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Chapter 1

Introduction

This thesis is based on [11,12].

As stated by [3, 19], nonlinear Schrödinger equations occur naturally in fields such as nonlinear optics and
plasma physics. The phenomenon of blow-up of solutions, which we deal with in this thesis, used to be less
emphasised in physics. This is because a finite-time blow-up is a theoretical phenomenon that loses smoothness
and generates a singularity at a certain finite time, but in reality no singularity occurs. There is also a lack
of model validity in the neighbourhood of this blow-up time, as the assumptions made when modelling the
nonlinear Schrödinger equation are not fulfilled. In other words, this leads to the expectation that in the
neighbourhood of the theoretical blow-up time there are perturbations that in reality suppress the blow-up.
Once an blow-up is foreseen and its conditions determined, it may be possible to reconstruct a non-blow-up
solution from that front. This is very useful when analysing problems with non-integrable systems that do not
have an analytical solution. In addition, even if the solution does not ultimately blow up in reality, its effects
do not disappear. In order to ensure that the blow-up is controlled and to study the behaviour that follows, it
is essential to be able to analyse the behaviour in the neighbourhood of the blow-up time properly.

In mathematical analysis, the studies of the nonlinear Schrödinger equation have mainly focused on the
locally well-posedness of initial value problems, the stability of solitary wave, the scattering for solutions, and
the blow-up of solutions. However, there has been little investigation of the detailed behaviour of blow-up
solutions, and other than the classical generalisation, the results are only for some several equations. These
results will be presented in Section 1.1. In the following parts, the equations treated in this thesis and their
properties will be presented.

In this thesis, we consider the following nonlinear Schrödinger equation with real-valued potentials:

i
∂u

∂t
+∆u+ |u| 4

N u− V u = 0 (NLS)

in RN , where V satisfies the following condition:

V ∈ Lp(RN ) + L∞(RN )

(
p ≥ 1 and p >

N

2

)
. (1.1)

It is well known that (NLS) is locally well-posed in H1(RN ) from [6, Proposition 3.2.2, Proposition 3.2.5,
Theorem 3.3.9, and Proposition 4.2.3]. Namely, the following properties hold:

• For any u0 ∈ H1(RN ), there exists a maximal solution u ∈ C((T∗, T
∗),H1(RN ))∩C1((T∗, T

∗),H−1(RN ))
for (NLS) with u(0) = u0. Moreover, the solution is unique.

• There is a blow-up alternative:

T ∗ <∞ implies lim
t↗T∗

‖u(t)‖H1 = ∞.

• The solution depends continuously on the initial values. Namely, for a sequence (u0,n)n∈N in H1(RN )
such that u0,n → u0 in H1(RN ) as n → ∞, let un and u be solutions for (NLS) with un(0) = u0,n and
u(0) = u0, respectively. Then for any bounded closed interval I ⊂ (T∗, T

∗), un are defined on I if n is
sufficiently large and

un → u in C(I,H1(RN ))

holds, where T∗ and T ∗ are infimum and supremum of the maximal interval of u, respectively.

7
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Furthermore, the mass (i.e., L2-norm) and energy E of the solution are conserved by the flow, where

E(u) :=
1

2
‖∇u‖22 −

1

2 + 4
N

‖u‖2+
4
N

2+ 4
N

+
1

2

∫
RN

V (x)|u(x)|2dx.

We define Hilbert spaces Σk by

Σk :=
{
u ∈ Hk(RN )

∣∣|x|ku ∈ L2(RN )
}
, ‖u‖2Σk := ‖u‖2Hk + ‖|x|ku‖22.

We call Σ1 the virial space. If u0 ∈ Σ1, then the solution u for (NLS) with u(0) = u0 belongs to C((T∗, T
∗),Σ1)

from [6, Lemma 6.5.2].
Moreover, we consider the following condition instead of (1.1):

V ∈ Lp(RN ) + L∞(RN )

(
p ≥ 2 and p >

N

2

)
. (1.2)

Under this condition, if u0 ∈ H2(RN ), then the corresponding solution u belongs to C((T∗, T
∗),H2(RN )) ∩

C1((T∗, T
∗), L2(RN )). Furthermore, if u0 ∈ Σ2, then the solution u for (NLS) with u(0) = u0 belongs to

C((T∗, T
∗),Σ2) and |x|∇u ∈ C((T∗, T

∗), L2(RN )) from the same proof as in [6, Lemma 6.5.2].

1.1 Previous results

Firstly, results based on the general theory of blow-up for the nonlinear Schrödinger equation are presented.
In [6, Theorem 6.5.4], the virial identity is used to give sufficient conditions for the solution to blow up. Applied
to (NLS), if u0 ∈ Σ1 and

V +
1

2
x · ∇V ≥ 0 a.e. in RN , E(u0) < 0,

then the corresponding solution blows up at a finite time. However, the assumptions in the main result Theorem
3.1 allow the choice of potentials and initial values that do not satisfy the conditions, and in Theorem 4.1 the
potential in fact do not satisfy the conditions. In particular, Theorem 4.1 shows that for any given energy
level it is possible to construct a blow-up solution with the energy. Therefore, although it is a relatively simple
sufficient condition, it is not very wide in its application.

Secondly, [6, Theorem 6.5.13] gives an estimate from below of the blow-up rates of finite-time blow-up
solutions. Applied to (NLS), if V = 0 (i.e., mass-critical problem) and a solution u for (NLS) blows up as t↗ T
(<∞), then

‖∇u(t)‖2 ≳ 1

(T − t)
1
2

(t↗ T ).

This result derives concrete information namely the blow-up rate. However, as discussed (1.3), it has been shown
that blow-up rates of finite-time blow-up solutions for the critical mass is |T − t|−1 in the critical problem.

The generalisations above do not describe the detailed behaviour of blow-up solutions. On the other hand,
specific information may be known about some blow-up solutions of several equations. Firstly, we describe the
results regarding the mass-critical problem:

i
∂u

∂t
+∆u+ |u| 4

N u = 0, (t, x) ∈ R× RN . (CNLS)

It is well known ( [2, 9, 21]) that there exists a unique classical solution Q for

−∆Q+Q− |Q|
4
N Q = 0, Q ∈ H1(RN ), Q > 0, Q is radial,

which is called the ground state. If ‖u‖2 = ‖Q‖2 (‖u‖2 < ‖Q‖2, ‖u‖2 > ‖Q‖2), we say that u has the critical
mass (subcritical mass, supercritical mass, respectively).

We note that Ecrit(Q) = 0, where Ecrit is the energy with respect to (CNLS). Moreover, the ground state
Q attains the best constant in the Gagliardo-Nirenberg inequality

‖v‖2+
4
N

2+ 4
N

≤
(
1 +

2

N

)(
‖v‖2
‖Q‖2

) 4
N

‖∇v‖22 for v ∈ H1(RN ).

Therefore, for all v ∈ H1(RN ),

Ecrit(v) ≥
1

2
‖∇v‖22

(
1−

(
‖v‖2
‖Q‖2

) 4
N

)
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holds. This inequality and the mass and energy conservations imply that all subcritical-mass solutions for
(CNLS) are global and bounded in H1(RN ).

Regarding the critical-mass case, we apply the pseudo-conformal transformation

u(t, x) 7→ 1

|t|
N
2

u

(
−1

t
,±x

t

)
ei

|x|2
4t

to the solitary wave solution u(t, x) := Q(x)eit. Then we obtain

S(t, x) :=
1

|t|
N
2

Q
(x
t

)
e−

i
t ei

|x|2
4t ,

which is also a solution for (CNLS) and satisfies

‖S(t)‖2 = ‖Q‖2 , ‖∇S(t)‖2 ∼ 1

|t|
(t↗ 0). (1.3)

Namely, S is a minimal-mass blow-up solution for (CNLS). Moreover, S is the only finite time blow-up solution
for (CNLS) with critical mass, up to the symmetries of the flow (see [13]).

Regarding the supercritical-mass case, there exists a solution u for (CNLS) such that

‖∇u(t)‖2 ∼

√
log
∣∣log |T ∗ − t|

∣∣
T ∗ − t

(t↗ T ∗)

(see [15,16]).

Secondly, we describe previous results regarding the following nonlinear Schrödinger equation with a real-
valued potential:

i
∂u

∂t
+∆u+ |u| 4

N u− V (x)u = 0, (t, x) ∈ R× RN . (PNLS)

Carles and Nakamura [5] deal with the case where V is a Stark potential, i.e., V (x) = ξ ·x for some ξ ∈ RN .
Carles [4] deals with the case where V (x) = ±ω2|x|2 for ω ∈ R. By using the Avron-Herbst formula for the
former and the generalised lens transform for the latter, solutions for (CNLS) can be transformed into solutions
for (PNLS). Therefore, in these cases, the minimal-mass blow-up solution for (PNLS) can be constructed from
the minimal-mass blow-up solution S for (CNLS). The results are therefore similar to the result of the mass-
critical problem. Moreover, Csobo and Genoud [7] and Mukherjee, Nam, and Nguyen [17] deal with N ≥ 3

and V (x) = − c
|x|2 for some 0 < c ≤ (N−2)2

4 . Although these results use a different ground state from Q, as

in the mass-critical problem, they obtain the minimal-mass blow-up solution by applying a pseudo-conformal
transformation.

Banica, Carles, and Duyckaerts [1] presents the following result for

i
∂u

∂t
+∆u+ g(x)|u| 4

N u− V (x)u = 0, (t, x) ∈ R× RN . (INLS)

Theorem 1.1 (Banica, Carles, and Duyckaerts [1]). Let N = 1 or 2, V ∈ C2(RN ,R), and g ∈ C4(RN ,R).
Assume

(
∂
∂x

)β
V ∈ L∞(RN ) (|β| ≤ 2),

(
∂
∂x

)β
g ∈ L∞(RN ) (|β| ≤ 4), and

g(0) = 1,
∂g

∂xj
(0) =

∂2g

∂xj∂xk
(0) = 0 (1 ≤ j, k ≤ N).

Then there exist T > 0 and a solution u ∈ C((0, T ),Σ1) for (INLS) such that∥∥∥∥∥u(t)− 1

λ(t)
N
2

Q

(
x− x(t)

λ(t)

)
ei

|x|2
4t −iθ( 1

t )−itV (0)

∥∥∥∥∥
Σ1

→ 0 (t↘ 0),

where θ and λ are continuous real-valued functions and x is a continuous RN -valued function such that

θ(τ) = τ + o(τ) as τ → +∞,

λ(t) ∼ t and |x(t)| = o(t) as t↘ 0.
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Results of [4, 5, 7, 17] construct blow-up solutions by applying the pseudo-conformal transformation to the
ground states. In contrast to these, the seminal work Raphaël and Szeftel [18] constructs a minimal-mass
blow-up solution for

i
∂u

∂t
+∆u+ k(x)|u| 4

N u = 0, (t, x) ∈ R× RN

without using the pseudo-conformal transformation. Le Coz, Martel, and Raphaël [10] based on the methodology
of [18] obtains the following results for

i
∂u

∂t
+∆u+ |u| 4

N u± |u|p−1u = 0, (t, x) ∈ R× RN . (DPNLS)

Theorem 1.2 (Le Coz, Martel, and Raphaël [10]). Let N = 1, 2, 3, 1 < p < 1 + 4
N , and ± = +. Then for any

energy level E0 ∈ R, there exist t0 < 0 and a radially symmetric initial value u0 ∈ H1(RN ) with

‖u0‖2 = ‖Q‖2, E(u0) = E0

such that the corresponding solution u for (DPNLS) with u(t0) = u0 blows up at t = 0 with a blow-up rate of

‖∇u(t)‖2 =
C(p) + ot↗0(t)

|t|σ
,

where σ = 4
4+N(p−1) and C(p) > 0.

Theorem 1.3 ( [10]). Let N = 1, 2, 3, 1 < p < 1 + 4
N , and ± = −. If an initial value has critical mass, then

the corresponding solution for (DPNLS) with u(0) = u0 is global and bounded in H1(RN ).

This result means that minimal-mass blow-up solutions do not exist ( [10, Lemma 1.2]).
These results show that the perturbation term, which is a small power-type nonlinearity, affects the exis-

tence and non-existence of the minimal-mass blow-up solution, and furthermore affects the blow-up rate of the
minimal-mass blow-up solution if it exists.

1.2 Organisation of this thesis

This thesis is henceforth structured as follows.
Firstly, in Chapter 2, the definitions and properties of the symbols used in this thesis are described, as well

as the lemmas necessary for the proofs of the main results. The proof of Lemma 2.2 is given in Chapter 5.
Next, in Chapter 3, the result is described for the case where the potential V is smooth.
Finally, in Chapter 4, the results are described for the case where the potential V is a inverse power potential.



Chapter 2

Preliminaries

2.1 Notations

Let

N := Z≥1, N0 := Z≥0.

We define

(u, v)2 := Re

∫
RN

u(x)v(x)dx, ‖u‖p :=
(∫

RN

|u(x)|pdx
) 1

p

,

f(z) := |z| 4
N z, F (z) :=

1

2 + 4
N

|z|2+ 4
N for z ∈ C.

By identifying C with R2, we denote the differentials of f and F by df and dF , respectively. We define

Λ :=
N

2
+ x · ∇, L+ := −∆+ 1−

(
1 +

4

N

)
Q

4
N , L− := −∆+ 1−Q

4
N .

Namely, Λ is the generator of L2-scaling, and L+ and L− come from the linearised Schrödinger operator around
Q. Then

L−Q = 0, L+ΛQ = −2Q, L−|x|2Q = −4ΛQ, L+ρ = |x|2Q, L−xQ = −∇Q

hold, where ρ ∈ S(RN ) is the unique radial solution for L+ρ = |x|2Q. Note that there exist Cα, κα > 0 such
that ∣∣∣∣( ∂

∂x

)α
Q(x)

∣∣∣∣ ≤ CαQ(x),

∣∣∣∣( ∂

∂x

)α
ρ(x)

∣∣∣∣ ≤ Cα(1 + |x|)καQ(x).

for any multi-index α. Furthermore, there exists µ > 0 such that for all u ∈ H1(RN ),

〈L+ Reu,Reu〉+ 〈L− Imu, Imu〉

≥ µ ‖u‖2H1 −
1

µ

(
(Reu,Q)2

2
+ |(Reu, xQ)2|2 + (Reu, |x|2Q)2

2
+ (Imu, ρ)2

2
)

(2.1)

(e.g., see [14,15,18,20]). We denote by Y the set of functions g ∈ C∞(RN \ {0})∩C(RN )∩H1
rad(RN ) such that

∃Cα, κα > 0, |x| ≥ 1 ⇒
∣∣∣∣( ∂

∂x

)α
g(x)

∣∣∣∣ ≤ Cα(1 + |x|)καQ(x)

for any multi-index α. Moreover, we defined by Y ′ the set of functions g ∈ Y such that

g ∈ H2(RN ) and Λg ∈ C(RN ).

Finally, we use the notation ≲ and ≳ when the inequalities hold up to a positive constant. We also use
the notation ≈ when ≲ and ≳ hold. Moreover, positive constants C and ε are sufficiently large and small,
respectively.

11
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2.2 Lemmas

In this section, the key lemmas in the proofs of the main results are described.
Firstly, we consider a more general Schrödinger equation

i
∂u

∂t
+∆u+ g(u) = 0, (t, x) ∈ R× RN . (GNLS)

For g = g1 + · · ·+ gk, we consider the following assumptions:

(a) There exists Gj ∈ C1(H1(RN ),R) such that G′
j = gj .

(b) There exist rj , ρj ∈ [2, 2∗) such that for any M <∞, there exists L(M) <∞ such that

‖gj(u)− gj(v)‖ρ′j ≤ L(M)‖u− v‖r

for all u, v ∈ H1(RN ) such that ‖u‖H1 + ‖v‖H1 ≤M .

(c) For any u ∈ H1(RN ),
Im gj(u)u = 0 a.e. in RN .

Here, p′ is the Hölder conjugate and 2∗ is the Sobolev conjugate, i.e., 2∗ := 2N
N−2 (N ≥ 3), 2∗ := ∞ (N = 1, 2).

Then the following property analogous to continuous dependence holds:

Lemma 2.1. Let g = g1 + · · · + gk satisfy (a), (b), and (c). For (ϕn)n∈N ⊂ H1(RN ) and ϕ ∈ H1(RN ), let
un and u be solutions for (GNLS) with un(0) = ϕn and u(0) = ϕ, respectively. Moreover, we assume that
ϕn → ϕ in L2(RN ) and that for any bounded closed interval J ⊂ (T∗(ϕ), T

∗(ϕ)), there exists m ∈ N such that
supn≥m ‖un‖L∞(J,H1) <∞. Then

un → u in L∞
loc((−Tmin(ϕ), Tmax(ϕ)), L

2(RN )) (n→ ∞).

In particular, un(t)⇀ u(t) weakly in H1(RN ) for any t ∈ (T∗(ϕ), T
∗(ϕ)).

Proof. We may assume that T1, T2 > 0 and J = [−T1, T2]. Then we define

M := ‖u‖L∞(J,H1) + sup
n≥m

‖un‖L∞(J,H1).

Furthermore, we define

Gj(u)(t) := i

∫ t

0

T (t− s)gj(u(s))ds, H(u)(t) := T (t)ϕ+ G1(u)(t) + · · ·+ Gk(u)(t),

where T (t) := eit∆. Similarly, we define Gj(un) andH(un). According to Duhamel’s principle, we have u = H(u)
and un = H(un).

Let n ≥ m and 0 < T ≤ min{T1, T2}. Moreover, let (q, r), (qj , rj), and (γj , ρj) be admissible pairs. Then,
according to the Strichartz estimate and (b), we have

‖T (t)ϕn − T (t)ϕ‖Lq(R,Lr) ≤ C‖ϕn − ϕ‖L2 ,

‖Gj(un)− Gj(u)‖Lq((−T,T ),Lr) ≤ C(M)T
1
γ′
j
− 1

qj ‖un − u‖Lqj ((−T,T ),Lrj ).

For v, w ∈ C([−T, T ],H1(RN )), we define

d(v, w) := ‖v − w‖L∞((−T,T ),L2) +

k∑
j=1

‖v − w‖Lqj ((−T,T ),Lrj ).

Then we have

d(un, u) = d(H(un),H(u)) ≤ C‖ϕn − ϕ‖L2 + d(un, u)C(M)

k∑
j=1

T
1
γ′
j
− 1

qj .

Since there exists T (M) > 0 such that C(M)
∑k
j=1 T (M)

1
γ′
j
− 1

qj ≤ 1
2 , we obtain

‖un − u‖L∞((−T (M),T (M)),L2) ≤ d(un, u) ≤ C‖ϕn − ϕ‖L2 → 0 (n→ ∞),

which yields the conclusion.
Finally, (un(t))n∈N is bounded in H1(RN ) and converges to u(t) in L2(RN ) for any t ∈ (T∗(ϕ), T

∗(ϕ)).
Therefore, (un(t))n∈N weakly converges to u(t) in H1(RN ).
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Let be P±
j,k ∈ Y ′, λ > 0, b ∈ R, and K ∈ N0 and define

P (y;λ, b) := Q(y) +
∑

0≤j+k≤K

(
b2jλ(k+1)αP+

j,k(y) + ib2j+1λ(k+1)αP−
j,k(y)

)
.

Then the following lemma holds. The proof is described in Chapter 5.

