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Chapter 1

Introduction

In many statistical analyses, the observed data are often generated through simple random

sampling (SRS). One of the advantages of the SRS method is its ease of use. Unlike more

complicated sampling approaches, including stratified and clustered sampling, the SRS method

does not require steps such as dividing the population into sub-populations. However, the SRS

method can be time-consuming and costly compared to other methods used for sampling from

large populations. Thus, cost-effective sampling methods are of significant concern in statistics,

particularly when measuring the characteristic of interest is a costly and time-consuming task.

McIntyre (1952) proposed the so-called ranked set sampling (RSS) to effectively estimate the

pasture yield in Australia effectively. The RSS procedure is a two-stage scheme. In the first

stage, simple random samples are drawn, and a certain ranking mechanism is employed to

rank the units in each simple random sample. In the second stage, actual measurements of

the variable of interest are conducted on the selected units based on the ranking information

obtained in the first stage. Despite no theoretical rigor, McIntyre (1952) indicated that RSS

outperforms SRS in terms of estimating the population mean. The notion of RSS provides an

effective way to achieve an observational economy under certain particular conditions. There

have been many new developments based on McIntyre’s original idea, which have made the

method applicable within a much more comprehensive range of fields than initially intended. A

mathematical foundation for RSS was first investigated by Takahasi and Wakimoto (1968). In

addition, Dell and Clutter (1972) showed that the RSS-based estimator of a population mean is

at least as efficient as the SRS-based estimator with the same number of observations, even when

ranking errors occur. The middle of the 1980s was a turning point in the development of the

theory and methodology using RSS. Since then, various statistical procedures with RSS, both

nonparametric and parametric, have been investigated; in addition, variations of the original

notion of RSS have been proposed and developed, and general theoretical foundations of RSS

have been laid. See Bohn (1996), Wolfe (2004) and Chen et al. (2004) for details.

Furthermore, certain quantities, such as the mean and variance of the population distribution

F , can be expressed as a statistical functional of the form θ(F ). A straightforward method for

estimating a statistical functional is the so-called plug-in method, which estimates θ(F ) using

θ(F̂ ), where F̂ is an estimator of the distribution function F . The estimation of the cumulative
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distribution function (CDF) with various RSS settings was considered by Stokes and Sager

(1988), Kvam and Samaniego (1994), Huang (1997), and Duembgen and Zamanzade (2020).

To estimate the probability density function (PDF), for example, the kernel density estimator

(KDE) proposed by Chen (1999), Barabesi and Fattorini (2002), and Lim et al. (2014) can be

constructed as a statistical functional of the RSS-based empirical distribution function (EDF).

The RSS-based KDE has recently been used in various fields, including mode estimation (Samawi

et al., 2018, 2019) and reliability estimation (Mahdizadeh and Zamanzade, 2016, 2018, 2021; Yin

et al., 2016). However, because the RSS data generally have a data structure with unknown

ranking errors, the asymptotic distribution of an RSS-based plug-in estimator of a statistical

functional cannot be readily used for a statistical inference. We have to use other methods such

as bootstrapping for this purpose. The bootstrap method for use with SRS data was proposed by

Efron (1979) and has been studied by several authors. Following Silverman and Young (1987),

Hall et al. (1989), and Wang (1995), the smoothed bootstrap method uses a smooth estimator

of the CDF rather than the EDF. De Martini (2000) presented results on the consistency of the

smoothed bootstrap method for SRS data (Alonso and Cuevas, 2003; El-Nouty and Guillou,

2000). In addition, Chen et al. (2004) and Modarres et al. (2006) have investigated several

bootstrap methods for drawing a statistical inference under RSS.

Meanwhile, with advances in modern technology, it has become possible to observe various

types of data. In particular, functional data analysis (FDA) deals with the analysis and theory

of data that are in the form of functions, images, shapes, or more general objects. Although

the term “functional data analysis” was coined by Ramsay (1982) and Ramsay and Dalzell

(1991), the history of this area is much older and dates back to Grenander (1950) and Rao

(1958). The objects of study in FDA are real functions that are assumed to be generated by

means of a stochastic process that can be handled by viewing them as random elements from

probability distributions in infinite-dimensional spaces. FDA can be used for analysis in many

different fields, such as finance, genomics, medicine, and chemistry. Ramsay and Silverman

(2002) presented a wide range of applications of the FDA. Several techniques of multivariate

data have been adapted or generalized to the FDA context. See Ramsay and Silverman (2005),

Ferraty and Vieu (2006), and Horváth and Kokoszka (2012) for details in this field.

Two-sample hypothesis testing for functional data under many different situations has been

considered. Several test statistics have been proposed to detect differences in the mean functions

(Chakraborty and Chaudhuri, 2009; Horváth et al., 2013; Ramsay and Silverman, 2005; Zhang

et al., 2010) and covariance functions (Ferraty et al., 2007; Fremdt et al., 2013; Kraus and

Panaretos, 2012). Because functional data are recorded discretely in practice, a pre-smoothing

of the data is necessary in many cases. However, for all discretely observed functional data,

the use of different tuning parameters for the smoothing step can mask the differences between

distributions that a test attempts to locate. Hall and Van Keilegom (2007) proposed an extension

of the multivariate Cramèr–von Mises test and investigated the effect of pre-smoothing on the

testing procedures. Furthermore, they verified that the effect of smoothing can be reduced by

using a common tuning parameter for all observed functional data. This method was developed

for noisy functional data observed at dense grids of points. However, functional data observed in
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fields such as diffusion tensor imaging (DTI) may contain numerous missing values. As a method

applicable to a more general sampling design, Pomann et al. (2016) proposed the Anderson–

Darling test based on the so-called marginal functional principal analysis (Crainiceanu et al.,

2009; Di et al., 2009; Goldsmith et al., 2012; Yao et al., 2005).

The remainder of this paper is organized as follows. In Chapter 2, we propose several

smoothed bootstrap methods for RSS. In addition, we detail the development of a more efficient

resampling method when the underlying distribution is symmetric. These results are based on

Yamaguchi and Murakami (2021). In Chapter 3, we propose an interpoint distance-based test

for functional data. Furthermore, we derive some asymptotic properties of the proposed test

statistics. These results are based on Yamaguchi and Murakami (2022). Finally, we provide

some concluding remarks in Chapter 4.
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Chapter 2

Smoothed bootstrap methods for
ranked set samples

In this chapter, we develop the smoothed bootstrap methods for RSS. In particular, we also

propose a more efficient resampling method when the underlying distribution is symmetric.

Chapter 2 is organized as follows. In Section 2.1, we introduce the imperfect ranking model for

RSS. Moreover, the RSS-based kernel cumulative distribution estimator (KCDF) is defined. In

Section 2.2, we describe several bootstrap methods and their asymptotic properties. In Section

2.3, we derive the asymptotic mean integrated squared error (MISE) of the RSS-based KCDE

for selecting the bandwidth for the KCDE based on RSS data. Simulation studies using these

bootstrap methods are discussed in Section 2.4.

2.1 Fundamentals of ranked set sampling

First, we introduce some of the notation used. The PDF and CDF of the underlying distribution

are denoted by f and F , respectively. Let F[i] be the CDF of the i-th judgment-ranked order

statistic of a random sample of size k from F . In this paper, we assume that the ranking

mechanism is (so-called) consistent (Chen et al., 2004, p.12), that is, the following equality

holds:

F =
1

k

k∑
i=1

F[i]. (2.1.1)

Let M be an imperfect ranking model that satisfies the equality (2.1.1). For example, Frey

(2007) introduced the imperfect ranking model

F[i] =

r∑
j=1

pijFj:r,

where Fj:r is the CDF of the true j-th order statistic from a set of size r (≥ k) and P = [pij ]k×r

is the k × r non-negative matrix satisfying the row sums of 1 and column sums of k/r. The
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ranking mechanism based on Frey’s imperfect ranking model is consistent since the following

equation holds:

1

k

k∑
i=1

F[i] =
1

k

r∑
j=1

k∑
i=1

pijFj:r =
1

r

r∑
j=1

Fj:r = F.

In particular, if r = k, Fray’s imperfect ranking model corresponds to the imperfect ranking

model introduced by Bohn and Wolfe (1994). Let mi (i = 1, . . . , k) be the number of sets allo-

cated to measure units having the i-th judgment-rank. A ranked set sample can be represented

by {X[i]j : i = 1, . . . , k, j = 1, . . . ,mi}, where X[i]j is the measurement on the j-th unit, which

is judged to be the i-th ranked observation in a set of k independent samples. Throughout this

paper, for each i = 1, . . . , k, we assume that limn→∞mi/n = λi ∈ (0, 1), where n =
∑k

i=1mi.

The nonparametric bootstrap method for SRS data can be interpreted as random sampling

from the EDF. Some nonparametric bootstrap methods for RSS data are also based on random

sampling from the RSS-based EDF defined in

F̂RSS(x) =
1

k

k∑
i=1

F̂[i](x), where F̂[i](x) =
1

mi

mi∑
j=1

I(X[i]j ≤ x)

and I(·) is the indicator function. Stokes and Sager (1988) proposed an EDF under a balanced

RSS setting (m1 = · · · = mk), showing that the variance of F̂RSS(x) is smaller than or equal to

that of the SRS-based EDF. The EDF has the advantage of always being unbiased regardless of

the quality of the ranking under the imperfect ranking model M. However, the EDF F̂RSS(x)

is a distribution function for a discrete random variable. Although the discreteness of the EDF

is not problematic in many applications, a continuous or smooth estimate of the variable is

desirable in applications where the tails of the CDF F are of interest. For example, Polansky

(1998) used the kernel estimation of the CDF to estimate the capability of a stable process

using the standard process capability indices. Furthermore, a smooth estimator of the CDF can

be easily applied to the smoothed bootstrap method (Hall et al., 1989; Silverman and Young,

1987; Wang, 1995). To obtain smoothed bootstrap samples for RSS data, we use the RSS-based

KCDE

F̃RSS(x) =
1

k

k∑
i=1

F̃[i](x), where F̃[i](x) =
1

mi

mi∑
j=1

K

(
x−X[i]j

h

)
and K is a symmetric CDF with mean zero, and h is a positive real constant assumed to satisfy

the conditions h → 0 and nh → ∞ as n → ∞. The selection of an appropriate bandwidth h is

described in Section 2.3.

2.2 RSS-based bootstrap methods

In this section, we consider the smoothed version of the bootstrap method for RSS data. In

addition, we propose bootstrap methods for a symmetric distribution and prove the consistency

of these bootstrap methods in terms of the location parameter.
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2.2.1 BRSSR: bootstrap RSS by row

Bootstrap methods for RSS data have been proposed by several researchers. Chen et al. (2004)

introduced the bootstrap RSS by row (BRSSR). The BRSSR method is described as follows.

Step 1. Assign to each element of the ith row a probability of m−1
i , and randomly select mi

elements randomly {X[i]1, . . . , X[i]mi
} with a replacement to obtain {X∗

[i]1, . . . , X
∗
[i]mi

}.

Step 2. Conduct Step 1 for i = 1, . . . , k to obtain a bootstrap ranked set sample {X∗
[i]j : i =

1, . . . , k, j = 1, . . . ,mi}.

