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Chapter 1

Introduction

The following ordinary differential equations are known as typical examples giving

qualitative properties of solutions:

(i) u′(t) = c1u
1+α(t)− c2, t > 0, (ii) u′(t) = u(t)− uκ(t), t > 0,

where c1, c2, α > 0 and κ > 1. For suitable positive initial data the solution of (i) blows

up at some finite time T (that is, u(t) → ∞ as t ↗ T ), whereas the solution of (ii) is

bounded (that is, supt∈(0,T ) u(t) < ∞). As in these examples, whether solutions blow

up or not is one of mathematical themes also in partial differential equations, and such

a theme can be considered in chemotaxis systems. The original chemotaxis system was

proposed by Keller and Segel in 1970s. As a model including population dynamics or

pattern formation in bacteria colonies, there is the Keller–Segel system with logistic

source, {
ut = ∆u−∇ · (u∇v) + u− uκ, x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,

with homogeneous Neumann boundary conditions, where Ω ⊂ Rn (n ∈ N) is a smooth

bounded domain and κ > 1. The term −∇ · (u∇v) is called a chemotaxis term, which

promotes blow-up at some time T , where blow-up means limt↗T ∥u(·, t)∥L∞(Ω) = ∞
or lim supt↗T ∥u(·, t)∥L∞(Ω) = ∞. On the other hand, the logistic term u − uκ has a

strong effect of blow-up prevention. Thus the following question arises:

Are solutions of Keller–Segel systems with logistic source always prevented?

The answer is indeed no! To explain the mechanism we observe the system

ut = −∇ · (u∇v)− uκ, 0 = ∆v + u.
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Testing the first equation by up−1 (p > 1) and integrating by parts as well as using the

second equation, we see from Hölder’s and Young’s inequalities that if κ < 2, then

1

p
· d
dt

∫
Ω

up dx = −p− 1

p

∫
Ω

up∆v dx−
∫
Ω

up+κ−1 dx

=
p− 1

p

∫
Ω

up+1 dx−
∫
Ω

up+κ−1 dx

≥ c1

(∫
Ω

up dx

) p+1
p

− c2

for all t > 0 with some constants c1, c2 > 0. This implies that limt↗T ∥u(·, t)∥Lp(Ω) = ∞
with some finite time T . Therefore, it is conjectured that if κ < 2, then solutions of

Keller–Segel systems with logistic source possibly blow up. As to this conjecture,

Winkler [60] succeeded in showing finite-time blow-up under a smallness condition for

κ > 1 in the Keller–Segel system with logistic source. In such a circumstance, the

following question arises:

Can solutions blow up in a situation added further factors preventing blow-up?

This thesis provides some positive answers to this question in quasilinear chemotaxis

systems with logistic source.

In Part I we study finite-time blow-up in parabolic–elliptic Keller–Segel systems

with density-dependent sensitivity and logistic source. In Chapter 2 we consider the

case of linear diffusion and sublinear sensitivity. This case means that the effect of a

chemotaxis term is small, so that we try to derive finite-time blow-up of solutions under

a smallness condition for logistic source. Chapter 3 gives an investigation in the case of

nonlinear diffusion and super- and sub-linear sensitivity, which includes also the case

that the effect of a chemotaxis term is strong in contrast to Chapter 2. Moreover, we

give a related result on blow-up prevention in a fully parabolic system with nonlinear

production.

In Part II we show finite-time blow-up in quasilinear Jäger–Luckhaus systems with

logistic source and nonlinear production. Here, a Jäger–Luckhaus system was proposed

as a simplification of a Keller–Segel system. Since the system of this type is useful to

obtain more precise behavior of solutions, we deal with the aforementioned system.

Chapter 4 is concerned with the case of nondegenerate diffusion. In this case we

consider not only finite-time blow-up but also blow-up prevention. In Chapter 5 we

show existence of blow-up solutions in the case of degenerate diffusion. In this case,

taking into account the lack of regularity of solutions, we introduce a moment solution

concept.
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Part I

Finite-time blow-up in

parabolic–elliptic Keller–Segel

systems with density-dependent

sensitivity and logistic source
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Chapter 2

The case of linear diffusion and

sublinear sensitivity

2.1. Introduction

This chapter is motivated by Viglialoro [52], and we consider finite-time blow-up in

the following parabolic–elliptic Keller–Segel system with density-dependent sublinear

sensitivity and logistic source:
ut = ∆u− χ∇ · (u(u+ 1)α−1∇v) + λu− µuκ, x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,

∇u · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(2.1.1)

where Ω = BR(0) ⊂ Rn (n ∈ N) is a ball with some R > 0; χ > 0, 0 < α < 1, λ ∈ R,
µ > 0, κ > 1 are constants; ν is the outward normal vector to ∂Ω;

u0 ∈ C0(Ω) is radially symmetric and nonnegative. (2.1.2)

The unknown functions u = u(x, t) and v = v(x, t) denote the density of cells and the

concentration of the chemical substance at x ∈ Ω and t ≥ 0, respectively. The logistic

source λu − µuκ represents the proliferation and death of the cells and the sublinear

sensitivity u(u+ 1)α−1 with α < 1 indicates that the chemotactic effect is small.

The Keller–Segel system was proposed as a part of the life cycle of cellular slime

molds with chemotaxis by Keller and Segel in [23] and was studied extensively (for

instance, global existence and boundedness can be found in [4, 39, 54] and blow-up

can be referred to [17, 54, 58]); moreover, many variations of the original Keller–Segel
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system were proposed by Hillen and Painter [16]. Chemotaxis induces aggregation

phenomena caused by the direct movement of cells as a response to gradients of a

chemical signal substance, so that we are interested in whether the corresponding

solution of these systems blows up.

From a mathematical point of view, it is meaningful to give a clear answer to the

question whether solutions to (2.1.1) blow up or remain bounded. The system (2.1.1)

is a special case of the following quasilinear chemotaxis systems:{
ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v) + λu− µuκ, x ∈ Ω, t > 0,

τvt = ∆v − v + u, x ∈ Ω, t > 0,
(2.1.3)

where λ ∈ R, µ > 0, κ > 1, τ ∈ {0, 1} and D, S ∈ C2([0,∞)). In (2.1.3) there are

results on boundedness in [3, 22, 50, 55, 66, 67] and blow-up in [60] explained later.

Before introducing previous works about the system (2.1.1), let us recall known

results about the quasilinear chemotaxis system (2.1.3) without logistic source,{
ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v), x ∈ Ω, t > 0,

τvt = ∆v − v + u, x ∈ Ω, t > 0.
(2.1.4)

About this system there are some results related to global existence of smooth bounded

solutions and existence of blow-up solutions. In the nondegenerate chemotaxis system

given by (2.1.4) with D(u) = (u + 1)m−1 and S(u) = u(u + 1)α−1 with m,α ∈ R and

τ = 1, Tao and Winkler [50] proved that if α < m − n−2
n

and Ω is a convex smooth

domain, then global bounded solutions exist; after that, the convexity condition of Ω

was removed in [18], whereas Cieślak and Stinner [7, 8] showed that if α > m − n−2
n

and either m ≥ 1 or α ≥ 1, then there exists a solution which blows up in finite time;

moreover, Winkler [61] established infinite-time blow-up in the case m− n−2
n
< α ≤ 0.

Lower bounds for the blow-up time of such solutions were obtained in [37]. In its

parabolic–elliptic version (τ = 0) Lankeit [25] showed that solutions are global and

bounded when α < m − n−2
n

and blow up in infinite time when n ≥ 3, α ≤ 0 and

α > m − n−2
n
; moreover, in the case that the second equation is 0 = ∆v −M(t) + u,

whereM(t) := 1
|Ω|

∫
Ω
u(x, t) dx, Winkler and Djie [63] proved that if α+1 < m+ 2

n
, then

all solutions are global in time and bounded, whereas if α+1 > m+ 2
n
, α > 0 and Ω is a

ball, then there exist solutions that are unbounded in finite time. Lower bounds for the

blow-up time of such solutions were recently derived by Marras, Nishino and Viglialoro

[29]. In the degenerate chemotaxis system written as (2.1.4) with D(u) = um−1 and

S(u) = uα−1 with m ≥ 1, α ≥ 2 and τ = 1, if m > α− 2
n
and Ω is a bounded domain,

then existence of global weak solutions was shown in [18], and if m < α − 2
n
, then

finite-time blow-up was established in [15].
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On the other hand, in the system (2.1.3), there are many results about global

existence and boundedness because the logistic term λu − µuκ suppresses blow-up

phenomena. For instance, in the system (2.1.3) with D(u) = 1, S(u) = u, τ = 1

and κ = 2, Winkler [55] proved that if µ is sufficient large, then global bounded

solutions exist. Jin and Xiang [22] established global bounded solutions for all µ > 0

in the two-dimensional setting. In the parabolic–elliptic case, Tello and Winkler [51,

Corollary 2.6] asserted that the system (2.1.3) admits a global classical solution for all

µ > max{0, n−2
n
χ} in the case κ = 2 or for all µ > 0 in the case κ > 2. In the system

(2.1.3) with D(u) = (u + 1)m−1 and S(u) = u(u + 1)α−1 with m,α ∈ R and τ = 1,

Zheng [67] showed existence of global classical bounded solutions under the condition

that λ = µ = 1, κ = 2 and 0 < 1−m+ α < 4
n+2

with n ≥ 3. In the parabolic–elliptic

case with m ≥ 1 and α > 0, all classical solutions are global in time and bounded when

α + 1 < max{κ,m+ 2
n
} and when α + 1 = κ and µ > µ0 = µ0(m,κ, χ) > 0 (see [66]).

In the system (2.1.3) with D(u) = um and S(u) = uα with m ∈ R, α < 1 and τ = 1,

Cao [3] proved that the solution is global in time and bounded in the case κ = 2.

From these previous studies, one might infer that logistic source always suppresses

blow-up and induces boundedness in chemotaxis systems. However, in contrast to

this inference, Winkler [60] succeeded in obtaining the condition for κ > 1 such that

finite-time blow-up occurs in the system (2.1.1) with α = 1,{
ut = ∆u−∇ · (u∇v) + λu− µuκ, x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,
(2.1.5)

in both low (n = 3, 4) and higher (n ≥ 5) dimensional cases. In detail, if κ > 1 satisfies

κ <

{
7
6

if n ∈ {3, 4},
1 + 1

2(n−1)
if n ≥ 5,

then an initial data leading to finite-time blow-up was found in [60]. We also note

that Winkler [57] has already shown finite-time blow-up when n ≥ 5 and the second

equation in (2.1.5) is 0 = ∆v−M(t)+u, whereM(t) := 1
|Ω|

∫
Ω
u(x, t) dx (cf. Zheng, Mu

and Hu [68] for its analog with density-dependent superlinear sensitivity). Thus the

results in [57, 60, 68] imply that the small logistic-type dampening cannot suppress

blow-up phenomena. On the other hand, blow-up in the case that the chemotaxis term

−∇·(u∇v) in (2.1.5) is generalized to −χ∇·(u(u+1)α−1∇v) with α < 1, that is, blow-

up in the system (2.1.1) has not been studied yet, even though in the corresponding

system with generalized chemotaxis terms there are a lot of results ([7, 8, 18, 25, 50,

61, 63, 66, 67]).
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The purpose of this chapter is to determine conditions for α and κ such that the

solution of (2.1.1) blows up in finite time in the case that 0 < α < 1 and n ≥ 3.

This is not trivial because not only the system (2.1.1) has the logistic source but

the chemotactic effect is smaller than that in the standard case that α = 1. In the

system (2.1.1), the chemotactic sensitivity decays with α approaching to 0, so that we

can expect that the smaller α is, the smaller κ has to be in order to have a blow-up

scenario.

Now the main result reads as follows:

Theorem 2.1.1. Let Ω = BR(0) ⊂ Rn (n ≥ 3, R > 0) and let χ > 0, 0 < α < 1,

λ ∈ R, µ > 0 and κ > 1. Assume that α and κ satisfy that

if n = 3, 5
6
< α < 1 and κ < 1 + 6α−5

6(3−2α)
, (2.1.6)

if n = 4, 5
6
< α < 1 and κ < 1 + 6α−5

6(4−3α)
, (2.1.7)

if n = 5,


10
11
< α ≤ 11

12
and κ < 1 + 10α−9

40(1−α) ,

11
12
< α ≤ 27

28
and κ < 1 + 20α−17

20(5−4α)
,

27
28
< α < 1 and κ < 1 + 4α−3

8(3−2α)
,

(2.1.8)

if n ≥ 6,



1− 4
(3n−4)(n−1)

< α ≤ 1− 4
(3n−2)(n−1)

and κ < 1 + 4−(n−1)2(1−α){2+n(1−α)}
n(n−1)2(1−α){2+(n−1)(1−α)} ,

1− 4
(3n−2)(n−1)

< α < 1

and κ < 1 + 1−(n−1)(1−α)
(n−1){2+(n−1)(1−α)} .

(2.1.9)

Then for all L̃ > 0, M0 > 0 and M1 ∈ (0,M0), one can find a positive constant

r⋆ = r⋆(R,χ, α, λ, µ, κ, L̃,M0,M1) < R such that if u0 satisfies (2.1.2) and

u0(x) ≤ L̃|x|−n(n−1) for all x ∈ Ω,

∫
Ω

u0(x) dx ≤M0,

∫
Br⋆ (0)

u0(x) dx ≥M1, (2.1.10)

then there exist T ∗ ∈ (0,∞) and an exactly one pair (u, v) of functions{
u ∈ C0(Ω× [0, T ∗)) ∩ C2,1(Ω× (0, T ∗)),

v ∈
⋂
q>n L

∞
loc([0, T

∗);W 1,q(Ω)) ∩ C2,0(Ω× (0, T ∗)),

which solves (2.1.1) classically and blows up at t = T ∗ in the sense that

lim
t↗T ∗

∥u(·, t)∥L∞(Ω) = ∞. (2.1.11)

8



Remark 2.1.1. Marras, Vernier Piro and Viglialoro [30, 31] obtained a lower bound

for the blow-up time of solutions to a system similar to (2.1.1). It is an open question

whether an explicit lower bound for the blow-up time in Theorem 2.1.1 can be obtained.

Remark 2.1.2. In order to prove Theorem 2.1.1 we will refer to a method in [60,

Theorem 1.1]. In other applications of the method in [60, Theorem 1.1], we obtained

a blow-up result in a parabolic–elliptic–elliptic attraction-repulsion chemotaxis system

with logistic source in [5].

The proof of Theorem 2.1.1 is based on that of Winkler [60, Theorem 1.1]. First,

we define the mass accumulation function w = w(s, t) and z = z(s, t) as

w(s, t) :=

∫ s
1
n

0

ρn−1u(ρ, t) dρ,

z(s, t) :=

∫ s
1
n

0

ρn−1v(ρ, t) dρ,

where s := rn and r ∈ [0, R]. Then the system (2.1.1) is reduced to the parabolic

equation

wt = n2s2−
2
nwss + χnws(nws + 1)α−1(w − z) + λw − nκ−1µ

∫ s

0

wκs (σ, t) dσ. (2.1.12)

In [60] the second term on the right-hand side of the above equation is χnws(w − z).

Next, using the moment-type functional

ϕ(t) :=

∫ s0

0

s−γ(s0 − s)w(s, t) ds

with some γ > 0, we will derive a super-linear differential inequality for ϕ. However, we

cannot use the same argument as in [60] with α = 1 because of the factor (nws+1)α−1

of the second term on the right-hand side of (2.1.12) in our case α < 1. Therefore,

separately using the estimates (nws+1)α−1 ≤ 1 and (nws+1)α−1 ≥ (Cs−(n−1)− ε
n+1)α−1

(see (2.4.5)) on a case by case basis, we derive a super-linear differential inequality for

ϕ by introducing four more conditions for γ in ϕ(t) than those in [60], and thus the

arguments in this chapter are divided into many cases, whereas those in [60] were

divided into two cases.

This chapter is organized as follows. In Section 2.2 we recall local existence and

transformation of solutions to the system (2.1.1). Section 2.3 consists of elementary

results including pointwise estimates for solutions. Section 2.4 is the main part of

this chapter and is devoted to deriving a super-linear differential inequality for the

moment-type functional ϕ. Finally, the proof of Theorem 2.1.1 is given in Section 2.5.
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2.2. Local existence and mass accumulation functions

We first introduce a result on local existence of classical solutions to (2.1.1). Because

the proof is similar to that in [9, 35, 63], we provide only the statement of the lemma.

Lemma 2.2.1. Let n ≥ 1, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0 and κ > 1. Assume

that u0 satisfies (2.1.2). Then there exist Tmax ∈ (0,∞] and an exactly one pair (u, v)

of radially symmetric nonnegative functions{
u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈
⋂
q>n L

∞
loc([0, Tmax);W

1,q(Ω)) ∩ C2,0(Ω× (0, Tmax)),

which solves (2.1.1) classically. Moreover,

if Tmax <∞, then lim
t↗Tmax

∥u(·, t)∥L∞(Ω) = ∞.

In the following we assume that initial data u0 satisfies (2.1.2) and we denote by

(u, v) = (u(r, t), v(r, t)) the radially symmetric local solution of (2.1.1) and by Tmax the

maximal existence time in Lemma 2.2.1. Based on [21], we set the mass accumulation

functions w and z such that

w(s, t) :=

∫ s
1
n

0

ρn−1u(ρ, t) dρ for s ∈ [0, Rn] and t ∈ [0, Tmax), (2.2.1)

z(s, t) :=

∫ s
1
n

0

ρn−1v(ρ, t) dρ for s ∈ [0, Rn] and t ∈ [0, Tmax). (2.2.2)

Then we have

ws(s, t) =
1

n
u(s

1
n , t), wss(s, t) =

1

n2
s

1
n
−1ur(s

1
n , t), (2.2.3)

zs(s, t) =
1

n
v(s

1
n , t), zss(s, t) =

1

n2
s

1
n
−1vr(s

1
n , t) (2.2.4)

for all s ∈ (0, Rn) and t ∈ (0, Tmax). The second equation in (2.1.1) implies that

rn−1vr(r, t) = z(rn, t)− w(rn, t) for all r ∈ (0, R) and t ∈ (0, Tmax). (2.2.5)

Integrating the first equation in (2.1.1) over (0, r) and using (2.2.5), we see that

wt = n2s2−
2
nwss + χnws(nws + 1)α−1(w − z) + λw − nκ−1µ

∫ s

0

wκs (σ, t) dσ (2.2.6)

for all s ∈ (0, Rn) and t ∈ (0, Tmax). Moreover, the function w defined in (2.2.1) fulfills

0 = w(0, t) ≤ w(s, t) ≤ w(Rn, t) =
1

ωn

∫
Ω

u(x, t) dx

for all s ∈ (0, Rn) and t ∈ (0, Tmax), where ωn := n|B1(0)|.
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2.3. Estimates for mass and pointwise bounds for solutions

In this section we give three lemmas which were essentially proved in [60].

Lemma 2.3.1. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0 and κ > 1. If the

initial data u0 satisfies (2.1.2), then∫
Ω

u(x, t) dt ≤ eλ+
∫
Ω

u0(x) dx for all t ∈ (0, T̂max),

where T̂max := min{1, Tmax} and λ+ := max{0, λ}.

Proof. Integrating the first equation in (2.1.1) over Ω, we obtain

d

dt

∫
Ω

u dx = λ

∫
Ω

u dx− µ

∫
Ω

uκ dx

for all t ∈ (0, Tmax). Hence an argument similar to that in [60, Lemma 3.1] implies the

conclusion of this lemma.

The following lemma is proved by the same argument as that in [60, Lemma 3.2].

Lemma 2.3.2. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0 and κ > 1. Then

for all M0 > 0 there exists C = C(R, λ,M0) > 0 such that if the initial data u0 satisfies

(2.1.2) and
∫
Ω
u0(x) dx ≤M0, then

|vr(r, t)| ≤ Cr1−n for all r ∈ (0, R) and t ∈ (0, T̂max)

and

v(r, t) ≤ Cr2−n for all r ∈ (0, R) and t ∈ (0, T̂max),

where T̂max := min{1, Tmax}.

Noting that (u + 1)α−1 ≤ 1, we can obtain the following lemma by an argument

similar to that in [60, Lemma 3.3].

Lemma 2.3.3. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0 and κ > 1. Then

for all L̃ > 0, M0 > 0 and ε > 0 there exists C = C(R, λ, L̃,M0, ε) > 0 such that if u0
satisfies (2.1.2),

∫
Ω
u0(x) dx ≤M0 and

u0(r) ≤ L̃r−n(n−1) for all r ∈ (0, R), (2.3.1)

then

u(r, t) ≤ Cr−n(n−1)−ε for all r ∈ (0, R) and t ∈ (0, T̂max),

where T̂max := min{1, Tmax}.
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2.4. Differential inequalities for a moment-type functional ϕ

In order to show the main result we establish a key inequality (see Lemma 2.4.12).

To this end, we first give a lower estimate for the derivative of ϕ defined in (2.4.1).

Functions of the form in (2.4.1) have been the core of precedents where blow-up has

been detected for related systems; recent examples in this regard include “pure” Keller–

Segel systems [62], but also logistic-type chemotaxis systems [12] and some chemotaxis

systems involving saturation effects in the signal production mechanism [59].

Lemma 2.4.1. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0 and κ > 1. Assume

that u0 satisfies (2.1.2). Let γ ∈ (1− 2
n
, 1) and s0 ∈ (0, Rn). Define

ϕ(t) :=

∫ s0

0

s−γ(s0 − s)w(s, t) ds for t ∈ [0, Tmax). (2.4.1)

Then ϕ ∈ C0([0, Tmax)) ∩ C1((0, Tmax)) and

ϕ′(t) ≥ χn

∫ s0

0

s−γ(s0 − s)ws(s, t)(nws(s, t) + 1)α−1w(s, t) ds

− χn(γ + 1)s0

∫ s0

0

s−γ−1z(s, t)w(s, t) ds

− n2

(
2− 2

n
− γ

)(
γ +

2

n

)
s0

∫ s0

0

s−γ−
2
nw(s, t) ds

− λ−

∫ s0

0

s−γ(s0 − s)w(s, t) ds− nκ−1µ

1− γ
s1−γ0

∫ s0

0

(s0 − s)wκs (s, t) ds (2.4.2)

for all t ∈ (0, Tmax), where λ− := max{0,−λ}.

Proof. By an argument similar to that in the proof of [60, Lemma 4.1], we can show

that ϕ ∈ C0([0, Tmax)) ∩ C1((0, Tmax)). Moreover, we see from (2.2.6) that

ϕ′(t) =

∫ s0

0

s−γ(s0 − s)wt ds

= n2

∫ s0

0

s2−
2
n
−γ(s0 − s)wss ds

+ χn

∫ s0

0

s−γ(s0 − s)ws(nws + 1)α−1w ds

− χn

∫ s0

0

s−γ(s0 − s)ws(nws + 1)α−1z ds

+ λ

∫ s0

0

s−γ(s0 − s)w ds− nκ−1µ

∫ s0

0

s−γ(s0 − s)

{∫ s

0

wκs (σ, t) dσ

}
ds

(2.4.3)
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for all t ∈ (0, Tmax). Because 0 < α < 1 and ws ≥ 0, we have (nws + 1)α−1 ≤ 1. Thus,

we can estimate the third term on the right-hand side of (2.4.3) as

−χn
∫ s0

0

s−γ(s0 − s)ws(nws + 1)α−1z ds ≥ −χn
∫ s0

0

s−γ(s0 − s)wsz ds. (2.4.4)

Estimating the right-hand side of (2.4.4) and the first, fourth and fifth terms on the

right-hand side of (2.4.3) similarly in [60, Proof of Lemma 4.1], we obtain (2.4.2).

2.4.1. Estimates for the three integrals in the inequality for ϕ′

In this subsection we show estimates for the first, third, fourth and fifth terms on

the right-hand side of (2.4.2). First we establish an estimate for the first term on the

right-hand side of (2.4.2).

Lemma 2.4.2. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0, κ > 1 and

γ ∈
(
1− 2

n
, 1
)
. For all L̃ > 0, M0 > 0 and ε > 0, there is C = C(R,α, λ, L̃,M0, ε) > 0

such that if u0 satisfies (2.1.2), (2.3.1) and
∫
Ω
u0(x) dx ≤M0, then for each s0 ∈ (0, R),∫ s0

0

s−γ(s0 − s)ws(s, t)(nws(s, t) + 1)α−1w(s, t) ds

≥ C

∫ s0

0

s−γ+(n−1)(1−α)+ ε
n
(1−α)(s0 − s)ws(s, t)w(s, t) ds

for all t ∈ (0, T̂max), where T̂max := min{1, Tmax}.

Proof. Let ε > 0 and u0 satisfy (2.1.2) and (2.3.1) as well as
∫
Ω
u0(x) dx ≤M0. Then,

according to Lemma 2.3.3, we can find c1 = c1(R, λ, L̃,M0, ε) > 0 such that

u(r, t) ≤ c1r
−n(n−1)−ε for all r ∈ (0, R) and t ∈ (0, T̂max).

Therefore the first equality of (2.2.3) and this inequality yield

nws(s, t) = u(s
1
n , t) ≤ c1s

−(n−1)− ε
n for all s ∈ (0, Rn) and t ∈ (0, T̂max). (2.4.5)

Thanks to (2.4.5), we infer from the condition 0 < α < 1 that for each s0 ∈ (0, Rn),∫ s0

0

s−γ(s0 − s)ws(nws + 1)α−1w ds

≥
∫ s0

0

s−γ(s0 − s)(c1s
−(n−1)− ε

n + 1)α−1wsw ds

=

∫ s0

0

s−γ+(n−1)(1−α)+ ε
n
(1−α)(s0 − s)(c1 + s(n−1)+ ε

n )α−1wsw ds

≥ (c1 +Rn(n−1)+ε)α−1

∫ s0

0

s−γ+(n−1)(1−α)+ ε
n
(1−α)(s0 − s)wsw ds

for all t ∈ (0, T̂max), which concludes the proof.
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We next have the following lemma which plays an important role in obtaining an

estimate for w defined in (2.2.1). The proof is based on that of [60, Lemma 4.2].

Lemma 2.4.3. Let γ ∈ (0, 2), 0 < β < γ and s0 > 0. Assume that φ ∈ C1([0, s0]) is

nonnegative, φ(0) = 0 and φ′(s) ≥ 0 for all s ∈ (0, s0). Then

φ(s) ≤ (β + 2)
1

β+2 s
γ−β
β+2 (s0 − s)−

1
β+2

{∫ s0

0

σ−γ+β(s0 − σ)φβ+1(σ)φ′(σ) dσ

} 1
β+2

(2.4.6)

for all s ∈ (0, s0).

Proof. We set ψ(s) := 1
β+2

s−γ+β(s0−s)φβ+2(s), s ∈ (0, s0]. Since γ ∈ (0, 2), 0 < β < γ,

φ′ ∈ C0([0, s0]) and φ(0) = 0, we can regard ψ as a function in C0([0, s0])∩C1((0, s0))

with ψ(0) = 0. Therefore we see from a direct computation that for all s ∈ (0, s0),

ψ(s) =

∫ s

0

ψ′(σ) dσ

=

∫ s

0

{
σ−γ+β(s0 − σ)φβ+1(σ)φ′(σ)− γ − β

β + 2
σ−γ+β−1(s0 − σ)φβ+2(σ)

− 1

β + 2
σ−γ+βφβ+2(σ)

}
dσ

≤
∫ s0

0

σ−γ+β(s0 − σ)φβ+1(σ)φ′(σ) dσ,

which derives (2.4.6) from the definition of ψ.

In order to prepare estimates for the third, fourth and fifth terms on the right-hand

side of (2.4.2) we derive an estimate for w in terms of wws. Let ε > 0, γ ∈ (1 − 2
n
, 1)

and s0 ∈ (0, Rn). We put

β := (n− 1)(1− α) +
ε

n
(1− α) < γ. (2.4.7)

Assume M0 > 0 and
∫
Ω
u0(x) dx ≤ M0. Then, by means of Lemma 2.3.1, we can take

c1 = c1(R, λ,M0) > 0 such that

w(σ, t) ≤ c1

for all σ ∈ (0, s0) and t ∈ (0, T̂max). Applying Lemma 2.4.3 to w, from this inequality

we can find c2 = c2(γ, β) > 0 such that

w(s, t) ≤ c2s
γ−β
β+2 (s0 − s)−

1
β+2

{∫ s0

0

σ−γ+β(s0 − σ)wβ+1ws dσ

} 1
β+2

≤ c2c
β

β+2

1 s
γ−β
β+2 (s0 − s)−

1
β+2

{∫ s0

0

σ−γ+β(s0 − σ)wws dσ

} 1
β+2

(2.4.8)
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for all t ∈ (0, T̂max). Using (2.4.8), we establish estimates for the third, fourth and fifth

terms on the right-hand side of (2.4.2) in the following three lemmas.

Lemma 2.4.4. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0 and κ > 1, and let

γ ∈ (0, 2) and 0 < β < γ be such that

1

β + 1

(
2− 4

n

)
− β

β + 1
· 2
n
> γ. (2.4.9)

Then for all M0 > 0 there exists C = C(R, λ,M0, γ, β) > 0 such that if u0 satisfies

(2.1.2) and
∫
Ω
u0(x) dx ≤M0, then for each s0 ∈ (0, Rn),

s0

∫ s0

0

s−γ−
2
nw(s, t) ds ≤ Cs

2−γ− 2
n
+ γ−β−1

β+2

0

{∫ s0

0

s−γ+β(s0 − s)w(s, t)ws(s, t) ds

} 1
β+2

for all t ∈ (0, T̂max), where T̂max := min{1, Tmax}.

Proof. The proof of this lemma is similar to that of [60, Lemma 4.3]. By virtue of

(2.4.8), we see that there exists c1 = c1(R, λ,M0, γ, β) > 0 such that

s0

∫ s0

0

s−γ−
2
nw ds

≤ c1

{∫ s0

0

σ−γ+β(s0 − σ)wws dσ

} 1
β+2

s0

∫ s0

0

s−γ−
2
n
+ γ−β

β+2 (s0 − s)−
1

β+2 ds

for all t ∈ (0, T̂max). By a variable transformation as s = s0σ, we obtain

s0

∫ s0

0

s−γ−
2
n
+ γ−β

β+2 (s0 − s)−
1

β+2 ds

= s0

∫ 1

0

(s0σ)
−γ− 2

n
+ γ−β

β+2 (s0 − s0σ)
− 1

β+2 s0 ds

= s
2−γ− 2

n
+ γ−β−1

β+2

0 B

(
1− γ − 2

n
+
γ − β

β + 2
, 1− 1

β + 2

)
,

where B is Euler’s Beta function. Now, noting from (2.4.9) that

1− γ − 2

n
+
γ − β

β + 2
= 1− 2

n
− β

β + 2
− β + 1

β + 2
· γ

> 1− 2

n
− β

β + 2
− 1

β + 2

(
2− 4

n

)
+

β

β + 2
· 2
n

= 0,

we have B
(
1− γ − 2

n
+ γ−β

β+2
, 1− 1

β+2

)
<∞. Thus we attain the proof.
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Next we derive an estimate for the fourth term.

Lemma 2.4.5. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0 and κ > 1, and let

γ ∈ (0, 2) and 0 < β < γ be such that

2

1 + β
> γ. (2.4.10)

Then for all M0 > 0 there exists C = C(R, λ,M0, γ, β) > 0 such that if u0 satisfies

(2.1.2) and
∫
Ω
u0(x) dx ≤M0, then for each s0 ∈ (0, Rn),∫ s0

0

s−γ(s0 − s)w(s, t) ds

≤ Cs
2−γ+ γ−β−1

β+2

0

{∫ s0

0

s−γ+β(s0 − s)w(s, t)ws(s, t) ds

} 1
β+2

(2.4.11)

for all t ∈ (0, T̂max), where T̂max := min{1, Tmax}.

Proof. The proof is based on that of [60, Lemma 4.4]. From (2.4.10) we have

1− γ +
γ − β

β + 2
= 1− β

β + 2
− β + 1

β + 2
· γ

> 1− β

β + 2
− 2

β + 2

= 0.

Hence, noting that B
(
1 − γ + γ−β

β+2
, 1 − 1

β+2

)
< ∞, we obtain from (2.4.8) that there

exists c1 = c1(R, λ,M0, γ, β) > 0 such that∫ s0

0

s−γ(s0 − s)w ds

≤ s0

∫ s0

0

s−γw ds

≤ c1

{∫ s0

0

σ−γ+β(s0 − σ)wws dσ

} 1
β+2

s0

∫ s0

0

s−γ+
γ−β
β+2 (s0 − s)−

1
β+2 ds

= c1

{∫ s0

0

σ−γ+β(s0 − σ)wws dσ

} 1
β+2

s
2−γ+ γ−β−1

β+2

0 B

(
1− γ +

γ − β

β + 2
, 1− 1

β + 2

)
for all t ∈ (0, T̂max). Thus we attain (2.4.11).

The next lemma gives an estimate for the last term in the right-hand side of (2.4.2).
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Lemma 2.4.6. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0 and κ > 1, and let

γ ∈ (0, 2) and 0 < β < γ be such that

(n− 1)(κ− 1) <
γ − β

β + 2
. (2.4.12)

Then for all L̃ > 0, M0 > 0 and ε > 0 there is C = C(R, λ, κ, γ, β, L̃,M0, ε) > 0 such

that if u0 satisfies (2.1.2), (2.3.1) and
∫
Ω
u0(x) dx ≤M0, then for each s0 ∈ (0, Rn),

s1−γ0

∫ s0

0

(s0 − s)wκs (s, t) ds

≤ Cs
2−γ−(n−1)(κ−1)+ γ−β−1

β+2
−ε

0

{∫ s0

0

s−γ+β(s0 − s)w(s, t)ws(s, t) ds

} 1
β+2

for all t ∈ (0, T̂max), where T̂max := min{1, Tmax}.

Proof. The proof of this lemma is based on arguments in the proof of [60, Lemma 4.5].

Let ε > 0. In view of (2.4.12) we can find η > 0 fulfilling

η

n
(κ− 1) < min{1, ε} (2.4.13)

and

(n− 1)(κ− 1) +
η

n
(κ− 1) <

γ − β

β + 2
. (2.4.14)

In light of Lemma 2.3.3, there exists c1 = c1(R, λ, L̃,M0, ε) > 0 such that

u(r, t) ≤ c1r
−n(n−1)−η

for all r ∈ (0, R) and t ∈ (0, T̂max). Thus we have from this inequality and the first

identity of (2.2.3) that

wκ−1
s (s, t) =

(
u(s

1
n , t)

n

)κ−1

≤ c2s
−(n−1)(κ−1)− η

n
(κ−1)

for all s ∈ (0, Rn) and t ∈ (0, T̂max), where c2 :=
(
c1
n

)κ−1
. By using this inequality, we

see that

s1−γ0

∫ s0

0

(s0 − s)wκs ds ≤ c2s
1−γ
0

∫ s0

0

s−(n−1)(κ−1)− η
n
(κ−1)(s0 − s)ws ds (2.4.15)
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for all t ∈ (0, T̂max). Moreover, from integration by parts, (2.4.13) and the relation

s < s0, we infer that

c2s
1−γ
0

∫ s0

0

s−(n−1)(κ−1)− η
n
(κ−1)(s0 − s)ws ds

= − lim inf
δ↘0

{
c2s

1−γ
0 δ−(n−1)(κ−1)− η

n
(κ−1)(s0 − δ)w(δ, t)

}
+
[
(n− 1)(κ− 1) +

η

n
(κ− 1)

]
c2s

1−γ
0

∫ s0

0

s−(n−1)(κ−1)−1− η
n
(κ−1)(s0 − s)w ds

+ c2s
1−γ
0

∫ s0

0

s−(n−1)(κ−1)− η
n
(κ−1)w ds

≤ [(n− 1)(κ− 1) + 1]c2s
2−γ
0

∫ s0

0

s−(n−1)(κ−1)−1− η
n
(κ−1)w ds

+ c2s
2−γ
0

∫ s0

0

s−(n−1)(κ−1)−1− η
n
(κ−1)w ds

= [(n− 1)(κ− 1) + 2]c2s
2−γ
0

∫ s0

0

s−(n−1)(κ−1)−1− η
n
(κ−1)w ds (2.4.16)

for all t ∈ (0, T̂max). Recalling (2.4.8), we obtain c3 = c3(R, λ,M0, γ, β) > 0 such that∫ s0

0

s−(n−1)(κ−1)−1− η
n
(κ−1)w ds

≤ c3

{∫ s0

0

σ−γ+β(s0 − σ)wws dσ

} 1
β+2
∫ s0

0

s−(n−1)(κ−1)−1+ γ−β
β+2

− η
n
(κ−1)(s0 − s)−

1
β+2 ds

= c3c4

{∫ s0

0

σ−γ+β(s0 − σ)wws dσ

} 1
β+2

s
−(n−1)(κ−1)+ γ−β−1

β+2
− η

n
(κ−1)

0 , (2.4.17)

where c4 := B
(
γ−β
β+2

− (n− 1)(κ− 1)− η
n
(κ− 1), 1− 1

β+2

)
, which is finite from (2.4.14).

A combination of (2.4.15)–(2.4.17) and the relation (2.4.13) imply that

s1−γ0

∫ s0

0

(s0 − s)wκs ds

≤ [(n− 1)(κ− 1) + 2]c5s
2−γ−(n−1)(κ−1)+ γ−β−1

β+2
− η

n
(κ−1)

0

{∫ s0

0

s−γ+β(s0 − s)wws ds

} 1
β+2

≤ [(n− 1)(κ− 1) + 2]c5c6s
2−γ−(n−1)(κ−1)+ γ−β−1

β+2
−ε

0

{∫ s0

0

s−γ+β(s0 − s)wws ds

} 1
β+2

for all t ∈ (0, T̂max), where c5 := c2c3c4 and c6 := Rnε−η(κ−1), which concludes the

proof.
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2.4.2. Pointwise estimate for a math accumulation function z

We first state the following lemma which was proved in [60].