Lemma 2.2 (Decomposition). There exists l, C > 0 such that the following statement holds. Let I be an
interval and δ > 0 be sufficiently small. We assume that u ∈ C(I,H1(RN )) ∩ C1(I,H−1(RN )) satisfies

∀ t ∈ I,
∥∥∥λ(t)N

2 u (t, λ(t)y − w(t)) e−iγ(t) −Q
∥∥∥
H1

< δ

for some functions λ : I → (0, l), γ : I → R, and w : I → RN . Then there exist unique functions λ̃ : I → (0,∞),
b̃ : I → R, γ̃ : I → R/2πZ, and w̃(t) : I → RN such that

u(t, x) =
1

λ̃(t)
N
2

(
P (·; λ̃(t), b̃(t)) + ε̃

)(
t,
x+ w̃(t)

λ̃(t)

)
e
−i b̃(t)4

|x+w̃(t)|2

λ̃(t)2
+iγ̃(t)

,∣∣∣∣∣ λ̃(t)λ(t)
− 1

∣∣∣∣∣+ ∣∣∣b̃(t)∣∣∣+ |γ̃(t)− γ(t)|R/2πZ +

∣∣∣∣ w̃(t)− w(t)

λ̃(t)

∣∣∣∣ < C

hold, where | · |R/2πZ is defined by
|c|R/2πZ := inf

m∈Z
|c+ 2πm|,

and that ε̃ satisfies the orthogonal conditions

(ε̃, iΛP )2 =
(
ε̃, |y|2P

)
2
= (ε̃, iρ)2 = 0, (ε̃, yP )2 = 0

on I. In particular, λ̃, b̃, γ̃, and w̃ are C1 functions and independent of λ, γ, and w.

Remark 2.3. In particular, if u and P (·;λ, b) are spherically symmetrical, then w̃ = 0.

2.3 Outline of proofs

We prove main theorems by using a simplified version with modification of the method of Le Coz, Martel, and
Raphaël [10], which is based on seminal work of Raphaël and Szeftel [18]. We proceed in the following steps:

Step 1. For a solution u for (NLS), we consider the following transformation:

u(t, x) =
1

λ(s)
N
2

v (s, y) e−i
b(s)|y|2

4 +iγ(s), y =
x+ w(s)

λ(s)
,

ds

dt
=

1

λ(s)2
. (2.2)

Then v satisfies

0 = i
∂v

∂s
+∆v − v + f(v)− λ2V (λy − w)v +modulation terms.

Step 2. We construct a blow-up profile P as an approximate solution for

i
∂P

∂s
+∆P − P + f(P )− λ2V (λ · −w)P + θ

|y|2

4
P = 0,

where θ |y|2
4 P is a some correction term.

Step 3. Let v = P + ε for some error function ε. Then we obtain the equation of ε:

0 = i
∂ε

∂s
+∆ε− ε+ f(P + ε)− f(P )− λ2V (λy − w)ε+ θ

|y|2

4
ε+modulation terms + error terms.

Step 4. By using the modulation terms and ε, we estimate the parameters λ, b, γ, and w.

Step 5. We construct a sequence of suitable solutions for (NLS) and show that the limit of the sequence is the
desired minimal-mass blow-up solution.





Chapter 3

Case of smooth potentials

3.1 Problem and Main result

In this chapter, for the potential V in the equation

i
∂u

∂t
+∆u+ |u| 4

N u− V u = 0, (NLS)

we assume the following:

V ∈ Lp(RN ) + L∞(RN )

(
p ≥ 2 and p >

N

2

)
, (3.1)

V ∈ C1,1
loc (R

N ), (3.2)

∇V,∇2V ∈ Lq(RN ) + L∞(RN ) (q ≥ 2 and q > N) . (3.3)

Then we obtain the following result:

Theorem 3.1 ( [12]). Let the potential V satisfy (3.1), (3.2), and (3.3). Then there exist t0 < 0 and a initial
value u0 ∈ Σ1 with

‖u0‖2 = ‖Q‖2

such that the corresponding solution u for (NLS) with u(t0) = u0 blows up at t = 0. Moreover,∥∥∥∥∥u(t, x)− 1

λ(t)
N
2

Q

(
x+ w(t)

λ(t)

)
e
−i b(t)4

|x+w(t)|2

λ(t)2
+iγ(t)

∥∥∥∥∥
Σ1

→ 0 (t↗ 0)

holds for some C1 functions λ : (t0, 0) → (0,∞), b, γ : (t0, 0) → R, and w : (t0, 0) → RN such that

λ(t) = |t| (1 + o(1)) , b(t) = |t| (1 + o(1)) , γ(t) ∼ |t|−1, |w(t)| = O(|t|2)

as t↗ 0.

Firstly, the assumptions in Theorem 3.1 are weaker than those in Theorem 1.1 with g = 1. Theorem 3.1 has
no restrictions on spatial dimensions. On the other hand, according to the lack of regularity of the nonlinearity
|u| 4

N u, Theorem 1.1 requires the restriction N = 1 or 2. Although Theorem 3.1 is also affected by the lack
of regularity, we overcome this difficulty by using the properties of the ground state. In Theorem 3.1, the
assumption (3.2) plays an important role. We use to (3.2) to apply Taylor’s theorem to V . When V does not
satisfy (3.2), blow-up rates should change as the result of Le Coz, Martel, and Raphaël [10] or Theorem 4.1.

Secondly, we improve some parts of the arguments in Le Coz, Martel, and Raphaël [10] and Raphaël and
Szeftel [18]. Although the authors of [10,18] introduce the Morawetz functional ( [10, Section 5] and [18, Lemma
3.3]) and apply a truncation procedure to the functional, we avoid using the functional by modifying the
definition of ε. As a result, without the truncation, we work directly in the virial space Σ1. Moreover, the
authors of [10] use the continuous dependence on the initial value for (DPNLS) in Hs(RN ) for some s ∈ [0, 1).
Although this continuous dependence is an important fact in the proof of the main result in [10], it is not obvious
for (NLS). Therefore, instead of proving the continuous dependence for (NLS) in Hs(RN ) for some s ∈ [0, 1),
we use Lemma 2.1, which gives a kind of the continuous dependence. Consequently, we provide a simpler and
more general proof.

15
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3.2 Proof of Theorem 3.1

The error term Ψ is defined by

Ψ(y;λ,w) := λ2V (λy − w)Q(y)

for λ > 0 and w ∈ RN . Moreover, we define κ by

κ := 1− N

q
> 0.

Without loss of generality, we may assume that V (0) = 0.

Proposition 3.2. There exists a sufficiently small constant ε′ > 0 such that∥∥∥eϵ′|y|Ψ∥∥∥
2
+
∥∥∥eϵ′|y|∇Ψ

∥∥∥
2
≲ λ3 + λκ|w|2 (3.4)

for 0 < λ� 1 and w ∈ RN . Moreover, for any radial function ϕ ∈ L2(RN ),

|(Ψ, ϕ)2| ≲ λ2|w|+ λ1+κ
(
λ2 + |w|2

)
.

Proof. For the sake of simplicity, we assume ∇2V ∈ Lq(RN ).
By using Taylor’s theorem and V (0) = 0, we write

λ2V (λy − w) = λ2(λy − w) · ∇V (0) +
∑
|α|=2

∫ 1

0

λ2(λy − w)α
∂αV

∂xα
(τ(λy − w))(1− τ)dτ,

λ3
∂V

∂xj
(λy − w) = λ3

∂V

∂xj
(0) +

∫ 1

0

λ3(λy − w) ·
(
∇ ∂V

∂xj

)
(τ(λy − w))dτ.

Therefore, we have

|Ψ(y)| ≲ λ2(λ|y|+ |w|)Q(y) + λ2(λ|y|+ |w|)2
∫ 1

0

∣∣∇2V (τ(λy − w))
∣∣ dτQ(y),

|∇Ψ(y)| ≲ λ2 (λ(1 + |y|) + |w|)Q(y)

+ λ2(λ(1 + |y|) + |w|)2
∫ 1

0

∣∣∇2V (τ(λy − w))
∣∣ dτQ(y).

According to (3.3) and the exponential decay of Q from [6, Theorem 8.1.1], there exists a sufficiently small
constant ε′ > 0 such that∥∥∥eϵ′|y|∇2V (τ(λy − w)) (1 + |y|)Q(y)

∥∥∥
2
≲ τ−

N
q λ−

N
q

∥∥∇2V
∥∥
q
‖Q 1

2 ‖ 2q
q−2

.

Therefore, ∥∥∥eϵ′|y|Ψ∥∥∥
2
+
∥∥∥eϵ′|y|∇Ψ

∥∥∥
2
≲ λ2(λ+ |w|) + λ2−

N
q (λ+ |w|)2

∫ 1

0

τ−
N
q dτ ≲ λ3 + λκ|w|2.

Finally, since (yQ, ϕ)2 = 0 for any radial function ϕ ∈ L2(RN ), we obtain

(Ψ, ϕ)2 = −λ2w · ∇V (0)(Q,ϕ)2 +
∑
|α|=2

∫ 1

0

λ2
(
(λy − w)α

∂αV

∂xα
(τ(λy − w))Q,ϕ

)
2

(1− τ)dτ.

Therefore, we obtain conclusion.

Remark 3.3. For the estimate of (3.4) in [12], there is a term λ1+κ|w|2, but this is correct for λκ|w|2.

Next, we give a uniform estimate of the modulation terms.
Let s0 be sufficiently large. Given t1 < 0 which is sufficiently close to 0, we define s1 := −t1−1 and

λ1 = b1 = s1
−1. Let u(t) be the solution for (NLS) with an initial value

u(t1, x) :=
1

λ1
N
2

Q

(
x

λ1

)
e
−i b14

|x|2

λ1
2 . (3.5)



3.2. PROOF OF THEOREM 3.1 17

Note that u ∈ C((T∗, T
∗),Σ2(RN )) and |x|∇u ∈ C((T∗, T

∗), L2(RN )). Moreover,

Im

∫
RN

u(t1, x)∇u(t1, x)dx = 0

holds. Moreover, u satisfies the assumption in Lemma 2.2 in a neighbourhood of t1. Therefore, by applying
Lemma 2.2 with P = Q (i.e., P±

j,k = 0 for all j, k) to u, there exist decomposition parameters λ̃t1 , b̃t1 , γ̃t1 , w̃t1 ,
and ε̃t1 such that

u(t, x) =
1

λ̃t1(t)
N
2

(Q+ ε̃t1)

(
t,
x+ w̃t1(t)

λ̃t1(t)

)
e
−i

b̃t1
(t)

4

|x+w̃t1
(t)|2

λ̃t1
(t)2

+iγ̃t1 (t), (3.6)

(ε̃t1 , iΛQ)2 =
(
ε̃t1 , |y|2Q

)
2
= (ε̃t1 , iρ)2 = 0, (ε̃t1 , yQ)2 = 0 (3.7)

hold in the neighbourhood of t1. We define the rescaled time st1 by

st1(t) := s1 −
∫ t1

t

1

λ̃t1(τ)
2
dτ.

Moreover, let It1 be the maximal interval of the existence of the decomposition such that (3.6) and (3.7) hold
and we define

Js1 := st1 (It1) .

Then, since st1 : It1 → Js1 is strictly monotonically increasing, we can define inverse function st1
−1 : Js1 → It1 .

Furthermore, we define

tt1 := st1
−1, λt1(s) := λ̃t1(tt1(s)), bt1(s) := b̃t1(tt1(s)),

γt1(s) := γ̃t1(tt1(s)), wt1(s) := w̃t1(tt1(s)), εt1(s, y) := ε̃t1(tt1(s), y)

for s ∈ Js1 . In addition, although it is an abuse of the symbol, we define

Ψ(s, y) := Ψ(y;λ(s), w(s)).

For the sake of clarity in notation, we often omit the subscript t1. Additionally, for sufficiently large s1 (≥ s0),
we define

s′ := max {s0, inf Js1} .
Let K be sufficiently large and L and M be defined by

L :=
3

2
+

1

K
, 1 < M < 2(L− 1).

Moreover, we define s∗ by
s∗ := inf {σ ∈ (s′, s1] | (3.8) holds on [σ, s1]} ,

where {
‖ε(s)‖2H1 + b(s)2‖|y|ε(s)‖22 < s−2L,

|sλ(s)− 1| < s−M , |sb(s)− 1| < s−M , |w(s)| < s−
3
2 .

(3.8)

Note that for all s ∈ (s∗, s1], we have

s−1(1− s−M ) < λ(s), b(s) < s−1(1 + s−M ).

In Lemma 3.12, we will show that s0 = s′ = s∗ holds for any s1 > s0 if s0 is sufficiently large.
By direct calculations, we obtain

Ψ = i
∂ε

∂s
+∆ε− ε+ f (Q+ ε)− f (Q)− λ2V (λy − w)ε (3.9)

− i

(
1

λ

∂λ

∂s
+ b

)
Λ(Q+ ε) +

(
1− ∂γ

∂s

)
(Q+ ε) +

(
∂b

∂s
+ b2

)
|y|2

4
(Q+ ε)

−
(
1

λ

∂λ

∂s
+ b

)
b
|y|2

2
(Q+ ε) + i

1

λ

∂w

∂s
· ∇(Q+ ε) +

1

2

b

λ

∂w

∂s
· y(Q+ ε)

on Js1 . Finally, we define

Mod(s) :=

(
1

λ

∂λ

∂s
+ b,

∂b

∂s
+ b2, 1− ∂γ

∂s
,
∂w

∂s

)
.

In order to obtain a uniform estimate of the modulation terms, the following lemma is first presented.
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Lemma 3.4. For all s ∈ (s∗, s1],

|(Im ε(s),∇Q)2| ≲ s−2. (3.10)

Proof. According to a direct calculation, we have

d

dt
Im

∫
RN

u(t, x)∇u(t, x)dx = −2 (V u(t),∇u(t))2 = 〈∇V u(t), u(t)〉 .

Moreover, according to (3.3) and (3.6), we obtain

|〈∇V u(t), u(t)〉| =
∣∣∣〈(∇V )(λ̃(t)y − w̃(t))(Q+ ε̃(t)), Q+ ε̃(t)

〉∣∣∣
≲
(
1 + λ̃(t)1−

N
q

)
‖Q‖2H1 +

(
λ̃(t)−

N
q + 1

)
(‖Q‖H1 + ‖ε̃(t)‖H1) ‖ε̃(t)‖H1

≲ 1.

Accordingly, we obtain∣∣∣∣Im ∫
RN

u(t(s), x)∇u(t(s), x)dx
∣∣∣∣ ≲ ∫ s1

s

λ(σ)2 |〈∇V u(t(σ)), u(t(σ))〉| dσ

≲
∫ s1

s

σ−2dσ ≲ s−1.

Therefore, we obtain

2(Im ε(s),∇Q)2 + (ε(s), i∇ε(s))2 +
b

2

∫
RN

y |Q(y) + ε(s, y)|2 dy

= λ Im

∫
RN

u(t(s), x)∇u(t(s), x)dx

= O
(
s−2
)

Moreover, from (3.8) and the orthogonal conditions (3.7), we obtain

2(ε(s), i∇ε(s))2 + b

∫
RN

y |Q(y) + ε(s, y)|2 dy = 2(ε(s), i∇ε(s))2 + b

∫
RN

y|ε(s, y)|2dy

= O(s−2L).

Consequently, we obtain (3.10).

Lemma 3.5 (Estimation of modulation terms). For all s ∈ (s∗, s1],

2(ε(s), Q)2 = −‖ε(s)‖22 , (3.11)

|Mod(s)| ≲ s−3, (3.12)∣∣∣∣∂b∂s + b2
∣∣∣∣+ ∣∣∣∣ 1λ ∂λ∂s + b

∣∣∣∣ ≲ s−2L. (3.13)

Proof. According to the mass conservation, we have

2 (ε,Q)2 = ‖u‖22 − ‖Q‖22 − ‖ε‖22 = −‖ε‖22 ,

meaning (3.11) holds.
For v = ΛQ, i|y|2Q, ρ, or yjQ, the following estimates hold:

|f (Q+ ε)− f (Q)− df(Q)(ε)||v| ≲ |ε|2, |(λ2V (λy − w)ε, v)2| ≲
(
λ3 + λκ|w|2

)
‖ε‖2.

By differentiating the orthogonal conditions (3.7) with respect to the time variable s, we obtain

0 =
d

ds
(iε,ΛQ)2 =

(
i
∂ε

∂s
,ΛQ

)
2

(3.14)

=
d

ds

(
iε, i|y|2Q

)
2
=

(
i
∂ε

∂s
, i|y|2Q

)
2

(3.15)

=
d

ds
(iε, ρ)2 =

(
i
∂ε

∂s
, ρ

)
2

(3.16)

=
d

ds
(iε, iyjQ)2 =

(
i
∂ε

∂s
, iyjQ

)
2

. (3.17)
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For the first line of (3.9),

−∆ε+ ε− (f (Q+ ε)− f (Q)) + λ2V (λy − w)ε

=L+ Re ε+ iL− Im ε− (f (Q+ ε)− f (Q)− df(Q)(ε)) + λ2V (λy − w)ε

holds. Therefore, we have

i
∂ε

∂s
=L+ Re ε+ iL− Im ε− (f (Q+ ε)− f (Q)− df(Q)(ε)) + λ2V (λy − w)ε

+ i

(
1

λ

∂λ

∂s
+ b

)
Λ(Q+ ε)−

(
1− ∂γ

∂s

)
(Q+ ε)−

(
∂b

∂s
+ b2

)
|y|2

4
(Q+ ε)

+

(
1

λ

∂λ

∂s
+ b

)
b
|y|2

2
(Q+ ε)− i

1

λ

∂w

∂s
· ∇(Q+ ε)− 1

2

b

λ

∂w

∂s
· y(Q+ ε) + Ψ.

From (3.14), we have

(L+ Re ε+ iL− Im ε,ΛQ)2 = (Re ε, L+ΛQ)2 = −2 (Re ε,Q)2 = −2 (ε,Q)2 = ‖ε‖22.

Therefore,

1

4
‖|y|Q‖22

(
∂b

∂s
+ b2

)
= −

((
∂b

∂s
+ b2

)
|y|2

4
Q,ΛQ

)
2

=

(
i
∂ε

∂s
− L+ Re ε− iL− Im ε+ f (Q+ ε)− f (Q)− df(Q)(ε)− λ2V (λy − w)ε

− i

(
1

λ

∂λ

∂s
+ b

)
Λ(Q+ ε) +

(
1− ∂γ

∂s

)
(Q+ ε) +

(
∂b

∂s
+ b2

)
|y|2

4
ε−

(
1

λ

∂λ

∂s
+ b

)
b
|y|2

2
(Q+ ε)

+ i
1

λ

∂w

∂s
· ∇(Q+ ε) +

1

2

b

λ

∂w

∂s
· y(Q+ ε)−Ψ,ΛQ

)
2

and according to orthogonal conditions (3.7), Equation (3.9), Proposition 3.2, and Lemma 3.4, we see that∣∣∣∣∂b∂s + b2
∣∣∣∣ ≲ s−2L + s−(

1
2+

1
K )|Mod(s)|.

For (3.15), (3.16), and (3.17), we similarly obtain∣∣∣∣ 1λ ∂λ∂s + b

∣∣∣∣+ ∣∣∣∣1− ∂γ

∂s

∣∣∣∣ ≲ s−2L + s−(
1
2+

1
K )|Mod(s)|,

∣∣∣∣∂w∂s
∣∣∣∣ ≲ s−3 + s−1|Mod(s)|.

Note that Lemma 3.4 is used to obtain ∂w
∂s from (3.17). Therefore,

|Mod(s)| ≲ s−3 + ε |Mod(s)| .

For detail of the proof of the inequality, see [10, Lemma 4.1]. Consequently, we obtain (3.12) and (3.13).

Let m, ε1, and ε2 satisfy

1 < 1 + ε1 <
m

2
≤ L, 0 < ε2 <

mµε1
16

,

where µ is from the coercivity (2.1) of L+ and L−. Moreover, we define

H(s, ε) :=
1

2
‖ε‖2H1 + ε2b(s)

2 ‖|y|ε‖22 −
∫
RN

(F (Q(y) + ε(y))− F (Q(y))− dF (Q(y))(ε(y))) dy

+
1

2
λ(s)2

∫
RN

V (λ(s)y − w(s))|ε(y)|2dy,

S(s, ε) :=
1

λ(s)m
H(s, ε).