For example, Hui et al. (2005) used the BRSSR method to construct a confidence interval for an

estimation of the population mean through a linear regression under the RSS. Modarres et al.

(2006) showed that the BRSSR sample mean is consistent in terms of the Mallows distance

defined in Definition 2.2.1.

Definition 2.2.1 (Bickel and Freedman, 1981). Let Fs be a collection of CDFs having finite

s-th moments. Let X and Y be random variables with CDFs G,H ∈ Fs, respectively, and

define ρs(G,H) = infτX,Y {E[|X − Y |s]}1/s, where τX,Y is the collection of all possible joint

distributions of the pair (X,Y ), which have marginal distributions G and H, respectively.

The following sections describe several smoothed or symmetrized versions of the BRSSR

method.　

2.2.2 SBRSSR: smoothed bootstrap RSS by row

With the BRSSR method, the resampling of each row (i = 1, . . . , k) used random sampling

from the EDF F̂[i]. Herein, we consider using the KCDE F̃[i] instead of the EDF F̂[i] for each

i = 1, . . . , k. The procedure of the smoothed BRSSR method is thus as follows:

Step 1. Generate mi elements {X∗
[i]1, . . . , X

∗
[i]mi

} randomly from F̃[i].

Step 2. Conduct Step 1 for i = 1, 2, . . . , k to obtain a smoothed bootstrap ranked set sample

{X∗
[i]j : i = 1, . . . , k, j = 1, . . . ,mi}.

Similar to the BRSSR method, we show that the SBRSSR sample mean is consistent in the

sense of the Mallows distance defined through Definition 2.2.1.

Proposition 2.2.1. If F,K ∈ Fs, then ρs(F̃RSS, F ) → 0 along almost all sample sequences.

Proof. By using the results of Bickel and Freedman (1981, Section 8), it suffices to show that

Un ∼ F̃RSS and U ∼ F imply Un ⇝ U and
∫
xsdF̃RSS(x) →

∫
xsdF (x). When F ∈ Fs is

assumed, it is straightforward to show F[i] ∈ Fs for each i = 1, . . . , k. Based on Theorem 3 of

Yamato (1973), we have

sup
x∈R

|F̃[i](x)− F[i](x)|
a.s.→ 0 as mi → ∞.

8



Because

sup
x∈R

|F̃RSS(x)− F (x)| = sup
x∈R

∣∣∣∣∣1k
k∑

i=1

[F̃[i](x)− F[i](x)]

∣∣∣∣∣
≤ 1

k

k∑
i=1

sup
x∈R

|F̃[i](x)− F[i](x)| → 0 as min
i=1,...,k

mi → ∞,

Un ∼ F̃RSS and U ∼ F imply that Un ⇝ U as minimi → ∞. Finally, based on Khinchine’s

strong law of large numbers (SLLN), we also obtain∫
xsdF̃RSS(x) =

1

k

k∑
i=1

1

mi

mi∑
j=1

∫ ∞

−∞
(xh+X[i]j)

sdK(x)

=
1

k

k∑
i=1

s∑
t=0

 1

mi

mi∑
j=1

Xs−t
[i]j

(s
t

)
ht
∫ ∞

−∞
xtdK(x)

=
1

k

k∑
i=1

 1

mi

mi∑
j=1

Xs
[i]j +

s∑
t=1

1

mi

mi∑
j=1

Xs−t
[i]j

(
s

t

)
ht
∫ ∞

−∞
xtdK(x)


a.s.→ 1

k

k∑
i=1

∫ ∞

−∞
xsdF[i](x) =

∫ ∞

−∞
xsdF (x) as min

i=1,...,k
mi → ∞,

because
∫∞
−∞ xsdF (x) < ∞ and

∫∞
−∞ xsdK(x) < ∞.

For each i = 1, . . . , k, let µ[i] be the mean of a random variable with the CDF F[i]. Under

the imperfect ranking model M, the mean of a random variable with the CDF F is expressed as

µ = 1
k

∑k
i=1 µ[i]. We are then interested in statistical inferences such as constructing confidence

intervals for µ based on RSS data.

Proposition 2.2.2. Let {X∗
[i]j : i = 1, . . . , k, j = 1, . . . ,mi} be a smoothed bootstrap sample

using the SBRSSR method. Define

Tn =
√
n(X̄RSS − µ) and T ∗

n =
√
n(X̄∗

RSS − X̄RSS),

where X̄RSS =
∑k

i=1

∑mi
j=1X[i]j/(kmi) and X̄∗

RSS =
∑k

i=1

∑mi
j=1X

∗
[i]j/(kmi). If F,K ∈ F2, then,

ρ2(Hn,F̃RSS
,Hn,F )

a.s.→ 0 as min
i=1,...,k

mi → ∞,

where Hn,F is the sampling distribution of Tn, and Hn,F̃RSS
is the sampling distribution of T ∗

n .

Proof. From Proposition 2.2.1, we can show that ρ2(F̃[i], F[i])
a.s.→ 0 for each i = 1, . . . , k. Using

the properties of ρ2(·, ·) provided by Bickel and Freedman (1981, Section 8), we have

ρ2

[√
mi

(
X̄∗

[i] − X̄[i]

)
,
√
mi

(
X̄[i] − µ[i]

)]
=

1
√
mi

ρ2

 mi∑
j=1

(
X∗

[i]j − X̄[i]

)
,

mi∑
j=1

(
X[i]j − µ[i]

)
9



≤

√√√√ 1

mi

mi∑
j=1

ρ2

[
X∗

[i]1 − X̄[i], X[i]1 − µ[i]

]2
=

√
ρ2

(
X∗

[i]1, X[i]1

)2
−
∣∣∣E∗[X∗

[i]1]− E[X[i]1]
∣∣∣2

=

√
ρ2

(
F̃[i], F[i]

)2
−
∣∣X̄[i] − µ[i]

∣∣2
based on E∗[X∗

[i]1] =
∫∞
−∞ xdF̃[i](x) = X̄[i]. Finally, we obtain

ρ2

(
Hn,F̃RSS

,Hn,F

)
= ρ2

[
1

k

k∑
i=1

√
n

mi
·
√
mi(X̄[i] − µ[i]),

1

k

k∑
i=1

√
n

mi
·
√
mi(X̄

∗
[i] − X̄[i])

]

≤ 1

k

√√√√ k∑
i=1

ρ2

[√
n

mi
·
√
mi(X̄[i] − µ[i]),

√
n

mi
·
√
mi(X̄∗

[i] − X̄[i])

]2

=
1

k

√√√√ k∑
i=1

n

mi
ρ2

[√
mi(X̄[i] − µ[i]),

√
mi(X̄∗

[i] − X̄[i])
]2

a.s.
= o(1)

because |X̄[i] − µ[i]|
a.s.
= o(1) (i = 1, . . . , k) from Khinchine’s SLLN.

Proposition 2.2.2 can be extended to include statistics that are regular functions of the

sample mean based on RSS data. In fact, by defining g as a real differentiable function within

a neighborhood of µ, such that g′ is continuous in µ and g′(µ) ̸= 0, we obtain

sup
t∈R

∣∣∣P(√n
{
g(X̄∗

RSS)− g(X̄RSS)
}
≤ t|F̃RSS

)
− P

(√
n
{
g(X̄RSS)− g(µ)

}
≤ t
) ∣∣∣ a.s.= o(1).

2.2.3 SymBRSSR: symmetric bootstrap RSS by row

Let Fµ
S be a set of all symmetric continuous distributions with a center of symmetry µ. Herein,

we add the following assumption with respect to the symmetry of the underlying distribution.

(A) Let µ be a real number. Assume that F[i](x) = 1 − F[k−i+1](2µ − x) (x ∈ R) for each

i = 1, . . . , k.

Then, let MS be an imperfect ranking model that satisfies both the equality (2.1.1) and as-

sumption (A). For example, assumption (A) is satisfied if F ∈ Fµ
S and pij = pk−i+1,r−j+1 (i =

1, . . . , k; j = 1, . . . , r) under Frey’s imperfect ranking model.

Even if F ∈ Fµ
S , the RSS-based EDF F̂RSS is generally not a symmetric distribution. Thus,

it is inappropriate to obtain the bootstrap sample using the BRSSR or SBRSSR methods for

applications such as testing symmetry. Here, we consider the symmetric distribution closest

to the RSS-based EDF F̂RSS in the sense of the integrated squared error (L2-distance d2(·, ·)).
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From Theorem 3.1 of Drikvandi et al. (2011), the closest symmetric distribution to F̂RSS(x) is

obtained by

F̂ Sym1(x;µ) =
1

k

k∑
i=1

F̂
Sym1

[i] (x;µ), where F̂
Sym1

[i] (x;µ) =
1

2

{
F̂[i](x) + 1− F̂[k−i+1](2µ− x)

}
for each i = 1, . . . , k. That is,

d2(F̂RSS, F̂
Sym1(·;µ)) =

(∫ ∞

−∞

{
F̂RSS(x)− F̂ Sym1(x;µ)

}2
dx

)1/2

= inf
G∈Fµ

S

{
d2(F̂RSS, G)

}
.

Furthermore, if µ ∈ R is unknown, we need to estimate µ using a suitable estimator µ̂, such

as the sample mean X̄RSS. The following proposition shows that the Hodges–Lehmann-type

estimator µ̂HL is optimal in terms of the L2-distance.

Proposition 2.2.3. Let {X[i]j : i = 1, . . . , k, j = 1, . . . ,mi} be a ranked set sample from a

symmetric distribution F ∈ Fµ
S with a center of symmetry µ ∈ R. Then,

F̂ Sym1(x; µ̂HL) =
1

k

k∑
i=1

F̂
Sym1

[i] (x; µ̂HL)

is the closest symmetric distribution in Fµ
S to F̂RSS(x), where the closeness is measured with

respect to the L2-distance; that is,

d2(F̂RSS, F̂
Sym1(·; µ̂HL)) = inf

µ∈R
inf

G∈Fµ
S

{
d2

(
F̂RSS, G(·;µ)

)}
,

and

µ̂HL =

{
Y(t) if

∑t−1
i=1 w(i) <

∑n2

i=tw(i) and
∑t

i=1w(i) >
∑n2

i=t+1w(i),

(Y(t) + Y(t+1))/2 if
∑t

i=1w(i) =
∑n2

i=t+1w(i),
(2.2.2)

where Y(t) is the t-th order statistic of (X[i1]j1 +X[i2]j2)/2, (i1, i2 = 1, . . . , k; j1 = 1, . . . ,mi1;j2 =

1, . . . ,mi2), and w(t) is the weight corresponding to Y(t); that is, if Y(t) = (X[i1]j1 + X[i2]j2)/2,

then w(t) = 1/(mi1mi2).