Lemma 2.4.7. Let α ∈ (1, 2), β ∈ (0, 1). Then there exists C = C(α, β) > 0 such

that if s0 > 0, then∫ s

0

∫ s0

σ

ξ−α(s0 − ξ)−β dξdσ ≤ Cs−β0 s2−α for all s ∈ (0, s0).

Next, in order to have an estimate for the second term of the right-hand side of

(2.4.2) we establish an estimate for z defined in (2.2.2).

Lemma 2.4.8. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0, κ > 1,

γ ∈
(
0, 2− 4

n

)
and 0 < β < γ. Then for all M0 > 0 there is C = C(R, λ,M0, γ, β) > 0

such that if u0 satisfies (2.1.2) and
∫
Ω
u0(x) dx ≤ M0, then for each s0 ∈ (0, Rn), z

defined in (2.2.2) fulfills

z(s, t) ≤ Cs
2
n
−1

0 s+ Cs
− 1

β+2

0 s
2
n
+ γ−β

β+2

{∫ s0

0

s−γ+β(s0 − s)w(s, t)ws(s, t) ds

} 1
β+2

for all s ∈ (0, s0) and t ∈ (0, T̂max), where T̂max := min{1, Tmax}.

Proof. The proof is similar to that of [60, Lemma 4.7]. According to Lemma 2.3.2,

there exists c1 = c1(R, λ,M0) > 0 such that

v(r, t) ≤ c1r
2−n (2.4.18)

for all r ∈ (0, R) and t ∈ (0, T̂max). We infer from (2.2.5) that

rn−1vr(r, t) ≥ −w(rn, t)

for all r ∈ (0, R) and t ∈ (0, Tmax). Thus, for all s ∈ (0, Rn) and t ∈ (0, Tmax) we obtain

from the second identity of (2.2.4) that

zss(s, t) =
1

n2
s

1
n
−1vr(s

1
n , t) ≥ − 1

n2
s

2
n
−2w(s, t).

Let s0 ∈ (0, Rn). By making use of (2.4.18) and this inequality, we can observe that

zs(s, t) = zs(s0, t)−
∫ s0

s

zss(σ, t) dσ

=
1

n
v(s

1
n
0 , t)−

∫ s0

s

zss(σ, t) dσ

≤ c1
n
s

2
n
−1

0 +
1

n2

∫ s0

s

σ
2
n
−2w(σ, t) dσ
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for all s ∈ (0, s0) and t ∈ (0, T̂max). Therefore, z defined in (2.2.2) satisfies

z(s, t) =

∫ s

0

zs(σ, t) dσ

≤ c1
n
s

2
n
−1

0 s+
1

n2

∫ s

0

∫ s0

σ

ξ
2
n
−2w(ξ, t) dξdσ

for all s ∈ (0, s0) and t ∈ (0, T̂max). Moreover, applying (2.4.8) to w of the second term

on the right-hand side of the above inequality, we find c2 = c2(λ,M0, γ, β) > 0 such

that

z(s, t)

≤ c1
n
s

2
n
−1

0 s+
c2
n2

{∫ s0

0

σ−γ+β(s0 − σ)wws dσ

} 1
β+2
∫ s

0

∫ s0

σ

ξ
2
n
−2+ γ−β

β+2 (s0 − ξ)−
1

β+2 dξdσ

for all s ∈ (0, s0) and t ∈ (0, T̂max). Since γ ∈
(
0, 2− 4

n

)
, we see that γ−β

β+2
< γ

2
< 1− 2

n
.

Thus we have that

2 > − 2

n
+ 2− γ − β

β + 2
> − 2

n
+ 2− 1 +

2

n
= 1.

By virtue of Lemma 2.4.7, it follows that there exists c3 = c3(γ, β) > 0 such that∫ s

0

∫ s0

σ

ξ
2
n
−2+ γ−β

β+2 (s0 − ξ)−
1

β+2 dξdσ ≤ c3s
− 1

β+2

0 s
2
n
+ γ−β

β+2

for all s ∈ (0, s0), which infers the claim.

2.4.3. Estimate for the integral involving z

In this subsection we establish an estimate for the second term on the right-hand

side of (2.4.2). The proof of the following lemma is based on that of [60, Lemma 4.8].

Lemma 2.4.9. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0 and κ > 1, and let

γ ∈ (0, 1) with γ < 2− 4
n
and 0 < β < γ be such that

2

n
· β + 2

β
− 2 > γ. (2.4.19)

Then, for all M0 > 0 there exists C = C(R, λ,M0, γ, β) > 0 such that if u0 satisfies

(2.1.2) and
∫
Ω
u0(x) dx ≤M0, then for each s0 ∈ (0, Rn),

n(γ + 1)s0

∫ s0

0

s−γ−1z(s, t)w(s, t) ds

≤ Cs
2
n
+1−γ

0 + Cs
1+ 2

n
+

2(γ−β−1)
β+2

−γ
0

{∫ s0

0

s−γ+β(s0 − s)w(s, t)ws(s, t) ds

} 2
β+2

(2.4.20)

for all t ∈ (0, T̂max), where T̂max := min{1, Tmax}.
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Proof. From Lemma 2.4.8 we find c1 = c1(R, λ,M0, γ) > 0 such that

s0

∫ s0

0

s−γ−1zw ds

≤ c1s
2
n
0

∫ s0

0

s−γw ds

+ c1

{∫ s0

0

σ−γ+β(s0 − σ)wws dσ

} 1
β+2

s
1− 1

β+2

0

∫ s0

0

s−γ−1+ 2
n
+ γ−β

β+2w ds (2.4.21)

for all t ∈ (0, T̂max). Moreover, Lemma 2.3.1 ensures that there is c2 = c2(λ,M0) > 0

such that

w(s, t) ≤ c2 for all s ∈ (0, Rn) and t ∈ (0, T̂max).

This estimate and the condition γ < 1 imply

c1s
2
n
0

∫ s0

0

s−γw ds ≤ c1c2s
2
n
0

∫ s0

0

s−γ ds

=
c1c2
1− γ

s
2
n
+1−γ

0 (2.4.22)

for all t ∈ (0, T̂max). On the other hand, we deduce from (2.4.19) that

2

n
− γ +

2(γ − β)

β + 2
=

2

n
− 2β

β + 2
− β

β + 2
· γ

>
2

n
− 2β

β + 2
− 2

n
+

2β

β + 2

= 0.

Hence we see from (2.4.8) that there exists c3 = c3(λ,M0, γ, β) > 0 such that

s
1− 1

β+2

0

∫ s0

0

s−γ−1+ 2
n
+ γ−β

β+2w ds

≤ c3

{∫ s0

0

s−γ+β(s0 − s)wws ds

} 1
β+2

s
1− 1

β+2

0

∫ s0

0

s−γ−1+ 2
n
+

2(γ−β)
β+2 (s0 − s)−

1
β+2 ds

= c3c4

{∫ s0

0

s−γ+β(s0 − s)wws ds

} 1
β+2

s
1+ 2

n
−γ+ 2(γ−β−1)

β+2

0 (2.4.23)

for all t ∈ (0, T̂max), where c4 := B
(
2
n
−γ+ 2(γ−β)

β+2
, 1− 1

β+2

)
. A combination of (2.4.21),

(2.4.22) and (2.4.23) yields (2.4.20).
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2.4.4. Differential inequalities for ϕ

In this subsection we derive a super-linear differential inequality for ϕ defined in

(2.4.1). In order to apply Lemmas 2.4.4, 2.4.5, 2.4.6 and 2.4.9 to (2.4.2) we will find

γ ∈ (1− 2
n
, 1) satisfying that γ < 2− 4

n
and

(n− 1)(κ− 1)(2 + cn,α) + cn,α < γ, (2.4.24)

1

cn,α + 1

(
2− 4

n

)
− cn,α
cn,α + 1

· 2
n
> γ, (2.4.25)

2

n
· cn,α + 2

cn,α
− 2 > γ, (2.4.26)

2

cn,α + 1
> γ, (2.4.27)

where

cn,α := (n− 1)(1− α).

We put

An,α :=
1

cn,α + 1

(
2− 4

n

)
− cn,α
cn,α + 1

· 2
n

and Bn,α :=
2

n
· cn,α + 2

cn,α
− 2.

In Sections 2.4.4 and 2.4.4 we treat the cases An,α < Bn,α and Bn,α ≤ An,α, respectively,

in order to choose γ ∈ (1− 2
n
, 1) fulfilling γ < 2− 4

n
and (2.4.24)–(2.4.27). In Section

2.4.4 we derive a super-linear differential inequality for ϕ.

Existence of γ. Case 1: An,α < Bn,α

We first prove that in the case An,α < Bn,α there exists γ ∈ (1− 2
n
, 1) with γ < 2− 4

n

satisfying (2.4.24)–(2.4.27).

Lemma 2.4.10. Let n ≥ 3, 0 < α < 1 and κ > 1. Assume that α and κ satisfy the

following conditions :

n = 3, 5
6
< α < 1 and κ < 1 + 6α−5

6(3−2α)
, (2.4.28)

n = 4, 5
6
< α < 1 and κ < 1 + 6α−5

6(4−3α)
, (2.4.29)

n = 5,


11
12
< α ≤ 27

28
and κ < 1 + 20α−17

20(5−4α)
,

27
28
< α < 1 and κ < 1 + 4α−3

8(3−2α)
,

(2.4.30)

n ≥ 6, 1− 1
(n−2)(n−1)

< α < 1 and κ < 1 + 1−(n−1)(1−α)
(n−1){2+(n−1)(1−α)} . (2.4.31)

Then there exists γ ∈ (1− 2
n
, 1) such that γ < 2− 4

n
and (2.4.24)–(2.4.27) hold.
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Proof. First we have An,α < Bn,α. Indeed, in the case n = 3, noting that c3,α = 2(1−α),
we obtain from (2.4.28) that

B3,α − A3,α =

(
2

3
· c3,α + 2

c3,α
− 2

)
−
(

1

c3,α + 1
· 2
3
− c3,α
c3,α + 1

· 2
3

)
=

(4α− 2)(2− α)

3(1− α)(3− 2α)
> 0.

In the case n = 4, invoking that c4,α = 3(1− α), we use (2.4.29) to deduce that

B4,α − A4,α =

(
1

2
· c4,α + 2

c4,α
− 2

)
−
(

1

c4,α + 1
− c4,α
c4,α + 1

· 1
2

)
=

(5− 3α)(6α− 5)

6(1− α)(4− 3α)
> 0.

In the case n = 5, by noticing that c5,α = 4(1− α), it follows from (2.4.30) that

B5,α − A5,α =

(
2

5
· c5,α + 2

c5,α
− 2

)
−
(

1

c5,α + 1
· 6
5
− c5,α
c5,α + 1

· 2
5

)
=

(12α− 11)(3− 2α)

5(5− 4α)(1− α)
> 0.

In the case n ≥ 6, recalling cn,α = (n− 1)(1− α), we see from (2.4.31) that

Bn,α − An,α =

(
2

n
· cn,α + 2

cn,α
− 2

)
−
(

1

cn,α + 1

(
2− 4

n

)
− cn,α
cn,α + 1

· 2
n

)
=

2[1− (n− 2)cn,α](cn,α + 2)

ncn,α(cn,α + 1)

=
2{1− (n− 2)(n− 1)(1− α)}(cn,α + 2)

ncn,α(cn,α + 1)
> 0.

Next we show that the following conditions hold:

An,α > 1− 2

n
, (2.4.32)

(n− 1)(κ− 1)(2 + cn,α) + cn,α < min

{
1, 2− 4

n

}
, (2.4.33)

(n− 1)(κ− 1)(2 + cn,α) + cn,α < An,α. (2.4.34)

In the case n = 3, since 5
6
< α < 1 and κ < 1 + 6α−5

6(3−2α)
, we have

A3,α =
1

c3,α + 1
· 2
3
− c3,α
c3,α + 1

· 2
3
=

4α− 2

3(3− 2α)
>

1

3
= 1− 2

3
(2.4.35)
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and

2(κ− 1)(2 + c3,α) + c3,α = 2(κ− 1)(4− 2α) + 2(1− α)

<
4α− 2

3(3− 2α)

<
2

3
= 2− 4

3
.

Moreover, noting the left-hand side in (2.4.35), we obtain

2(κ− 1)(2 + c3,α) + c3,α <
4α− 2

3(3− 2α)
= A3,α,

that is, in the case n = 3 we conclude that (2.4.32), (2.4.33) and (2.4.34) hold. Similarly,

in the case n = 4, since 5
6
< α < 1 and κ < 1 + 6α−5

6(4−3α)
, we see that

A4,α =
1

c4,α + 1
− c4,α
c4,α + 1

· 1
2
=

3α− 1

2(4− 3α)
>

1

2
= 1− 2

4

and

3(κ− 1)(2 + c4,α) + c4,α = 3(κ− 1)(5− 3α) + 3(1− α)

<
3α− 1

2(4− 3α)

< 1

as well as

3(κ− 1)(2 + c4,α) + c4,α <
3α− 1

2(4− 3α)
= A4,α,

that is, in the case n = 4 we attain (2.4.32), (2.4.33) and (2.4.34). We next observe

the case n = 5. If 11
12
< α ≤ 27

28
and κ < 1 + 20α−17

20(5−4α)
, then

A5,α =
1

c5,α + 1
· 6
5
− c5,α
c5,α + 1

· 2
5
=

8α− 2

5(5− 4α)
>

4

5
>

3

5
= 1− 2

5

and

4(κ− 1)(2 + c5,α) + c5,α = 4(κ− 1)(6− 4α) + 4(1− α)

<
8α− 2

5(5− 4α)

≤ 1
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as well as

4(κ− 1)(2 + c5,α) + c5,α <
8α− 2

5(5− 4α)
= A5,α.

If 27
28
< α < 1 and κ < 1 + 4α−3

8(3−2α)
, then, noting that 11

12
< α, we obtain

A5,α > 1− 2

5

and

4(κ− 1)(2 + c5,α) + c5,α = 4(κ− 1)(6− 4α) + 4(1− α)

< 4α− 3 + 4− 4α = 1

as well as, noticing that A5,α = 8α−2
5(5−4α)

> 1, we can verify that

4(κ− 1)(2 + c5,α) + c5,α < 1 < A5,α.

Thus, in the case n = 5 we have that (2.4.32), (2.4.33) and (2.4.34) hold. In the case

n ≥ 6, invoking 0 < 1− α < 1
(n−2)(n−1)

and κ < 1 + 1−(n−1)(1−α)
(n−1)(2+cn,α)

, we see that

1

cn,α + 1

(
2− 4

n

)
− cn,α
cn,α + 1

· 2
n
=

2n− 4− 2(n− 1)(1− α)

{(n− 1)(1− α) + 1}n

> 2− 6

n
≥ 1 > 1− 2

n

and

(n− 1)(κ− 1)(2 + cn,α) + cn,α

< (n− 1) · 1− (n− 1)(1− α)

(n− 1)(2 + cn,α)
· (2 + cn,α) + (n− 1)(1− α)

= 1

as well as

(n− 1)(κ− 1)(2 + cn,α) + cn,α < 1 <
1

cn,α + 1

(
2− 4

n

)
− cn,α
cn,α + 1

· 2
n
= An,α,

that is, in the case n ≥ 6 we infer that (2.4.32), (2.4.33) and (2.4.34) hold. Therefore

we can pick γ ∈ (1− 2
n
, 1) with γ < 2− 4

n
satisfying (2.4.24) and (2.4.25). Noting that

An,α < Bn,α and

2

cn,α + 1
>

1

cn,α + 1

(
2− 4

n

)
− cn,α
cn,α + 1

· 2
n
= An,α,

we attain (2.4.26) and (2.4.27).
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Existence of γ. Case 2: Bn,α ≤ An,α

Next we show that in the case Bn,α ≤ An,α there is γ ∈ (1 − 2
n
, 1) with γ < 2 − 4

n

satisfying (2.4.24)–(2.4.27).

Lemma 2.4.11. Let n ≥ 5, 0 < α < 1 and κ > 1. Assume that α and κ satisfy that

n = 5, 10
11
< α ≤ 11

12
and κ < 1 + 10α−9

40(1−α) , (2.4.36)

n ≥ 6,



1− 4
(3n−4)(n−1)

< α ≤ 1− 4
(3n−2)(n−1)

and κ < 1 + 4−(n−1)2(1−α){2+n(1−α)}
n(n−1)2(1−α){2+(n−1)(1−α)} ,

1− 4
(3n−2)(n−1)

< α ≤ 1− 1
(n−2)(n−1)

and κ < 1 + 1−(n−1)(1−α)
(n−1){2+(n−1)(1−α)} .

(2.4.37)

Then there exists γ ∈ (1− 2
n
, 1) satisfying (2.4.24)–(2.4.27).

Proof. First we can observe that Bn,α ≤ An,α. Indeed, in the case n = 5, noting that

c5,α = 4(1− α), we deduce from (2.4.36) that

B5,α − A5,α =

(
2

5
· c5,α + 2

c5,α
− 2

)
−
(

1

c5,α + 1

(
2− 4

5

)
− c5,α
c5,α + 1

· 2
5

)
=

(12α− 11)(3− 2α)

5(5− 4α)(1− α)

≤ 0,

and moreover, in the case n ≥ 6, recalling cn,α = (n− 1)(1− α), we see from (2.4.37)

that

Bn,α − An,α =

(
2

n
· cn,α + 2

cn,α
− 2

)
−
(

1

cn,α + 1

(
2− 4

n

)
− cn,α
cn,α + 1

· 2
n

)
=

2{1− (n− 2)(n− 1)(1− α)}(cn,α + 2)

ncn,α(cn,α + 1)

≤ 0.

Next we show that the following conditions hold:

Bn,α > 1− 2

n
, (2.4.38)

(n− 1)(κ− 1)(2 + cn,α) + cn,α < 1, (2.4.39)

(n− 1)(κ− 1)(2 + cn,α) + cn,α < Bn,α. (2.4.40)
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In the case n = 5, since 10
11
< α ≤ 11

12
and κ < 1 + 10α−9

40(1−α) , we have

B5,α =
2

5
· c5,α + 2

c5,α
− 2 =

8α− 7

5(1− α)
>

3

5
= 1− 2

5

and

4(κ− 1)(2 + c5,α) + c5,α = 4(κ− 1)(6− 4α) + 4(1− α)

<
8α− 7

5(1− α)

<
4

5
< 1,

as well as

4(κ− 1)(2 + c5,α) + c5,α <
8α− 7

5(1− α)
= B5,α,

that is, (2.4.38), (2.4.39) and (2.4.40) hold in the case n = 5. We next consider the

case n ≥ 6. If

1− 4

(3n− 4)(n− 1)
< α ≤ 1− 4

(3n− 2)(n− 1)

and

κ < 1 +
4− (n− 1)2(1− α){2 + n(1− α)}

n(n− 1)2(1− α)(2 + cn,α)
,

then we obtain from (2.4.37) that

Bn,α =
2

n
· cn,α + 2

cn,α
− 2 =

2

n
+

2

n
· 2

(n− 1)(1− α)
− 2

>
2

n
+ 3− 4

n
− 2 = 1− 2

n

and

(n− 1)(κ− 1)(2 + cn,α) + cn,α

< (n− 1) · 4− (n− 1)2(1− α){2 + n(1− α)}
n(n− 1)2(1− α)(2 + cn,α)

· (2 + cn,α) + (n− 1)(1− α)

=
4

n(n− 1)(1− α)
− 2 +

2

n

≤ 1

as well as

(n− 1)(κ− 1)(2 + cn,α) + cn,α <
4

n(n− 1)(1− α)
− 2 +

2

n
= Bn,α.
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If

1− 4

(3n− 2)(n− 1)
< α ≤ 1− 1

(n− 2)(n− 1)

and

κ < 1 +
1− (n− 1)(1− α)

(n− 1)(2 + cn,α)
,

then

Bn,α =
2

n
· cn,α + 2

cn,α
− 2

=
2

n
+

2

n
· 2

(n− 1)(1− α)
− 2

> 1

> 1− 2

n

and

(n− 1)(κ− 1)(2 + cn,α) + cn,α

< (n− 1) · 1− (n− 1)(1− α)

(n− 1)(2 + cn,α)
· (2 + cn,α) + (n− 1)(1− α)

= 1

as well as

(n− 1)(κ− 1)(2 + cn,α) + cn,α < 1 <
2

n
· cn,α + 2

cn,α
− 2 = Bn,α,

that is, in the case n ≥ 6 we can make sure that (2.4.38), (2.4.39) and (2.4.40) hold.

Therefore we can take γ ∈ (1 − 2
n
, 1) satisfying (2.4.24) and (2.4.26). Noting that

Bn,α ≤ An,α and

2

cn,α + 1
>

1

cn,α + 1

(
2− 4

n

)
− cn,α
cn,α + 1

· 2
n

= An,α,

we can verify that (2.4.25) and (2.4.27) hold.

Derivation of super-linear differential inequalities for ϕ

Finally, by using Lemmas 2.4.10 and 2.4.11 we obtain a super-linear differential

inequality for ϕ.
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Lemma 2.4.12. Let n ≥ 3, R > 0, χ > 0, 0 < α < 1, λ ∈ R, µ > 0 and

κ > 1. Assume that α and κ satisfy (2.1.6), (2.1.7), (2.1.8) and (2.1.9). Then there

exist γ = γ(α, κ) ∈ (1 − 2
n
, 1) and β ∈ (0, γ) satisfying (2.4.9), (2.4.10), (2.4.12)

and (2.4.19) with the following property : For all L̃ > 0 and M0 > 0 there exists

C = C(R,χ, α, λ, µ, κ, β, L̃,M0) > 0 such that whenever u0 satisfies (2.1.2) and (2.3.1)

as well as
∫
Ω
u0(x) dx ≤ M0, for each s0 ∈ (0, Rn) the function ϕ defined in (2.4.1)

fulfills that

if n = 3, ϕ′(t) ≥ 1

C
s
(β+1)γ−(β+3)
0 ϕβ+2(t)− Cs

β+3
β+1

−γ− 2
n
·β+2
β+1

0

for all t ∈ (0, T̂max) and

if n ≥ 4, ϕ′(t) ≥ 1

C
s
(β+1)γ−(β+3)
0 ϕβ+2(t)− Cs

2
n
+1−γ

0

for all t ∈ (0, T̂max).

Proof. From Lemmas 2.4.10 and 2.4.11 we see that there exists γ ∈ (1 − 2
n
, 1) with

γ < 2 − 4
n
satisfying (2.4.24)–(2.4.27). Noting that cn,α < γ in view of (2.4.24) and

that cn,α <
2
n
by the conditions for α in (2.1.6), (2.1.7), (2.1.8) and (2.1.9), we can take

ε > 0 such that

β := cn,α +
ε

n
(1− α) < γ

fulfills (2.4.9), (2.4.10), (2.4.12), (2.4.19) and β < 2
n
. Moreover, we choose ε̃ > 0

satisfying that

ε̃ <
5β + 1

3(β + 2)
if n = 3, (2.4.41)

β + 2

β + 1
ε̃ < 1− 1− β

β + 1
· 2
n

if n ≥ 4. (2.4.42)

Thanks to Lemma 2.4.1, we can find c1 = c1(λ, µ, κ) > 0 such that

ϕ′(t) ≥ χn

∫ s0

0

s−γ(s0 − s)ws(nws + 1)α−1w ds

− χn(γ + 1)s0

∫ s0

0

s−γ−1zw ds− c1s0

∫ s0

0

s−γ−
2
nw ds

− c1

∫ s0

0

s−γ(s0 − s)w ds− c1s
1−γ
0

∫ s0

0

(s0 − s)wκs ds (2.4.43)
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for all t ∈ (0, Tmax). Now we set

ψ(t) :=

∫ s0

0

s−γ+β(s0 − s)wws ds t ∈ (0, Tmax).

From Lemma 2.4.2 there exists c2 = c2(R,α, λ, L̃,M0, ε) > 0 such that

χn

∫ s0

0

s−γ(s0 − s)ws(nws + 1)α−1w ds ≥ χnc2ψ(t) (2.4.44)

for all t ∈ (0, T̂max). Since (2.4.9) holds, we infer from Lemma 2.4.4 and the Young

inequality that there exists c3 = c3(R,α, λ, µ, κ,M0, ε) > 0 such that

c1s0

∫ s0

0

s−γ−
2
nw ds ≤ c3s

2−γ− 2
n
+ γ−β−1

β+2

0 ψ
1

β+2 (t)

≤ χc2
n

8
ψ(t) +

2c
β+2
β+1

3

χc2n
s
(2−γ− 2

n
+ γ−β−1

β+2 )β+2
β+1

0

= χc2
n

8
ψ(t) +

2c
β+2
β+1

3

χc2n
s

β+3
β+1

−γ− 2
n
·β+2
β+1

0 (2.4.45)

for all t ∈ (0, T̂max). Recalling that γ and β satisfy (2.4.12), we see from Lemma 2.4.6

that there exists c4 = c4(R,α, λ, µ, κ, L̃,M0, ε) > 0 such that

c1s
1−γ
0

∫ s0

0

(s0 − s)wκs ds

≤ c4s
2−γ−(n−1)(κ−1)+ γ−β−1

β+2
−ε̃

0 ψ
1

β+2 (t)

≤ χc2
n

8
ψ(t) +

2c
β+2
β+1

4

χc2n
s

β+3
β+1

−γ−β+2
β+1

((n−1)(κ−1)+ε̃)

0 (2.4.46)

for all t ∈ (0, T̂max). Since it is assumed that γ and β satisfy (2.4.19), it follows from

Lemma 2.4.9 that there exists c5 = c5(R,χ, α, λ, µ, κ,M0, ε) > 0 such that

χn(γ + 1)s0

∫ s0

0

s−γ−1zw ds

≤ c5s
2
n
+1−γ

0 + c5s
1+ 2

n
+

2(γ−β−1)
β+2

−γ
0 ψ

2
β+2 (t)

≤ c5s
2
n
+1−γ

0 + χc2
n

8
ψ(t) +

2c
β+2
β+1

5

χc2n
s
(1+ 2

n
−γ)β+2

β
+

2(γ−β−1)
β

0 (2.4.47)
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for all t ∈ (0, T̂max). By making use of (2.4.10), we can apply Lemma 2.4.5 to obtain

c6 = c6(R,α, λ, µ, κ,M0, ε) > 0 such that

c1

∫ s0

0

s−γ(s0 − s)w ds

≤ c6s
2−γ+ γ−β−1

β+2

0 ψ
1

β+2 (t)

≤ χc2
n

8
ψ(t) +

2c
β+2
β+1

6

χc2n
s

β+3
β+1

−γ
0 (2.4.48)

for all t ∈ (0, T̂max). Moreover, recalling the definition of ϕ (see (2.4.1)), we see from

the first estimate in (2.4.48) that

ψ(t) ≥
(
c1
c6

)β+2

s
−(2−γ)(β+2)−(γ−β−1)
0 ϕβ+2(t)

=

(
c1
c6

)β+2

s
(β+1)γ−(β+3)
0 ϕβ+2(t) (2.4.49)

for all t ∈ (0, T̂max). According to (2.4.44)–(2.4.49), we have

ϕ′(t) ≥ χc2
n

2

(
c1
c6

)β+2

s
(β+1)γ−(β+3)
0 ϕβ+2(t)

− c5s
2
n
+1−γ

0 − 2c
β+2
β+1

5

χc2n
s
(1+ 2

n
−γ)β+2

β
+

2(γ−β−1)
β

0 − 2c
β+2
β+1

3

χc2n
s

β+3
β+1

−γ− 2
n
·β+2
β+1

0

− 2c
β+2
β+1

6

χc2n
s

β+3
β+1

−γ
0 − 2c

β+2
β+1

4

χc2n
s

β+3
β+1

−γ−β+2
β+1

((n−1)(κ−1)+ε̃)

0 (2.4.50)

for all t ∈ (0, T̂max). If n = 3, then, comparing the exponents of s0 in the second and

third terms on the right-hand side of (2.4.50) with the exponent of s0 in the fourth

term, we infer that

c7 :=

(
2

n
+ 1− γ

)
−
(
β + 3

β + 1
− γ − 2

n
· β + 2

β + 1

)
=

2β + 3

β + 1
· 2
n
− 2

β + 1

=
2

β + 1
· 2β
3

> 0
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and

c8 :=

[(
1 +

2

n
− γ

)
β + 2

β
+

2(γ − β − 1)

β

]
−
(
β + 3

β + 1
− γ − 2

n
· β + 2

β + 1

)
= (β + 2)

(
1

β
+

1

β + 1

)
2

n
− 1− β + 3

β + 1

=
2β + 1

β(β + 1)
(β + 2)

2

n
− 2β + 4

β + 1

=
2(β + 2)

β + 1

(
2β + 1

3β
− 1

)
> 0,

because β < 1. Moreover, as to the sixth term on the right-hand side of (2.4.50),

noting from (2.4.12) that

(n− 1)(κ− 1) <
1− β

β + 2
,

we obtain from (2.4.41) that

c9 :=

[
β + 3

β + 1
− γ − β + 2

β + 1
((n− 1)(κ− 1) + ε̃)

]
−
(
β + 3

β + 1
− γ − 2

n
· β + 2

β + 1

)
= −β + 2

β + 1
(n− 1)(κ− 1)− β + 2

β + 1
ε̃+

2

n
· β + 2

β + 1

> −1− β

β + 1
− β + 2

β + 1
ε̃+

2

n
· β + 2

β + 1

=
5β + 1

3(β + 1)
− β + 2

β + 1
ε̃ > 0.

Thus we see that if n = 3, then the second through sixth terms on the right-hand side
of (2.4.50) are estimated as

c5s
2
n
+1−γ

0 +
2c

β+2
β+1

5

χc2n
s
(1+ 2

n
−γ)β+2

β
+

2(γ−β−1)
β

0 +
2c

β+2
β+1

3

χc2n
s

β+3
β+1

−γ− 2
n
·β+2
β+1

0

+
2c

β+2
β+1

6

χc2n
s

β+3
β+1

−γ
0 +

2c
β+2
β+1

4

χc2n
s

β+3
β+1

−γ−β+2
β+1

((n−1)(κ−1)+ε̃)

0

≤

c5R
c7n +

2c
β+2
β+1

5

χc2n
Rc8n +

2c
β+2
β+1

3

χc2n
+

2c
β+2
β+1

6

χc2n
R

2β+2
β+1 +

2c
β+2
β+1

4

χc2n
Rc9n

 s
β+3
β+1

−γ− 2
n
·β+2
β+1

0 . (2.4.51)

If n ≥ 4, then, observing the exponents of s0 in the third, fourth and fifth terms on

the right-hand side of (2.4.50) with the exponent of s0 in the second term, we have
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that

c10 :=

[(
1 +

2

n
− γ

)
β + 2

β
+

2(γ − β − 1)

β

]
−
(
2

n
+ 1− γ

)
=

(
β + 2

β
− 2β + 2

β
− 1

)
+

(
β + 2

β
− 1

)
2

n

= −2 +
2

β
· 2
n

> 0

and

c11 :=

(
β + 3

β + 1
− γ − 2

n
· β + 2

β + 1

)
−
(
2

n
+ 1− γ

)
=

2

β + 1
− 2β + 3

β + 1
· 2
n

=
2

β + 1

(
1− 2β + 3

n

)
> 0,

because β < 2
n
, as well as

c12 :=

(
β + 3

β + 1
− γ

)
−
(
2

n
+ 1− γ

)
> c11 > 0.

Furthermore, as to the sixth term on the right-hand side of (2.4.50), recalling that

(n− 1)(κ− 1) <
1− β

β + 2
,

we have from (2.4.42) that

c13 :=

[
β + 3

β + 1
− γ − β + 2

β + 1
((n− 1)(κ− 1) + ε̃)

]
−
(
2

n
+ 1− γ

)
>

2

β + 1
− 1− β

β + 1
− β + 2

β + 1
ε̃− 2

n

= 1− β + 2

β + 1
ε̃− 2

n

> 0.
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Thus we see that if n ≥ 4, then the second through sixth terms on the right-hand side

of (2.4.50) are estimated as

c5s
2
n
+1−γ

0 +
2c

β+2
β+1

5

χc2n
s
(1+ 2

n
−γ)β+2

β
+

2(γ−β−1)
β

0 +
2c

β+2
β+1

3

χc2n
s

β+3
β+1

−γ− 2
n
·β+2
β+1

0

+
2c

β+2
β+1

6

χc2n
s

β+3
β+1

−γ
0 +

2c
β+2
β+1

4

χc2n
s

β+3
β+1

−γ−β+2
β+1

((n−1)(κ−1)+ε̃)

0

≤

c5 + 2c
β+2
β+1

5

χc2n
Rc10n +

2c
β+2
β+1

3

χc2n
Rc11n +

2c
β+2
β+1

6

χc2n
Rc12n +

2c
β+2
β+1

4

χc2n
Rc13n

 s
2
n
+1−γ

0 . (2.4.52)

Therefore a combination of (2.4.51) and (2.4.52) with (2.4.50) derives this lemma.

2.5. Proof of Theorem 2.1.1

We are now in a position to complete the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. Suppose that α and κ satisfy (2.1.6)–(2.1.9) and let L̃ > 0

andM0 > 0. Thanks to Lemma 2.4.12, we see that there exist γ = γ(α, κ) ∈ (1− 2
n
, 1),

0 < β < γ and ci = ci(R,χ, α, λ, µ, κ, β, L̃,M0) > 0, i ∈ {1, 2, 3} such that for each

s0 ∈ (0, Rn) and any u0 fulfilling the first and second conditions in (2.1.10), the function

ϕ defined in (2.4.1) satisfies that

if n = 3, ϕ′(t) ≥ c1s
(β+1)γ−(β+3)
0 ϕβ+2(t)− c2s

β+3
β+1

−γ− 2
n
·β+2
β+1

0 (2.5.1)

for all t ∈ (0, T̂max) and that

if n ≥ 4, ϕ′(t) ≥ c1s
(β+1)γ−(β+3)
0 ϕβ+2(t)− c3s

2
n
+1−γ

0 (2.5.2)

for all t ∈ (0, T̂max), where β := (n − 1)(1 − α) + ε
n
(1 − α) with some ε > 0. Here, in

the case n = 3, since (n− 1)(1− α) < 2 · 1
6
= 1

3
= 1− 2

n
, we can pick 0 < β < γ with

β < 1− 2
n
. Also, we takeM1 ∈ (0,M0) and s0 = s0(R,α, λ, µ, κ, L̃,M0,M1, β) ∈ (0, Rn)

fulfilling that

if n = 3, s
β+2
β+1(1−

2
n
−β)

0 ≤ c2ω
β+2
n

2(β+2)(γ−3)−1c1M
β+2
1

and s1−β0 ≤ (β + 1)c1M
β+1
1

2(3−γ)(β+1)+3ωβ+1
n

, (2.5.3)

if n ≥ 4, s
2
n
−β

0 ≤ c3ω
β+2
n

2(β+2)(γ−3)−1c1M
β+2
1

and s1−β0 ≤ (β + 1)c1M
β+1
1

2(3−γ)(β+1)+3ωβ+1
n

. (2.5.4)
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Moreover, we let

r⋆ :=
(s0
4

) 1
n ∈ (0, R).

Then we suppose that u0 is a function satisfying (2.1.2) and (2.1.10). In order to show

that Tmax ≤ 1
2
, assuming that Tmax >

1
2
, we will derive a contradiction. The function

w defined in (2.2.1) satisfies

w(s, 0) ≥ w
(s0
4
, 0
)
≥ M1

ωn
, s ∈

(s0
4
, Rn

)
.

This entails that

ϕ(0) =

∫ s0

0

s−γ(s0 − s)w(s, 0) ds ≥
∫ s0

2

s0
4

(s0
2

)−γ
· s0
2
· M1

ωn
ds =

2γ−3M1

ωn
s2−γ0 .

In the case n = 3, according to the above inequality, we have that

c1
2
s
(β+1)γ−(β+3)
0 ϕβ+2(0)

c2s
β+3
β+1

−γ− 2
n
·β+2
β+1

0

≥ 2(β+2)(γ−3)c1M
β+2
1

2c2ω
β+2
n

s
2(β+2)− (β+2)(β+3)

β+1
+ 2

n
·β+2
β+1

0 (2.5.5)

and the first inequality for s0 in (2.5.3) yields that

2(β+2)(γ−3)c1M
β+2
1

2c2ω
β+2
n

s
2(β+2)− (β+2)(β+3)

β+1
+ 2

n
·β+2
β+1

0 =
2(β+2)(γ−3)−1c1M

β+2
1

c2ω
β+2
n

s
−β+2

β+1(1−
2
n
−β)

0

≥ 1. (2.5.6)

Combining (2.5.5) and (2.5.6), we see that

c1
2
s
(β+1)γ−(β+3)
0 ϕβ+2(0) ≥ c2s

β+3
β+1

−γ− 2
n
·β+2
β+1

0 .

Hence it follows that

c1s
(β+1)γ−(β+3)
0 ϕβ+2(0)− c2s

β+3
β+1

−γ− 2
n
·β+2
β+1

0 ≥ c1
2
s
(β+1)γ−(β+3)
0 ϕβ+2(0).