Lemma 3.6 (Coercivity). For all s ∈ (s∗, s1],

H(s, ε) ≥ µ

4
‖ε‖2H1 + ε2b

2 ‖|y|ε‖22

holds. Moreover,
1

λm

(µ
4
‖ε‖2H1 + ε2b

2 ‖|y|ε‖22
)
≤ S(s, ε) ≲ 1

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22

)
holds.
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Proof. Firstly, we have∫
RN

(
F (Q(y) + ε(y))− F (Q(y))− dF (Q(y))(ε(y))− 1

2
d2F (Q(y))(ε(y), ε(y))

)
dy

= O
(
‖ε‖3H1 + ‖ε‖2+

4
N

H1

)
.

Furthermore, according to (3.1), we have∣∣∣∣λ2 ∫
RN

V (λy − w)|ε(y)|2dy
∣∣∣∣ ≤ ε‖ε‖2H1 .

Finally, since

‖ε‖2H1 −
∫
RN

d2F (Q(y))(ε(y), ε(y))dy = (L+ Re ε,Re ε)2 + (L− Im ε, Im ε)2 ,

we obtain Lemma 3.6.

Lemma 3.7. For all s ∈ (s∗, s1],

|(f(Q+ ε)− f(Q),Λε)2| ≲ ‖ε‖2H1 , (3.18)∣∣λ2 (V (λy − w)ε,Λε)2
∣∣ ≲ s−(1+κ)

(
‖ε‖2H1 + b2‖|y|ε‖22

)
. (3.19)

Proof. For (3.18), see [10, Section 5.4] or Lemma 4.16. For (3.19), a direct calculation shows

(V (λy − w)ε,Λε)2 = −1

2
(λy · (∇V )(λy − w)ε, ε)2 .

Therefore, from (3.3), we obtain (3.19).

Lemma 3.8 (Derivative of H in time). For all s ∈ (s∗, s1],

d

ds
H(s, ε(s)) ≥ −b

(
4ε2
ε1

‖ε‖2H1 +
(m
2

+ 1 + ε1

)
ε2b

2 ‖|y|ε‖22 + Cs−(2+L)

)
.

Remark 3.9. The term Cs−4 is present in [12], but has been corrected to Cs−(2+L).

Proof. Firstly,

d

ds
H(s, ε(s)) =

∂H

∂s
(s, ε(s)) +

(
i
∂H

∂ε
(s, ε(s)), i

∂ε

∂s
(s)

)
2

,

∂H

∂ε
(s, ε) = −∆ε+ ε+ 2ε2b

2|y|2ε− (f(Q+ ε)− f(Q)) + λ2V (λy − w)ε

= L+ Re ε+ iL− Im ε+ 2ε2b
2|y|2ε− (f(Q+ ε)− f(Q)− df(Q)(ε)) + λ2V (λy − w)ε,

∂H

∂s
(s, ε) = 2ε2b

∂b

∂s
‖|y|ε‖22 +

1

λ

∂λ

∂s
λ2
∫
RN

V (λy − w)|ε|2dy

+
1

2

1

λ

∂λ

∂s
λ3
∫
RN

y · (∇V )(λy − w)|ε|2dy − 1

2
λ3
∫
RN

1

λ

∂w

∂s
· (∇V )(λy − w)|ε|2dy

holds. Additionally, we define

Modop v :=i

(
1

λ

∂λ

∂s
+ b

)
Λv −

(
1− ∂γ

∂s

)
v −

(
∂b

∂s
+ b2

)
|y|2

4
v +

(
1

λ

∂λ

∂s
+ b

)
b
|y|2

2
v

− i
1

λ

∂w

∂s
· ∇v − 1

2

b

λ

∂w

∂s
· yv.

Then,

i
∂ε

∂s
=
∂H

∂ε
− 2ε2b

2|y|2ε+Modop(Q+ ε) + Ψ

holds.
Then, we have

2ε2b
∂b

∂s
‖|y|ε‖22 ≥ −2ε2(1 + ε)b3 ‖|y|ε‖22 .

According to (3.1), (3.3), and Lemma 3.7, we have

∂H

∂s
≥ −2ε2(1 + ε)b3 ‖|y|ε‖22 − εb

(
‖ε‖2H1 + b2‖|y|ε‖22

)
.
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Next, since ∂H
∂ε ∈ L2

(
RN
)
, (

i
∂H

∂ε
,
∂H

∂ε

)
= 0

holds.
For

(
i∂H∂ε ,−2ε2b

2|y|2ε
)
2
,(

i
∂H

∂ε
,−2ε2b

2|y|2ε
)

2

= 4ε2b
2(i∇ε, yε)2 +

(
i(|Q+ ε| 4

N −Q
4
N )Q,−2ε2b

2|y|2ε
)
2
.

Therefore, we have ∣∣∣∣(i∂H∂ε ,−2ε2b
2|y|2ε

)
2

∣∣∣∣ ≤ 4ε2b
2 ‖|y|ε‖2 ‖∇ε‖2 + Cε2b

2‖ε‖22

≤ 4ε2b
2 ‖|y|ε‖2 ‖∇ε‖2 + εb‖ε‖22.

For
(
i∂H∂ε ,ModopQ

)
2
, by using orthogonal properties (3.7) and Lemma 3.5, we have∣∣∣∣(i∂H∂ε , iΛQ

)
2

∣∣∣∣+ ∣∣∣∣(i∂H∂ε ,Q
)

2

∣∣∣∣+ ∣∣∣∣(i∂H∂ε , |y|2Q
)

2

∣∣∣∣+ 1

λ

∣∣∣∣(i∂H∂ε , i ∂Q∂yj
)

2

∣∣∣∣+ ∣∣∣∣(i∂H∂ε , yjQ
)

2

∣∣∣∣ ≲ ‖ε‖22 + s−2.

Therefore, based on the definition of ModopQ and (3.12), we have∣∣∣∣(i∂H∂ε ,ModopQ

)
2

∣∣∣∣ ≲ |Mod(s)|
(
‖ε‖22 + s−2

)
≤ εb‖ε‖22 + Cs−5.

For
(
i∂H∂ε ,Modop ε

)
2
, by Lemma 3.7, we have∣∣∣∣(i∂H∂ε , iΛε

)
2

∣∣∣∣ ≲ ‖ε‖2H1 + b2‖| · |ε‖22.

Next, (
i
∂H

∂ε
, ε

)
2

=
((

|Q+ ε| 4
N −Q

4
N

)
Q, iε

)
2
.

Therefore, we have ∣∣∣∣(i∂H∂ε , ε
)

2

∣∣∣∣ ≲ ‖ε‖22.

Next, since(
i
∂H

∂ε
, i
∂ε

∂yj

)
2

= −4ε2b
2(yjε, ε)2 −

(
f(Q+ ε)− f(Q),

∂ε

∂yj

)
2

− λ3

2

(
∂V

∂yj
(λy − w)ε, ε

)
2

,

(
f(Q+ ε),

∂ε

∂yj

)
2

= −
(
f(Q+ ε),

∂Q

∂yj

)
2

,

(
f(Q),

∂Q

∂yj

)
2

= 0,

and (
f(Q+ ε)− f(Q),

∂ε

∂yj

)
2

= −
(
f(Q+ ε)− f(Q),

∂Q

∂yj

)
2

−
(
f(Q),

∂ε

∂yj

)
2

= −
(
f(Q+ ε)− f(Q),

∂Q

∂yj

)
2

+

(
df(Q)(ε),

∂Q

∂yj

)
2

,

we have
1

λ

∣∣∣∣(i∂H∂ε , i ∂ε∂yj
)

2

∣∣∣∣ ≲ s−(2L−1).

Finally, (
i
∂H

∂ε
, yjε

)
2

= −2

(
∂ε

∂yj
, iε

)
2

+
((

|Q+ ε| 4
N −Q

4
N

)
Q, iyjε

)
2
.

Therefore, we have ∣∣∣∣(i∂H∂ε , yjε
)

2

∣∣∣∣ ≲ ‖ε‖2H1 .
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According to the definition of Modop ε and (3.12), we have∣∣∣∣(i∂H∂ε ,Modop ε

)
2

∣∣∣∣ ≤ C |Mod(s)|
(
‖ε‖2H1 + b2‖|y|ε‖22 + Cs−(2L−1)

)
≤ εb

(
‖ε‖2H1 + b2‖|y|ε‖22

)
+ Cs−(2L+2).

Finally, we have ∣∣∣∣(i∂H∂ε ,Ψ
)

2

∣∣∣∣ ≲ s−(3+L).

Consequently, we have∣∣∣∣(i∂H∂ε , i∂ε∂s
)

2

∣∣∣∣ ≤ 4ε2b
2 ‖|y|ε‖2 ‖∇ε‖2 + εb

(
‖ε‖2H1 + b2‖|y|ε‖22

)
+ Cs−(3+L)

≤ 4ε2b
2 ‖|y|ε‖2 ‖∇ε‖2 + εb

(
‖ε‖2H1 + b2‖|y|ε‖22

)
+ Cbs−(2+L)

and

d

ds
H(s, ε(s)) ≥ −2ε2(1 + ε)b3 ‖|y|ε‖22 − εb‖ε‖2H1 − 4ε2b

2 ‖| · |ε‖2 ‖∇ε‖2 − εb
(
‖ε‖2H1 + b2‖|y|ε‖22

)
− Cbs−(2+L)

≥ −2(1 + ε+ ε1)ε2b
3 ‖|y|ε‖22 −

2ε2
ε1
b‖∇ε‖22 − εb

(
‖ε‖2H1 + b2 ‖|y|ε‖22

)
− Cbs−(2+L).

We define κ′ by

κ′ :=
1

4
− 2

K
.

Lemma 3.10 (Derivative of S in time). For all s ∈ (s∗, s1],

d

ds
S(s, ε(s)) ≳ b

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22 − s−(2L+κ′)

)
.

Proof. According to (3.12) and Lemmas 3.7 and 3.8, we have

d

ds
S(s, ε(s)) = m

b

λm
H(s, ε(s))−m

1

λm

(
1

λ

∂λ

∂s
+ b

)
H(s, ε(s)) +

1

λm
d

ds
H(s, ε(s))

≥ b

λm

((
mµ

4
− 4ε2

ε1

)
‖ε‖2H1 +

(m
2

− (1 + ε1)
)
ε2b

2 ‖|y|ε‖22 − εs−(2L+κ′)

)
.

Therefore, we obtain Lemma 3.10.

Lemma 3.11. There exists a sufficiently small ε3 > 0 such that for all s ∈ (s∗, s1],

‖ε(s)‖2H1 + b(s)2 ‖|y|ε(s)‖22 ≲ s−(2L+κ′), (3.20)

|sλ(s)− 1| < (1− ε3)s
−M , (3.21)

|sb(s)− 1| < (1− ε3)s
−M , (3.22)

|w(s)| ≲ s−2. (3.23)

Proof. By using Lemmas 3.6 and 3.10 as in the proof of [10, Lemma 6.1], we see that (3.20). Indeed, we prove
(3.20) by contradiction. Let C† > 0 be sufficiently large and define

s† := inf
{
σ ∈ (s∗, s1]

∣∣∣ ‖ε(τ)‖2H1 + b(τ)2 ‖|y|ε(τ)‖22 ≤ C†τ
−(2L+κ′) (τ ∈ [σ, s1])

}
.

Then s† < s1 holds. Here, we assume that s† > s∗. Then we have

‖ε(s†)‖2H1 + b(s†)
2 ‖|y|ε(s†)‖22 = C†s†

−(2L+κ′).

Let define

s‡ := sup
{
σ ∈ (s∗, s1]

∣∣∣ ‖ε(τ)‖2H1 + b(τ)2 ‖|y|ε(τ)‖22 ≥ τ−(2L+κ′) (τ ∈ [s†, σ])
}
.
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Then s‡ > s† holds. Furthermore,

‖ε(s‡)‖2H1 + b(s‡)
2 ‖|y|ε(s‡)‖22 = s‡

−(2L+κ′).

Then, according to Corollary 3.6 and Lemma 3.10, we have

C ′
1

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22

)
≤ S(s, ε) ≤ C ′

2

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22

)
,

C1b

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22 − s−(2L+κ′′)

)
≤ d

ds
S(s, ε(s))

for s ∈ (s∗, s1]. Here, S(·, ε(·)) is monotonically increasing on [s†, s‡]. Therefore, we have

C ′
1C†s†

−(2L+κ′) = C ′
1

(
‖ε(s†)‖2H1 + b(s†)

2 ‖|y|ε(s†)‖22
)
≤ λ(s†)

mS (s†, ε(s†)) ≤ λ(s†)
mS (s‡, ε(s‡))

≤ λ(s†)
m

λ(s‡)m
C ′

2

(
‖ε(s‡)‖2H1 + b(s‡)

2 ‖|y|ε(s‡)‖22
)
=
λ(s†)

m

λ(s‡)m
C ′

2s‡
−(2L+κ′)

≤ (1 + ε)C ′
2

(
s‡
s†

)−(2L−m+κ′)

s†
−(2L+κ′).

Accordingly, we have C ′
1C† ≤ (1 + ε)C ′

2, which yields a contradiction if C† is sufficiently large. Consequently,
s† ≤ s∗. Moreover, since s∗ ≤ s† clearly holds by definition, we have s∗ = s†. Therefore, (3.20) holds.

We prove (3.21). Since∣∣∣∣ dds (sλ)
∣∣∣∣ ≤ s−1(1 + ε)

(
s−M + Cs−(2L−1)

)
≤ (1 + ε)s−(M+1)

and λ(s1) = s1
−1, we have

|sλ− 1| ≤
∫ s1

s

(1 + ε)σ−(M+1)dσ ≤ 1 + ε

M
s−M .

Therefore, (3.21) holds since M > 1. Next, we prove (3.22). Since∣∣∣∣ bλ − 1

∣∣∣∣ ≲ ∫ s1

s

σ−(2L−1)dσ ≲ s−2(L−1)

from (3.13), we have
|sb− sλ| ≲ s−2(L−1).

Consequently, we have

|sb− 1| ≤ |sb− sλ|+ |sλ− 1| ≤ 1 + ε

M
s−M + Cs−2(L−1).

Therefore, (3.22) holds. Finally, since

|w(s)| ≤
∫ s1

s

|Mod(σ)|dσ ≲
∫ s1

s

σ−3dσ ≲ s−2,

we obtain (3.23).

Consequently, (3.8) holds on [s0, s1]:

Lemma 3.12. If s0 is sufficiently large, then s∗ = s′ = s0 for any s1 > s0.

Proof. From Lemma 3.11, s∗ = s′ is obvious.
We prove s′ ≤ s0 by contradiction. Assume that for any s0 � 1, there exists s1 > s0 such that s′ > s0.

In the following, we consider the initial value (3.5) in response to such s1 and the corresponding solution u for
(NLS).

Let t′ := inf It1 . Then s
′ = inf Js1 > s0 holds. Furthermore, we have∥∥∥λ(s)N

2 u(s, λ(s)y − w(s))e−iγ(s) −Q(y)
∥∥∥
H1

≤ δ

4

for all s ∈ (s′, s1]. Since tt1((s
′, s1]) = (t′, t1], we have∥∥∥λ̃(t)N

2 u(t, λ̃(t)y − w̃(t))e−iγ̃(t) −Q(y)
∥∥∥
H1

≤ δ

4
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for all t ∈ (t′, t1]. We consider three cases t′ > T∗, t
′ = T∗ > −∞, and t′ = −∞.

Firstly, assume t′ > T∗. Then λ and λ̃ are bounded on (s′, s1] and (t′, t1], respectively, according to (3.8)
and s∗ = s′. Then, by setting t sufficiently close to t′, we have∥∥∥λ̃(t)N

2 u(t′, λ̃(t)y − w̃(t))e−iγ̃(t) −Q(y)
∥∥∥
H1

< δ.

Therefore, there exists the decomposition of u in a neighbourhood of t′ according to Lemma 2.2. Its existence
contradicts the maximality of It1 .

Next, assume t′ = T∗ > −∞. Then ‖∇u(t)‖2 → ∞ (t ↘ t′) holds according to the blow-up alternative.
Also, ‖∇u(s)‖2 → ∞ (s↘ s′) holds. Then since

‖u(s)‖2 + λ(s)‖∇u(s)‖2 ≲ 1,

we have λ(s) → 0 (s↘ s′). Therefore, we obtain

|sλ(s)− 1| → 1, s−M → s′
−M

<
1

2
(s↘ s′),

which contradicts (3.21).
Finally, assume t′ = −∞. Then there exists a sequence (sn)n∈N that converges to s′ such that limn→∞ λ(sn) =

∞ holds. Therefore, we obtain

|snλ(sn)− 1| → ∞, sn
−M → s′

−M
< 1 (n→ ∞),

which contradicts (3.21).
Consequently, we obtain s′ ≤ s0.

The estimates obtained with Lemmas 3.11 and 3.12 are in the time variable s. Therefore, they need to be
rewritten in the time variable t. To do so, for any t1 sufficiently close to 0, each decomposition parameters must
be defined on a sufficient interval.

Lemma 3.13. Let s0 be sufficiently large. Then there exists t0 < 0 such that

[t0, t1] ⊂ st1
−1([s0, s1]),

∣∣st1(t)−1 − |t|
∣∣ ≲ |t|M+1 (t ∈ [t0, t1])

hold for all t1 ∈ (t0, 0).

Proof. Firstly, [tt1(s0), t1] = st1
−1([s0, s1]) holds. For all s ∈ [s0, s1], we have

t1 − tt1(s) = s−1 − s1
−1 +

∫ s1

s

σ−2 (σλt1(σ) + 1) (σλt1(σ)− 1) dσ

since −s1−1 = t1 = tt1(s1). Therefore, we have

1

2
s−1 ≤ s−1

(
1− 3s−M

)
≤ |tt1(s)| ≤ s−1

(
1 + 3s−M

)
≤ 2s−1.

Accordingly, we obtain 1
2 |tt1(s)| ≤ s−1 ≤ 2 |tt1(s)|. According to st1

−1 = tt1 , we obtain

1

2
|t| ≤ st1(t)

−1 ≤ 2|t|. (3.24)

Consequently, according to (3.24), we obtain∣∣|t| − st1(t)
−1
∣∣ ≤ 3st1(t)

−(M+1) ≤ 3 · 2M+1|t|M+1.

Furthermore, since

tt1(s0) = −|tt1(s0)| ≤ −1

2
st1(tt1(s0))

−1 = −1

2
s0

−1

and s0 is independent of t1 according to Lemma 3.12, we obtain Lemma 3.13.

Lemma 3.14 (Conversion of estimates). For any t1 ∈ (t0, 0) and t ∈ [t0, t1],

λ̃t1(t) = |t|
(
1 + ελ̃,t1(t)

)
, b̃t1(t) = |t|

(
1 + εb̃,t1(t)

)
, |w̃t1(t)| ≲ |t|2,

‖ε̃t1(t)‖H1 ≲ |t|L+κ′
2 , ‖|y|ε̃t1(t)‖2 ≲ |t|L+κ′

2 −1

hold for some functions ελ̃,t1 and εb̃,t1 . Furthermore,

sup
t1∈[t,0)

∣∣∣ελ̃,t1(t)∣∣∣ ≲ |t|M , sup
t1∈[t,0)

∣∣∣εb̃,t1(t)∣∣∣ ≲ |t|M .
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Proof. Firstly, we define ελ̃,t1(t) :=
λ̃t1

(t)

|t| − 1. According to (3.24) and Lemma 3.13, we have

∣∣∣ελ̃,t1(t)∣∣∣ = ∣∣∣∣(st1(t)λ̃t1(t)− 1
) 1

st1(t)|t|
+

1

st1(t)|t|
− 1

∣∣∣∣ ≲ |t|M .

Similarly, we define εb̃,t1(t) :=
b̃t1 (t)

|t| − 1 and obtain estimates of b̃t1(t) and w̃t1(t).

Finally, this chapter ends with the proof of Theorem 3.1.

