |t| & s, (t) = .
Moreover, there exists tg from Lemma 4.20. O
Lemma 4.22 (Conversion of estimates). Let
_z2
__2 (0% 25 “ 2 -
Cr:=C"T5 (o2 |, Gi= T,
A (2 2 — a> T
For t € [to,tﬂ,
g _2 g _o
M () = Gt ™7 (14 e5,(1)) b, (1) = Gt ™7 (1465, (1))
~ aK - a(K-1)
166, (Ol S [E[3=+, lylée, (Oll2 < J¢] 5=
hold. Furthermore,
aM
sup ez, (O] SHIFE, sup e, (0)] S [¢E%
t1€[t,0) t1€[t,0)
Proof. Let
At (2)
(0) = 2
M Cylt| ==
Then we have
A, () Aapp (5¢, (1)) 1 2
(0] < |2 — 1] | Rl Napp (81, (1)) — Calt] ™=
M Aapp (51, (£)) Clt™s | cyfyes T
< ‘t| aI\/I
The same is done for €, (t) := Z~7t1(t)C,;1|tFﬁ —1. O
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proof of Theorem 4.1. Let (tn)nen C (fo,0) be a monotonically increasing sequence such that lim, o ¢, = 0.

For each n € N, u,, is the solution for (NLS) with + = 4 with an initial value

U (tn, ) := Px, . by.,,0()

at t,,, where by ,, and A; ,, are given by Lemma 4.13 for ¢,,.
According to Lemma 2.2 with an initial value %, (¢,) = 0, there exists a decomposition

1 - X —’L‘M ~|50|2 +i7 (t)
un(t,2) = —— (P +2,) (1, < ) e R
An(t)2 An(t)

Then (u,(to))nen is bounded in X!, Therefore, up to a subsequence, there exists uq(tg) € X! such that

Un (to) = Uso(to) In XY, wp(to) = use(to) in L*(RY)  (n — o0).

Let uo, be the solution for (NLS) with + = 4 and an initial value uo(tg), and let T* be the supremum
of the maximal existence interval of u... Moreover, we define T := min{0,7*}. Then for any T" € [ty,T),

[to, T'] C [to,tn] if n is sufficiently large. Then there exist ng and C(T",tp) > 0 such that

sup |un || o= (jto,1771,51) < C(T", o)

n-=no
holds. Therefore, from Lemma 2.1,

Up = Uso 10 O ([to, T, L*(RY))  (n— o)

holds. In particular, u, () — uso(t) in Xt for any ¢ € [to, T'). Furthermore, from the mass conservation, we have

toe (0)ll2 = l[uo(to)l2 = Tim [ (to)llo = Timn fun(ta) 2 = T [P(ta)l2 = Q1>

Based on weak convergence in ! and Lemma 2.2, we decompose o to

1 - x oo (®) _ ‘1‘224‘1":/00(15)
uoo(t, .’I/') = =~ (P + 600) t, ~ e 4 Ao (1) ,
oo(t)® Aoo(t)

on [tg,T). Furthermore, for any ¢ € [tg,T), as n — oo,
An(t) = Aoo(t),  bn(t) = boo(t), €T s eiiee® 2 (4) ~ & (1) in D
hold. Consequently, from the uniform estimate in Lemma 4.22, as n — oo, we have
Ao (t) = Ca 177 (14 €5,4(1). b (1) = Co 77 (1 + (1)),

- oK ~ a(K—1) aM. aM.
[ @l S 1155, lllylEsc(®)ll2 S 1115 0®)| SIHFE, |eo(0)] S 11175,

Consequently, we obtain that u converges to the blow-up profile in X!.
Finally, we check energy of us,. Since

1
Eun) - E (Pxn,zsn,%) = /0 <E’(Pxn,zm FTER i) 5xmzm> dr
and E'(w) = —Aw — |w|¥w — |z| 27w, we have

E(un) - E (meénm) =0 ('t‘ i ) '

Similarly, we have

E(us) = E (Ps_;_5.) =0 (I1%5).
From the continuity of FE, we have
Jim E (Pxn,an,an) =E (me,sw,am)
and from the conservation of energy,
E (un) = E (un(ta)) = E (Ps,  5,..0) = Fo

Therefore, we have
E (uoo) = EO + 0,5/!0(1)

and since F (u«) is constant for ¢, E (us) = Fo.
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4.4 Proof of Theorem 4.2

proof of Theorem 4.2. We assume that u is a critical-mass radial solution for (NLS) with + = — and blows up
at T*. Let a sequence (t,)nen be such that ¢, — T* as n — T* and define

IVQll2
IVu(tn)ll’