Therefore, by the straightforward ODE comparison argument we can show from (2.5.1)

that

c1s
(β+1)γ−(β+3)
0 ϕβ+2(t)− c2s

β+3
β+1

−γ− 2
n
·β+2
β+1

0 ≥ c1
2
s
(β+1)γ−(β+3)
0 ϕβ+2(t)

for all t ∈
(
0, 1

2

)
. Recalling (2.5.1) again and plugging the above inequality into the

right-hand side of (2.5.1), we obtain

ϕ′(t) ≥ c1
2
s
(β+1)γ−(β+3)
0 ϕβ+2(t)
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for all t ∈
(
0, 1

2

)
. This yields that

c1
2
s
(β+1)γ−(β+3)
0 t ≤ − 1

β + 1
· 1

ϕβ+1(t)
+

1

β + 1
· 1

ϕβ+1(0)

≤ 1

β + 1
· ωβ+1

n

2(β+1)(γ−3)Mβ+1
1

s
(γ−2)(β+1)
0

for all t ∈
(
0, 1

2

)
, which implies from the second inequality for s0 in (2.5.3) that

t ≤ 2(3−γ)(β+1)+1ωβ+1
n

(β + 1)c1M
β+1
1

s1−β0 ≤ 1

4

for all t ∈
(
0, 1

2

)
, which leads to a contradiction. In the case n ≥ 4, we can similarly

derive a contradiction. Therefore we must have Tmax ≤ 1
2
< ∞ and thus from Lemma

2.2.1 we arrive at the conclusion (2.1.11).
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Chapter 3

The case of nonlinear diffusion and

super- and sub-linear sensitivity

3.1. Introduction

In this chapter we consider finite-time blow-up in the quasilinear parabolic–elliptic

Keller–Segel system with logistic source:
ut = ∆(u+ 1)m − χ∇ · (u(u+ 1)α−1∇v) + λ(|x|)u− µ(|x|)uκ, x ∈ Ω, t > 0,

0 = ∆v − v + u, x ∈ Ω, t > 0,

∇u · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(3.1.1)

where Ω = BR(0) ⊂ Rn (n ∈ N) be a ball with some R > 0; m > 0, χ > 0, α > 0,

κ ≥ 1 are constants; λ and µ are continuous nonnegative functions and µ(r) ≤ µ1r
q

for all r ∈ [0, R] with some µ1 > 0 and q ≥ 0; ν is the outward normal vector

to ∂Ω; u0 ∈ C0(Ω) is radially symmetric and nonnegative. The unknown functions

u = u(x, t) and v = v(x, t) represent the density of cells and the concentration of the

chemoattractant at x ∈ Ω and t ≥ 0, respectively.

The system (3.1.1) is one of variations of the original Keller–Segel system in [23]. In

such systems it is a fundamental theme to clarify whether solutions blow up or remain

bounded. Now we recall known results related to the system (3.1.1). In the quasilinear

Keller–Segel system{
ut = ∆(u+ 1)m − χ∇ · (u(u+ 1)α−1∇v), x ∈ Ω, t > 0,

τvt = ∆v − v + u, x ∈ Ω, t > 0,
(3.1.2)
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where m, α ∈ R, χ > 0 and τ ∈ {0, 1}, it is known that the relation between m and

α determines the properties of solutions to (3.1.2); solutions of (3.1.2) blow up when

m− α < n−2
n

(the case τ = 1 in [7, 8, 56, 61] and the case τ = 0 in [25]) and remain

bounded when m− α > n−2
n

(the case τ = 1 in [18, 50] and the case τ = 0 in [25]).

In the study of the quasilinear Keller–Segel system with logistic source,{
ut = ∆(u+ 1)m − χ∇ · (u(u+ 1)α−1∇v) + λu− µuκ, x ∈ Ω, t > 0,

τvt = ∆v − v + u, x ∈ Ω, t > 0,
(3.1.3)

where m, α ∈ R, κ ≥ 1, χ > 0, λ ≥ 0, µ > 0 and τ ∈ {0, 1}, which is the model of

population dynamics [16, 40] and pattern formation in bacterial colonies [64], several

results on boundedness were obtained due to the suppression of blow-up phenomena

by the logistic term λu− µuκ in [38, 51, 55, 66, 67].

From the above results about the system (3.1.3), one might imply that the logistic

term λu − µuκ suppresses blow-up. However, on the contrary, Winkler [60] found a

condition for κ > 1 such that there exists an initial data leading to blow up in finite

time in the system (3.1.3) with m = 1, α = 1 and τ = 0. For the details, an initial

data such that finite-time blow-up occurs can be obtained under the condition that

κ <

{
7
6

if n ∈ {3, 4},
1 + 1

2(n−1)
if n ≥ 5.

Moreover, the blow-up result by Winkler [60] was generalized in [2] and Chapter 2. In

the system (3.1.3) with m = 1 and τ = 0, some conditions for κ and α such that there

exist initial data leading to blow-up were found in Chapter 2 in the case of sublinear

sensitivity (α < 1). To the best of our knowledge, in the case of superlinear sensitivity

(α > 1), a blow-up result is not obtained. On the other hand, in the system (3.1.1) with

α = 1 and τ = 0, Black, Fuest and Lankeit [2] constructed initial data such that the

corresponding solution blows up under some conditions for κ ≥ 1 and m ∈
[
1, 2n−2

n

)
.

For more related works on finite-time blow-up for Keller-Segel systems with logistic

source, we can refer [2, 12, 13, 57].

In summary, these results imply that blow-up occurs when the exponent κ of logistic

source is small. In particular, in the system with nonlinear diffusion [2], that is, in the

system (3.1.1) with α = 1, finite-time blow-up was proved under some conditions for κ

and m. However, conditions leading to blow-up have not been obtained when m ̸= 1

and α ̸= 1 in the system (3.1.1). The purpose of this chapter is to give conditions for

m, α and κ such that the solutions of (3.1.1) blow up.
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Let p ≥ n. In order to state the main theorem we give the conditions (A1)–(A4),

(B1)–(B3), (C1)–(C3) and (D1)–(D2) as follows:

• In the case n = 3,

▶ 1− 1

p
< α < 1 +

3

2p
, 0 < m < 1 +

1

p
, (A1)

▶ 1 +
3

2p
≤ α < 1 +

2

p
, 0 < m <

2

p
, 2α−m > 2 +

2

p
, (A2)

▶
[
1− 1

p
< α < 1 +

2

p
,

1

p
≤ m <

2

p
, 2α−m ≤ 2 +

2

p

]
,

or

[
1− 1

p
< α < 1,

2

p
≤ m <

3

p
, m+ α < 1 +

2

p

]
, (A3)

▶ 1− 1

p
< α < 1 +

2

p
,

2

p
≤ m < 1 +

1

p
, m+ α ≥ 1 +

2

p
, m− α <

1

p
. (A4)

• In the case n = 4,

▶ 1− 2

p
< α < 1 +

2

p
, 0 < m <

2

p
, (B1)

▶ 1− 2

p
< α < 1,

2

p
≤ m <

4

p
, m+ α < 1 +

2

p
, (B2)

▶ 1− 2

p
< α < 1 +

2

p
,

2

p
≤ m < 1 +

2

p
, m+ α ≥ 1 +

2

p
, m− α <

2

p
. (B3)

(A1)

(A2)

(A3)

(A4)

m
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1O
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p
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p
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p
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p

1
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p
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p
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p

Figure 3.1: n = 3
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• In the case n = 5,

▶
[
1− 2

p
< α ≤ 1− 1

p
, 0 < m <

3

p

]
,

or

[
1− 1

p
< α < 1 +

2

p
, 0 < m < 1 +

1

2p
, 2m− α < 1 +

1

p

]
, (C1)

▶ 1− 2

p
< α < 1− 1

p
,

3

p
≤ m <

4

p
, m+ α < 1 +

2

p
, (C2)

▶
[
1− 2

p
< α ≤ 1− 1

p
,

3

p
≤ m < 1, m+ α ≥ 1 +

2

p

]
,

or

[
1− 2

p
< α < 1, 1 ≤ m < 1 +

1

2p
, 2m− α ≥ 1 +

1

p

]
,

or

[
1− 2

p
< α < 1 +

2

p
, 1 +

1

2p
≤ m < 1 +

3

p
, m− α <

3

p

]
. (C3)

• In the case n ≥ 6,

▶ 1− 2

p
< α < 1 +

2

p
, 0 < m < 1 +

n− 4

2p
, 2m− α < 1 +

n− 4

p
, (D1)

▶
[
1− 2

p
< α < 1 +

2

p
, 1 +

n− 6

2p
≤ m < 1 +

n− 4

2p
, 2m− α ≥ 1 +

n− 4

p

]
,

or

[
1− 2

p
< α < 1 +

2

p
, 1 +

n− 4

2p
≤ m < 1 +

n− 2

p
, m− α <

n− 2

p

]
. (D2)

m
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1

1O

1 + 2
p

α = m− 3
p

α = −m+ 1 + 2
p

1− 2
p

4
p

(C1) (C3)

(C2)

3
p

1 + 1
2p

1 + 3
p
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p

α = 2m− 1− 1
p

Figure 3.3: n = 5
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Moreover, setting β+ := max{0, β} for β ∈ R, we assume that κ ≥ 1 fulfills the
following conditions:

▶ κ < 1 +
3

p
+

q

p
− (α− 1) if (A2) holds, (I)

▶ κ < 1 +
n

2p
+

q

p
− (1− α)+

2
if (A1), (B1), (C1) or (D1) hold, (II)

▶ κ < 1 +
n− 1

p
+

q

p
− m

2
− (1− α)+

2
if (A3), (B2) or (C2) hold, (III)

▶ κ < 1 +
n− 2

p
+

q

p
− (m− 1)+ − (1− α)+ if (A4), (B3), (C3) or (D2) hold. (IV)

Now we state the main theorems. The first result is concerned with blow-up when

we assume an upper bound of solutions.

Theorem 3.1.1. Let Ω = BR(0) ⊂ Rn (n ≥ 3) with R > 0 and let m > 0, α > 0,

χ > 0, κ ≥ 1, µ1 > 0, p ≥ n, q ≥ 0, M0 > 0, M1 ∈ (0,M0), K̃ > 0 and T > 0.

Suppose that λ and µ satisfy that

0 ≤ λ, µ ∈ C0([0, R]) (3.1.4)

and

µ(r) ≤ µ1r
q for all r ∈ [0, R] (3.1.5)

and assume that κ fulfills (I)–(IV). Then one can find r⋆ ∈ (0, R) with the following

property : If {
u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈
⋂
ϑ>nC

0([0, Tmax);W
1,ϑ(Ω)) ∩ C2,1(Ω× (0, Tmax)),

is a classical solution of (3.1.1) for some T ∗ ∈ (0,∞] with

u0 ∈ C0(Ω) being radially symmetric and nonnegative (3.1.6)

and ∫
Ω

u0(x) dx =M0 but

∫
Br⋆ (0)

u0(x) dx ≥M1

as well as

sup
t∈(0,min{T,T ∗})

u(x, t) ≤ K̃|x|−p for all x ∈ Ω, (3.1.7)

then (u, v) blows up at t = T ∗ <∞ in the sense that

lim
t↗T ∗

∥u(·, t)∥L∞(Ω) = ∞. (3.1.8)
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Remark 3.1.1. As to the conditions (A1)–(D2) and (I)–(IV), if α = 1, then we can

obtain the conditions such that

1 ≤ κ < 1 +
q

p
+min

{
n

2p
,
n− 2

p
− (m− 1)+

}
if m ∈

[
2

p
, 1 +

n− 2

p

)
and such that

1 ≤ κ < 1 +
q

p
+min

{
n

2p
,
n− 1

p
− m

2

}
if m ∈

(
0,

2

p

)
.

The above conditions for m and κ connect with conditions in [2, Theorem 1.1]. Thus,

Theorem 3.1.1 is a generalization of the previous work [2, Theorem 1.1].

By an argument similar to that in the proof of [2, Lemma 5.2] we can find an

initial data such that the corresponding solution satisfies (3.1.7). Therefore, in view of

Theorem 3.1.1 we can show that there exists an initial data such that the corresponding

solution blows up in finite time. Before we introduce this result, we give the conditions

(E1), (F1) and (F2) as follows:

• In the case n ∈ {3, 4},

▶ m ≥ 1, α <
2

n+ 1
m+

n2 − n+ 2

n(n+ 1)
,

α < − 1

n− 2
m+

n2 − 2

n(n− 2)
, m− α <

n− 2

n
. (E1)

• In the case n ≥ 5,

▶ m ≥ 1, − 2

n− 3
m+

n2 − n− 2

n(n− 3)
< α <

2

n+ 1
m+

n2 − n+ 2

n(n+ 1)
,

α < −n+ 2

n− 4
m+

2n2 − n− 4

n(n− 4)
, α ≤ n+ 2

3
m− n2 − 4

3n
, (F1)

▶ m ≥ 1, − 2

n− 3
m+

n2 − n− 2

n(n− 3)
< α <

2

n+ 1
m+

n2 − n+ 2

n(n+ 1)
,

− n+ 2

n− 4
m+

2n2 − n− 4

n(n− 4)
≤ α < − 1

n− 2
m+

n2 − 2

n(n− 2)
,

m− α <
n− 2

n
. (F2)
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The regions of (E1), (F1) and (F2) are described as Figures 3.5–3.8.
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Figure 3.6: n = 4
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Figure 3.7: n = 5
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Aided by Theorem 3.1.1, we obtain an initial data such that the corresponding

solution blows up in finite time.

Theorem 3.1.2. Let Ω = BR(0) ⊂ Rn (n ≥ 3) with R > 0 and let m > 0, α > 0,

χ > 0, κ ≥ 1, µ1 > 0, q ≥ 0, M0 > 0, M1 ∈ (0,M0) and L̃ > 0. Suppose that λ and

µ satisfy (3.1.4) and (3.1.5). Moreover, assume that m, α and κ fulfill the following

conditions :

(i) If (E1) holds, then

κ < 1 +
(n− 2)[(m− α)n+ 1]

n(n− 1)
+
q[(m− α)n+ 1]

n(n− 1)
− (m− 1)− (1− α)+.

(ii) If (F1) holds, then

κ < 1 +
(n− 2)[(m− α)n+ 1]

n(n− 1)
+
q[(m− α)n+ 1]

n(n− 1)
− (m− 1)− (1− α)+.

(iii) If (F2) holds, then

κ < 1 +
(m− α)n+ 1

2(n− 1)
+
q[(m− α)n+ 1]

n(n− 1)
− (1− α)+

2
.

Then one can find ε0 > 0 and r⋆ ∈ (0, R) with the following property : If u0 with (3.1.6)

satisfies
∫
Ω
u0(x) dx = M0 and

∫
Br⋆ (0)

u0(x) dx ≥ M1 as well as u0(x) ≤ L̃|x|−p for

all x ∈ Ω, where p := n(n−1)
(m−α)n+1

+ ε0, then the corresponding solution (u, v) of (3.1.1)

fulfills (3.1.8) for some T ∗ <∞.

Remark 3.1.2. If α = 1, then we have from the conditions (E1)–(F2) and (i)–(iii)

that

κ < 1+
q[(m− 1)n+ 1]

n(n− 1)
+min

{
(m− 1)n+ 1

2(n− 1)
,
n− 2− (m− 1)n

n(n− 1)

}
if m ∈

[
1,

2n− 2

n

)
which is the condition in [2, Theorem 1.2]. Thus, Theorem 3.1.2 is a generalization of

the previous work [2, Theorem 1.2]. On the other hand, if m = 1, α < 1 and q = 0,

then we can obtain that

if n ∈ {3, 4}, 2

n
< α < 1 and κ < 1 +

(n− 2)− (1− α)n

n(n− 1)
, (3.1.9)

if n = 5,


4

5
< α ≤ 14

15
and κ < 1 +

(n− 2)− (1− α)n

n(n− 1)
,

14

15
< α < 1 and κ < 1 +

2− α

2(n− 1)
,

(3.1.10)

if n ≥ 6, 1− 2

n(n− 3)
< α < 1 and κ < 1 +

2− α

2(n− 1)
. (3.1.11)
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The conditions (3.1.9)–(3.1.11) improve lower bounds for α and upper bounds for κ

in Chapter 2. Moreover, while blow-up result was only obtained in the case α < 1 in

Chapter 2, we can see that the result is extended to the case α ≥ 1.

Remark 3.1.3. In the conditions (E1)–(F2) there are some restrictions in addition

to the condition m − α < n−2
n
. On the one hand, in the system (3.1.2) it is known

that there exist many results about blow-up under the condition m−α < n−2
n

without

these restrictions (see [7, 8, 25, 56, 61]). Thus, Theorem 3.1.2 may hold under the

condition m− α < n−2
n

even without these restrictions.

The proofs of Theorems 3.1.1 and 3.1.2 are based on those of [2]. We first introduce

the mass accumulation functions w = w(s, t) and z = z(s, t) given by

w(s, t) :=

∫ s
1
n

0

ρn−1u(ρ, t) dρ, z(s, t) :=

∫ s
1
n

0

ρn−1v(ρ, t) dρ,

where s := rn for r ∈ [0, R]. The system (3.1.1) is transformed to the parabolic

equation

wt = n2ms2−
2
n (nws + 1)m−1wss + χnws(nws + 1)α−1(w − z)

+ n

∫ s

0

λ(σ
1
n )ws(σ, t) dσ − nκ−1

∫ s

0

µ(σ
1
n )wκ(σ, t) dσ. (3.1.12)

Next, by making use of this equation and the moment-type functional

ϕ(t) :=

∫ s0

0

s−γ(s0 − s)w(s, t) ds

with some s0 ∈ (0, Rn) and γ ∈ (0, 1), we show that the functional ϕ is a supersolution

of the ordinary differential equation ϕ′ = c1ϕ
2 − c2 with some c1 > 0 and c2 > 0.

Here, as to the factor (nws + 1)m−1 in the first term on the right-hand side of (3.1.12)

we can apply the same estimates as in [2]. However, in order to derive a super-linear

differential inequality for ϕ we have to estimate the factor (nws + 1)α−1 in the second

term on the right-hand side of (3.1.12). To this end, in the case α < 1 we use the

estimates (nws + 1)α−1 ≤ 1 and (nws + 1)α−1 ≥ (Cs−
p
n + 1)α−1 as in Chapter 2 and

in the case α ≥ 1 we establish the estimates (nws + 1)α−1 ≤ (Cs−
p
n + 1)α−1 and

(nws + 1)α−1 ≥ 1 on a case by case basis. Moreover, by taking γ ∈ (0, 1) satisfying

some conditions, we can obtain a super-linear differential inequality for ϕ. As to the

proof of Theorem 3.1.2, we can obtain initial data such that the solution fulfills (3.1.7)

by the recent study of blow-up profiles in [11].

This chapter is organized as follows. In Section 2 we recall local existence of classical

solutions in (3.1.1). In Section 3 we establish some estimates in order to construct a
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subsolution of a super-linear differential inequality for ϕ. In Section 4 we prove existence

of γ ∈ (0, 1) which satisfies conditions to derive a super-linear differential inequality

for ϕ and obtain a super-linear differential inequality. Finally, the proofs of the main

theorems are given in Section 5.

3.2. Local existence

We first introduce a result on local existence of classical solutions to (3.1.1). We

provide only the statement of the lemma since the proof is based on a standard fixed

point argument (see [9, 51]).

Lemma 3.2.1. Let n ≥ 1, R > 0, m > 0, α > 0, χ > 0, κ ≥ 1 and M0 > 0,

and assume that λ and µ comply with (3.1.4) and (3.1.5). If u0 satisfies (3.1.6) and∫
Ω
u0(x) dx = M0, then there exist Tmax ∈ (0,∞] and an exactly pair (u, v) of radially

symmetric nonnegative functions{
u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈
⋂
ϑ>nC

0([0, Tmax);W
1,ϑ(Ω)) ∩ C2,1(Ω× (0, Tmax)),

which solves (3.1.1) classically. Moreover,

if Tmax <∞, then lim
t↗Tmax

∥u(·, t)∥L∞(Ω) = ∞.

3.3. Some inequalities related to a moment-type functional ϕ

In the following let Ω = BR(0) ⊂ Rn (n ≥ 3) be a ball with some R > 0 and

we fix the initial data u0 satisfying (3.1.6) and
∫
Ω
u0(x) dx = M0. We note that all

constants below are independent of u0. Also, let (u, v) be the radially symmetric

solution of (3.1.1) on [0, Tmax) as in Lemma 3.2.1. By introducing r := |x|, we regard

u(x, t) and v(x, t) as u(r, t) and v(r, t), respectively. Based on [21], we define the mass

accumulation functions w and z as

w(s, t) :=

∫ s
1
n

0

ρn−1u(ρ, t) dρ, z(s, t) :=

∫ s
1
n

0

ρn−1v(ρ, t) dρ

for all s ∈ [0, Rn] and t ∈ [0, Tmax). Moreover, given s0 ∈ (0, Rn) and γ ∈ (0, 1), we set

ϕ(t) :=

∫ s0

0

s−γ(s0 − s)w(s, t) ds for all t ∈ [0, Tmax), (3.3.1)

which is introduced in [2, 60], and

ψα(t) :=

∫ s0

0

s−γ+
p
n
(1−α)+(s0 − s)w(s, t)ws(s, t) ds for all t ∈ [0, Tmax),
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where p ≥ n, α > 0 and (1 − α)+ := max{0, 1 − α}. Now we recall the following

properties for the functions w and z (see Chapter 2 and [2, Lemma 3.1]).

Lemma 3.3.1. We have

w ∈ C1,0([0, Rn]× [0, Tmax)) ∩ C2,1([0, Rn]× (0, Tmax)) ∩ C3,0((0, Rn]× (0, Tmax)),

z ∈ C1,0([0, Rn]× [0, Tmax)) ∩ C2,0([0, Rn]× (0, Tmax)) ∩ C3,0((0, Rn]× (0, Tmax))

and

ws(s, t) =
1

n
u(s

1
n , t), wss(s, t) =

1

n2
s

1
n
−1ur(s

1
n , t),

zs(s, t) =
1

n
v(s

1
n , t), zss(s, t) =

1

n2
s

1
n
−1vr(s

1
n , t)

for all s ∈ (0, Rn) and t ∈ (0, Tmax) as well as, with K̃ and T from (3.1.7),

nws(s, t) ≤ K̃s−
p
n for all s ∈ (0, Rn] and t ∈ (0, T ). (3.3.2)

In order to obtain a key inequality in (3.4.15) we first prove the following lemma.

Lemma 3.3.2. Let γ ∈ (0, 1) and s0 ∈ (0, Rn). Then the function ϕ defined as (3.3.1)

belongs to C0([0, Tmax)) ∩ C1((0, Tmax)) and satisfies

ϕ′(t) ≥ χn

∫ s0

0

s−γ(s0 − s)(nws(s, t) + 1)α−1w(s, t)ws(s, t) ds

+ n2m

∫ s0

0

s2−
2
n
−γ(s0 − s)(nws(s, t) + 1)m−1wss(s, t) ds

− χn

∫ s0

0

s−γ(s0 − s)(nws(s, t) + 1)α−1z(s, t)ws(s, t) ds

− nκ−1µ1

∫ s0

0

s−γ(s0 − s)

{∫ s0

0

σ
q
nwκs (σ, t) dσ

}
ds

=: I1 + I2 + I3 + I4 (3.3.3)

for all t ∈ (0, Tmax).

Proof. We obtain ϕ ∈ C0([0, Tmax))∩C1((0, Tmax)) as in the proof of [60, Lemma 4.1].

From the second equation in (3.1.1) we have that

rn−1vr(r, t) = z(rn, t)− w(rn, t) (3.3.4)

for all r ∈ (0, R) and t ∈ (0, Tmax). Noting that λ ≥ 0 and (3.1.5), we can observe from

(3.3.4) and the first equation in (3.1.1) that

wt ≥ n2ms2−
2
n (nws + 1)m−1wss

+ χnws(nws + 1)α−1(w − z)− nκ−1µ1

∫ s

0

σ
q
nwκs (σ, t) dσ (3.3.5)

for all s ∈ (0, Rn) and t ∈ (0, Tmax). Thanks to (3.3.1) and (3.3.5), we attain (3.3.3).

47



Next we derive an estimate for I1 on the right-hand side of (3.3.3).

Lemma 3.3.3. Let γ ∈ (0, 1) and let α > 0, χ > 0 and p ≥ n and suppose that (3.1.7)

holds with some K̃ > 0 and T > 0. Then there exists C = C(R,χ, α, p, K̃) > 0 such

that for any s0 ∈ (0, Rn)

I1 ≥ Cψα(t)

for all t ∈ (0,min{T, Tmax}).

Proof. In the case 0 < α < 1, using (3.3.2) and s < Rn, we can establish that

(nws + 1)α−1 ≥ (K̃s−
p
n + 1)−(1−α) ≥ (K̃ +Rp)−(1−α)s

p
n
(1−α)

for all s ∈ (0, s0). On the other hand, in the case α ≥ 1 it follows that

(nws + 1)α−1 ≥ 1

for all s ∈ (0, s0). Thus we obtain

I1 = χn

∫ s0

0

sγ(s0 − s)(nws + 1)α−1wws ds

≥ χn(K̃ +Rp)−(1−α)+
∫ s0

0

s−γ+
p
n
(1−α)+(s0 − s)wws ds

for all t ∈ (0,min{T, Tmax}), which concludes the proof.

To show estimates for I2, I3 and I4 on the right-hand side of (3.3.3) we introduce

two lemmas. The following lemma has already been proved in [2, Lemma 3.3].

Lemma 3.3.4. For all a > −1 and b > −1 and any s0 ≤ 0 we have∫ s0

0

sa(s0 − s)b ds = B(a+ 1, b+ 1)sa+b+1
0 ,

where B is Euler’s beta function.

Lemma 3.3.5. Let α > 0 and p ≥ n. Assume that γ ∈ (0, 1) satisfies that

γ − p

n
(1− α)+ ∈ (0, 1). (3.3.6)

Then for any s0 ∈ (0, Rn)

w(s, t) ≤
√
2s

γ
2
− p

2n
(1−α)+(s0 − s)−

1
2

√
ψα(t) (3.3.7)

for all s ∈ (0, s0) and t ∈ (0, Tmax).
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Proof. By using the function

ψ(s) :=
1

2
s−γ+

p
n
(1−α)+(s0 − s)w2(s, t) for all t ∈ (0, Tmax)

instead of ψ in the proof of [60, Lemma 4.2], we can verify that (3.3.7) holds.

We establish an estimate for I4.

Lemma 3.3.6. Let α > 0, µ1 > 0, κ ≥ 1, p ≥ n and q ≥ 0 and suppose that (3.1.7)

holds with some K̃ > 0 and T > 0. Assume that γ ∈ (0, 1) satisfies (3.3.6) and

p

n
[2(κ− 1) + (1− α)+]−

2q

n
< γ. (3.3.8)

Then there exists C = C(γ, α, µ1, κ, p, q, K̃) > 0 such that for any s0 ∈ (0, Rn)

I4 ≥ −Cs
3−γ
2

+ q
n
− p

2n
[2(κ−1)+(1−α)+]

0

√
ψα(t) (3.3.9)

for all t ∈ (0,min{T, Tmax}).

Proof. Aided by an argument similar to that in the proof of [2, Lemma 3.5], we have

from straightforward calculations that

I4 ≥ −n
κ−1µ1

1− γ
s1−γ0

∫ s0

0

s
q
n (s0 − s)wκs ds (3.3.10)

for all t ∈ (0, Tmax) and∫ s0

0

s
q
n (s0 − s)wκs ds ≤ c1s0

∫ s0

0

s
q
n
− p

n
(κ−1)−1w ds (3.3.11)

for all t ∈ (0,min{T, Tmax}), where c1 := K̃κ−1

nκ−1

[(
p
n
(κ − 1) − q

n

)
+
+ 1
]
. By virtue of

Lemmas 3.3.4 and 3.3.5 it follows that

c1s0

∫ s0

0

s
q
n
− p

n
(κ−1)−1w ds

≤
√
2c1s0

∫ s0

0

s
q
n
− p

n
(κ−1)+ γ

2
− p

2n
(1−α)+−1(s0 − s)−

1
2 ds

√
ψα(t)

=
√
2c1c2s

1
2
+ γ

2
+ q

n
− p

2n
[2(κ−1)+(1−α)+]

0

√
ψα(t) (3.3.12)

for all t ∈ (0,min{T, Tmax}), where c2 := B
(
γ
2
+ q

n
− p

2n
[2(κ− 1) + (1− α)+],

1
2

)
. Now,

noting from (3.3.8) that

γ

2
+
q

n
− p

2n
[2(κ− 1) + (1− α)+] > 0,

we see that c2 <∞. A combination of (3.3.10), (3.3.11) and (3.3.12) yields (3.3.9).
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Next we show an estimate for I2.

Lemma 3.3.7. Let α > 0, m > 0 and p ≥ n and suppose that (3.1.7) holds with some

K̃ > 0 and T > 0 and that γ ∈ (0, 1) satisfies (3.3.6).

(i) Assume that

0 < m < 1 +
n− 2

p

and

1− 2

n
− p

n
(m− 1)+ < γ < 2− 4

n
− p

n
[2(m− 1)+ + (1− α)+]. (3.3.13)

Then there exists C > 0 such that for any s0 ∈ (0, Rn)

I2 ≥ −Cs
3−γ
2

− 2
n
− p

2n
[2(m−1)++(1−α)+]

0

√
ψα(t)− Cs

3− 2
n
−γ

0

for all t ∈ (0,min{T, Tmax}).

(ii) Assume that

0 < m < min

{
1,

2(n− 1)

p

}
and

0 < γ < 2− 2

n
− pm

n
. (3.3.14)

Then there exists C > 0 such that for any s0 ∈ (0, Rn)

I2 ≥ −Cs3−γ−
2
n
− pm

n
0 − Cs

3− 2
n
−γ

0

for all t ∈ (0,min{T, Tmax}).

Proof. By an argument similar to that in the proof of [2, Lemma 3.6], we can arrive

at the conclusion of this lemma.

The following lemma has already been proved in the proof of [60, Lemma 4.6].

Thus we only recall the statement of the lemma.

Lemma 3.3.8. Let a ∈ (1, 2) and b ∈ (0, 1). Then there exists C = C(a, b) > 0 such

that if s0 > 0, then ∫ s0

0

∫ s0

σ

ξ−a(s0 − ξ)−b dξdσ ≤ Cs−b0 s2−a

for all s ∈ (0, s0).
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We establish an estimate for I3. The proof of the following lemma is based on that

of [2, Lemma 3.9].

Lemma 3.3.9. Let α > 0, χ > 0, p ≥ n, M0 > 0, K̃ > 0 and T > 0 and suppose that

γ ∈ (0, 1) satisfies (3.3.6). Assume that

1− 2

p
< α < 1 +

2

p
and γ < 2− 2p

n
(α− 1)+. (3.3.15)

Then there exists C > 0 such that if u0 fulfills
∫
Ω
u0(x) dx = M0 and (3.1.7) holds,

then for any s0 ∈ (0, Rn)

I3 ≥ −Cs
2
n
+ 1−γ

2
− p

2n
[(1−α)++2(α−1)+]

0

√
ψα(t)

− Cs
2
n
− p

n
[(1−α)++(α−1)+]

0 ψα(t) (3.3.16)

for all t ∈ (0,min{T, Tmax}).

Proof. By an argument similar to that in the proof of [60, Lemma 4.7] we can see that

there exists c1 = c1(R, λ,M0) > 0 such that

z ≤ c1
n
s

2
n
−1

0 s+
1

n2

∫ s

0

∫ s0

σ

ξ
2
n
−2w(ξ, t) dξdσ (3.3.17)

for all s ∈ (0, s0) and t ∈ (0,min{T, Tmax}). First we show the estimate (3.3.16) in the

case 1− 2
n
< α < 1. Since 1− 2

n
< α and γ < 1, it follows that

γ − 4

n
+

2p

n
(1− α) < γ

and (
2− 4

n
+
p

n
(1− α)

)
−
(
γ − 4

n
+

2p

n
(1− α)

)
= 2− p

n
(1− α)− γ

> 2− 2

n
− γ

> 0.

Moreover, we have from (3.3.6) that γ > p
n
(1− α). Thus we can take

γ̃ ∈
(
max

{
p

n
(1− α), γ − 4

n
+

2p

n
(1− α)

}
,min

{
γ, 2− 4

n
+
p

n
(1− α)

})
.
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Noticing that γ̃ − p
n
(1− α) ∈ (0, 1), we infer from Lemma 3.3.5 that

z ≤ c1
n
s

2
n
−1

0 s

+

√
2

n2

∫ s

0

∫ s0

σ

ξ
2
n
−2+ γ̃

2
− p

n
(1−α)(s0 − ξ)−

1
2 dξdσ

{∫ s0

0

s−γ̃+
p
n
(1−α)(s0 − s)wws ds

} 1
2

for all s ∈ (0, s0) and t ∈ (0,min{T, Tmax}). Since the conditions 1 − 2
p
< α and

γ̃ < 2− 4
n
+ p

n
(1− α) yield

1 < 2− 2

n
− γ̃

2
+

p

2n
(1− α) < 2,

from Lemma 3.3.8 we can find c2 = c2(γ, α, p) > 0 such that

z ≤ c1
n
s

2
n
−1

0 s+ c2s
− 1

2
0 s

2
n
+ γ̃

2
− p

2n
(1−α)

{∫ s0

0

s−γ̃+
p
n
(1−α)(s0 − s)wws ds

} 1
2

≤ c1
n
s

2
n
−1

0 s+ c2s
− 1

2
+ γ−γ̃

2
0 s

2
n
+ γ̃

2
− p

2n
(1−α)

√
ψα(t) (3.3.18)

for all s ∈ (0, s0) and t ∈ (0,min{T, Tmax}). Now we have from the fact (nws+1)α−1 ≤ 1

that

I3 = −χn
∫ s0

0

s−γ(s0 − s)(nws + 1)α−1zws ds

≥ −χn
∫ s0

0

s−γ(s0 − s)zws ds (3.3.19)

for all t ∈ (0,min{T, Tmax}). Furthermore, by an argument similar to that in the proof

of [60, Lemma 4.1] and (3.3.18) we see that

− χn

∫ s0

0

s−γ(s0 − s)zws ds

≥ −χn(γ + 1)s0

∫ s0

0

s−γ−1zw ds

≥ −c1χ(γ + 1)s
2
n
0

∫ s0

0

s−γw ds

− c2χn(γ + 1)s
1
2
+ γ−γ̃

2
0

∫ s0

0

s
2
n
−γ+ γ̃

2
− p

2n
(1−α)−1w ds

√
ψα(t) (3.3.20)

for all t ∈ (0,min{T, Tmax}). Since the conditions 1− 2
p
< α and γ̃ > γ− 4

n
+ 2p

n
(1−α)

imply that

1− γ

2
− p

2n
(1− α) > 1− γ

2
− 1

n
> 0
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and

2

n
− γ − γ̃

2
− p

n
(1− α) >

2

n
− 2

n
+
p

n
(1− α)− p

n
(1− α)

= 0,

respectively, we infer from Lemmas 3.3.4 and 3.3.5 that

s
2
n
0

∫ s0

0

s−γw ds

≤
√
2s

2
n
0

∫ s0

0

s−
γ
2
− p

2n
(1−α)(s0 − s)−

1
2 ds

√
ψα(t)

=
√
2B

(
1− γ

2
− p

2n
(1− α),

1

2

)
s

1−γ
2

+ 2
n
− p

2n
(1−α)

0

√
ψα(t) (3.3.21)

and

s
1
2
+ γ−γ̃

2
0

∫ s0

0

s
2
n
−γ+ γ̃

2
− p

2n
(1−α)−1w ds

√
ψα(t)

≤
√
2s

1
2
+ γ−γ̃

2
0

∫ s0

0

s
2
n
− γ−γ̃

2
− p

n
(1−α)−1(s0 − s)−

1
2 ds · ψα(t)

=
√
2B

(
2

n
− γ − γ̃

2
− p

n
(1− α),

1

2

)
s

2
n
− p

n
(1−α)

0 ψα(t) (3.3.22)

for all t ∈ (0,min{T, Tmax}). A combination of (3.3.19) and (3.3.20)–(3.3.22) yields

(3.3.16). Similarly, we next establish the estimate (3.3.16) in the case 1 ≤ α < 1 + 2
p
.

Since α < 1 + 2
p
and γ < 2− 2p

n
(α− 1), we see that

γ − 4

n
+

2p

n
(α− 1) < γ

and (
2− 4

n

)
−
(
γ − 4

n
+

2p

n
(α− 1)

)
= 2− 2p

n
(α− 1)− γ

> 0.

Hence we can choose

γ̃ ∈
(
max

{
0, γ − 4

n
+

2p

n
(α− 1)

}
,min

{
γ, 2− 4

n

})
.
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From (3.3.17), Lemmas 3.3.5 and 3.3.8 we observe that there exists c3 = c3(γ) > 0

such that

z ≤ c1
n
s

2
n
−1

0 s+

√
2

n2

∫ s

0

∫ s0

σ

ξ
2
n
−2+ γ̃

2 (s0 − ξ)−
1
2 dξdσ

{∫ s0

0

s−γ̃(s0 − s)wws ds

} 1
2

≤ c1
n
s

2
n
−1

0 s+ c3s
− 1

2
0 s

2
n
+ γ̃

2

{∫ s0

0

s−γ̃(s0 − s)wws ds

} 1
2

≤ c1
n
s

2
n
−1

0 s+ c3s
− 1

2
+ γ−γ̃

2
0 s

2
n
+ γ̃

2

√
ψα(t) (3.3.23)

for all s ∈ (0, s0) and t ∈ (0,min{T, Tmax}). Thanks to (3.3.2), it follows that

(nws + 1)α−1 ≤ (K̃s−
p
n + 1)α−1 ≤ c4s

− p
n
(α−1) (3.3.24)

for all s ∈ (0, s0) and t ∈ (0,min{T, Tmax}), where

c4 := (K̃ +Rp)α−1.