Proof of Theorem 3.1. Let (tn)n∈N ⊂ (t0, 0) be a increasing sequence such that limn↗∞ tn = 0. For each n ∈ N,
let un be the solution for (NLS) with the initial value

un(tn, x) :=
1

λ1,n
N
2

Q

(
x

λ1,n

)
e
−i b1,n4

|x|2

λ1,n
2

at tn, where b1,n = λ1,n = sn
−1 = −tn.

According to Lemma 2.2, there exists the decomposition

un(t, x) =
1

λ̃n(t)
N
2

(Q+ ε̃n)

(
t,
x+ w̃n(t)

λ̃n(t)

)
e
−i b̃n(t)

4
|x+w̃n(t)|2

λ̃n(t)2
+iγ̃n(t)

on [t0, tn]. Then (un(t0))n∈N is bounded in Σ1. Therefore, up to a subsequence, there exists u∞(t0) ∈ Σ1 such
that

un(t0)⇀ u∞(t0) weakly in Σ1.

Moreover, from Fréchet-Kolmogorov theorem, we see that

un(t0) → u∞(t0) in L2(RN ) (n→ ∞).

Let u∞ be the solution for (NLS) with the initial value u∞(t0) and T ∗ be the supremum of the maximal
existence interval of u∞. Moreover, we define T := min{0, T ∗}. For any T ′ ∈ [t0, T ), we have [t0, T

′] ⊂ [t0, tn]
if n is sufficiently large. Then there exists n0 such that

sup
n≥n0

‖un‖L∞([t0,T ′],Σ1) ≲
(
1 + |T ′|−1

) (
1 + |t0|L

)
holds. According to Lemma 2.1,

un → u∞ in C([t0, T
′], L2(RN )) (n→ ∞)

holds. In particular, un(t)⇀ u∞(t) in Σ1 for any t ∈ [t0, T ). Furthermore, we have

‖u∞(t)‖2 = ‖u∞(t0)‖2 = lim
n→∞

‖un(t0)‖2 = lim
n→∞

‖un(tn)‖2 = ‖Q‖2.

According to weak convergence in Σ1 and Lemma 2.2, we decompose u∞ to

u∞(t, x) =
1

λ̃∞(t)
N
2

(Q+ ε̃∞)

(
t,
x+ w̃∞(t)

λ̃∞(t)

)
e
−i b̃∞(t)

4
|x+w̃∞(t)|2

λ̃∞(t)2
+iγ̃∞(t)

on [t0, T ). Furthermore, as n→ ∞,

λ̃n(t) → λ̃∞(t), b̃n(t) → b̃∞(t), w̃n(t) → w̃∞(t), eiγ̃n(t) → eiγ̃∞(t),

ε̃n(t)⇀ ε̃∞(t) weakly in Σ1

hold for any t ∈ [t0, T ). Therefore, we obtain

λ̃∞(t) = |t| (1 + ελ̃,0(t)), b̃∞(t) = |t| (1 + εb̃,0(t)), |w̃∞(t)| ≲ |t|2,

‖ε̃∞(t)‖H1 ≲ |t|L+
κ′
2 , ‖|y|ε̃∞(t)‖2 ≲ |t|L+

κ′
2 −1

,
∣∣∣ελ̃,0(t)∣∣∣ ≲ |t|M ,

∣∣∣εb̃,0(t)∣∣∣ ≲ |t|M

from the uniform estimates in Lemma 3.14. Consequently, we obtain Theorem 3.1.





Chapter 4

Case of inverse power potential

4.1 Problem and Main results

In this chapter, we consider the following equation

i
∂u

∂t
+∆u+ |u| 4

N u± 1

|x|2σ
u = 0, (NLS)

where

0 < σ < min

{
N

4
, 1

}
. (4.1)

Then we obtain the following results.

Theorem 4.1 ( [11]). Assume (4.1). Then for any energy level E0 ∈ R, there exist t0 < 0 and a radially
symmetric initial value u0 ∈ Σ1 with

‖u0‖2 = ‖Q‖2, E(u0) = E0

such that the corresponding solution u for (NLS) with ± = + and u(t0) = u0 blows up at t = 0. Moreover,∥∥∥∥∥u(t)− 1

λ(t)
N
2

P

(
t,

x

λ(t)

)
e
−i b(t)4

|x|2

λ(t)2
+iγ(t)

∥∥∥∥∥
Σ1

→ 0 (t↗ 0)

holds for some blow-up profile P and C1 functions λ : (t0, 0) → (0,∞) and b, γ : (t0, 0) → R such that

P (t) → Q in Σ1, λ(t) = C1(σ)|t|
1

1+σ (1 + o(1)) ,

b(t) = C2(σ)|t|
1−σ
1+σ (1 + o(1)) , γ(t)−1 = O

(
|t|

1−σ
1+σ

)
as t↗ 0.

On the other hand, the following holds when ± = −.

Theorem 4.2 ( [11]). Assume N ≥ 2 and 0 < σ < 1. If u0 ∈ H1
rad(RN ) such that ‖u0‖2 = ‖Q‖2, the

corresponding solution u for (NLS) with ± = − and u(0) = u0 is global and bounded in H1(RN ).

As in Theorem 1.3, this result means that there is no spherically symmetric minimal-mass blow-up solution.
In terms of blow-up rate expectations, we compare (NLS) and (DPNLS). We consider the transformation

(2.2). Then v for solution u for (DPNLS) satisfies

0 = i
∂v

∂s
+∆v − v + |v| 4

N v ± λα|v|p−1v +modulation terms + error terms

with α = 2− N
2 (p− 1). Theorem 1.2 states that there exists a minimal-mass blow-up solution with a blow-up

rate |t|−
2

4−α with ± = +, and Theorem 1.3 states that there exists no minimal-mass blow-up solution with
± = −. On the other hand, v for solution u for (NLS) satisfies

0 = i
∂v

∂s
+∆v − v + |v| 4

N v ± λα
1

|y|2σ
v +modulation terms + error terms

27
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with α = 2 − 2σ. Therefore, we expect (NLS) to behave similarly to (DPNLS) regarding blow-up solutions.

Namely, there may exist a minimal-mass blow-up solution with a blow-up rate of |t|−
2

4−α with ± = +, and
there may exist no minimal-mass blow-up solution with ± = −. Moreover, the method in this paper could also
be applied to nonlinear terms of the form |x|−2σ|u|p−1u.

In results [4, 5, 7, 17], the blow-up solutions are explicitly constructed by applying a special transformation
to the solitary wave. In contrast, (NLS) has no such transformation. Therefore, we need a non-classical method
that does not use the pseudo-conformal transformation, such as [10] or [18]. As a result, we have constructed a

blow-up solution with a non-trivial rate |t|−
1

1+σ . In particular, Theorem 4.1 is the first result for an unbounded
potential without algebraic properties.

The potential in Theorem 3.1 is smooth and the blow-up rate is |t|−1. In contrast, the potential in Theorem

4.1 is singular at the origin and the blow-up rate is |t|−
1

1+σ . The smoothness at the origin (or more precisely at
the blow-up point) is what makes the difference between the two blow-up rates.

In terms of blow-up rates, we construct a blow-up solution with a rate of |t|−
1

1+σ . Here, we have |t|−
1

1+σ →
|t|− 1

2 as σ → 1. This blow-up rate is different from the rate |t|−1 in results in [7,17]. If σ = 1, then the inverse
power potential term cannot be treated as a perturbation because the scaling is balanced by the Laplacian
unlike σ < 1 and (DPNLS). Consequently, when σ = 1, by using a different ground state from the one used in
this paper and the pseudo-conformal transformation, we obtain a blow-up solution with a blow-up rate |t|−1.
Moreover, since C1(σ) → ∞ as σ → 1, the limit dose not make sense.

In the proof of Lemmas 4.17 and 4.18, we use Σ2 regularity of the error function ε. Therefore, we assume
(4.1) is for the error function ε to belong to Σ2. However, the behaviour of blow-up in Theorem 4.1 is described
in Σ1. Accordingly, it may be not essential.

4.2 Construction of blow-up profile

For K ∈ N, we define

ΣK :=
{
(j, k) ∈ N0

2
∣∣ j + k ≤ K

}
.

Proposition 4.3. Let K,K ′ ∈ N be sufficiently large. Let λ(s) > 0 and b(s) ∈ R be C1 functions of s such
that λ(s) + |b(s)| � 1.

(i). Existence of blow-up profile. For any (j, k) ∈ ΣK+K′ , there exist P+
j,k, P

−
j,k ∈ Y ′, βj,k ∈ R, and Ψ ∈ H1(RN )

such that P satisfies

i
∂P

∂s
+∆P − P + f(P ) + λα

1

|y|2σ
P + θ

|y|2

4
P = Ψ,

where α = 2− 2σ, and P and θ are defined by

P (s, y) := Q(y) +
∑

(j,k)∈ΣK+K′

(
b(s)2jλ(s)(k+1)αP+

j,k(y) + ib(s)2j+1λ(s)(k+1)αP−
j,k(y)

)
,

θ(s) :=
∑

(j,k)∈ΣK+K′

b(s)2jλ(s)(k+1)αβj,k.

Moreover, for some sufficiently small ε′ > 0,∥∥∥eϵ′|y|Ψ∥∥∥
H1

≲ λα
(∣∣∣∣ 1λ ∂λ∂s + b

∣∣∣∣+ ∣∣∣∣∂b∂s + b2 − θ

∣∣∣∣)+ (b2 + λα)K+2

holds.

(ii). Mass and energy properties of blow-up profile. Let define

Pλ,b,γ(s, x) :=
1

λ(s)
N
2

P

(
s,

x

λ(s)

)
e
−i b(s)4

|x|2

λ(s)2
+iγ(s)

.

Then ∣∣∣∣ dds‖Pλ,b,γ‖22
∣∣∣∣ ≲ λα

(∣∣∣∣ 1λ ∂λ∂s + b

∣∣∣∣+ ∣∣∣∣∂b∂s + b2 − θ

∣∣∣∣)+ (b2 + λα)K+2,∣∣∣∣ ddsE(Pλ,b,γ)

∣∣∣∣ ≲ 1

λ2

(∣∣∣∣ 1λ ∂λ∂s + b

∣∣∣∣+ ∣∣∣∣∂b∂s + b2 − θ

∣∣∣∣+ (b2 + λα)K+2

)
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hold. Moreover, ∣∣∣∣8E(Pλ,b,γ)− ‖|y|Q‖22
(
b2

λ2
− 2β

2− α
λα−2

)∣∣∣∣ ≲ λα(b2 + λα)

λ2
(4.2)

holds, where

β := β0,0 =
4σ‖|y|−σQ‖22

‖|y|Q‖22
.

Remark 4.4. Incorrect construction of profile in [11] has been corrected. In the definition of Φ in [11],
b2jλ(k+2)α 1

|y|2σP
+
j,k and ib2j+1λ(k+2)α 1

|y|2σP
−
j,k are added only when j = 0 and k = K +K ′, but in reality they

must be added when j + k = K +K ′. As a result, Proposition 4.10 is required.

Proof. See [10, Proposition 2.1] for details of proofs.
We prove (i). We set

Z :=
∑

(j,k)∈ΣK+K′

b2jλkαP+
j,k + i

∑
(j,k)∈ΣK+K′

b2j+1λkαP−
j,k.

Then P = Q+ λαZ holds. Moreover, let set

Θ(s) :=
∑

(j,k)∈ΣK+K′

b(s)2jλ(s)(k+1)αc+j,k (4.3)

and we consider

i
∂P

∂s
+∆P − P + f(P ) + λα

1

|y|2σ
P + θ

|y|2

4
P +ΘQ = 0,

where P+
j,k, P

−
j,k ∈ Y ′ and βj,k, c

+
j,k ∈ R are to be determined.

Firstly, we have

i
∂P

∂s
= −i

∑
(j,k)∈ΣK+K′

((k + 1)α+ 2j)b2j+1λ(k+1)αP+
j,k

+ i
∑
j,k≥0

b2j+1λ(k+1)αF
∂P
∂s ,−
j,k +

∑
j,k≥0

b2jλ(k+1)αF
∂P
∂s ,+

j,k +Φ
∂P
∂s ,

where

Φ
∂P
∂s =

(
1

λ

∂λ

∂s
+ b

) ∑
(j,k)∈ΣK+K′

(k + 1)αb2jλ(k+1)α(iP+
j,k − bP−

j,k)

+

(
∂b

∂s
+ b2 − θ

) ∑
(j,k)∈ΣK+K′

b2j−1λ(k+1)α(2jiP+
j,k − (2j + 1)bP−

j,k)

and for j, k ≥ 0, F
∂P
∂s ,±
j,k consists of P±

j′,k′ and βj′,k′ for (j
′, k′) ∈ ΣK+K′ such that k′ ≤ k − 1 and j′ ≤ j + 1 or

k′ ≤ k and j′ ≤ j − 1. Only a finite number of these functions are non-zero. In particular, F
∂P
∂s ,±
j,k belongs to Y ′

and

F
∂P
∂s ,+
j,0 = (2j + α+ 1)P−

j−1,0, F
∂P
∂s ,−
j,0 = 0

for any j ≥ 0.
Next, we have

∆P − P + |P | 4
N P =−

∑
(j,k)∈ΣK+K′

b2jλ(k+1)αL+P
+
j,k − i

∑
(j,k)∈ΣK+K′

b2j+1λ(k+1)αL−P
−
j,k

+
∑
j,k≥0

b2jλ(k+1)αF f,+j,k + i
∑
j,k≥0

b2j+1λ(k+1)αF f,−j,k +Φf ,

where

Φf = f(Q+ λαZ)−
K+K′+1∑
k=0

1

k!
dkf(Q)(λαZ, · · · , λαZ)

and for j, k ≥ 0, F f,±j,k consists of Q, P±
j′,k′ , and βj′,k′ for (j

′, k′) ∈ ΣK+K′ such that k′ ≤ k− 1 and j′ ≤ j. Only

a finite number of these functions are non-zero. In particular, F f,±j,k belongs to Y ′ and F f,±j,0 = 0 for any j ≥ 0.
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Next, we have

λα
1

|y|2σ
P =

∑
j+k≥0

(
b2jλ(k+1)α 1

|y|2σ
Fσ,+j,k + ib2j+1λ(k+1)α 1

|y|2σ
Fσ,−j,k

)
,

where

Fσ,+j,k =


Q (j = k = 0)
0 (j ≥ 1, k = 0)
P+
j,k−1 (k ≥ 1)

, F σ,−j,k =

{
0 (k = 0)
P−
j,k−1 (k ≥ 1)

.

Finally, we have

θ
|y|2

4
P =

∑
(j,k)∈ΣK+K′

b2jλ(k+1)αβj,k
|y|2

4
Q+

∑
j,k≥0

b2jλ(k+1)αF θ,+j,k + i
∑
j,k≥0

b2j+1λ(k+1)αF θ,−j,k

and for j, k ≥ 0, F θ,±j,k consists of Q, P±
j′,k′ , and βj′,k′ for (j

′, k′) ∈ ΣK+K′ such that k′ ≤ k− 1 and j′ ≤ j. Only

a finite number of these functions are non-zero. In particular, F θ,±j,k belongs to Y ′ and F θ,±j,0 = 0 for any j ≥ 0.
Here, we define

F±
j,k := F

∂P
∂s ,±
j,k + F f,±j,k + F θ,±j,k ,

Φ>K+K′
:=

∑
(j,k)̸∈ΣK+K′

b2jλ(k+1)αF+
j,k + i

∑
(j,k)̸∈ΣK+K′

b2j+1λ(k+1)αF−
j,k,

Φ := Φ
∂P
∂s +Φf +Φ>K+K′

+
∑

j+k=K+K′

(
b2jλ(k+2)α 1

|y|2σ
P+
j,k + ib2j+1λ(k+2)α 1

|y|2σ
P−
j,k

)
.

Then Φ>K+K′
is a finite sum and we obtain

i
∂P

∂s
+∆P − P + f(P ) + λα

1

|y|2σ
P + θ

|y|2

4
P +ΘQ

=
∑

(j,k)∈ΣK+K′

b2jλ(k+1)α

(
−L+P

+
j,k + βj,k

|y|2

4
Q+

1

|y|2σ
Fσ,+j,k + F+

j,k + c+j,kQ

)

+ i
∑

(j,k)∈ΣK+K′

b2j+1λ(k+1)α

(
−L−P

−
j,k − ((k + 1)α+ 2j)P+

j,k +
1

|y|2σ
Fσ,−j,k + F−

j,k

)
+Φ.

For each (j, k) ∈ ΣK+K′ , we choose recursively P±
j,k ∈ Y ′ and βj,k, c

+
j,k ∈ R that are solutions for the systems

(Sj,k)


L+P

+
j,k − F+

j,k − βj,k
|y|2

4
Q− 1

|y|2σ
Fσ,+j,k − c+j,kQ = 0

L−P
−
j,k − F−

j,k + ((k + 1)α+ 2j)P+
j,k −

1

|y|2σ
Fσ,−j,k = 0

and satisfy

c+j,k = 0 (j + k ≤ K),
1

|y|2
P±
j,k,

1

|y|
|∇P±

j,k| ∈ L∞(RN ) (j + k = K +K ′).

Such solutions (P+
j,k, P

−
j,k, βj,k, c

+
j,k) are obtained from the later Propositions 4.7 and 4.8 and Corollary 4.11.

In the same way as [10, Proposition 2.1], for some sufficiently small ε′ > 0, we have∥∥∥eϵ′|y|Φ ∂P
∂s

∥∥∥
H1

≲ λα
(∣∣∣∣ 1λ ∂λ∂s + b

∣∣∣∣+ ∣∣∣∣∂b∂s + b2 − θ

∣∣∣∣) ,∥∥∥eϵ′|y|Φf∥∥∥
H1

≲ λ(K+K′+2)α,∥∥∥eϵ′|y|Φ>K+K′
∥∥∥
H1

≲
(
b2 + λα

)K+K′+2
.

Moreover, ∥∥∥eϵ′|y|ΘQ∥∥∥
H1

≲
(
b2 + λα

)K+2
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holds. Therefore, we have∥∥∥eϵ′|y|Ψ∥∥∥
H1

≲ λα
(∣∣∣∣ 1λ ∂λ∂s + b

∣∣∣∣+ ∣∣∣∣∂b∂s + b2 − θ

∣∣∣∣)+
(
b2 + λα

)K+2
,

where Ψ := Φ−ΘQ.

Next, we prove only (4.2) of (ii). The rest is the same as in [10]. We have

λ2E(Pλ,b,γ) =
1

2
‖∇Q+ λα∇Z‖22 −

∫
RN

F (Q+ λαZ)dy − λα

2

∥∥|y|−σQ+ λα|y|−σZ
∥∥2
2

− b

2
(iQ+ iλαZ,ΛQ+ λαΛZ)2 +

b2

8
‖|y|Q+ λα|y|Z‖22 .

Here,

1

2
‖∇Q‖22 =

∫
RN

F (Q)dy, (∇Q,λα∇Z)2 = −(Q,λαZ)2 +

∫
RN

dF (Q)(λαZ)dy,

1

2

∥∥|y|−σQ∥∥2
2
=

1

8
‖|y|Q‖22

2β

2− α
, (iQ,ΛQ)2 = 0

hold and we have

(Q,λαZ)2 =
∑

(j,k)∈ΣK+K′ , j+k≥1

b2jλ(k+1)α
(
Q,P+

j,k

)
2
= O(λα(b2 + λα)),

b(iλZ,ΛQ)2 = −b
∑

(j,k)∈ΣK+K′

b2j+1λ(k+1)α
(
P−
j,k,ΛQ

)
2
= O(b2λα).

Therefore, we have

λ2E(Pλ,b,γ) =−
∫
RN

(F (Q+ λαZ)− F (Q)− dF (Q)(λαZ)) dy

− λα

8
‖|y|Q‖22

2β

2− α
+
b2

8
‖|y|Q‖22 +O(λα(b2 + λα))

and ∫
RN

(F (Q+ λαZ)− F (Q)− dF (Q)(λαZ)) dy = O(λ2α).

Consequently, we have the conclusion.

