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Chapter 1

Introduction

This thesis is based on [14] and [13].

The study of derived equivalences of blocks of finite groups has been motived and

inspired by “Broué’s conjecture”, which can be conceived of as a local-global principle

in the modular representation theory of finite groups. In [16], a solution to the problem

of finding a derived equivalence of two given algebras was reduced to the problem of

finding an appropriate tilting complex. Therefore, abundant constructions of tilting

complexes over blocks enable us to find algebras which are derived equivalent to the

blocks. Of course, it is very hard to construct appropriate tilting complexes over blocks

and to determine all tilting complexes over blocks. The classes of tilting complexes

called two-term tilting complexes are considered to be non-trivial and a bit easier to

handle because it is showed that there exists a one-to-one correspondence between the

two-term tilting complexes and the support τ -tilting modules over symmetric algebras

in [2]. Abundant constructions of two-term tilting complexes over blocks are also useful

for plenty of constructions of general tilting complexes over blocks by using the tilting

mutations introduced in [3]. Therefore, we focus on support τ -tilting modules and

consequently, we got some results which work effectively for the purpose stated above.

In order to describe these, we set notation as follows: Let k be an algebraically

closed field of characteristic p > 0, G̃ a finite group, G a normal subgroup of G̃, B

a block of kG and B̃ a block of kG̃ covering B, that is, 1B1B̃ 6= 0, where 1B and 1B̃
mean the respective identity elements of B and B̃. In this setting, there are some useful

properties about the restriction functor ResG̃G and the induction functor IndG̃G between

the category of B-modules and the one of B̃-modules. We denote the inertial group of

the block B in G̃ by IG̃(B). We say that a B-module U is IG̃(B)-invariant if xU ∼= U

as B-modules for any x ∈ IG̃(B). Furthermore, we use the following notation: For

modules or complexes X and X ′, we write X ∼add X
′ if addX = addX ′. Then the

relation ∼add is an equivalence relation.

• sτ -tiltB (or sτ -tilt B̃) means the set of equivalence classes of support τ -tilting

modules over B (or B̃, respectively) under the equivalence relation ∼add,
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CHAPTER 1. INTRODUCTION 2

• 2-tiltB (or 2-tilt B̃) means the set of equivalence classes of two-term tilting com-

plexes in Kb(B-proj) (or Kb(B̃-proj), respectively) under the equivalence relation

∼add,

The following results, which is proved in Chapter 4, contribute to classify support

τ -tilting B̃-modules and two-term tilting complexes in Kb(B̃-proj).

Main Theorem 1 (see Theorem 4.2.5). Assume that G̃/G is a p-group and that B

satisfies the following conditions:

(I) Any indecomposable B-module is IG̃(B)-invariant.

(II) The block B is τ -tilting finite (i.e., # sτ -tiltB <∞).

Then the induction functor IndG̃G induces an isomorphism from sτ -tiltB to sτ -tilt B̃ as

partially ordered sets.

Main Theorem 2 (see Corollary 4.2.6). Assume that G̃/G is a p-group and that B

satisfies the conditions (I) and (II) in Theorem 1. Then the induction functor IndG̃G
induces an isomorphism 2-tiltB ∼= 2-tilt B̃ of partially ordered sets which commutes

the following diagram of partially ordered sets

sτ -tiltB ∼

IndG̃G

//

∼

��
⟲

sτ -tilt B̃

∼

��

2-tiltB ∼
IndG̃G // 2-tilt B̃

where the vertical maps are isomorphisms given by [2, Theorem 3.2].

If B has a cyclic defect group, then the conditions (I) and (II) hold for B automat-

ically (see Lemma 4.1.3). Moreover, in that case the block B is a Brauer tree algebra

or simple algebra, thus the number of elements in sτ -tiltB is equal to
(
2e
e

)
, where e is

the number of isomorphism classes of simple B-modules and
(
2e
e

)
means the binomial

coefficient ([5], [6]). Combining Main Theorem 1 with these facts, we get the following.

Main Theorem 3. Assume that G̃/G is a p-group and a block B of kG has a cyclic

defect group. Then sτ -tiltB and sτ -tilt B̃ are isomorphic as partially ordered sets. In

particular, we get # sτ -tilt B̃ =
(
2e
e

)
where e is the number of isomorphism classes of

simple B-modules.

In Chapter 5, we investigate inertial-invariant support τ -tilting modules over blocks

of finite group and present the following results, which relaxes the assumptions in Main

Theorem 1.
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Main Theorem 4 (see Theorems 5.1.1 and 5.1.2). Let G̃ be a finite group, G a normal

subgroup of G̃, B a block of kG, B̃ a block of kG̃ covering B and M a support τ -tilting

B-modules satisfying xM ∼= M as B-modules for any x ∈ IG̃(B). Then the induced

module IndG̃GM is a support τ -tilting kG̃-module. In particular, the module B̃IndG̃GM

is a support τ -tilting B̃-module.

We will demonstrate that there is a relation between IG̃(B)-invariant support τ -

tilting B-modules and support τ -tilting kG̃-modules. Now we recall that the set

sτ -tiltB of support τ -tilting module has a partially ordered set structure (see Definition-

Proposition 2.2.1).

Main Theorem 5 (see Theorem 5.1.5). Let G̃ be a finite group, G a normal subgroup

of G̃, B a block of kG, B̃ a block of kG̃ covering B and M a B-modules satisfying

xM ∼= M as B-modules for any x ∈ IG̃(B). Then M is a support τ -tilting B-module

if and only if IndG̃GM is a support τ -tilting kG̃-module. Moreover, for any two IG̃(B)-

invariant support τ -tilting B-modules M and M ′, M ≥ M ′ in sτ -tiltB if and only if

IndG̃GM ≥ IndG̃GM
′ in sτ -tilt kG̃.

In this paper, we use the following notation. Modules mean finitely generated

left modules and complexes mean cochain complexes. For a finite dimensional alge-

bra Λ over a field k and a Λ-module M , we denote by Rad(M) the Jacobson radical

of M , by P (M) the projective cover of M , by Ω(M) the syzygy of M and τM the

Auslander–Reiten translate of M . We denote by Λ-mod the module category of Λ and

by Kb(Λ-proj) the homotopy category consisting of bounded complexes of projective

Λ-modules. For an object X of Λ-mod (or of Kb(Λ-proj)), we denote by addX the full

subcategory of Λ-mod (or of Kb(Λ-proj), respectively) whose objects are finite direct

sums of direct summands of X. We say that X is basic if any two indecomposable

direct summands of X are non-isomorphic.



Chapter 2

Preliminaries for τ-tilting theory

In this chapter, let k be an algebraically closed field and Λ a finite dimensional k-

algebra. We denote by τ the Auslander–Reiten translation. For a Λ-module M , we

denote by |M | the number of isomorphism classes of indecomposable direct summands

of M .

2.1. Support τ-tilting modules and mutations

In this subsection, we recall some definitions and basic properties of support τ -tilting

modules.

Definition 2.1.1 ([2, Definition 0.1]). Let M be a Λ-module.

(1) We say that M is τ -rigid if HomΛ(M, τM) = 0.

(2) We say that M is τ -tilting if M is a τ -rigid module and |M | = |Λ|.

(3) We say that M is support τ -tilting if there exists an idempotent e of Λ such that

M is a τ -tilting Λ/ΛeΛ-module.

Definition 2.1.2 ([2, Definition 0.3]). Let M be a Λ-module and P a projective Λ-

module.

(1) We say that the pair (M,P ) is τ -rigid if M is τ -rigid and HomΛ(P,M) = 0.

(2) We say that the pair (M,P ) is support τ -tilting (or almost complete support τ -

tilting) if the pair (M,P ) is τ -rigid and |M |+ |P | = |Λ| (or |M |+ |P | = |Λ| − 1,

respectively).

Remark 2.1.3 ([1, Proposition 2.3 (a), (b)]). Since e = 0 is an idempotent of Λ and

Λ/ΛeΛ = Λ, any τ -tilting module is a support τ -tilting module. Moreover, for any

τ -rigid Λ-module M , the following conditions are equivalent:

(1) M is a support τ -tilting module.