Applying (3.3.24) to I3, by an argument similar to that in the proof of [60, Lemma

4.1] and (3.3.23) we see that

I3 = −χn
∫ s0

0

s−γ(s0 − s)(nws + 1)α−1zws ds

≥ −χnc4
∫ s0

0

s−γ−
p
n
(α−1)(s0 − s)zws ds

≥ −χnc4
(
γ +

p

n
(α− 1) + 1

)
s0

∫ s0

0

s−γ−1− p
n
(α−1)zw ds

≥ −χc1c5s
2
n
0

∫ s0

0

s−γ−
p
n
(α−1)w ds

− χnc3c5s
1
2
+ γ−γ̃

2
0

∫ s0

0

s
2
n
−γ+ γ̃

2
− p

n
(α−1)−1w ds

√
ψα(t) (3.3.25)

for all t ∈ (0,min{T, Tmax}), where c5 := c4
(
γ + p

n
(α− 1) + 1

)
. Here, noticing from

γ < 2− 2p
n
(α− 1) and γ̃ > γ − 4

n
+ 2p

n
(α− 1) that

1− γ

2
− p

n
(α− 1) > 0

and
2

n
− γ − γ̃

2
− p

n
(α− 1) >

2

n
− 2

n
+
p

n
(α− 1)− p

n
(α− 1) = 0,
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we have from Lemmas 3.3.4 and 3.3.5 that

s
2
n
0

∫ s0

0

s−γ−
p
n
(α−1)w ds

≤
√
2s

2
n
0

∫ s0

0

s−
γ
2
− p

n
(α−1)(s0 − s)−

1
2 ds

√
ψα(t)

=
√
2B

(
1− γ

2
− p

n
(α− 1),

1

2

)
s

1−γ
2

+ 2
n
− p

n
(α−1)

0

√
ψα(t) (3.3.26)

and

s
1
2
+ γ−γ̃

2
0

∫ s0

0

s
2
n
−γ+ γ̃

2
− p

n
(α−1)−1w ds

√
ψα(t)

≤
√
2s

1
2
+ γ−γ̃

2
0

∫ s0

0

s
2
n
− γ−γ̃

2
− p

n
(α−1)−1(s0 − s)−

1
2 ds · ψα(t)

=
√
2B

(
2

n
− γ − γ̃

2
− p

n
(α− 1),

1

2

)
s

2
n
− p

n
(α−1)

0 ψα(t) (3.3.27)

for all t ∈ (0,min{T, Tmax}). Hence, combining (3.3.25), (3.3.26) and (3.3.27) leads to

(3.3.16).

We finally derive an estimate for ψα.

Lemma 3.3.10. Let α > 0 and p ≥ n. Suppose that γ ∈ (0, 1) satisfies that

γ < 2− p

n
(1− α)+. (3.3.28)

Then there exists C = C(γ, α, p) > 0 such that for any s0 ∈ (0, Rn)

ϕ(t) ≤ Cs
3−γ
2

− p
2n

(1−α)+
0

√
ψα(t)

for all t ∈ (0, Tmax).

Proof. From (3.3.28) it follows that

1− γ

2
− p

2n
(1− α)+ > 0.

Therefore we infer from Lemmas 3.3.4 and 3.3.5 that

ϕ(t) =

∫ s0

0

s−γ(s0 − s)w ds

≤ s0

∫ s0

0

s−γw ds

≤
√
2s0

∫ s0

0

s−
γ
2
− p

2n
(1−α)+(s0 − s)−

1
2 ds

√
ψα(t)

=
√
2B

(
1− γ

2
− p

2n
(1− α)+,

1

2

)
s

3−γ
2

− p
2n

(1−α)+
0

√
ψα(t)

for all t ∈ (0, Tmax), which concludes the proof.
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3.4. Differential inequalities for ϕ

In this section we will derive a super-linear differential inequality for the moment-

type functional ϕ by using the pointwise lower estimates for I1, I2, I3 and I4. To this

end, we find γ ∈ (0, 1) which enable us to apply Lemmas 3.3.3, 3.3.6, 3.3.7, 3.3.9 and

3.3.10 to (3.3.3). We give the conditions (A3-1), (A3-2), (B1-1), (B1-2), (C1-1), (C1-2),

(C3-1), (C3-2), (C3-3), (D2-1) and (D2-2) as follows:

• In the case n = 3,

1− 1

p
< α < 1 +

2

p
,

1

p
≤ m <

2

p
, 2α−m ≤ 2 +

2

p
, (A3-1)

1− 1

p
< α < 1,

2

p
≤ m <

3

p
, m+ α < 1 +

2

p
. (A3-2)

• In the case n = 4,

1− 2

p
< α < 1, 0 < m <

2

p
, (B1-1)

1 ≤ α < 1 +
2

p
, 0 < m <

2

p
. (B1-2)

• In the case n = 5,

1− 2

p
< α ≤ 1− 1

p
, 0 < m <

3

p
, (C1-1)

1− 1

p
< α < 1 +

2

p
, 0 < m < 1 +

1

2p
, 2m− α < 1 +

1

p
, (C1-2)

1− 2

p
< α ≤ 1− 1

p
,

3

p
≤ m < 1, m+ α ≥ 1 +

2

p
, (C3-1)

1− 2

p
< α < 1, 1 ≤ m < 1 +

1

2p
, 2m− α ≥ 1 +

1

p
, (C3-2)

1− 2

p
< α < 1 +

2

p
, 1 +

1

2p
≤ m < 1 +

3

p
, m− α <

3

p
. (C3-3)

• In the case n ≥ 6,

1− 2

p
< α < 1 +

2

p
, 1 +

n− 6

2p
≤ m < 1 +

n− 4

2p
, 2m− α ≥ 1 +

n− 4

p
, (D2-1)

1− 2

p
< α < 1 +

2

p
, 1 +

n− 4

2p
≤ m < 1 +

n− 2

p
, m− α <

n− 2

p
. (D2-2)
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We first show that there exists γ ∈ (0, 1) satisfying (3.3.6), (3.3.8), (3.3.13), the second

condition of (3.3.15) and (3.3.28).

Lemma 3.4.1. Let m > 0, α > 0, κ ≥ 1, p ≥ n and q ≥ 0. Assume that m and α

satisfy (A4), (B1-2), (B3), (C1-2), (C3), (D1) or (D2). Suppose that κ fulfills (II) and

(IV). Then there exists γ ∈ (0, 1) such that

max

{
p

n
(1− α)+,

p

n
[2(κ− 1) + (1− α)+]−

2q

n
, 1− 2

n
− p

n
(m− 1)+

}
< γ < min

{
1, 2− 4

n
− p

n
[2(m− 1)+ + (1− α)+]

}
. (3.4.1)

Proof. We first consider the case that m and α satisfy (A4), (B3), (C3) or (D2). In

the cases that n = 3 and the condition (A4) holds and that n = 4 and the condition

(B3) holds we see that

1−
(
2− 4

n
− p

n
[2(m− 1)+ + (1− α)+]

)
= −1 +

4

n
+
p

n
[2(m− 1)+ + (1− α)+]

≥ −1 +
4

n
≥ 0.

Moreover, thanks to the conditions α ≤ 1− 1
p
in the case that n = 5 and (C3-1) holds,

2m−α ≥ 1+ n−4
p

in the cases that n = 5 and (C3-2) holds and that n ≥ 6 and (D2-1)

holds and m ≥ 1 + n−4
2p

in the cases that n = 5 and (C3-3) holds and that n ≥ 6 and

(D2-2) holds, we obtain

1−
(
2− 4

n
− p

n
[2(m− 1)+ + (1− α)+]

)
= −1 +

4

n
+
p

n
[2(m− 1)+ + (1− α)+]

≥ −1 +
4

n
+
n− 4

n
= 0.

Thus it suffices to show that the following conditions hold:

p

n
(1− α)+ < 2− 4

n
− p

n
[2(m− 1)+ + (1− α)+], (3.4.2)

p

n
[2(κ− 1) + (1− α)+]−

2q

n
< 2− 4

n
− p

n
[2(m− 1)+ + (1− α)+], (3.4.3)

1− 2

n
− p

n
(m− 1)+ < 2− 4

n
− p

n
[2(m− 1)+ + (1− α)+]. (3.4.4)
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Now we note that(
2− 4

n
− p

n
[2(m− 1)+ + (1− α)+]

)
− p

n
(1− α)+

= 2− 4

n
− 2p

n
[(m− 1)+ + (1− α)+].

In the cases that n = 3 and (A4) holds and that n = 4 and (B3) holds, if m < 1 and

α ≥ 1, then it follows that

2− 4

n
− 2p

n
[(m− 1)+ + (1− α)+] = 2− 4

n
> 0.

Furthermore, invoking from (A4) and (B3) that

α > 1− n− 2

p
if m < 1 and α < 1,

m− α <
n− 2

p
if m ≥ 1 and α < 1,

m < 1 +
n− 2

p
if m ≥ 1 and α ≥ 1,

we can observe that

2− 4

n
− 2p

n
[(m− 1)+ + (1− α)+] > 2− 4

n
− 2(n− 2)

n
= 0.

On the other hand, in the case that n = 5 and (C3-1) holds we see from the conditions

m < 1 and α > 1− 2
p
that

2− 4

n
− 2p

n
[(m− 1)+ + (1− α)+] > 2− 4

n
− 4

n
=

2

5
> 0.

In the cases that n = 5 and (C3-2) holds and that n ≥ 6 and (D2-1) holds, by virtue

of the conditions n ≥ 5, m < 1 + n−4
2p

and α > 1− 2
p
we obtain

2− 4

n
− 2p

n
[(m− 1)+ + (1− α)+] > 2− 4

n
− 2p

n

[
n− 4

2p
+

2

p

]
= 1− 4

n
> 0.

In the cases that n = 5 and (C3-3) holds and that n ≥ 6 and (D2-2) holds, recalling

m− α < n−2
p
, we can establish that

2− 4

n
− 2p

n
[(m− 1)+ + (1− α)+] > 2− 4

n
− 2(n− 2)

n
= 0.
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Therefore we attain (3.4.2). Moreover, from the fact

2− 4

n
− 2p

n
[(m− 1)+ + (1− α)+] > 0

we deduce that(
2− 4

n
− p

n
[2(m− 1)+ + (1− α)+]

)
−
(
1− 2

n
− p

n
(m− 1)+

)
= 1− 2

n
− p

n
[(m− 1)+ + (1− α)+]

=
1

2

(
2− 4

n
− 2p

n
[(m− 1)+ + (1− α)+]

)
> 0,

which implies that (3.4.4) holds. Noticing from (IV) that

κ < 1 +
n− 2

p
+
q

p
− (m− 1)+ − (1− α)+,

we have that(
2− 4

n
− p

n
[2(m− 1)+ + (1− α)+]

)
−
(
p

n
[2(κ− 1) + (1− α)+]−

2q

n

)
= 2− 4

n
+

2q

n
− 2p

n
[(κ− 1) + (m− 1)+ + (1− α)+]

> 2− 4

n
+

2q

n
− 2p

n
·
[
n− 2

p
+
q

p

]
= 0,

which attains (3.4.3). Thus, in the cases (A4), (B3), (C3) and (D2) we can take

γ ∈ (0, 1) with (3.4.1). Next we consider the case that m and α fulfill (B1-2). Since it

follows from the conditions n = 4, m < 1 and α ≥ 1 that

1−
(
2− 4

n
− p

n
[2(m− 1)+ + (1− α)+]

)
= −1 +

4

n
= 0,

we confirm that

p

n
(1− α)+ < 1, (3.4.5)

p

n
[2(κ− 1) + (1− α)+]−

2q

n
< 1, (3.4.6)

1− 2

n
− p

n
(m− 1)+ < 1. (3.4.7)
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Noting that (m − 1)+ = 0 and (1 − α)+ = 0, we see that (3.4.5) and (3.4.7) hold.

Furthermore, recalling from (II) that

κ < 1 +
n

2p
+
q

p
,

we obtain

1−
(
2p

n
(κ− 1)− 2q

n

)
> 1− 2p

n

(
n

2p
+
q

p

)
+

2q

n
= 0,

which infers that we can choose γ ∈ (0, 1) with (3.4.1). Finally we verify that there

exists γ ∈ (0, 1) with (3.4.1) in the case that m and α satisfy the condition (C1-2) or

(D1). The conditions n ≥ 5 and 2m− α < 1 + n−4
p

yield that

1−
(
2− 4

n
− p

n
[2(m− 1)+ + (1− α)+]

)
= −1 +

4

n
+
p

n
[2(m− 1)+ + (1− α)+]

< −1 +
4

n
+
n− 4

n

= 0.

Thus we show (3.4.5)–(3.4.7). Since n ≥ 5 and α > 1− 2
p
, we have that

1− p

n
(1− α)+ > 1− 2

n
> 0.

Moreover, it follows that

1−
(
1− 2

n
− p

n
(m− 1)+

)
=

2

n
+
p

n
(m− 1)+ > 0.

Invoking from (II) that

κ < 1 +
n

2p
+
q

p
− (1− α)+

2
,

we see that

1−
(
p

n
[2(κ− 1) + (1− α)+]−

2q

n

)
> 1− p

n
·
[
n

p
+

2q

p

]
+

2q

n

= 0.

Therefore, since (3.4.5)–(3.4.7) hold, we can find γ ∈ (0, 1) with (3.4.1).
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Next we prove that there exists γ ∈ (0, 1) such that (3.3.6), (3.3.8), (3.3.14), the

second condition of (3.3.15) and (3.3.28) hold.

Lemma 3.4.2. Let m > 0, α > 0, κ ≥ 1, p ≥ n and q ≥ 0. Assume that m and α

satisfy (A1), (A2), (A3), (B1-1), (B2), (C1-1) or (C2). Suppose that κ fulfills (I),(II)

and (III). Then there exists γ ∈ (0, 1) such that

max

{
p

n
(1− α)+,

p

n
[2(κ− 1) + (1− α)+]−

2q

n

}
< γ < min

{
1, 2− 2

n
− pm

n
, 2− 2p

n
(α− 1)+

}
. (3.4.8)

Proof. First we consider the case that m and α fulfill (A1), (B1-1) or (C1-1). By virtue

of the condition m < n−2
p

(n ∈ {3, 4, 5}) we obtain(
2− 2

n
− pm

n

)
− 1

= 1− 2

n
− pm

n

> 1− 2

n
− n− 2

n
= 0.

Furthermore, in the case that n = 3 and (A1) holds we can estimate from the condition

α < 1 + 3
2p

that(
2− 2p

n
(α− 1)+

)
− 1 = 1− 2p

n
(α− 1)+ > 1− 3

n
= 0.

In the cases that n = 4 and (B1-1) holds and that n = 5 and (C1-1) holds, noticing

that (α− 1)+ = 0, we can verify that(
2− 2p

n
(α− 1)+

)
− 1 = 1 > 0.

Hence it suffices to show that

p

n
(1− α)+ < 1, (3.4.9)

p

n
[2(κ− 1) + (1− α)+]−

2q

n
< 1. (3.4.10)

In the case that n = 3 and (A1) holds we have from the condition α > 1− 1
p
that

1− p

n
(1− α)+ > 1− 1

n
> 0.

61



On the other hand, in the cases that n = 4 and (B1-1) holds and that n = 5 and (C1-1)

holds we see from the condition α > 1− 2
p
that

1− p

n
(1− α)+ > 1− 2

n
> 0.

Thus the condition (3.4.9) holds. Recalling from (II) that

κ < 1 +
n

2p
+
q

p
− (1− α)+

2
,

we can show that

1−
(
p

n
[2(κ− 1) + (1− α)+]−

2q

n

)
> 1− p

n
·
[
n

p
+

2q

p

]
+

2q

n
= 0,

which implies that we attain (3.4.10). Since (3.4.9) and (3.4.10) hold, we can take

γ ∈ (0, 1) with (3.4.8). Next we consider the case that m and α satisfy (A2). From the

conditions n = 3 and 2α−m > 2 + 2
p
we obtain(

2− 2

n
− pm

n

)
−
(
2− 2p

n
(α− 1)+

)
= − 2

n
+
p

n
(2α−m− 2)

> − 2

n
+

2

n

= 0.

Moreover, the condition α ≥ 1 + 3
2p

yields that

1−
(
2− 2p

n
(α− 1)+

)
= −1 +

2p

n
(α− 1) ≥ −1 +

3

n
= 0.

Accordingly, we confirm that

p

n
(1− α)+ < 2− 2p

n
(α− 1)+, (3.4.11)

p

n
[2(κ− 1) + (1− α)+]−

2q

n
< 2− 2p

n
(α− 1)+. (3.4.12)

Since p
n
(1− α)+ = 0 and it follows from the condition α < 1 + 2

p
that

2− 2p

n
(α− 1)+ > 2− 4

n
> 0,
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we can verify that (3.4.11) holds. Noticing from (I) that

κ < 1 +
3

p
+
q

p
− (α− 1),

we see that (
2− 2p

n
(α− 1)+

)
−
(
p

n
[2(κ− 1) + (1− α)+]−

2q

n

)
= 2− 2p

n
[(κ− 1) + (α− 1)] +

2q

n

> 2− 2p

n
·
[
3

p
+
q

p

]
+

2q

n

= 0,

which infers (3.4.12). Consequently, we can find γ ∈ (0, 1) with (3.4.8). Finally we

consider the case that m and α fulfill (A3), (B2) or (C2). In light of the condition

2α−m ≤ 2+ 2
p
in the case that n = 3 and (A3-1) holds and the condition (α−1)+ = 0

in the cases that n = 3 and (A3-2) holds, that n = 4 and (B2) holds and that n = 5

and (C2) holds we have that(
2− 2p

n
(α− 1)+

)
−
(
2− 2

n
− pm

n

)
=

2

n
− p

n
[2(α− 1)+ −m] ≥ 0.

Moreover, since m ≥ n−2
p

in the cases that n = 3 and (A3) holds, that n = 4 and (B2)

holds and that n = 5 and (C2) holds, it follows that

1−
(
2− 2

n
− pm

n

)
= −1 +

2

n
+
pm

n
≥ −1 +

2

n
+
n− 2

n
= 0.

Therefore it suffices to show that

p

n
(1− α)+ < 2− 2

n
− pm

n
, (3.4.13)

p

n
[2(κ− 1) + (1− α)+]−

2q

n
< 2− 2

n
− pm

n
. (3.4.14)

Now we note that(
2− 2

n
− pm

n

)
− p

n
(1− α)+ = 2− 2

n
− p

n
[m+ (1− α)+].

In the case that n = 3 and (A3) holds, thanks to the conditions m < 3
p
and α > 1− 1

p
,

we obtain

2− 2

n
− p

n
[m+ (1− α)+] > 2− 2

n
− p

n
·
[
3

p
+

1

p

]
= 0.
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On the other hand, in the cases that n = 4 and (B2) holds and that n = 5 and (C2)

holds we deduce from the conditions m < 4
p
and α > 1− 2

p
that

2− 2

n
− p

n
[m+ (1− α)+] > 2− 2

n
− p

n
·
[
4

p
+

2

p

]
≥ 0.

Thus the condition (3.4.13) holds. Invoking from (III) that

κ < 1 +
n− 1

p
+
q

p
− m

2
− (1− α)+

2
,

we can show that(
2− 2

n
− pm

n

)
−
(
p

n
[2(κ− 1) + (1− α)+]−

2q

n

)
= 2− 2

n
− p

n
[2(κ− 1) +m+ (1− α)+] +

2q

n

> 2− 2

n
− p

n
·
[
n− 1

p
+
q

p

]
+

2q

n

= 0,

which infers that (3.4.14) holds. Accordingly, we can choose γ ∈ (0, 1) with (3.4.8).

Thanks to Lemmas 3.4.1 and 3.4.2, we can apply Lemmas 3.3.3, 3.3.6, 3.3.7, 3.3.9

and 3.3.10 to (3.3.3). Thus, we finally establish a super-linear differential inequality

for the moment-type functional ϕ defined as (3.3.1).

Lemma 3.4.3. Let m > 0, α > 0, χ > 0, µ1 > 0, κ ≥ 1, p ≥ n, q ≥ 0, M0 > 0,

K̃ > 0 and T > 0.

(i) Assume that m and α satisfy (A4), (B1-2), (B3), (C1-2), (C3), (D1) or (D2)

and suppose that κ fulfills (II) and (IV). Then one can find C > 0, γ ∈ (0, 1),

θ ∈
(
0, 2− p

n
(1− α)+

)
and s1 ∈ (0, Rn) such that if

∫
Ω
u0(x) dx =M0 and (3.1.7)

holds, then

ϕ′(t) ≥ 1

C
s
γ−3+ p

n
(1−α)+

0 ϕ2(t)− Cs3−γ−θ0 (3.4.15)

for all s0 ∈ (0, s1) and t ∈ (0,min{T, Tmax}).

(ii) Assume that m and α satisfy (A1), (A2), (A3), (B1-1), (B2), (C1-1) or (C2) and

suppose that κ fulfills (I), (II) and (III). Then one can find C > 0, γ ∈ (0, 1),

θ ∈
(
0, 2− p

n
(1− α)+

)
and s1 ∈ (0, Rn) such that if

∫
Ω
u0(x) dx =M0 and (3.1.7)

holds, then (3.4.15) holds for all s0 ∈ (0, s1) and t ∈ (0,min{T, Tmax}).
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Proof. We first prove (3.4.15) in the case that m and α satisfy (A4), (B1-2), (B3),

(C1-2), (C3), (D1) or (D2). By virtue of Lemma 3.4.1 we can take γ ∈ (0, 1) fulfilling

(3.4.1). Thus, applying Lemmas 3.3.3, 3.3.6, part (i) of Lemma 3.3.7 and 3.3.9 to

(3.3.3), we can observe that there exist c1 > 0 and c2 > 0 such that

ϕ′(t) ≥ c1ψα(t)

− c2s
3−γ
2

− 2
n
− p

2n
[2(m−1)++(1−α)+]

0

√
ψα(t)− c2s

3− 2
n
−γ

0

− c2s
2
n
+ 1−γ

2
− p

2n
[(1−α)++2(α−1)+]

0

√
ψα(t)

− c2s
2
n
− p

n
[(1−α)++(α−1)+]

0 ψα(t)

− c2s
3−γ
2

+ q
n
− p

2n
[2(κ−1)+(1−α)+]

0

√
ψα(t)

for all s0 ∈ (0, Rn) and t ∈ (0,min{T, Tmax}). Aided by Young’s inequality, we can

verify that for any η > 0 there exists c3 = c3(η) > 0 such that

ϕ′(t) ≥ c1ψα(t)− ηψα(t)− c2s
2
n
− p

n
[(1−α)++(α−1)+]

0 ψα(t)

− c3

(
s
3−γ− 4

n
− p

n
[2(m−1)++(1−α)+]

0 + s
3− 2

n
−γ

0

+s
4
n
+1−γ− p

n
[(1−α)++2(α−1)+]

0 + s
3−γ+ 2q

n
− p

n
[2(κ−1)+(1−α)+]

0

)
(3.4.16)

for all s0 ∈ (0, Rn) and t ∈ (0,min{T, Tmax}). Since it follows from the condition

1− 2
p
< α < 1 + 2

p
that

2

n
− p

n
[(1− α)+ + (α− 1)+] >

2

n
− 2

n
= 0,

we can take s1 ∈ (0, Rn) satisfying

s1 ≤
(
c1
4c2

) 1
2
n− p

n [(1−α)++(α−1)+]

.

Therefore we see that

s
2
n
− p

n
[(1−α)++(α−1)+]

0 ψα(t) ≤
c1
4c2

ψα(t) (3.4.17)

for all s0 ∈ (0, s1) and t ∈ (0,min{T, Tmax}). Fixing η = c1
4
, we infer from (3.4.16) and

(3.4.17) that

ϕ′(t) ≥ c1
2
ψα(t)

− c3

(
s
3−γ− 4

n
− p

n
[2(m−1)++(1−α)+]

0 + s
3− 2

n
−γ

0

+s
4
n
+1−γ− p

n
[(1−α)++2(α−1)+]

0 + s
3−γ+ 2q

n
− p

n
[2(κ−1)+(1−α)+]

0

)
(3.4.18)
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for all s0 ∈ (0, s1) and t ∈ (0,min{T, Tmax}). Next, putting

θ1 := max

{
4

n
+
p

n
[2(m− 1)+ + (1− α)+],

2

n
, 2− 4

n
+
p

n
[(1− α)+ + 2(α− 1)+],

−2q

n
+
p

n
[2(κ− 1) + (1− α)+]

}
,

we show θ1 ∈
(
0, 2− p

n
(1− α)+

)
, that is, we confirm that

4

n
+
p

n
[2(m− 1)+ + (1− α)+] < 2− p

n
(1− α)+, (3.4.19)

2

n
< 2− p

n
(1− α)+, (3.4.20)

2− 4

n
+
p

n
[(1− α)+ + 2(α− 1)+] < 2− p

n
(1− α)+, (3.4.21)

−2q

n
+
p

n
[2(κ− 1) + (1− α)+] < 2− p

n
(1− α)+. (3.4.22)

Since the inequality 2− 4
n
− p

n
[2(m− 1)+ + (1− α)+] >

p
n
(1− α)+ holds from (3.4.1),

it follows that(
2− p

n
(1− α)+

)
−
(
4

n
+
p

n
[2(m− 1)+ + (1− α)+]

)
> 0.

Moreover, we can establish from the condition 1− 2
p
< α < 1 + 2

p
that(

2− p

n
(1− α)+

)
− 2

n
>

(
2− 2

n

)
− 2

n
> 0

and (
2− p

n
(1− α)+

)
−
(
2− 4

n
+
p

n
[(1− α)+ + 2(α− 1)+]

)
=

4

n
− 2p

n
[(1− α)+ + (α− 1)+]

>
4

n
− 4

n
= 0.

Noticing from (3.4.1) that 1 > p
n
[2(κ− 1) + (1− α)+]− 2q

n
, we see from the condition

1− 2
p
< α that (

2− p

n
(1− α)+

)
−
(
−2q

n
+
p

n
[2(κ− 1) + (1− α)+]

)
>

(
2− 2

n

)
−
(
p

n
[2(κ− 1) + (1− α)+]−

2q

n

)
> 1−

(
p

n
[2(κ− 1) + (1− α)+]−

2q

n

)
> 0.
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Thus, since we know that (3.4.19)–(3.4.22) hold, we have θ1 ∈
(
0, 2− p

n
(1− α)+

)
.

Invoking that γ ∈ (0, 1), θ1 ∈
(
0, 2− p

n
(1− α)+

)
and s0 < Rn, we can deduce from

(3.4.18) that there exists c4 = c4(R,m, α, κ, p) > 0 such that

ϕ′(t) ≥ c1
2
ψα(t)− c3c4s

3−γ−θ1
0

for all s0 ∈ (0, s1) and t ∈ (0,min{T, Tmax}). Moreover, in light of Lemma 3.3.10, we

can take c5 > 0 such that

ϕ′(t) ≥ c1
2
c5s

γ−3+ p
n
(1−α)+

0 ϕ2(t)− c3c4s
3−γ−θ1
0

for all s0 ∈ (0, s1) and t ∈ (0,min{T, Tmax}). Hence we attain (3.4.15). As to (ii), since

m and α fulfill (A1), (A2), (A3), (B1-1), (B2), (C1-1) or (C2), we can pick γ ∈ (0, 1)

with (3.4.8). Applying Lemmas 3.3.3, 3.3.6, part (ii) of Lemma 3.3.7 and 3.3.9 to

(3.3.3), we find c6 > 0 and c7 > 0 such that

ϕ′(t) ≥ c6ψα(t)− c7s
3−γ− 2

n
− pm

n
0 − c7s

3− 2
n
−γ

0

− c7s
2
n
+ 1−γ

2
− p

2n
[(1−α)++2(α−1)+]

0

√
ψα(t)

− c7s
2
n
− p

n
[(1−α)++(α−1)+]

0 ψα(t)

− c7s
3−γ
2

+ q
n
− p

2n
[2(κ−1)+(1−α)+]

0

√
ψα(t)

for all s0 ∈ (0, Rn) and t ∈ (0,min{T, Tmax}). By an argument similar to the proof in

(i), we can show that there exists c8 > 0 such that

ϕ′(t) ≥ c6
2
ψα(t)

− c8

(
s
3−γ− 2

n
− pm

n
0 + s

3− 2
n
−γ

0

+s
4
n
+1−γ− p

n
[(1−α)++2(α−1)+]

0 + s
3−γ+ 2q

n
− p

n
[2(κ−1)+(1−α)+]

0

)
for all s0 ∈ (0, s2) and t ∈ (0,min{T, Tmax}), where s2 :=

(
c6
4c7

) 1
2
n− p

n [(1−α)++(α−1)+] . We

set

θ2 := max

{
2

n
+
pm

n
,
2

n
, 2− 4

n
+
p

n
[(1− α)+ + 2(α− 1)+],

−2q

n
+
p

n
[2(κ− 1) + (1− α)+]

}
.

Here, we note that (3.4.20)–(3.4.22) hold. To verify that θ2 ∈
(
0, 2− p

n
(1− α)+

)
we

confirm that

2

n
+
pm

n
< 2− p

n
(1− α)+. (3.4.23)

67



Since it follows from (3.4.8) that 2− 2
n
− pm

n
> p

n
(1− α)+, we have that(

2− p

n
(1− α)+

)
−
(
2

n
+
pm

n

)
=

(
2− 2

n
− pm

n

)
− p

n
(1− α)+ > 0.

Thus, since we know that (3.4.20)–(3.4.23) hold, we attain that θ2 ∈
(
0, 2− p

n
(1− α)+

)
.

From the fact s0 < Rn and Lemma 3.3.10 we can find c9 > 0 and c10 > 0 such that

ϕ′(t) ≥ c6
2
c9s

γ−3+ p
n
(1−α)+

0 ϕ2(t)− c10s
3−γ−θ2
0 for all s0 ∈ (0, s2) and t ∈ (0,min{T, Tmax}),

which concludes the proof.

3.5. Proof of the main results

Now we are in a position to complete the proofs of Theorems 3.1.1 and 3.1.2. Due

to a use of the same moment-type functional ϕ as in [2], by the argument in [2, Lemma

4.1] we can proved the following lemma which is needed for the proof of Theorem 3.1.1.

Lemma 3.5.1. Let γ ∈ (0, 1), s0 ∈ (0, Rn), M1 ≥ 0 and η ∈ (0, 1). Put sη := (1−η)s0
and r⋆ := s

1
n
η . If ∫

Br⋆ (0)

u0(x) dx ≥M1,

then

ϕ(0) ≥ η2M1

ωn−1

· s2−γ0 .

Proof of Theorem 3.1.1. We have from Lemma 3.4.3 that (3.4.15) holds. By virtue

of Lemma 3.5.1 and an argument similar to that in the proof of [2, Theorem 1.1] we

see that Tmax < T . Thanks to Lemma 3.2.1, we arrive at the conclusion (3.1.8).

To give the proof of Theorem 3.1.2 we show the pointwise upper estimate for u.

Lemma 3.5.2. Let Ω = BR(0) ⊂ Rn (n ≥ 3) with R > 0 and let χ > 0, κ ≥ 1, µ1 > 0,

q ≥ 0, M0 > 0, T > 0 and L̃ > 0. Suppose that λ and µ satisfy (3.1.4) and (3.1.5).

Assume that m > 0 and α > 0 fulfill that

m ≥ 1 and m− α ∈
(
− 1

n
,
n− 2

n

]
.

For all ε > 0 set p := n(n−1)
(m−α)n+1

+ ε. Then there exists C > 0 such that the following

property holds : If u0 satisfies (3.1.6) and
∫
Ω
u0 =M0 as well as

u0(x) ≤ L̃|x|−p for all x ∈ Ω (3.5.1)

and (u, v) ∈
(
C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T ))

)2
is a classical solution to (3.1.1), then

u(x, t) ≤ C|x|−p for all x ∈ Ω and t ∈ (0, T ). (3.5.2)
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Proof. In view of (3.1.4) we can find a positive constant λ1 such that λ(|x|) ≤ λ1
for all x ∈ Ω. Putting ũ(x, t) := e−λ1tu(x, t), D(x, t, ρ) := m(eλ1tρ + 1)m−1 and

S(x, t, ρ) := −χ(eλ1tρ+ 1)α−1ρ, we deduce from (3.1.1) that
ũt ≤ ∇ · (D(x, t, ũ)∇ũ+ S(x, t, ũ)∇v) in Ω× (0, T ),

(D(x, t, ũ)∇ũ+ S(x, t, ũ)∇v) · ν = 0 on ∂Ω× (0, T ),

ũ(·, 0) = u0 in Ω.

(3.5.3)

Moreover, we can verify that

D(x, t, ρ) ≥ mρm−1,

D(x, t, ρ) ≤ m(eλ1T + 1)m−1max{ρ, 1}m−1,

|S(x, t, ρ)| ≤ χ(eλ1Tρ+ 1)α ≤ χ(eλ1T + 1)αmax{ρ, 1}α

for all x ∈ Ω, t ∈ (0, T ) and ρ ∈ (0,∞) and∫
Ω

ũ(·, 0) =M0.

Now we take θ > n fulfilling that

m− α ∈
(
1

θ
− 1

n
,
1

θ
+
n− 2

n

]
and

p =
n(n− 1)

(m− α)n+ 1
+ ε

>
n(n− 1)

(m− α)n+ 1− n
θ

=
(n− 1)

m− α + 1
n
− 1

θ

.

By an argument similar to that in the proof of [2, Lemma 5.2], we have that∫
Ω

|x|(n−1)θ|∇v(x, t)|θ dx ≤
(
2eλ1TM0

ωn−1

)θ
|Ω|

for all t ∈ (0, T ). Thus, from [11, Theorem 1.1] we see that there exists c1 > 0 such

that ũ(x, t) ≤ c1|x|−p for all x ∈ Ω and t ∈ (0, T ), which implies (3.5.2).

We next complete the proof of Theorem 3.1.2.
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Proof of Theorem 3.1.2. We set p0 :=
n(n−1)

(m−α)n+1
. Here, we note from (E1), (F1) and

(F2) that m − α < n−2
n

and p0 > n. In the case n ≥ 3, by a direct computation we

infer from the conditions α < 2
n+1

m+ n2−n+2
n(n+1)

, α < − 1
n−2

m+ n2−2
n(n−2)

and m− α < n−2
n

that

α < 1 +
2

p0
, m < 1 +

n− 2

p0
and m− α <

n− 2

p0
. (3.5.4)

In the case (i), noting that (E1) yields (3.5.4), we can pick ε1 > 0 so small that

α < 1 +
2

p1
, 1 ≤ m < 1 +

n− 2

p1
, m− α <

n− 2

p1
(3.5.5)

and

κ < 1 +
n− 2

p1
+

q

p1
− (m− 1)− (1− α)+, (3.5.6)

where p1 := p0 + ε1. We take L̃ > 0 and T > 0. Moreover, we choose r⋆ ∈ (0, R)

and u0 ∈ C0(Ω) with (3.1.6) satisfying
∫
Ω
u0 = M0 and

∫
Br⋆ (0)

u0 ≥ M1 as well as

u0(x) ≤ L̃|x|−p1 for all x ∈ Ω. By virtue of Lemma 3.5.2 we can find C > 0 complying

with (3.5.2). Thus, noticing from (3.5.5) and (3.5.6) that (A4), (B3) and (IV) hold,

we see from Theorem 3.1.1 that the solution (u, v) blows up in finite time. On the

other hand, in the case (ii) we observe from the conditions − 2
n−3

m + n2−n−2
n(n−3)

< α,

α < −n+2
n−4

m+ 2n2−n−4
n(n−4)

, α ≤ n+2
3
m− n2−4

3n
and −n+2

n−4
m+ 2n2−n−4

n(n−4)
≤ α that

1− 2

p0
< α, m < 1 +

n− 4

2p0
, 2m− α ≤ 1 +

n− 4

p0

and

1 +
n− 4

2p0
≤ m.

Therefore, by picking ε2 > 0 small enough, we have from (F1) and (ii) that m and α

fulfill that

1− 2

p2
< α < 1 +

2

p2
, 1 ≤ m < 1 +

n− 4

2p2
, 2m− α ≥ 1 +

n− 4

p2
(3.5.7)

or

1− 2

p2
< α < 1 +

2

p2
, 1 +

n− 4

2p2
≤ m < 1 +

n− 2

p2
, m− α <

n− 2

p2
(3.5.8)

and κ satisfies that

κ < 1 +
n− 2

p2
+

q

p2
− (m− 1)− (1− α)+, (3.5.9)
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where p2 := p0 + ε2. Moreover, in the case (iii) we obtain

1− 2

p3
< α < 1 +

2

p3
, 1 ≤ m < 1 +

n− 4

2p3
, 2m− α < 1 +

n− 4

p3
(3.5.10)

and

κ < 1 +
n

2p3
+

q

p3
− (1− α)+

2
, (3.5.11)

where p3 := p0 + ε3 with some ε3 > 0. Accordingly, since we can verify from (3.5.7),

(3.5.8) and (3.5.9) that (C3), (D2) and (IV) hold and we can confirm from (3.5.10)

and (3.5.11) that (C1), (D1) and (II) hold, we arrive at the conclusion by an argument

similar to that in the proof of the case (i).

3.6. Related results: Blow-up prevention in a fully parabolic

system with nonlinear production

3.6.1. Motivations and main result

In this short section we focus on [49, Theorem 1.1] and [10, Theorem 2.1] where

chemotaxis systems for two coupled parabolic equations are so formulated:
ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v), x ∈ Ω, t > 0,

vt = ∆v − v + f(u), x ∈ Ω, t > 0,

∇u · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, t > 0.

(3.6.1)

Herein, Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary, and ν denotes

the outward normal vector to ∂Ω. Also, the initial data (u0, v0) is assumed to satisfy{
u0 ∈ C0(Ω) is nonnegative with u0 ̸≡ 0,

v0 ∈ C1(Ω) is nonnegative,
(3.6.2)

and, for all u ≥ 0 and appropriate real numbers CD, C̃D, CS, m̂, m̂1, α, L, ℓ, the diffusion

and sensitivity laws D,S ∈ C2([0,∞)) and the production growth f ∈ C1([0,∞)) are

such that

CD(1 + u)−m̂ ≤ D(u) ≤ C̃D(1 + u)−m̂1 , 0 ≤ S(u) ≤ CSu(1 + u)α−1, (3.6.3)

and

0 ≤ f(u) ≤ Luℓ. (3.6.4)

The aforementioned results in [49] and [10] are collected as follows.
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Theorem 3.6.1. Let n ≥ 2 and (u0, v0) satisfy (3.6.2). Suppose that D,S and f fulfill

(3.6.3) and (3.6.4). Then the system (3.6.1) admits a unique nonnegative classical

solution (u, v) which is globally bounded provided that:

I) [49, Theorem 1.1] 0 < ℓ ≤ 1 and

m̂+ α + ℓ < 1 +
2

n
; (3.6.5)

II) [10, Theorem 2.1] m̂ = m̂1 = 0, 0 < ℓ < 2
n
, α ≥ 2

n
and

α +
ℓ

2
< 1 +

1

n
. (3.6.6)

These two theorems have been proved, in an independent way the one from the

other, recently. Moreover, when investigating a variant of Keller–Segel systems like

those in (3.6.1), we can realize that:

• for 0 < ℓ < 1
n
, the proof leading to (3.6.5) has a mathematical inconsistency; in

this same range, even for the linear diffusion case m̂ = m̂1 = 0, the condition

cannot hold true and has to be replaced by (3.6.6);

• for 1
n
≤ ℓ < 2

n
and m̂ = m̂1 = 0, assumption (3.6.6) is less accurate than (3.6.5).