N
2

Ay = U () 1= A 2 u(tn, Anx).
Then
[vnllz = 1Qll2,  [[Vunll2 = [IVQ2
hold. Moreover,
E rit (Un

Ey := E(u(ty)) > Eqis(u(ty)) = %

Therefore, we obtain
lim sup Eeit (vy,) < 0.

n—oo

From the standard concentration argument (see [10,15]), there exist sequences (2, )neny C RY and (75, )neny C R
such that

Vp(- —z,)e" = Q in HY(RY) (n — o0).
Moreover, up to a subsequence, we have
Ve’ = Q in HY(RY) (n — o).
Indeed, if (2, )nen is unbounded, we may assume x,, — oo as n — oo. Then since v,, decay uniformly by the

radial lemma, we have

0= lim [|on(- —2p)e"" — Qllr: =21Ql%: - lim 2 (0 — 2)e™, Q) = 2[QU%

It is a contradiction. Therefore, (z,)nen is bounded. We may assume that (z,),en is a convergent sequence.
Let define xq := lim,,_,o . Then we have

e = Q(-+xo) in HYRY) (n — c0).

Since v,, and @ are radial, we obtain xzg = 0.
Here, we have
o = M =7vnlls
et 2 = W72
n

Therefore, since Eepit(u) > 0,

— 2
o Mlet=7onll

By = Bu(t,)) > =

It is a contradiction. O



Chapter 5

Proof of decomposition lemma

In this chapter, we prove Lemma 2.2.

5.1 Decomposition by implicit function theorem

Definition 5.1. Let £ : Roo x R2TV x HY(RV) xRy — HY(RY) and S : Roogx R2FN x HL(RY) xRy — R3HN
define by

The function S obtained by the following proposition, i.e., (5\, b, 4, ) are the parameters of the decomposition
lemma. The proof of the decomposition lemma is proved by the procedure of first showing that it can be obtained
in a neighbourhood of the ground state () and then extending it.

In the following, let Bx(x,r) denote an open ball in X, with centre = and radius 7.

Proposition 5.2. There exist C,6,1o > 0 and a unique function S : B (Q,6) x (=lo,1lp) = (1—-C,1+C) x
(—C,C)?*TN such that

5(Q,0) = (1,0,0,0) and S(S(u,l),u,l) =0 for any (u,l) € By (Q,8) x (—lo,lo).
Moreover, S is C'* function.

Proof. Firstly, since £(1,0,0,0,Q,0) = 0, we obtain S(1,0,0,0,Q,0) = 0. Moreover, since

0 0 Jyl?
—(1,0,0,0,Q,0) = AQ, —(1,0,0,0,Q,0) = i"=-Q,
8)\( Q,0) =AQ ab( Q,0) =i=-Q
0 &

8’3/( 7070?076270) ZQ? 8’&}( ?070707Q70) VQ,

47
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we obtain

(AQiAQ)2  (MQuiAQ):2  (—iQ,iAQ):  (-VQ.iAQ)
(AQ.|yPQ)2  (5-Q.lyPQ):2 (~iQ:yPQ):2 (-VQ.|yPQ):
(AQiip)y  (I%-Qiip)r  (<iQip)s  (=VQiip)s

DaaamSL00.0.Q0 =1 100 @ (220108  (—i0.1nQ: (—VQ.1Q)

(AQyunQ)s  YCQunQ)2  (—iQunQ)2  (—VQ,yn Q)2

0 —1lvQl3 0 0

_ | —llvQl3 0 0 0

- 0 1(|yQ.p)2 —1yQl13 0 ’
0 0 0 sIQIEIN

where Iy is N x N identity matrix. In particular, D(Xﬁﬂ,@)s(l’ 0,0,0,Q,0) is regular.

By using implicit function theorem, we obtain a unique function S : W — V such thet
S(Q,0) = (1,0,0,0) and S(S(u,1),u,l) = 0 for any (u,l) € W

for some open neighbourhoods V' C R3+¥ of (1,0,0,0) and W c H*(RY) x R of (Q,0). Moreover, since V is a
neighbourhood of (1,0,0,0),

(1,0,0,0) € (1 - C, 1+ C) x (-C,0)**N c v
for some sufficiently small C' > 0. Since S~((1—C,1+ C) x (—=C, C)?>™V) is open,

(Q,0) € Bg1(Q,9) x (—lo,lp) C S—l((l ~C,1+40) x (—6,6)2+N) cw

for some 9,1y > 0. Consequently, we obtain the conclusion. O

5.2 Preparation for extension

This section is dedicated to preparing for extending Proposition 5.2.
Definition 5.3. Let T) ., : H'(RY) — H'(RY) define by
Tyt i= )\%u()\  —w)e”
for A >0, v € R, and w € RY.
Then, by direct calculation, we obtain the following properties.