Proof. From Theorem 3.1 of Drikvandi et al. (2011), we obtain

inf
G∈Fµ

S

d2

(
F̂RSS(x), G(x;µ)

)2
= d2

(
F̂RSS(x), F̂

Sym1(x;µ)
)2

=
1

4

∫ ∞

−∞

{
F̂RSS(x) + F̂RSS(2µ− x)− 1

}2
dx

= − 1

4k2

k∑
i1=1

k∑
i2=1

1

mi1mi2

mi1∑
j1=1

mi2∑
j2=1

|X[i1]j1 −X[i2]j2 |

+
1

4k2

k∑
i1=1

k∑
i2=1

1

mi1mi2

mi1∑
j1=1

mi2∑
j2=1

|X[i1]j1 +X[i2]j2 − 2µ|

11



for every µ ∈ R. Define

ρF̂RSS
(µ) :=

k∑
i1=1

k∑
i2=1

mi1∑
j1=1

mi2∑
j2=1

1

mi1mi2

·
∣∣∣∣X[i1]j1 +X[i2]j2

2
− µ

∣∣∣∣ = n2∑
i=1

w(i)|Y(i) − µ|,

where Y(t) is the t-th order statistic of (X[i1]j1 +X[i2]j2)/2, (i1, i2 = 1, . . . , k; j1 = 1, . . . ,mi1 ;j2 =

1, . . . ,mi2), and w(t) is the weight corresponding to Y(t). Note that the function ρF̂RSS
(µ) is

convex with respect to µ. Therefore, there exists at least one µ for minimizing ρF̂RSS
(µ). From

Lemma 1 of Huber (1964), the set of µ that minimizes ρF̂RSS
(µ) is convex and compact. In this

paper, we use the midpoint of this set as the estimator of the center of symmetry. Except for

points Y(1), . . . , Y(n2), the derivative of ρF̂RSS
(µ) is expressed as

ρ′
F̂RSS

(µ) =


−
∑n2

i=1w(i) if µ < Y(1),∑t−1
i=1 w(i) −

∑n2

i=tw(i) if Y(t−1) < µ < Y(t); t = 2, . . . , n2,
n2∑
i=1

w(i) if Y(n2) < µ.

Therefore, we obtain

µ̂HL =

{
Y(t) if

∑t−1
i=1 w(i) <

∑n2

i=tw(i) and
∑t

i=1w(i) >
∑n2

i=t+1w(i),

(Y(t) + Y(t+1))/2 if
∑t

i=1w(i) =
∑n2

i=t+1w(i),

as the point minimizing ρF̂RSS
(µ).

Under appropriate assumptions, the RSS-based Hodges–Lehmann estimator µ̂HL is a strongly

consistent estimator of µ from the asymptotic property of M -estimators (see Huber (1964) and

Serfling (1980) for further details).

Equal-weighted symmetric BRSSR method

If F ∈ Fµ
S with an unknown center of symmetry µ ∈ R, we generate bootstrap samples from

F̂ Sym1(x; µ̂), where µ̂ is a strongly consistent estimator for µ (e.g., X̄RSS or µ̂HL). The algorithm

used for the symmetric BRSSR method is as follows:

Step 1. Generate mi elements {X∗
[i]1, . . . , X

∗
[i]mi

} randomly from F̂
Sym1

[i] (x; µ̂).

Step 2. Conduct Step 1 for r = 1, 2, . . . , k to obtain a symmetric bootstrap ranked set sample

{X∗
[i]j : i = 1, . . . , k, j = 1, . . . ,mi}.

We show that the sample mean of the symmetric BRSSR is consistent in terms of the Mallows

distance.

Proposition 2.2.4. Suppose that F ∈ Fs ∩Fµ
S , and that µ̂ is a strongly consistent estimator of

µ. Then, ρs(F̂
Sym1(·; µ̂), F ) → 0 along almost all sample sequences.

12



Proof. Based on the Glivenko–Cantelli theorem, for each i = 1, . . . , k, we obtain

sup
x∈R

|F̂ Sym1

[i] (x; µ̂)− F[i](x)|

≤ 1

2
sup
x∈R

|F̂[i](x)− F[i](x)|+
1

2
sup
x∈R

|F̂[k−i+1](2µ̂− x)− F[k−i+1](2µ− x)|

= o(1) +
1

2
sup
t∈R

|F̂[k−i+1](t)− F[k−i+1](t− 2(µ̂− µ))|

≤ o(1) +
1

2
sup
t∈R

|F̂[k−i+1](t)− F[k−i+1](t)|+
1

2
sup
t∈R

|F[k−i+1](t)− F[k−i+1](t− 2(µ̂− µ))|

a.s.→ 0 as min
i=1,...,k

mi → ∞

because F[i](x) = 1− F[k−i+1](2µ− x), i = 1, 2, . . . , k, under the imperfect ranking model MS .

It follows that supx∈R |F̂ Sym1(x)− F (x)| a.s.→ 0; that is, if Un ∼ F̂ Sym1 and U ∼ F , then Un ⇝ U

as minimi → ∞. Finally, based on Khinchine’s SLLN, we also have∫ ∞

−∞
xsdF̂ Sym1(x; µ̂)

=
1

k

k∑
i=1

 1

mi

mi∑
j=1

Xs
[i]j + (2µ̂−X[k−i+1]j)

s

2


=

1

k

k∑
i=1

{
1

2mi

mi∑
j=1

Xs
[i]j +

1

2mk−i+1

mk−i+1∑
j=1

s∑
t=0

(
s

t

)
2t(µ̂− µ)t(2µ−X[k−i+1]j)

s−t

}

a.s.→ 1

k

k∑
i=1

{
1

2

∫ ∞

−∞
xsdF[i](x) +

1

2

∫ ∞

−∞
(2µ− x)sdF[k−i+1](x)

}
=

∫ ∞

−∞
xsdF (x)

because 2µ−X[i]1 and X[k−i+1]1 follow the same distribution under the model MS .

Proposition 2.2.5. Let {X∗
[i]j : i = 1, . . . , k, j = 1, . . . ,mi} be a bootstrap sample using the

equal-weighted symmetric BRSSR method with µ̂ = X̄RSS =
∑k

i=1

∑mi
j=1X[i]j/(kmi). Define

Tn =
√
n(X̄RSS − µ) and T ∗

n =
√
n(X̄∗

RSS − X̄RSS),

where X̄∗
RSS =

∑k
i=1

∑mi
j=1X

∗
[i]j/(kmi). If F ∈ F2 ∩ Fµ

S , then

ρ2(Hn,F̂Sym1 ,Hn,F )
a.s.→ 0 as min

i=1,...,k
mi → ∞,

where Hn,F is the sampling distribution of Tn, and Hn,F̂Sym1 is the sampling distribution of T ∗
n .

Proof. From Proposition 2.2.4, we can show that ρ2(F̂
Sym1

[i] (·; X̄RSS), F[i])
a.s.→ 0 for each i =

1, . . . , k. Note that

X̄RSS =
1

k

k∑
i=1

X̄
Sym1

[i] , where X̄
Sym1

[i] =
X̄[i] + 2X̄RSS − X̄[k−i+1]

2
.

13



By using the properties of ρ2(·, ·) provided in Section 8 of Bickel and Freedman (1981), we obtain

ρ2

[√
mi

(
X∗

[i] − X̄
Sym1

[i]

)
,
√
mi

(
X̄[i] − µ[i]

)]
=

1
√
mi

ρ2

 mi∑
j=1

(
X∗

[i]j − X̄
Sym1

[i]

)
,

mi∑
j=1

(
X[i]j − µ[i]

)
≤

√√√√ 1

mi

mi∑
j=1

ρ2

[
X∗

[i]1 − X̄
Sym1

[i] , X[i]1 − µ[i]

]2
=

√
ρ2

(
X∗

[i]1, X[i]1

)2
−
∣∣∣E∗[X∗

[i]1]− E[X[i]1]
∣∣∣2

=

√
ρ2

(
F̂

Sym1

[i] , F[i]

)2
−
∣∣∣X̄Sym1

[i] − µ[i]

∣∣∣2
because E∗[X∗

[i]1] =
∫∞
−∞ xdF̂

Sym1

[i] (x) = X̄
Sym1

[i] . Finally, we obtain

ρ2

(
Hn,F̃RSS

,Hn,F

)
= ρ2

[
1

k

k∑
i=1

√
n

mi
·
√
mi(X̄

∗
[i] − X̄

Sym1

[i] ),
1

k

k∑
i=1

√
n

mi
·
√
mi(X̄[i] − µ[i])

]

≤ 1

k

√√√√ k∑
i=1

ρ2

[√
n

mi
·
√
mi(X̄∗

[i] − X̄
Sym1

[i] ),

√
n

mi
·
√
mi(X̄[i] − µ[i])

]2

=
1

k

√√√√ k∑
i=1

n

mi
ρ2

[√
mi(X̄∗

[i] − X̄
Sym1

[i] ),
√
mi(X̄[i] − µ[i])

]2
a.s.
= o(1)

from Khinchine’s SLLN.

Unequal-weighted symmetric BRSSR method

Here, we construct the new symmetric bootstrap method using the unequal-weighted symmetric

kernel estimator introduced by Lim et al. (2014). We define the unequal-weighted symmetric

EDF as follows:

F̂ Sym2(x;µ) =
1

k

k∑
i=1

F̂
Sym2

[i] (x;µ),

where

F̂
Sym2

[i] (x;µ) =
mi

mi +mk−i+1
F̂[i](x) +

mk−i+1

mi +mk−i+1

(
1− F̂[k−i+1](2µ− x)

)
.

This estimator can be computed by estimating F[i](x) using both {X[i]1, . . . , X[i]mi
} and {2µ−

X[k−i+1]1, . . . , 2µ−X[k−i+1]mk−i+1
}. Under the model MS , we have

Var(F̂ Sym2(x;µ)) =
1

k2

k∑
i=1

mi

(mi +mk−i+1)2
Var(I(2µ− x ≤ X[i]1 ≤ x))
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=
1

k2

k∑
i=1

1

2(mi +mk−i+1)
Var(I(2µ− x ≤ X[i]1 ≤ x))

≤ 1

k2

k∑
i=1

1

4mi
Var(I(2µ− x ≤ X[i]1 ≤ x))

= Var(F̂ Sym1(x;µ)),

because Var(I(2µ − x ≤ X[i]1 ≤ x)) = Var(I(2µ − x ≤ X[k−i+1]1 ≤ x)). This means that

F̂ Sym2(x;µ) may be superior in the sense that the variance of F̂ Sym2(x;µ) is smaller than that

of F̂ Sym1(x;µ). Thus, it is suggested that the bootstrap method based on F̂ Sym2(x;µ) achieves

a better performance than the equal-weighted symmetric BRSSR method. The algorithm for

the unequal-weighted symmetric BRSSR method is as follows:

Step 1. Generate mi elements {X∗
[i]1, . . . , X

∗
[i]mi

} randomly from F̂
Sym2

[i] (x; µ̂).

Step 2. Conduct Step 1 for i = 1, 2, . . . , k to obtain a symmetric bootstrap ranked set sample

{X∗
[1]1, X

∗
[1]2, . . . , X

∗
[1]m1

, . . . , X∗
[k]1, X

∗
[k]2, . . . , X

∗
[k]mk

}.

Because X[i]1 and 2µ −X[k−i+1]1 follow the same distribution under the imperfect ranking

model MS and F ∈ Fµ
S , the following asymptotic properties of the unequal-weighted symmetric

BRSSR sample mean are immediately proved from Propositions 2.2.4 and 2.2.5.

