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Chapter 1

Introduction

This thesis is based on [14] and [13].

The study of derived equivalences of blocks of finite groups has been motived and
inspired by “Broué’s conjecture”, which can be conceived of as a local-global principle
in the modular representation theory of finite groups. In [16], a solution to the problem
of finding a derived equivalence of two given algebras was reduced to the problem of
finding an appropriate tilting complex. Therefore, abundant constructions of tilting
complexes over blocks enable us to find algebras which are derived equivalent to the
blocks. Of course, it is very hard to construct appropriate tilting complexes over blocks
and to determine all tilting complexes over blocks. The classes of tilting complexes
called two-term tilting complexes are considered to be non-trivial and a bit easier to
handle because it is showed that there exists a one-to-one correspondence between the
two-term tilting complexes and the support 7-tilting modules over symmetric algebras
in [2]. Abundant constructions of two-term tilting complexes over blocks are also useful
for plenty of constructions of general tilting complexes over blocks by using the tilting
mutations introduced in [3]. Therefore, we focus on support 7-tilting modules and
consequently, we got some results which work effectively for the purpose stated above.

In order to describe these, we set notation as follows: Let k be an algebraically
closed field of characteristic p > 0, G a finite group, G a normal subgroup of G, B
a block of kG and B a block of kG covering B, that is, 1plz # 0, where 15 and 15
mean the respective identity elements of B and B. In this setting, there are some useful
properties about the restriction functor Res& and the induction functor Indg between
the category of B-modules and the one of B-modules. We denote the inertial group of
the block B in G by I5(B). We say that a B-module U is I5(B)-invariant if 2U = U
as B-modules for any x € Is(B). Furthermore, we use the following notation: For
modules or complexes X and X', we write X ~,qq X' if add X = add X’. Then the
relation ~,qq is an equivalence relation.

o sT-tilt B (or st-tilt B) means the set of equivalence classes of support 7-tilting
modules over B (or B, respectively) under the equivalence relation ~,qq,
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e 2-tilt B (or 2-tilt B) means the set of equivalence classes of two-term tilting com-
plexes in K°(B-proj) (or K°(B-proj), respectively) under the equivalence relation

~add,

The following results, which is proved in Chapter 4, contribute to classify support
7-tilting B-modules and two-term tilting complexes in K°(B-proj).

Main Theorem 1 (see Theorem 4.2.5). Assume that G//G is a p-group and that B
satisfies the following conditions:

(I) Any indecomposable B-module is I (B)-invariant.
(IT) The block B is 7-tilting finite (i.e., # s7-tilt B < 00).

Then the induction functor Indg~ induces an isomorphism from s7-tilt B to s-tilt B as
partially ordered sets.

Main Theorem 2 (see Corollary 4.2.6). Assume that G'/G is a p-group and that B
satisfies the conditions (I) and (II) in Theorem 1. Then the induction functor Ind$
induces an isomorphism 2-tilt B = 2-tilt B of partially ordered sets which commutes
the following diagram of partially ordered sets

s7-tilt B —"> s7-tilt B

Ind§
2 O 2
e

Ind

2-tilt B —> 2-tilt B
where the vertical maps are isomorphisms given by [2, Theorem 3.2].

If B has a cyclic defect group, then the conditions (I) and (IT) hold for B automat-
ically (see Lemma 4.1.3). Moreover, in that case the block B is a Brauer tree algebra
or simple algebra, thus the number of elements in s7-tilt B is equal to (2:), where e is
the number of isomorphism classes of simple B-modules and (26) means the binomial

e

coefficient ([5], [6]). Combining Main Theorem 1 with these facts, we get the following.

Main Theorem 3. Assume that G /G is a p-group and a block B of kG has a cyclic
defect group. Then s7-tilt B and s7-tilt B are isomorphic as partially ordered sets. In
particular, we get Hsr-tilt B = (2:) where e is the number of isomorphism classes of
simple B-modules.

In Chapter 5, we investigate inertial-invariant support 7-tilting modules over blocks
of finite group and present the following results, which relaxes the assumptions in Main
Theorem 1.



CHAPTER 1. INTRODUCTION 3

Main Theorem 4 (see Theorems 5.1.1 and 5.1.2). Let G be a finite group, G' a normal
subgroup of G, B a block of kG, B a block of kG covering B and M a support 7-tilting
B-modules satisfying M = M as B-modules for any = € I5(B). Then the induced
module IndgM is a support T-tilting kG-module. In particular, the module BIndgM
is a support 7-tilting B-module.

We will demonstrate that there is a relation between I (B)-invariant support 7-
tilting B-modules and support 7-tilting kG-modules. Now we recall that the set
sT-tilt B of support 7-tilting module has a partially ordered set structure (see Definition-
Proposition 2.2.1).

Main Theorem 5 (see Theorem 5.1.5). Let G be a finite group, G a normal subgroup
of G, B a block of kGG, B a block of kG covering B and M a B-modules satisfying
xM = M as B-modules for any x € I5(B). Then M is a support 7-tilting B-module

if and only if IndgM is a support 7-tilting kG-module. Moreover, for any two I1+(B)-
invariant support 7-tilting B-modules M and M ' M > M’ in s7-tilt B if and only if
Ind%M > IndSM’ in st-tilt kG

In this paper, we use the following notation. Modules mean finitely generated
left modules and complexes mean cochain complexes. For a finite dimensional alge-
bra A over a field k£ and a A-module M, we denote by Rad(M) the Jacobson radical
of M, by P(M) the projective cover of M, by Q(M) the syzygy of M and 7M the
Auslander—Reiten translate of M. We denote by A-mod the module category of A and
by K®(A-proj) the homotopy category consisting of bounded complexes of projective
A-modules. For an object X of A-mod (or of K®(A-proj)), we denote by add X the full
subcategory of A-mod (or of K*(A-proj), respectively) whose objects are finite direct
sums of direct summands of X. We say that X is basic if any two indecomposable
direct summands of X are non-isomorphic.



Chapter 2

Preliminaries for 7-tilting theory

In this chapter, let k be an algebraically closed field and A a finite dimensional k-
algebra. We denote by 7 the Auslander—Reiten translation. For a A-module M, we
denote by |M| the number of isomorphism classes of indecomposable direct summands
of M.

2.1. Support 7-tilting modules and mutations

In this subsection, we recall some definitions and basic properties of support 7-tilting
modules.

Definition 2.1.1 (]2, Definition 0.1]). Let M be a A-module.
(1) We say that M is 7-rigid if Homy (M, 7M) = 0.
(2) We say that M is 7-tilting if M is a 7-rigid module and |M| = |A|.

(3) We say that M is support T-tilting if there exists an idempotent e of A such that
M is a 7-tilting A/AeA-module.

Definition 2.1.2 ([2, Definition 0.3]). Let M be a A-module and P a projective A-
module.

(1) We say that the pair (M, P) is 7-rigid if M is 7-rigid and Hom, (P, M) = 0.