Since this gap leaves the general theory about models (3.6.1) somehow incomplete and

fragmented, we understand that it is of primary importance giving a revised and unified

conclusion. Precisely, the role behind the forthcoming theorem is twofold: correcting

[49, Theorem 1.1] and improving [10, Theorem 2.1].

Theorem 3.6.2. Let n ≥ 2 and (u0, v0) satisfy (3.6.2). Suppose that D,S and f fulfill

(3.6.3) and (3.6.4). If 0 < ℓ ≤ 1 and{
m̂+ α + ℓ < 1 + 2

n
if ℓ ∈

[
1
n
, 1
]
,

m̂+ α < 1 + 1
n

if ℓ ∈
(
0, 1

n

)
,

(3.6.7)

then the system (3.6.1) admits a unique nonnegative classical solution (u, v) which is

globally bounded.

3.6.2. Identification of the gap

Once combined with well-known extensibility criteria, global boundedness for lo-

cal classical solutions of the system (3.6.1), defined in Ω × (0, Tmax), is achieved by

controlling ∥u(·, t)∥Lp(Ω) and ∥∇v(·, t)∥Lq(Ω) on (0, Tmax), and for p, q large enough. In

particular, if we refer to [49], such boundedness relies on the ensuing
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Proposition 3.6.3 ([49, Proposition 3.1]). Let n ≥ 2 and (u0, v0) satisfy (3.6.2).

Suppose that D,S and f fulfill (3.6.3) and (3.6.4). If 0 < ℓ ≤ 1, m̂ and α are

constrained by assumption (3.6.5), then for all p ∈ [1,∞) and each q ∈ [1,∞), there

exists C = C(p, q, m̂, m̂1, α, ℓ) > 0 such that

∥u(·, t)∥Lp(Ω) ≤ C and ∥∇v(·, t)∥Lq(Ω) ≤ C for all t ∈ (0, Tmax).

Unfortunately, the proof of this proposition contains an error in the case ℓ ∈
(
0, 1

n

)
:

specifically, in [49, (3.1) in Section 3] it is claimed that for any 0 < ℓ ≤ 1 it is possible

to find s ∈
[
1, n

(nℓ−1)+

)
such that

ℓ− 1

n
<

1

s
< 1 +

1

n
− m̂− α. (3.6.8)

If from the one hand for ℓ ∈
[
1
n
, 1
]
such a relation and (3.6.5) fit, from the other hand

they do not when ℓ ∈
(
0, 1

n

)
, and some counterexamples of (3.6.8) can be encountered.

For instance, the triplet (m̂, α, ℓ) =
(
1, 1

n
, 1
2n

)
is adjusted to (3.6.5), but oppositely it

implies that (3.6.8) is rewritten as − 1
2n

< 1
s
< 0, not satisfied for any s ≥ 1. Since

relation (3.6.8) is crucial in the derivation of Proposition 3.6.3, the machinery to show

[49, Theorem 1.1], of the item (I) above, misses its validity for ℓ ∈ (0, 1
n
).

3.6.3. Correction of the gap and proof of Theorem 3.6.2

As specified, we can only confine to the case ℓ ∈
(
0, 1

n

)
. By putting ℓ0 := 1

n
, we

note from (3.6.7) that

m̂+ α + ℓ0 < 1 +
2

n
. (3.6.9)

Hence we can fix s ∈ [1,∞), rigorously s ∈
(

1
ℓ0
,∞
)
(see Remark 3.6.1 below), such

that

0 = ℓ0 −
1

n
<

1

s
< 1 +

1

n
− m̂− α. (3.6.10)

We next pick p ≥ p and q ≥ q, where p and q are defined as in [49, Section 3], and set

ϕ(z) :=

∫ z

0

∫ ρ

0

(1 + σ)p−m̂−2

D(σ)
dσdρ for z ≥ 0.

We can derive [49, (3.9)] unconditionally, that is, we can find C1 = C1(q) > 0 such

that on (0, Tmax) the local solution of problem (3.6.1) complies with

1

q

d

dt

∫
Ω

|∇v|2q dx+ q − 1

q2

∫
Ω

|∇|∇v|q|2 dx

≤ L2
(
2(q − 1) +

n

2

)∫
Ω

u2ℓ|∇v|2(q−1) dx+ (C1 − 2)

∫
Ω

|∇v|2q dx. (3.6.11)
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From the condition ℓ < ℓ0 and Young’s inequality it follows that for all t ∈ (0, Tmax)∫
Ω

u2ℓ|∇v|2(q−1) dx

≤ ℓ

ℓ0

∫
Ω

u2ℓ0|∇v|2(q−1) dx+

(
1− ℓ

ℓ0

)∫
Ω

|∇v|2(q−1) dx

≤ ℓ

ℓ0

∫
Ω

u2ℓ0|∇v|2(q−1) dx+

(
1− ℓ

ℓ0

)[(
1− 1

q

)∫
Ω

|∇v|2q dx+ |Ω|
q

]
.

Therefore, by plugging this inequality into (3.6.11), we obtain C2 = C2(q) > 0 and

C3 = C3(q, |Ω|) > 0 providing

1

q

d

dt

∫
Ω

|∇v|2q dx+ q − 1

q2

∫
Ω

|∇|∇v|q|2 dx

≤ C2

∫
Ω

u2ℓ0|∇v|2(q−1) dx+ C2

∫
Ω

|∇v|2q dx+ C3 on (0, Tmax). (3.6.12)

Since ℓ0 =
1
n
∈
[
1
n
, 1
]
and (3.6.9) holds, we can estimate the first term on the right-hand

side of (3.6.12) as in the proof of [49], so arriving at [49, (3.19)], with C11 involving

also the constant C3. Finally, thanks to relation (3.6.10), we complete the proof by

similar arguments to those employed in [49, Proposition 3.1].

Remark 3.6.1 (Comparison between [49, Theorem 1.1] and [10, Theorem 2.1]). The

proof of [49, Proposition 3.1] relies, inter alia, on the conservation of mass prop-

erty ∥u(·, t)∥L1(Ω) =
∫
Ω
u0(x) dx = M0 for all t ∈ (0, Tmax), as well as on the bound

∥v(·, t)∥W 1,s(Ω) ≤ C, valid for any s ∈
(
1
ℓ
, n
(nℓ−1)+

)
, throughout all t ∈ (0, Tmax) and

for some C = C(s, ℓ) > 0. The first is obtainable by integrating over Ω the equation

for u in (3.6.1). For the second, Neumann semigroup estimates, in conjunction with∫
Ω
f(u)

1
ℓ ≤ L

1
ℓM0, entail for some C0 > 0, µ > 0, and all t ∈ (0, Tmax) and

1
2
< ρ < 1

∥v(·, t)∥W 1,s(Ω) ≤ C0∥v0∥W 1,s(Ω) + C0

∫ t

0

(t− r)−ρ−
n
2 (ℓ−

1
s)e−µ(t−r)∥uℓ(·, r)∥

L
1
ℓ (Ω)

dr.

Conversely, in [10, Lemma 3.1] only a uniform bound for v(·, t) in W 1,n(Ω) and for any

0 < ℓ < 2
n
is derived. Subsequently, since n

(nℓ−1)+
> n, one concludes that for s close

enough to n
(nℓ−1)+

, the succeeding W 1,s-estimates involving v, have to play a sharper

role on the final result than the W 1,n-estimates do. This is reflected on condition

(3.6.5), milder than (3.6.6).
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Part II

Finite-time blow-up in quasilinear

Jäger–Luckhaus systems with

logistic source and nonlinear

production
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Chapter 4

The case of nondegenerate diffusion

4.1. Introduction

In this chapter we consider the following quasilinear Jäger–Luckhaus system with

logistic source and nonlinear production:
ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v) + λu− µuκ, x ∈ Ω, t > 0,

0 = ∆v −Mf (t) + f(u), x ∈ Ω, t > 0,

∇u · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(4.1.1)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω; λ > 0, µ > 0

and κ > 1; D,S ∈ C2([0,∞)) and D(0) > 0; f ∈
⋃
β∈(0,1)C

β
loc([0,∞)) ∩ C1((0,∞));

Mf (t) :=
1

|Ω|

∫
Ω

f(u(x, t)) dx;

ν is the outward normal vector to ∂Ω; u0 ∈
⋃
β∈(0,1)C

β(Ω) is nonnegative. Here, D,S

and f are functions generalizing the prototypes

D(u) = (u+ 1)m−1, S(u) = u(u+ 1)α−1 and f(u) = uℓ

with m ∈ R, α > 0 and ℓ > 0.

The system (4.1.1) describes a motion of cellular slime molds with chemotaxis, and

the unknown function u = u(x, t) denotes the density of cells and the unknown function

v = v(x, t) represents the concentration of the chemical substance at place x ∈ Ω and

time t > 0. This system is one of many types of the Keller–Segel system{
ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
(4.1.2)
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which was proposed by Keller and Segel [23]. A number of variations of the original

system (4.1.2) and related results for blow-up (in the radial setting) and boundedness

are introduced in [1, 16, 26]:

• We first focus on the quasilinear Keller–Segel system,{
ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v), x ∈ Ω, t > 0,

τvt = ∆v − v + f(u), x ∈ Ω, t > 0,

where τ ∈ {0, 1}. When f(u) = u, in the parabolic–parabolic setting (τ = 1),

Tao and Winkler [50] showed that solutions are global and bounded under the

conditions that S(u)
D(u)

≤ cuq with q < 2
n
and c > 0 and that Ω is a convex domain;

Ishida, Seki and Yokota [18] removed the convexity of Ω; whereas Winkler [56]

proved that solutions blow up in either finite or infinite time when S(u)
D(u)

≥ cuq with

q > 2
n
and c > 0; in the parabolic–elliptic setting (τ = 0), Lankeit [25] proved that

solutions remain bounded in the case q < 2
n
and that unbounded solutions are

constructed in the case q > 2
n
. When τ = 1 and D(u) = 1, S(u) = u and f(u) =

uℓ with ℓ > 0, Liu and Tao [28] established global existence and boundedness

under the condition that 0 < ℓ < 2
n
; in the case that D(u) = (u + 1)m−1 and

S(u) = u(1 + u)α−1 with m ∈ R and α ∈ R, it was shown that solutions are

bounded under the condition α−m+max
{
ℓ, 1

n

}
< 2

n
in Chapter 3.

• We next review the quasilinear Keller–Segel system with logistic source,{
ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v) + λu− µuκ, x ∈ Ω, t > 0,

τvt = ∆v − v + f(u), x ∈ Ω, t > 0,

where λ > 0, µ > 0, κ > 1 and τ ∈ {0, 1}. Blow-up phenomena in this system are

suppressed when κ ≥ 2 and f(u) = u. Indeed, in the parabolic–parabolic setting

(τ = 1), when D(u) = 1 and S(u) = u, Winkler [55] derived that solutions exist

globally and are bounded if µ > 0 is so large and κ = 2; When D(u) = (u+1)m−1

and S(u) = u(u+1)α−1 withm ∈ R and α ∈ R, global existence and boundedness

were obtained if λ = µ = 1, κ = 2 and 0 < α −m + 1 < 4
4+n

by Zheng [67]. In

the parabolic–elliptic setting (τ = 0), when D(u) = 1 and S(u) = u, Tello and

Winker [51] showed that solutions exist globally and are bounded in the cases

that κ = 2 and µ > max
{
0, n−2

n

}
and that κ > 2 and µ > 0; when D(u) = um−1

and S(u) = uα for all u ≥ 1 with m ≥ 1 and α > 0, Zheng [66] proved global

existence and boundedness in the cases that κ > 1 and α+ 1 < max
{
m+ 2

n
, κ
}

and that κ > 1, α + 1 = κ and µ > µ0 for some µ0 > 0. On the other hands,
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in the parabolic–elliptic setting, it is known that blow-up occurs under the some

conditions for κ > 1 when f(u) = u. When D(u) = 1 and S(u) = u, Winkler

[60] presented that if 1 < κ < 7
6
(n ∈ {3, 4}) and 1 < κ < 1 + 1

2(n−1)
(n ≥ 5),

then solutions blow up in finite time; similar blow-up results were obtained in

the case that D(u) = (u+ 1)m−1 and S(u) = u(u+ 1)α−1 with m ≥ 1 and α > 0

(see [2] and Chapters 2 and 3).

• We turn our eyes into the quasilinear Jäger–Luckhaus system{
ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v), x ∈ Ω, t > 0,

0 = ∆v −Mf (t) + f(u), x ∈ Ω, t > 0.

A simplification of this system was introduced by Jäger and Luckhaus [21]. When

D(u) = (u+1)m−1 with m ∈ R, S(u) = u and f(u) = u, Cieślak and Winkler [9]

derived global existence and boundedness in the case 2−m < 2
n
and finite-time

blow-up in the case 2−m > 2
n
; when D(u) = (u+1)m−1 and S(u) = u(u+1)α−1

with m ≤ 1 and α ∈ R as well as f(u) = u, Winkler and Djie [63] proved that

solutions are global and bounded if α −m+ 1 < 2
n
, whereas finite-time blow-up

occurs if α −m + 1 > 2
n
; when D(u) = 1, S(u) = u and f(u) = uℓ with ℓ > 0,

Winkler [59] showed that solutions exist globally and remain bounded in the case

ℓ < 2
n
and that there exist solutions which are unbounded in finite time in the

case ℓ > 2
n
; when D(u) = (u + 1)m−1, S(u) = u and f(u) = uℓ with m ∈ R and

ℓ > 0, global existence and boundedness were established if ℓ − m + 1 < 2
n
by

Li [27]. Moreover, in [27] it was asserted that finite-time blow-up occurs under

the condition that ℓ − m + 1 > 2
n
. However, this condition should be repaired

because from assumptions of [27, Lemma 3.5] we can obtain the condition that

ℓ− (m− 1)+ >
2

n
, where (m− 1)+ := max{0,m− 1}; (4.1.3)

when D(u) = 1, S(u) = u(u+ 1)α−1 and f(u) = uℓ with α > 0 and ℓ > 0, Wang

and Li [53] derived the critical value α + ℓ− 1 = 2
n
.

• In the system (4.1.1), when D(u) = 1, S(u) = u and f(u) = u, Winkler [57]

showed that if 1 < κ < 3
2
+ 1

2n−2
(n ≥ 5), then there exists a solution blowing

up in finite time; a similar blow-up result was obtained in the case that D(u) =

(u+1)m−1 with m ≥ 1 in [2]; furthermore, Fuest [13] showed that solutions blow

up in finite time under the conditions that 1 < κ < min
{
2, n

2

}
and µ > 0 (n ≥ 3)

and that κ = 2 and µ ∈
(
0, n−4

n

)
(n ≥ 5); in the two dimensional setting and

κ = 2, global existence and boundedness were established when
∫
Ω
u0 < 8π,

whereas finite-time blow-up occurs when
∫
Ω
u0 < m0 with m0 > 8π in [12].
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In summary, in [2, 12, 13, 57], blow-up results were derived in the chemotaxis

system with logistic source and linear production. However, boundedness and blow-up

results were not obtained in the quasilinear Jäger–Luckhaus system with logistic source

and nonlinear production (when D(u) = 1 and S(u) = u, recently, Yi, Mu, Xu and

Dai [65] derived the blow-up result under the condition that ℓ+ 1 > κ
(
1 + 2

n

)
).

Our aim of this chapter is to present conditions that solutions of (4.1.1) are bounded

or blow up. Before we state the main results, we give conditions for the functions D,

S and f as follows:

D ∈ C2([0,∞)) is positive, (4.1.4)

S ∈ C2([0,∞)) is nonnegative and nondecreasing (4.1.5)

and

f ∈
⋃

β∈(0,1)

Cβ
loc([0,∞)) ∩ C1((0,∞)) is nonnegative and nondecreasing. (4.1.6)

We now state the main theorems. The first one asserts boundedness of solutions.

Theorem 4.1.1. Let Ω ⊂ Rn (n ≥ 1) be a smooth bounded domain, and let δ ∈ (0, 1],

m ∈ R, α > 0, λ > 0, µ > 0, κ > 1 and ℓ > 0. Assume that u0 ∈
⋃
β∈(0,1)C

β(Ω) is

nonnegative and D, S and f satisfy (4.1.4), (4.1.5) and (4.1.6) as well as

D(ξ) ≥ CD(ξ + δ)m−1, S(ξ) ≤ CSξ(ξ + δ)α−1 for all ξ ≥ 0 (4.1.7)

and

f(ξ) ≤ Lξℓ for all ξ ≥ 0 (4.1.8)

with CD > 0, CS > 0 and L > 0. If one of the following cases holds :

α + ℓ < max

{
m+

2

n
, κ

}
and µ > 0, (4.1.9)

α + ℓ = κ and µ >
n(α + ℓ−m)− 2

2(α− 1) + n(α + ℓ−m)
CSL, (4.1.10)

then there exists an exactly one pair (u, v) of functions{
u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v ∈
⋂
q>nC

0([0,∞);W 1,q(Ω)) ∩ C2,0(Ω× (0,∞))

which solves (4.1.1) classically. Moreover, the solution (u, v) is bounded in the sense

that there exists C > 0 such that

∥u(·, t)∥L∞(Ω) ≤ C

for all t ∈ (0,∞).
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We next state a result such that solutions blow up in finite time.

Theorem 4.1.2. Let Ω := BR(0) ⊂ Rn (n ≥ 1) be a ball with some R > 0, and let

δ ∈ (0, 1], m ∈ R, α > 0, λ > 0, µ > 0, κ > 1 and ℓ > 0. Assume that D, S and f

satisfy (4.1.4), (4.1.5) and (4.1.6) as well as

D(ξ) ≤ CD(ξ + δ)m−1, S(ξ) ≥ CSξ(ξ + δ)α−1 for all ξ ≥ 0 (4.1.11)

and

f(ξ) ≥ Lξℓ for all ξ ≥ 0 (4.1.12)

with CD > 0, CS > 0 and L > 0. Suppose that

α + ℓ > max

{
m+

2

n
κ, κ

}
, if m ≥ 0, (4.1.13)

or α + ℓ > max

{
2

n
κ, κ

}
, if m < 0. (4.1.14)

Then for allM0 > 0 there exist ε0 ∈ (0,M0) and r⋆ ∈ (0, R) with the following property :

If

0 ≤ u0 ∈
⋃

β∈(0,1)

Cβ(Ω) is radially symmetric, nonincreasing with respect to |x|

(4.1.15)

and ∫
Ω

u0(x) dx =M0 and

∫
Br⋆ (0)

u0(x) dx ≥M0 − ε0, (4.1.16)

then there exist T ∗ ∈ (0,∞) and an exactly one pair (u, v) of functions{
u ∈ C0(Ω× [0, T ∗)) ∩ C2,1(Ω× (0, T ∗)),

v ∈
⋂
q>nC

0([0, T ∗);W 1,q(Ω)) ∩ C2,0(Ω× (0, T ∗))

which solves (4.1.1) classically and blows up in the sense that

lim
t↗T ∗

∥u(·, t)∥L∞(Ω) = ∞.

Remark 4.1.1. As to Theorem 4.1.1, letting κ→ 1 implies that the condition (4.1.9)

is reduced the condition

α + ℓ < max

{
m+

2

n
, 1

}
,

which is a generalized condition such that solutions remain bounded in [27, 53, 59].

Also, as to Theorem 4.1.2, we see that the condition (4.1.13) with m = 1 and κ→ 1 is

a generalized condition such that solutions blow up in finite time in [53, 59].
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Remark 4.1.2. When α = 1, letting κ→ 1 entails from (4.1.13) and (4.1.14) that

ℓ > max

{
m− 1 +

2

n
, 0

}
, if m ≥ 0, (4.1.17)

ℓ > max

{
−1 +

2

n
, 0

}
, if m < 0. (4.1.18)

For instance, when m ≤ 1 − 2
n
, we see from (4.1.3) that ℓ > 2

n
, whereas we can

observe from (4.1.17) and (4.1.18) that ℓ >
{

2
n
− 1, 0

}
. Thus the conditions (4.1.17)

and (4.1.18) improve the condition in [27]. (See Figures 4.1 and 4.2.)

−1 1O
m

ℓ
(4.1.3)

(4.1.17), (4.1.18)2

1

Figure 4.1: n = 1, α = 1 and κ→ 1

1− 2

n

1O
m

ℓ

2

n

(4.1.3)

(4.1.17), (4.1.18)

Figure 4.2: n ≥ 2, α = 1 and κ→ 1

Moreover, in the case that m = 1 and α = 1, we can establish that

1 + ℓ > max

{
1 +

2

n
κ, κ

}
. (4.1.19)

Because
(
1 + 2

n

)
κ > max

{
1 + 2

n
κ, κ
}
, we can make sure that the condition (4.1.19) is

an improvement on the condition in [65]. (See Figures 4.3 and 4.4.)

1O
κ

ℓ

2

n ℓ =
(

1 + 2

n

)

κ− 1

Yi et al. [65] (4.1.19)

Figure 4.3: n ∈ {1, 2}, m = 1 and α = 1

n

n−2
1O

κ

ℓ

2

n

2

n−2

Yi et al. [65]

ℓ = κ− 1

(4.1.19)

Figure 4.4: n ≥ 3, m = 1 and α = 1
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The proofs of Theorems 4.1.1 and 4.1.2 are based on those in [59]. As to the proof

of Theorem 4.1.1, our purpose is to establish an Lp-estimate for u. In order to obtain

an Lp-estimate we consider three cases. With regard to the proof of Theorem 4.1.2, we

first define the mass accumulation function

w(s, t) :=

∫ s
1
n

0

ρn−1u(ρ, t) dρ for s ∈ [0, Rn] and t ∈ [0, Tmax),

where s := rn for r ∈ [0, R], and transform the system (4.1.1) to the parabolic equation

wt = n2s2−
2
nD(nws)wss −

1

n
sS(nws)Mf (t)

+
1

n
S(nws)

∫ s

0

f(nws(σ, t)) dσ

+ λw − nκ−1µ

∫ s

0

wκs (σ, t) dσ.

Next, we introduce the moment-type functional

ϕ(t) :=

∫ s0

0

s−γ(s0 − s)w(s, t) ds

and the functional

ψ(t) :=

∫ s0

0

s1−γ(s0 − s)wα+ℓs (s, t) ds

with some s0 ∈ (0, Rn) and γ ∈ (−∞, 1). Using the above functionals and monotonicity

of ws(·, t), we will deduce the super-linear differential inequality

ϕ′ ≥ c1ϕ
α+ℓ − c2,

where the monotonicity is derived as in [2, 59] by making use of a structural advantage

of the second equation in (4.1.1). Also, in order to attain the inequality we will apply

the inequality

ψ ≥ c3ϕ
α+ℓ

(in [65] the inequality ψ ≥ c4ϕ
1+ℓ
κ with some c4 > 0 was obtained). Moreover, in the

case m = 0, by using the estimate

log(a+ δ) ≤ 1

ε
aε + c5

for all ε > 0 with some c5 > 0, we can improve the condition (4.1.3) to the conditions

(4.1.17) and (4.1.18).

This chapter is organized as follows. In Section 4.2 we recall local existence and

show Theorem 4.1.1. In Section 4.3 we prove Theorem 4.1.2 and give open problems.
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4.2. Blow-up prevention

In this section we derive global existence and boundedness in (4.1.1). We first

introduce a result on local existence of classical solutions to (4.1.1). This lemma can

be proved by a standard fixed point argument (see e.g. [63]).

Lemma 4.2.1. Let Ω ⊂ Rn (n ≥ 1) be a smooth bounded domain, and let λ > 0, µ > 0

and κ > 1. Assume that

u0 ∈
⋃

β∈(0,1)

Cβ(Ω) is nonnegative

and D, S and f fulfill (4.1.4), (4.1.5) and (4.1.6). Then there exist Tmax ∈ (0,∞] and

a unique classical solution (u, v) of (4.1.1) satisfying{
u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈
⋂
q>nC

0([0, Tmax);W
1,q(Ω)) ∩ C2,0(Ω× (0, Tmax)).

Moreover, u ≥ 0 in Ω× (0, Tmax) and

if Tmax <∞, then lim
t↗Tmax

∥u(·, t)∥L∞(Ω) = ∞.

If u0 is radially symmetric, then so are u(·, t) and v(·, t) for all t ∈ (0, Tmax).

In the following we assume that Ω ⊂ Rn (n ≥ 1) is a smooth bounded domain and

δ ∈ (0, 1], m ∈ R, α > 0, λ > 0, µ > 0, κ > 1 and ℓ > 0. Also, we suppose that

D, S and f satisfy (4.1.7) and (4.1.8). Moreover, let (u, v) be the solution of (4.1.1)

on [0, Tmax) as in Lemma 4.2.1. We next recall the following lemma which is obtained

from the first equation in (4.1.1).

Lemma 4.2.2. The classical solution u satisfies that∫
Ω

u(x, t) dx ≤M∗ := max

{∫
Ω

u0(x) dx,

(
λ

µ
|Ω|κ−1

) 1
κ−1

}
(4.2.1)

for all t ∈ (0, Tmax).

Proof. Integrating the first equation in (4.1.1) and using Hölder’s inequality, we have

d

dt

∫
Ω

u dx ≤ λ

∫
Ω

u dx− µ|Ω|1−κ
(∫

Ω

u dx

)κ
for all t ∈ (0, Tmax). By an ODE comparison argument we attain (4.2.1).
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In order to see global existence and boundedness of solutions it is sufficient to make

sure that for each nonnegative initial data u0 ∈
⋃
β∈(0,1)C

β(Ω) and for any p > 1 we

can take C = C(p) > 0 such that∫
Ω

up(x, t) dx ≤ C for all t ∈ (0, Tmax). (4.2.2)

In the following subsections we will prove (4.2.2) in three cases as follows:

• Case 1. α + ℓ < m+ 2
n
and µ > 0.

• Case 2. α + ℓ < κ and µ > 0.

• Case 3. α + ℓ = κ and µ > n(α+ℓ−m)−2
2(α−1)+n(α+ℓ−m)

CSL.

4.2.1. Case 1. α + ℓ < m+ 2
n and µ > 0.

In this subsection we derive (4.2.2) under the condition that α + ℓ < m + 2
n
and

µ > 0.

Lemma 4.2.3. Let µ > 0 and assume that m ∈ R, α > 0 and ℓ > 0 satisfy

α + ℓ < m+
2

n
. (4.2.3)

Then for any p > max
{
1, 2−m, 2− (α + ℓ), n

2
(1−m) +

(
n
2
− 1
)
(α + ℓ− 1)

}
there is

C = C(Ω,m, α, λ, µ, κ, ℓ, L, δ, p, CD, CS) > 0 such that∫
Ω

up(x, t) dx ≤ C (4.2.4)

for all t ∈ (0, Tmax).

Proof. By virtue of the first equation in (4.1.1) and D(u) ≥ CD(u+ δ)m−1, we have

d

dt

∫
Ω

(u+ δ)p dx ≤ −p(p− 1)CD

∫
Ω

(u+ δ)p+m−3|∇u|2 dx

+ p(p− 1)

∫
Ω

(u+ δ)p−2S(u)∇u · ∇v dx

+ pλ

∫
Ω

u(u+ δ)p−1 dx− pµ

∫
Ω

uκ(u+ δ)p−1 dx

= − 4p(p− 1)CD
(p+m− 1)2

∫
Ω

|∇(u+ δ)
p+m−1

2 |2 dx

+ p(p− 1)

∫
Ω

∇
(∫ u

0

(ξ + δ)p−2S(ξ) dξ

)
· ∇v dx

+ pλ

∫
Ω

u(u+ δ)p−1 dx− pµ

∫
Ω

uκ(u+ δ)p−1 dx

=: I1 + I2 + I3 + I4 (4.2.5)
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for all t ∈ (0, Tmax). Noting from S(ξ) ≤ CS(ξ + δ)α and p > 1− α that∫ u

0

(ξ + δ)p−2S(ξ) dξ ≤ CS

∫ u

0

(ξ + δ)p+α−2 dξ ≤ CS
p+ α− 1

(u+ δ)p+α−1,

from (4.1.8) and the second equation in (4.1.1) we can obtain

I2 = −p(p− 1)

∫
Ω

(∫ u

0

(ξ + δ)p−2S(ξ) dξ

)
∆v dx

≤ p(p− 1)CS
p+ α− 1

∫
Ω

(u+ δ)p+α−1f(u) dx

≤ p(p− 1)CSL

p+ α− 1

∫
Ω

(u+ δ)p+α+ℓ−1 dx (4.2.6)

for all t ∈ (0, Tmax). As to I3 and I4, since we see from elementary calculations that

there is ε > 0 so small such that (u+ δ)κ ≤ (1 + ε)uκ + Cεδ, where

Cε :=

(
δ

1− (1 + ε)−
1

κ−1

)κ−1

> 0,

we can observe

I3 + I4

≤ pλ

∫
Ω

u(u+ δ)p−1 dx− pµ

1 + ε

∫
Ω

(u+ δ)p+κ−1 dx+
pµCε
1 + ε

∫
Ω

δ(u+ δ)p−1 dx

≤ C̃ε

∫
Ω

(u+ δ)p dx− pµ

1 + ε

∫
Ω

(u+ δ)p+κ−1 dx (4.2.7)

for all t ∈ (0, Tmax), where C̃ε := max
{
pλ, pµCε

1+ε

}
> 0. From (4.2.5)–(4.2.7) we have

d

dt

∫
Ω

(u+ δ)p dx

≤ − 4p(p− 1)CD
(p+m− 1)2

∫
Ω

|∇(u+ δ)
p+m−1

2 |2 dx+ p(p− 1)CSL

p+ α− 1

∫
Ω

(u+ δ)p+α+ℓ−1 dx

+ C̃ε

∫
Ω

(u+ δ)p dx− pµ

1 + ε

∫
Ω

(u+ δ)p+κ−1 dx (4.2.8)

for all t ∈ (0, Tmax). Here, let

θ :=

p+m−1
2

− p+m−1
2(p+α+ℓ−1)

p+m−1
2

+ 1
n
− 1

2

.
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By means of

p > max

{
1, 2−m− 2

n
, 2− (α + ℓ),

n

2
(1−m) +

(n
2
− 1
)
(α + ℓ− 1)

}
,

we see that θ ∈ (0, 1). Thus we can apply the Gagliardo–Nirenberg inequality to find

c1 = c1(Ω,m, α, ℓ, p) > 0 such that∫
Ω

(u+ δ)p+α+ℓ−1 dx = ∥(u+ δ)
p+m−1

2 ∥
2(p+α+ℓ−1)

p+m−1

L
2(p+α+ℓ−1)

p+m−1 (Ω)

≤ c1∥∇(u+ δ)
p+m−1

2 ∥
2(p+α+ℓ−1)

p+m−1
θ

L2(Ω) ∥(u+ δ)
p+m−1

2 ∥
2(p+α+ℓ−1)

p+m−1
(1−θ)

L
2

p+m−1 (Ω)

+ c1∥(u+ δ)
p+m−1

2 ∥
2(p+α+ℓ−1)

p+m−1

L
2

p+m−1 (Ω)
(4.2.9)

for all t ∈ (0, Tmax). Moreover, thanks to (4.2.3), we obtain

2(p+ α + ℓ− 1)

p+m− 1
θ =

p+ α + ℓ− 2
1
2

(
p+m− 2 + 2

n

)
< 2.

Therefore, noticing from Lemma 4.2.2 that
∫
Ω
u dx ≤ M∗, from (4.2.9) and Young’s

inequality we can take c2 = c2(Ω,m, α, λ, µ, κ, ℓ, L, δ, p, CD, CS) > 0 such that

p(p− 1)CSL

p+ α− 1

∫
Ω

(u+ δ)p+α+ℓ−1 dx

≤ 2p(p− 1)CD
(p+m− 1)2

∫
Ω

|∇(u+ δ)
p+m−1

2 |2 dx+ c2 (4.2.10)

for all t ∈ (0, Tmax). A combination of (4.2.8) and (4.2.10) yields that

d

dt

∫
Ω

(u+ δ)p dx ≤ C̃ε

∫
Ω

(u+ δ)p dx− pµ

2(1 + ε)

∫
Ω

(u+ δ)p+κ−1 dx+ c2

for all t ∈ (0, Tmax). By Hölder’s inequality there exists c3 = c3(Ω,m, α, µ, κ, ℓ, p) > 0

such that

d

dt

∫
Ω

(u+ δ)p dx ≤ C̃ε

∫
Ω

(u+ δ)p dx− c3

(∫
Ω

(u+ δ)p dx

) p+κ−1
p

+ c2

for all t ∈ (0, Tmax). Noting the fact that p+κ−1
p

> 1, this inequality yields (4.2.4) by

an ODE comparison argument.
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4.2.2. Case 2. α + ℓ < κ and µ > 0.

In this subsection we show (4.2.2) under the condition that α + ℓ < κ and µ > 0.

Lemma 4.2.4. Let µ > 0 and assume that α > 0, κ > 1 and ℓ > 0 satisfy

α + ℓ < κ. (4.2.11)

Then for any p > 1 there exists a positive constant C = C(Ω, α, λ, µ, κ, ℓ, L, δ, p, CS)

such that ∫
Ω

up(x, t) dx ≤ C (4.2.12)

for all t ∈ (0, Tmax).

Proof. We know from (4.2.8) that there exist ε > 0 and C̃ε > 0 such that

d

dt

∫
Ω

(u+ δ)p dx

≤ − 4p(p− 1)CD
(p+m− 1)2

∫
Ω

|∇(u+ δ)
p+m−1

2 |2 dx+ p(p− 1)CSL

p+ α− 1

∫
Ω

(u+ δ)p+α+ℓ−1 dx

+ C̃ε

∫
Ω

(u+ δ)p dx− pµ

1 + ε

∫
Ω

(u+ δ)p+κ−1 dx (4.2.13)

for all t ∈ (0, Tmax). By virtue of (4.2.11), we have

p+ α + ℓ− 1 < p+ κ− 1.

Thus, by using Young’s inequality, we can find c1 = c1(Ω, α, µ, κ, ℓ, L, δ, p, CS) > 0 such

that

p(p− 1)CSL

p+ α− 1

∫
Ω

(u+ δ)p+α+ℓ−1 dx ≤ pµ

4(1 + ε)

∫
Ω

(u+ δ)p+κ−1 dx+ c1 (4.2.14)

for all t ∈ (0, Tmax). Therefore, combining (4.2.14) with (4.2.13) and applying Hölder’s

inequality, we can make sure that there exists a positive constant c2 = c2(Ω, µ, κ, p)

such that

d

dt

∫
Ω

(u+ δ)p dx ≤ C̃ε

∫
Ω

(u+ δ)p dx− c2

(∫
Ω

(u+ δ)p dx

) p+κ−1
p

+ c1

for all t ∈ (0, Tmax). Accordingly, we see that (4.2.12) holds.
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4.2.3. Case 3. α + ℓ = κ and µ > n(α+ℓ−m)−2
2(α−1)+n(α+ℓ−m)CSL.

To prove (4.2.2) under the condition that α + ℓ = κ and µ > n(α+ℓ−m)−2
2(α−1)+n(α+ℓ−m)

CSL

we first derive the Lp-estimate for some p < 1 + αµ
(CSL−µ)+

.

Lemma 4.2.5. Let µ > 0 and assume that α > 0, κ > 1 and ℓ > 0 satisfy α + ℓ = κ.

Then for any

p ∈
(
1, 1 +

αµ

(CSL− µ)+

)
there exists C = C(Ω, α, λ, µ, κ, L, p, CS) > 0 such that∫

Ω

up(x, t) dx ≤ C

for all t ∈ (0, Tmax).

Proof. Since the condition p < 1 + αµ
(CSL−µ)+

implies that

p(p− 1)CSL

p+ α− 1
− pµ < 0,

we can take ε > 0 small enough such that

p(p− 1)CSL

p+ α− 1
− pµ

1 + ε
< 0.

Thus we see from (4.2.8) that there exists C̃ε > 0 such that

d

dt

∫
Ω

(u+ δ)p dx

≤ − 4p(p− 1)CD
(p+m− 1)2

∫
Ω

|∇(u+ δ)
p+m−1

2 |2 dx+ C̃ε

∫
Ω

(u+ δ)p dx

−
(

pµ

1 + ε
− p(p− 1)CSL

p+ α− 1

)∫
Ω

(u+ δ)p+κ−1 dx

for all t ∈ (0, Tmax). By Hölder’s inequality, we obtain c1 = c1(Ω, α, µ, κ, L, p, CS) > 0

such that

d

dt

∫
Ω

(u+ δ)p dx ≤ C̃ε

∫
Ω

(u+ δ)p dx− c1

(∫
Ω

(u+ δ)p dx

) p+κ−1
p

for all t ∈ (0, Tmax), and thereby we can arrive at the conclusion.

Next we establish the Lp-estimate for any p > 1.
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Lemma 4.2.6. Assume that m ∈ R, α > 0, µ > 0, κ > 1 and ℓ > 0 satisfy

α + ℓ = κ and µ >
n(α + ℓ−m)− 2

2(α− 1) + n(α + ℓ−m)
CSL. (4.2.15)

Then for any p > 1 there exists C = C(Ω,m, α, λ, µ, κ, ℓ, L, δ, p, CD, CS) > 0 such that∫
Ω

up(x, t) dx ≤ C (4.2.16)

for all t ∈ (0, Tmax).

Proof. The second condition of (4.2.15) yields that(
1 +

αµ

(CSL− µ)+

)
− n

2
(α + ℓ−m) > 0.