Proposition 2.2.6. Suppose that F ∈ Fs ∩Fµ
S , and that µ̂ is a strongly consistent estimator of

µ. Then, ρs(F̂
Sym2(·; µ̂), F ) → 0 along almost all sample sequences.

Proof. Note that F[i](x) = 1−F[k−i+1] (i = 1, 2, . . . , k) under the imperfect ranking model MS .

Based on the Glivenko–Cantelli theorem, we obtain

sup
x∈R

|F̂ Sym2

[i] (x; µ̂)− F[i](x)| ≤
mi

mi +mk−i+1
sup
x∈R

|F̂[i](x)− F[i](x)|

+
mk−i+1

mi +mk−i+1
sup
x∈R

|F̂[k−i+1](2µ̂− x)− F[k−i+1](2µ− x)|

= o(1) +
mk−i+1

mi +mk−i+1
sup
t∈R

|F̂[k−i+1](t)− F[k−i+1](t− 2(µ̂− µ))|

≤ o(1) +
mk−i+1

mi +mk−i+1
sup
t∈R

|F̂[k−i+1](t)− F[k−i+1](t)|

+
mk−i+1

mi +mk−i+1
sup
t∈R

|F[k−i+1](t)− F[k−i+1](t− 2(µ̂− µ))|

a.s.→ 0 as min
i=1,...,k

mi → ∞

for each i = 1, . . . , k. It follows that supx∈R |F̂ Sym2(x)− F (x)| a.s.→ 0; that is, if Un ∼ F̂ Sym2 and

U ∼ F , then Un ⇝ U as mini=1,...,k mi → ∞. Finally, based on Khinchine’s SLLN, we also have∫ ∞

−∞
xsdF̂ Sym2(x; µ̂)
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=
1

k

k∑
i=1

{
1

mi +mk−i+1

mi∑
j=1

Xs
[i]j +

1

mi +mk−i+1

mk−i+1∑
j=1

(2µ̂−X[k−i+1]j)
s

}

=
1

k

k∑
i=1

{
1

mi +mk−i+1

mi∑
j=1

Xs
[i]j +

1

mi +mk−i+1

mi∑
j=1

s∑
t=0

(
s

t

)
2t(µ̂− µ)t(2µ−X[k−i+1]j)

s−t

}

a.s.→ 1

k

k∑
i=1

∫ ∞

−∞
xsdF[i](x) =

∫ ∞

−∞
xsdF (x)

because 2µ−X[i]1 and X[k−i+1]1 follow the same distribution under the model MS .

Proposition 2.2.7. Let {X∗
[i]j : i = 1, . . . , k, j = 1, . . . ,mi} be a bootstrap sample using the

unequal-weighted symmetric BRSSR method with µ̂ = X̄RSS =
∑k

i=1

∑mi
j=1X[i]j/(kmi). Define

Tn =
√
n(X̄RSS − µ) and T ∗

n =
√
n(X̄∗

RSS − X̄RSS),

where X̄∗
RSS =

∑k
i=1

∑mi
j=1X

∗
[i]j/(kmi). If F ∈ F2 ∩ Fµ

S , then

ρ2(Hn,F̂Sym2 ,Hn,F )
a.s.→ 0 as min

i=1,...,k
mi → ∞,

where Hn,F is the sampling distribution of Tn, and Hn,F̂Sym2 is the sampling distribution of T ∗
n .

Proof. From Proposition 2.2.4, we can show ρ2(F̂
Sym2

[i] (·; X̄RSS), F[i])
a.s.→ 0 for each i = 1, . . . , k.

Note that

X̄RSS =
1

k

k∑
i=1

X̄
Sym2

[i] , where X̄
Sym2

[i] =
miX̄[i] +mk−i+1(2X̄RSS − X̄[k−i+1])

mi +mk−i+1
.

The rest of the proof is the same as that in Proposition 2.2.5.

If the RSS design with mi = mk−i+1 (i = 1, . . . , k), the unequal-weighted symmetric BRSSR

method is the same as the equal-weighted version.

2.2.4 SymSBRSSR: symmetric smoothed bootstrap RSS by row

In this subsection, we consider the smoothed version of the SymBRSSR methods described in

Section 2.2.3. The asymptotic properties of these methods are omitted because they are proved

in much the same way as in Propositions 2.2.4–2.2.7.

Equal-weighted symmetric SBRSSR method

Even if F ∈ Fµ
S , the RSS-based KCDE F̃RSS is generally not symmetric. Similar to the descrip-

tion in Section 2.2.3, we consider a symmetric distribution that is close to the KCDE F̃RSS in

terms of the L2-distance to obtain smoothed bootstrap samples from a symmetric distribution.

From Theorem 3.1 of Drikvandi et al. (2011), the symmetric CDF closest to F̃RSS is denoted by

F̃ Sym1(x;µ) =
1

k

k∑
i=1

F̃
Sym1

[i] (x;µ), where F̃
Sym1

[i] (x;µ) =
1

2

{
F̃[i](x) + 1− F̃[k−i+1](2µ− x)

}
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for each i = 1, . . . , k. Therefore,

d2

(
F̃RSS, F̃

Sym1(·;µ)
)
= inf

G∈Fµ
S

{
d2

(
F̃RSS, G

)}
.

The algorithm for the symmetric SBRSSR method is as follows:

Step 1. Generate mi elements {X∗
[i]1, . . . , X

∗
[i]mi

} randomly from F̃
Sym1

[i] (x; µ̂).

Step 2. Conduct Step 1 for i = 1, 2, . . . , k to obtain a symmetric smoothed bootstrap ranked

set sample {X∗
[i]j : i = 1, . . . , k, j = 1, . . . ,mi}.

Unequal-weighted symmetric SBRSSR method

Here, we describe the construction of the symmetric smoothed bootstrap method using the

unequal-weighted symmetric kernel estimator introduced by Lim et al. (2014). We define the

unequal-weighted symmetric KCDE as

F̃ Sym2(x;µ) =
1

k

k∑
i=1

F̃
Sym2

[i] (x;µ),

where

F̃
Sym2

[i] (x;µ) =
mi

mi +mk−i+1
F̃[i](x) +

mk−i+1

mi +mk−i+1

(
1− F̃[k−i+1](2µ− x)

)
.

This estimator F̃ Sym ∗ is constructed by estimating F[i](x) using both {X[i]1, . . . , X[i]mi
} and

{2µ−X[k−i+1]1, . . . , 2µ−X[k−i+1]mk−i+1
}.

The algorithm for the unequal-weighted symmetric SBRSSR method is as follows:

Step 1. Generate mi elements {X∗
[i]1, . . . , X

∗
[i]mi

} randomly from F̃
Sym2

[i] (x; µ̂).

Step 2. Conduct Step 1 for i = 1, 2, . . . , k to obtain a symmetric smoothed bootstrap ranked

set sample {X∗
[i]j : i = 1, . . . , k, j = 1, . . . ,mi}.

2.3 Asymptotic MISE and bandwidth selection

Bandwidth selection is an important step in estimating the CDF using the kernel method. Lim

et al. (2014) proposed a plug-in estimator of the bandwidth to minimize the asymptotic MISE

for the RSS-based kernel density estimator. In this section, we derive the optimal bandwidth

that minimizes the asymptotic MISE of the RSS-based KCDE F̃RSS. Our approach to the

bandwidth selection rule is based on the idea by Polansky and Baker (2000). Furthermore,

we derive the optimal bandwidth by asymptotically minimizing the MISE of the symmetrized

kernel estimators.

17



2.3.1 Non-symmetrized case

The typical measure of accuracy used for estimates of F is the weighted MISE, which is defined

in

MISE[F̃ ] = E
[∫ ∞

−∞

{
F̃ (x)− F (x)

}2
w(x)dx

]
, (2.3.3)

where w(·) is a weight function, and F̃ is an estimator of F . The measure MISE(F̃ ) gives a global

assessment of the closeness of F̃ to F for a given random sample. The MISE is often used as an

average measure of the performance of F̃ . Several authors have derived asymptotic expressions

for the MISE (2.3.3). In particular, Swanepoel (1988) derived an expression for w(x) = f(x),

and Jones (1990) derived an expression for w(x) = 1. Here, we specifically examine the case in

which w(x) = 1. To evaluate the MISE of the RSS-based KCDE, we assume that the density f

is continuous and differentiable with a finite mean and has a square-integrable derivative.

For each i = 1, . . . , k, the variance and bias of F̃[i](x) are

Var[F̃[i](x)] =
1

mi
F[i](x){1− F[i](x)} −

2h

mi
A1(K)F ′

[i](x) + o(hm−1
i )

and

bias[F̃[i](x)] =
1

2
h2F ′′

[i](x)A2(K) + o(h2),

where

A1(K) =

∫
xK(x)dK(x) and A2(K) =

∫
x2dK(x).

Therefore, the variance and bias of F̃RSS(x) is calculated by

Var[F̃RSS(x)] =
1

k2

k∑
i=1

Var[F̃[i](x)]

=
1

k2

k∑
i=1

{
1

mi
F[i](x){1− F[i](x)} −

2h

mi
A1(K)F ′

[i](x)

}
+ o

(
h

mini(mi)

)
and

bias[F̃RSS(x)]
2 =

{
1

k

k∑
i=1

bias[F̃[i](x)]

}2

=
1

4
h4F ′′(x)2A2(K)2 + o(h4).

Thus, the MISE of F̃RSS is expressed as

MISE(F̃RSS) =
1

4
h4A2(K)2D1(F ) +

1

k2

k∑
i=1

1

mi
D2(F[i])−

2h

k2
A1(K)

k∑
i=1

1

mi

+ o

(
max

{
h4,

h2

mini(mi)

})
,
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where

D1(F ) =

∫
F ′′(x)2dx and D2(F[i]) =

∫
F[i](x){1− F[i](x)}dx.

Thus, the asymptotically optimal bandwidth h that minimizes the asymptotic MISE is

hRSS =

(
n

k2

k∑
i=1

1

mi

)1/3(
2A1(K)

A2(K)2D1(F )

)1/3

n−1/3.

The optimal bandwidth hRSS depends on the unknown parameter

D1(F ) =

∫
F ′′(x)2dx =

∫
f (2)(x)f(x)dx.

We then unbiasedly estimate D1(F ) as

D̂1(F ) =
1

k2

k∑
i1=1

k∑
i2=1

1

mi1mi2

mi1∑
j1=1

mi2∑
j2=1

1

g3
L(2)

(
X[i1]j1 −X[i2]j2

g

)
,

where L is the kernel density function satisfying
∫
L(x)dx = 1, and g is the bandwidth estimated

using the plug-in method developed by Sheather and Jones (1991). Similarly to Lim et al. (2014),

the bandwidth hRSS can be evaluated by treating the RSS data as SRS data.