4
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(2) There exists a projective Λ-module P satisfying HomΛ(P,M) = 0 and |M |+|P | =
|Λ|, that is, (M,P ) is a support τ -tilting pair.

Proposition 2.1.4 ([2, Proposition 2.3]). Let (M,P ) be a pair with a Λ-module M

and a projective Λ-module P . Let e be an idempotent of Λ such that addP = addΛe.

(1) The pair (M,P ) is a τ -rigid (or support τ -tilting) pair if and only if M is a τ -rigid

(or τ -tilting, respectively) Λ/ΛeΛ-module.

(2) If (M,P ) and (M,Q) are support τ -tilting pairs for some projective Λ-module Q,

then addP = addQ.

Proposition 2.1.5 ([2, Corollary 2.13]). Let M be a τ -rigid Λ-module and P a pro-

jective Λ-module satisfying that HomΛ(P,M) = 0. Then the following conditions are

equivalent:

(1) |M |+ |P | = |Λ|, that is, M is a support τ -tilting Λ-module (see Remark 2.1.3).

(2) If HomΛ(M, τX) = 0, HomΛ(X, τM) = 0 and HomΛ(P,X) = 0, then X ∈ addM

for any Λ-module X.

The following proposition plays an important role in the proof of our main result.

Proposition 2.1.6 ([11, Proposition 2.14]). Let Λ be a finite dimensional k-algebra

andM a τ -rigid Λ-module. Then M is a support τ -tilting Λ-module if and only if there

exists an exact sequence

Λ M ′ M ′′ 0
f f ′

in Λ-mod with M ′,M ′′ ∈ addM and f a left addM -approximation of Λ, that is, the

map

HomΛ(M
′, X) HomΛ(Λ, X)

•◦f

is surjective for any X ∈ addM .

The following proposition gives the definitions of mutations of support τ -tilting pairs

and support τ -tilting modules. We recall that we say a pair (V,Q) of a Λ-module V

and a projective Λ-module Q is basic if V and Q are basic.

Proposition 2.1.7 ([2, Theorem 2.18]). If (V,Q) is a basic almost complete support τ -

tilting pair, then there exist exactly two basic support τ -tilting pairs containing (V,Q)

as a direct summand.

Definition 2.1.8 ([2, Definition 2.19]). Let (M,P ) be a basic support τ -tilting pair

and X be an indecomposable summand of either M or P . Let (V,Q) be the basic

almost complete support τ -tilting pair satisfying either M ∼= V ⊕X or P ∼= Q⊕X. By

Proposition 2.1.7, there exist a unique basic support τ -tilting pair (M ′, P ′) distinct to

(M,P ) and having (V,Q) as a direct summand. We denote this support τ -tilting pair

(M ′, P ′) by µX(M,P ) and it is called a mutation of (M,P ) with respect to X.
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Definition 2.1.9 ([2, Definition 2.19]). Let M be a basic support τ -tilting module.

According to Proposition 2.1.4, we can find the basic projective Λ-module P such that

(M,P ) is a basic support τ -tilting pair. Let X be an indecomposable summand of

either M or P . Let (M ′, P ′) be the mutation of (M,P ) with respect to X. We denote

M ′ by µX(M) and it is called a mutation of M with respect to X.

2.2. Poset structures and connections with silting theory

For support τ -tilting Λ-modules M and M ′, we write M ∼add M ′ if addM =

addM ′. Then the relation ∼add is an equivalence relation. We denote sτ -tilt Λ the set

of equivalence classes of all support τ -tilting Λ-modules under the equivalence relation

∼add. We remark that basic support τ -tilting Λ-modules form a set of representatives

of sτ -tilt Λ.

Definition-Proposition 2.2.1 ([2, Theorem 2.7]). For M,M ′ ∈ sτ -tilt Λ, we write

M ≥M ′ if there exist a positive integer r and an epimorphism

M⊕r M ′.
φ

Then we get a partial order on sτ -tilt Λ.

Theorem 2.2.2 ([2, Theorem 2.32]). Let M and M ′ be support τ -tilting Λ-modules.

Then the following conditions are equivalent:

(1) M and M ′ are mutation of each other, and M > M ′.

(2) M > M ′ and there is no support τ -tilting Λ-module L such that M > L > M ′.

We denote H(sτ -tilt Λ) the Hasse quiver (Hasse diagram) for the partially ordered

set sτ -tilt Λ. The theorem above implies that any arrow in H(sτ -tilt Λ) corresponds to

a support τ -tilting mutation. We remark that the underlying graph of H(sτ -tilt Λ) is a

|Λ|-regular graph because we can take |Λ| sorts of mutations for any support τ -tilting

module M . The next proposition plays an important role to prove our main theorems.

Proposition 2.2.3 ([2, Corollary 2.38]). If H(sτ -tilt Λ) has a connected component

having finite vertices, then H(sτ -tilt Λ) is connected.

Now we recall the definition of silting complexes which is a generalization of tilting

complexes. The concept of silting complex is originated from [12], and recently there

has been many papers starting with [3]. In particular, in [2], it is shown that there is

a one-to-one correspondence between two-term silting complexes and support τ -tilting

modules.

Definition 2.2.4. Let T be a complex in Kb(Λ-proj).

(1) We say that T is presilting (or pretilting) if HomKb(Λ-proj)(T, T [i]) = 0 for any i > 0

(or for any i 6= 0, relatively).



CHAPTER 2. PRELIMINARIES FOR τ -TILTING THEORY 7

(2) We say that T is silting (or tilting) if it is presilting (or pretilting, respectively) and

satisfies thick T = Kb(Λ-proj), where thick T is the full subcategory of Kb(Λ-proj)

generated by add T as a triangulated category.

For silting complexes (tilting complexes) T and T ′ inKb(Λ-proj), we write T ∼add T
′

if addT = addT ′. Then the relation ∼add is an equivalence relation. We denote

silt Λ (tilt Λ) the set of equivalence classes of all silting complexes (tilting complexes) in

Kb(Λ-proj) under the equivalence relation ∼add. We remark that basic silting complexes

(basic tilting complexes) in Kb(Λ-proj) form a set of representatives of silt Λ (tilt Λ).

Definition 2.2.5 ([3, Definition 2.10]). For T, T ′ ∈ silt Λ, we write T ≥ T ′ if

HomKb(Λ-proj)(T, T
′[i]) = 0,

for any i > 0. Then we get a partial order on silt Λ.

Definition 2.2.6. We say that a complex T ∈ Kb(Λ-proj) is two-term if T i = 0 for all

i 6= 0,−1. We denote by 2-silt Λ the subset of silt Λ consisting of all equivalent classes

of two-term silting complexes in Kb(Λ-proj).

Theorem 2.2.7 ([2, Theorem 3.2 and Corollary 3.9]). There is an isomorphism

sτ -tilt Λ → 2-silt Λ

of partially ordered sets given by sτ -tilt Λ 3 (M,P ) 7→ (T1 ⊕ P
(f1 0)−−−→ T0) ∈ 2-silt Λ,

where T1
f1−→ T0

f0−→M → 0 is a minimal projective presentation of M .

We remark that the correspondence above commutes with support τ -tilting muta-

tions and silting mutations [2, Corollary 3.9].

Remark 2.2.8 ([3, Example 2.8]). If Λ is a finite dimensional symmetric k-algebra,

then any silting complex over Λ is in fact a tilting complex.

Proof. Let T be a silting complex over Λ. We obtain from [10, Lemma 3.1] that the

following isomorphisms:

DHomKb(Λ-proj)(T, T [−i]) ∼= HomKb(Λ-proj)(T [−i], νT )
∼= HomKb(Λ-proj)(T [−i], T )
∼= HomKb(Λ-proj)(T, T [i])

= 0

for any i > 0 where D is the k-duality and ν is the Nakayama functor, which is

naturally isomorphic to the identity functor on Λ-proj by the assumption, that Λ is

symmetric.