Proposition 5.4. (i) || Th4wtll2 = |ull2, VT 4wl = A Vula.

(i) Thq,w € L (HYRY)).

(1) Ty w1 Tog vz ws = Ty s vs 472 Aows +ws-

(iv) For any u € HY(RY), R x RY 3 (v,y) = T1 4 u € L*(RY) is Lipschitz continuous.

(v) For any u € L*(R") such that Au € L2(RY), R 2 X — Ty g0u € L*(RY) is locally Lipschitz continuous.

Lemma 5.5. Let u € HY(RY) and § € (0,[|Vull2). For A > 0, if By1(u,8) NTx~.wBpgi(u,8) # 0 for some
v € R and w € RY, then
s < [l 4
Vullz =6

holds.

Proof. When u = 0, it is obvious. We may assume u # 0. Since

lu—=v|lg <9, |Ju—Txpwo|p <9
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for some v € By (u,d), we obtain

6 2| Ty wv = ullgr = [[VTs w0 — Vul2
>|IVTx ywt — Vulla = | VT 5,00 — VT 5.0ul|2
> [A[Vaullz = [[Vull2] = A[Vu — Vo2
>A|Vullz — || Vu]| — Ad.
Therefore, we obtain
oo Ivula 5
~IVullz =0
O

Corollary 5.6. For any ¢ > 0 and u € H'(RY) \ {0}, there exists § > 0 such that for A > 0, if By (u,d) N
T ~.wBr1 (u,0) # 0 for some v € R and w € RY, then |1 — \| < € holds.

YW

Proof. Let § := £ min{3|Vul|z, £[[Vul2}. From Lemma 5.5,

3
y< IVula s 3IVuls
[Vl =3 = {Vul

and from the proof of Lemma 5.5,
6 > X =1[[[Vaullz = Ad > [X = 1] ||Vl — 34.

Therefore, we obtain

44 4 ¢ €
1-) <L < —||Vulls = = <e.
NS T = s YR
O
Lemma 5.7. For any u € L?(RY),
lim sup sup| (T 1, u)s| = 0
T—00 |w‘27. YER
holds.
Proof. If u has the compact support, then it is obvious. The rest can be shown by approximation. O

Lemma 5.8. For any u € L?(R"), there exist R > 0 such that for w € RN, if Bz (u, % ||ull2)NT1 5,0 Br2 (u, 5||ull2) #
() for some v € R, then |w| < R holds.

Proof. From Lemma 5.7, there exist R > 0 such that supj,> g Sup,er (717,04, u)2 < 3[lul|3. Namely,
L2
(T ww,u)z > Sllullz = fw] < R.
Next, from the assumption,
1 1
lu=vllz < Fllullz,  llu=T1ywvlz < Fllul2

holds for some v € Byz (u, [ul|2). Therefore, since

171 ww — ullz =Tyt = Ty + Ty 0t — ull2
<llu—=vll2 + [ T1,7,w0 — ull2
<Hu”27

we obtain

[ull3 > N7 0w = ull3 = 1Ty wull3 — 2T 0w, w)e + [ful3

=2||ull3 — 271w, ).

Consequently, we obtain

1
(Tiwts )z > 5 ull

and it implies the conclusion. O
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Lemma 5.9. Let p € [1,00). For u € LP(RY), if (v, w) # (0,0) and T} 5 ,u = u for some v € R and w € RV,
then u = 0.

Proof. If w =0, then v # 0 and
Tiyou=u & (e —1)u=0.

Namely, u = 0.
Let w # 0. Then we may assume w = e1, where e; is the standard basis. Since

Ju(- = e1)| = |u(- — ex)e”| = |T1y.e,ul = |ul,
|u| is a periodic function of cycle e;. Therefore, since u € LP(R"), we obtain u = 0. O

Corollary 5.10. For any u € H*(R™)\ {0} and ¢ > 0, there exists § > 0 such that for v € (-7, 7] and w € RV,
if Br2(u,d) NT1 ywBr2(u,6) # 0, then |y| + |y| < e.

Proof. We prove by contradiction. We assume that
1 1
B2 | u, - NTy~, w,Brz | u, - £0, |yu|+ |wn| >¢€
for some u € HY(RY)\ {0}, ¢ > 0, v, € (—m, 7], and w,, € RY. Similarly to the proof of Lemma 5.8, we obtain

T u—ujls < —.
|| L, vn,wn ||2 n
Since & < 1||u||2 if n sufficiently large, (wy)nen is bounded by Lemma 5.8. Obviously, (7,)nen is also bounded.
Therefore, there exist convergent subsequences (wy, )ren and (vn, )ken and the convergence limits of these
sequences is denoted yo and g, respectively. Then, from Proposition 5.4,

1T 0,0t = ttll2 <N T 5000w — T ull2 + 1Ty u—ully

sYng » Wny, sYng  Wny,

—0 (k — o0).