(2) We say that the pair (M, P) is support T-tilting (or almost complete support -
tilting) if the pair (M, P) is 7-rigid and |M|+ |P| = |A| (or [ M|+ |P| = |A| — 1,
respectively).

Remark 2.1.3 ([1, Proposition 2.3 (a), (b)]). Since e = 0 is an idempotent of A and
A/AeA = A, any 7-tilting module is a support 7-tilting module. Moreover, for any
7-rigid A-module M, the following conditions are equivalent:

(1) M is a support 7-tilting module.
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(2) There exists a projective A-module P satisfying Homy (P, M) = 0 and |M|+|P| =
|A|, that is, (M, P) is a support 7-tilting pair.

Proposition 2.1.4 (]2, Proposition 2.3]). Let (M, P) be a pair with a A-module M
and a projective A-module P. Let e be an idempotent of A such that add P = add Ae.

(1) The pair (M, P) is a 7-rigid (or support 7-tilting) pair if and only if M is a 7-rigid
(or 7-tilting, respectively) A/AeA-module.

(2) If (M, P) and (M, Q) are support 7-tilting pairs for some projective A-module @,
then add P = add Q.

Proposition 2.1.5 ([2, Corollary 2.13]). Let M be a 7-rigid A-module and P a pro-
jective A-module satisfying that Homa (P, M) = 0. Then the following conditions are
equivalent:

(1) | M|+ |P| = |A], that is, M is a support 7-tilting A-module (see Remark 2.1.3).
(2) If Homy (M, 7X) =0, Homy (X, 7M) = 0 and Homu (P, X) = 0, then X € add M
for any A-module X.
The following proposition plays an important role in the proof of our main result.

Proposition 2.1.6 ([11, Proposition 2.14]). Let A be a finite dimensional k-algebra
and M a 7-rigid A-module. Then M is a support 7-tilting A-module if and only if there
exists an exact sequence

f

A Lo ——o

in A-mod with M', M" € add M and f a left add M-approximation of A, that is, the

map

Homy (M, X) —2L5 Homy (A, X)

is surjective for any X € add M.

The following proposition gives the definitions of mutations of support 7-tilting pairs
and support 7-tilting modules. We recall that we say a pair (V, Q) of a A-module V/
and a projective A-module @) is basic if V' and () are basic.

Proposition 2.1.7 ([2, Theorem 2.18]). If (V, Q) is a basic almost complete support 7-
tilting pair, then there exist exactly two basic support 7-tilting pairs containing (V, Q)
as a direct summand.

Definition 2.1.8 ([2, Definition 2.19]). Let (M, P) be a basic support 7-tilting pair
and X be an indecomposable summand of either M or P. Let (V,Q) be the basic
almost complete support 7-tilting pair satisfying either M =V X or P = Q@ X. By
Proposition 2.1.7, there exist a unique basic support 7-tilting pair (M’, P") distinct to
(M, P) and having (V, Q) as a direct summand. We denote this support 7-tilting pair
(M', P") by px (M, P) and it is called a mutation of (M, P) with respect to X.
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Definition 2.1.9 ([2, Definition 2.19]). Let M be a basic support 7-tilting module.
According to Proposition 2.1.4, we can find the basic projective A-module P such that
(M, P) is a basic support 7-tilting pair. Let X be an indecomposable summand of
either M or P. Let (M’, P") be the mutation of (M, P) with respect to X. We denote
M’ by px (M) and it is called a mutation of M with respect to X.

2.2. Poset structures and connections with silting theory

For support 7-tilting A-modules M and M’ we write M ~,qq M’ if add M =
add M’'. Then the relation ~,qq is an equivalence relation. We denote s7-tilt A the set
of equivalence classes of all support 7-tilting A-modules under the equivalence relation
~a.da- We remark that basic support 7-tilting A-modules form a set of representatives
of s7-tilt A.

Definition-Proposition 2.2.1 ([2, Theorem 2.7]). For M, M’ € st-tilt A, we write
M > M’ if there exist a positive integer r and an epimorphism

M 2 M.
Then we get a partial order on s7-tilt A.

Theorem 2.2.2 ([2, Theorem 2.32]). Let M and M’ be support 7-tilting A-modules.
Then the following conditions are equivalent:

(1) M and M’ are mutation of each other, and M > M’.
(2) M > M’ and there is no support 7-tilting A-module L such that M > L > M.

We denote H(s7-tilt A) the Hasse quiver (Hasse diagram) for the partially ordered
set sT-tilt A. The theorem above implies that any arrow in H(s7-tilt A) corresponds to
a support 7-tilting mutation. We remark that the underlying graph of H(s7-tilt A) is a
|A|-regular graph because we can take |A| sorts of mutations for any support 7-tilting
module M. The next proposition plays an important role to prove our main theorems.

Proposition 2.2.3 ([2, Corollary 2.38]). If H(s7-tilt A) has a connected component
having finite vertices, then #H(s7-tilt A) is connected.

Now we recall the definition of silting complexes which is a generalization of tilting
complexes. The concept of silting complex is originated from [12], and recently there
has been many papers starting with [3]. In particular, in [2], it is shown that there is
a one-to-one correspondence between two-term silting complexes and support 7-tilting
modules.

Definition 2.2.4. Let T be a complex in K°(A-proj).

(1) We say that T is presilting (or pretilting) if Hom ju (o prop (T, T'[i]) = 0 for any ¢ > 0
(or for any i # 0, relatively).
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(2) We say that T is silting (or tilting) if it is presilting (or pretilting, respectively) and
satisfies thick T = K°(A-proj), where thick T is the full subcategory of K®(A-proj)
generated by add T as a triangulated category.

For silting complexes (tilting complexes) T and T" in K°®(A-proj), we write T ~aqq 1"
if addT = addT”. Then the relation ~,qq is an equivalence relation. We denote
silt A (tilt A) the set of equivalence classes of all silting complexes (tilting complexes) in
K*(A-proj) under the equivalence relation ~,qq. We remark that basic silting complexes
(basic tilting complexes) in K°(A-proj) form a set of representatives of silt A (tilt A).

Definition 2.2.5 ([3, Definition 2.10]). For T, 7" € silt A, we write T' > T" if
Home(A-proj) (T7 T [7’]) - 07
for any ¢ > 0. Then we get a partial order on silt A.

Definition 2.2.6. We say that a complex T € K°(A-proj) is two-term if T* = 0 for all
i # 0,—1. We denote by 2-silt A the subset of silt A consisting of all equivalent classes
of two-term silting complexes in K°(A-proj).

Theorem 2.2.7 ([2, Theorem 3.2 and Corollary 3.9]). There is an isomorphism

sT-tilt A — 2-silt A

of partially ordered sets given by s7-tilt A > (M, P) — (71 & P 0, To) € 2-silt A,

where T} EEN T o M = 0is a minimal projective presentation of M.