By this fact, silting complexes over the group algebra and over the blocks of group

algebras are tilting complexes in fact. Hence, the classifications of support τ -tilting

modules over the group algebra and over the blocks mean the ones of two-term tilting

complexes over them.



Chapter 3

Preliminaries for modular

representation theory of finite

groups

In this chapter, let k be an algebraically closed field of characteristic p > 0. For any

finite group G, the field k can always be regarded as a kG-module by defining gx = x

for any g ∈ G and x ∈ k. This module is called the trivial module and is denoted by kG.

For kG-modules U and V , the k-module U ⊗ V = U ⊗k V has a kG-module structure

given by g(u⊗ v) = gu⊗ gv for all g ∈ G, u ∈ U and v ∈ V .

3.1. Restriction functors and induction functors

Let G be a finite group and H a subgroup of G. We denote by ResGH the restriction

functor from kG-mod to kH-mod and IndGH := kGkG⊗kH • the induction functor from

kH-mod to kG-mod. The functors ResGH and IndGH are exact functors and have the

following properties.

Proposition 3.1.1 (see [4, Lemma 8.5, Lemma 8.6]). Let G be a finite group, K a

subgroup of G, H a subgroup of K, U a kG-module and V a kH-module. Then the

following hold:

(1) ResKHRes
G
K
∼= ResGH .

(2) IndGKInd
K
H
∼= IndGH .

(3) The functors ResGH and IndGH are left and right adjoint to each other.

(4) The functors ResGH and IndGH send projective modules to projective modules.

(5) U ⊗ kG ∼= U .

(6) IndGH(Res
G
HU ⊗ V ) ∼= U ⊗ IndGHV .

8
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Let H be a subgroup of G and U a kH-module. For g ∈ G, we define a k[gHg−1]-

module gU consisting of symbols gu, where u ∈ U , as a set and its k[gHg−1]-module

structure is given by gu+ gu′ := g(u+ u′), s(gu) := g(su) and ghg−1(gu) := g(hu) for

any u, u′ ∈ U , s ∈ k and ghg−1 ∈ gHg−1. We remark that if H is a normal subgroup

of G, then gU is also a kH-module.

Remark 3.1.2. For finite groups H ⊂ K ⊂ G and kG-module U , we have gResKHU
∼=

ResgKg
−1

gHg−1gU by the easy calculation.

Let H and K be subgroups of G. We denote by [G/H], [K\G] and [K\G/H] sets

of representatives of G/H, K\G and K\G/H, respectively.

Theorem 3.1.3 (Mackey’s decomposition formula). Let H and K be subgroups of G,

and U a kH-module. Then we have

ResGKInd
G
HU

∼=
⊕

g∈[K\G/H]

IndKK∩gHg−1Res
gHg−1

K∩gHg−1gU.

Remark 3.1.4. Let N be a normal subgroup of G and H a subgroup of G containing

N . Then N\G/H = G/H and for any kH-module U ,

ResGN Ind
G
HU

∼=
⊕

g∈[G/H]

gResHNU.

In particular, if N = H then

ResGN Ind
G
NU

∼=
⊕

g∈[G/N ]

gU.

Let G be a normal subgroup of a finite group G̃. For a kG-module U , we denote by

IG̃(U) the inertial group of U in G̃, that is

IG̃(U) :=
{
x ∈ G̃

∣∣∣ xU ∼= U as kG-modules
}
.

Theorem 3.1.5 (Clifford’s Theorem for simple modules). Let G̃ be a finite group, G a

normal subgroup of G̃, S a simple kG̃-module and S ′ a simple kG-submodule of ResGNS.

Then we have a kG-module isomorphism

ResG̃GS
∼=

⊕
x∈[G̃/IG̃(S′)]

xS ′⊕r

for some integer r, which is called the ramification index of S in G̃.

From now on, we will consider the case where G̃/G is a p-group. The following

theorem makes substantial contribution in this paper.
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Theorem 3.1.6 (Green’s indecomposability theorem [7]). If G is a normal subgroup

of G̃ such that G̃/G is a p-group, then IndG̃GV is an indecomposable kG̃-module for any

indecomposable kG-module V .

Lemma 3.1.7. Let G be a normal subgroup of G̃. For indecomposable kG-modules U

and U ′, if the induced module IndG̃GU is isomorphic to IndG̃GU
′, then U is isomorphic to

xU ′ for some x ∈ G̃.

Proof. Let U and U ′ be indecomposable kG-modules with IndG̃GU is isomorphic to

IndG̃GU
′. Then we have⊕

x∈[G̃/G]

xU ∼= ResG̃GInd
G̃
GU

∼= ResG̃GInd
G̃
GU

′ ∼=
⊕

x∈[G̃/G]

xU ′.

By the Krull–Schmidt Theorem, we get U ∼= xU ′ for some x ∈ G̃.

Corollary 3.1.8. Let G be a normal subgroup of G̃. For indecomposable G̃-invariant

kG-modules U and U ′, if the induced module IndG̃GU is isomorphic to IndG̃GU
′, then U

is isomorphic to U ′.

Proposition 3.1.9 (see [4, Exercise 19.1]). Let G be a normal subgroup of G̃ and T

a simple kG-module such that IG̃(T ) = G̃. If G̃/G is a p-group, then there exists a

unique simple kG̃-module S such that ResG̃GS
∼= T .

Lemma 3.1.10. Let G be a normal subgroup of G̃ and S a simple kG̃-module. Suppose

that G̃/G is a p-group, then S is the only simple kG̃-module which can be a composition

factor of IndG̃GRes
G̃
GS.

Proof. We remark that the group algebra of any p-group over k is a local k-algebra

(for example, see [4, Corollary 3.3]). For this reason, it is only trivial module kG that

can be composition factor of kG̃k(G̃/G). Hence, we get the following isomorphisms as

kG̃-modules:

IndG̃GRes
G̃
GS

∼= IndG̃G((Res
G̃
GS)⊗ kG)

∼= S ⊗ IndG̃GkG
∼= S ⊗ k(G̃/G).

Therefore, all composition factors of the module in the right-hand side are isomorphic

to S ⊗ kG̃
∼= S.

Corollary 3.1.11. Let T be a simple kG-module. Suppose that G̃/G is a p-group, then

the kG̃-module IndG̃GT has only one sort of simple module which can be a composition

factor.
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Proof. We can take a simple kG̃-module S satisfying the condition HomkG̃(Ind
G̃
GT, S) 6=

0. Since HomkG̃(Ind
G̃
GT, S)

∼= HomkG(T,Res
G̃
GS) by Theorem 3.1.1, the restriction mod-

ule ResG̃GS has a submodule isomorphic to T . Hence, the induced module IndG̃GT is

isomorphic to a submodule of IndG̃GRes
G̃
GS. Therefore, by Lemma 3.1.10, the conclusion

follows.

Lemma 3.1.12. Let G be a normal subgroup of G̃ such that G̃/G is a p-group and S

a simple kG̃-module. Assume that ResG̃GS is a simple kG-module and denote this by T .

Then the following hold:

(1) IG̃(P (T )) = G̃,

(2) IndG̃GP (T )
∼= P (S),

(3) ResG̃GP (S)
∼= P (T )⊕|G̃:G|.

Proof. The assumption implies that IG̃(T ) = G̃ by Theorem 3.1.5, which implies xT ∼=
T . Hence, for any x ∈ G̃, we have that xP (T ) ∼= P (xT ) ∼= P (T ) and the first assertion

is proved. Since the induced module IndG̃GP (T ) is an indecomposable projective module

by Theorem 3.1.1 and Theorem 3.1.6, and

HomkG̃(Ind
G̃
GP (T ), S)

∼= HomkG(P (T ),Res
G̃
GS) = HomkG(P (T ), T ) 6= 0,

the second assertion is proved. The third assertion is trivial by previous two assertions

and Theorem 3.1.3.

Lemma 3.1.13. Let G be a normal subgroup of a finite group G̃ and M a kG-module

satisfying xM ∼= M as kG-modules for any x ∈ G̃. Then the following hold:

(1) xP (M) ∼= P (M) for any x ∈ G̃.