2.3.2 Symmetrized case

In this subsection, let µ be the center of symmetry, and assume that the imperfect ranking model

is MS defined in Section 2.2.3. First, we derive the optimal bandwidth for the asymptotically

minimizing MISE of the symmetrized kernel density estimators f̃
Sym1
RSS (x;µ) = dF̃

Sym1
RSS (x;µ)/dx

and f̃
Sym2
RSS (x;µ) = dF̃

Sym2
RSS (x;µ)/dx. Using a calculation similar to that presented in Kraft et al.

(1985), we obtain

MISE[f̃
Sym1
RSS (·;µ)] =

∫
bias[f̃

Sym1
RSS (x;µ)]2dx+

∫
Var[f̃

Sym1
RSS (x;µ)]dx

=
h4

4
A2(K)2

∫
{f (2)(t)}2dt+ 1

nh

(
n

2k2

k∑
i=1

1

mi

)∫
K ′(t)2dt

+ o

(
max

{
h4,

h

mini(mi)

})
and

MISE[f̃
Sym2
RSS (·;µ)] =

∫
bias[f̃

Sym2
RSS (x;µ)]2dx+

∫
Var[f̃

Sym2
RSS (x;µ)]dx

=
h4

4
A2(K)2

∫
{f (2)(t)}2dt+ 1

nh

{
n

k2

k∑
i=1

1

mi +mk−i+1

}∫
K ′(t)2dt

+ o

(
max

{
h4,

h

mini(mi)

})
.
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Therefore, the optimal bandwidth hopt1 asymptotically minimizing MISE(f̃
Sym1
RSS (·;µ)) is

hopt1 =

(
n

2k2

k∑
i=1

1

mi

)1/5{ ∫
K ′(t)2dt

A2(K)2
∫
{f (2)(t)}2dt

}1/5

n−1/5,

and the optimal bandwidth hopt2 asymptotically minimizing MISE(f̃
Sym2
RSS (·;µ)) is

hopt2 =

{
n

k2

k∑
i=1

1

mi +mk−i+1

}1/5{ ∫
K ′(t)2dt

A2(K)2
∫
{f (2)(t)}2dt

}1/5

n−1/5.

Herein, let the asymptotic MISE (AMISE) of the kernel density estimators f̃
Sym1
RSS and f̃

Sym2
RSS be

AMISEh(f̃
Sym1
RSS (·;µ)) = h4

4
A2(K)2

∫
{f (2)(t)}2dt+ 1

nh

(
n

2k2

k∑
i=1

1

mi

)∫
K ′(t)2dt

and

AMISEh(f̃
Sym2
RSS (·;µ)) = h4

4
A2(K)2

∫
{f (2)(t)}2dt+ 1

nh

{
n

k2

k∑
i=1

1

mi +mk−i+1

}∫
K ′(t)2dt,

respectively. By substituting the optimum bandwidths hopt1 and hopt2 into the corresponding

AMISE, we have

AMISEhopt1
(f̃

Sym1
RSS (·;µ)) = h5opt1

{
5

4
A2(K)2

∫
{f (2)(t)}2dt

}
and

AMISEhopt2
(f̃

Sym2
RSS (·;µ)) = h5opt2

{
5

4
A2(K)2

∫
{f (2)(t)}2dt

}
.

Then, the ratio of these AMISEs is

AMISEhopt2
(f̃

Sym2
RSS (·;µ))

AMISEhopt1
(f̃

Sym1
RSS (·;µ))

=

(
hopt2
hopt1

)5

=

∑k
i=1 1/(mi +mk−i+1)∑k

i=1 1/(2mi)
≤ 1,

where the equality holds if and only if mi = mk−i+1 for each i = 1, . . . , k.

Next, we derive the optimal bandwidth that asymptotically minimizes the MISE of the

symmetrized kernel distribution estimators F̃
Sym1
RSS (x;µ) and F̃

Sym2
RSS (x;µ). Through a simple

calculation, we have

MISE[F̃
Sym1
RSS (·;µ)]

=

∫
bias[F̃

Sym1
RSS (x;µ)]2dx+

∫
Var[F̃

Sym1
RSS (x;µ)]dx

=
h4

4
A2(K)2D1(F ) +

1

2k2

k∑
i=1

∫
Var[F̃[i](x)]dx− 1

2k2

k∑
i=1

∫
Cov[F̃[i](x), F̃[i](2µ− x)]dx
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=
h4

4
A2(K)2D1(F ) +

1

2k2

k∑
i=1

1

mi
D2(F[i])−A1(K)

h

k2

k∑
i=1

1

mi

− 1

2k2

k∑
i=1

1

mi

{∫ ∞

0
F[i]

(
µ− x

2

)
dx−

∫ ∞

−∞
F[i](x)F[i](2µ− x)dx+ o(1)

}
+ o

(
max

{
h4,

h

mini(mi)

})
and

MISE[F̃
Sym2
RSS (·;µ)]

=

∫
bias[F̃

Sym2
RSS (x;µ)]2dx+

∫
Var[F̃

Sym2
RSS (x;µ)]dx

=
h4

4
A2(K)2D1(F ) +

2

k2

k∑
i=1

(
mi

mi +mk−i+1

)2 ∫
Var[F̃[i](x)]dx

− 2

k2

k∑
i=1

(
mi

mi +mk−i+1

)2 ∫
Cov[F̃[i](x), F̃[i](2µ− x)]dx

=
h4

4
A2(K)2D1(F ) +

2

k2

k∑
i=1

miD2(F[i])

(mi +mk−i+1)2
−A1(K)

h

k2

k∑
i=1

4mi

(mi +mk−i+1)2

− 2

k2

k∑
i=1

mi

(mi +mk−i+1)2

{∫ ∞

0
F[i]

(
µ− x

2

)
dx−

∫ ∞

−∞
F[i](x)F[i](2µ− x)dx+ o(1)

}
+ o

(
max

{
h4,

h

mini(mi)

})
.

Therefore, the optimal bandwidth hopt1 that asymptotically minimizes MISE[F̃
Sym1
RSS (·;µ)] is

hopt1 =

(
n

2k2

k∑
i=1

1

mi

)1/3(
2A1(K)

A2(K)2D1(F )

)1/3

n−1/3,

and the optimal bandwidth hopt2 that asymptotically minimizes MISE[F̃
Sym2
RSS (·;µ)] is

hopt2 =

(
n

k2

k∑
i=1

1

mi +mk−i+1

)1/3(
2A1(K)

A2(K)2D1(F )

)1/3

n−1/3.

Similarly to Lim et al. (2014), by regarding RSS data as SRS data, the parameters that

depend on the true distribution F , including the asymptotically optimal bandwidth D1(F ), are

estimated using a plug-in method based on Sheather and Jones (1991).

2.4 Simulation studies

Let Fn be an estimator of the CDF F , and construct a bootstrap empirical distribution F ∗
n using

any one of the several available bootstrap methods. Given a statistic of interest θ̂n = θ(Fn),
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the corresponding bootstrap replicate is defined by θ̂∗n = θ(F ∗
n). To approximate the sampling

distribution Hn,F (t) = PF (θ̂n ≤ t), in principle, we use the bootstrap estimate Hn,Fn(t) =

PFn(θ̂
∗
n ≤ t). However, for practicality, we employ a Monte Carlo simulation to estimate Hn,Fn(t)

by taking B independent bootstrap samples from Fn. Thus, we have F ∗
n,1, . . . , F

∗
n,B and the

corresponding bootstrap replicates θ̂∗n,1, . . . , θ̂
∗
n,B. The Monte Carlo approximation of Hn,Fn(t)

is defined by Ĥn,Fn(t) = (1/B)
∑B

b=1 I(θ̂
∗
n,b ≤ t).

In this section, we assume the imperfect ranking model introduced by Bohn and Wolfe

(1994). For the set sizes k = 2, 3, 4, we consider the following misplacement probability matrix

Pk = [pij ]k×k:

P2 =

(
0.9 0.1
0.1 0.9

)
, P3 =

 0.9 0.1 0
0.1 0.8 0.1
0 0.1 0.9

 , P4 =


0.9 0.1 0 0
0.1 0.8 0.1 0
0 0.1 0.8 0.1
0 0 0.1 0.9

 .

2.4.1 Confidence intervals for a population mean

In this subsection, we use a Monte Carlo simulation based on 10, 000 repetitions to study an

RSS-based sample mean. We compare the performance of the BRSSR, SBRSSR, SymBRSSR,

and SymSBRSSR methods with the estimated coverage frequency of a 95% confidence interval

for the population mean.

In the estimation, we use the Gaussian kernel distribution K = Φ, where Φ is the standard

normal distribution function. The bandwidths for the SRS data using the procedure devel-

oped by Sheather and Jones (1991) and Polansky and Baker (2000) are represented as hSRS,SJ

and hSRS,PB, respectively. For the non-symmetrized RSS-based kernel estimators, we use the

bandwidth

hSJ =

(
n

k2

k∑
i=1

1

mi

)1/5

hSRS,SJ and hPB =

(
n

k2

k∑
i=1

1

mi

)1/3

hSRS,PB.

For the symmetrized RSS-based kernel estimators, we use the bandwidths

hSymSJ =

(
n

k2

k∑
i=1

1

mi +mk−i+1

)1/5

hSRS,SJ

and

hSymPB =

(
n

k2

k∑
i=1

1

mi +mk−i+1

)1/3

hSRS,PB.

We consider the following different bootstrap methods in this simulation study:

• BRSSR: bootstrap RSS by row (Chen et al., 2004),

• SymBRSSR: unequal-weighted symmetric BRSSR,
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• SB(h): SBRSSR with bandwidth h,

• SymSB(h): unequal-weighted symmetric SBRSSR with bandwidth h.

We compute the coverage frequency of the 95% percentile intervals of the sample mean using the

above bootstrap methods based on B = 1, 000 bootstrap samples. We use three distributions as

the true underlying distributions: (i) a standard normal distribution; (ii) a t-distribution with

three degrees of freedom; and (iii) a uniform distribution on [0, 1]. We consider k = 2, 3, 4, and

the misplacement probability matrix uses P2, P3, and P4, respectively.

Table 2.1 shows that the smoothed bootstrap methods are generally conservative. Because

the bandwidths hSJ and hSymSJ tend to be larger than hPB and hSymPB , the confidence interval

becomes too conservative. In addition, it can be seen that the symmetric bootstrap methods

improve the accuracy of the coverage probability.

2.4.2 Application for testing symmetry

In this subsection, we introduce a bootstrap-based test statistic for symmetry under the balanced

and unbalanced RSS settings and investigate the influence of the smoothing for the bootstrap

test.

We devise a nonparametric test for

H0 : F ∈ Fµ
S against H1 : F ̸∈ Fµ

S ,

where µ is an unknown center of symmetry. From Proposition 2.2.3, we propose an Öztürk

(2001) test statistic for symmetry

T (µ̂HL) = n

−1 +

∑k
i1=1

∑k
i2=1

1
mi1

mi2

∑mi1
j1=1

∑mi2
j2=1 |X[i1]j1 +X[i2]j2 − 2µ̂HL|∑k

i1=1

∑k
i2=1

1
mi1

mi2

∑mi1
j1=1

∑mi2
j2=1 |X[i1]j1 −X[i2]j2 |


under the unbalanced RSS settings. To calculate the p-value of the test, we need to estimate the

distribution of T under H0. Using the same method as Öztürk (2001), we compare the Type I

error rates of the tests for symmetry based on the SymBRSSR method and the unequal-weighted

SymSBRSSR method. To estimate the Type I error rates, we generate 100 samples for each

sample size, unbalanced RSS design, and distribution combination. For each of the 100 samples,

we generate B = 5, 000 symmetric bootstrap samples from the symmetrized CDF estimator and

calculate the test statistic T . Based on T b (b = 1, 2, . . . , B), we estimate the critical values t∗i ,

i = 1, . . . , 100, for an α-percent test; that is,

1

B

B∑
b=1

I(T b ≥ t∗i ) = α.