We remark that the correspondence above commutes with support 7-tilting muta-
tions and silting mutations [2, Corollary 3.9].

Remark 2.2.8 ([3, Example 2.8]). If A is a finite dimensional symmetric k-algebra,
then any silting complex over A is in fact a tilting complex.

Proof. Let T be a silting complex over A. We obtain from [10, Lemma 3.1] that the
following isomorphisms:

=3
|

D HOHle (A-proj) (T7 T[_ZD = Hoanb(A‘proj)(
= HOHle(A—proj)( )
= HOHle(A—proj) (T, T[Z])
=0

=3
|

for any ¢ > 0 where D is the k-duality and v is the Nakayama functor, which is
naturally isomorphic to the identity functor on A-proj by the assumption, that A is
symmetric. [

By this fact, silting complexes over the group algebra and over the blocks of group
algebras are tilting complexes in fact. Hence, the classifications of support 7-tilting
modules over the group algebra and over the blocks mean the ones of two-term tilting
complexes over them.



Chapter 3

Preliminaries for modular
representation theory of finite
groups

In this chapter, let £ be an algebraically closed field of characteristic p > 0. For any
finite group G, the field k£ can always be regarded as a kG-module by defining gxr = =
for any ¢ € GG and x € k. This module is called the trivial module and is denoted by k.
For kG-modules U and V', the k-module U ® V = U ®; V has a kG-module structure
given by g(u®v) =gu®gv forallg € G,u € U and v € V.

3.1. Restriction functors and induction functors

Let G be a finite group and H a subgroup of G. We denote by Res% the restriction
functor from kG-mod to kH-mod and Indg ‘= ,akG ®ig o the induction functor from
kH-mod to kG-mod. The functors Res% and Ind$ are exact functors and have the
following properties.

Proposition 3.1.1 (see [4, Lemma 8.5, Lemma 8.6]). Let G be a finite group, K a
subgroup of GG, H a subgroup of K, U a kG-module and V' a kH-module. Then the
following hold:

1) ResBRes$ = Res,.
2) Ind$Ind% = Ind$,.

4) The functors Resg and Indg send projective modules to projective modules.

5

(
(
(
(
(5) U® kg2 U.
(

)
)
3) The functors Resg and Indg are left and right adjoint to each other.
)
)
)

6) Ind%(Res5U @ V) 2 U @ Ind§ V.
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Let H be a subgroup of G and U a kH-module. For g € G, we define a k[gHg™]-
module gU consisting of symbols gu, where u € U, as a set and its k[gH g~ ']-module
structure is given by gu + gu’ := g(u + '), s(gu) := g(su) and ghg~'(gu) := g(hu) for
any u,u € U, s € k and ghg™! € gHg!. We remark that if H is a normal subgroup
of G, then gU is also a kH-module.

Remark 3.1.2. For finite groups H C K C G and kG-module U, we have gResSU =

Res?™ 9" oU by th leulati
gig-19U Dy the easy calculation.

Let H and K be subgroups of G. We denote by [G/H], [K\G] and [K\G/H] sets
of representatives of G/H, K\G and K\G/H, respectively.

Theorem 3.1.3 (Mackey’s decomposition formula). Let H and K be subgroups of G,
and U a kH-module. Then we have

1

Res$Ind U = @ IndgngHgflRes%%;Ig
9e[K\G/H]

_gU.

Remark 3.1.4. Let N be a normal subgroup of G and H a subgroup of G containing
N. Then N\G/H = G/H and for any kH-module U,

Res§Ind$ U = @ gRes{U.
9€[G/H]

In particular, if N = H then

ResiInd{U = @5 gU.
9€IG/N]

Let G be a normal subgroup of a finite group G. For a kG-module U, we denote by
I+(U) the inertial group of U in G, that is

I(U) == {:c eG ‘ 2U =2 U as kG—modules}.

Theorem 3.1.5 (Clifford’s Theorerr} for simple modules). Let G be a finite group, G a
normal subgroup of G, S a simple kG-module and S’ a simple kG-submodule of Res%S .
Then we have a kG-module isomorphism

ResS,S @ xS
2€[G/15(5")]

for some integer 7, which is called the ramification index of S in G.

From now on, we will consider the case where G /G is a p-group. The following
theorem makes substantial contribution in this paper.



CHAPTER 3. MODULAR REPRESENTATION THEORY 10

Theorem 3.1.6 (Green’s indecomposability theorem [7]). If G is a normal subgroup

of G such that G /G is a p-group, then IndgV is an indecomposable kG-module for any
indecomposable kG-module V.

Lemma 3.1.7. Let G be a normal subgroup of G. For indecomposable kG-modules U
and U, if the induced module Inng is isomorphic to Inng ', then U is isomorphic to
xU’ for some z € G.

Proof. Let U and U’ be indecomposable kG-modules with Inng is isomorphic to
Ind&U’. Then we have

P 2U = ResiIndSU = ResSIndSU' = (D U
z€[G/G] 2€[G/C]

By the Krull-Schmidt Theorem, we get U = zU’ for some z € G. [

Corollary 3.1.8. Let G be a normal subgroup of ~G. For indecomposable ~é—invalriant
kG-modules U and U’, if the induced module Ind§U is isomorphic to IndSU’, then U
is isomorphic to U’.

Proposition 3.1.9 (see [4, Exercise 19.1]~). Let G be a normal subgroup of Gand T
a simple kG-module such that 15(T) = G. ItG /G is a p-group, then there exists a

unique simple kG-module S such that ResgS =T.

Lemma 3.1.10. Let G be a normal subgroup of Ciiand S a simple kG-module. Suppose
that G/G is a p-group, then S is the only simple £G-module which can be a composition

factor of Ind5Res&S.

Proof. We remark that the group algebra of any p-group over k is a local k-algebra
(for example, see [4, Corollary 3.3]). For this reason, it is only trivial module kg that
can be composition factor of k@k(é /G). Hence, we get the following isomorphisms as
kG-modules:

Ind%ResGS = Ind%((ReséS) @ k)
~ S ® Ind%ke
~ S @ k(G/G).

Therefore, all composition factors of the module in the right-hand side are isomorphic
to S ® ké = 5. ]

Corollary 3.1.11. Let T' be a simple £G-module. Suppose that G /G is a p-group, then
the kG-module IndgT has only one sort of simple module which can be a composition
factor.
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Proof. We can take a simple kG-module S satisfying the condition HomkG(IndéT S) #
0. Since HomkG(IndGT S) 2 Homy,q(T, Res&S) by Theorem 3.1.1, the restriction mod-
ule Res S has a submodule isomorphic to 7. Hence, the induced module IndGT is

isomorphic to a submodule of Ind§Res,S. Therefore, by Lemma 3.1.10, the conclusion
follows. O

Lemma 3.1.12. Let G be a normal subgroup of G such that G/G is a p-group and S

a simple kG-module. Assume that ResgS is a simple kG-module and denote this by 7.
Then the following hold:

(1) I5(P(T)) = G,
(2) dSP(T) = P(S),
(3) ResGP(S) = P(T)®IGCl.