(2) xΩ(M) ∼= Ω(M) for any x ∈ G̃.

(3) IndG̃GΩ(M) ∼= Ω(IndG̃GM).

(4) τ(IndG̃GM) ∼= IndG̃GτM .

Proof. For any x ∈ G̃, we have an isomorphism ϕ : xM → M by the assumption. We

consider the following commutative diagram in kG-mod with exact rows:

0 xΩ(M) xP (M) xM 0

0 Ω(M) P (M) M 0.

ϕ′′

xπM

ϕ′ ϕ

πM
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Since πM is an essential epimorphism and ϕ is an isomorphism, the vertical morphisms

ϕ′ and ϕ′′ are isomorphisms and so (1) and (2) holds.

By Proposition 3.1.1 (4), we have the following commutative diagram in kG̃-mod

with exact rows:

0 IndG̃GΩ(M) IndG̃GP (M) IndG̃GM 0

0 Ω(IndG̃GM) P (IndG̃GM) IndG̃GM 0.

φ′

IndG̃GπM

φ Id
IndG̃

G
M

π
IndG̃

G
M

Since π
IndG̃GM

is an essential epimorphism, we have that the vertical morphisms φ and

φ′ are split epimorphisms, that Kerφ ∼= Kerφ′ are projective kG̃-modules and that

Ω(IndG̃GM)⊕Kerφ′ ∼= IndG̃GΩ(M). By Theorem 3.1.3 and (2), we have

Ω(M)⊕|G̃:G| ∼=
⊕

x∈[G̃/G]

xΩ(M)

∼= ResG̃GInd
G̃
GΩ(M)

∼= ResG̃GΩ(Ind
G̃
GM)⊕ ResG̃GKerφ′.

Since ResG̃GKerφ′ is projective by Proposition 3.1.1 (4) and Ω(M) has no non-zero

projective summands by the self-injectivity of the group algebra kG, we have that

Kerφ ∼= Kerφ′ = 0. This finishes the proof of (3).

Finally, we prove the assertion (4). Since kG̃ and kG are symmetric k-algebras,

it holds that τM ∼= ΩΩ(M) and τ(IndG̃GM) ∼= ΩΩ(IndG̃GM) for any kG-module M .

Therefore, (4) immediately follows from (3).

3.2. Blocks of group algebras

We recall the definition of blocks of group algebras. Let G be a finite group. The

group algebra kG has a unique decomposition

kG = B0 × · · · × Bl (3.2.1)

into the direct product of indecomposable k-algebras Bi. We call each indecomposable

direct product component Bi a block of kG and the above decomposition the block

decomposition. We remark that any block Bi is a two-sided ideal of kG.

For any indecomposable kG-module U , there exists a unique block Bi of kG such

that U = BiU and BjU = 0 for all j 6= i. Then we say that U lies in the block Bi or

simply U is a Bi-module. We denote by B0(kG) the principal block of kG, in which

the trivial kG-module lies.
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Remark 3.2.1. We remark that the block decomposition (3.2.1) induces the following

isomorphism of partially ordered sets:

sτ -tilt(kG) sτ -tilt(B0)× · · · × sτ -tilt(Bl)

M (B0M, . . . , BlM).

Now we recall the definition and basic properties of defect groups of blocks.

Definition 3.2.2. Let B be a block of kG. A defect group D of B is a minimal

subgroup of G satisfying the following condition: the B-bimodule morphism

B ⊗kD B B

β1 ⊗ β2 β1β2

µD

is a split epimorphism.

Proposition 3.2.3 (see [4, Chapter 4, 5]). Let B be a block of kG and D a defect

group of B. Then the following hold:

(1) D is a p-subgroup of G and the set of all defect groups of B forms the conjugacy

class of D in G.

(2) D is a cyclic group if and only if the algebra B is finite representation type.

(3) If B is the principal block of kG, then D is a Sylow p-subgroup of G.

Theorem 3.2.4 (see [4, Corollary 14.6, Theorem 17.1 and proof of Lemma 19.3]). Let

B be a block of kG and D a defect group of B.

(1) D is the trivial group if and only if B is a simple algebra.

(2) D is a non-trivial cyclic group if and only if B is a Brauer tree algebra with e

edges and multiplicity (|D| − 1)/e, where e is a devisor of p− 1.

3.3. Clifford’s theory for blocks of normal subgroups

Let G be a finite group, G̃ a finite group containing G as a normal subgroup, B a

block of kG and B̃ a block of kG̃. We say that B̃ covers B or that B is covered by

B̃ if 1B1B̃ 6= 0. We denote by IG̃(B) the inertial group of B in G̃, that is IG̃(B) :={
x ∈ G̃

∣∣∣ xBx−1 = B
}
.

Remark 3.3.1 (see [4, Theorem 15.1, Lemma 15.3]). With the above notation, the

following are equivalent:

(1) The block B̃ covers B.
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(2) There exists a non-zero B̃-module U such that ResG̃GU has a non-zero direct sum-

mand lying in B.

(3) For any non-zero B̃-module U , there exists a non-zero direct summand of ResG̃GU

lying in B.

Remark 3.3.2. The principal block B0(kG) of kG is covered by the principal block

B0(kG̃) of kG̃ and IG̃(B0(kG)) = G̃ since the trivial kG-module kG is G̃-invariant and

ResG̃GkG̃
∼= kG.

Remark 3.3.3. Let G be a normal subgroup of a finite group G̃, B a block of kG and

M a B-module. Then xM is a B-module for x ∈ G̃ if and only if x ∈ IG̃(B).

Theorem 3.3.4 (Clifford’s Theorem for blocks [4, Theorem 15.1, Lemma 15.3]). Let

G̃ be a finite group, G a normal subgroup of G̃, B a block of kG, B̃ a block of kG̃

covering B and U a B̃-module. Then the following hold:

(1) The set of blocks of kG covered by B̃ equals to the conjugacy class of B in G̃:{
B′

∣∣∣ B′ is a block of kG covered by B̃
}
=

{
xBx−1

∣∣∣ x ∈ G̃
}
.

(2) We get the following isomorphism of kG-modules:

ResG̃GU
∼=

⊕
x∈[G̃/IG̃(B)]

xBU.

Proposition 3.3.5 (see [15, Theorem 5.5.10, Theorem 5.5.12]). Let G be a normal

subgroup of a finite group G̃, B a block of kG and β a block of kIG̃(B) covering B.

Then the following hold:

(1) For any B-module V , the induced module Ind
IG̃(B)

G V is a direct sum of kIG̃(B)-

module lying blocks covering B.

(2) There exists a unique block B̃ of kG̃ covering B such that the induction functor

IndG̃IG̃(B) : kIG̃(B)-mod → kG̃-mod

restricts to a Morita equivalence

IndG̃IG̃(B) : β-mod B̃-mod

and the mapping β to B̃ is a bijection between the set of blocks of kIG̃(B) covering

B and the one of kG̃ covering B.

Proposition 3.3.6 ([15, Corollary 5.5.6, Theorem 5.5.13, Lemma 5.5.14]). Let G be

a normal subgroup of G̃ and B a block of kG, then the following conditions hold:

(1) If G̃/G is a p-group, then there exists a unique block of kG̃ covering B.

(2) If a defect group D of B satisfies CG̃(D) ⊂ G, then there exists a unique block of

kG̃ covering B.



Chapter 4

Poset isomorphism of support

τ-tilting modules for blocks of finite

groups

In this chapter, we provide one of our main result Theorem 4.2.5. In this chapter, the

factor group G̃/G is a p-group, where G is a normal subgroup of a finite group G̃.

4.1. Normal subgroups with p-power index and their blocks

In this section, we consider properties of block-covering in the case, where G̃/G is

a p-group. The following lemmas make substantial contribution in this paper.

Lemma 4.1.1 ([9, Lemma 2.2]). Let G be a normal subgroup of G̃ and B a block of

kG. If G̃/G is a p-group and the number of simple B-modules is strictly smaller than

p, then for any simple B-module S, it holds that IG̃(S) = IG̃(B).