In the rest of this section, we construct solutions (P+
j,k, P

−
j,k, βj,k, c

+
j,k) ∈ Y ′2 × R2 for systems (Sj,k) in the

proof of Proposition 4.3.

Proposition 4.5. For any ψ ∈ H−1(RN ) such that
〈
ψ, ∂Q∂xj

〉
= 0 (j = 1, . . . , N), there exists ϕ ∈ H1(RN ) such

that L+ϕ = ψ in H−1(RN ). Similarly, for any ψ ∈ H−1(RN ) such that 〈ψ,Q〉 = 0, there exists ϕ ∈ H1(RN )
such that L−ϕ = ψ in H−1(RN ).

Proof. Let φ+ be the ground state of L+ and µ+ be the eigenvalue of φ+. Then µ+ < 0 and we may assume
‖φ+‖2 = 1. Let define H± that are subspaces of H1(RN ) by

H+ := Span

{
φ+,

∂Q

∂x1
, . . . ,

∂Q

∂xN

}⊥

, H− := Span {Q}⊥ ,

then H± are Hilbert spaces and

∃C± > 0 ∀ϕ ∈ H±, 〈L±ϕ,ϕ〉 ≥ C±‖ϕ‖2H1

hold, where double sign correspond. Therefore, from the Lax-Milgram theorem,

∀ψ ∈ H∗
± ∃!ϕ̃± ∈ H±, L±ϕ̃± = ψ in H∗

±

hold, where double sign correspond.



32 CHAPTER 4. CASE OF INVERSE POWER POTENTIAL

Here, let
〈
ψ, ∂Q∂xj

〉
= 0, ϕ := ϕ̃+ ⟨ψ,ϕ+⟩

µ+
φ+, and χ̃ := χ− (χ, φ+)φ+ − (χ,∇Q) · ∇Q for each χ ∈ H1(RN ).

Then χ̃ ∈ H+ and we have

〈L+ϕ, χ〉 = 〈ϕ,L+χ〉 = 〈ϕ,L+χ̃+ µ+(χ, φ+)φ+〉

= 〈L+ϕ̃, χ̃〉+
〈
〈ψ, φ+〉
µ+

φ+, µ+(χ, φ+)φ+

〉
= 〈ψ, χ̃〉+ (χ, φ+) 〈ψ, φ+〉+ (χ,∇Q) · 〈ψ,∇Q〉
=〈ψ, χ〉.

This means that L+ϕ = ψ in H−1(RN ).
The same is proved in the case of 〈ψ,Q〉 = 0.

Proposition 4.6. For any ψ, χ ∈ Y, there exists ϕ ∈ Y such that L+ϕ = ψ + |y|−2σχ. Similarly, for any
ψ, χ ∈ Y such that

〈
ψ + |y|−2σχ,Q

〉
= 0, there exists ϕ ∈ Y such that L−ϕ = ψ + |y|−2σχ.

Proof. We prove only for L+. Since Y ⊂ H1
rad(RN ), the existence of H1-solution is clearly from Proposition

4.5.
Firstly, based on a classical argument of elliptic partial differential equations, we have ϕ ∈ C∞(RN \ {0}).

From the maximum principal,

∃Cα, κα > 0, |x| ≥ 1 ⇒
∣∣∣∣( ∂

∂x

)α
ϕ(x)

∣∣∣∣ ≤ Cα(1 + |x|κα)Q(x)

holds for any multi-index α. Since ψ + |y|−2σχ ∈ Lp(RN ) for some p > max{N2 , 1}, we have ϕ ∈ L∞(RN )
(see [8, Theorem 8.15]). Furthermore, since

−∆ϕ+ ϕ =

(
1 +

4

N

)
Q

4
N ϕ+ ψ +

1

|y|2σ
χ ∈ Lp(RN ),

we have ϕ ∈W 2,p(RN ) ↪→ C0,γ(RN ) for some γ ∈ (0, 1). Namely, ϕ ∈ Y.

Proposition 4.7. The system (Sj,k) has a solution (P+
j,k, P

−
j,k, βj,k, c

+
j,k) ∈ Y2 × R2.

Proof. We solve

(Sj,k)


L+P

+
j,k − F+

j,k − βj,k
|y|2

4
Q− 1

|y|2σ
Fσ,+j,k − c+j,kQ = 0,

L−P
−
j,k − F−

j,k + ((k + 1)α+ 2j)P+
j,k −

1

|y|2σ
Fσ,−j,k = 0.

For (Sj,k), we consider the following two systems:

(S̃j,k)


L+P̃

+
j,k − F+

j,k − βj,k
|y|2

4
Q− 1

|y|2σ
Fσ,+j,k = 0,

L−P̃
−
j,k − F−

j,k + ((k + 1)α+ 2j)P̃+
j,k −

1

|y|2σ
Fσ,−j,k = 0.

and

(S′
j,k)


P+
j,k = P̃+

j,k −
c+j,k
2

ΛQ,

P−
j,k = P̃−

j,k − c−j,kQ−
((k + 1)α+ 2j)c+j,k

8
|y|2Q.

Then by applying (S′
j,k) to a solution for (S̃j,k), we obtain a solution for (Sj,k).

Firstly, we solve

(S̃0,0)

 L+P̃
+
0,0 − β0,0

|y|2

4
Q− 1

|y|2σ
Q = 0,

L−P̃
−
0,0 + αP̃+

0,0 = 0.

For any β0,0 ∈ R, there exists a solution P̃+
0,0 ∈ Y from Proposition 4.6. Let

β0,0 :=
4σ‖|y|−σQ‖22

‖|y|Q‖22
.



4.2. CONSTRUCTION OF BLOW-UP PROFILE 33

Then since (
P̃+
0,0, Q

)
2
= −1

2

〈
L+P̃

+
0,0,ΛQ

〉
=

1

2

(
β0,0
4

‖|y|Q‖22 − σ‖|y|−σQ‖22
)

= 0,

there exists a solution P̃−
0,0 ∈ Y. By taking c+0,0 = 0, we obtain a solution (P+

0,0, P
−
0,0, β0,0, c

+
0,0) ∈ Y2 × R2 for

(S0,0). Here, let H(j0, k0) denote by that

∀(j, k) ∈ ΣK+K′ , k < k0 or (k = k0 and j < j0)

⇒ (Sj,k) has a solution (P+
j,k, P

−
j,k, βj,k, c

+
j,k) ∈ Y2 × R2.

From the above discuss, H(1, 0) is true. If H(j0, k0) is true, then F
±
j0,k0

is defined and belongs to Y. Moreover,

for any βj0,k0 , there exists a solution P̃+
j0,k0

. Let be βj0,k0 such that〈
−F−

j0,k0
+ ((k0 + 1)α+ 2j0)P̃

+
j0,k0

− 1

|y|2σ
Fσ,−j0,k0

, Q

〉
= 0.

Then we obtain a solution P̃−
j0,k0

. Here, we define

c−j0,k0 :=


P̃−

j0,k0
(0)

Q(0) (j0 + k0 6= K + 1),

0 (j0 + k0 = K + 1, and P̃−
j0,k0

(0) 6= 0),

1 (j0 + k0 = K + 1, and P̃−
j0,k0

(0) = 0),

c+j0,k0 :=


0 (j0 + k0 ≤ K),

0 (j0 + k0 = K + 1, and P̃+
j0,k0

(0) 6= 0),

1 (j0 + k0 = K + 1, and P̃+
j0,k0

(0) = 0),
2P̃+

j0,k0
(0)

Q(0) (j0 + k0 ≥ K + 2).

Then we obtain a solution for (Sj0,k0). This means that H(j0 + 1, k0) is true if j0 + k0 ≤ K + K ′ − 1 and
H(0, k0 + 1) is true if j0 + k0 = K +K ′. In particular, H(0,K +K ′ + 1) means that for any (j, k) ∈ ΣK+K′ ,
there exists a solution (P+

j,k, P
−
j,k, βj,k, c

+
j,k) ∈ Y2 × R2.

Furthermore, P±
j,k(0) 6= 0 for j + k = K + 1 and P±

j,k(0) = 0 for j + k ≥ K + 2 hold.

Proposition 4.8. For P±
j,k,

P±
j,k ∈ H2(RN ) and ΛP±

j,k ∈ C(RN ).

Namely, P±
j,k ∈ Y ′.

Proof. Firstly, since P±
j,k ∈ Y and P±

j,k is solution for (Sj,k), ∆P
±
j,k ∈ L2(RN ). Therefore, P±

j,k ∈ H2(RN ).

Regarding ΛP±
j,k ∈ C(RN ), proving y · ∇P±

j,k ∈ C(RN ) is sufficient. Firstly,

L+(y · ∇P+
j,k) = y · ∇(F+

j,k + βj,k
|y|2

4
Q+

1

|y|2σ
Fσ,+j,k + c+j,kQ)

+ 2(F+
j,k + βj,k

|y|2

4
Q+

1

|y|2σ
Fσ,+j,k + c+j,kQ)

− 2P+
j,k + 2

(
4

N
+ 1

)
Q

4
N P+

j,k −
4

N

(
4

N
+ 1

)
Q

4
N −1y · ∇QP+

j,k

holds. Since |y|−2σy · ∇Fσ,+j,k ∈ Lp(RN ) for some p > max{N2 , 1}, we have L+(y · ∇P+
j,k) ∈ Lp(RN ). Therefore,

we have y · ∇P+
j,k ∈ C(RN ). Similarly, we have y · ∇P−

j,k ∈ C(RN ).

Proposition 4.9. For any 0 ≤ j ≤ K + 1, there exists kj ≥ 1 such that

1

r2
P±
j,k,

1

r

∂P±
j,k

∂r
∈ L∞(RN )

for any k ≥ kj , where r = |y|.
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Proof. We prove only for P+
j,k.

Let fk := P+
j,K−j+k for k ∈ N. Then f1(0) 6= 0 and fk(0) = 0 for k ≥ 2 hold. Moreover, Let

Fk := fk −
(
1 +

4

N

)
Q

4
N fk − F+

j,K−j+k − βj,K−j+k
r2

4
Q− c+j,K−j+kQ.

If r−qfk converges to non-zero as r → +0 for some q ∈ [0, 2σ) or r−qfk converges as r → +0 for some

q ≥ 2σ, then rN−1 ∂fk+1

∂r converges to 0 as r → +0. Indeed, if N = 1, then fk ∈W 2,p(RN ) ↪→ C1(RN ) for some

p > 1. Therefore, since fk is an even function, ∂fk∂r (0) = 0 holds. On the other hand, for N ≥ 2,

1

rN−1

∂

∂r

(
rN−1 ∂fk+1

∂r

)
= Fk+1 −

1

r2σ
fk (4.4)

holds. If r−qfk converges as r → +0 for some q ≥ 2σ, then r−2σfk is bounded. Therefore, for some sufficiently
large p, we have fk+1 ∈ W 2,p(RN ) ↪→ C1(RN ). Accordingly, rN−1 ∂fk+1

∂r converges to 0 as r → +0. On the
other hand, if r−qfk converges to non-zero as r → +0 for some q ∈ [0, 2σ), the right hand of (4.4) diverge +∞
or −∞ as r → +0. Therefore, rN−1 ∂fk+1

∂r is increasing or decreasing as r → +0, meaning rN−1 ∂fk+1

∂r converges
in [−∞,∞]. Let

C := lim
r→+0

rN−1

∣∣∣∣∂fk+1

∂r

∣∣∣∣ .
Then for any ε > 0, there exists r0 > 0 such that

∣∣∣∂fk+1

∂r

∣∣∣ ≥ (C − ε)r−(N−1) for any r ∈ (0, r0). On the other

hand, fk+1 ∈W 2,p(RN ) ↪→W 1,N (RN ) for some p > N
2 and

∣∣∣∂fk+1

∂r

∣∣∣ = |∇fk+1|. Therefore, we have

∞ >

∫
B(0,r0)

|∇fk+1(x)|Ndx ≥ CN

∫ r0

0

C − ε

rN(N−1)
dr.

Since
∫ r0
0
r−N(N−1)dr = ∞, we obtain C − ε ≤ 0. Consequently, we have C ≤ 0, meaning C = 0.

Let σ1 := 0 and C1 := f1(0). Moreover, let

σk+1 :=

{
1− σ + σk (σk < σ)

1 (σk ≥ σ)
, Ck+1 :=

{ −Ck

2σk+1(N−2(σ−σk))
(σk < σ)

Fk+1(0)−02(σk−σ)Ck

2N (σk ≥ σ)
.

In particular, σk = min{1, (1− σ)(k − 1)} and Ck 6= 0 if σk < σ. Then

lim
r→+0

1

r2σk
fk(r) = Ck (4.5)

holds. For k = 1, it clearly holds. Moreover, for k ≥ 2,

lim
r→+0

1

r2σk−1

∂fk
∂r

(r) = 2σkCk

holds. Indeed, if (4.5) holds for some k, then rN−1 ∂fk+1

∂r converges to 0 as r → +0 in both cases σk < σ and
σk ≥ σ from the above discuss. We assume σk < σ. Since

1

rN−1

∂

∂r

(
rN−1 ∂fk+1

∂r

)
= Fk+1 −

1

r2(σ−σk)

1

r2σk
fk,

for any ε > 0, there exists r0 > 0 such that

(−Ck − ε)rN−1−2(σ−σk) ≤ ∂

∂r

(
rN−1 ∂fk+1

∂r

)
≤ (−Ck + ε)rN−1−2(σ−σk)

for any r ∈ (0, r0). Integrating in [0, r], we have

(−Ck − ε)r1−2(σ−σk)

N − 2(σ − σk)
≤ ∂fk+1

∂r
≤ (−Ck + ε)r1−2(σ−σk)

N − 2(σ − σk)
.

Integrating in [0, r] again, we have

(−Ck − ε)r2−2(σ−σk)

(2− 2(σ − σk))(N − 2(σ − σk))
≤ fk+1 ≤ (−Ck + ε)r2−2(σ−σk)

(2− 2(σ − σk))(N − 2(σ − σk))
.
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Therefore, we have

lim
r→+0

1

r2σk+1−1

∂fk+1

∂r
(r) = 2σk+1Ck+1, lim

r→+0

1

r2σk+1
fk+1(r) = Ck+1.

On the other hand, we assume σk ≥ σ. Then for any ε > 0, there exists r0 > 0 such that

(Fk+1(0)− 02(σk−σ)Ck − ε)rN−1 ≤ ∂

∂r

(
rN−1 ∂fk+1

∂r

)
≤ (Fk+1(0)− 02(σk−σ)Ck + ε)rN−1

for any r ∈ (0, r0). Integrating in the same way as for σk < σ, we have

Fk+1(0)− 02(σk−σ)Ck − ε

N
r ≤ ∂fk+1

∂r
≤ Fk+1(0)− 02(σk−σ)Ck + ε

N
r.

Moreover, since
Fk+1(0)− 02(σk−σ)Ck − ε

2N
r2 ≤ fk+1 ≤ Fk+1(0)− 02(σk−σ)Ck + ε

2N
r2,

we have

lim
r→+0

1

r2σk+1−1

∂fk+1

∂r
(r) = 2σk+1Ck+1, lim

r→+0

1

r2σk+1
fk+1(r) = Ck+1.

Consequently, we obtain Proposition 4.9 if kj ≥ 1
1−σ +K + 1− j > 0.

Proposition 4.10. For any j ≥ K + 2 and k ≥ 0,

1

r2
P±
j,k,

1

r

∂P±
j,k

∂r
∈ L∞(RN )

hold.

Proof. Firstly, we consider

(Sj,0)


L+P

+
j,0 − (2(j − 1) + α+ 1)P−

j−1,0 − βj,0
|y|2

4
Q− 1

|y|2σ
Fσ,+j,0 − c+j,0Q = 0,

L−P
−
j,0 + (α+ 2j)P+

j,0 −
1

|y|2σ
Fσ,−j,0 = 0.

From Proposition 4.8, the solutions P±
j,0 for (Sj,0) are continuous functions. In particular, since Fσ,±j,0 = 0 when

j ≥ 1, we see that P±
j,0 ∈ C2(RN ) when j ≥ 2. Moreover, since P±

j,k(0) = 0 when j + k ≥ K + 2 and P±
j,k are

spherically symmetrical, we obtain
P±
j,0(y) ∼ |y|2

as |y| → 0 when j ≥ K + 2.
Next, for some k ≥ 0, we assume that

P±
j,k(y) ∼ |y|2

holds as |y| → 0 when j ≥ K + 2. Since P±
j,k+1 is the solutions for

(Sj,k+1)


L+P

+
j,k+1 − F+

j,k+1 − βj,k+1
|y|2

4
Q− 1

|y|2σ
P+
j,k − c+j,k+1Q = 0,

L−P
−
j,k+1 − F−

j,k+1 + ((k + 2)α+ 2j)P+
j,k+1 −

1

|y|2σ
P−
j,k = 0.

and P±
j,k+1(0) = 0, we obtain

1

rN−1

∂

∂r

(
rN−1 ∂

∂r
P±
j,k

)
= G±

j,k,

where r := |y| and

G+
j,k := P+

j,k+1 −
(
1 +

4

N

)
Q

4
N P+

j,k+1 − F+
j,k+1 − βj,k+1

r2

4
Q− 1

r2σ
P+
j,k − c+j,k+1Q,

G−
j,k := P−

j,k+1 −Q
4
N P−

j,k+1 − F−
j,k+1 + ((k + 2)α+ 2j)P+

j,k+1 −
1

r2σ
P−
j,k.

Consequently, the rest can be proved in the similar way as Proposition 4.9.
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Corollary 4.11. For some sufficiently large K ′,

1

r2
P±
j,k,

1

r

∂P±
j,k

∂r
∈ L∞(RN )

for any j, k ≥ 0 such that j + k = K +K ′.

Proof. Let K ′ := max0≤j≤K+1{kj + 1} ≥ 2. If j ≥ K + 2, then it is obvious from Proposition 4.10. On the
other hand, if j ≤ K + 1, it holds from Proposition 4.9 since k ≥ K ′ − 1 ≥ kj .

4.3 Proof of Theorem 4.1

We expect the modulation terms to be sufficiently small. Namely, we expect the parameters λ and b in the
decomposition to approximately satisfy

1

λ

∂λ

∂s
+ b =

∂b

∂s
+ b2 − θ = 0.

Therefore, the approximation functions λapp and bapp of the parameters λ and b will be determined by the
following lemma:

Lemma 4.12. Let

λapp(s) :=

(
α

2

√
2β

2− α

)− 2
α

s−
2
α , bapp(s) :=

2

αs
.

Then (λapp, bapp) is a solution for

∂b

∂s
+ b2 − βλα = 0,

1

λ

∂λ

∂s
+ b = 0

in s > 0.

Furthermore, the following lemma determines λ(s1) and b(s1) for a given energy level E0 and a sufficiently
large s1.

Lemma 4.13. Let define C0 := 8E0

∥|y|Q∥2
2
and 0 < λ0 � 1 such that 2β

2−α + C0λ0
2−α > 0. For λ ∈ (0, λ0], we set

F(λ) :=

∫ λ0

λ

1

µ
α
2 +1
√

2β
2−α + C0µ2−α

dµ.

Then for any s1 � 1, there exist b1, λ1 > 0 such that∣∣∣∣∣ λ1
α
2

λapp(s1)
α
2
− 1

∣∣∣∣∣+
∣∣∣∣ b1
bapp(s1)

− 1

∣∣∣∣ ≲ s1
− 1

2 + s1
2− 4

α , F(λ1) = s1, E(Pλ1,b1,γ) = E0.

Moreover, ∣∣∣∣∣∣F(λ)− 2

αλ
α
2

√
2β
2−α

∣∣∣∣∣∣ ≲ λ−
α
4 + λ2−

3
2α

holds.

Proof. The method of choosing λ1 and the estimate of F are the same as in [10]. In brief, since F(λ) → ∞ as
λ→ 0, there exists such a λ1 from the intermediate value theorem.