The bootstrap estimate of the critical value of an α-percent test is taken as the average of these

t∗i , i = 1, . . . , 100, t̄∗ =
∑100

i=1 t
∗
i /100. To investigate the accuracy of the estimated critical value
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Table 2.1. Coverage probability of the 95% percentile intervals of the sample means for sym-
metric distributions

Dist. {m1, . . . ,mk} BRSSR SymBRSSR SB(hSJ) SymSB(hSym
SJ ) SB(hPB) SymSB(hSym

PB )

N(0, 1) {10, 10} 0.920 0.920 0.957 0.951 0.964 0.952
{20, 20} 0.933 0.937 0.962 0.960 0.961 0.956
{40, 40} 0.945 0.944 0.964 0.962 0.961 0.957

{10, 10, 10} 0.928 0.932 0.967 0.965 0.969 0.962
{10, 20, 10} 0.926 0.931 0.962 0.961 0.963 0.957
{20, 10, 20} 0.927 0.934 0.966 0.968 0.964 0.962
{20, 20, 20} 0.936 0.939 0.968 0.963 0.965 0.958
{20, 40, 20} 0.938 0.938 0.966 0.959 0.961 0.956
{40, 20, 40} 0.941 0.941 0.972 0.967 0.967 0.958
{40, 40, 40} 0.941 0.947 0.965 0.964 0.958 0.958

{10, 10, 10, 10} 0.925 0.929 0.973 0.966 0.970 0.961
{10, 20, 20, 10} 0.925 0.932 0.961 0.966 0.958 0.964
{20, 10, 10, 20} 0.932 0.935 0.976 0.962 0.973 0.956
{20, 20, 20, 20} 0.939 0.940 0.974 0.968 0.968 0.960
{20, 40, 40, 20} 0.941 0.940 0.965 0.959 0.960 0.952
{40, 20, 20, 40} 0.947 0.939 0.978 0.967 0.971 0.959
{40, 40, 40, 40} 0.935 0.945 0.964 0.966 0.956 0.956

t(3) {10, 10} 0.910 0.927 0.945 0.950 0.951 0.951
{20, 20} 0.932 0.942 0.951 0.958 0.951 0.955
{40, 40} 0.933 0.946 0.948 0.955 0.946 0.952

{10, 10, 10} 0.914 0.937 0.949 0.958 0.951 0.957
{10, 20, 10} 0.922 0.935 0.948 0.953 0.948 0.950
{20, 10, 20} 0.930 0.945 0.961 0.964 0.959 0.961
{20, 20, 20} 0.930 0.943 0.952 0.958 0.950 0.955
{20, 40, 20} 0.928 0.948 0.946 0.958 0.942 0.955
{40, 20, 40} 0.935 0.950 0.954 0.963 0.949 0.960
{40, 40, 40} 0.935 0.951 0.948 0.959 0.945 0.955

{10, 10, 10, 10} 0.918 0.942 0.952 0.961 0.951 0.958
{10, 20, 20, 10} 0.924 0.937 0.948 0.954 0.945 0.950
{20, 10, 10, 20} 0.928 0.942 0.963 0.966 0.960 0.960
{20, 20, 20, 20} 0.930 0.943 0.951 0.959 0.948 0.955
{20, 40, 40, 20} 0.929 0.947 0.944 0.956 0.939 0.952
{40, 20, 20, 40} 0.941 0.947 0.964 0.963 0.958 0.957
{40, 40, 40, 40} 0.938 0.945 0.951 0.957 0.947 0.952

U(0, 1) {10, 10} 0.921 0.919 0.955 0.949 0.961 0.951
{20, 20} 0.935 0.934 0.961 0.954 0.961 0.952
{40, 40} 0.949 0.942 0.963 0.955 0.962 0.953

{10, 10, 10} 0.928 0.933 0.966 0.962 0.968 0.960
{10, 20, 10} 0.926 0.931 0.964 0.960 0.965 0.957
{20, 10, 20} 0.930 0.936 0.961 0.959 0.962 0.955
{20, 20, 20} 0.936 0.942 0.964 0.963 0.963 0.959
{20, 40, 20} 0.941 0.940 0.965 0.961 0.963 0.956
{40, 20, 40} 0.939 0.942 0.959 0.957 0.958 0.954
{40, 40, 40} 0.941 0.947 0.960 0.961 0.958 0.956

{10, 10, 10, 10} 0.925 0.931 0.970 0.964 0.971 0.961
{10, 20, 20, 10} 0.934 0.937 0.971 0.968 0.970 0.962
{20, 10, 10, 20} 0.927 0.931 0.964 0.962 0.964 0.957
{20, 20, 20, 20} 0.936 0.941 0.967 0.965 0.964 0.959
{20, 40, 40, 20} 0.940 0.941 0.969 0.965 0.963 0.957
{40, 20, 20, 40} 0.940 0.941 0.961 0.958 0.959 0.954
{40, 40, 40, 40} 0.944 0.949 0.966 0.961 0.961 0.958
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t̄∗, we generate 10, 000 independent samples for each combination of sample size and distribution

and calculate

α(t̄∗) =

∑10000
i=1 I(T i(µ̂HL) > t̄∗)

10000
,

where T i(µ̂HL) is the test statistic evaluated in an independent sample. Let TB be the bootstrap

test based on the unequal-weighted SymBRSSR method, and let TSB be the bootstrap test

based on the unequal-weighted SymSBRSSR method.

Table 2.2. Type I error rate for TB and TSB at the nominal significance level 0.05

N(0, 1) t(3) U(0, 1)
k {m1, . . . ,mk} TB TSB TB TSB TB TSB

2 {10, 10} 0.0235 0.0432 0.0263 0.0458 0.0320 0.0710
2 {10, 20} 0.0257 0.0454 0.0306 0.0480 0.0371 0.0699
2 {20, 20} 0.0299 0.0478 0.0332 0.0504 0.0366 0.0676
2 {20, 40} 0.0342 0.0468 0.0392 0.0515 0.0374 0.0612
2 {40, 40} 0.0357 0.0467 0.0369 0.0487 0.0414 0.0649
3 {10, 10, 10} 0.0299 0.0466 0.0312 0.0478 0.0345 0.0618
3 {10, 20, 10} 0.0328 0.0464 0.0298 0.0421 0.0380 0.0613
3 {20, 10, 20} 0.0309 0.0463 0.0347 0.0499 0.0358 0.0622
3 {20, 20, 20} 0.0349 0.0472 0.0379 0.0501 0.0394 0.0608
3 {20, 40, 20} 0.0369 0.0474 0.0375 0.0489 0.0402 0.0593
3 {40, 20, 40} 0.0383 0.0487 0.0405 0.0511 0.0360 0.0565
3 {40, 40, 40} 0.0395 0.0482 0.0391 0.0477 0.0419 0.0605
4 {10, 10, 10, 10} 0.0363 0.0468 0.0358 0.0490 0.0395 0.0593
4 {10, 20, 20, 10} 0.0426 0.0545 0.0524 0.0685 0.0397 0.0556
4 {20, 10, 10, 20} 0.0399 0.0501 0.0343 0.0434 0.0576 0.0776
4 {20, 20, 20, 20} 0.0389 0.0474 0.0416 0.0522 0.0419 0.0575
4 {20, 40, 40, 20} 0.0461 0.0549 0.0512 0.0602 0.0420 0.0545
4 {40, 20, 20, 40} 0.0439 0.0505 0.0349 0.0420 0.0592 0.0760
4 {40, 40, 40, 40} 0.0426 0.0481 0.0435 0.0507 0.0465 0.0592

Table 2.2 shows that the test TSB has the Type I error rate close to the nominal α =

0.05 level for N(0, 1) and t(3). However, TSB is anti-conservative for U(0, 1). By contrast,

TB is too conservative overall compared with TSB. In addition, we verify that the smoothed

bootstrap method works effectively for unbalanced RSS designs. For asymmetric distributions,

the critical value t̄∗ still estimates the critical value of a test because it is calculated based on

symmetric bootstrap samples through the use of the unequal-weighted SymBRSSR method and

the unequal-weighted SymSBREER method. Therefore, α(t̄∗) yields the empirical power of the

test if the independent RSS data are generated from an asymmetric distribution. The values

of empirical power α(t̄∗) are presented in Table 2.3 for several asymmetric distributions. The

distributions include the skew-normal distribution with shape parameter 5, SN(5); the chi-square

distribution with 3 degrees of freedom, χ2
3; and the beta distribution with shape parameters 4

and 2, Beta(4, 2).
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Table 2.3. Percentage of rejection for TB and TSB at the nominal significance level 0.05

SN(5) χ2
5 Beta(4, 2)

k {m1, . . . ,mk} TB TSB TB TSB TB TSB

2 {10, 10} 0.1187 0.1958 0.1886 0.2807 0.0645 0.1077
2 {10, 20} 0.2110 0.2809 0.2790 0.3694 0.0815 0.1259
2 {20, 20} 0.3301 0.4100 0.4756 0.5646 0.1469 0.1995
2 {20, 40} 0.4836 0.5543 0.6736 0.7321 0.2066 0.2528
2 {40, 40} 0.7048 0.7508 0.8706 0.8977 0.3544 0.4053
3 {10, 10, 10} 0.2460 0.3172 0.3719 0.4489 0.1133 0.1539
3 {10, 20, 10} 0.3174 0.3827 0.4462 0.5132 0.1505 0.1896
3 {20, 10, 20} 0.3955 0.4775 0.5777 0.6563 0.1804 0.2302
3 {20, 20, 20} 0.5503 0.6066 0.7433 0.7867 0.2598 0.3057
3 {20, 40, 20} 0.6574 0.7000 0.8351 0.8613 0.3253 0.3686
3 {40, 20, 40} 0.7749 0.8167 0.9297 0.9475 0.3852 0.4410
3 {40, 40, 40} 0.9017 0.9172 0.9805 0.9857 0.5558 0.5913
4 {10, 10, 10, 10} 0.3853 0.4375 0.5329 0.5909 0.1744 0.2107
4 {10, 20, 20, 10} 0.5402 0.5854 0.6996 0.7404 0.2623 0.3016
4 {20, 10, 10, 20} 0.5461 0.5937 0.7281 0.7716 0.2597 0.2954
4 {20, 20, 20, 20} 0.7400 0.7724 0.8956 0.9145 0.3858 0.4202
4 {20, 40, 40, 20} 0.8756 0.8923 0.9677 0.9733 0.5430 0.5747
4 {40, 20, 20, 40} 0.8915 0.9055 0.9790 0.9838 0.5367 0.5691
4 {40, 40, 40, 40} 0.9752 0.9790 0.9982 0.9986 0.7294 0.7548

From the results of Table 2.3, it can be seen that the unequal-weighted SymSBRSSR method

improves the power compared to the unequal-weighted SymBRSSR method. In the case of the

balanced RSS settings, it is shown that the power tends to increase as the set size k increases. Un-

der the skew-normal and chi-square distributions, the central RSS designs such as (10, 20, 20, 10)

and (20, 40, 40, 20) tend to have less power than the extreme RSS designs such as (20, 10, 10, 20)

and (40, 20, 20, 40). From the results for the uniform distribution shown in Table 2.2, it should

be noted that the Type I error rate of TSB may be anti-conservative for distribution with a

compact support such as the beta distribution.