Consequently, T7 1wt = U.
On the other hand, since |wy, | + |Vn,| > €, we obtain |wg| + || > & > 0. Namely, wg # 0 or vy # 0.
Therefore, from Lemma 5.9, v = 0. It is contradiction. [

Proposition 5.11. Let u € H*(RY) \ {0} be Au € L%(RY). For any ¢ > 0, there exists § > 0 such that for
A>0,7 € (—m, 7], and w € RN if Byi(u,8) NTh~.wBp(u,8) # 0, then [1 — A + |v] + Jw| < e.

Proof. From Corollary 5.7, there exists §; > 0 such that for v € (—m, 7] and w € RY, if Bp2(u,d;) N
Ty wBr2(u, 1) # 0, then |y| + |w| < 5.

From Proposition 5.4, there exists d > 0 such that if [1 — A| < &2, then [u — Ty g oull2 < %

From Corollary 5.6, there exists 63 > 0 such that for A > 0, v € (=7, 7], and w € RY, if By (u,d3) N
T y,wBr (u,83) # 0, then |1 — | < min {45, 5}

Let § := min{%,dg}. Then, for A > 0, v € (—m, 7], and w € RN, if By (u,8) N T~ B (u,8) # 0, then
|1 — Al < min {65, £} since By (u,8) C By (u,ds). Therefore, ||u — Txo,0ull2 < %. Moreover, since

1Ty v — ull2
=T,y = Thy e+ Ty — Ty gyt + Tyt — Ty + Tyyv — ulf2

<2ju = vll2 + [[Tx5,5v = ullz + [[u = Tx0,0ull2

o1
<30 + —
+ 2
61 (51

<4+ - =)

=5 + 5 1

for some v € By (u, ) N T 5,wBp1(u,d), we obtain |y + |y| < 5.
Consequently,
. € €
11— A+ v+ |y <m1n{52,§} +§ <e.
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5.3 Proof of decomposition lemma
Definition 5.12. Let Vj;, € H'(RY) x (0,00) define by

(1) € Vsgy & IA>0, 7 €R, weRY st. HA%U(A —w)e™ 1 — QHHI <6 and Ale (—lo,lo)
for 6,1y > 0.

In this section, we extend Proposition 5.2 to be on Vj;,. As a result, we obtain Lemma 2.2.
Proposition 5.13. There exist ¢',1 > 0 such that for any u € B (Q,d), | € (—1{,15), A > 0, v € (—7, 7,
and w € RN, if Ty , ,u € By1(Q,¢'), then
My 1) = ATy oty A1), b(
F(w, 1) = A(Tx e, AY1) + 7, W(u, 1) = AM0(Th ~,wtt, A*1) +w
hold.

Proof. Let C > 0 be sufficiently small and 6 and Iy > 0 be from Proposition 5.2.
Since S(Q,0) = (1,0,0,0), there exist 0, € (0,6) and I; € (0,lp) such that

S(Bi (Q.6 Il 1_loaisle c.C Lo lz)"
(B (@60 x (i) < (1- 3014 5C) x (-0.0) x (30.5€)

Next, let 0 < A < 2% — 1. In particular,
A =1 <1

holds.
From Proposition 5.11, there exist do > 0 such that for A > 0 and v € (=7, 7], if By1(Q, 02)NTx ~,0wBm1 (Q, 62) #

0, then |1 — X + |v| + |w| < min{%ﬂé - 1} :
Let 6’ := min{d1,d>} and I{y :== 4. Then if u € By (Q,4") is Th 5,0t € By (Q, '), then
0= S(S(T.wits \1), T . wtt, A1)

for I < I since A*l < l;. Moreover,

A 1 1—
MTr w0, A1) € (1 ~5C.1+ 20) ,

X . 1— 1
’y(T)\mwu,)\ l) S (—QC,2C>,
) . 1— 1—
wj(T)\77711,U,)\ l) S 750,50
hold. Since ¢’ < d,, we obtain
C C C C
l-)MN<—<——, ie1- — <A<+ ——,
24+ C 2-C 2-C 2+C
b« <o
7 24C ~ 2
C 1
lw] < ——= < =C.
24+ C 2