Hence we can pick some p0 ∈
(
n
2
(α + ℓ−m), 1 + αµ

(CSL−µ)+

)
. Thanks to Lemma 4.2.5,

we see that there exists c1 = c1(Ω, α, λ, µ, κ, ℓ, L, p, CS) > 0 such that∫
Ω

up0 dx ≤ c1 (4.2.17)

for all t ∈ (0, Tmax). Moreover, we choose

p > max
{
p0, p0 + 1−m, p0 + 1− (α + ℓ),

n

2
(1−m) +

(n
2
− 1
)
(α + ℓ− 1)

}
and take ε > 0 and C̃ε > 0 such that (4.2.8) holds. Applying the Gagliardo–Nirenberg

inequality, we have∫
Ω

(u+ δ)p+α+ℓ−1 dx = ∥(u+ δ)
p+m−1

2 ∥
2(p+α+ℓ−1)

p+m−1

L
2(p+α+ℓ−1)

p+m−1 (Ω)

≤ c2∥∇(u+ δ)
p+m−1

2 ∥
2(p+α+ℓ−1)

p+m−1
θ̃

L2(Ω) ∥(u+ δ)
p+m−1

2 ∥
2(p+α+ℓ−1)

p+m−1
(1−θ̃)

L
2p0

p+m−1 (Ω)

+ c2∥(u+ δ)
p+m−1

2 ∥
2(p+α+ℓ−1)

p+m−1

L
2p0

p+m−1 (Ω)

for all t ∈ (0, Tmax) with some c2 = c2(Ω,m, α, ℓ, p) > 0, where

θ̃ :=

p+m−1
2p0

− p+m−1
2(p+α+ℓ−1)

p+m−1
2p0

+ 1
n
− 1

2

∈ (0, 1).

90



Here, we note from p0 >
n
2
(α + ℓ−m) that

2(p+ α + ℓ− 1)

p+m− 1
θ̃ − 2

=

p+α+ℓ−1
p0

− 1−
(
p+m−1
p0

+ 2
n
− 1
)

p+m−1
2p0

+ 1
n
− 1

2

=

α+ℓ−m
p0

− 2
n

p+m−1
2p0

+ 1
n
− 1

2

< 0.

Therefore, by making use of (4.2.17) and Young’s inequality, we can find a constant

c3 = c3(Ω,m, α, λ, µ, κ, ℓ, L, δ, p, CD, CS) > 0 such that

p(p− 1)CSL

p+ α− 1

∫
Ω

(u+ δ)p+α+ℓ−1 dx

≤ 2p(p− 1)CD
(p+m− 1)2

∫
Ω

|∇(u+ δ)
p+m−1

2 |2 dx+ c3 (4.2.18)

for all t ∈ (0, Tmax). From (4.2.8) and (4.2.18) we infer that

d

dt

∫
Ω

(u+ δ)p dx ≤ C̃ε

∫
Ω

(u+ δ)p dx− pµ

1 + ε

∫
Ω

(u+ δ)p+κ−1 dx+ c3

for all t ∈ (0, Tmax), which implies that (4.2.16) holds.

4.2.4. Proof of Theorem 4.1.1

In this subsection we complete the proof of boundedness.

Proof of Theorem 4.1.1. Due to (4.1.9) and (4.1.10), we can apply Lemmas 4.2.3,

4.2.4 and 4.2.6. Hence, for any p > 1 we find c1 = c1(Ω,m, α, λ, µ, κ, ℓ, L, δ, p, CD, CS) >

0 such that ∫
Ω

up dx ≤ c1

for all t ∈ (0, Tmax). By the Moser iteration (see [50, Lemma A.1]), we obtain

∥u(·, t)∥L∞(Ω) <∞

for all t ∈ (0, Tmax), which concludes the proof.
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4.3. Finite-time blow-up

In this section we show Theorem 4.1.2. In the following let Ω := BR(0) ⊂ Rn (n ≥ 1)

be a ball with some R > 0 and let λ > 0, µ > 0 and κ > 1. Also, we suppose that

D, S and f fulfill (4.1.4), (4.1.5) and (4.1.6), respectively, and u0 satisfies (4.1.15).

Moreover, introducing r := |x|, we denote by

(u, v) = (u(r, t), v(r, t))

the radially symmetric local solution of (4.1.1) on [0, Tmax). Based on [21], we define

the mass accumulation function w such that

w(s, t) :=

∫ s
1
n

0

ρn−1u(ρ, t) dρ for s ∈ [0, Rn] and t ∈ [0, Tmax). (4.3.1)

This implies that

ws(s, t) =
1

n
u(s

1
n , t)

and

wss(s, t) =
1

n2
s

1
n
−1ur(s

1
n , t)

for all s ∈ (0, Rn) and t ∈ (0, Tmax). Thus we have from the first equation in (4.1.1)

that

wt = n2s2−
2
nD(nws)wss − s1−

1
nS(nws)vr + λw − nκ−1µ

∫ s

0

wκs (σ, t) dσ (4.3.2)

for all s ∈ (0, Rn) and t ∈ (0, Tmax), and see from the second equation in (4.1.1) that

s1−
1
nvr =Mf (t)

s

n
− 1

n

∫ s

0

f(nws(σ, t)) dσ (4.3.3)

for all s ∈ (0, Rn) and t ∈ (0, Tmax). From (4.3.2) and (4.3.3) it follows that

wt ≥ n2s2−
2
nD(nws)wss −

1

n
sS(nws)Mf (t)

+
1

n
S(nws)

∫ s

0

f(nws(σ, t)) dσ − nκ−1µ

∫ s

0

wκs (σ, t) dσ (4.3.4)

for all s ∈ (0, Rn) and t ∈ (0, Tmax).

In Subsection 4.3.1 we give a lemma on radial monotonicity of ws(·, t), which is

derived by making use of a structural advantage of the second equation in (4.1.1), and

recall some lemmas to obtain inequalities for a derivative of a moment-type functional.

In Subsection 4.3.2 we establish some estimates which lead to a super-linear differential

inequality for the moment-type functional. The proof of Theorem 4.3.3 is shown in

Subsection 4.3.3. Finally, we give open problems in Subsection 4.3.4.
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4.3.1. Radial monotonicity of solutions and some inequalities

related to a moment-type functional ϕ

We first derive the concavity of w.

Lemma 4.3.1. Assume that u0 satisfies (4.1.15). Then

ur(r, t) ≤ 0 for all r ∈ (0, R) and t ∈ (0, Tmax),

that is, for w as in (4.3.1)

wss(s, t) ≤ 0 for all s ∈ (0, Rn) and t ∈ (0, Tmax).

Proof. By an argument similar to that in the proof of [59, Lemma 2.2] or [2, Lemma

5.1], we can prove this lemma.

Given s0 ∈ (0, Rn) and γ ∈ (−∞, 1), we set the moment-type functional

ϕ(t) :=

∫ s0

0

s−γ(s0 − s)w(s, t) ds for t ∈ [0, Tmax).

Here, we note that

ϕ ∈ C0([0, Tmax)) ∩ C1((0, Tmax)).

Moreover, we introduce the functional

ψ(t) :=

∫ s0

0

s1−γ(s0 − s)wα+ℓs (s, t) ds for t ∈ (0, Tmax)

and

Sϕ :=

{
t ∈ (0, Tmax)

∣∣∣∣ ϕ(t) ≥ M0 − s0
(1− γ)(2− γ)ωn

· s2−γ0

}
,

where M0 > 0. The choices of ϕ, ψ and Sϕ as well as the underlying overall strategy

closely follow the approach in [59]. However, in our method we do not use a set Sψ
defined in [59]. Next we state the following two lemmas which can be shown as in [59].

Lemma 4.3.2. Assume that u0 satisfies (4.1.15) and let s0 ∈ (0, Rn) and γ ∈ (−∞, 1).

Then

w
(s0
2
, t
)
≥ 1

ωn
·
(
M∗ −

4(M∗ −M0 + s0)

2γ(3− γ)

)
for all t ∈ Sϕ,

where M∗ is defined in (4.2.1).

The following lemma is obtained from Lemmas 4.3.1 and 4.3.2 (for details, see [59,

Lemma 3.2]).
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Lemma 4.3.3. Assume that u0 satisfies (4.1.15) and let s0 ∈
(
0, R

n

4

]
and γ ∈ (−∞, 1).

Then

Mf (t) ≤ fγ +
1

2s

∫ s

0

f(nws(σ, t)) dσ for all s ∈ (0, s0) and t ∈ Sϕ, (4.3.5)

where

fγ := f

(
8n(M∗ −M0 + s0)

2γ(3− γ)ωns0

)
> 0. (4.3.6)

In order to derive a super-linear differential inequality for ϕ we establish an estimate

for ϕ′. This method has been developed in [59].

Lemma 4.3.4. Let f fulfill (4.1.12) and let u0 satisfy (4.1.15). Let s0 ∈
(
0, R

n

4

]
and

γ ∈ (−∞, 1) as well as

γ < 2− 2

n
. (4.3.7)

Then

ϕ′(t) ≥ nℓ−1

2
L

∫ s0

0

s1−γ(s0 − s)S(nws(s, t))w
ℓ
s(s, t) ds

− fγ
n

∫ s0

0

s1−γ(s0 − s)S(nws(s, t)) ds

+ n2

∫ s0

0

s2−
2
n
−γ(s0 − s)D(nws(s, t))wss(s, t) ds

− nκ−1µ

∫ s0

0

s−γ(s0 − s)

{∫ s

0

wκs (σ, t) dσ

}
ds

=: I1 + I2 + I3 + I4 (4.3.8)

for all t ∈ Sϕ, where fγ > 0 is defined as (4.3.6).

Proof. Invoking (4.3.4) and (4.3.5), we have

wt ≥ n2s2−
2
nD(nws)wss −

fγ
n
sS(nws)

+
1

2n
S(nws)

∫ s

0

f(nws(σ, t)) dσ − nκ−1µ

∫ s

0

wκs (σ, t) dσ (4.3.9)

for all s ∈
(
0, R

n

4

]
and t ∈ Sϕ. Here, we note from Lemma 4.3.1 that

ws(σ, t) ≥ ws(s, t) (σ ≤ s).

Thanks to this inequality and (4.1.12), we see that

S(sws)

∫ s

0

f(nws(σ, t)) dσ ≥ LS(nws)

∫ s

0

(nws(σ, t))
ℓ dσ ≥ nℓLsS(nws)w

ℓ
s (4.3.10)

for all s ∈
(
0, R

n

4

]
and t ∈ Sϕ. By virtue of (4.3.9) and (4.3.10), we attain (4.3.8).
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4.3.2. Estimates for the four integrals in the inequality for ϕ′

In this subsection, in order to derive different inequalities for ϕ we show estimates

for the four integrals in (4.3.8) by using lower bound for ψ. We first provide the

estimate for I1 + I2 in the following lemma.

Lemma 4.3.5. Assume that S and f fulfill (4.1.11) and (4.1.12), and u0 satisfies

(4.1.15). Let γ ∈ (−∞, 1). Suppose that α > 0 and ℓ > 0 satisfy

α + ℓ > 1. (4.3.11)

Then there exist C1 = C1(α, ℓ, L, CS) > 0 and C2 = C2(R,α, ℓ, L, γ) > 0 such that for

any choices of s0 ∈
(
0, R

n

4

]
,

I1 + I2 ≥ C1ψ(t)− C2s
3−γ
0 (4.3.12)

for all t ∈ Sϕ.

Proof. We define the function χA as the characteristic function of the set A and put

C :=

(
4fγ
L

) 1
ℓ

> 0.

As to I2, noticing that S is nondecreasing, we see that

I2 = −fγ
n

∫ s0

0

χ{nws(·,t)≥C}s
1−γ(s0 − s)S(nws) ds

− fγ
n

∫ s0

0

χ{nws(·,t)<C}s
1−γ(s0 − s)S(nws) ds

≥ −fγ
n

∫ s0

0

χ{nws(·,t)≥C}s
1−γ(s0 − s)S(nws) ds

− fγ
n
S(C)

∫ s0

0

χ{nws(·,t)<C}s
1−γ(s0 − s) ds (4.3.13)

for all t ∈ Sϕ. Moreover, we have

− fγ
n

∫ s0

0

χ{nws(·,t)≥C}s
1−γ(s0 − s)S(nws) ds

≥ −fγ
n

∫ s0

0

χ{nws(·,t)≥C}s
1−γ(s0 − s)S(nws)

(
nws

C

)ℓ
ds

≥ −n
ℓ−1

4
L

∫ s0

0

s1−γ(s0 − s)S(nws)w
ℓ
s ds (4.3.14)
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and

−fγ
n
S(C)

∫ s0

0

χ{nws(·,t)<C}s
1−γ(s0 − s) ds ≥ − fγS(C)

(2− γ)(3− γ)n
s3−γ0 (4.3.15)

for all t ∈ Sϕ. In light of (4.3.13)–(4.3.15), we observe that

I1 + I2 ≥
1

2
I1 −

fγS(C)

(2− γ)(3− γ)n
s3−γ0

=
nℓ−1

4
L

∫ s0

0

s1−γ(s0 − s)S(nws)w
ℓ
s ds−

fγS(C)

(2− γ)(3− γ)n
s3−γ0 (4.3.16)

for all t ∈ Sϕ. Recalling (4.1.11), we can obtain∫ s0

0

s1−γ(s0 − s)S(nws)w
ℓ
s ds ≥ nCS

∫ s0

0

s1−γ(s0 − s)(nws + δ)α−1wℓ+1
s ds (4.3.17)

for all t ∈ Sϕ. If α ≥ 1, then it follows from (nws + δ)α−1 ≥ (nws)
α−1 that

nCS

∫ s0

0

s1−γ(s0 − s)(nws + δ)α−1wℓ+1
s ds ≥ nαCSψ(t) (4.3.18)

for all t ∈ Sϕ. Hence, in the case α ≥ 1 a combination of (4.3.16), (4.3.17) and (4.3.18)

yields (4.3.12). On the other hand, if α < 1, then we can show from the identity

wℓ+1
s = 1

n
wℓs(nws + δ − δ) that

nCS

∫ s0

0

s1−γ(s0 − s)(nws + δ)α−1wℓ+1
s ds

= nCS

∫ s0

0

χ{nws(·,t)≥δ}s
1−γ(s0 − s)(nws + δ)α−1wℓ+1

s ds

+ nCS

∫ s0

0

χ{nws(·,t)<δ}s
1−γ(s0 − s)(nws + δ)α−1wℓ+1

s ds

≥ nα

21−α
CS

∫ s0

0

χ{nws(·,t)≥δ}s
1−γ(s0 − s)wα+ℓs ds

+ CS

∫ s0

0

χ{nws(·,t)<δ}s
1−γ(s0 − s)(nws + δ)αwℓs ds

− δCS

∫ s0

0

χ{nws(·,t)<δ}s
1−γ(s0 − s)(nws + δ)α−1wℓs ds

≥ nα

21−α
CS

∫ s0

0

χ{nws(·,t)≥δ}s
1−γ(s0 − s)wα+ℓs ds

+ nαCS

∫ s0

0

χ{nws(·,t)<δ}s
1−γ(s0 − s)wα+ℓs ds

− δCS

∫ s0

0

χ{nws(·,t)<δ}s
1−γ(s0 − s)(nws + δ)α−1wℓs ds (4.3.19)

96



for all t ∈ Sϕ. Noting from α < 1 that

(nws + δ)α−1wℓs =

(
nws

nws + δ

)1−α

nα−1wα+ℓ−1
s ≤ nα−1wα+ℓ−1

s ,

we establish that

− δCS

∫ s0

0

χ{nws(·,t)<δ}s
1−γ(s0 − s)(nws + δ)α−1wℓs ds

≥ −nα−1CS

∫ s0

0

χ{nws(·,t)<δ}s
1−γ(s0 − s)wα+ℓ−1

s ds

≥ −nα−1CS

∫ s0

0

χ{nws(·,t)<δ}s
1−γ(s0 − s) ds

≥ − nα−1CS
(2− γ)(3− γ)

s3−γ0

for all t ∈ Sϕ. From this inequality and (4.3.19) we see that for all t ∈ Sϕ,

nCS

∫ s0

0

s1−γ(s0 − s)(nws + δ)α−1wℓ+1
s ds

≥ nα

21−α
CSψ(t)−

nα−1CS
(2− γ)(3− γ)

s3−γ0 . (4.3.20)

Thus, in the case α < 1, from (4.3.16), (4.3.17) and (4.3.20) we attain (4.3.12).

Next, we show the estimate for I3. In the case m ̸= 0 the proof of the following

lemma is based on that of [27]. However, in the case m = 0 we use a different estimate

for log(x+ 1) for any x ≥ 0 than the one used in the proof of [27, Corollary 3.4].

Lemma 4.3.6. Assume that D fulfills (4.1.11) and u0 satisfies (4.1.15). Suppose that

m ∈ R, α > 0, ℓ > 0 and γ ∈ (−∞, 1) satisfy

if m ≥ 0, then α + ℓ > m and 2− 2

n
· α + ℓ

α + ℓ−m
> γ, (4.3.21)

if m < 0, then 2− 2

n
> γ. (4.3.22)

Then there exist ε > 0, C1 = C1(m,α, ℓ, δ, γ, CD) > 0, C2 = C2(m, δ, γ, CD) > 0,

C3 = C3(m,α, ℓ, δ, γ, ε, CD) > 0 and C4 = C4(m, δ, γ, ε, CD) > 0 such that for any

s0 ∈
(
0, R

n

4

]
,

I3 ≥


−C1s

(3−γ)α+ℓ−m
α+ℓ

− 2
n

0 ψ
m

α+ℓ (t)− C2s
3−γ− 2

n
0 if m > 0,

−C3s
(3−γ)α+ℓ−ε

α+ℓ
− 2

n

0 ψ
ε

α+ℓ (t)− C4s
3−γ− 2

n
0 if m = 0,

−C2s
3−γ− 2

n
0 if m < 0

(4.3.23)

for all t ∈ Sϕ.
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Remark 4.3.1. In this lemma, the constants C1 > 0 and C2 > 0 depend on δ.

However, in the case m > 0, we can take them which are independent of δ.

Proof. We have from (4.1.11) that

I3 ≥ n2CD

∫ s0

0

s2−
2
n
−γ(s0 − s)(nws + δ)m−1wss ds

= nCD

∫ s0

0

s2−
2
n
−γ(s0 − s)

d

ds

{∫ nws

0

(ξ + δ)m−1 dξ

}
ds

for all t ∈ Sϕ. Since it follows that

∫ nws

0

(ξ + δ)m−1 dξ ≤



1

m
(nws + δ)m if m > 0,

log(nws + δ)− log δ if m = 0,

− 1

m
δm if m < 0,

we obtain from integrating by parts that

I3 ≥



− n

m
CD

(
2− 2

n
− γ

)∫ s0

0

s1−
2
n
−γ(s0 − s)(nws + δ)m ds if m > 0,

−nCD
(
2− 2

n
− γ

)∫ s0

0

s1−
2
n
−γ(s0 − s) log

(nws
δ

+ 1
)
ds if m = 0,

n

m
δmCD

(
2− 2

n
− γ

)∫ s0

0

s1−
2
n
−γ(s0 − s) ds if m < 0

(4.3.24)

for all t ∈ Sϕ. First, we show the estimate (4.3.23) in the case m > 0. By applying the

inequality

(nws + δ)m ≤ 2m((nws)
m + δm),

we know that∫ s0

0

s1−
2
n
−γ(s0 − s)(nws + δ)m ds ≤ 2mnm

∫ s0

0

s1−
2
n
−γ(s0 − s)wms ds

+ 2mδm
∫ s0

0

s1−
2
n
−γ(s0 − s) ds

=: J1 + J2 (4.3.25)
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for all t ∈ Sϕ. Invoking from (4.3.21) that m
α+ℓ

< 1, we see from Hölder’s inequality

that

J1 = 2mnm
∫ s0

0

[
s1−γ(s0 − s)wα+ℓs

] m
α+ℓ · s(1−γ)

α+ℓ−m
α+ℓ

− 2
n (s0 − s)

α+ℓ−m
α+ℓ ds

≤ 2mnmψ
m

α+ℓ (t) ·
(∫ s0

0

s1−γ−
2
n
· α+ℓ
α+ℓ−m (s0 − s) ds

)α+ℓ−m
α+ℓ

for all t ∈ Sϕ. Moreover, thanks to the condition 2− 2
n
· α+ℓ
α+ℓ−m > γ, we can observe∫ s0

0

s1−γ−
2
n
· α+ℓ
α+ℓ−m (s0 − s) ds = c1s

3−γ− 2
n
· α+ℓ
α+ℓ−m

0 ,

where

c1 :=
1(

2− γ − 2
n
· α+ℓ
α+ℓ−m

) (
3− γ − 2

n
· α+ℓ
α+ℓ−m

) > 0.

Thus we establish that

J1 ≤ 2mnmc
α+ℓ−m

α+ℓ

1 s
(3−γ)α+ℓ−m

α+ℓ
− 2

n

0 ψ
m

α+ℓ (t) (4.3.26)

for all t ∈ Sϕ. Also, since

2− γ − 2

n
> 2− γ − 2

n
· α + ℓ

α + ℓ−m
> 0

and δ ≤ 1, it follows that

J2 =
2mδm(

2− γ − 2
n

) (
3− γ − 2

n

)s3−γ− 2
n

0 ≤ 2m(
2− γ − 2

n

) (
3− γ − 2

n

)s3−γ− 2
n

0 . (4.3.27)

In the case m > 0, from (4.3.24)–(4.3.27) we can deduce that

I3 ≥ −2mnm+1CD
m

(
2− 2

n
− γ

)
c

α+ℓ−m
α+ℓ

1 s
(3−γ)α+ℓ−m

α+ℓ
− 2

n

0 ψ
m

α+ℓ (t)

− 2mnCD

m
(
3− γ − 2

n

)s3−γ− 2
n

0

for all t ∈ Sϕ, which implies (4.3.23). Next, we confirm that the estimate (4.3.23) holds

in the case m = 0. Due to (4.3.21) with m = 0, we can take ε > 0 small enough such

that α + ℓ > ε and 2− 2
n
· α+ℓ
α+ℓ−ε > γ. Furthermore, we have that

log
(nws

δ
+ 1
)
≤ 1

ε

(nws
δ

+ 1
)ε

− 1

ε

=
1

εδε
(nws + δ)ε − 1

ε
.
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In light of (4.3.24), we obtain

I3 ≥ −nCD
εδε

(
2− 2

n
− γ

)∫ s0

0

s1−
2
n
−γ(s0 − s)(nws + δ)ε ds

+
nCD
ε

(
2− 2

n
− γ

)∫ s0

0

s1−
2
n
−γ(s0 − s) ds (4.3.28)

for all t ∈ Sϕ. As in the case m > 0, we can verify that

− nCD
εδε

(
2− 2

n
− γ

)∫ s0

0

s1−
2
n
−γ(s0 − s)(nws + δ)ε ds

≥ −2εnε+1CD
εδε

(
2− 2

n
− γ

)
c

α+ℓ−ε
α+ℓ

2 s
(3−γ)α+ℓ−ε

α+ℓ
− 2

n

0 ψ
ε

α+ℓ (t)

− 2εnCD

εδε
(
3− γ − 2

n

)s3−γ− 2
n

0 (4.3.29)

for all t ∈ Sϕ, where

c2 :=
1(

2− γ − 2
n
· α+ℓ
α+ℓ−ε

) (
3− γ − 2

n
· α+ℓ
α+ℓ−ε

) > 0.

Accordingly, a combination of (4.3.28) and (4.3.29) yields (4.3.23). Finally, in the case

m < 0, we can show from (4.3.24) that

n

m
δmCD

(
2− 2

n
− γ

)∫ s0

0

s1−
2
n
−γ(s0 − s) ds =

nδmCD

m
(
3− γ − 2

n

)s3−γ− 2
n

0 ,

which concludes the proof.

In the following lemma we derive the estimate for I4.

Lemma 4.3.7. Assume that u0 satisfies (4.1.15). Suppose that α > 0, κ > 1, ℓ > 0

and γ ∈ (−∞, 1) fulfill

α + ℓ > κ and 2− α + ℓ

κ
< γ < 1. (4.3.30)

Then there exists C1 = C1(α, µ, κ, ℓ, γ) > 0 such that for any choices of s0 ∈
(
0, R

n

4

]
,

I4 ≥ −C1s
(3−γ)α+ℓ−κ

α+ℓ

0 ψ
κ

α+ℓ (t) (4.3.31)

for all t ∈ Sϕ.
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Proof. We apply the Fubini theorem to obtain∫ s0

0

s−γ(s0 − s)

{∫ s

0

wκs (σ, t) dσ

}
ds =

∫ s0

0

{∫ s0

σ

s−γ(s0 − s) ds

}
wκs (σ, t) dσ

≤ 1

1− γ
s1−γ0

∫ s0

0

(s0 − σ)wκs (σ, t) dσ

for all t ∈ Sϕ. Thus we have

I4 ≥ −n
κ−1µ

1− γ
s1−γ0

∫ s0

0

(s0 − s)wκs ds (4.3.32)

for all t ∈ Sϕ. Owing to the first condition of (4.3.30), we see from Hölder’s inequality

that ∫ s0

0

(s0 − s)wκs ds =

∫ s0

0

[
s1−γ(s0 − s)wα+ℓs

] κ
α+ℓ · s−(1−γ) κ

α+ℓ (s0 − s)
α+ℓ−κ
α+ℓ ds

≤ ψ
κ

α+ℓ (t) ·
(∫ s0

0

s−(1−γ) κ
α+ℓ−κ (s0 − s) ds

)α+ℓ−κ
α+ℓ

(4.3.33)

for all t ∈ Sϕ. Here, noting from the second condition of (4.3.30) that

1− (1− γ)
κ

α + ℓ− κ
> 1−

(
α + ℓ

κ
− 1

)
κ

α + ℓ− κ
= 0,

we can verify that ∫ s0

0

s−(1−γ) κ
α+ℓ−κ (s0 − s) ds = c1s

2−(1−γ) κ
α+ℓ−κ

0 , (4.3.34)

where

c1 :=
1(

1− (1− γ) κ
α+ℓ−κ

) (
2− (1− γ) κ

α+ℓ−κ

) > 0.

Thanks to (4.3.32)–(4.3.34), it follows that

I4 ≥ −n
κ−1µ

1− γ
c

α+ℓ−κ
α+ℓ

1 s
1−γ+ 2(α+ℓ−κ)

α+ℓ
−(1−γ) κ

α+ℓ

0 ψ
κ

α+ℓ (t)

= −n
κ−1µ

1− γ
c

α+ℓ−κ
α+ℓ

1 s
(3−γ)α+ℓ−κ

α+ℓ

0 ψ
κ

α+ℓ (t)

for all t ∈ Sϕ, which implies (4.3.31).

In the next lemma we establish the estimate for w which is used later.
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Lemma 4.3.8. Assume that u0 satisfies (4.1.15). Suppose that α > 0, ℓ > 0 and

γ ∈ (−∞, 1) fulfill

α + ℓ > 1 and 2− (α + ℓ) < γ < 1. (4.3.35)

Then there exists C1 = C1(α, ℓ, γ) > 0 such that for any s0 ∈
(
0, R

n

4

]
,

w(s, t) ≤ C1s
α+ℓ+γ−2

α+ℓ (s0 − s)−
1

α+ℓψ
1

α+ℓ (t)

for all s ∈ (0, s0) and t ∈ Sϕ.

Proof. According to the condition α + ℓ > 1, we have from Hölder’s inequality that

w(s, t) =

∫ s

0

ws(σ, t) dσ

=

∫ s

0

[σ1−γ(s0 − σ)]
1

α+ℓws(σ, t) · [σ1−γ(s0 − σ)]−
1

α+ℓ dσ

≤ ψ
1

α+ℓ (t) ·
(∫ s

0

σ− 1−γ
α+ℓ−1 (s0 − σ)−

1
α+ℓ−1 dσ

)α+ℓ−1
α+ℓ

for all s ∈ (0, s0) and t ∈ Sϕ. Moreover, thanks to the condition 2− (α + ℓ) < γ < 1,

we see that∫ s

0

σ− 1−γ
α+ℓ−1 (s0 − σ)−

1
α+ℓ−1 dσ ≤ (s0 − s)−

1
α+ℓ−1

∫ s

0

σ− 1−γ
α+ℓ−1 dσ

=

(
α + ℓ− 1

α + ℓ+ γ − 2

)
s

α+ℓ+γ−2
α+ℓ−1 (s0 − s)−

1
α+ℓ−1 .

Thus we can obtain

w(s, t) ≤
(

α + ℓ− 1

α + ℓ+ γ − 2

)α+ℓ−1
α+ℓ

s
α+ℓ+γ−2

α+ℓ (s0 − s)−
1

α+ℓψ
1

α+ℓ (t)

for all s ∈ (0, s0) and t ∈ Sϕ, which concludes the proof.

From Lemma 4.3.8 we derive the estimate for ψ.

Lemma 4.3.9. Assume that u0 satisfies (4.1.15). Suppose that α > 0, ℓ > 0 and

γ ∈ (−∞, 1) fulfill

α + ℓ > 1 and 2− (α + ℓ) < γ < 1.

Then there exists C1 = C1(α, ℓ, γ) > 0 such that for any choices of s0 ∈
(
0, R

n

4

]
,

ψ(t) ≥ C1s
−(3−γ)(α+ℓ−1)
0 ϕα+ℓ(t) (4.3.36)

for all t ∈ Sϕ.

Proof. By an argument similar to that in the proof of [53, Lemma 3.7], we can show

that (4.3.36) holds.
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4.3.3. Differential inequalities for ϕ. Proof of Theorem 4.1.2

In this subsection we will prove Theorem 4.1.2. To this end, we first derive the

differential inequalities for the moment-type functional ϕ in the following lemma. The

proof is similar to that in [59].

Lemma 4.3.10. Assume that D, S and f fulfill (4.1.11) and (4.1.12). Suppose that

m ∈ R, α > 0, κ > 1 and ℓ > 0 satisfy that

if m ≥ 0, then α + ℓ > max

{
m+

2

n
κ, κ

}
, (4.3.37)

if m < 0, then α + ℓ > max

{
2

n
κ, κ

}
. (4.3.38)

Then there exists ε > 0 small enough and one can find γ = γ(m,α, κ, ℓ) ∈ (−∞, 1)

and C = C(R,m, α, µ, κ, ℓ, L, δ, γ, CD, CS) > 0 such that if u0 satisfies (4.1.15) and

s0 ∈
(
0, R

n

4

]
, then

ϕ′(t) ≥



1

C
s
−(3−γ)(α+ℓ−1)
0 ϕα+ℓ(t)− Cs

3−γ− 2
n
· α+ℓ
α+ℓ−m

0 if m > 0,

1

C
s
−(3−γ)(α+ℓ−1)
0 ϕα+ℓ(t)− Cs

3−γ− 2
n
· α+ℓ
α+ℓ−ε

0 if m = 0,

1

C
s
−(3−γ)(α+ℓ−1)
0 ϕα+ℓ(t)− Cs

3−γ− 2
n

0 if m < 0

(4.3.39)

for all t ∈ Sϕ.

Proof. By virtue of (4.3.37), it follows that if m ≥ 0, then(
2− 2

n
· α + ℓ

α + ℓ−m

)
−
(
2− α + ℓ

κ

)
= (α + ℓ)

(
1

κ
− 2

n
· 1

α + ℓ−m

)
> (α + ℓ)

(
1

κ
− 2

n
· n
2κ

)
= 0. (4.3.40)

Thus, in the case m ≥ 0 we can find γ ∈ (−∞, 1) such that

2− α + ℓ

κ
< γ < 2− 2

n
· α + ℓ

α + ℓ−m
. (4.3.41)

Thanks to the relations (4.3.37) and (4.3.41), we know that (4.3.7), (4.3.11), (4.3.21),

(4.3.30) and (4.3.35) hold. In the case m > 0, applying Lemmas 4.3.4–4.3.7, we see

that there exist c1 = c1(α, ℓ, L, CS) > 0 and c2 = c2(R,m, α, µ, κ, ℓ, L, δ, γ, CD, CS) > 0

such that

ϕ′(t) ≥ c1ψ(t)− c2s
3−γ
0 − c2s

(3−γ)α+ℓ−m
α+ℓ

− 2
n

0 ψ
m

α+ℓ (t)− c2s
3−γ− 2

n
0

− c2s
(3−γ)α+ℓ−κ

α+ℓ

0 ψ
κ

α+ℓ (t) (4.3.42)
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for all t ∈ Sϕ. Here, noting that α+ ℓ > m and α+ ℓ > κ, from Young’s inequality we

can obtain ci = ci(R,m, α, µ, κ, ℓ, L, δ, γ, CD, CS) > 0 (i ∈ {3, 4}) such that

c2s
(3−γ)α+ℓ−m

α+ℓ
− 2

n

0 ψ
m

α+ℓ (t) ≤ c1
4
ψ(t) + c3s

3−γ− 2
n
· α+ℓ
α+ℓ−m

0

and

c2s
(3−γ)α+ℓ−κ

α+ℓ

0 ψ
κ

α+ℓ (t) ≤ c1
4
ψ(t) + c4s

3−γ
0 .

In light of (4.3.42), we established that

ϕ′(t) ≥ c1
2
ψ(t)− c2s

3−γ− 2
n
· α+ℓ
α+ℓ−m

0

(
s

2
n
· α+ℓ
α+ℓ−m

0 +
c3
c2

+ s
2
n
· m
α+ℓ−m

0 +
c4
c2
s

2
n
· α+ℓ
α+ℓ−m

0

)
for all t ∈ Sϕ. Since s0 ≤ Rn

4
, there exists c5 = c5(R,m, α, µ, κ, ℓ, L, δ, γ, CD, CS) > 0

such that

ϕ′(t) ≥ c1
2
ψ(t)− c5s

3−γ− 2
n
· α+ℓ
α+ℓ−m

0

for all t ∈ Sϕ. Moreover, we infer from Lemma 4.3.9 that there exists c6 = c6(α, ℓ, γ) > 0

such that

ϕ′(t) ≥ c1c6
2
s
−(3−γ)(α+ℓ−1)
0 ϕα+ℓ(t)− c5s

3−γ− 2
n
· α+ℓ
α+ℓ−m

0

for all t ∈ Sϕ, which implies (4.3.39) in the case m > 0. As to the case m = 0, due to

(4.3.40), we can pick ε > 0 small enough and γ ∈ (−∞, 1) such that

2− α + ℓ

κ
< γ < 2− 2

n
· α + ℓ

α + ℓ− ε
.

Hence, using Lemmas 4.3.4–4.3.7, we can observe that there are c7 = c7(α, ℓ, L, CS) > 0

and c8 = c8(R,α, µ, κ, ℓ, L, δ, γ, CD, CS) > 0 such that

ϕ′(t) ≥ c7ψ(t)− c8s
3−γ
0 − c8s

(3−γ)α+ℓ−ε
α+ℓ

− 2
n

0 ψ
ε

α+ℓ (t)− c8s
3−γ− 2

n
0 − c8s

(3−γ)α+ℓ−κ
α+ℓ

0 ψ
κ

α+ℓ (t)

for all t ∈ Sϕ. As in the case m > 0, from this inequality we can attain (4.3.39).

Finally, in the case m < 0 we see from (4.3.38) that(
2− 2

n

)
−
(
2− α + ℓ

κ

)
=
α + ℓ

κ
− 2

n

>
1

κ
· 2κ
n

− 2

n

= 0.
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Thus we can take γ ∈ (−∞, 1) satisfying

2− α + ℓ

κ
< γ < 2− 2

n
.

By virtue of Lemmas 4.3.4–4.3.7, we can show that there exist c9 = c9(α, ℓ, L, CS) > 0

and c10 = c10(R,m, α, µ, κ, ℓ, L, δ, γ, CD, CS) > 0 such that

ϕ′(t) ≥ c9ψ(t)− c10s
3−γ
0 − c10s

3−γ− 2
n

0 − c10s
(3−γ)α+ℓ−κ

α+ℓ

0 ψ
κ

α+ℓ (t)

for all t ∈ Sϕ. By an argument similar to that in the case m > 0, from Young’s

inequality and the relation s0 ≤ Rn

4
we obtain c11 = c11(R,α, µ, κ, ℓ, L, δ, γ, CD, CS) > 0

such that

ϕ′(t) ≥ c9
2
ψ(t)− c11s

3−γ− 2
n

0

for all t ∈ Sϕ. Thanks to Lemma 4.3.9, we can verify that (4.3.39) holds in the case

m < 0.

We are in a position to complete the proof of Theorem 4.1.2.

Proof of Theorem 4.1.2. We first consider the case m > 0. Due to (4.1.13), from

Lemma 4.3.10 we can find γ ∈ (−∞, 1), c1 = c1(R,m, α, µ, κ, ℓ, L, δ, γ, CD, CS) > 0

and c2 = c2(R,m, α, µ, κ, ℓ, L, δ, γ, CD, CS) > 0 such that for each u0 satisfying (4.1.15)

and s0 ≤ Rn

4
, it follows that

ϕ′(t) ≥ c1s
−(3−γ)(α+ℓ−1)
0 ϕα+ℓ(t)− c2s

3−γ− 2
n
· α+ℓ
α+ℓ−m

0 (4.3.43)

for all t ∈ Sϕ. Next we choose s0 ≤ Rn

4
small enough such that

s0 ≤
M0

2
(4.3.44)

and

s
(α+ℓ)(1− 2

n
· 1
α+ℓ−m)

0 ≤ c1
2c2

(
M0

2(1− γ)(2− γ)ωn

)α+ℓ
. (4.3.45)

Furthermore, we fix ε0 ∈
(
0, s0

2

)
so small and take s⋆ ∈ (0, s0) fulfilling

M0 − ε0
ωn

∫ s0

s⋆

s−γ(s0 − s) ds >
M0 − s0

(1− γ)(2− γ)ωn
s2−γ0 . (4.3.46)

We define

r⋆ := s
1
n
⋆ ∈ (0, R)
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and suppose that u0 satisfies (4.1.15) and (4.1.16). In order to show Tmax < ∞,

assuming that Tmax = ∞, we will derive a contradiction. We set

S̃ :=

{
T ∈ (0,∞)

∣∣∣∣ ϕ(t) > M0 − s0
(1− γ)(2− γ)ωn

s2−γ0 for all t ∈ [0, T ]

}
. (4.3.47)

Here, we note that S̃ is not empty. Indeed, since we have that for any s ∈ (s⋆, R
n)

w(s, 0) ≥ w(s⋆, 0) =
1

ωn

∫
Br⋆ (0)

u0 dx ≥ M0 − ε0
ωn

,

we see from (4.3.46) that

ϕ(0) ≥
∫ s0

s⋆

s−γ(s0 − s)w(s, 0) ds

≥ M0 − ε0
ωn

∫ s0

s⋆

s−γ(s0 − s) ds

>
M0 − s0

(1− γ)(2− γ)ωn
s2−γ0 .