Proof. The assumption implies that /5 a(T) = G by Theorem 3.1.5, which implies 2T =
T. Hence, for any € G, we have that rP(T) = P(2T) = P(T) and the first assertion

is proved. Since the induced module IndGP (T') is an indecomposable projective module
by Theorem 3.1.1 and Theorem 3.1.6, and

Hom, & (IndSP(T), S) = Homye (P(T), ResS) = Homye(P(T), T) # 0,

the second assertion is proved. The third assertion is trivial by previous two assertions
and Theorem 3.1.3. O

Lemma 3.1.13. Let GG be a normal subgroup 0f~a finite group G and M a kG-module
satisfying M = M as kG-modules for any x € GG. Then the following hold:

(1) zP(M) = P(M) for any z € G.
(2) zQ(M) = Q(M) for any z € G.
(3) Ind%Q(M) = Q(IndSM).
(4) 7(IndSM) = md%rM.

Proof. For any z € G, we have an isomorphism ¢: M — M by the assumption. We
consider the following commutative diagram in kG-mod with exact rows:

0 —— 2Q(M) —— zP(M) — 2M — 0

l¢" lqs’ l¢>

0 —— QM) —— P(M > M > 0.

™™
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Since 7, is an essential epimorphism and ¢ is an isomorphism, the vertical morphisms
¢’ and ¢" are isomorphisms and so (1) and (2) holds.

By Proposition 3.1.1 (4), we have the following commutative diagram in kG-mod
with exact rows:

. ~ n G‘ﬂ -
0 — mdSQ(M) —— mdSP(M) 2%6™ 1mdéM —— 0

Lp’ l%’ lIdIndg M

0 — QIndSM) —— P(IndM) ——— IndSM —— 0.

Indg M

Since m is an essential epimorphism, we have that the vertical morphisms ¢ and

IndS M .
@' are split epimorphisms, that Ker ¢ = Ker ' are projective kG-modules and that

Q(Ind& M) @ Ker ¢’ = IndZQ(M). By Theorem 3.1.3 and (2), we have

Q(M)®1%C = (B 20(M)
€@/
=~ ResSInd%Q(M)
=~ ReséOQ(Ind%M) & ResS Ker .

Since Res$ Ker' is projective by Proposition 3.1.1 (4) and Q(M) has no non-zero
projective summands by the self-injectivity of the group algebra kG, we have that
Ker ¢ = Ker ¢/ = 0. This finishes the proof of (3).

Finally, we prove the assertion (4). Since kG and kG are symmetric k-algebras,
it holds that 7M = QQ(M) and 7(IndGM) = QQ(IndSM) for any kG-module M.
Therefore, (4) immediately follows from (3). O

3.2. Blocks of group algebras

We recall the definition of blocks of group algebras. Let G be a finite group. The
group algebra kG has a unique decomposition

kG = By x -+ X B (3.2.1)

into the direct product of indecomposable k-algebras B;. We call each indecomposable
direct product component B; a block of kG and the above decomposition the block
decomposition. We remark that any block B; is a two-sided ideal of kG.

For any indecomposable kG-module U, there exists a unique block B; of kG such
that U = B,U and B;U = 0 for all j # 7. Then we say that U lies in the block B; or
simply U is a B;-module. We denote by By(kG) the principal block of kG, in which
the trivial kG-module lies.
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Remark 3.2.1. We remark that the block decomposition (3.2.1) induces the following
isomorphism of partially ordered sets:

sT-tilt(kG) —— s7-tilt(By) X - -+ x sT-tilt(B;)
M » (BoM, ..., BM).

Now we recall the definition and basic properties of defect groups of blocks.

Definition 3.2.2. Let B be a block of kG. A defect group D of B is a minimal
subgroup of G satisfying the following condition: the B-bimodule morphism

B®wp B 225 B

P1 & P2 ——— B1Pa
is a split epimorphism.

Proposition 3.2.3 (see [4, Chapter 4, 5]). Let B be a block of kG and D a defect
group of B. Then the following hold:

(1) D is a p-subgroup of G and the set of all defect groups of B forms the conjugacy
class of D in G.

(2) D is a cyclic group if and only if the algebra B is finite representation type.
(3) If B is the principal block of kG, then D is a Sylow p-subgroup of G.

Theorem 3.2.4 (see [4, Corollary 14.6, Theorem 17.1 and proof of Lemma 19.3]). Let
B be a block of kG and D a defect group of B.

(1) D is the trivial group if and only if B is a simple algebra.

(2) D is a non-trivial cyclic group if and only if B is a Brauer tree algebra with e
edges and multiplicity (|D| — 1)/e, where e is a devisor of p — 1.

3.3. Clifford’s theory for blocks of normal subgroups

Let G be a ﬁni~te group, G a f}nite group containing G as a normal subgroup, B a
block of kG and B a block of kG. We say that B covers B or that B is covered by
B if 1515 # 0. We denote by I5(B) the inertial group of B in G, that is I5(B) =
{x €qG ’ xBx! = B}.

Remark 3.3.1 (see [4, Theorem 15.1, Lemma 15.3]). With the above notation, the
following are equivalent:

(1) The block B covers B.
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(2) There exists a non-zero B-module U such that Reng has a non-zero direct sum-
mand lying in B.

(3) For any non-zero B-module U, there exists a non-zero direct summand of Reng
lying in B.
Remark 3.3.2. The principal block By(kG) of kG is covered by the principal block
By(kG) of kG and I5(By(kG)) = G since the trivial kG-module kg is G-invariant and
Res&kes = k.
Remark 3.3.3. Let GG be a normal subgroup of a finite group G, B a block of kG and
M a B-module. Then M is a B-module for x € G if and only if z € I5(B).

Theorem 3.3.4 (Clifford’s Theorem for blocks [4, Theorem 15.1, Lemma 15.3]). Let
G be a finite group, G a normal subgroup of G, B a block of kG, B a block of kG
covering B and U a B-module. Then the following hold:

(1) The set of blocks of kG covered by B equals to the conjugacy class of B in G:
{B' B’ is a block of kG covered by B} = {xBx_l ‘ x € é} .

(2) We get the following isomorphism of kG-modules:

ResGU >~ P 2BU.
2€(G/15(B)

Proposition 3.3.5 (see [15, Theorem 5.5.10, Theorem 5.5.12]). Let G be a normal
subgroup of a finite group G, B a block of kG and § a block of kls(B) covering B.
Then the following hold:

(1) For any B-module V, the induced module IndIGG(B)V is a direct sum of kIs(B)-
module lying blocks covering B.

(2) There exists a unique block B of kG covering B such that the induction functor
G L7 ~
Indy (p): klg(B)-mod — kG-mod

restricts to a Morita equivalence
Ind?é(B): B-mod —— B-mod

and the mapping 8 to B is a bijection between the set of blocks of kI G(p) covering
B and the one of kG covering B.