Therefore,

N |

A 1= c 1 ic _
Ty, N < (1+=C) |1+ —= | = |1+ =C 1+—2——]=1+C,
Dherauts : < )( 2+C’> < 2 )( 1+ C’)

- 1 C
ATt A1) > <1 - 20) (1 -

~ - 1— 1—-
(T 0. X°0) 9] < BT )| + ] < 50+ .0 =T
C 1—- 1—- 3 1~ 1~ =
0 (T « <14+ —| = — — .= —(C =
|>‘w3( /\,"/,wu7/\ l)+w_]|_ ( +2+C) 30+2C<2 3C+2C C,
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i.e., we obtain
A e (—1,1), ATy, X) € (1-C,1+C)
H(Th i, A1)+ € (=C, T, ND(T 1y s A1) + w € (—C, C)
On the other hand, since
S(S(u,1),u,1) = 0= S(S(Th ity A1), Tty A1)
= STty A1), BTy oty A1), 7Tty A1) 4 7y M(T sy iy A1) 4w, i, 1)

and S is unique, we obtain
S(uv l) = (AS‘(T)\,V,wuv Aal), E(T)\,'y,wua )‘al)a ;}(/(TA,’Y,’LUU7 )‘al) +7, )‘ﬁ)(T)\,'y,wu, Aal) + w) :

O

Corollary 5.14. Let C, 6,1y > 0 be sufficiently small. Then the domain of S can be extended to Vsio- In
particular, the extension is unique and S is C*! function, where 7 is R/27Z-valued function.
Moreover, for (u,l) € Vs, such that Ty 5 ,u € By1(Q, ) and A\*l € (—lo, o),

Au, 1)
A

-1

5 . w(u,l _
1B, )]+ 10 D) — Yl anz + ‘()‘ <C

Au, 1)
holds.
Proof. Firstly, for (u,l) € Vs,
Ty ~wt € Bpi(Q,0), A*l € (—lo,lo)
hold for some A > 0, v € (-7, 7], and w € RY. Then the extension is
S(u) = (AS\(TAmwu, AD), B(T oty A0), (T oty A1) + 7, M (Tt AT) + w) :
By Proposition 5.13, this definition is well-defined and the extension is unique. O

Proposition 5.15. Let d,lp > 0 be sufficiently small. Then for any (u,l) € Vglo, (u 1), 2 5 (u 1), 8—7(u 1),
and a';’ (u,1) belong to H(RY).

Proof. Let be (u,l) € Vs,,. Then there exist A > 0, v € (-7, 7], and w € RY such that T - ,u € By (Q,9)
and A% € (—lo,lo).
Firstly, let

Then, since

0 =S\ (u,1),b(u,1),5(u,1), 0(u,l),u,l),

we obtain B
_@875’4_ (%884_8785’ ow; 08 +.”+8wN oS +8£
T Ougn  Ough  Oudy  ou o Oou Oy Ou’
Namely,
2N
oy
b
oS i
_% - A Ba’wl )
iy
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where
95, a5, 35, s ... 85
X b 95 dwn DN
A= : ; : ; ;
OSNys  OSNys  OSnys 89S ... OSNis
ox b 95 dwn DN
Since T 40+ = Ty _, _w,eachelement of the 95(5(u,1),u,1) belongs to H'(RY). Therefore, it is sufficient

to show that det A #0 on Vg;,.
Let € be sufficiently small and C, §, and Iy be recast as sufficiently small according to e. Then, by directly
calculation, we obtain

a8, ~ ~ 1

2 05030 500 01) =~ Q1 +0 (555 )
a5 ~ 1

85 ()‘(uv l)vb(ua Z),’y(u,l),zb(u,l),u l) = *Z”|y|Q”35LJ +0 (6) )

0S; -

a;}/j ()‘(uv l)’b(uv l),'?(uJ),lb(u,l),uJ) = _%|||y|QH%53,] +0 (6) ’

85]- ~ ~ ~ o 1 2 ] €

D (AMu, 1), b(u, 1), 3(u, 1), w(u,l),u,l) = 725\(%1) 1Q1150%,j—3 + O (5\(“’ l)) .

Therefore, we obtain
- 1
A DV det A(u,1) = — syl QISIQIY + 0,
i.e., A is regular on Vi, . O

proof of Lemma 2.2. Let [ > 0 be sufficiently small. Then \(¢)* < 1" < ly. We define

M) = Au(t),1),  b(t) == b(u(t),1), F(t) :=F(u(t),1), @(t):=w(u(t),1).

Then, by Corollary 5.14, the existence and uniqueness of the decomposition follows.
In addition, by Proposition 5.15, A, b, 7, and w are C' functions. O
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