Proof. Let S be a simple B-module. We consider the orbit {xS | x ∈ IG̃(B)} / ∼= of S

under the action of IG̃(B) on the set of isomorphism classes of simple B-modules. By

the assumption, we have |IG̃(B) : IG̃(S)| = # {xS | x ∈ IG̃(B)} / ∼=< p. Moreover, the

natural number |IG̃(B) : IG̃(S)| is a p-power integer since |G̃ : G| = |G̃ : IG̃(B)||IG̃(B) :

IG̃(S)||IG̃(S) : G|. Therefore, we get |IG̃(B) : IG̃(S)| = 1.

Lemma 4.1.2. Let G be a normal subgroup of a finite group G̃, B a block of kG and

B̃ a block of kG̃ covering B. If G̃/G is a p-group and IG̃(B) = G̃, then the following

conditions are equivalent.

(1) For any simple B-module T , the inertial group IG̃(T ) of T in G̃ is equal to G̃.

(2) For any simple B̃-module S, the restriction module ResG̃GS is a simple B-module.

In addition, if the conditions above hold, then the restriction functor ResG̃G induces a

bijection between the set of isomorphism classes of simple B̃-modules and the one of

simple B-modules.

15
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Proof. First, we prove that the first condition implies the second one. Let S be a simple

B̃-module. By Theorem 3.1.5 and the assumption, there exists a simple B-module T

such that ResG̃GS
∼= T⊕r for some r ∈ N. Since G̃/G is a p-group, by Proposition

3.1.9, there exists a simple kG̃-module S ′ such that ResG̃GS
′ is isomorphic to T . Since

G̃/G is a p-group again, by Lemma 3.1.10, all composition factors of IndG̃GRes
G̃
GS and

IndG̃GRes
G̃
GS

′ are isomorphic to one simple module. It implies that S ∼= S ′ by the

Jordan–Hölder theorem and we conclude that the first assertion implies the second one.

We next show that the second condition implies the first one. Let T be a simple B-

module. By Propositions 3.3.5 and 3.3.6 the induced module IndG̃GT is a B̃-module and

there exist a simple B̃-module S such that HomB̃(Ind
G̃
GT, S) 6= 0. By the assumption

and Proposition 3.1.1, we have T ∼= ResG̃GS. Hence, by Theorem 3.1.5, we have IG̃(T ) =

G̃. Therefore, we have proven that the second assertion implies the first one.

The remaining deduction is immediate from the fact that the above two conditions

are equivalent and from Proposition 3.1.9.

Lemma 4.1.3. Let G be a normal subgroup of a finite group G̃ and B a G̃-invariant

block of kG with a cyclic defect group. Then the following hold:

(1) If any simple B-module is G̃-invariant, then any indecomposable B-module is also

G̃-invariant.

(2) If G̃/G is a p-group, then any indecomposable B-module is G̃-invariant.

Proof. We prove that IG̃(V ) = G̃ for indecomposable B-module V by induction on the

composition length of V . If V is simple or indecomposable projective, there is nothing

to show by the assumption and Lemma 3.1.13. We assume that the composition length

of V is two or more and that V is not projective. We remark that any indecomposable

non-projective B-module is a string module (for example, see [17]). Hence, we can take

a simple B-module S and an indecomposable B-module V ′ which satisfy at least one

of the following conditions:

• There exists an exact sequence

0 // S
µ // U

ν // V // 0.

• There exists an exact sequence

0 // V
µ′ // U

ν′ // S // 0.

It suffices to prove IG̃(U) = IG̃(B) under the assumption that there exists the first exact

sequence, the other case being proved similarly. For any x ∈ G̃, we take kG-module
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isomorphisms φ : xS → S and ψ : V → xV by the induction hypothesis. We obtain the

following commutative diagram:

0 // xS

P.O.φ

��

xµx−1
// xU

φ′

��

xνx−1
// xV

id

// 0

0 / / S

id

ε1 // X

P.B.

σ1 // xV // 0

0 / / S

P.O.t
��

ε2 // Y

ψ′

OO

t′

��

σ2 // V

ψ

OO

//

id

0

0 / / S ε // U σ // V // 0

where t is a scalar map since dimk Ext
1
b(V, S) = 1 (see [4, Proposition 21.7]). Therefore,

we get xU ∼= U .

By Theorem 3.2.4 and Lemma 4.1.1, any simple B-module S is G̃-invariant, we have

the assertion (2) from the first one.

Proposition 4.1.4. Let G be a normal subgroup of a finite group G̃, B̃ a block of

kG̃ and B a cyclic defect block of kG covered by B̃ satisfying one of the following

conditions:

(1) There is an IG̃(B)-invariant simple B-module S whose corresponding edge is a

terminal edge of the Brauer tree of B.

(2) There is a simple B-module S whose corresponding edge of the Brauer tree of B

is a terminal edge and the dimension of S whose dimension of S is distinct to that

of any other simple B-module.

(3) Any two simple B-modules have distinct dimensions.

Then any indecomposable B-module is IG̃(B)-invariant.

Proof. We can assume that IG̃(B) = G̃ by Proposition 3.3.5. Assume that the block

B of kG satisfies the condition (1) and let S be an IG̃(B)-invariant simple B-module

whose corresponding edge is a terminal edge of the Brauer tree of B. Then, since there

exists a unique simple B-module T such that Ext1B(S, T )
∼= k and that Ext1B(S, T

′) = 0

for any distinct simple B-module T ′ to T , we have that

Ext1B(S, xT )
∼= Ext1B(xS, xT )

∼= Ext1B(S, T )
∼= k.

Hence, we have xT ∼= T as B-modules for any x ∈ IG̃(B) by the uniqueness of T

again. Also, since there exists a unique simple B-module U distinct to S such that

Ext1B(T, U)
∼= k and Ext1B(T, U

′) = 0 for any distinct simple B-module U ′ to U and S,

we have that

Ext1B(T, xU)
∼= Ext1B(xT, xU)

∼= Ext1B(T, U)
∼= k,
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which implies that xU ∼= U as B-modules for any x ∈ IG̃(B). By repeating this argu-

ment, we have that any simple B-module is IG̃(B)-invariant. Therefore, we have that

any B-module is IG̃(B)-invariant by Lemma 4.1.3 (1). In particular, any indecompos-

able B-module is IG̃(B)-invariant.

Next, assume that the block B of kG satisfies the condition (2). Then a simple

B-module S whose corresponding edge is a terminal edge of the Brauer tree of B is

IG̃(B)-invariant because xS is a simple B-module with the same dimension as S for

any x ∈ IG̃(B). Therefore, by (1), any indecomposable B-module is IG̃(B)-invariant.

The statement for (3) follows from that for (2) immediately

Corollary 4.1.5. Let G be a finite group with a cyclic Sylow p-group and G̃ a finite

group having G as a normal subgroup. Then any indecomposable B0(kG)-module is

G̃-invariant.

Proof. The trivial kG-module kG is G̃-invariant. Moreover, the trivial kG-module cor-

responds to the terminal edge in the Brauer tree of the principal block B0(kG) (for

example, see [8, section 1.1]). Hence, it concludes the proof by Proposition 4.1.4.

4.2. Induced modules of support τ-tilting modules

In this section, we give proofs of our main theorems. The next lemmas have key

roles.

Lemma 4.2.1. Let G be a normal subgroup of G̃ such that G̃/G is a p-group, B a

block of kG satisfying IG̃(B) = G̃ and G̃ the block of kG̃ covering B. Assume that the

condition in Proposition 4.1.2 holds. For a τ -rigid B-module U , the induced module

IndG̃GU is τ -rigid if and only if HomB(gU, τU) = 0 for all x ∈ G̃.

Proof. Let U be a τ -rigid B-module. By Lemma 3.1.13, Theorem 3.1.1 and Theorem

3.1.3, we get the following isomorphisms:

HomB̃(Ind
G̃
GU, τ Ind

G̃
GU)

∼= HomB̃(Ind
G̃
GU, Ind

G̃
GτU)

∼= HomB(Res
G̃
GInd

G̃
GU, τU)

∼=
⊕

x∈[G̃/G]

HomB(xU, τU).