2.4.3 Data example

In this section, we compare the performance of the proposed bootstrap methods using the real

dataset given by Hollander et al. (2014, pp. 709–713). The dataset includes the weight of

224 sheep on a research farm at Ataturk University in Erzurum, Turkey, which includes two

variables: birth weight and weight at 7 months after birth. The frequency distributions of the

birth weight and the 7th-month weight of the sheep population are all approximately symmetric.

The variable of interest is the weight (Y ) at 7 months after birth. Birth weight (X) is available

in the data frame with no additional cost. The correlation coefficient between X and Y is

Corr(X,Y ) = 0.843. Thus, this auxiliary variable X, which is positively correlated with the
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variable of interest Y , can be used to complete the ranking process in the RSS samples.

From the weight measurements of 224 sheep, the mean of variable Y is computed as µY =

28.111 kg. We regard the bivariate empirical distribution from this dataset as the population

distribution and treat the mean µY as the true parameter of the population model. An RSS

sample is taken from this empirical distribution, a confidence interval for the population mean

µY is constructed using the same procedure as described in Section 2.4.1, and the performances

of various bootstrap methods are compared. Because this model is a finite population, the

bootstrap methods should be modified. However, for simplicity, we consider the case in which

the total sample size is
∑k

r=1mr ≤ 25, and analyze it in the same way as the infinite population.

These results are shown in Table 2.4.

Table 2.4. Coverage probability of the 95% percentile intervals of the sample means for the
weight of 224 sheep data

{m1, . . . ,mk} BRSSR SymBRSSR SB(hSJ) SymSB(hSymSJ ) SB(hPB) SymSB(hSymPB )

{5, 5} 0.891 0.892 0.947 0.938 0.963 0.949
{10, 10} 0.934 0.934 0.968 0.961 0.973 0.962
{5, 5, 5} 0.911 0.923 0.965 0.963 0.973 0.966
{5, 10, 5} 0.911 0.920 0.961 0.958 0.967 0.960
{10, 5, 10} 0.929 0.941 0.973 0.972 0.976 0.972
{5, 5, 5, 5} 0.927 0.936 0.973 0.972 0.980 0.974

These results indicate that the symmetric bootstrap methods improve the coverage prob-

ability of the confidence intervals. The BRSSR and SymBRSSR methods tend to be anti-

conservative, and the smoothed bootstrap methods were verified to be more conservative than

the EDF-based approaches.
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Chapter 3

Interpoint distance-based
two-sample tests for functional data

In this chapter, we propose two-sample tests based on the interpoint distance for functional

data. Chapter 3 is organized as follows. For infinite-dimensional data in a Banach space, the

test statistics are proposed in Section 3.1. In addition, we derive the asymptotic properties

of the test statistic and proposed the p-value approximation based on the jackknife variance

estimators and the Welch–Satterthwaite equation. In Section 3.3, we verify the accuracy of the

proposed p-value approximation of the test and compare the power of the proposed tests and

the functional Anderson–Darling test based on Pomann et al. (2016).

3.1 Test statistics for homogeneity of infinite-dimensional data
on a Banach space

In this section, we first construct the test statistics for ideal curves and discuss the properties of

the test, such as the limiting distribution and asymptotic power. However, there are few cases

in which true smooth curves are available in practice. Therefore, pre-smoothing is necessary

in many cases. Hall and Van Keilegom (2007) and Pomann et al. (2016) suggested that the

individual smoothing of each curve significantly affects the performance of the test. The methods

of pre-smoothing and the implementation of the test statistic calculation used to reduce the

influence are described in Section 3.3.

Let X be a Banach space. If X = Lp[a, b] for some p > 1, which is the Banach space of all

functions x : [a, b] → R satisfying
∫ b
a |x(s)|pds < ∞, then

lim
t→0

t−1(∥x+ th∥p − ∥x∥p) =
∫ b

a
|x(s)|p−2x(s)h(s)ds/∥x∥p−1

p (3.1.1)

for any x ̸= 0 and h ∈ Lp[a, b]. If X = L1[a, b], then

lim
t→0

t−1(∥x+ th∥1 − ∥x∥1) =
∫ b

a
sign(x(s))h(s)ds
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for any x
a.e.
̸= 0 and h ∈ L1[a, b]. Let (Ω,F ,P) be a probability space: Ω is the set where the

random experiment takes place, F is a σ-algebra of subsets of Ω, and P is a probability measure

over F . For simplicity, we assume that this space is complete (i.e., F contains the P-negligible
sets). Let X1 and X2 be random elements in a Banach space X with the probability measures

P1 and P2 on the measurable space (X ,A), where A is the σ-field generated by the open sets

induced by the norm ∥ · ∥. Let X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2 be independent copies

of X1 and X2, respectively. Suppose that L : X 2 → R is a continuous function. Let BL be the

set of all probability measures P on (X ,A) under condition
∫
X
∫
X L(x, y)dP (x)dP (y) < ∞.

We state that function L is a negative definite kernel if for any n ∈ N, arbitrary points

x1, . . . , xn ∈ X , and any complex numbers c1, . . . , cn under condition
∑n

j=1 cj = 0, the following

inequality holds:

n∑
i=1

n∑
j=1

L(xi, xj)cic̄j ≤ 0,

where c̄ denotes the complex conjugate of a complex number c. We state that a negative

definite kernel L is strictly negative definite if the above equality is true for any x1, . . . , xn only

if c1 = · · · = cn = 0. The important property of the negative definite kernel L is shown by the

following lemma.

Lemma 3.1.1 (Klebanov 2005, Theorem 1.8). Let L be a real continuous function on X 2 under

conditions L(x, y) = L(y, x) and L(x, x) = 0 for any x, y ∈ X . The inequality

N(P1, P2) := 2

∫
X

∫
X
L(x, y)dP1(x)dP2(y)

−
∫
X

∫
X
L(x, y)dP1(x)dP1(y)−

∫
X

∫
X
L(x, y)dP2(x)dP2(y) ≥ 0 (3.1.2)

holds ∀ P1, P2 ∈ BL if and only if L is a negative definite kernel.

One of the main notions in the theory of the N-distance N(·, ·) is a strong negative definite-

ness. Let Q be a measure on (X ,A), and h be a function integrable with respect to Q, such that∫
X h(x)dQ(x) = 0. We state that L is a strongly negative definite kernel if L is a negative definite,

and equality
∫
X
∫
X L(x, y)h(x)h(y)dQ(x)dQ(y) = 0 implies that h(x) = 0 Q-almost everywhere

for any measure Q. If X = Lp[a, b], for example, the kernel Lα
p (x, y) = ∥x−y∥αp (0 < α ≤ p < 2)

is a strongly negative definite kernel, but not a strongly negative definite kernel for p = 2. The

following lemma is necessary to show the consistency of the interpoint distance-based tests.

Lemma 3.1.2 (Klebanov 2005, Theorem 1.9). Let L be a real continuous function on X 2 under

conditions L(x, y) = L(y, x) and L(x, x) = 0 for any x, y ∈ X . The inequality (3.1.2)

N(P1, P2) ≥ 0

holds for all measures P1, P2 ∈ BL with equality in the case of P1 = P2 only, if and only if L is

a strongly negative definite kernel.
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Another possible expression of N(P1, P2) can be given in terms of random elements. Let

X11, X12
i.i.d.∼ P1 and X21, X22

i.i.d.∼ P2 be independent random elements. We can now write

N(P1, P2) in the following form:

N(P1, P2) = 2EL(X11, X21)− EL(X11, X12)− EL(X21, X22),

where E(·) is the expectation in the Bochner sense (see Section 2, Chapter 3 in Araujo and

Giné (1980)). We now assume that EL(Xi1, Xi2)
2 < ∞ (i = 1, 2). By applying the ideas of

Baringhaus and Franz (2004) and Biswas and Ghosh (2014) to functional or infinite-dimensional

data, we consider testing the null hypothesis H0 : P1 = P2 versus the alternative hypothesis

H1 : P1 ̸= P2. Using a strongly negative definite kernel L, we suggest the Baringhaus–Franz

type test TBF and the Biswas–Ghosh type test TBG as follows:

TBF = 2µ̂12 − µ̂11 − µ̂22 and TBG = (µ̂12 − µ̂11)
2 + (µ̂12 − µ̂22)

2 ,

where

µ̂11 =
1(
n1

2

) ∑∑
1≤j<k≤n1

L(X1j , X1k), µ̂22 =
1(
n2

2

) ∑∑
1≤j<k≤n2

L(X2j , X2k)

and

µ̂12 =
1

n1n2

n1∑
j=1

n2∑
k=1

L(X1j , X2k).

Here, the quantities µ̂12, µ̂11, and µ̂22 are U -statistics for the expectations µ11 := EL(X11, X12),

µ22 := EL(X21, X22) and µ12 := EL(X11, X21), respectively. In particular, the Baringhaus–

Franz type statistic TBF is called the energy statistic (see Klebanov (2005), Bakshaev (2009),

and Székely and Rizzo (2013) for details). Clearly, the test statistic TBF is not a distribution-free

test. To obtain the critical values, Baringhaus and Franz (2004) proposed using the bootstrap

approach and showed that the bootstrap procedure is consistent against any fixed alternative

P1 ̸= P2 with finite expectations
∫
∥x1∥dP1(x1) and

∫
∥x2∥dP2(x2) for finite-dimensional data.

If X = Lp[a, b] (0 < p < 2), the test statistics TBF
p and TBG

p based on the Lp-norm ∥x∥p =(∫ b
a |x(t)|pdt

)1/p
hold the consistency of the test, although the consistency of the L2-norm-based

statistics TBF
2 and TBG

2 are not guaranteed by Lemma 3.1.2. However, because the actually

obtained functional data are not ideal curves but discretely observed curves, the test for infinite-

dimensional data is reduced to a test for finite-dimensional data using pre-smoothing methods

described by Pomann et al. (2016). Therefore, the test statistics TBF
2 and TBG

2 are justified in

the sense that the hypothesis approximated in a finite dimension is tested. In addition, since

P1 = P2 if and only if µ11 = µ22 = µ12 from Lemma 3.1.2, the hypothesis H0 : P1 = P2 v.s.