Setting h(b) := λ1
2E(Pλ1,b,γ), from (4.2), we have

h(b) =
1

8
‖|y|Q‖22

(
b2 − 2β

2− α
λ1
α

)
+O(λ1

α(b2 + λ1
α))

=
1

8
‖|y|Q‖22

(
b2 − bapp(s1)

2 − 2β

2− α
(λ1

α − λapp(s1)
α)

)
+O(λ1

α(b2 + λ1
α)).

Then since λ1 is sufficiently small if s1 is sufficiently large, we have

h(0)− λ1
2E0 = −1

8
‖|y|Q‖22

2β

2− α
λ1
α − λ1

2E0 +O(λ1
2α) < 0,

h(1)− λ1
2E0 =

1

8
‖|y|Q‖22

(
1− 2β

2− α
λ1
α − λ1

2C0

)
+O(λ1

α(1 + λ1
α)) > 0.
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Therefore, there exists b1 ∈ (0, 1) such that h(b1) = λ1
2E0 and we have∣∣b12 − bapp(s1)

2
∣∣ ≲ λ1

2 + |λ1α − λapp(s1)
α|+ λ1

α
(∣∣b12 − bapp(s1)

2
∣∣+ λapp(s1)

α + λ1
α
)

≲ s1
− 4

α + s1
− 5

2 .

Consequently, we have the conclusion.

Let s1 be sufficiently large and define

C :=
α

4− α

(
α

2

√
2β

2− α

)− 4
α

.

For t1 < 0 that is sufficiently close to 0, we define

s1 := |C−1t1|−
α

4−α .

Additionally, let λ1 and b1 be given in Lemma 4.13 for s1 and γ1 = 0. Let u be the solution for (NLS) with
± = + with an initial value

u(t1, x) := Pλ1,b1,0(x) =
1

λ
N
2
1

P

(
s,
x

λ1

)
e
−i b14

|x|2

λ2
1 .

Then u satisfies the assumption of Lemma 2.2 in a neighbourhood of t1. By applying Lemma 2.2 to u, there
exists a decomposition (λ̃t1 , b̃t1 , γ̃t1 , ε̃t1) such that

u(t, x) =
1

λ̃t1(t)
N
2

(P + ε̃t1)

(
t,

x

λ̃t1(t)

)
e
−i

b̃t1
(t)

4
|x|2

λ̃t1
(t)2

+iγ̃t1 (t), (4.6)

(ε̃t1 , iΛP )2 =
(
ε̃t1 , |y|2P

)
2
= (ε̃t1 , iρ)2 = 0 (4.7)

in the neighbourhood of t1. The rescaled time st1 is defined by

st1(t) := s1 −
∫ t1

t

1

λ̃t1(τ)
2
dτ.

Then we define an inverse function st1
−1 : st1(I) → I. Moreover, we define

tt1 := st1
−1, λt1(s) := λ̃(tt1(s)), bt1(s) := b̃(tt1(s)),

γt1(s) := γ̃(tt1(s)), εt1(s, y) := ε̃(tt1(s), y).

For the sake of clarity in notation, we often omit the subscript t1. In particular, it should be noted that
u ∈ C((T∗, T

∗),Σ2(RN )) and |x|∇u ∈ C((T∗, T
∗), L2(RN )). Furthermore, let It1 be the maximal interval such

that a decomposition as (4.6) is obtained and we define

Js1 := s (It1) .

Additionally, for sufficiently large s1(≥ s0), let

s′ := max {s0, inf Js1} .

Let

0 < M < min

{
1

2
,
4

α
− 2

}
and s∗ be defined by

s∗ := inf {σ ∈ (s′, s1] | (4.8) holds on [σ, s1]} ,

where

‖ε(s)‖2H1 + b(s)2‖|y|ε(s)‖22 < s−2K ,

∣∣∣∣ λ(s)
α
2

λapp(s)
α
2
− 1

∣∣∣∣+ ∣∣∣∣ b(s)

bapp(s)
− 1

∣∣∣∣ < s−M . (4.8)

Finally, we define

Mod(s) :=

(
1

λ

∂λ

∂s
+ b,

∂b

∂s
+ b2 − θ, 1− ∂γ

∂s

)
.
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By direct calculation, we obtain

−Ψ = i
∂ε

∂s
+∆ε− ε+ f (P + ε)− f (P ) + λα

1

|y|2σ
ε+ θ

|y|2

4
ε (4.9)

− i

(
1

λ

∂λ

∂s
+ b

)
Λ(P + ε) +

(
1− ∂γ

∂s

)
(P + ε)

+

(
∂b

∂s
+ b2 − θ

)
|y|2

4
(P + ε)−

(
1

λ

∂λ

∂s
+ b

)
b
|y|2

2
(P + ε)

holds on Js1 .

Lemma 4.14. For s ∈ (s∗, s1],

|(ε(s), Q)| ≲ s−(K+2), |Mod(s)| ≲ s−(K+2), ‖eϵ
′|y|Ψ‖H1 ≲ s−(K+4)

hold.

Proof. Let
s∗∗ := inf

{
s ∈ [s∗, s1]

∣∣∣ |(ε(τ), P )2| < τ−(K+2) holds on [s, s1].
}
.

We work below on the interval [s∗∗, s1].
According to the orthogonality properties (4.7), we have

0 =
d

ds
(iε,ΛP )2 =

(
i
∂ε

∂s
,ΛP

)
2

+

(
iε,

∂(ΛP )

∂s

)
2

(4.10)

=
d

ds

(
iε, i|y|2P

)
2
=

(
i
∂ε

∂s
, i|y|2P

)
2

+

(
iε, i|y|2 ∂P

∂s

)
2

(4.11)

=
d

ds
(iε, ρ)2 =

(
i
∂ε

∂s
, ρ

)
2

. (4.12)

For (4.10), we have(
iε,

∂(ΛP )

∂s

)
2

=

(
iε,

∂

∂s
(λαΛZ)

)
2

= O(s−(K+3)) +O(s−1|Mod(s)|) (4.13)

and from Lemma (4.9),(
i
∂ε

∂s
,ΛP

)
2

=

(
L+ Re ε+ iL− Im ε− (f (P + ε)− f (P )− df(Q)(ε))− λα

1

|y|2σ
ε− θ

|y|2

4
ε

+ i

(
1

λ

∂λ

∂s
+ b

)
Λ(P + ε)−

(
1− ∂γ

∂s

)
(P + ε)−

(
∂b

∂s
+ b2 − θ

)
|y|2

4
(P + ε)

+

(
1

λ

∂λ

∂s
+ b

)
b
|y|2

2
(P + ε) + Ψ,ΛP

)
2

.

According to ΛP±
j,k ∈ H1(RN ) ∩ C(RN ) and Proposition 4.3,

|(L+ Re ε,ΛP )2|+ |(iL− Im ε,ΛP )2|+
∣∣∣∣(λα 1

|y|2σ
ε,ΛP

)
2

∣∣∣∣+ ∣∣∣∣(θ |y|24 ε,ΛP

)
2

∣∣∣∣ = O(s−(K+2)),

(iΛP,ΛP )2 = (P,ΛP )2 = 0,

(Ψ,ΛP )2 = O(s−2(K+2)) +O(s−1|Mod(s)|),(
|y|2P,ΛP

)
2
= −‖|y|Q‖22 +O(s−2)

hold. Here, we have

f (P + ε)− f (P )− df(Q)(ε) = f (P + ε)− f (P )− df(P )(ε) + df(P )(ε)− df(Q)(ε).

Firstly, we consider (f(P + ε)− f(P )− df(P )(ε)) ΛP . For N ≤ 3, according to Taylor’s theorem, we have∣∣(f(P + ε)− f(P )− df(P )(ε)) ΛP
∣∣ ≲ (1 + |y|κ)(P + |ε|) 4

N −1|ε|2Q

≲ (1 + |y|κ)(Q+ |ε|) 4
N −1|ε|2Q.
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On the other hand, we assume N ≥ 4. If Q < 3|λαZ|, then 1 ≲ λα(1 + |y|κ). Therefore, we have∣∣(f(P + ε)− f(P )− df(P )(ε)) ΛP
∣∣ ≲ λα(1 + |y|κ)(Q 4

N + |ε| 4
N )|ε|Q.

If 3|λαZ| ≤ Q and Q < 3|ε|, then we have∣∣(f(P + ε)− f(P )− df(P )(ε)) ΛP
∣∣ ≲ (1 + |y|κ)Q 4

N |ε|2.

If 3|ε| ≤ Q, then P − |ε| > 1
3Q > 0. According to Taylor’s theorem, we have∣∣(f(P + ε)− f(P )− df(P )(ε)) ΛP

∣∣ ≲ (1 + |y|κ)(P − |ε|) 4
N −1|ε|2Q

≲ (1 + |y|κ)Q 4
N |ε|2.

Therefore, we have

(f(P + ε)− f(P )− df(P )(ε),ΛP )2 = O(s−(K+2)).

The same calculation for (df(P )(ε)− df(Q)(ε)) ΛP yields

(df(P )(ε)− df(Q)(ε),ΛP )2 = O(s−(K+2)).

Accordingly, we have(
i
∂ε

∂s
,ΛP

)
2

= −1

4
‖|y|Q‖

(
∂b

∂s
+ b2 − θ

)
+O(s−(K+2)) +O(s−1|Mod(s)|)

and by (4.10) and (4.13),
∂b

∂s
+ b2 − θ = O(s−(K+2)) +O(s−1|Mod(s)|).

The same calculations for (4.11) and (4.12) yield

1

λ

∂λ

∂s
+ b = O(s−(K+2)) +O(s−1|Mod(s)|), 1− ∂γ

∂s
= O(s−(K+2)) +O(s−1|Mod(s)|).

Consequently, we have

|Mod(s)| ≲ s−(K+2), ‖eϵ
′|y|Ψ‖H1 ≲ s−(K+4).

Finally, since

‖P (s1)‖22 = ‖P (s)‖22 + 2(ε(s), P (s))2 + ‖ε(s)‖22,

we have

|(ε(s), P (s))2| ≲ ‖ε(s)‖22 +
∫ s1

s

∣∣∣∣ dds
∣∣∣∣
s=τ

‖P (s)‖22
∣∣∣∣ dτ

≲ s−2K +

∫ s1

s

(
τ−2|Mod(τ)|+ τ−2(K+2)

)
dτ

≲ s−(K+3).

Therefore, if s0 is sufficiently large, then we have s∗∗ = s∗. Moreover, we have

|(ε(s), Q)2| ≲ |(ε(s), P (s))2|+ λα |(ε(s), Z)2| ≲ s−(K+2).

Let m > 0 be sufficiently large and define

H(s, ε) :=
1

2
‖ε‖2H1 +

b(s)2

2
‖|y|ε‖22 −

∫
RN

(F (P (s, y) + ε(y))− F (P (s, y))− dF (P (s, y))(ε(y))) dy

− 1

2
λ(s)α

∥∥|y|−σε∥∥2
2
,

S(s, ε) :=
1

λ(s)m
H(s, ε).
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Lemma 4.15 (Estimates of S). For s ∈ (s∗, s1],

‖ε‖2H1 + b2 ‖|y|ε‖22 +O(s−2(K+2)) ≲ H(s, ε) ≲ ‖ε‖2H1 + b2 ‖|y|ε‖22

hold. Moreover,

1

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22 +O(s−2(K+2))

)
≲ S(s, ε) ≲ 1

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22

)
hold.

Proof. If N ≤ 3, then we have∣∣∣∣F (P + ε)− F (P )− dF (P )(ε)− 1

2
d2F (P )(ε, ε)

∣∣∣∣ ≲ (|P | 4
N −1 + |ε| 4

N −1
)
|ε|3.

For N ≥ 4, if 2|ε| ≥ |P |, then we have∣∣∣∣F (P + ε)− F (P )− dF (P )(ε)− 1

2
d2F (P )(ε, ε)

∣∣∣∣ ≲ |ε| 4
N +2.

If 2|ε| < |P |, then |P | > 0 and |P | − |ε| > 1
2 |P |. Therefore, we have∣∣∣∣F (P + ε)− F (P )− dF (P )(ε)− 1

2
d2F (P )(ε, ε)

∣∣∣∣ ≲ (|P | − |ε|)
4
N −1 |ε|3 ≲ |ε| 4

N +2.

Therefore, we obtain∫
RN

(
F (P + ε)− F (P )− dF (P )(ε)− 1

2
d2F (P )(ε, ε)

)
dy = o(‖ε‖2H1).

Similarly, if N ≤ 3, then we have∣∣∣∣12d2F (P )(ε, ε)− 1

2
d2F (Q)(ε, ε)

∣∣∣∣ ≲ λα
(
Q

4
N −1 + |λαZ| 4

N −1
)
|ε|2|Z|.

For N ≥ 4, if 2|λαZ| ≥ Q, then we have∣∣∣∣12d2F (P )(ε, ε)− 1

2
d2F (Q)(ε, ε)

∣∣∣∣ ≲ |λαZ| 4
N |ε|2.

If 2|λαZ| < Q, then Q− |λαZ| > 1
2Q. Therefore, we have∣∣∣∣12d2F (P )(ε, ε)− 1

2
d2F (Q)(ε, ε)

∣∣∣∣ ≲ λα (Q− |λαZ|)
4
N −1 |ε|2|Z| ≲ (1 + |y|κ)λα|ε|2Q 4

N

and ∫
RN

(
1

2
d2F (P )(ε, ε)− 1

2
d2F (Q)(ε, ε)

)
dy = o(‖ε‖2H1).

Accordingly, we have

‖ε‖2H1 −
∫
RN

d2F (Q)(ε, ε)dy = 〈L+ Re ε,Re ε〉+ 〈L− Im ε, Im ε〉

≥ µ‖ε‖2H1 −
1

µ

(
(Re ε,Q)22 + (Re ε, |y|2Q)22 + (Im ε, ρ)22

)
= µ‖ε‖2H1 −

1

µ

(
(ε,Q)22 +

(
(ε, |y|2P )2 − λα(ε, |y|2Z)2

)2
+ (ε, iρ)22

)
= µ‖ε‖2H1 +O(s−2(K+2)).

Consequently, we have the lower estimate of H. The rest is obvious.

Lemma 4.16. For s ∈ (s∗, s1],

|(f(P + ε)− f(P ),Λε)2| ≲ ‖ε‖2H1 + s−3K

holds.
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Proof. Calculated in the same way as in [10, Section 5.4], we have

∇ (F (P + ε)− F (P )− dF (P )(ε))

=Re
(
f(P + ε)∇

(
P + ε

)
− f(P )∇P − df(P )(ε)∇P − f(P )∇ε

)
=Re

(
(f(P + ε)− f(P )− df(P )(ε))∇P + (f(P + ε)− f(P ))∇ε

)
and

(f(P + ε)− f(P ),Λε) = Re

∫
RN

(f(P + ε)− f(P )) Λεdy

=Re

∫
RN

(N
2
(f(P + ε)− f(P )) ε− (f(P + ε)− f(P )− df(P )(ε)) y · ∇P

−N (F (P + ε)− F (P )− dF (P )(ε))
)
dy.

Firstly,

|(f(P + ε)− f(P )) ε|+ |F (P + ε)− F (P )− dF (P )(ε)| ≲((1 + |y|κ)Q 4
N + |ε| 4

N )|ε|2

holds.
Next, we consider (f(P + ε)− f(P )− df(P )(ε)) y · ∇P . For N ≤ 3, we have∣∣(f(P + ε)− f(P )− df(P )(ε)) y · ∇P

∣∣ ≲ (1 + |y|κ)(Q+ |ε|) 4
N −1|ε|2Q.

For N ≥ 4, if Q < 3|λαZ|, then 1 ≲ λα(1 + |y|κ). Therefore, we have∣∣(f(P + ε)− f(P )− df(P )(ε)) y · ∇P
∣∣ ≲ λKα(1 + |y|κ)(Q 4

N + |ε| 4
N )|ε|Q.

If 3|λαZ| ≤ Q and Q < 3|ε|, we have∣∣(f(P + ε)− f(P )− df(P )(ε)) y · ∇P
∣∣ ≲ (1 + |y|κ)Q 4

N |ε|2.

If 3|ε| ≤ Q, then P − |ε| ≥ 1
3Q > 0. Therefore, we have∣∣(f(P + ε)− f(P )− df(P )(ε)) y · ∇P

∣∣ ≲ (1 + |y|κ)Q 4
N |ε|2.

Consequently, we have the conclusion.

Lemma 4.17 (Derivative of H in time). For s ∈ (s∗, s1],

d

ds
H(s, ε(s)) ≳ −b

(
‖ε‖2H1 + b2 ‖|y|ε‖22

)
+O(s−2(K+2))

holds.

Proof. Firstly, we have

d

ds
H(s, ε(s)) =

∂H

∂s
(s, ε(s)) +

(
i
∂H

∂ε
(s, ε(s)), i

∂ε

∂s
(s)

)
2

.

Here,

∂H

∂ε
= −∆ε+ ε+ b2|y|2ε− (f(P + ε)− f(P ))− λα

|y|2σ
ε

= L+ Re ε+ iL− Im ε+ b2|y|2ε− (f(P + ε)− f(P )− df(Q)(ε))− λα

|y|2σ
ε,

∂H

∂s
= b

∂b

∂s
‖|y|ε‖22 − Re

∫
RN

(f(P + ε)− f(P )− df(P )(ε))
∂P

∂s
dy − αλα

2

1

λ

∂λ

∂s
‖|y|−σε‖22

hold. Therefore, we have
∂H

∂s
≳ −b3‖|y|ε‖22 − s−2b‖ε‖2H1 +O(s−3K).

Let define

Modop v := i

(
1

λ

∂λ

∂s
+ b

)
Λv −

(
1− ∂γ

∂s

)
v −

(
∂b

∂s
+ b2 − θ

)
|y|2

4
v +

(
1

λ

∂λ

∂s
+ b

)
b
|y|2

2
v.
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Then

i
∂ε

∂s
=
∂H

∂ε
− b2|y|2ε− θ

|y|2

4
ε+Modop(P + ε) + Ψ

holds. Moreover, we have(
i
∂H

∂ε
(s, ε(s)), i

∂ε

∂s
(s)

)
2

=

(
i
∂H

∂ε
(s, ε(s)),−b2|y|2ε− θ

|y|2

4
ε+Modop(P + ε) + Ψ

)
2

.

Secondly, we have(
i
∂H

∂ε
(s, ε),−b2|y|2ε

)
2

=− 2b2 (i∇ε, yε)2 +
(
i
(
|P + ε| 4

N − |P | 4
N

)
P,−2b2|y|2ε

)
2

=− 2b2 (i∇ε, yε)2 +O(b2‖ε‖2H1 + s−3K)

≳− b
(
‖∇ε‖22 + b2‖|y|ε‖22

)
+O(b2‖ε‖2H1 + s−3K).

Since θ ≈ b2, we also have(
i
∂H

∂ε
(s, ε),−θ |y|

2

4
ε

)
2

≳ −b
(
‖∇ε‖22 + b2‖|y|ε‖22

)
+O(b2‖ε‖2H1 + s−3K).

Thirdly, from Lemma 4.14,(
i
∂H

∂ε
(s, ε(s)),Modop P

)
2

= O(s−2(K+2)),

(
i
∂H

∂ε
(s, ε(s)),Ψ

)
2

= O(s−2(K+2))

hold.
Finally, since

|(f(P + ε)− f(P ),Λε)2|+
∣∣(f(P + ε)− f(P ), i|y|2ε

)
2

∣∣ = O(‖ε‖2H1) +O(s−3K)

from Lemma 4.16, we have(
i
∂H

∂ε
(s, ε(s)),Modop ε

)
2

= o
(
b
(
‖ε‖2H1 + b2 ‖|y|ε‖22

))
+O(s−(5K+2)).

Consequently, we have the conclusion.

Lemma 4.18 (Derivative of S in time). Let m > 0 be sufficiently large. Then

d

ds
S(s, ε(s)) ≳ b

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22 +O(s−(2K+3))

)
holds for s ∈ (s∗, s1].