Proposition 3.3.6 ([1~5, Corollary 5.5.6, Theorem 5.5.13, Lemma 5.5.14]). Let G be
a normal subgroup of G and B a block of kG, then the following conditions hold:

(1) If G/G is a p-group, then there exists a unique block of kG covering B.

(2) If a defect group D of B satisfies Cz(D) C G, then there exists a unique block of
kG covering B.



Chapter 4

Poset isomorphism of support
7-tilting modules for blocks of finite
groups

In this chapter, we provide one of our main result Theorem 4.2.5. In this chapter, the
factor group G /G is a p-group, where G is a normal subgroup of a finite group G.

4.1. Normal subgroups with p-power index and their blocks

In this section, we consider properties of block-covering in the case, where G /G is
a p-group. The following lemmas make substantial contribution in this paper.

Lemma 4.1.1 ([9, Lemma 2.2]). Let G be a normal subgroup of G and B a block of
kG. If G/G is a p-group and the number of simple B-modules is strictly smaller than
p, then for any simple B-module S, it holds that I+(S) = I5(B).

Proof. Let S be a simple B-module. We consider the orbit {zS |z € Iz(B)}/ = of S
under the action of I5(B) on the set of isomorphism classes of simple B-modules. By
the assumption, we have |I5(B) : I5(S5)| = #{xS | x € I5(B)} / =< p. Moreover, the
natural number |I5(B) : I5(S)] is a p-power integer since |G : G| = |G : I5(B)||15(B) :

I6(9)||15(S) : G|. Therefore, we get |I5(B) : 1(S)| = 1. O
Lemma 4.1.2. Let G be a normal subgroup of a finite group é B a block of kG and
B a block of kG covering B. If G/G is a p-group and I &(B) = G, then the following

conditions are equivalent.
(1) For any simple B-module T the inertial group I5(T) of T in G is equal to G.
(2) For any simple B-module S, the restriction module ResgS is a simple B-module.

In addition, if the conditions above hold, then the restriction functor Resg induces a
bijection between the set of isomorphism classes of simple B-modules and the one of
simple B-modules.

15
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Proof. First, we prove that the first condition implies the second one. Let S be a simple
B-module. By Theorem 3.1.5 and the assumption, there exists a simple B-module T
such that ResgS >~ T9 for some r € N. Since G/G is a p-group, by Proposition
3.1.9, there exists a simple kG-module S’ such that ResgS’ is isomorphic to 7T'. Since
G /G is a p-group again, by Lemma 3.1.10, all composition factors of InngesgS and
Ind%Res& S’ are isomorphic to one simple module. It implies that S = S’ by the
Jordan-Holder theorem and we conclude that the first assertion implies the second one.

We next show that the second condition implies the first one. Let T" be a simple B-
module. By Propositions 3.3.5 and 3.3.6 the induced module IndgT is a B-module and
there exist a simple B-module S such that Hom B(IndgT, S) # 0. By the assumption
and Proposition 3.1.1, we have T" = ResgS. Hence, by Theorem 3.1.5, we have I+(T) =
G. Therefore, we have proven that the second assertion implies the first one.

The remaining deduction is immediate from the fact that the above two conditions
are equivalent and from Proposition 3.1.9. O]

Lemma 4.1.3. Let G be a normal subgroup of a finite group G and B a G-invariant
block of kG with a cyclic defect group. Then the following hold:

(1) If any simple B-module is G-invariant, then any indecomposable B-module is also
G-invariant.

(2) If G/G is a p-group, then any indecomposable B-module is G-invariant.

Proof. We prove that 15(V) = G for indecomposable B-module V by induction on the
composition length of V. If V' is simple or indecomposable projective, there is nothing
to show by the assumption and Lemma 3.1.13. We assume that the composition length
of V' is two or more and that V' is not projective. We remark that any indecomposable
non-projective B-module is a string module (for example, see [17]). Hence, we can take
a simple B-module S and an indecomposable B-module V'’ which satisfy at least one
of the following conditions:

e There exists an exact sequence

0 s t.uy—roy 0.

e There exists an exact sequence

It suffices to prove I5(U) = I(B) under the assumption that there exists the first exact
sequence, the other case being proved similarly. For any x € G, we take kG-module
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isomorphisms ¢: S — S and ¥: V — 2V by the induction hypothesis. We obtain the
following commutative diagram:

zpz ! -1

0 xS 2U s gV 0
Sol PO. ¢ id

0 S—Ls X T aV 0
id ¢¥'|  PB. wT

0 S—-Y 2V 0
tl PrPO. t id

0—=S———U—-V—>0

where t is a scalar map since dimy, Ext;(V, S) = 1 (see [4, Proposition 21.7]). Therefore,
we get xU = U.

By Theorem 3.2.4 and Lemma 4.1.1, any simple B-module S is G-invariant, we have
the assertion (2) from the first one. O

Proposition 4.1.4. Let G be a normal subgroup of a finite group G, B a block of
kG and B a cyclic defect block of kG covered by B satisfying one of the following
conditions:

(1) There is an I5(B)-invariant simple B-module S whose corresponding edge is a
terminal edge of the Brauer tree of B.

(2) There is a simple B-module S whose corresponding edge of the Brauer tree of B
is a terminal edge and the dimension of S whose dimension of S is distinct to that
of any other simple B-module.

(3) Any two simple B-modules have distinct dimensions.
Then any indecomposable B-module is I5(B)-invariant.

Proof. We can assume that I5(B) = G by Proposition 3.3.5. Assume that the block
B of kG satisfies the condition (1) and let S be an I (B)-invariant simple B-module
whose corresponding edge is a terminal edge of the Brauer tree of B. Then, since there
exists a unique simple B-module T such that Ext(S,T) = k and that Extj(S,T") = 0
for any distinct simple B-module 7" to T, we have that

Exty(S, 2T) = Exty (xS, 2T) = Exty(S,T) = k.

Hence, we have 27" = T as B-modules for any € I+(B) by the uniqueness of T’
again. Also, since there exists a unique simple B-module U distinct to S such that
ExthL(T,U) = k and Exth(T,U’) = 0 for any distinct simple B-module U’ to U and S,
we have that

Extp(T, 2U) = Exty (2T, 2U) = Extp(T,U) = k,
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which implies that zU = U as B-modules for any = € I5(B). By repeating this argu-
ment, we have that any simple B-module is I5(B)-invariant. Therefore, we have that
any B-module is I5(B)-invariant by Lemma 4.1.3 (1). In particular, any indecompos-
able B-module is I (B)-invariant.

Next, assume that the block B of kG satisfies the condition (2). Then a simple
B-module S whose corresponding edge is a terminal edge of the Brauer tree of B is
I+(B)-invariant because xS is a simple B-module with the same dimension as S for
any © € I5(B). Therefore, by (1), any indecomposable B-module is Ix(B)-invariant.
The statement for (3) follows from that for (2) immediately O

Corollary 4.1.5. Let G be a finite group with a cyclic Sylow p-group and G a finite
group having G as a normal subgroup. Then any indecomposable By(kG)-module is
G-invariant.