It concludes the proof.

Corollary 4.2.2. With the same notations in Lemma 4.2.1, assume that any inde-

composable B-module is G̃-invariant. For a τ -rigid B-module U , the induced module

IndG̃GU is a τ -rigid B-module.

Lemma 4.2.3. Let N be a normal subgroup of G such that G/N is a p-group, b a block

of kN satisfying IG(b) = G and B the block of kG covering b. Assume that the condition

in Proposition 4.1.2 holds. Let U be a B-module and P a projective B-module. If the

pair (U, P ) satisfies HomB(P,U) = 0, then we have HomB̃(Ind
G̃
GP, Ind

G̃
GU) = 0.
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Proof. By Theorem 3.1.1, Theorem 3.1.3 and Lemma 3.1.12, we get the following iso-

morphisms:

HomB̃(Ind
G̃
GP, Ind

G̃
GU)

∼= HomB(Res
G̃
GInd

G̃
GP,U)

∼= HomB(
⊕

x∈[G̃/G]

xP, U)

∼=
⊕

x∈[G̃/G]

Homb(P,U)

= 0.

Lemma 4.2.4. Let Λ and Γ be finite dimensional k-algebras with the same numbers

of isomorphism classes of the simple modules. Assume an exact functor F from Λ-mod

to Γ-mod satisfies the following conditions:

(1) The functor F preserves indecomposability, projectivity and τ -rigidity.

(2) If HomΛ(P,M) = 0 then HomΓ(F (P ), F (M)) = 0 for any projective Λ-module P

and Λ-module U .

(3) The functor F induces an injection from the set of isomorphism classes of inde-

composable modules over Λ to the one over Γ.

Then F induces an embedding of H(sτ -tilt Λ) into H(sτ -tilt Γ) which sends any con-

nected component of H(sτ -tilt Λ) into H(sτ -tilt Γ) as a connected component. Further-

more, if Λ is a support τ -tilting finite algebra, then F induces an isomorphism from

sτ -tilt Λ to sτ -tilt Γ as partially ordered sets.

Proof. We can easily see that (FM,FP ) is a support τ -tilting pair (or almost complete

support τ -tilting pair) over Γ for any support τ -tilting pair (or almost complete support

τ -tilting pair, respectively) (M,P ) over Λ. Hence, the functor F sends any support

τ -tilting Λ-module to a support τ -tilting Γ-module. Now assume support τ -tilting Λ-

modules M1 and M2 satisfy the condition M2 ≥ M1. Then by the definition of partial

order, there exist r ∈ N and an epimorphism

M⊕r
2

f−→M1 → 0.

Since F is an exact functor, we get an epimorphism

F (M2)
⊕r F (f)−−→ F (M1) → 0

which implies F (M2) ≥ F (M1). Let (M1, P1) and (M2, P2) be distinct basic support τ -

tilting pairs over Λ and (L,Q) a basic almost complete support τ -tilting pair appearing
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as a direct summand of both (M1, P1) and (M2, P2). Then the pairs (F (M1), F (P1)) and

(F (M2), F (P2)) are distinct by the third assumption on F and have an almost complete

support τ -tilting pair (F (L), F (Q)) as a direct summand. Therefore, (F (M1), F (P1))

and (F (M2), F (P2)) are support τ -tilting mutation of each other. Hence, we have that

the functor F embeds H(sτ -tilt Λ) into H(sτ -tilt Γ). Now we remark that H(sτ -tilt Λ)

is a |Λ|-regular quiver, so any connected component C in H(sτ -tilt Λ) is a |Λ|-regular
quiver too. Hence, the image of C under the embedding above is some connected |Γ|-
regular subquiver in H(sτ -tilt Γ) because |Λ| = |Γ| and so is some connected component

in H(sτ -tilt Γ). If Λ is a support τ -tilting finite algebra, then the image of H(sτ -tilt Λ)

under the embedding above is a finite connected component in H(sτ -tilt Γ), which

coincides with H(sτ -tilt Γ) by Proposition 2.2.3.

Now we give proofs of the main theorems. First, we state the main result again,

which are stated in the introduction.

Theorem 4.2.5. Let G be a normal subgroup of a finite group G̃ having p-power

index. Let B a block of kG and B̃ the unique block of kG̃ covering B. Assume that

any indecomposable B-module is IG̃(B)-invariant. Then we have the following:

(1) The induced module IndG̃GU is a support τ -tilting B̃-module for any support τ -

tilting B-module U .

(2) The induction functor IndG̃G induces an embedding ofH(sτ -tiltB) intoH(sτ -tilt B̃)

as quivers and any connected component of H(sτ -tiltB) is embedded as a con-

nected component of H(sτ -tilt B̃).

(3) If B is a support τ -tilting finite block, then the induction functor IndG̃G induces

isomorphisms from sτ -tiltB to sτ -tilt B̃ as partially ordered sets.

Proof. Let β be the block of kIG̃(B) covering B. By Theorem 3.3.5, the functors induced

by induction functors Ind
IG̃(B)

G : B-mod → β-mod and IndG̃IG̃(B) : β-mod → B̃-mod are

exact functors and the latter induces a Morita equivalence. We remark that the number

of isomorphism classes of the simple B-modules is equal to the one of the simple β-

modules from the assumption of Theorem 4.2.5 and Lemma 4.1.2. In order to prove

Theorem 4.2.5, it is enough to show that Ind
IG̃(B)

G satisfies the three conditions in Lemma

4.2.4. The functor Ind
IG̃(B)

G preserves indecomposability, projectivity and τ -rigidity by

Theorem 3.1.6, Theorem 3.1.1 and Corollary 4.2.2. By Lemma 4.2.3 and Corollary

3.1.8, the functor Ind
IG̃(B)

G satisfies the second and third condition in Lemma 4.2.4.

Therefore, we have completed the proof of Theorem 4.2.5.

Corollary 4.2.6. Let G, G̃, B and B̃ be the same as in Theorem 4.2.5. With the same

assumption in Theorem 4.2.5, the induction functor IndG̃G induces a partially ordered set
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morphism from 2-tiltB to 2-tilt B̃ commutes the following diagram of partially ordered

sets

sτ -tiltB //

∼

��
⟲

sτ -tilt B̃

∼

��

2-tiltB // 2-tilt B̃

is commutative where the vertical isomorphisms are given by [2] and the upper hori-

zontal morphism is given by Theorem 4.2.5.

Proof. Let (M,P ) ∈ sτ -tiltB and P1
f1−→ P0

f0−→ M → 0 the minimal projective pre-

sentation of M . By Proposition 3.1.13, the sequence IndG̃GP1
IndG̃Gf1−−−−→ IndG̃GP0

IndG̃Gf0−−−−→
IndG̃GM → 0 is also the minimal projective presentation of IndG̃GM .

Corollary 4.2.7. Let G̃ be a finite group and G be a normal subgroup with cyclic

Sylow p-subgroup such that the quotient group G̃/G is a p-group. Then the induction

functor IndG̃G induces the following isomorphism as partially ordered sets:

sτ -tilt kG sτ -tilt kG̃

M IndG̃GM.

Proof. Since any defect group of a block of kG is contained in a Sylow p-subgroup of

G, any block has a cyclic defect group. Hence, any block of kG is τ -tilting finite. Thus,

the conclusion follows from Theorem 4.2.5 for all blocks of kG.