Proof. From Lemma 4.17, we have

d

ds
S(s, ε(s)) = −m 1

λ

∂λ

∂s

1

λm
H(s, ε) +

1

λm
d

ds
H(s, ε(s))

= −m
(
1

λ

∂λ

∂s
+ b

)
1

λm
H(s, ε) +m

b

λm
H(s, ε) +

1

λm
d

ds
H(s, ε(s))

≥ b

λm

(
mC

2

(
‖ε‖2H1 + b2 ‖|y|ε‖22

)
− C ′

(
‖ε‖2H1 + b2 ‖|y|ε‖22

)
+O(s−(2K+3))

)
.

Therefore, we have the conclusion if m is sufficiently large.

We confirm (4.8) on [s0, s1].

Lemma 4.19 (Re-estimation). For s ∈ (s∗, s1],

‖ε(s)‖2H1 + b(s)2 ‖|y|ε(s)‖22 ≲ s−(2K+2), (4.14)∣∣∣∣ λ(s)
α
2

λapp(s)
α
2
− 1

∣∣∣∣+ ∣∣∣∣ b(s)

bapp(s)
− 1

∣∣∣∣ ≲ s−
1
2 + s2−

4
α (4.15)

holds.
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Proof. We prove (4.14) by contradiction. Let C† > 0 be sufficiently large and define

s† := inf
{
σ ∈ (s∗, s1]

∣∣∣ ‖ε(τ)‖2H1 + b(τ)2 ‖|y|ε(τ)‖22 ≤ C†τ
−2(K+1) (τ ∈ [σ, s1])

}
.

Then s† < s1 holds. Here, we assume that s† > s∗. Then we have

‖ε(s†)‖2H1 + b(s†)
2 ‖|y|ε(s†)‖22 = C†s†

−2(K+1).

Let define
s‡ := sup

{
σ ∈ (s∗, s1]

∣∣ ‖ε(τ)‖2H1 + b(τ)2 ‖|y|ε(τ)‖22 ≥ τ−2(K+1) (τ ∈ [s†, σ])
}
.

Then we have s‡ > s†. Furthermore,

‖ε(s‡)‖2H1 + b(s‡)
2 ‖|y|ε(s‡)‖22 = s‡

−2(K+1).

Then according to Lemma 4.15 and Lemma 4.18, we have

C1

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22 − C ′s−2(K+1)

)
≤ S(s, ε) ≤ C2

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22

)
,

b

λm

(
‖ε‖2H1 + b2 ‖|y|ε‖22 − s−2(K+1)

)
≲ d

ds
S(s, ε).

in (s∗, s1]. Therefore, we have

C1(C† − C ′)s†
−2(K+1) = C1

(
‖ε(s†)‖2H1 + b(s†)

2 ‖|y|ε(s†)‖22 − C ′s†
−2(K+1)

)
≤ λ(s†)

mS(s†, ε(s†))

≤ λ(s†)
mS(s‡, ε(s‡))

≤ C2
λ(s†)

m

λ(s‡)m

(
‖ε(s‡)‖2H1 + b(s‡)

2 ‖|y|ε(s‡)‖22
)

≤ C2
λ(s†)

m

λ(s‡)m
s‡

−2(K+1)

≤ 2C2
s†

− 2m
α

s‡−
2m
α

s‡
−2(K+1)

s†−2(K+1)
s†

−2(K+1)

and since K − m
α > 0, we have

C1(C† − C ′) ≤ 2C2.

Since C† is sufficiently large, it is a contradiction. Therefore, s† ≤ s∗. On the other hand, s† ≥ s∗ is clearly.
Accordingly, s∗ = s†.

Next, since

|E(Pλ,b,γ(s))− E0| ≤
∣∣∣∣∫ s

s1

d

ds

∣∣∣∣
s=τ

E(Pλ,b,γ(s))dτ

∣∣∣∣ ≤ ∫ s1

s

τ−(K+2)+ 4
α dτ ≲ s−(K+1)+ 4

α ,

we have∣∣∣∣b2 − 2β

2− α
λα − C0λ

2

∣∣∣∣ ≤ λ2
(∣∣∣∣ b2λ2 − 2β

2− α
λα−2 − 8

‖|y|Q‖22
E(Pλ,b,γ)

∣∣∣∣+ 8

‖|y|Q‖22
|E(Pλ,b,γ)− E0|

)
≲ s−4. (4.16)

From (4.16) and the definition of F , we have∣∣∣∣ ∂∂sF(λ(s))− 1

∣∣∣∣ ≲ s−2.

Therefore, we have
|s−F(λ(s))| ≲ s−1

since F(λ(s1)) = s1. From definition λapp, we have∣∣∣∣∣λapp(s)
α
2

λ(s)
α
2

− 1

∣∣∣∣∣ ≲ s−
1
2 + s2−

4
α
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and ∣∣∣∣∣ λ(s)
α
2

λapp(s)
α
2
− 1

∣∣∣∣∣ ≤
∣∣∣∣∣ λ(s)

α
2

λapp(s)
α
2

∣∣∣∣∣
∣∣∣∣∣λapp(s)

α
2

λ(s)
α
2

− 1

∣∣∣∣∣ ≲ s−
1
2 + s2−

4
α .

Finally, from (4.16) and the definitions of λapp and bapp, we have∣∣∣b(s)2 − bapp(s)
2
∣∣∣ ≲ s−4 + s−2− 1

2 + s−
4
α

and ∣∣∣∣ b(s)

bapp(s)
− 1

∣∣∣∣ ≲ s−
1
2 + s2−

4
α .

Consequently, we obtain (4.15).

Similar to the proof of Lemma Lemma 3.12, the following lemma are obtained.

Lemma 4.20. If s0 is sufficiently large, then s∗ = s′ = s0.

We rewrite the uniform estimates obtained for the time variable s in Lemma 4.19 into uniform estimates for
the time variable t.

Lemma 4.21. If s0 is sufficiently large, then there is t0 < 0 that is sufficiently close to 0 such that for t1 ∈ (t0, 0),

[t0, t1] ⊂ st1
−1([s0, s1]),

∣∣∣Cst1(t)− 4−α
α − |t|

∣∣∣ ≲ |t|1+
αM
4−α (t ∈ [t0, t1])

holds.

Proof. Since tt1(s1) = t1 and s1 = |C−1t1|−
α

4−α , we have∫ s1

s

λapp(τ)
2

(
λt1(τ)

λapp(τ)
− 1

)(
λt1(τ)

λapp(τ)
+ 1

)
dτ =

∫ s1

s

(
λt1(τ)

2 − λapp(τ)
2
)
dτ

= tt1(s1)− tt1(s) + C(s11−
4
α − s1−

4
α )

= |tt1(s)| − Cs−
4−α
α .

Therefore, we have∣∣∣|tt1(s)| − Cs−
4−α
α

∣∣∣ ≲ ∫ s1

s

λapp(τ)
2τ−Mdτ ≲

∫ s1

s

τ−
4
α−Mdτ ≤ α

M + 4− α
s−(

4−α
α +M).

Accordingly,

|tt1(s)| ≈ s−
4−α
α , i.e., |t| ≈ st1(t)

− 4−α
α .

Moreover, there exists t0 from Lemma 4.20.

Lemma 4.22 (Conversion of estimates). Let

Cλ := C− 2
4−α

(
α

2

√
2β

2− α

)− 2
α

, Cb :=
2

α
C− α

4−α .

For t ∈ [t0, t1],

λ̃t1(t) = Cλ|t|
2

4−α

(
1 + ελ̃,t1(t)

)
, b̃t1(t) = Cb|t|

α
4−α

(
1 + εb̃,t1(t)

)
,

‖ε̃t1(t)‖H1 ≲ |t|
αK
4−α , ‖|y|ε̃t1(t)‖2 ≲ |t|

α(K−1)
4−α

hold. Furthermore,

sup
t1∈[t,0)

∣∣∣ελ̃,t1(t)∣∣∣ ≲ |t|
αM
4−α , sup

t1∈[t,0)

∣∣∣εb̃,t1(t)∣∣∣ ≲ |t|
αM
4−α .

Proof. Let

ελ̃,t1(t) :=
λ̃t1(t)

Cλ|t|
2

4−α

− 1.

Then we have ∣∣∣ελ̃,t1(t)∣∣∣ ≤
∣∣∣∣∣ λ̃t1(t)

λapp(st1(t))
− 1

∣∣∣∣∣
∣∣∣∣∣λapp(st1(t))Cλ|t|

2
4−α

∣∣∣∣∣+ 1

Cλ|t|
2

4−α

∣∣∣λapp(st1(t))− Cλ|t|
2

4−α

∣∣∣
≲ |t|

αM
4−α .

The same is done for εb̃,t1(t) := b̃t1(t)C−1
b |t|−

α
4−α − 1.
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proof of Theorem 4.1. Let (tn)n∈N ⊂ (t0, 0) be a monotonically increasing sequence such that limn↗∞ tn = 0.
For each n ∈ N, un is the solution for (NLS) with ± = + with an initial value

un(tn, x) := Pλ1,n,b1,n,0(x)

at tn, where b1,n and λ1,n are given by Lemma 4.13 for tn.
According to Lemma 2.2 with an initial value γ̃n(tn) = 0, there exists a decomposition

un(t, x) =
1

λ̃n(t)
N
2

(P + ε̃n)

(
t,

x

λ̃n(t)

)
e
−i b̃n(t)

4
|x|2

λ̃n(t)2
+iγ̃n(t).

Then (un(t0))n∈N is bounded in Σ1. Therefore, up to a subsequence, there exists u∞(t0) ∈ Σ1 such that

un(t0)⇀ u∞(t0) in Σ1, un(t0) → u∞(t0) in L2(RN ) (n→ ∞).

Let u∞ be the solution for (NLS) with ± = + and an initial value u∞(t0), and let T ∗ be the supremum
of the maximal existence interval of u∞. Moreover, we define T := min{0, T ∗}. Then for any T ′ ∈ [t0, T ),
[t0, T

′] ⊂ [t0, tn] if n is sufficiently large. Then there exist n0 and C(T ′, t0) > 0 such that

sup
n≥n0

‖un‖L∞([t0,T ′],Σ1) ≤ C(T ′, t0)

holds. Therefore, from Lemma 2.1,

un → u∞ in C
(
[t0, T

′], L2(RN )
)

(n→ ∞)

holds. In particular, un(t)⇀ u∞(t) in Σ1 for any t ∈ [t0, T ). Furthermore, from the mass conservation, we have

‖u∞(t)‖2 = ‖u∞(t0)‖2 = lim
n→∞

‖un(t0)‖2 = lim
n→∞

‖un(tn)‖2 = lim
n→∞

‖P (tn)‖2 = ‖Q‖2.

Based on weak convergence in Σ1 and Lemma 2.2, we decompose u∞ to

u∞(t, x) =
1

λ̃∞(t)
N
2

(P + ε̃∞)

(
t,

x

λ̃∞(t)

)
e
−i b̃∞(t)

4
|x|2

λ̃∞(t)2
+iγ̃∞(t)

,

on [t0, T ). Furthermore, for any t ∈ [t0, T ), as n→ ∞,

λ̃n(t) → λ̃∞(t), b̃n(t) → b̃∞(t), eiγ̃n(t) → eiγ̃∞(t), ε̃n(t)⇀ ε̃∞(t) in Σ1

hold. Consequently, from the uniform estimate in Lemma 4.22, as n→ ∞, we have

λ̃∞(t) = Cλ |t|
2

4−α (1 + ελ̃,0(t)), b̃∞(t) = Cb |t|
α

4−α (1 + εb̃,0(t)),

‖ε̃∞(t)‖H1 ≲ |t|
αK
4−α , ‖|y|ε̃∞(t)‖2 ≲ |t|

α(K−1)
4−α ,

∣∣∣ελ̃,0(t)∣∣∣ ≲ |t|
αM
4−α ,

∣∣∣εb̃,0(t)∣∣∣ ≲ |t|
αM
4−α .

Consequently, we obtain that u converges to the blow-up profile in Σ1.
Finally, we check energy of u∞. Since

E (un)− E
(
Pλ̃n,b̃n,γ̃n

)
=

∫ 1

0

〈
E′(Pλ̃n,b̃n,γ̃n

+ τ ε̃λ̃n,b̃n,γ̃n
), ε̃λ̃n,b̃n,γ̃n

〉
dτ

and E′(w) = −∆w − |w| 4
N w − |x|−2σw, we have

E (un)− E
(
Pλ̃n,b̃n,γ̃n

)
= O

(
|t|

αK−4
4−α

)
.

Similarly, we have

E (u∞)− E
(
Pλ̃∞,b̃∞,γ̃∞

)
= O

(
|t|

αK−4
4−α

)
.

From the continuity of E, we have

lim
n→∞

E
(
Pλ̃n,b̃n,γ̃n

)
= E

(
Pλ̃∞,b̃∞,γ̃∞

)
and from the conservation of energy,

E (un) = E (un(tn)) = E
(
Pλ̃1,n,b̃1,n,0

)
= E0.

Therefore, we have
E (u∞) = E0 + ot↗0(1)

and since E (u∞) is constant for t, E (u∞) = E0.
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4.4 Proof of Theorem 4.2

proof of Theorem 4.2. We assume that u is a critical-mass radial solution for (NLS) with ± = − and blows up
at T ∗. Let a sequence (tn)n∈N be such that tn → T ∗ as n→ T ∗ and define

λn :=
‖∇Q‖2

‖∇u(tn)‖
, vn(x) := λn

N
2 u(tn, λnx).

Then
‖vn‖2 = ‖Q‖2, ‖∇vn‖2 = ‖∇Q‖2

hold. Moreover,

E0 := E(u(tn)) ≥ Ecrit(u(tn)) =
Ecrit(vn)

λn
2 .

Therefore, we obtain
lim sup
n→∞

Ecrit(vn) ≤ 0.

From the standard concentration argument (see [10,15]), there exist sequences (xn)n∈N ⊂ RN and (γn)n∈N ⊂ R
such that

vn(· − xn)e
iγn → Q in H1(RN ) (n→ ∞).

Moreover, up to a subsequence, we have

vne
iγn → Q in H1(RN ) (n→ ∞).

Indeed, if (xn)n∈N is unbounded, we may assume xn → ∞ as n → ∞. Then since vn decay uniformly by the
radial lemma, we have

0 = lim
n→∞

∥∥vn(· − xn)e
iγn −Q

∥∥2
H1 = 2 ‖Q‖2H1 − lim

n→∞
2
(
vn(· − xn)e

iγn , Q
)
H1 = 2 ‖Q‖2H1 .

It is a contradiction. Therefore, (xn)n∈N is bounded. We may assume that (xn)n∈N is a convergent sequence.
Let define x0 := limn→∞ xn. Then we have

vne
iγn → Q(·+ x0) in H1(RN ) (n→ ∞).

Since vn and Q are radial, we obtain x0 = 0.
Here, we have ∥∥|x|−σu(tn)∥∥22 =

‖|x|−σvn‖
2
2

λn
2σ .

Therefore, since Ecrit(u) ≥ 0,

E0 = E(u(tn)) ≥
‖|x|−σvn‖

2
2

λn
2σ → ∞ (n→ ∞).

It is a contradiction.
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Proof of decomposition lemma

In this chapter, we prove Lemma 2.2.

5.1 Decomposition by implicit function theorem

Definition 5.1. Let ε̃ : R>0×R2+N×H1(RN )×R>0 → H1(RN ) and S : R>0×R2+N×H1(RN )×R>0 → R3+N

define by

P̃ (λ̃, b̃, l)(y) := Q(y) +
∑

(j,k)∈ΣK+K′

(
b̃2j lk+1λ̃(k+1)αP+

j,k(y) + ib̃2j+1lk+1λ̃(k+1)αP−
j,k(y)

)
,

ε̃(λ̃, b̃, γ̃, w̃, u, l)(y) :=λ̃
N
2 u(λ̃y − w̃)eib̃

|y|2
4 −iγ̃ − P̃ (λ̃, b̃, l)(y),

S(λ̃, b̃, γ̃, w̃, u, l) :=



(
ε̃(λ̃, b̃, γ̃, w̃, u, l), iΛP̃ (λ̃, b̃, l)

)
2(

ε̃(λ̃, b̃, γ̃, w̃, u, l), |y|2P̃ (λ̃, b̃, l)
)
2(

ε̃(λ̃, b̃, γ̃, w̃, u, l), iρ
)
2(

ε̃(λ̃, b̃, γ̃, w̃, u, l), y1P̃ (λ̃, b̃, l)
)
2

...(
ε̃(λ̃, b̃, γ̃, w̃, u, l), yN P̃ (λ̃, b̃, l)

)
2


.

The function S̃ obtained by the following proposition, i.e., (λ̃, b̃, γ̃, w̃) are the parameters of the decomposition
lemma. The proof of the decomposition lemma is proved by the procedure of first showing that it can be obtained
in a neighbourhood of the ground state Q and then extending it.

In the following, let BX(x, r) denote an open ball in X, with centre x and radius r.

Proposition 5.2. There exist C, δ, l0 > 0 and a unique function S̃ : BH1(Q, δ)× (−l0, l0) → (1− C, 1 + C)×
(−C,C)2+N such that

S̃(Q, 0) = (1, 0, 0, 0) and S(S̃(u, l), u, l) = 0 for any (u, l) ∈ BH1(Q, δ)× (−l0, l0).

Moreover, S̃ is C1 function.

Proof. Firstly, since ε̃(1, 0, 0, 0, Q, 0) = 0, we obtain S(1, 0, 0, 0, Q, 0) = 0. Moreover, since

∂ε̃

∂λ̃
(1, 0, 0, 0, Q, 0) = ΛQ,

∂ε̃

∂b̃
(1, 0, 0, 0, Q, 0) = i

|y|2

4
Q,

∂ε̃

∂γ̃
(1, 0, 0, 0, Q, 0) = −iQ, ∂ε̃

∂w̃
(1, 0, 0, 0, Q, 0) = −∇Q,

47
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we obtain

D(λ̃,b̃,γ̃,w̃)S(1, 0, 0, 0, Q, 0) =



(ΛQ, iΛQ)2 (i |y|
2

4 Q, iΛQ)2 (−iQ, iΛQ)2 (−∇Q, iΛQ)2

(ΛQ, |y|2Q)2 (i |y|
2

4 Q, |y|2Q)2 (−iQ, |y|2Q)2 (−∇Q, |y|2Q)2

(ΛQ, iρ)2 (i |y|
2

4 Q, iρ)2 (−iQ, iρ)2 (−∇Q, iρ)2
(ΛQ, y1Q)2 (i |y|

2

4 Q, y1Q)2 (−iQ, y1Q)2 (−∇Q, y1Q)2
...

...
...

...

(ΛQ, yNQ)2 (i |y|
2

4 Q, yNQ)2 (−iQ, yNQ)2 (−∇Q, yNQ)2



=


0 − 1

4‖yQ‖22 0 0
−‖yQ‖22 0 0 0

0 1
4 (|y|

2Q, ρ)2 − 1
2‖yQ‖22 0

0 0 0 1
2‖Q‖22IN

 ,

where IN is N ×N identity matrix. In particular, D(λ̃,b̃,γ̃,w̃)S(1, 0, 0, 0, Q, 0) is regular.

By using implicit function theorem, we obtain a unique function S̃ :W → V such thet

S̃(Q, 0) = (1, 0, 0, 0) and S(S̃(u, l), u, l) = 0 for any (u, l) ∈W

for some open neighbourhoods V ⊂ R3+N of (1, 0, 0, 0) and W ⊂ H1(RN )×R of (Q, 0). Moreover, since V is a
neighbourhood of (1, 0, 0, 0),

(1, 0, 0, 0) ∈ (1− C, 1 + C)× (−C,C)2+N ⊂ V

for some sufficiently small C > 0. Since S̃−1((1− C, 1 + C)× (−C,C)2+N ) is open,

(Q, 0) ∈ BH1(Q, δ)× (−l0, l0) ⊂ S̃−1((1− C, 1 + C)× (−C,C)2+N ) ⊂W

for some δ, l0 > 0. Consequently, we obtain the conclusion.