Proof. The trivial kG-module k¢ is G-invariant. Moreover, the trivial kG-module cor-
responds to the terminal edge in the Brauer tree of the principal block By(kG) (for
example, see [8, section 1.1]). Hence, it concludes the proof by Proposition 4.1.4. [

4.2. Induced modules of support 7-tilting modules

In this section, we give proofs of our main theorems. The next lemmas have key
roles.

Lemma 4.2.1. Let G be a normal subgroup of G such that é/G is a p-group, B a
block of kG satistying I5(B) = G and G the block of kG' covering B. Assume that the
condition in Proposition 4.1.2 holds. For a 7-rigid B-module U, the induced module
IndSU is 7-rigid if and only if Homp(gU, 7U) = 0 for all 2 € G.

Proof. Let U be a 7-rigid B-module. By Lemma 3.1.13, Theorem 3.1.1 and Theorem
3.1.3, we get the following isomorphisms:
HomB(Inng, TInng) = HomB(Inng, IndgTU)
>~ HomB(ResgInng, TU)
= EB Hompg(zU, 7U).
z€[G/G)
It concludes the proof. Il

Corollary 4.2.2. With the same notations in Lemma 4.2.1, assume that any inde-
composable B-module is G-invariant. For a 7-rigid B-module U, the induced module
IndSU is a 7-rigid B-module.

Lemma 4.2.3. Let N be a normal subgroup of G such that G/N is a p-group, b a block
of kN satisfying I (b) = G and B the block of kG covering b. Assume that the condition
in Proposition 4.1.2 holds. Let U be a B-module and P a projective B-module. If the
pair (U, P) satisfies Homp(P,U) = 0, then we have Hom s (Ind% P, ITnd&U) = 0.
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Proof. By Theorem 3.1.1, Theorem 3.1.3 and Lemma 3.1.12, we get the following iso-
morphisms:

Homg(lnng, Inng) =~ HomB(ResgInng, U)
=~ Homp( @ zP,U)
2€[G/C]

@ Hom,, (P, U)

z€[G/q)
=0.

1%

]

Lemma 4.2.4. Let A and I" be finite dimensional k-algebras with the same numbers
of isomorphism classes of the simple modules. Assume an exact functor F' from A-mod
to I'-mod satisfies the following conditions:

(1) The functor F' preserves indecomposability, projectivity and 7-rigidity.

(2) If Homy (P, M) = 0 then Homp(F(P), F(M)) = 0 for any projective A-module P
and A-module U.

(3) The functor F' induces an injection from the set of isomorphism classes of inde-
composable modules over A to the one over I'.

Then F' induces an embedding of H(s7-tilt A) into H(s7-tilt I') which sends any con-
nected component of H(s7-tilt A) into H(s7-tilt I') as a connected component. Further-
more, if A is a support 7-tilting finite algebra, then F' induces an isomorphism from
sT-tilt A to s7-tilt I' as partially ordered sets.

Proof. We can easily see that (F-M, F'P) is a support 7-tilting pair (or almost complete
support 7-tilting pair) over I for any support 7-tilting pair (or almost complete support
7-tilting pair, respectively) (M, P) over A. Hence, the functor F sends any support
T-tilting A-module to a support 7-tilting I'-module. Now assume support 7-tilting A-
modules M; and Ms satisfy the condition My > M;. Then by the definition of partial
order, there exist » € N and an epimorphism

ML My — 0.

Since F'is an exact functor, we get an epimorphism

F(f)

F(Ms,)®" F(My) =0

which implies F'(My) > F(M;). Let (M, Py) and (M, P») be distinct basic support 7-
tilting pairs over A and (L, @) a basic almost complete support 7-tilting pair appearing
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as a direct summand of both (M;, Py) and (Ms, P,). Then the pairs (F(M;), F(P;)) and
(F'(Ms), F(P,)) are distinct by the third assumption on F' and have an almost complete
support 7-tilting pair (F(L), F(Q)) as a direct summand. Therefore, (F(M;), F(P;))
and (F(Msz), F(P,)) are support 7-tilting mutation of each other. Hence, we have that
the functor F' embeds H(s7-tilt A) into H(s7-tiltI'). Now we remark that H(s7-tilt A)
is a |Al-regular quiver, so any connected component C' in H(s7-tilt A) is a |A|-regular
quiver too. Hence, the image of C' under the embedding above is some connected |I'|-
regular subquiver in #H(s7-tilt I') because |A| = |I'| and so is some connected component
in H(st-tilt I"). If A is a support 7-tilting finite algebra, then the image of H(s7-tilt A)
under the embedding above is a finite connected component in H(s7-tilt '), which
coincides with #H(s7-tilt I') by Proposition 2.2.3. O

Now we give proofs of the main theorems. First, we state the main result again,
which are stated in the introduction.

Theorem 4.2.5. Let G be a normal subgroup of a ﬁnit~e group G having p-power
index. Let B a block of kG and B the unique block of kG covering B. Assume that
any indecomposable B-module is I (B)-invariant. Then we have the following:

(1) The induced module Inng is a support 7-tilting B-module for any support 7-
tilting B-module U.

(2) The induction functor Indg induces an embedding of H (s7-tilt B) into H.(s7-tilt B)
as quivers and any connected component of H(sT-tilt B) is embedded as a con-
nected component of H (s7-tilt B).

(3) If B is a support 7-tilting finite block, then the induction functor Indg induces
isomorphisms from s7-tilt B to s7-tilt B as partially ordered sets.

Proof. Let f3 be the block of kI5(B) covering B. By Theorem 3.3.5, the functors induced
by induction functors IndIGG(B): B-mod — fB-mod and Ind?é(B): B-mod — B-mod are
exact functors and the latter induces a Morita equivalence. We remark that the number
of isomorphism classes of the simple B-modules is equal to the one of the simple -
modules from the assumption of Theorem 4.2.5 and Lemma 4.1.2. In order to prove
Theorem 4.2.5, it is enough to show that Indéé(B) satisfies the three conditions in Lemma
4.2.4. The functor Indéé(B) preserves indecomposability, projectivity and 7-rigidity by
Theorem 3.1.6, Theorem 3.1.1 and Corollary 4.2.2. By Lemma 4.2.3 and Corollary

3.1.8, the functor Indéé(B) satisfies the second and third condition in Lemma 4.2.4.
Therefore, we have completed the proof of Theorem 4.2.5. n

Corollary 4.2.6. Let G, G, B and B be the same as in Theorem 4.2.5. With the same
assumption in Theorem 4.2.5, the induction functor Indg induces a partially ordered set
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morphism from 2-tilt B to 2-tilt B commutes the following diagram of partially ordered
sets
sT-tilt B ——s7-tilt B

2 L O l?
2-tilt B — 2-tilt B

is commutative where the vertical isomorphisms are given by [2] and the upper hori-
zontal morphism is given by Theorem 4.2.5.