Thus we can put T̃ := sup S̃ ∈ (0,∞]. Moreover, we can confirm that (0, T̃ ) ⊂ Sϕ.

Owing to (4.3.47) and (4.3.44), we establish that

ϕ(t) ≥ M0

2(1− γ)(2− γ)ωn
s2−γ0

for all t ∈ (0, T̃ ). From (4.3.45) it follows that

c1
2
s
−(3−γ)(α+ℓ−1)
0 ϕα+ℓ(t)

c2s
3−γ− 2

n
· α+ℓ
α+ℓ−m

0

≥ c1
2c2

(
M0

2(1− γ)(2− γ)ωn

)α+ℓ
s
−(α+ℓ)+ 2

n
· α+ℓ
α+ℓ−m

0 ≥ 1

for all t ∈ (0, T̃ ), which implies from (4.3.43) that

ϕ′(t) ≥ c1
2
s
−(3−γ)(α+ℓ−1)
0 ϕα+ℓ(t) ≥ 0 (4.3.48)

for all t ∈ (0, T̃ ). This inequality yields that T̃ = ∞. However, from (4.3.48) and

α + ℓ− 1 > 0 we can show that

T̃ ≤ 2

(α + ℓ− 1)c1ϕα+ℓ−1(0)
s
(3−γ)(α+ℓ−1)
0 .

As a consequence, we attain that Tmax must be finite. In the cases m = 0 and m < 0,

we can prove that Tmax <∞ by an argument similar to that in the case m > 0.
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4.3.4. Open problems

In [13, 53, 59] the critical values such that solutions are bounded or blow up in finite

time were derived. As to the conditions (4.1.9), (4.1.13) and (4.1.14), we see that if

n ≥ 3 and m ≥ 0 as well as n
n−2

m ≤ κ, then max
{
m+ 2

n
, κ
}
= max

{
m+ 2

n
κ, κ
}
= κ.

Thus we know that the critical value is α + ℓ = κ in this case. However, in the cases

that n ∈ {1, 2} and that n ≥ 3 and m ≥ 0 as well as n
n−2

m > κ, the conditions (4.1.9),

(4.1.13) and (4.1.14) are not optimal. Moreover, the special cases are as follows:

• In the case that m = α = 1, behavior of solutions is an open problem when

max
{

2
n
, κ− 1

}
≤ ℓ ≤ 2

n
κ (see Figures 4.5 and 4.6).

1 + 2

n
1O

κ

ℓ

2

n

finite-time

boundedness

ℓ = κ− 1

blow-up

Figure 4.5: n ∈ {1, 2} and m = α = 1

boundedness

1 + 2

n

n

n−2
1O

κ

ℓ

2

n

finite-time

2

n−2

blow-up

Figure 4.6: n ≥ 3 and m = α = 1

• When m = 1 and κ < n
(n−2)+

, we have an open question of whether solutions are

bounded or blow up when max
{
1 + 2

n
, κ
}
≤ α + ℓ ≤ 1 + 2

n
κ (see Figure 4.7).

1 + 2

n
κmax

{

1 + 2

n
, κ

}

O
α

ℓ

max
{

1 + 2

n
, κ

}

1 + 2

n
κ

finite-time

boundedness

blow-up

Figure 4.7: m = 1 and κ < n
(n−2)+
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• In the case that α = 1 and ℓ > 0, there is an open problem for behavior of

solutions when n = 1 and max{κ − 1,m + 1} ≤ ℓ ≤ max{2κ − 1,m + 2κ − 1}.
Also, when n ≥ 2 and max

{
κ− 1,m−

(
1− 2

n

)}
≤ ℓ ≤ m−

(
1− 2

n
κ
)
, the same

question arises. Moreover, in the case that α > 0 and ℓ = 1, we obtain regions

that ℓ is replaced by α in Figures 4.8 and 4.9.

m

ℓ

κ− 2 O

finite-time

boundedness

ℓ = m+ 1

ℓ = m+ 2κ− 1

κ− 1

2κ− 1

blow-up

Figure 4.8: n = 1 and α = 1

(

1− 2

n

)

κ

m

ℓ

κ− 1

finite-time

boundedness

κ− 1

ℓ = m−

(

1− 2

n

)

ℓ = m−

(

1− 2

n
κ
)

O

blow-up

Figure 4.9: n ≥ 2 and α = 1
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Chapter 5

The case of degenerate diffusion

5.1. Introduction

In this chapter we study occurrence of finite-time blow-up (it will be called blow-up

throughout for short this chapter) in quasilinear degenerate Jäger–Luckhaus systems

with logistic source and nonlinear production of the form{
ut = ∆um − χ∇ · (uα∇v) + λu− µuκ, x ∈ Ω, t > 0,

0 = ∆v −Mℓ(t) + uℓ, x ∈ Ω, t > 0,

where Ω := BR(0) ⊂ Rn (n ∈ N) be a ball with some R > 0; m ≥ 1, χ > 0, α ≥ 1,

λ > 0, µ > 0, κ > 1 and ℓ > 0;

Mℓ(t) :=
1

|Ω|

∫
Ω

uℓ(x, t) dx;

the function u = u(x, t) denotes the density of cells, and v = v(x, t) shows the con-

centration of the chemical substance. The powers m and α describe the strengths of

the diffusive and chemotactic effects, respectively. A quasilinear chemotaxis system

with such porous medium-type diffusion was motivated from a biological point of view

(see Szymańska, Morales-Rodrigo, Lachowicz and Chaplain [42]) and such quasilinear

generalizations were introduced by Hillen and Painter [16] and studied by e.g. Tao and

Winkler [50]. Also the logistic source λu− µuκ represents the proliferation and death

of the cells, and the damping force is given by the power κ, and this term appears

in models including population dynamics [16, 40] and pattern formation in bacterial

colonies [64]. Moreover, the power ℓ means the production rate of signal, and with

respect to this term, the linear case (ℓ = 1) are usually treated, whereas the actual

mechanism of signal production might be complex, so that the nonlinear production

term was introduced in [28], and investigated in [10, 59] and in Chapter 3, for instance.
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The original model, called Keller–Segel system, was proposed by Keller and Segel

[23] in 1970, and it is written as{
ut = ∆u−∇ · (u∇v),
vt = ∆v − v + u.

Moreover, a number of variations of this system were introduced and investigated in

[1, 16, 26] and the quasilinear Keller–Segel system with degenerate diffusion{
ut = ∆um − χ∇ · (uα∇v),
τvt = ∆v − v + u,

where τ ∈ {0, 1}, is one of these systems. In systems of this type, there are a lot of

results on behavior of solutions. In the case that m = α = 1 it is known that the

size of initial data determines the behavior of solutions (for instance, boundedness in

[4, 36, 39] and blow-up in [17, 32, 58]). In the case that m ̸= 1 and α ̸= 1 the relation

between m and α affects behavior of solutions. In the case of nondegenerate diffusion,

that is, the case that ∆um and uα∇v are replaced by ∆(u + 1)m and u(u + 1)α−1∇v,
respectively, a number of results on blow-up and boundedness of solutions were obtained

(see e.g. [7, 8, 18, 25, 61]). In particular, the borderline between boundedness and

blow-up is the critical value m − α = 1 − 2
n
, and blow-up results are obtained under

the condition that m − α < 1 − 2
n
in the literature. Furthermore, as to the above

quasilinear degenerate Keller–Segel systems, blow-up was derived under the condition

thatm−α < 1− 2
n
in [15, 20] (cf. [18, 19, 41] for boundedness). Through these results,

we can understand that solutions blow up when the chemotactic effect is stronger than

the diffusive effect suppressing blow-up. Here, in addition, the logistic source is able

to be considered as the other suppressing effect. Therefore the following question is

raised:

Does blow-up occur in chemotaxis systems

even if the systems have logistic source?

A positive answer to this question has been firstly given for a minimal Keller–Segel

system with logistic source by Winkler [60]. After that, for a nondegenerate version of

the system some finite-time blow-up results were obtained in [2] and Chapters 2 and

3. However, to the best of our knowledge there are no results on blow-up in the case of

degenerate diffusion. Therefore we focus on the chemotaxis system mentioned at the

beginning, which has a structural advantage that radial monotonicity of solutions is

derived from the one of initial data.
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Review of blow-up results for the nondegenerate system. We recall some

known results in the following nondegenerate Jäger–Luckhaus system corresponding to

the system{
ut = ∇ · ((u+ δ)m−1∇u)− χ∇ · (u(u+ δ)α−1∇v) + λu− µuκ,

0 = ∆v −Mℓ(t) + uℓ.

With regard to systems of this type, there are a lot of results on boundedness due

to the damping force of the logistic source λu − µuκ (see e.g. [51, 55, 66, 67] and

Chapter 4). However, as to the above system, if the damping force is weak, then

finite-time blow-up occurs; in the case m = α = ℓ = 1 Winkler [57] first derived a

condition such that solutions blow up in finite time in the higher dimensional setting;

also, conditions for finite-time blow-up in the three- and four-dimensional settings were

obtained by Black, Fuest and Lankeit [2]; after that, Fuest [13] established finite-time

blow-up under the conditions that 1 < κ < min
{
n
2
, 2
}
and µ > 0 (n ≥ 3) and that

κ = 2 and µ ∈
(
0, n−4

n

)
(n ≥ 5), which conditions tell us that the optimal exponent is

κ = 2 in the four- and higher dimensional settings when m = α = ℓ = 1. In the case

that m = α = 1 and ℓ > 0 it was shown by Yi, Mu, Xu and Dai [65] that solutions

blow up in finite time when ℓ + 1 > κ
(
1 + 2

n

)
. Moreover, in Chapter 4 finite-time

blow-up result was established under the condition that α − ℓ > max
{
m+ 2

n
κ, κ
}
,

where m := max{m, 0}, which generalizes the condition in [13].

In summary, as to the nondegenerate system, finite-time blow-up in the case that

m ̸= 1, α ̸= 1 and ℓ ̸= 1 was obtained in Chapter 4.

Toward blow-up in the degenerate system. We consider finite-time blow-up in

the quasilinear degenerate Jäger–Luckhaus system
ut = ∆um − χ∇ · (uα∇v) + λu− µuκ, x ∈ Ω, t > 0,

0 = ∆v −Mℓ(t) + uℓ, x ∈ Ω, t > 0,

∇um · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(5.1.1)

with

Mℓ(t) :=
1

|Ω|

∫
Ω

uℓ(x, t) dx,

where

Ω := BR(0) ⊂ Rn (n ∈ N)

is a ball with some R > 0; m ≥ 1, χ > 0, α ≥ 1, λ > 0, µ > 0, κ > 1 and ℓ > 0; ν is

the outward normal vector to ∂Ω; u0 ∈ L∞(Ω) is nonnegative, radially symmetric and

nonincreasing with respect to |x|.
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Recalling the method in the literature, we proved finite-time blow-up by deriving

the inequality ϕ′(t) ≥ Cϕα+ℓ(t) with some C > 0, where ϕ is a moment-type functional.

However, since the system (5.1.1) has the degenerate diffusion term ∆um and possibly

the initial data vanishing on some open subset of Ω, we deal with the system (5.1.1) in

a framework of weak solutions, and thereby we cannot directly obtain the inequality

ϕ′(t) ≥ Cϕα+ℓ(t). Hence we will derive an integral inequality of ϕ to show finite-time

blow-up. To this end, we define moment solutions to the system (5.1.1) in the following

before giving the main theorem.

The purpose of this chapter is to establish finite-time blow-up to the system (5.1.1).

Main result. Before we state the main theorem, we define moment solutions, maximal

moment solutions and blow-up for (5.1.1), and so we introduce two symbols w and ϕ as

follows. For a pair (u, v) of nonnegative and radially symmetric functions, we regard

(u, v) as (u(r, t), v(r, t)) with r := |x| if necessary. Given s0 ∈ (0, Rn) and γ ∈ (−∞, 1),

we set

w(s, t) :=

∫ s
1
n

0

ρn−1u(ρ, t) dρ for s ∈ [0, Rn] and t ≥ 0

and we define the moment-type functional ϕ as

ϕ(t) :=

∫ s0

0

s−γ(s0 − s)w(s, t) ds for t ≥ 0.

Definition 5.1.1 (moment solutions). Let T ∈ (0,∞]. A pair (u, v) of nonnegative

and radially symmetric functions defined on Ω× (0, T ) is called a moment solution of

(5.1.1) on [0, T ) if

(i) u ∈ L∞
loc([0, T );L

∞(Ω)) and,

um ∈ L2(0, T ;H1(Ω)) if T <∞; um ∈ L2
loc([0, T );H

1(Ω)) if T = ∞,

(ii) v ∈ L∞
loc([0, T );H

1(Ω)),

(iii) u ∈ C0
w−⋆([0, T );L

∞(Ω)),

(iv) for all φ ∈ L2(0, T ;H1(Ω)) ∩W 1,1(0, T ;L2(Ω)) with suppφ ⊂ [0, T ),∫ T

0

∫
Ω

(∇um · ∇φ− χuα∇v · ∇φ− (λu− µuκ)φ− uφt) dxdt

=

∫
Ω

u0φ(0) dx,

∫ T

0

∫
Ω

∇v · ∇φdxdt+
∫ T

0

(
Mℓ(t)

∫
Ω

φdx

)
dt−

∫ T

0

∫
Ω

uℓφdxdt = 0,
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(v) (u, v) satisfies the following moment inequality:

ϕ(t)− ϕ(0) ≥ K

∫ t

0

ϕα+ℓ(τ) dτ for all t ∈ (0, T ) (5.1.2)

for some constant K = K(R,m, χ, α, µ, κ, ℓ, γ, s0) > 0.

We next define maximal moment solutions, which are guaranteed by Zorn’s lemma

as in the proof of [24, Lemma 2.4].

Definition 5.1.2 (maximal moment solutions). Define the set S as

S := {(T, u, v) | T ∈ (0,∞], (u, v) is a moment solution of (5.1.1) on [0, T )},

which is not empty by Proposition 5.2.1, with the order relation ⪯ given by

(T1, u1, v1) ⪯ (T2, u2, v2) :⇐⇒ T1 ≤ T2, u2|(0,T1) = u1, v2|(0,T1) = v1.

Then Zorn’s lemma assures some maximal element (Tmax, u, v) ∈ S, and (u, v) is called

a maximal moment solution of (5.1.1) on [0, Tmax).

Definition 5.1.3 (blow-up). Let (u, v) be a maximal moment solution of (5.1.1) on

[0, Tmax). If u satisfies

lim sup
t↗Tmax

∥u(t)∥L∞(Ω) = ∞,

then we say that (u, v) blows up at Tmax.

Now the main theorem reads as follows.

Theorem 5.1.1. Let n ∈ N, m ≥ 1, χ > 0, α ≥ 1, λ > 0, µ > 0, κ > 1 and ℓ > 0.

Assume that

α + ℓ > max

{
m+

2

n
κ, κ

}
. (5.1.3)

Then for all M0 > 0 there exist η0 ∈ (0,M0) and r⋆ ∈ (0, R) which satisfy the following

property : If

u0 ∈ L∞(Ω), u0 ≥ 0 (5.1.4)

and

u0 is radially symmetric, nonincreasing with respect to |x| (5.1.5)

as well as ∫
Ω

u0(x) dx =M0 and

∫
Br⋆ (0)

u0(x) dx ≥M0 − η0, (5.1.6)

then a maximal moment solution of (5.1.1) on [0, Tmax) blows up at Tmax <∞.
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Remark 5.1.1. The parameter values appearing in Theorem 5.1.1 are basically the

same as in Theorem 4.1.2, in which finite-time blow-up has been obtained for the

nondegenerate system. In particular, the condition (5.1.3) coincides with (4.1.13) in

Theorem 4.1.2 in the case that m ≥ 1 and α ≥ 1.

Idea of the proof. The strategy of the proof of Theorem 5.1.1 is explained as follows.

Since we consider the system (5.1.1) in the framework of weak solutions, we deal with

a problem approximate to the system (5.1.1) (see (5.2.1)), which is a nondegenerate

system. Therefore in Section 5.2, by making use of an argument similar to that of

Theorem 4.1.2, we will derive a moment inequality for an approximate solution

ϕε(t)− ϕε(0) ≥ K

∫ t

0

ϕα+ℓε (τ) dτ,

where ϕε is a moment-type functional for an approximate solution. Noticing that

uε(t) → u(t) in L1(Ω) as ε→ 0 for all t > 0, we see that

ϕε(t) → ϕ(t) as ε→ 0

for all t > 0, and so in light of convergences a moment inequality (5.1.2) can be

obtained. Since the maximal existence time Tε for approximate solutions depends on

ε, we have to make sure that Tε is uniformly bounded below in the passage to the limit

as ε→ 0. The proof of lower boundedness of Tε is based on [20, Lemma 2.4]. We first

derive that
d

dt
∥uε + ε∥pLp(Ω) ≤ C

with some C > 0 on (0, τε), where τε is a time such that ∥uε(τε)∥pLp(Ω) = c with some

c = c(|Ω|, ∥u0∥Lp(Ω)) > 0, and next, integrating this inequality over (0, τε) and using

∥uε(τε)∥pLp(Ω) = c, we observe lower boundedness of Tε. In Section 5.3 we will prove

that existence time Tmax is finite and a maximal moment solution blows up at Tmax. As

to the proof that Tmax <∞, we assume that Tmax = ∞ and then derive a contradiction

from a moment inequality. Next, we show finite-time blow-up again by contradiction.

To this end, we suppose that a maximal moment solution of (5.1.1) on [0, Tmax) does

not blow up at Tmax. Then a weak solution of (5.1.1) on [0, Tmax+σ1) with some σ1 > 0

is constructed. We will establish that the weak solution satisfies a moment inequality

on [0, Tmax + σ1) by making use of the continuity of ϕ and
∫ t
0
ϕα+ℓ(τ) dτ , and hence

obtain a moment solution of (5.1.1) on [0, Tmax + σ1), which is a contradiction.

5.2. Local existence of moment solutions

The goal of this section is to show local existence of moment solutions to (5.1.1) as

in the following key proposition, which plays an important role in the proof of blow-up.
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Proposition 5.2.1 (local existence of moment solutions). Let n ∈ N, m ≥ 1, χ > 0,

α ≥ 1, λ > 0, µ > 0, κ > 1 and ℓ > 0. Assume that (5.1.3) is satisfied. Then for all

M0 > 0 there exist η0 ∈ (0,M0) and r⋆ ∈ (0, R) which satisfy the following property : If

u0 satisfies (5.1.4)–(5.1.6), then there exists T > 0 such that (5.1.1) admits a moment

solution (u, v) on [0, T ), i.e. (5.1.1) has a weak solution (u, v) satisfying the moment

inequality (5.1.2).

The strategy of the proof of Proposition 2.1 is displayed as follows.

5.2.1. Uniform lower bound of existence time for approximate solutions

5.2.2. Convergence of approximate solutions

5.2.3. Moment inequality for approximate solutions

5.2.4. Proof of Proposition 5.2.1

The key to the proof of blow-up is to construct the moment inequality (5.1.2), which is

usually shown via the corresponding super-linear differential inequality as in [13, 59]

and in Chapter 4. However, we cannot derive it for weak solutions of (5.1.1) due to the

lack of the smoothness. Therefore we will obtain it for approximate smooth solutions,

denoted by uε with parameter ε > 0. Here the maximal existence time Tε depends on

ε, and so there is a possibility that Tε vanishes in the passage to the limit as ε → 0.

This explains the reason for proving uniform lower bound of Tε in Section 5.2.1.

5.2.1. Uniform lower bound of existence time for approximate

solutions

We recall that the system (5.1.1) includes the degenerate diffusion term ∆um.

Hence, in order to compensate for the lack of regularity of solutions to (5.1.1) we

consider the following approximate problem:
(uε)t = ∆(uε + ε)m − χ∇ · (uε(uε + ε)α−1∇vε) + λuε − µuκε , x ∈ Ω, t > 0,

0 = ∆vε −Mℓ,ε(t) + uℓε, x ∈ Ω, t > 0,

∇uε · ν = ∇vε · ν = 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), x ∈ Ω,

(5.2.1)

where ε ∈ (0, 1) and

Mℓ,ε(t) :=
1

|Ω|

∫
Ω

uℓε(x, t) dx
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as well as u0ε ∈ C∞(Ω) is given by

u0ε := (ρε ∗ u0)|Ω ,

where u0 denotes the zero extension of u0 ∈ L∞(Ω), that is,

u0(x) :=

{
u0(x) if x ∈ Ω,

0 otherwise,

and ρε ∈ C∞
c (Rn) is the mollifier defined as ρε(x) :=

1
εn

( ∫
Rn ρ(y) dy

)−1
ρ
(
x
ε

)
, where

ρ(x) :=

{
e
− 1

1−|x|2 if |x| < 1,

0 if |x| ≥ 1.

Then ρε satisfies that 0 ≤ ρε ∈ C∞
c (Rn), supp ρε ⊂ Bε(0), and

∫
Rn ρε(x) dx = 1. We

know that ρε is nonnegative, radially symmetric and nonincreasing with respect to |x|.
Additionally, if u0 is nonnegative, radially symmetric and nonincreasing with respect

to |x|, then so is u0ε from the definition of u0ε.

We first recall a well-known result about local existence of classical solutions to

(5.2.1). The proof is based on a standard fixed point argument (see e.g. [63]).

Lemma 5.2.2. Let ε ∈ (0, 1) and let m ≥ 1, χ > 0, α ≥ 1, λ > 0, µ > 0, κ > 1 and

ℓ > 0. Then there exist Tε ∈ (0,∞] and a unique classical solution (uε, vε) of (5.2.1)

satisfying {
uε ∈ C0(Ω× [0, Tε)) ∩ C2,1(Ω× (0, Tε)),

vε ∈
⋂
q>nC

0([0, Tε);W
1,q(Ω)) ∩ C2,0(Ω× (0, Tε)).

Moreover, uε and vε are nonnegative and radially symmetric.

In the following let (uε, vε) be the solution of (5.2.1) on [0, Tε) as in Lemma 5.2.2.

Next, in order to guarantee that the existence time Tε does not vanish after the passage

to the limit as ε→ 0, we confirm uniform lower bound of Tε, that is, we find T0 ∈ (0,∞)

such that for any ε ∈ (0, 1),

T0 ≤ Tε and ∥uε(t)∥L∞(Ω) ≤ K0 for all t ∈ [0, T0), (5.2.2)

where K0 > 0 is a constant independent of ε. Before we prove (5.2.2), we show the

following lemma. The proof is based on that of [20, Lemma 2.4]. However, there are

two differences from the literature. One is that the first equation in (5.2.1) has the

logistic source, and the other is that the second equation in (5.2.1) is elliptic. So we

give a full proof for confirmation.
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Lemma 5.2.3. Let m ≥ 1, χ > 0, α ≥ 1, λ > 0, µ > 0, κ > 1, ℓ > 0 and

p > max
{
1,m− 2(α + ℓ) + 1,

n

2
(α + ℓ−m)

}
.

Then there exists Tp ∈ (0,∞] such that for any ε ∈ (0, 1),

Tp ≤ Tε and ∥uε(t)∥pLp(Ω) ≤ (∥u0∥Lp(Ω) + |Ω|
1
p )p + 1 for all t ∈ [0, Tp). (5.2.3)

Proof. The proof is similar to that of [20, Lemma 2.4]. We put

τε := sup{τ ∈ (0, Tε) | ∥uε(t)∥pLp(Ω) ≤ c1 for all t ∈ (0, τ)}

with

c1 := (∥u0∥Lp(Ω) + |Ω|
1
p )p + 1.

Noting that

uε ∈ C0(Ω× [0, Tε)) ⊂ C0([0, Tε);L
p(Ω)),

we see that τε > 0. It suffices to consider the cases that τε = Tε = ∞ and that τε < Tε
with

∥uε(τε)∥pLp(Ω) = c1. (5.2.4)

In the case that τε = Tε = ∞, by the definition of τε we have

∥uε(t)∥pLp(Ω) ≤ c1

for all t ∈ (0,∞), which implies that Tp = ∞.

In the case that τε < Tε with (5.2.4), from the first equation in (5.2.1), we obtain

1

p
· d
dt
∥uε + ε∥pLp(Ω) = −m(p− 1)

∫
Ω

(uε + ε)p+m−3|∇uε|2 dx

+ (p− 1)χ

∫
Ω

uε(uε + ε)p+α−3∇uε · ∇vε dx

+ λ

∫
Ω

uε(uε + ε)p−1 dx− µ

∫
Ω

uκε (uε + ε)p−1 dx

≤ − 4m(p− 1)

(m+ p− 1)2
∥∇(uε + ε)

p+m−1
2 ∥2L2(Ω)

+ (p− 1)χ

∫
Ω

∇
(∫ uε

0

ξ(ξ + ε)p+α−3 dξ

)
· ∇vε dx

+ λ

∫
Ω

uε(uε + ε)p−1 dx

=: −I1 + I2 + I3 (5.2.5)
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for all t ∈ (0, τε). Thanks to the second equation in (5.2.1), it follows that

I2 = −(p− 1)χ

∫
Ω

(∫ uε

0

ξ(ξ + ε)p+α−3 dξ

)
∆vε dx

≤ (p− 1)χ

∫
Ω

(∫ uε

0

ξ(ξ + ε)p+α−3 dξ

)
uℓε dx

≤ (p− 1)χ

p+ α− 1

∫
Ω

(uε + ε)p+α+ℓ−1 dx (5.2.6)

for all t ∈ (0, τε). We now set

β :=

p+m−1
2p

− p+m−1
2(p+α+ℓ−1)

p+m−1
2p

+ 1
n
− 1

2

.

Taking p > max
{
1,m− 2(α + ℓ) + 1, n

2
(α + ℓ−m)

}
, we know that β ∈ (0, 1) and

2(p+α+ℓ−1)
p+m−1

> 1. Thus, applying the Gagliardo–Nirenberg inequality, we see that∫
Ω

(uε + ε)p+α+ℓ−1 dx

= ∥(uε + ε)
p+m−1

2 ∥
2(p+α+ℓ−1)

p+m−1

L
2(p+α+ℓ−1)

p+m−1 (Ω)

≤ c2∥(uε + ε)
p+m−1

2 ∥
(1−β) 2(p+α+ℓ−1)

p+m−1

L
2p

p+m−1 (Ω)
∥∇(uε + ε)

p+m−1
2 ∥

β
2(p+α+ℓ−1)

p+m−1

L2(Ω)

+ c3∥(uε + ε)
p+m−1

2 ∥
2(p+α+ℓ−1)

p+m−1

L
2p

p+m−1 (Ω)

for all t ∈ (0, τε) with some c2 = c2(Ω,m, α, ℓ) > 0 and c3 = c3(Ω,m, α, ℓ) > 0.

Moreover, we note that β(p+α+ℓ−1)
p+m−1

< 1. Combining the above inequality with (5.2.6)

and using Young’s inequality, we have that

I2 ≤ I1 + c4

{
∥(uε + ε)

p+m−1
2 ∥

(1−β) 2(p+α+ℓ−1)
p+m−1

L
2p

p+m−1 (Ω)

}θ
+ c5∥(uε + ε)

p+m−1
2 ∥

2(p+α+ℓ−1)
p+m−1

L
2p

p+m−1 (Ω)
(5.2.7)

for all t ∈ (0, τε), where

c4 :=
1

θ

[(
β(p+ α + ℓ− 1)

p+m− 1

)β(p+α+ℓ−1)
p+m−1

· (p− 1)χ

p+ α− 1
c2

]θ
and

c5 :=
(p− 1)χ

p+ α− 1
c3
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as well as

θ :=

(
1− β(p+ α + ℓ− 1)

p+m− 1

)−1

.

The inequalities (5.2.5) and (5.2.7) yields

d

dt
∥uε + ε∥pLp(Ω)

≤ p
(
c4∥uε + ε∥(1−β)(p+α+ℓ−1)θ

Lp(Ω) + c5∥uε + ε∥p+α+ℓ−1
Lp(Ω) + λ∥uε + ε∥pLp(Ω)

)
for all t ∈ (0, τε). Here the definition of τε implies that for any t ∈ (0, τε),

∥uε(t) + ε∥Lp(Ω) ≤ ∥uε(t)∥Lp(Ω) + |Ω|
1
p ≤ c

1
p

1 + |Ω|
1
p =: Cp,

and hence we have

d

dt
∥uε + ε∥pLp(Ω) ≤ p

(
c4C

(1−β)(p+α+ℓ−1)θ
p + c5C

p+α+ℓ−1
p + λCp

p

)
=: C̃p (5.2.8)

for all t ∈ (0, τε). Integrating (5.2.8) over (0, τε), we obtain

∥uε(τε) + ε∥pLp(Ω) − ∥u0ε + ε∥pLp(Ω) ≤ C̃pτε.

Aided by ∥u0ε+ ε∥pLp(Ω) ≤ (∥u0ε∥Lp(Ω) + |Ω|
1
p )p ≤ (∥u0∥Lp(Ω) + |Ω|

1
p )p and ε > 0, we see

from (5.2.4) that

c1 − (∥u0∥Lp(Ω) + |Ω|
1
p )p ≤ C̃pτε,

which together with the definition of c1 implies that

1

C̃p
≤ τε.

Consequently, we attain (5.2.3) with Tp =
1

C̃p
.

Next, we give an interval ensuring L∞-estimate for uε uniformly with respect to ε

by using Lemma 5.2.3.

Lemma 5.2.4. Let m ≥ 1, χ > 0, α ≥ 1, λ > 0, µ > 0, κ > 1 and ℓ > 0. Then there

exist T0 ∈ (0,∞) and K0 = K0(|Ω|, ∥u0∥Lp0 (Ω), ∥u0∥L∞(Ω),m, χ, α, λ, µ, κ, ℓ) > 0 with

some large constant p0 = p0(m,α, ℓ) > 1 such that for any ε ∈ (0, 1),

T0 ≤ Tε and ∥uε(t)∥L∞(Ω) ≤ K0 for all t ∈ (0, T0). (5.2.9)

Proof. By making use of Lemma 5.2.3 in conjunction with the Moser iteration (see [50,

Lemma A.1]) we can arrive at (5.2.9).
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5.2.2. Convergence of approximate solutions

In this subsection we discuss convergence of approximate solutions (uε, vε) as ε→ 0.

To this end, we first show some estimates for approximate solutions uε.

Lemma 5.2.5. Let m ≥ 1, χ > 0, α ≥ 1, λ > 0, µ > 0, κ > 1 and ℓ > 0. Moreover,

assume that there exist T0 ∈ (0,∞) and K0 > 0 such that for any ε ∈ (0, 1),

∥uε(t)∥L∞(Ω) ≤ K0 for all t ∈ (0, T0). (5.2.10)

Then there exists C = C(|Ω|, ∥u0∥L2(Ω),m, χ, α, λ, ℓ, T0, K0) > 0 such that

∥∇(uε + ε)m∥L2(0,T0;L2(Ω)) ≤ C.

Proof. Multiplying the first equation in (5.2.1) by uε and integrating it over Ω, we have

1

2
· d
dt
∥uε∥2L2(Ω) ≤ − 4m

(m+ 1)2
∥∇(uε + ε)

m+1
2 ∥2L2(Ω)

+ χ

∫
Ω

uε(uε + ε)α−1∇vε · ∇uε dx+ λ∥uε∥2L2(Ω) (5.2.11)

for all t ∈ (0, T0). By a computation as in (5.2.6), it follows from (5.2.10) that

χ

∫
Ω

uε(uε + ε)α−1∇vε · ∇uε dx ≤ χ

α + 1

∫
Ω

(uε + ε)α+ℓ+1 dx ≤ χ

α + 1
(K0 + 1)α+ℓ+1|Ω|.

Combining this inequality with (5.2.11) and integrating it over (0, T0), we obtain

1

2
∥uε(T0)∥2L2(Ω) −

1

2
∥u0ε∥2L2(Ω) ≤ − 4m

(m+ 1)2
∥∇(uε + ε)

m+1
2 ∥2L2(0,T0;L2(Ω))

+
χ

α + 1
(K0 + 1)α+ℓ+1|Ω|T0 + λ∥uε∥2L2(0,T0;L2(Ω)).

Hence, noting ∥u0ε∥2L2(Ω) ≤ ∥u0∥2L2(Ω) and (5.2.10), we can show that

∥∇(uε + ε)
m+1

2 ∥2L2(0,T0;L2(Ω)) ≤ c1,

where

c1 :=
(m+ 1)2

4m

(
1

2
∥u0∥2L2(Ω) +

χ

α + 1
(K0 + 1)α+ℓ+1|Ω|T0 + λK2

0 |Ω|T0
)
> 0.

This entails that for any ε ∈ (0, 1),

∥∇(uε + ε)m∥2L2(0,T0;L2(Ω)) =
4m2

(m+ 1)2
∥(uε + ε)

m−1
2 ∇(uε + ε)

m+1
2 ∥2L2(0,T0;L2(Ω))

≤ 4m2

(m+ 1)2
(K0 + 1)m−1c1,

which implies the end of the proof.
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We next estimate ∥
√
t(umε )t∥2L2(0,T0;L2(Ω)) and supt∈(0,T0) ∥

√
t∇umε ∥2L2(Ω). The proof

is based on [19, Lemma 5.2].

Lemma 5.2.6. Let m ≥ 1, χ > 0, α ≥ 1, λ > 0, µ > 0, κ > 1 and ℓ > 0. Moreover,

assume that there exist T0 ∈ (0,∞) and K0 > 0 such that (5.2.10) holds for any

ε ∈ (0, 1). Then there is C = C(|Ω|, ∥u0∥L2(Ω),m, χ, α, λ, µ, κ, ℓ, T0, K0) > 0 such that∥∥∥∥√t ∂∂tumε
∥∥∥∥2
L2(0,T0;L2(Ω))

+ sup
t∈(0,T0)

∥
√
t∇umε (t)∥2L2(Ω) ≤ C.

Proof. Multiplying the first equation in (5.2.1) by ∂
∂t
(uε + ε)m and integrating it over

Ω, we can observe that

4m

(m+ 1)2

∥∥∥∥ ∂∂t(uε + ε)
m+1

2

∥∥∥∥2
L2(Ω)

≤ −1

2
· d
dt
∥∇(uε + ε)m∥2L2(Ω)

− 2m

m+ 1

∫
Ω

∇(uε(uε + ε)α−1) · ∇vε(uε + ε)
m−1

2
∂

∂t
(uε + ε)

m+1
2 dx

+
2m

m+ 1

∫
Ω

uε(uε + ε)α−1∆vε(uε + ε)
m−1

2
∂

∂t
(uε + ε)

m+1
2 dx

+

∫
Ω

λuε
∂

∂t
(uε + ε)m dx−

∫
Ω

µuκε
∂

∂t
(uε + ε)m dx

for all t ∈ (0, T0). Due to Young’s inequality, we infer that

− 2m

m+ 1

∫
Ω

∇(uε(uε + ε)α−1) · ∇vε(uε + ε)
m−1

2
∂

∂t
(uε + ε)

m+1
2 dx

+
2m

m+ 1

∫
Ω

uε(uε + ε)α−1∆vε(uε + ε)
m−1

2
∂

∂t
(uε + ε)

m+1
2 dx

≤ m

2

∫
Ω

∣∣∇(uε(uε + ε)α−1) · ∇vε + uε(uε + ε)α−1∆vε
∣∣2 (uε + ε)m−1 dx

+
2m

(m+ 1)2

∥∥∥∥ ∂∂t(uε + ε)
m+1

2

∥∥∥∥2
L2(Ω)

≤ m

∫
Ω

(∣∣∇(uε(uε + ε)α−1) · ∇vε
∣∣2 + ∣∣uε(uε + ε)α−1∆vε

∣∣2) (uε + ε)m−1 dx

+
2m

(m+ 1)2

∥∥∥∥ ∂∂t(uε + ε)
m+1

2

∥∥∥∥2
L2(Ω)

.
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Thus it follows that

2m

(m+ 1)2

∥∥∥∥ ∂∂t(uε + ε)
m+1

2

∥∥∥∥2
L2(Ω)

+
1

2
· d
dt
∥∇(uε + ε)m∥2L2(Ω)

≤ m

∫
Ω

(∣∣∇(uε(uε + ε)α−1) · ∇vε
∣∣2 + ∣∣uε(uε + ε)α−1∆vε

∣∣2) (uε + ε)m−1 dx

+ λm
d

dt

∫
Ω

(∫ uε

0

ξ(ξ + ε)m−1 dξ

)
dx

− µm
d

dt

∫
Ω

(∫ uε

0

ξκ(ξ + ε)m−1 dξ

)
dx (5.2.12)

for all t ∈ (0, T0). Noticing that (5.2.10) and the elliptic regularity theory applied

to the second equation in (5.2.1) lead to the inequality ∥vε(t)∥W 2,p(Ω) ≤ c1(p,K0) for

all p > 1 and t ∈ (0, T0), we can confirm from the Sobolev embedding theorem that

∥∇vε(t)∥L∞(Ω) ≤ c2(p,K0) for all t ∈ (0, T0), and hence establish that

m

∫
Ω

∣∣∇(uε(uε + ε)α−1) · ∇vε
∣∣2 (uε + ε)m−1 dx

≤ mα2

∫
Ω

∣∣(uε + ε)α−1∇uε · ∇vε
∣∣2 (uε + ε)m−1 dx

=
4mα2

(m+ 1)2

∫
Ω

∣∣∣(uε + ε)α−1∇(uε + ε)
m+1

2 · ∇vε
∣∣∣2 dx

≤ c3∥∇(uε + ε)
m+1

2 ∥2L2(Ω) (5.2.13)

for all t ∈ (0, T0), where c3 := 4mα2

(m+1)2
(K0 + 1)2(α−1)c22. On the other hand, in light of

the second equation in (5.2.1) and (5.2.10), we see that

|∆vε| =
∣∣∣∣ 1|Ω|

∫
Ω

uℓε dx− uℓε

∣∣∣∣ ≤ 1

|Ω|

(∫
Ω

uℓε dx

)
+ uℓε ≤ 2Kℓ

0,

which implies that

m

∫
Ω

∣∣uε(uε + ε)α−1∆vε
∣∣2 (uε + ε)m−1 dx

≤ 4mK2ℓ+2
0 (K0 + 1)m+2α−3|Ω| =: c4 (5.2.14)

for all t ∈ (0, T0). A combination of (5.2.13) and (5.2.14) with (5.2.12) yields

2m

(m+ 1)2

∥∥∥∥ ∂∂t(uε + ε)
m+1

2

∥∥∥∥2
L2(Ω)

+
1

2
· d
dt
∥∇(uε + ε)m∥2L2(Ω)

≤ c3∥∇(uε + ε)
m+1

2 ∥2L2(Ω) + c4 + λm
d

dt

∫
Ω

(∫ uε

0

ξ(ξ + ε)m−1 dξ

)
dx

− µm
d

dt

∫
Ω

(∫ uε

0

ξκ(ξ + ε)m−1 dξ

)
dx (5.2.15)
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for all t ∈ (0, T0). Multiplying (5.2.15) by t and changing the variable t with s, we

integrate it over (0, t) to obtain

2m

(m+ 1)2

∥∥∥∥√s ∂∂t(uε + ε)
m+1

2

∥∥∥∥2
L2(0,t;L2(Ω))

+
1

2
t∥∇(uε + ε)m∥2L2(Ω)

≤ 1

2
∥∇(uε + ε)m∥2L2(0,t;L2(Ω)) + c3∥

√
s∇(uε + ε)

m+1
2 ∥2L2(0,t;L2(Ω)) + c4t

+ λmt

∫
Ω

(∫ uε

0

ξ(ξ + ε)m−1 dξ

)
dx

+ µm

∫ t

0

[∫
Ω

(∫ uε

0

ξκ(ξ + ε)m−1 dξ

)
dx

]
dt.