5.2 Preparation for extension

This section is dedicated to preparing for extending Proposition 5.2.

Definition 5.3. Let Tλ,γ,w : H1(RN ) → H1(RN ) define by

Tλ,γ,wu := λ
N
2 u(λ · −w)e−iγ

for λ > 0, γ ∈ R, and w ∈ RN .

Then, by direct calculation, we obtain the following properties.

Proposition 5.4. (i) ‖Tλ,γ,wu‖2 = ‖u‖2, ‖∇Tλ,γ,wu‖2 = λ‖∇u‖2.

(ii) Tλ,γ,w ∈ L
(
H1(RN )

)
.

(iii) Tλ1,γ1,w1
Tλ2,γ2,w2

= Tλ1λ2,γ1+γ2,λ2w1+w2
.

(iv) For any u ∈ H1(RN ), R× RN 3 (γ, y) 7→ T1,γ,wu ∈ L2(RN ) is Lipschitz continuous.

(v) For any u ∈ L2(RN ) such that Λu ∈ L2(RN ), R 3 λ 7→ Tλ,0,0u ∈ L2(RN ) is locally Lipschitz continuous.

Lemma 5.5. Let u ∈ H1(RN ) and δ ∈ (0, ‖∇u‖2). For λ > 0, if BH1(u, δ) ∩ Tλ,γ,wBH1(u, δ) 6= ∅ for some
γ ∈ R and w ∈ RN , then

λ ≤ ‖∇u‖2 + δ

‖∇u‖2 − δ

holds.

Proof. When u = 0, it is obvious. We may assume u 6= 0. Since

‖u− v‖H1 < δ, ‖u− Tλ,b,wv‖H1 < δ
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for some v ∈ BH1(u, δ), we obtain

δ ≥‖Tλ,γ,wv − u‖H1 ≥ ‖∇Tλ,γ,wv −∇u‖2
≥‖∇Tλ,γ,wu−∇u‖2 − ‖∇Tλ,γ,wv −∇Tλ,γ,wu‖2
≥ |λ‖∇u‖2 − ‖∇u‖2| − λ‖∇u−∇v‖2
≥λ‖∇u‖2 − ‖∇u‖ − λδ.

Therefore, we obtain

λ ≤ ‖∇u‖2 + δ

‖∇u‖2 − δ
.

Corollary 5.6. For any ε > 0 and u ∈ H1(RN ) \ {0}, there exists δ > 0 such that for λ > 0, if BH1(u, δ) ∩
Tλ,γ,wBH1(u, δ) 6= ∅ for some γ ∈ R and w ∈ RN , then |1− λ| < ε holds.

Proof. Let δ := 1
2 min{ 1

2‖∇u‖2,
ε
4‖∇u‖2}. From Lemma 5.5,

λ ≤ ‖∇u‖2 + δ

‖∇u‖2 − δ
≤

3
2‖∇u‖2
1
2‖∇u‖2

= 3

and from the proof of Lemma 5.5,

δ ≥ |λ− 1| ‖∇u‖2 − λδ ≥ |λ− 1| ‖∇u‖2 − 3δ.

Therefore, we obtain

|1− λ| ≤ 4δ

‖∇u‖2
≤ 4

‖∇u‖2
ε

8
‖∇u‖2 =

ε

2
< ε.

Lemma 5.7. For any u ∈ L2(RN ),

lim
r→∞

sup
|w|≥r

sup
γ∈R

|(T1,γ,wu, u)2| = 0

holds.

Proof. If u has the compact support, then it is obvious. The rest can be shown by approximation.

Lemma 5.8. For any u ∈ L2(RN ), there existR > 0 such that for w ∈ RN , ifBL2

(
u, 12‖u‖2

)
∩T1,γ,wBL2

(
u, 12‖u‖2

)
6=

∅ for some γ ∈ R, then |w| < R holds.

Proof. From Lemma 5.7, there exist R > 0 such that sup|w|≥R supγ∈R(T1,γ,wu, u)2 ≤ 1
2‖u‖

2
2. Namely,

(T1,γ,wu, u)2 >
1

2
‖u‖22 ⇒ |w| < R.

Next, from the assumption,

‖u− v‖2 <
1

2
‖u‖2, ‖u− T1,γ,wv‖2 <

1

2
‖u‖2

holds for some v ∈ BL2

(
u, 12‖u‖2

)
. Therefore, since

‖T1,γ,wu− u‖2 =‖T1,γ,wu− T1,γ,wv + T1,γ,wv − u‖2
≤‖u− v‖2 + ‖T1,γ,wv − u‖2
<‖u‖2,

we obtain

‖u‖22 >‖T1,γ,wu− u‖22 = ‖T1,γ,wu‖22 − 2(T1,γ,wu, u)2 + ‖u‖22
=2‖u‖22 − 2(T1,γ,wu, u)2.

Consequently, we obtain

(T1,γ,wu, u)2 >
1

2
‖u‖22

and it implies the conclusion.
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Lemma 5.9. Let p ∈ [1,∞). For u ∈ Lp(RN ), if (γ,w) 6= (0, 0) and T1,γ,wu = u for some γ ∈ R and w ∈ RN ,
then u = 0.

Proof. If w = 0, then γ 6= 0 and

T1,γ,0u = u ⇔ (e−iγ − 1)u = 0.

Namely, u = 0.

Let w 6= 0. Then we may assume w = e1, where e1 is the standard basis. Since

|u(· − e1)| = |u(· − e1)e
iγ | = |T1,γ,e1u| = |u|,

|u| is a periodic function of cycle e1. Therefore, since u ∈ Lp(RN ), we obtain u = 0.

Corollary 5.10. For any u ∈ H1(RN )\{0} and ε > 0, there exists δ > 0 such that for γ ∈ (−π, π] and w ∈ RN ,
if BL2(u, δ) ∩ T1,γ,wBL2(u, δ) 6= ∅, then |γ|+ |y| < ε.

Proof. We prove by contradiction. We assume that

BL2

(
u,

1

n

)
∩ T1,γn,wn

BL2

(
u,

1

n

)
6= ∅, |γn|+ |wn| ≥ ε

for some u ∈ H1(RN ) \ {0}, ε > 0, γn ∈ (−π, π], and wn ∈ RN . Similarly to the proof of Lemma 5.8, we obtain

‖T1,γn,wnu− u‖2 <
2

n
.

Since 1
n <

1
2‖u‖2 if n sufficiently large, (wn)n∈N is bounded by Lemma 5.8. Obviously, (γn)n∈N is also bounded.

Therefore, there exist convergent subsequences (wnk
)k∈N and (γnk

)k∈N and the convergence limits of these
sequences is denoted y0 and γ0, respectively. Then, from Proposition 5.4,

‖T1,γ0,w0
u− u‖2 ≤‖T1,γ0,w0

u− T1,γnk
,wnk

u‖2 + ‖T1,γnk
,wnk

u− u‖2
→0 (k → ∞).

Consequently, T1,γ0,w0u = u.

On the other hand, since |wnk
| + |γnk

| ≥ ε, we obtain |w0| + |γ0| ≥ ε > 0. Namely, w0 6= 0 or γ0 6= 0.
Therefore, from Lemma 5.9, u = 0. It is contradiction.

Proposition 5.11. Let u ∈ H1(RN ) \ {0} be Λu ∈ L2(RN ). For any ε > 0, there exists δ > 0 such that for
λ > 0, γ ∈ (−π, π], and w ∈ RN , if BH1(u, δ) ∩ Tλ,γ,wBH1(u, δ) 6= ∅, then |1− λ|+ |γ|+ |w| < ε.

Proof. From Corollary 5.7, there exists δ1 > 0 such that for γ ∈ (−π, π] and w ∈ RN , if BL2(u, δ1) ∩
T1,γ,wBL2(u, δ1) 6= ∅, then |γ|+ |w| < ε

2 .

From Proposition 5.4, there exists δ2 > 0 such that if |1− λ| < δ2, then ‖u− Tλ,0,0u‖2 < δ1
2 .

From Corollary 5.6, there exists δ3 > 0 such that for λ > 0, γ ∈ (−π, π], and w ∈ RN , if BH1(u, δ3) ∩
Tλ,γ,wBH1(u, δ3) 6= ∅, then |1− λ| < min

{
δ2,

ε
2

}
.

Let δ := min{ δ16 , δ3}. Then, for λ > 0, γ ∈ (−π, π], and w ∈ RN , if BH1(u, δ) ∩ Tλ,γ,wBH1(u, δ) 6= ∅, then
|1− λ| < min

{
δ2,

ε
2

}
since BH1(u, δ) ⊂ BH1(u, δ3). Therefore, ‖u− Tλ,0,0u‖2 < δ1

2 . Moreover, since

‖T1,γ,yv − u‖2
=‖T1,γ,yv − T1,γ,yu+ T1,γ,yu− Tλ,γ,yu+ Tλ,γ,yu− Tλ,γ,yv + Tλ,γ,yv − u‖2
≤2‖u− v‖2 + ‖Tλ,γ,yv − u‖2 + ‖u− Tλ,0,0u‖2

<3δ +
δ1
2

≤δ1
2

+
δ1
2

= δ1

for some v ∈ BH1(u, δ) ∩ Tλ,γ,wBH1(u, δ), we obtain |γ|+ |y| < ε
2 .

Consequently,

|1− λ|+ |γ|+ |y| < min
{
δ2,

ε

2

}
+
ε

2
≤ ε.
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5.3 Proof of decomposition lemma

Definition 5.12. Let Vδ,l0 ⊂ H1(RN )× (0,∞) define by

(u, l) ∈ Vδ,l0 :⇔ ∃λ > 0, γ ∈ R, w ∈ RN s.t.
∥∥∥λN

2 u(λ · −w)e−iγ −Q
∥∥∥
H1

< δ and λαl ∈ (−l0, l0)

for δ, l0 > 0.

In this section, we extend Proposition 5.2 to be on Vδ,l0 . As a result, we obtain Lemma 2.2.

Proposition 5.13. There exist δ′, l′0 > 0 such that for any u ∈ BH1(Q, δ′), l ∈ (−l′0, l′0), λ > 0, γ ∈ (−π, π],
and w ∈ RN , if Tλ,γ,wu ∈ BH1(Q, δ′), then

λ̃(u, l) = λλ̃(Tλ,γ,wu, λ
αl), b̃(u, l) = b̃(Tλ,γ,wu, λ

αl),

γ̃(u, l) = γ̃(Tλ,γ,wu, λ
αl) + γ, w̃(u, l) = λw̃(Tλ,γ,wu, λ

αl) + w

hold.

Proof. Let C > 0 be sufficiently small and δ and l0 > 0 be from Proposition 5.2.
Since S̃(Q, 0) = (1, 0, 0, 0), there exist δ1 ∈ (0, δ) and l1 ∈ (0, l0) such that

S̃(BH1(Q, δ1)× (−l1, l1)) ⊂
(
1− 1

2
C, 1 +

1

2
C

)
×
(
−C,C

)
×
(
−1

3
C,

1

3
C

)N
.

Next, let 0 < λ < 2
1
α − 1. In particular,

|λα − 1| < 1

holds.
From Proposition 5.11, there exist δ2 > 0 such that for λ > 0 and γ ∈ (−π, π], ifBH1(Q, δ2)∩Tλ,γ,wBH1(Q, δ2) 6=

∅, then |1− λ|+ |γ|+ |w| < min
{

C
2+C

, 2
1
α − 1

}
.

Let δ′ := min{δ1, δ2} and l′0 := l1
2 . Then if u ∈ BH1(Q, δ′) is Tλ,γ,wu ∈ BH1(Q, δ′), then

0 = S(S̃(Tλ,γ,wu, λ
αl), Tλ,γ,wu, λ

αl)

for l < l′0 since λαl < l1. Moreover,

λ̃(Tλ,γ,wu, λ
αl) ∈

(
1− 1

2
C, 1 +

1

2
C

)
,

b̃(Tλ,γ,wu, λ
αl) ∈

(
−C,C

)
,

γ̃(Tλ,γ,wu, λ
αl) ∈

(
−1

2
C,

1

2
C

)
,

w̃j(Tλ,γ,wu, λ
αl) ∈

(
−1

3
C,

1

3
C

)
hold. Since δ′ ≤ δ2, we obtain

|1− λ| < C

2 + C
≤ C

2− C
, i.e. 1− C

2− C
< λ < 1 +

C

2 + C
,

|γ| < C

2 + C
≤ 1

2
C

|w| < C

2 + C
≤ 1

2
C.

Therefore,

λλ̃(Tλ,γ,wu, λ
αl) <

(
1 +

1

2
C

)(
1 +

C

2 + C

)
=

(
1 +

1

2
C

)(
1 +

1
2C

1 + 1
2C

)
= 1 + C,

λλ̃(Tλ,γ,wu, λ
αl) >

(
1− 1

2
C

)(
1− C

2− C

)
=

(
1− 1

2
C

)(
1−

1
2C

1− 1
2C

)
= 1− C,

|γ̃(Tλ,γ,wu, λαl) + γ| ≤ |γ̃(Tλ,γ,wu)|+ |γ| < 1

2
C +

1

2
C = C

|λw̃j(Tλ,γ,wu, λαl) + wj | ≤
(
1 +

C

2 + C

)
1

3
C +

1

2
C <

3

2
· 1
3
C +

1

2
C = C,
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i.e., we obtain

λαl ∈ (−l, l), λλ̃(Tλ,γ,wu, λ
αl) ∈

(
1− C, 1 + C

)
,

γ̃(Tλ,γ,wu, λ
αl) + γ ∈

(
−C,C

)
, λw̃(Tλ,γ,wu, λ

αl) + w ∈
(
−C,C

)N
.

On the other hand, since

S(S̃(u, l), u, l) = 0 = S(S̃(Tλ,γ,wu, λ
αl), Tλ,γ,wu, λ

αl)

= S(λλ̃(Tλ,γ,wu, λ
αl), b̃(Tλ,γ,wu, λ

αl), γ̃(Tλ,γ,wu, λ
αl) + γ, λw̃(Tλ,γ,wu, λ

αl) + w, u, l)

and S̃ is unique, we obtain

S̃(u, l) =
(
λλ̃(Tλ,γ,wu, λ

αl), b̃(Tλ,γ,wu, λ
αl), γ̃(Tλ,γ,wu, λ

αl) + γ, λw̃(Tλ,γ,wu, λ
αl) + w

)
.

Corollary 5.14. Let C, δ, l0 > 0 be sufficiently small. Then the domain of S̃ can be extended to Vδ,l0 . In

particular, the extension is unique and S̃ is C1 function, where γ̃ is R/2πZ-valued function.
Moreover, for (u, l) ∈ Vδ,l0 such that Tλ,γ,wu ∈ BH1(Q, δ) and λαl ∈ (−l0, l0),∣∣∣∣∣ λ̃(u, l)λ

− 1

∣∣∣∣∣+ |b̃(u, l)|+ |γ̃(u, l)− γ|R/2πZ +

∣∣∣∣ w̃(u, l)− w

λ̃(u, l)

∣∣∣∣ < C

holds.

Proof. Firstly, for (u, l) ∈ Vδ,l0 ,

Tλ,γ,wu ∈ BH1(Q, δ), λαl ∈ (−l0, l0)

hold for some λ > 0, γ ∈ (−π, π], and w ∈ RN . Then the extension is

S̃(u) :=
(
λλ̃(Tλ,γ,wu, λ

αl), b̃(Tλ,γ,wu, λ
αl), γ̃(Tλ,γ,wu, λ

αl) + γ, λw̃(Tλ,γ,wu, λ
αl) + w

)
.

By Proposition 5.13, this definition is well-defined and the extension is unique.

Proposition 5.15. Let δ, l0 > 0 be sufficiently small. Then for any (u, l) ∈ Vδ,l0 ,
∂λ̃
∂u (u, l),

∂b̃
∂u (u, l),

∂γ̃
∂u (u, l),

and ∂w̃
∂u (u, l) belong to H1(RN ).

Proof. Let be (u, l) ∈ Vδ,l0 . Then there exist λ > 0, γ ∈ (−π, π], and w ∈ RN such that Tλ,γ,wu ∈ BH1(Q, δ)
and λαl ∈ (−l0, l0).

Firstly, let

 S1(λ̃, b̃, γ̃, w̃, u, l)
...

SN+3(λ̃, b̃, γ̃, w̃, u, l)

 := S(λ̃, b̃, γ̃, w̃, u, l) =



(
ε̃(λ̃, b̃, γ̃, w̃, u, l), iΛP (λ̃, b̃, l)

)
2(

ε̃(λ̃, b̃, γ̃, w̃, u, l), |y|2P (λ̃, b̃, l)
)
2(

ε̃(λ̃, b̃, γ̃, w̃, u, l), iρ
)
2(

ε̃(λ̃, b̃, γ̃, w̃, u, l), y1P (λ̃, b̃, l)
)
2

...(
ε̃(λ̃, b̃, γ̃, w̃, u, l), yNP (λ̃, b̃, l)

)
2


.

Then, since
0 = S(λ̃(u, l), b̃(u, l), γ̃(u, l), w̃(u, l), u, l),

we obtain

0 =
∂λ̃

∂u

∂S

∂λ̃
+
∂b̃

∂u

∂S

∂b̃
+
∂γ̃

∂u

∂S

∂γ̃
+
∂w̃1

∂u

∂S

∂w̃1
+ · · ·+ ∂w̃N

∂u

∂S

∂w̃N
+
∂S

∂u
.

Namely,

−∂S
∂u

= A



∂λ̃
∂u
∂b̃
∂u
∂γ̃
∂u
∂w̃1

∂u
...

∂w̃N

∂u


,
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where

A :=


∂S1

∂λ̃

∂S1

∂b̃

∂S1

∂γ̃
∂S
∂w̃1

· · · ∂S1

∂w̃N

...
...

...
...

...
∂SN+3

∂λ̃

∂SN+3

∂b̃

∂SN+3

∂γ̃
∂S
∂w̃1

· · · ∂SN+3

∂w̃N

 .

Since Tλ,γ,w
−1 = T 1

λ ,−γ,−
w
λ
, each element of the ∂S

∂u (S̃(u, l), u, l) belongs toH
1(RN ). Therefore, it is sufficient

to show that detA 6= 0 on Vδ,l0 .
Let ε be sufficiently small and C, δ, and l0 be recast as sufficiently small according to ε. Then, by directly

calculation, we obtain

∂Sj

∂λ̃
(λ̃(u, l), b̃(u, l), γ̃(u, l), w̃(u, l), u, l) = − 1

λ̃(u, l)
‖|y|Q‖22δ2,j +O

(
ε

λ̃(u, l)

)
,

∂Sj

∂b̃
(λ̃(u, l), b̃(u, l), γ̃(u, l), w̃(u, l), u, l) = −1

4
‖|y|Q‖22δ1,j +O (ε) ,

∂Sj
∂γ̃

(λ̃(u, l), b̃(u, l), γ̃(u, l), w̃(u, l), u, l) = −1

2
‖|y|Q‖22δ3,j +O (ε) ,

∂Sj
∂w̃k

(λ̃(u, l), b̃(u, l), γ̃(u, l), w̃(u, l), u, l) =
1

2λ̃(u, l)
‖Q‖22δk,j−3 +O

(
ε

λ̃(u, l)

)
.

Therefore, we obtain

λ̃(u, l)N+1 detA(u, l) = − 1

2N+3
‖|y|Q‖62‖Q‖N2 +O(ε),

i.e., A is regular on Vδ,l0 .

proof of Lemma 2.2. Let l > 0 be sufficiently small. Then λ(t)α < l
α
< l0. We define

λ̃(t) := λ̃(u(t), 1), b̃(t) := b̃(u(t), 1), γ̃(t) := γ̃(u(t), 1), w̃(t) := w̃(u(t), 1).

Then, by Corollary 5.14, the existence and uniqueness of the decomposition follows.
In addition, by Proposition 5.15, λ̃, b̃, γ̃, and w̃ are C1 functions.
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