Proof. Let (M, P) € st-tilt B and P, iR PO M — 0 the minimal projective pre-

Ind Ind
sentation of M. By Proposition 3.1.13, the sequence IndGPl —Gfl> IndGPo &h
IndGM — 0 is also the minimal projective presentation of IndGM O]

Corollary 4.2.7. Let G be a finite group and G be a normal subgroup with cyclic
Sylow p-subgroup such that the quotient group G /G is a p-group. Then the induction
functor Indg induces the following isomorphism as partially ordered sets:

sT-tilt kG —— s7-tilt kG

M —— IndSM.

Proof. Since any defect group of a block of kG is contained in a Sylow p-subgroup of
G, any block has a cyclic defect group. Hence, any block of kG is 7-tilting finite. Thus,
the conclusion follows from Theorem 4.2.5 for all blocks of kG. O

Example 4.2.8. Let k£ be an algebraically closed field of characteristic 3 and G :=
SL(2,8) the special linear group degree 2 over the field Fg of order 8. The Galois
group Gal(Fg/FFy) = C3 acts G naturally. Thus, we can define the semidirect product
G = G x Gal(Fg/Fy) of G and Gal(Fg/F,). The group algebra kG is decomposed into 4
blocks By (kG), By, By, B3 where By, By, B3 are simple blocks and By(kG) has a cyclic
defect group. There are two simple By(kG)-modules kg and sg where k¢ is the trivial
module and s¢ is the 7-dimensional kG-module. The block By(kG) is a Brauer tree
algebra for the follwing Brauer tree:

ke e o
O O 9 : multiplicity 4

We can calculate H(s7-tilt By(kG)).
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H(s7-tilt Bo(kG)):

kG
/ \
P(kg) @ kg P(Sg) ® 5

sG

J 5
kG\O/sG

The principal block By(kG) of képovers By(kG). Since s7-tilt Bo(kG) = s7-tilt By(kG)

induced by induction functor Indg, although Bo(ké) is of wild representation type, we
can make H(s7-tilt By(kG)) explicit.

H(sT-tilt Bo(kG)):
kG
/ S
~ - SG
P(kg) ® IndSkq P(sg) © Ind§ 58

sa
| v
~ é :G
Indgkg IIldG s&

~ o



Chapter 5

Inertial-invariant support 7-tilting
modules

In this chapter, we prove that induced modules of support 7-tilting modules over blocks
of finite groups satisfying inertial-invariant condition are also support 7-tilting modules.

5.1. Induced module of inertial-invariant support 7-tilting mod-
ules

The following theorem is the group algebra version of Main Theorem 4.

Theorem 5.1.1. Let G be a normal subgroup of a finite group G and M a support
T-tilting kG-module satistying M = M as kG-modules for any z € G. Then the
induced module IndgM of M is a support 7-tilting kG-module.

Proof. A similar proof of [18, Theorem 4.2] works in this setting. By Lemma 3.1.13
(3), Proposition 3.1.1 (3), Theorem 3.1.3, the I5(B)-invariance of and the 7-rigidity of
M, we have the following:

Hom, s (IndS M, rIndS M) = Hom, - (IndS M, IndSr M)
= Homkg(ResgIndgM, TM)
= Homyq ( @ xM,TM)

2€[G/q]
= @ Homy (M, M)
z€[G/G)
=0.

Therefore, we have that IndgM is 7-rigid. By Proposition 2.1.6, there exists an exact

sequence

f

kG —Ls M L M —— 0 (5.1.1)

23
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with M’ M" € add M and f a left add M-approximation of kG. Applying the functor
Indg to the exact sequence (5.1.1), we get the exact sequence

mdS f md& ¢/

kG = IndSkG —<% IndSM’ <4 mdSM” —— 0
satisfying that IndGM ! IndGM " € add IndGM Then by Proposition 2.1.6, we only

have to prove that IndG f is a left add IndGM approximation of kG, that is, the map

ooInde

Hom, o(Ind& M7, X) 2254 Hom, o (kG, X) (5.1.2)

is surjective for any X € add IndgM . First, we prove that the map

Hom, o (IndS 0", Tnd& A7)~

21CS Homy o (kG IndS M) (5.1.3)
is surjective. By Proposition 3.1.1 (3), Theorem 3.1.3 and the assumption, we get the
following commutative diagram:

ooIndgf

Hom, ~(Ind& M’, Ind& M) Hom, (kG IndS M)

2 2

Homye(M’, ResCInd% M) —=L s Homyg(kG, ResGIndSM)

2 2

~ ~

2 14

~ ~

Homye (M, MGG T Homye(kG, M@ICGC),

The map in the last row is surjective since f is left add M-approximation of kG, which
implies that the map in the first row, which is the map (5.1.3), is surjective. Hence, we
get that

ooInde

Hom,g(Ind§ M, TndGMe™) 222565 Homy g (kG IndG M=) (5.1.4)

is surjective for any m € N. Now take X € addIndgM and h € Hom,5(kG, X)
arbitrarily. Then there exists m € N and a split exact sequence

B

0 —— X —2 IndGMem Y —— 0

2\

in kG-mod. Let v IndgM ®m 5 X be a retraction of «a, that is, a ké—homomorpl}ism
satisfying yoa = Idx. Since the map (5.1.4) is surjective and aoh € Hom, 5 (kG, IndGM®™),
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there exists h' € Homké(lndgM’, IndgM@m) such that A’ o Indgf = a o h. Hence, we
have that
h=Idyoh=~oaoh= 'yOh'OInd f.

Therefore, the map (5.1.2) is surjective. O

The following result makes the assumption in Theorem 5.1.1 weaker not only in case
where the module M is a kG-module but also in case where M is a B-module.

Theorem 5.1.2. Let G be a normal subgroup of a finite group G, B a block of kG,
B a block of kG covering B and M a support 7-tilting B-module satistying M = M
as B-modules for any x € I5(B). Then Ind$M is a support 7-tilting kG-module. In

particular, BIndgM is a support 7-tilting B-module.

Proof. Let By = B,..., B. be all blocks of kG covering B. By Proposition 3.3.5 (2),
we can take (i, ..., [, the blocks of kls(B) satistying the induction functor IndIGé(B)
restricts to a Morita equivalence

Ind%(B): Bi-mod — B;-mod

for any ¢ = 1,...,e. By Theorem 5.1.1, the induced module Ind ¢ ISBIN s a support
T-tilting kl5(B)-module and hence ﬂZIndG )
any ¢ = 1,...,e. Therefore, we have that IndI B)ﬂzlnd BN is a support 7-tilting
Bimodule. By Proposition 3.3.5 (1) and Proposition 3.1.1 (2), we have

M is a Support T-tilting [;-module for

P mdf 5 BndE" M = ndf @mnd
=1

Hence, IndgM is a support 7-tilting kG-module. Therefore, we get that BIndgM be a
support 7-tilting B-module. Il

Corollary 5.1.3. Let G be a normal subgroup of a finite group G, B a block of kG
and B a block of kG covering B. If M > M’ in s7-tilt B for I5(B)-invariant support

7-tilting B-modules M and M’, then BIndGM > BIndGM’ in sT-tilt B.