Example 4.2.8. Let k be an algebraically closed field of characteristic 3 and G :=

SL(2, 8) the special linear group degree 2 over the field F8 of order 8. The Galois

group Gal(F8/F2) ∼= C3 acts G naturally. Thus, we can define the semidirect product

G̃ = G⋊Gal(F8/F2) of G and Gal(F8/F2). The group algebra kG is decomposed into 4

blocks B0(kG), B1, B2, B3 where B1, B2, B3 are simple blocks and B0(kG) has a cyclic

defect group. There are two simple B0(kG)-modules kG and sG where kG is the trivial

module and sG is the 7-dimensional kG-module. The block B0(kG) is a Brauer tree

algebra for the follwing Brauer tree:

: multiplicity 4
kG sG

We can calculate H(sτ -tiltB0(kG)).
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kG

P (kG)⊕ kG P (sG)⊕
sG
sG
sG
sG

kG
sG
sG
sG
sG

0

H(sτ -tiltB0(kG)):

The principal block B0(kG̃) of kG̃ covers B0(kG). Since sτ -tiltB0(kG) ∼= sτ -tiltB0(kG̃)

induced by induction functor IndG̃G, although B0(kG̃) is of wild representation type, we

can make H(sτ -tiltB0(kG̃)) explicit.

kG̃

P (kG̃)⊕ IndG̃GkG P (sG̃)⊕ IndG̃G
sG
sG
sG
sG

IndG̃GkG IndG̃G
sG
sG
sG
sG

0

H(sτ -tiltB0(kG̃)):



Chapter 5

Inertial-invariant support τ-tilting

modules

In this chapter, we prove that induced modules of support τ -tilting modules over blocks

of finite groups satisfying inertial-invariant condition are also support τ -tilting modules.

5.1. Induced module of inertial-invariant support τ-tilting mod-

ules

The following theorem is the group algebra version of Main Theorem 4.

Theorem 5.1.1. Let G be a normal subgroup of a finite group G̃ and M a support

τ -tilting kG-module satisfying xM ∼= M as kG-modules for any x ∈ G̃. Then the

induced module IndG̃GM of M is a support τ -tilting kG̃-module.

Proof. A similar proof of [18, Theorem 4.2] works in this setting. By Lemma 3.1.13

(3), Proposition 3.1.1 (3), Theorem 3.1.3, the IG̃(B)-invariance of and the τ -rigidity of

M , we have the following:

HomkG̃(Ind
G̃
GM, τ IndG̃GM) ∼= HomkG̃(Ind

G̃
GM, IndG̃GτM)

∼= HomkG(Res
G̃
GInd

G̃
GM, τM)

∼= HomkG(
⊕

x∈[G̃/G]

xM, τM)

∼=
⊕

x∈[G̃/G]

HomkG(M, τM)

= 0.

Therefore, we have that IndG̃GM is τ -rigid. By Proposition 2.1.6, there exists an exact

sequence

kG M ′ M ′′ 0
f f ′

(5.1.1)

23
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with M ′,M ′′ ∈ addM and f a left addM -approximation of kG. Applying the functor

IndG̃G to the exact sequence (5.1.1), we get the exact sequence

kG̃ ∼= IndG̃GkG IndG̃GM
′ IndG̃GM

′′ 0
IndG̃Gf IndG̃Gf

′

satisfying that IndG̃GM
′, IndG̃GM

′′ ∈ add IndG̃GM . Then by Proposition 2.1.6, we only

have to prove that IndG̃Gf is a left add IndG̃GM -approximation of kG̃, that is, the map

HomkG̃(Ind
G̃
GM

′, X) HomkG̃(kG̃,X)
•◦IndG̃Gf (5.1.2)

is surjective for any X ∈ add IndG̃GM . First, we prove that the map

HomkG̃(Ind
G̃
GM

′, IndG̃GM) HomkG̃(kG̃, Ind
G̃
GM)

•◦IndG̃Gf (5.1.3)

is surjective. By Proposition 3.1.1 (3), Theorem 3.1.3 and the assumption, we get the

following commutative diagram:

HomkG̃(Ind
G̃
GM

′, IndG̃GM) HomkG̃(kG̃, Ind
G̃
GM)

HomkG(M
′,ResG̃GInd

G̃
GM) HomkG(kG,Res

G̃
GInd

G̃
GM)

HomkG(M
′,
⊕

x∈[G̃/G] xM) HomkG(kG,
⊕

x∈[G̃/G] xM)

HomkG(M
′,M⊕|G̃:G|) HomkG(kG,M

⊕|G̃:G|).

•◦IndG̃Gf

∼ ∼

•◦f

∼ ∼

•◦f

∼ ∼

•◦f

The map in the last row is surjective since f is left addM -approximation of kG, which

implies that the map in the first row, which is the map (5.1.3), is surjective. Hence, we

get that

HomkG̃(Ind
G̃
GM

′, IndG̃GM
⊕m) HomkG̃(kG̃, Ind

G̃
GM

⊕m)
•◦IndG̃Gf (5.1.4)

is surjective for any m ∈ N. Now take X ∈ add IndG̃GM and h ∈ HomkG̃(kG̃,X)

arbitrarily. Then there exists m ∈ N and a split exact sequence

0 X IndG̃GM
⊕m Y 0α β

in kG̃-mod. Let γ : IndG̃GM
⊕m → X be a retraction of α, that is, a kG̃-homomorphism

satisfying γ◦α = IdX . Since the map (5.1.4) is surjective and α◦h ∈ HomkG̃(kG̃, Ind
G̃
GM

⊕m),
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there exists h′ ∈ HomkG̃(Ind
G̃
GM

′, IndG̃GM
⊕m) such that h′ ◦ IndG̃Gf = α ◦ h. Hence, we

have that

h = IdX ◦ h = γ ◦ α ◦ h = γ ◦ h′ ◦ IndG̃Gf.

Therefore, the map (5.1.2) is surjective.

The following result makes the assumption in Theorem 5.1.1 weaker not only in case

where the module M is a kG-module but also in case where M is a B-module.

Theorem 5.1.2. Let G be a normal subgroup of a finite group G̃, B a block of kG,

B̃ a block of kG̃ covering B and M a support τ -tilting B-module satisfying xM ∼= M

as B-modules for any x ∈ IG̃(B). Then IndG̃GM is a support τ -tilting kG̃-module. In

particular, B̃IndG̃GM is a support τ -tilting B̃-module.

Proof. Let B̃1 = B̃, . . . , B̃e be all blocks of kG̃ covering B. By Proposition 3.3.5 (2),

we can take β1, . . . , βe the blocks of kIG̃(B) satisfying the induction functor IndG̃IG̃(B)

restricts to a Morita equivalence

IndG̃IG̃(B) : βi-mod B̃i-mod

for any i = 1, . . . , e. By Theorem 5.1.1, the induced module Ind
IG̃(B)

G M is a support

τ -tilting kIG̃(B)-module and hence βiInd
IG̃(B)

G M is a support τ -tilting βi-module for

any i = 1, . . . , e. Therefore, we have that IndG̃IG̃(B)βiInd
IG̃(B)

G M is a support τ -tilting

B̃i-module. By Proposition 3.3.5 (1) and Proposition 3.1.1 (2), we have

e⊕
i=1

IndG̃IG̃(B)βiInd
IG̃(B)

G M ∼= IndG̃IG̃(B)

e⊕
i=1

βiInd
IG̃(B)

G M

∼= IndG̃IG̃(B)Ind
IG̃(B)

G M

∼= IndG̃GM.

Hence, IndG̃GM is a support τ -tilting kG̃-module. Therefore, we get that B̃IndG̃GM be a

support τ -tilting B̃-module.

Corollary 5.1.3. Let G be a normal subgroup of a finite group G̃, B a block of kG

and B̃ a block of kG̃ covering B. If M ≥ M ′ in sτ -tiltB for IG̃(B)-invariant support

τ -tilting B-modules M and M ′, then B̃IndG̃GM ≥ B̃IndG̃GM
′ in sτ -tilt B̃.

Proof. By the exactness of the induction functor IndG̃G and Theorem 5.1.2, the statement

is obvious.

We will demonstrate that there is an interrelation between the orders of IG̃(B)-

invariant support τ -tilting B-modules and support τ -tilting kG̃-modules.
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Proposition 5.1.4. Let M be an IG̃(B)-invariant B-module. If the induced module

IndG̃GM is a support τ -tilting kG̃-module, then M is a support τ -tilting B-module.