Here, as in the proof of Lemma 5.2.5, we see that

∥∇(uε + ε)
m+1

2 ∥2L2(0,t;L2(Ω)) ≤ c5 and ∥∇(uε + ε)m∥2L2(0,t;L2(Ω)) ≤ c6

for all t ∈ (0, T0) with some c5 = c5(|Ω|, ∥u0∥L2(Ω),m, χ, α, λ, ℓ, T0, K0) > 0 and c6 =

c6(|Ω|, ∥u0∥L2(Ω),m, χ, α, λ, ℓ, T0, K0) > 0. Therefore, observing from (5.2.10) that∫
Ω

(∫ uε

0

ξ(ξ + ε)m−1 dξ

)
dx ≤ 1

m+ 1

∫
Ω

(uε + ε)m+1 dx

≤ 1

m+ 1
(K0 + 1)m+1|Ω|

and similarly∫ t

0

[∫
Ω

(∫ uε

0

ξκ(ξ + ε)m−1 dξ

)
dx

]
dt ≤ 1

m+ κ
(K0 + 1)m+κ|Ω|T0,

we can show that

2m

(m+ 1)2

∥∥∥∥√s ∂∂t(uε + ε)
m+1

2

∥∥∥∥2
L2(0,t;L2(Ω))

+
1

2
t∥∇(uε + ε)m∥2L2(Ω) ≤ c7

for all t ∈ (0, T0), where

c7 :=
1

2
c6 + c3c5T0 + c4T0 +

λm

m+ 1
(K0 + 1)m+1|Ω|T0 +

µm

m+ κ
(K0 + 1)m+κ|Ω|T0.

Thus we have that

2m

(m+ 1)2

∥∥∥∥√s ∂∂t(uε + ε)
m+1

2

∥∥∥∥2
L2(0,T0;L2(Ω))

+
1

2
sup

t∈(0,T0)
∥
√
t∇(uε + ε)m∥2L2(Ω) ≤ c7.
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From this inequality it follows that for any ε ∈ (0, 1),∥∥∥∥√t ∂∂tumε
∥∥∥∥2
L2(0,T0;L2(Ω))

+ sup
t∈(0,T0)

∥
√
t∇umε (t)∥2L2(Ω)

≤
∥∥∥∥√s ∂∂t(uε + ε)

m+1
2

∥∥∥∥2
L2(0,T0;L2(Ω))

+ sup
t∈(0,T0)

∥
√
t∇(uε + ε)m∥2L2(Ω)

≤
(
(m+ 1)2

2m
+ 2

)
c7,

which concludes the proof.

Finally we shall establish convergence of approximate solutions (uε, vε).

Lemma 5.2.7. Let m ≥ 1, χ > 0, α ≥ 1, λ > 0, µ > 0, κ > 1 and ℓ > 0.

Moreover, assume that there exist T0 ∈ (0,∞) and K0 > 0 such that (5.2.10) holds for

any ε ∈ (0, 1). Then there exist subsequences {uεk}, {vεk} (εk → 0 as k → ∞) and

nonnegative functions u, v such that

• u ∈ L∞(0, T0;L
∞(Ω)), um ∈ L2(0, T0;H

1(Ω)),

• v ∈ L∞(0, T0;W
1,∞(Ω)),

and as k → ∞,

uεk → u weakly⋆ in L∞(0, T0;L
∞(Ω)), (5.2.16)

uεk → u strongly in C0([δ, T0];L
p(Ω)) for all δ ∈ (0, T0) and p ∈ [1,∞), (5.2.17)

∇(uεk + ε)m → ∇um weakly in L2(0, T0;L
2(Ω)), (5.2.18)

∇vεk → ∇v weakly⋆ in L∞(0, T0;L
∞(Ω)). (5.2.19)

Proof. Applying the elliptic regularity theory to the second equation in (5.2.1), from

(5.2.10) and the Sobolev embedding theorem we obtain c1 > 0 and c2 > 0 such that

∥vε(t)∥L∞(Ω) ≤ c1 and ∥∇vε(t)∥L∞(Ω) ≤ c2

for all t ∈ (0, T0). Therefore we can show that there exist a subsequence {vεk} and a

function v ∈ L∞(0, T0;W
1,∞(Ω)) satisfying (5.2.19). Moreover, thanks to Lemmas 5.2.5

and 5.2.6, as in the proof of [19, Lemma 5.3] we can extract a subsequence {uεk} and a

function u ∈ L∞(0, T0;L
∞(Ω)) with um ∈ L2(0, T0;H

1(Ω)) such that (5.2.16)–(5.2.18)

holds.
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5.2.3. Moment inequality for approximate solutions

In this subsection we will derive the moment inequality for (uε, vε). To this end,

introducing r := |x|, we denote by (uε, vε) = (uε(r, t), vε(r, t)) the radially symmetric

local solution of (5.2.1) on [0, Tε). Also, we define the function wε and the moment-type

functional ϕε for the approximate solution uε as

wε(s, t) :=

∫ s
1
n

0

ρn−1uε(ρ, t) dρ for s ∈ [0, Rn] and t ∈ [0, Tε)

and

ϕε(t) :=

∫ s0

0

s−γ(s0 − s)wε(s, t) ds for t ∈ [0, Tε).

Here we know that ϕε ∈ C0([0, Tε)) ∩ C1((0, Tε)).

Now we state a proposition on the moment inequality for approximate solutions.

Proposition 5.2.8. Let n ∈ N, m ≥ 1, χ > 0, α ≥ 1, λ > 0, µ > 0, κ > 1 and

ℓ > 0. Assume that (5.1.3) is satisfied. Then for all M0 > 0 there exist η0 ∈ (0,M0)

and r⋆ ∈ (0, R) which satisfy the following property : If u0 satisfies (5.1.4)–(5.1.6), then

there exist T0 ∈ (0,∞) and K0 > 0 such that (5.2.9) holds. Moreover, one can find

K = K(R,m, χ, α, µ, κ, ℓ) > 0 and ε0 ∈ (0, 1) such that for any ε ∈ (0, ε0),

ϕε(t)− ϕε(0) ≥ K

∫ t

0

ϕα+ℓε (τ) dτ (5.2.20)

for all t ∈ (0, T0).

As to the proof of Proposition 5.2.8, we apply arguments of Lemmas 4.3.4–4.3.10

to the approximate solution. To this end, we first confirm that
∫
Ω
uε dx is bounded

and that uε is nonincreasing with respect to |x|.

Lemma 5.2.9. Assume that u0 satisfies (5.1.4). Then for any ε ∈ (0, 1),∫
Ω

uε(x, t) dx ≤M∗ := max

{∫
Ω

u0(x) dx,

(
λ

µ
|Ω|κ−1

) 1
κ−1

}

for all t ∈ (0, Tε).

Proof. As in the proof of Lemma 4.2.2 we have
∫
Ω
uε ≤ max

{ ∫
Ω
u0ε,

(
λ
µ
|Ω|κ−1

) 1
κ−1
}
,

which together with the relation
∫
Ω
u0ε ≤

∫
Ω
u0 implies this lemma.
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Lemma 5.2.10. Assume that u0 satisfies (5.1.4). Then for any ε ∈ (0, 1),

(uε)r(r, t) ≤ 0

for all r ∈ (0, R) and t ∈ (0, Tε), that is,

(wε)ss ≤ 0

for all s ∈ (0, Rn) and t ∈ (0, Tε).

Proof. By virtue of (5.1.4) and the definition of u0ε, we see that u0ε is also nonincreasing

with respect to |x|. Therefore the claim can be proved by an argument similar to that

in the proof of [59, Lemma 2.2] or [2, Lemma 5.1].

Invoking that ∫
Ω

u0ε ≤
∫
Ω

u0

and u0ε → u0 in L1(Ω) as ε→ 0, we can pick ξ0 > 0 so small and find some ε0 ∈ (0, 1)

such that for any ε ∈ (0, ε0), ∫
Ω

u0 − ξ0 ≤
∫
Ω

u0ε ≤
∫
Ω

u0. (5.2.21)

Next we take T0 ∈ (0,∞) and K0 > 0 fulfilling (5.2.9) and define the set Sϕε as

Sϕε :=

{
t ∈ (0, T0)

∣∣∣∣ ϕε(t) ≥ M0 − ξ0 − s0
(1− γ)(2− γ)ωn

s2−γ0

}
, (5.2.22)

where M0 > 0. We next show the lower estimate for wε
(
s0
2
, t
)
.

Lemma 5.2.11. Assume that u0 satisfies (5.1.4) and let s0 ∈ (0, Rn) and γ ∈ (−∞, 1).

Then for any ε ∈ (0, ε0),

wε

(s0
2
, t
)
≥ M∗ − δ0

ωn
for all t ∈ Sϕε ,

where

δ0 :=
4(M∗ −M0 + ξ0 + s0)

2γ(3− γ)
.

Proof. The proof of this lemma is based on that of [59, Lemma 3.1]. We only consider

the case that M0 > δ0. Assuming that there exists t ∈ Sϕε such that

wε

(s0
2
, t
)
<
M∗ − δ0
ωn

,

126



we will derive a contradiction. Thanks to the monotonicity of wε(·, t), we see that

wε(s, t) <
M∗−δ0
ωn

for all s ∈
(
0, s0

2

)
. Moreover, Lemma 5.2.9 yields

wε(s, t) ≤
M∗

ωn

for all s ∈ (0, Rn). Thus we obtain

ϕε(t) <
M∗ − δ0
ωn

∫ s0
2

0

s−γ(s0 − s) ds+
M∗

ωn

∫ s0

s0
2

s−γ(s0 − s) ds

=
M∗

ωn

∫ s0

0

s−γ(s0 − s) ds− δ0
ωn

∫ s0
2

0

s−γ(s0 − s) ds

=
M∗

(1− γ)(2− γ)ωn
s2−γ0 − 2γ(3− γ)δ0

4(1− γ)(2− γ)ωn
s2−γ0

=
M0 − ξ0 − s0

(1− γ)(2− γ)ωn
s2−γ0 .

By virtue of the definition of Sϕε , this inequality leads to the contradiction. Thus we

complete the proof.

We next establish the estimate for Mℓ,ε(t).

Lemma 5.2.12. Assume that u0 satisfies (5.1.4) and let s0 ∈
(
0, R

n

4

]
and γ ∈ (−∞, 1).

Then for any ε ∈ (0, ε0),

Mℓ,ε(t) ≤ L+
1

2s

∫ s

0

[
n(wε)s(σ, t)

]ℓ
dσ for all s ∈ (0, s0) and t ∈ Sϕε , (5.2.23)

where

L :=

(
2nδ0
ωns0

)ℓ
.

Proof. The proof is similar to that of [59, Lemma 3.2]. By means of Lemma 5.2.11,

we have

wε

(s0
2
, t
)
≥ M∗ − δ0

ωn
for all t ∈ Sϕε . Moreover, we recall that

wε(s, t) ≤
M∗

ωn

for all s ∈ (0, Rn) and t ∈ Sϕε . Therefore it follows that

wε(s0, t)− wε
(
s0
2
, t
)

s0
2

≤ 2δ0
ωns0

.
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On the other hand, aided by Lemma 5.2.10, we can observe from the concavity of w(·, t)
that

wε(s0, t)− wε
(
s0
2
, t
)

s0
2

≥ (wε)s(s0, t) ≥ (wε)s(s, t)

for all s ∈ (s0, R
n). Hence we infer that for all s ∈ (s0, R

n),

(wε)s(s, t) ≤
2δ0
ωns0

. (5.2.24)

Now we note that

Mℓ,ε(t) =
1

Rn

∫ s0

0

[
n(wε)s(σ, t)

]ℓ
dσ +

nℓ

Rn

∫ Rn

s0

[
(wε)s(σ, t)

]ℓ
dσ. (5.2.25)

As to the second term on the right-hand side of (5.2.25), the relation (5.2.24) and ℓ > 0

imply that

nℓ

Rn

∫ Rn

s0

[
(wε)s(σ, t)

]ℓ
dσ ≤ Rn − s0

Rn
·
(
2nδ0
ωns0

)ℓ
≤
(
2nδ0
ωns0

)ℓ
= L. (5.2.26)

Regarding the first term on the right-hand side of (5.2.25), we see that

1

Rn

∫ s0

0

[
n(wε)s(σ, t)

]ℓ
dσ =

1

Rn

∫ s

0

[
n(wε)s(σ, t)

]ℓ
dσ +

1

Rn

∫ s0

s

[
n(wε)s(σ, t)

]ℓ
dσ

for all s ∈ (0, s0). Invoking that (wε)s(·, t) is nonincreasing, we derive that∫ s

0

[
n(wε)s(σ, t)

]ℓ
dσ ≥ s

[
n(wε)s(s, t)

]ℓ
and

1

Rn

∫ s0

s

[
n(wε)s(σ, t)

]ℓ
dσ ≤ s0

Rn

[
n(wε)s(s, t)

]ℓ
for all s ∈ (0, s0). These two inequalities ensure that

1

Rn

∫ s0

0

[
n(wε)s(σ, t)

]ℓ
dσ ≤ 1

Rn

∫ s

0

[
n(wε)s(σ, t)

]ℓ
dσ +

s0
Rn

[
n(wε)s(s, t)

]ℓ
≤ 1

Rn

∫ s

0

[
n(wε)s(σ, t)

]ℓ
dσ +

s0
Rns

∫ s

0

[
n(wε)s(σ, t)

]ℓ
dσ

for all s ∈ (0, s0). In light of s0 ∈
(
0, R

n

4

]
, we can estimate that 1

Rn ≤ 1
4s

and s0
Rns

≤ 1
4s

for all s ∈ (0, s0), which lead to obtain

1

Rn

∫ s0

0

[
n(wε)s(σ, t)

]ℓ
dσ ≤ 1

2s

∫ s

0

[
n(wε)s(σ, t)

]ℓ
dσ (5.2.27)

for all s ∈ (0, s0). A combination of (5.2.26) and (5.2.27) with (5.2.25) yields (5.2.23),

which concludes the proof of this lemma.
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Now we prove Proposition 5.2.8.

Proof of Proposition 5.2.8. We first show (5.2.20). By means of Lemma 5.2.4, for

any initial data u0 with the properties (5.1.4) and (5.1.5), we can find T0 ∈ (0,∞) and

K0 > 0 satisfying (5.2.9). Now let ξ0 > 0 and ε0 ∈ (0, 1) fulfill (5.2.21). In view of

Lemmas 5.2.10–5.2.12, we can observe from an argument similar to that in the proof

of Lemma 4.3.4 that

ϕ′
ε(t) ≥

nℓ

2

∫ s0

0

s1−γ(s0 − s) (n(wε)s + ε)α−1 (wε)
ℓ+1
s ds

− L

∫ s0

0

s1−γ(s0 − s) (n(wε)s + ε)α−1 (wε)s ds

+mn2

∫ s0

0

s2−
2
n
−γ(s0 − s) (n(wε)s + ε)m−1 (wε)ss ds

− nκ−1µ

∫ s0

0

s−γ(s0 − s)

{∫ s0

0

(wε)
κ
s dσ

}
ds (5.2.28)

for all s0 ∈
(
0, R

n

4

]
and t ∈ Sϕε . Since we can apply Lemmas 4.3.4–4.3.10 with Sϕ

replaced by Sϕε to (5.2.28), there are γ ∈ (−∞, 1) and c1 = c1(R,m, χ, α, µ, κ, ℓ, γ) > 0

as well as c2 = c2(R,m, χ, α, µ, κ, ℓ, γ) > 0 such that

ϕ′
ε(t) ≥ c1s

−(3−γ)(α+ℓ−1)
0 ϕα+ℓε (t)− c2s

3−γ− 2
n
· α+ℓ
α+ℓ−m

0 (5.2.29)

for all s0 ∈
(
0, R

n

4

]
and t ∈ Sϕε . Here we note from Remark 4.3.1 that c1 and c2 are

independent of ε. We fix s0 > 0 such that

s0 ≤ min

{
Rn

4
,
M0 − ξ0

2

}
(5.2.30)

and

s
(α+ℓ)(1− 1

α+ℓ−m)
0 ≤ c1

2c2

(
M0 − ξ0

2(1− γ)(2− γ)ωn

)α+ℓ
. (5.2.31)

We additionally pick η0 ∈
(
0, s0

4

)
so small and take s⋆ ∈ (0, s0) satisfying

M0 − ξ0 − η0
ωn

∫ s0

s⋆

s−γ(s0 − s) ds >
M0 − ξ0 − s0

(1− γ)(2− γ)ωn
s2−γ0 .

Moreover, in the following we suppose that u0 fulfills (5.1.4)–(5.1.6) with r⋆ := s
1
n
⋆ . In

order to derive (5.2.20) we define the set

S̃ε :=

{
τ ∈ (0, T0)

∣∣∣∣ ϕε(t) > M0 − ξ0 − s0
(1− γ)(2− γ)ωn

s2−γ0 for all t ∈ [0, τ ]

}
.
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Here we can see that S̃ε is not empty for sufficiently small ε. Indeed, from the second

condition of (5.1.6) and u0ε → u0 in L1(Ω) as ε→ 0, we can observe that∫
Br⋆ (0)

u0ε dx ≥M0 − ξ0 − η0

for all ε ∈ (0, ε0). This inequality yields that wε(s, 0) ≥ wε(s⋆, 0) ≥ M0−ξ0−η0
ωn

for all

s ∈ (s⋆, s0). Hence we obtain

ϕε(0) ≥
∫ s0

s⋆

s−γ(s0 − s)wε(s, 0) ds

≥ M0 − ξ0 − η0
ωn

∫ s0

s⋆

s−γ(s0 − s) ds

>
M0 − ξ0 − s0

(1− γ)(2− γ)ωn
s2−γ0 ,

which together with the continuity of ϕε implies that S̃ε is not empty for any ε ∈ (0, ε0).

Now let T̃ε := sup S̃ε ∈ (0, T0]. Then from (5.2.22) we can confirm that (0, T̃ε) ⊂ Sϕε .

Thanks to (5.2.29)–(5.2.31), as in the proof of Theorem 4.1.2, we have

ϕ′
ε(t) ≥

c1
2
s
−(3−γ)(α+ℓ−1)
0 ϕα+ℓε (t) > 0

for all ε ∈ (0, ε0) and t ∈ (0, T̃ε). This ensures that T̃ε = T0. Choosing an arbitrary

t ∈ (0, T0) and integrating the above inequality over (0, t), we attain (5.2.20).

5.2.4. Proof of Proposition 5.2.1

We establish local existence of moment solutions to the system (5.1.1) by virtue of

the passage to the limit as ε→ 0 in (5.2.20).

Proof of Proposition 5.2.1. Let M0 > 0 and let η0 ∈ (0,M0) and r⋆ ∈ (0, R) given

by Proposition 5.2.8. Also, we pick u0 fulfilling (5.1.4)–(5.1.6). Then, thanks to Lemma

5.2.2 and Proposition 5.2.8, we can obtain the approximate solution (uε, vε) of (5.2.1)

and find T0 ∈ (0,∞) and K0 > 0 such that (5.2.9) holds, and we have

ϕε(t)− ϕε(0) ≥ K

∫ t

0

ϕα+ℓε (τ) dτ (5.2.32)

for all t ∈ (0, T0) with some K > 0. By virtue of (5.2.9), we can apply Lemma 5.2.7.

Hence there exist {uεk}, {vεk} (εk → 0 as k → ∞) and nonnegative functions u, v

such that (u, v) = limk→∞(uεk , vεk) satisfies (i), (ii) and (iv) in Definition 5.1.1. We
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next show (iii) in Definition 5.1.1. Let us pick ψ ∈ L1(Ω). Then for all ξ > 0 there is

ψ0 ∈ Cc(Ω) such that

∥ψ − ψ0∥L1(Ω) < ξ. (5.2.33)

Moreover, noting from (5.2.17) that u ∈ C0([δ, T0];L
1(Ω)) for all δ ∈ (0, T0), we see

that for all t0 > 0, ∫
Ω

u(t)ψ0 dx→
∫
Ω

u(t0)ψ0 dx as t→ t0, (5.2.34)

and from (5.2.16) it follows that

∥u∥L∞(0,T0;L∞(Ω)) ≤ lim inf
k→∞

∥uεk∥L∞(0,T0;L∞(Ω)) <∞. (5.2.35)

In light of (5.2.33)–(5.2.35) we can verify that u ∈ C0
w−⋆((0, T0);L

∞(Ω)). Furthermore,

by relying on the fact that uεk ∈ C0(Ω × [0, T0)) and uεk → u0 in L1(Ω) as k → ∞,

it follows that u ∈ C0
w−⋆([0, T0);L

∞(Ω)), that is, (iii) holds. Next we make sure that

the moment inequality (5.1.2) holds. Invoking u0εk → u0 in L1(Ω) as k → ∞, we can

confirm that

ϕεk(0) → ϕ(0) as k → ∞.

Furthermore, due to (5.2.17) it follows that uεk → u in C0((0, T0];L
1(Ω)) as k → ∞,

which ensures that

ϕεk(t) → ϕ(t) as k → ∞

for all t ∈ (0, T0). Additionally, noticing that

wεk(s, t) ≤
K0|Ω|
ωn

,

we can observe that

ϕα+ℓεk
(t) ≤

(
K0|Ω|

(1− γ)(2− γ)ωn
s2−γ0

)α+ℓ
for all t ∈ (0, T0). In view of the Lebesgue dominated convergence theorem, we infer

that ∫ t

0

ϕα+ℓεk
(τ) dτ →

∫ t

0

ϕα+ℓ(τ) dτ as k → ∞

for all t ∈ (0, T0), and so letting k → ∞ in (5.2.32), we see that (v) in Definition 5.1.1

holds. This implies the end of the proof.
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5.3. Finite-time blow-up

In this section we prove finite-time blow-up of maximal moment solutions to (5.1.1).

Before proceeding to the proof, we confirm the following equivalence.

Lemma 5.3.1. Let T ∈ (0,∞). Assume that a pair (u, v) of nonnegative functions

defined on Ω× (0, T ) satisfies

u ∈ L∞(0, T ;L∞(Ω)), um, v ∈ L2(0, T ;H1(Ω)), u ∈ C0
w−⋆([0, T );L

∞(Ω)). (5.3.1)

Then the following two conditions are equivalent.

(a) For all φ ∈ L2(0, T ;H1(Ω)) ∩W 1,1(0, T ;L2(Ω)) with suppφ ⊂ [0, T ),∫ T

0

∫
Ω

(∇um · ∇φ− χuα∇v · ∇φ− (λu− µuκ)φ− uφt) dxdt

=

∫
Ω

u0φ(0) dx,∫ T

0

∫
Ω

∇v · ∇φdxdt+
∫ T

0

(
Mℓ(t)

∫
Ω

φdx

)
dt−

∫ T

0

∫
Ω

uℓφdxdt = 0;

(b) ut ∈ L2(0, T ; (H1(Ω))⋆), and for all ψ ∈ H1(Ω),∫
Ω

utψ dx = −
∫
Ω

(∇um · ∇ψ − χuα∇v · ∇ψ − (λu− µuκ)ψ) dx, (5.3.2)∫
Ω

∇v · ∇ψ dx+Mℓ(t)

∫
Ω

ψ dx−
∫
Ω

uℓψ dx = 0 (5.3.3)

for a.a. t ∈ [0, T ) with u(0) = u0.

Proof. Let (u, v) satisfy (a). Then, (5.3.1) implies that for all φ ∈ C∞
c (Ω× (0, T )),∣∣∣∣∫ T

0

∫
Ω

uφt dxdt

∣∣∣∣
≤
∣∣∣∣∫ T

0

∫
Ω

(∇um − χuα∇v) · ∇φdxdt
∣∣∣∣+ ∣∣∣∣∫ T

0

∫
Ω

(λu− µuκ)φdxdt

∣∣∣∣
≤
[
∥∇um∥L2(0,T ;L2(Ω)) + χ∥u∥αL∞(0,T ;L∞(Ω))∥∇v∥L2(0,T ;L2(Ω))

+ (λ∥u∥L∞(0,T ;L∞(Ω)) + µ∥u∥κL∞(0,T ;L∞(Ω)))|Ω|
1
2T

1
2

]
∥φ∥L2(0,T ;H1(Ω)),
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which implies that ut ∈ L2(0, T ; (H1(Ω))⋆). Also, choosing φ in (a) as φ = φ̃ · ψ with

φ̃ ∈ C0
c ([0, T )) and ψ ∈ H1(Ω), we have∫ T

0

[∫
Ω

(∇um · ∇ψ − χuα∇v · ∇ψ − (λu− µuκ)ψ) dx

]
φ̃ dt

=

∫ T

0

[∫
Ω

uψ dx

]
φ̃t dt+

∫
Ω

u0ψ dx · φ̃(0).

By taking φ̃ with φ̃(0) = 0, this yields (5.3.2). Moreover, from this identity and

(5.3.2) we can confirm that
∫
Ω
u(0)ψ dx =

∫
Ω
u0ψ dx for all ψ ∈ H1(Ω), which entails

that u(0) = u0. Similarly, (5.3.3) can be obtained. Thus (b) holds. Conversely, if

(b) is satisfied, then for a.a. t ∈ [0, T ), ut = ∆um − χ∇ · (uα∇v) + λu − µuκ and

0 = ∆v − Mℓ(t) + uℓ in (H1(Ω))⋆, and thereby from these identities together with

(5.3.1) and ut ∈ L2(0, T ; (H1(Ω))⋆), we infer that (a) holds.

We finally prove Theorem 5.1.1.

Proof of Theorem 5.1.1. Let M0 > 0 and let η0 ∈ (0,M0) and r⋆ ∈ (0, R) given by

Proposition 5.2.8. We pick u0 as in (5.1.4)–(5.1.6). Thanks to Proposition 5.2.1 and

Definition 5.1.2, there is a maximal moment solution (u, v) of (5.1.1) on [0, Tmax). We

first show that Tmax < ∞ by contradiction. To this end, we assume that Tmax = ∞.

Then we have

ϕ(t)− ϕ(0) ≥ K

∫ t

0

ϕα+ℓ(τ) dτ (5.3.4)

for all t ∈ (0,∞) with some K > 0, and put the function Φ as

Φ(t) :=

∫ t

0

ϕα+ℓ(τ) dτ +
ϕ(0)

K
for t ∈ (0,∞).

Also, we infer that ϕ is bounded on [0, T ′) for all T ′ < ∞ and continuous on [0,∞)

because u belongs to L∞
loc(0,∞;L∞(Ω)) and C0

w−⋆([0,∞);L∞(Ω)) due to (i) and (iii).

Hence we note that Φ ∈ C0([0,∞)) ∩ C1((0,∞)). From (5.3.4) we obtain

Φ′(t) ≥ Kα+ℓΦα+ℓ(t) for all t ∈ (0,∞),

and thereby we can derive that

− 1

(α + ℓ− 1)Φα+ℓ−1(t)
+

1

(α + ℓ− 1)Φα+ℓ−1(0)
≥ Kα+ℓt

for all t ∈ (0,∞). Thus it follows that t ≤ 1
(α+ℓ−1)Kα+ℓΦα+ℓ−1(0)

for all t ∈ (0,∞), which

is a contradiction. Therefore we see that Tmax <∞.
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Next, we prove that

lim sup
t↗Tmax

∥u(t)∥L∞(Ω) = ∞ (5.3.5)

by contradiction. To this end, we assume that lim supt↗Tmax
∥u(t)∥L∞(Ω) <∞, that is,

u ∈ L∞(0, Tmax;L
∞(Ω)). By this assumption and (i)–(iv) in Definition 5.1.1, it follows

that (5.3.1) and (a) in Lemma 5.3.1 with T = Tmax hold. Hence, noting from (b) in

Lemma 5.3.1 that ut ∈ L2(0, Tmax; (H
1(Ω))⋆), we have

∥u(t)− u(s)∥(H1(Ω))⋆ ≤ ∥ut∥L2(0,Tmax;(H1(Ω))⋆)|t− s|
1
2

for all t, s ∈ [0, Tmax), so that u is uniformly continuous on [0, Tmax) in (H1(Ω))⋆. This

continuity provides ũTmax ∈ (H1(Ω))⋆ such that

ũTmax = lim
t↗Tmax

u(t) in (H1(Ω))⋆.

Moreover, the condition (iii) in Definition 5.1.1 with T = Tmax guarantees that ũTmax

belongs to L∞(Ω). Indeed, by virtue of the condition (iii) in Definition 5.1.1 and the

assumption lim supt↗Tmax
∥u(t)∥L∞(Ω) < ∞, we see that there exist {tn} ⊂ [0, Tmax)

and g ∈ L∞(Ω) such that tn ↗ Tmax and u(tn) → g weakly⋆ in L∞(Ω) as n → ∞.

Since we observe that u(tn) → ũTmax in (H1(Ω))⋆ as n → ∞, it follows that g = ũTmax

in (H1(Ω))⋆. Noting that L∞(Ω) ⊂ L2(Ω) = (L2(Ω))⋆ ⊂ (H1(Ω))⋆, we arrive at the

desired fact that ũTmax ∈ L∞(Ω). Choosing the initial data as ũTmax , by an argument

similar to those in the proofs of Lemmas 5.2.3–5.2.7, we can find T1 > 0 and construct

a weak solution (ũ, ṽ) on [Tmax, Tmax + T1). Now, we put

(u, v) :=

{
(u, v) for a.a. t ∈ [0, Tmax),

(ũ, ṽ) for a.a. t ∈ [Tmax, Tmax + T1),

and confirm that (u, v) is a weak solution of (5.1.1) on [0, Tmax + T1). The definition

of ũTmax implies that
∫
Ω
u(t)ψ0 dx →

∫
Ω
ũTmaxψ0 dx as t ↗ Tmax for all ψ0 ∈ C∞

c (Ω),

and u ∈ L∞(0, Tmax;L
∞(Ω)), and hence we see that u ∈ C0

w−⋆([0, Tmax];L
∞(Ω)). On

the other hand, the condition corresponding to (iii) in Definition 5.1.1 tells us that

ũ ∈ C0
w−⋆([Tmax, Tmax + T1);L

∞(Ω)). Consequently, we deduce that

u ∈ C0
w−⋆([0, Tmax + T1);L

∞(Ω)). (5.3.6)

Recalling that ut ∈ L2(0, Tmax; (H
1(Ω))⋆) and ũt ∈ L2([Tmax, Tmax+T1); (H

1(Ω))⋆) with

ũ(Tmax) = ũTmax , we can show that ut ∈ L2([0, Tmax+T1); (H
1(Ω))⋆). Indeed, it follows
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from (5.3.6) that for any φ ∈ H1([0, Tmax + T1);H
1(Ω)),

−
∫ Tmax+T1

0

⟨u(t), φt(t)⟩(H1(Ω))⋆,H1(Ω) dt

= −
∫ Tmax

0

∫
Ω

uφt dxdt−
∫ Tmax+T1

Tmax

∫
Ω

ũφt dxdt

=

∫
Ω

u(Tmax)φ(Tmax) dx+

∫ Tmax

0

⟨ut(t), φ(t)⟩(H1(Ω))⋆,H1(Ω) dt

−
∫
Ω

u(Tmax)φ(Tmax) dx+

∫ Tmax+T1

Tmax

⟨ũt(t), φ(t)⟩(H1(Ω))⋆,H1(Ω) dt

=

∫ Tmax+T1

0

⟨g(t), φ(t)⟩(H1(Ω))⋆,H1(Ω) dt,

where

g :=

{
ut for a.a. t ∈ [0, Tmax),

ũt for a.a. t ∈ [Tmax, Tmax + T1),

which means that ut = g ∈ L2([0, Tmax + T1); (H
1(Ω))⋆). Moreover, since (u, v) and

(ũ, ṽ) satisfy (5.3.2), (5.3.3) for a.a. t ∈ [0, Tmax) and for a.a. t ∈ [Tmax, Tmax + T1),

respectively, (u, v) fulfills (5.3.2), (5.3.3) for a.a. t ∈ [0, Tmax + T1), and hence, by

means of Lemma 5.3.1, (u, v) is a weak solution of (5.1.1) on [0, Tmax + T1). We shall

show that the weak solution (u, v) fulfills the moment inequality on [0, Tmax + σ1) with

some σ1 > 0. For this purpose, defining w and ϕ as

w(s, t) :=

∫ s
1
n

0

ρn−1u(ρ, t) dρ for s ∈ [0, Rn] and t ∈ [0, Tmax + T1)

and

ϕ(t) :=

∫ s0

0

s−γ(s0 − s)w(s, t) ds for t ∈ [0, Tmax + T1),

we have only to prove that there exists K > 0 such that

ϕ(t)− ϕ(0) ≥ K

∫ t

0

ϕ
α+ℓ

(τ) dτ for all t ∈ [0, Tmax + σ1). (5.3.7)

We know that

ϕ(t)− ϕ(0) ≥ K

∫ t

0

ϕα+ℓ(τ) dτ for all t ∈ [0, Tmax). (5.3.8)

In order to construct the moment inequality beyond Tmax we make sure that

ϕ(Tmax)− ϕ(0) ≥ K

∫ Tmax

0

ϕ
α+ℓ

(τ) dτ. (5.3.9)
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To this end, we confirm that ϕ ∈ C0([0, Tmax + T1)). Letting t → t0 ∈ [0, Tmax + T1)

and noting from (5.3.6) that for any s ∈ (0, R], w(s, ·) is continuous on [0, Tmax + T1)

and s−γ(s0 − s)w(s, t) ≤ c1s
−γ(s0 − s) with some c1 > 0, we see from the Lebesgue

dominated convergence theorem that ϕ(t) → ϕ(t0), and so ϕ ∈ C0([0, Tmax+T1)). Thus

the inequality (5.3.9) is derived by the passage to the limit in (5.3.8) as t↗ Tmax. Next,

by setting

εK :=
K

2

∫ Tmax

0

ϕ
α+ℓ

(τ) dτ > 0, (5.3.10)

the continuity of ϕ and
∫ t
0
ϕ
α+ℓ

(τ) dτ at t = Tmax provides σ1 ∈ (0, T1) such that for all

t ∈ [Tmax, Tmax + σ1),∣∣∣∣ϕ(t)− K

2

∫ t

0

ϕ
α+ℓ

(τ) dτ −
(
ϕ(Tmax)−

K

2

∫ Tmax

0

ϕ
α+ℓ

(τ) dτ

)∣∣∣∣ ≤ εK ,

which together with (5.3.10) implies

ϕ(t)− K

2

∫ t

0

ϕ
α+ℓ

(τ) dτ ≥ ϕ(Tmax)−K

∫ Tmax

0

ϕ
α+ℓ

(τ) dτ ≥ ϕ(0)

for all t ∈ [Tmax, Tmax + σ1), that is,

ϕ(t)− ϕ(0) ≥ K

2

∫ t

0

ϕ
α+ℓ

(τ) dτ for all t ∈ [Tmax, Tmax + σ1). (5.3.11)

On the other hand, in light of (5.3.8), (u, v) satisfies that

ϕ(t)− ϕ(0) ≥ K

2

∫ t

0

ϕα+ℓ(τ) dτ for all t ∈ [0, Tmax).

Noting that ϕ = ϕ on [0, Tmax) and combining this inequality and (5.3.11), we obtain

the moment inequality (5.3.7) on [0, Tmax + σ1) with K = K
2
, which contradicts the

definition of maximal moment solutions. Therefore we conclude that the maximal

moment solution (u, v) of (5.1.1) on [0, Tmax) satisfies (5.3.5).
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