Proof. By the exactness of the induction functor Indg and Theorem 5.1.2, the statement
is obvious. O

We will demonstrate that there is an interrelation between the orders of I (B)-
invariant support 7-tilting B-modules and support 7-tilting kG-modules.



CHAPTER 5. INERTIAL-INVARIANT SUPPORT 7-TILTING MODULES 26
Proposition 5.1.4. Let M be an I(B)-invariant B-module. If the induced module
IndGM is a support 7-tilting kG-module, then M is a support 7-tilting B-module.

Proof. By Remark 2.1.3, we can take a projective kG-module P satisfying that |P| +
|IndGM| | B| and Hom, (P, IndGM) = 0. By Proposition 2.1.5 and Proposition 3.1.1
(4), we enough to show the following:

(1) M is a 7-rigid B-module.
(2) HomB(BResgf’, M) =0.
(

3) If Homp(M,7X) = 0, Homp(X,7M) = 0 and HomB(BResgf’,X) = 0, then
X € add M for any B-module X.

First, we have the following:

Hompg(M, 7']\/[)@'16?(3):6'|

= Homyg( EB xM,TM) (the I5(B)-invariance of M)
2el15(B)/G)
= Homy( @ M & @ xM,TM) (Remark 3.3.3)
z€[l5(B)/G] z€[G/G]
x¢15(B)
= Homy( @ xM,TM)
€[G/C]
=~ Homyg(ResGIndS M, M) (Theorem 3.1.3)
= Homké(lndgM, IndgTM) (Proposition 3.1.1 (3))
= Homké(lndgM, TIndgM) (Lemma 3.1.13)
= 0. (the 7-rigidity of IndG )

Hence, we have that the B-module M is a 7-rigid B-module. Also, we have that
HomB(BResgP, M) = Hom, (P, IndgM) = 0.

For a B-module X, we assume that Homp(M,7X) = 0, Homp(X,7M) = 0 and
Homp(BResg P, X) = 0. By the assumptions and similar arguments as above, we
have that Hom,s(Ind%M, 7Ind%X) = Hom,s(Ind5X, 7IndSM) = 0. Also, we have
that

Hom, (P, Inng) ~ Homkg(Resgf’, X)
~ Homp(BResé P, X)
= 0.
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Hence, we have that IndGX € add IndGM by Proposition 2.1.5. Therefore, we have
that ResglndGX € add ResglndGM In particular, we have that X € add M since
ResGIndGX D.cig/qrX and ResGIndGM @D.cia/q M, which implies that M is
a support 7-tilting B-module by Proposition 2.1.5. O

Theorem 5.1.5. Let M and M’ be [5(B)-invariant B-modules. Then the following
hold:

(1) M is a support 7-tilting B-module if and only if IndgM is a support 7-tilting
kG-module.

(2) Assume that M and M’ are support 7-tilting B-modules. Then M > M’ in
sT-tilt B if and only if IndgM > IndSM’ in st-tilt kG.

Proof. (1) is clear by Theorem 5.1.2 and Proposition 5.1.4. In order to prove (2),
we only show that if IndgM > IndgM’ in s7-tilt kG then M > M’ in s7-tilt B by
Corollary 5.1.3, but it follows from the fact the restriction functor Resg is an exact
functor, the /5(B)-invariance of M and Theorem 3.1.3. O

5.2. Some applications of main theorems

We give some applications and examples of main theorems in this chapter.

Example 5.2.1. Let k£ be an algebraically closed field of characteristic p = 2, G the
alternating group Ay of degree 4 and G the symmetric group Sy of degree 4. The
principal blocks of kA4 and kS, are themselves, respectively. Moreover, the block kA,
is covered by kS4. The algebras kA4 and kS, are Brauer graph algebras associated to
the Brauer graphs in Figure 5.1(a) and Figure 5.1(b), respectively:

> multiplicity: 2

ka, = 1 1 = ks,

(a) The Brauer graph of (b) The Brauer graph of kS,
kA,

Figure 5.1: Brauer graphs

Now we draw the Hasse diagram #H(s7-tilt kA4) of the partially ordered set s7-tilt kA4
as follows:



H(sT-tilt kAy) : P& P& Py
373:””2”61;1527@733‘ P, 3, ;0R PoPo,!

LN V2N 7N\

S, R332, 030l P, 3 0RPI® %, 0 P00, 37 1OR®,!

1@P2@3 [3 2EB @3} 3@ ® Ps %693 3 2@:% Hﬁléﬁégh %@%@21321

20202 5@ 3 So3@3 S i @

N 2¢ 3 33 33 1ol 1ol 232
AN

Figure 5.2: The Hasse diagram of s7-tilt kA,

SHTNAON ONILILL-+ THOddNS INVIHVANI"TVILHANI "¢ HALdVHD

8¢
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The enclosed support 7-tilting modules in Figure 5.2 are all the invariant support 7-
tilting modules under the action of S;. Next, we draw the Hasse diagram H (s7-tilt £Sy)
of partially ordered set s7-tilt £Sy as follows:

H(sT-tilt(kSy))

Py & Py
1 2
APV ! 67:::::771
: 1 EBPQ/: }}Py@lu
2 1’ 2/ I I Q'U
2/ 2/ , , 1/
{ v @3} Lev
2/ 1/ 2/ 2/
2/ 1
2/ 1/

Figure 5.3: The Hasse diagram of s7-tilt £Sy

The induction functor Indf{f1 takes each enclosed Sy-invariant support 7-tilting kAy-
module in Figure 5.2 to the enclosed k£Ss;-module in Figure 5.3 with the same square.
We remark that even if a support 7-tilting kA4-module M is basic, its induction Indi‘il M

. . . . !/ 1/ 1/
is not necessarily basic. For example, the induced module Indf{f1 (lelel) =l erav
2

is not basic.

Example 5.2.2. Let G; and G5 be arbitrary finite groups and M a support 7-tilting
kG1-module. Then the group (GG is a normal subgroup of the direct product group G X
G5, and it is clear that M = xM for any x € G; x GG5. Therefore, the induced module
IndgiXGzM = kGy ®y M is support 7-tilting k[G1 x Gs]-module by Theorem 5.1.1.

Example 5.2.3. Let G be a normal subgroup of a finite group G having a cyclic
Sylow p-subgroup. Then the principal block By(kG) of kG satisfying «M = M for

any support 7-tilting module M and z € G by Corollary 4.1.5. Therefore, IndgM and
Bo(kG)Ind$M are support 7-tilting modules.
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