Proof. By Remark 2.1.3, we can take a projective kG̃-module P̃ satisfying that |P̃ | +
|IndG̃GM | = |B̃| and HomkG̃(P̃ , Ind

G̃
GM) = 0. By Proposition 2.1.5 and Proposition 3.1.1

(4), we enough to show the following:

(1) M is a τ -rigid B-module.

(2) HomB(BResG̃GP̃ ,M) = 0.

(3) If HomB(M, τX) = 0, HomB(X, τM) = 0 and HomB(BResG̃GP̃ , X) = 0, then

X ∈ addM for any B-module X.

First, we have the following:

HomB(M, τM)⊕|IG̃(B):G|

∼= HomkG(
⊕

x∈[IG̃(B)/G]

xM, τM) (the IG̃(B)-invariance of M)

∼= HomkG(
⊕

x∈[IG̃(B)/G]

xM ⊕
⊕

x∈[G̃/G]
x/∈IG̃(B)

xM, τM) (Remark 3.3.3)

∼= HomkG(
⊕

x∈[G̃/G]

xM, τM)

∼= HomkG(Res
G̃
GInd

G̃
GM, τM) (Theorem 3.1.3)

∼= HomkG̃(Ind
G̃
GM, IndG̃GτM) (Proposition 3.1.1 (3))

∼= HomkG̃(Ind
G̃
GM, τ IndG̃GM) (Lemma 3.1.13)

= 0. (the τ -rigidity of IndG̃GM)

Hence, we have that the B-module M is a τ -rigid B-module. Also, we have that

HomB(BResG̃GP̃ ,M) ∼= HomkG̃(P̃ , Ind
G̃
GM) = 0.

For a B-module X, we assume that HomB(M, τX) = 0, HomB(X, τM) = 0 and

HomB(BResG̃GP̃ , X) = 0. By the assumptions and similar arguments as above, we

have that HomkG̃(Ind
G̃
GM, τ IndG̃GX) = HomkG̃(Ind

G̃
GX, τ Ind

G̃
GM) = 0. Also, we have

that

HomkG̃(P̃ , Ind
G̃
GX) ∼= HomkG(Res

G̃
GP̃ , X)

∼= HomB(BResG̃GP̃ , X)

= 0.
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Hence, we have that IndG̃GX ∈ add IndG̃GM by Proposition 2.1.5. Therefore, we have

that ResG̃GInd
G̃
GX ∈ addResG̃GInd

G̃
GM . In particular, we have that X ∈ addM since

ResG̃GInd
G̃
GX

∼=
⊕

x∈[G̃/G] xX and ResG̃GInd
G̃
GM

∼=
⊕

x∈[G̃/G]M , which implies that M is

a support τ -tilting B-module by Proposition 2.1.5.

Theorem 5.1.5. Let M and M ′ be IG̃(B)-invariant B-modules. Then the following

hold:

(1) M is a support τ -tilting B-module if and only if IndG̃GM is a support τ -tilting

kG̃-module.

(2) Assume that M and M ′ are support τ -tilting B-modules. Then M ≥ M ′ in

sτ -tiltB if and only if IndG̃GM ≥ IndG̃GM
′ in sτ -tilt kG̃.

Proof. (1) is clear by Theorem 5.1.2 and Proposition 5.1.4. In order to prove (2),

we only show that if IndG̃GM ≥ IndG̃GM
′ in sτ -tilt kG̃ then M ≥ M ′ in sτ -tiltB by

Corollary 5.1.3, but it follows from the fact the restriction functor ResG̃G is an exact

functor, the IG̃(B)-invariance of M and Theorem 3.1.3.

5.2. Some applications of main theorems

We give some applications and examples of main theorems in this chapter.

Example 5.2.1. Let k be an algebraically closed field of characteristic p = 2, G the

alternating group A4 of degree 4 and G̃ the symmetric group S4 of degree 4. The

principal blocks of kA4 and kS4 are themselves, respectively. Moreover, the block kA4

is covered by kS4. The algebras kA4 and kS4 are Brauer graph algebras associated to

the Brauer graphs in Figure 5.1(a) and Figure 5.1(b), respectively:

kA4 = 1

23

(a) The Brauer graph of
kA4

multiplicity: 2
2′

1′ = kS4

(b) The Brauer graph of kS4

Figure 5.1: Brauer graphs

Now we draw the Hasse diagramH(sτ -tilt kA4) of the partially ordered set sτ -tilt kA4

as follows:



C
H
A
P
T
E
R

5.
IN

E
R
T
IA

L
-IN

V
A
R
IA

N
T

S
U
P
P
O
R
T
τ
-T

IL
T
IN

G
M
O
D
U
L
E
S

28
H(sτ -tilt kA4) : P1 ⊕ P2 ⊕ P3

P1 ⊕ 3 1
1 2 3 ⊕ P3

3
1 ⊕ 2 3

3 3 2 ⊕ 1
3

3
1 ⊕ 3

2 ⊕ P3

3
1 ⊕ 3

2 ⊕ 3

3
1 ⊕ 33

2 ⊕ 3

3

3
1 ⊕ 1

3

3
1 ⊕ 3 1

1 2 3 ⊕ P3P1 ⊕ 3 1
1 2 3 ⊕ 1

3

2 3
3 1 2 ⊕ P2 ⊕ P3 P1 ⊕ P2 ⊕ 1 2

2 3 1

2 3
3 1 2 ⊕ P2 ⊕ 2

3

2 3
3 1 2 ⊕ 3

2 ⊕ 2
3

3
2 ⊕ 2

3

2⊕ 2
3

2

2
1 ⊕ P2 ⊕ 2

3

2
1 ⊕ 2⊕ 2

3

2 3
3 1 2 ⊕ 3

2 ⊕ P3 P1 ⊕ 1
2 ⊕ 1 2

2 3 1

P1 ⊕ 1
2 ⊕ 1

3

1⊕ 1
2 ⊕ 1

3

2
1 ⊕ 1

2 ⊕ 1 2
2 3 1

2
1 ⊕ 1

2

2
1 ⊕ 21⊕ 1

21⊕ 1
3

1

2
1 ⊕ P2 ⊕ 1 2

2 3 1

0

Figure 5.2: The Hasse diagram of sτ -tilt kA4
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The enclosed support τ -tilting modules in Figure 5.2 are all the invariant support τ -

tilting modules under the action of S4. Next, we draw the Hasse diagram H(sτ -tilt kS4)

of partially ordered set sτ -tilt kS4 as follows:

H(sτ -tilt(kS4)) :
P1′ ⊕ P2′

2′ 2′

1′

2′ 1′ 2′
⊕ P2′

2′ 2′

1′

2′ 1′ 2′
⊕ 2′

2′

2′

2′

0

P1′ ⊕
1′

1′

2′

1′

1′ ⊕
1′

1′

2′

1′

1′

Figure 5.3: The Hasse diagram of sτ -tilt kS4

The induction functor IndS4
A4

takes each enclosed S4-invariant support τ -tilting kA4-

module in Figure 5.2 to the enclosed kS4-module in Figure 5.3 with the same square.

We remark that even if a support τ -tilting kA4-moduleM is basic, its induction IndS4
A4
M

is not necessarily basic. For example, the induced module IndS4
A4
(1⊕ 1

2 ⊕ 1
3 )

∼= 1′

1′ ⊕
1′

1′

2′
⊕ 1′

1′

2′

is not basic.

Example 5.2.2. Let G1 and G2 be arbitrary finite groups and M a support τ -tilting

kG1-module. Then the group G1 is a normal subgroup of the direct product group G1×
G2, and it is clear that M ∼= xM for any x ∈ G1 ×G2. Therefore, the induced module

IndG1×G2
G1

M ∼= kG2 ⊗k M is support τ -tilting k[G1 ×G2]-module by Theorem 5.1.1.

Example 5.2.3. Let G be a normal subgroup of a finite group G̃ having a cyclic

Sylow p-subgroup. Then the principal block B0(kG) of kG satisfying xM ∼= M for

any support τ -tilting module M and x ∈ G̃ by Corollary 4.1.5. Therefore, IndG̃GM and

B0(kG̃)Ind
G̃
GM are support τ -tilting modules.
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