H1 : P1 ̸= P2 can be rewritten as follows:

H0 : µ = 0 v.s. H1 : µ ̸= 0,

where µ = (µ12 − µ11, µ12 − µ22)
⊤. In addition, the test statistic TBG can be expressed as

TBG = µ̂⊤µ̂, where µ̂ = (µ̂12 − µ̂11, µ̂12 − µ̂22)
⊤.
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3.2 Asymptotic properties of the Biswas–Ghosh type test

Note that the Biswas–Ghosh type statistic TBG can be expressed as

NTBG =
1

2

{√
N(µ̂11 − µ̂22)

}2
+

1

2

{√
NTBF

}2
. (3.2.3)

In the case of X = Rd (d ≥ 1), Biswas and Ghosh (2014) proved the limiting null distribution of

TBG by using
√
NTBF = op(1) under H0. For the functional data, the limiting null distribution

of TBG is obtained by asymptotically ignoring the second term in (3.2.3). We give the proof

including the results in contiguous alternatives.

Theorem 3.2.1. Let X11, . . . , X1n1

i.i.d.∼ P1 and X21, . . . , X2n2

i.i.d.∼ P2 be two independent ran-

dom functions with EL(X11, X12)
2,EL(X21, X22)

2 < ∞. In addition, assume that n1/N → γ ∈
(0, 1) as N → ∞.

(i) Under H0 : µ = 0, then

NTBG ⇝ 2σ2
0

γ(1− γ)
χ2
1 as N → ∞,

where σ2
0 = Cov(L(X11, X12),L(X11, X13)|H0), and χ2

1 denotes the chi-square random

variable with one degree of freedom.

(ii) Suppose that supN∈N E[L(Xz1, Xz′2)
2+ε|H1N ] < ∞ (z, z′ = 1, 2) for some ε > 0 and the

sequence of alternatives H1N : µ = N−1/2δ (δ = (δ1, δ2)
⊤ ̸= 0). Then

NTBG ⇝ 2σ2
0

γ(1− γ)
χ2
1

(
γ(1− γ)(δ1 − δ2)

2

4σ2
0

)
+

(δ1 + δ2)
2

2
as N → ∞,

where χ2
1(δ) is the non-central chi-square random variable with one degree of freedom and

the noncentrality parameter δ.

Proof. (i) This proof is the same as the proof of Theorem 4.1 by Biswas and Ghosh (2014).

(ii) For every x ∈ R,

lim
N→∞

P (L(X11, X21) ≤ x|H1N ) = P(L(X11, X21) ≤ x|H0)

holds from the continuity of L(·, ·) and the continuous mapping theorem. Furthermore,

note that

Cov(µ̂12, µ̂11) =
2

n1
Cov(L(X11, X21),L(X11, X12)),

Cov(µ̂12, µ̂22) =
2

n2
Cov(L(X11, X21),L(X21, X22)),

Var(µ̂11) =
4(n1 − 2)

n1(n1 − 1)
Cov(L(X11, X12),L(X11, X13)) +

2Var(L(X11, X12))

n1(n1 − 1)
,
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Var(µ̂22) =
4(n2 − 2)

n2(n2 − 1)
Cov(L(X21, X22),L(X21, X23)) +

2Var(L(X21, X22))

n2(n2 − 1)

and

Var(µ̂12) =
n2 − 1

n1n2
Cov(L(X11, X21),L(X11, X22))

+
n1 − 1

n1n2
Cov(L(X11, X21),L(X12, X21)) +

1

n1n2
Var(L(X11, X21)).

From the uniform integrability of L(Xz1, Xz′2)
2 (z, z′ = 1, 2), we have

Var[
√
N(µ̂11 − µ̂12)|H1N ] = N{Var(µ̂11|H1N ) + Var(µ̂12|H1N )− 2Cov(µ̂11, µ̂12|H1N )}

→ 4σ2
0

γ
+

σ2
0

γ
+

σ2
0

1− γ
− 4σ2

0

γ
=

σ2
0

γ(1− γ)
,

Var[
√
N(µ̂22 − µ̂12)|H1N ] = N{Var(µ̂22|H1N ) + Var(µ̂12|H1N )− 2Cov(µ̂22, µ̂12|H1N )}

→ 4σ2
0

1− γ
+

σ2
0

γ
+

σ2
0

1− γ
− 4σ2

0

1− γ
=

σ2
0

γ(1− γ)

as N → ∞. Thus, we obtain

√
N {(µ̂11 − µ̂12)− (µ11 − µ12)}⇝ Y1 ∼ N(0, σ2

0/(γ(1− γ))),
√
N {(µ̂22 − µ̂12)− (µ22 − µ12)}⇝ Y2 ∼ N(0, σ2

0/(γ(1− γ)))

from the asymptotic normality of the U -statistics (Lee, 1990). Because the covariance

between Y1 and Y2 is

Cov(Y1, Y2|H0) = lim
N→∞

Cov(
√
N(µ̂11 − µ̂12),

√
N(µ̂22 − µ̂12)|H1N )

= lim
N→∞

N{Var(µ̂12)− Cov(µ̂12, µ̂11)− Cov(µ̂12, µ̂22)}

=
σ2
0

γ
+

σ2
0

1− γ
− 2σ2

0

γ
− 2σ2

0

1− γ
= − σ2

0

γ(1− γ)
,

the correlation coefficient between Y1 and Y2 is Corr(Y1, Y2) = −1. Thus, the relation

Y1 + Y2 = 0 is given. We then obtain

lim
N→∞

NTBG = lim
N→∞

N(µ̂− µ+ µ)⊤(µ̂− µ+ µ)

d
= (Y1 + δ1)

2 + (Y2 + δ2)
2

d
= 2

(
Y1 +

δ1 − δ2
2

)2

+
(δ1 + δ2)

2

2

d
=

2σ2
0

γ(1− γ)
χ2
1

(
γ(1− γ)(δ1 − δ2)

2

4σ2
0

)
+

(δ1 + δ2)
2

2
,

where “
d
=” denotes that the random elements on either side have the same distribution.
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Using certain consistent estimators γ̂ and σ̂2
0 for γ and σ2

0, the test statistic Nγ̂(1 −
γ̂)TBG/(2σ̂2

0) turns out to be an asymptotically distribution-free test, that is,

P
(
γ̂(1− γ̂)

2σ̂2
0

NTBG > χ2
1,α

∣∣∣∣ H0

)
→ α as N → ∞,

where χ2
1,α denotes the upper α-quantile of the chi-square distribution with one degree of free-

dom. As simple consistent estimators of γ and σ2
0, Biswas and Ghosh (2014) gave γ̂ = n1/N

and S2
0 = (n1S

2
1 + n2S

2
2)/N , where

S2
z =

1

3
(
nz

3

) ∑∑
1≤j<k≤nz

∑
i ̸=j,k

L(Xzi, Xzj)L(Xzi, Xzk)− µ̂2
zz (z = 1, 2).

By using these estimators, the approximated p-value of the asymptotic test TBG is given by

p̂(S2
0) = 1− Fχ2

1

(
γ̂(1− γ̂)

2S2
0

NTBG

)
,

where Fχ2
1
denotes the distribution function of the chi-square distribution with one degree of

freedom. Although the second term in (3.2.3) is asymptotically ignored, because (TBF )2 ≥ 0 for

a finite sample size, the approximated p-value p̂(S2
0) tends to be anti-conservative. To improve

this anti-conservative tendency, we propose a p-value approximation using the jackknife variance

estimator with a positive bias instead of S2
0 (Efron and Stein, 1981). Here, the jackknife variance

estimators of µ̂11 and µ̂22 are given by

V̂arJ(µ̂11) =
n1 − 1

n1

n1∑
i=1

(µ̂
(i)
11 − µ̂11)

2 and V̂arJ(µ̂22) =
n2 − 1

n2

n2∑
j=1

(µ̂
(j)
22 − µ̂22)

2,

where µ̂
(i)
11 is the estimator µ̂11 when the i-th sample X1i is deleted, and µ̂

(j)
22 is the estima-

tor µ̂22 when the j-th sample X2j is removed. In addition,
√
n1{V̂arJ(µ̂11) − Var(µ̂11)} and

√
n2{V̂arJ(µ̂22)−Var(µ̂22)} converge to zero with probability one (Lee, 1990, Section 5.1.1). We

use N(VarJ(µ̂11) + VarJ(µ̂22)) as an estimator of Var(
√
N{µ̂11 − µ̂22}). Because

Var(
√
N(µ̂11 − µ̂22)|H0) = NVar(µ̂11|H0) +NVar(µ̂22|H0) →

4σ2
0

γ
+

4σ2
0

1− γ
=

4σ2
0

γ(1− γ)
,

we consider the jackknife-based consistent estimator of σ2
0 by

σ̂2
J =

γ̂(1− γ̂)

4
·N(VarJ(µ̂11) + VarJ(µ̂22))

=
Nγ̂(1− γ̂)

4

n1 − 1

n1

n1∑
i=1

(µ̂
(i)
11 − µ̂11)

2 +
n2 − 1

n2

n2∑
j=1

(µ̂
(j)
22 − µ̂22)

2

 .

Thus, the p-value approximation based on the jackknife variance estimator is given by

p̂(σ̂2
J) = 1− Fχ2

1

(
γ̂(1− γ̂)

2σ̂2
J

NTBG

)
.
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Furthermore, similar to the nonparametric Behrens–Fisher problem described in

Brunner et al. (2018), we consider approximating the null distribution of (µ̂11 −
µ̂22)/

√
VarJ(µ̂11) + VarJ(µ̂22) using a t-distribution based on the Welch–Satterthwaite approx-

imation instead of the standard normal distribution for small sample sizes. Let µ̃11 and µ̃22 be

the Hájek projections of µ̂11 − µ11 and µ̂22 − µ22, respectively. That is, note that

µ̃11 =
2

n1

n1∑
i=1

h1(X1i) and µ̃22 =
2

n2

n2∑
i=1

h2(X2i),

where h1(X1i) = E[L(X1i, X1j)−µ11|X1i] and h2(X2i) = E[L(X2i, X2j)−µ22|X2i]. In particular,

the variances of µ̃11 and µ̃22 are expressed as

Var(µ̃11) =
4

n1
Var(h1(X11)) and Var(µ̃22) =

4

n2
Var(h2(X21)).

Herein, we consider the quantities

σ̃2
1 =

4

n1 − 1

n1∑
i=1

(h1(X1i)− h̄1)
2 and σ̃2

2 =
4

n2 − 1

n2∑
i=1

(h2(X2i)− h̄2)
2,

where h̄1 =
∑n1

i=1 h1(X1i)/n1 and h̄2 =
∑n2

i=1 h2(X2i)/n2. Analogous to the derivation of the

approximate t-test for unequal variances, the distribution of σ̃2
1/n1 + σ̃2

2/n2 is approximated by

that of a random variable g ·Zf , where g > 0 and Zf ∼ χ2
f . These constants f and g are selected

such that the first two moments match in the following manner:

E[σ̃2
1/n1 + σ̃2

2/n2] = E[gZf ] = gf and Var[σ̃2
1/n1 + σ̃2

2/n2] = Var[gZf ] = 2g2f.

Here, we obtain

E[σ̃2
1/n1 + σ̃2

2/n2] =
4Var(h1(X11))

n1
+

4Var(h2(X21))

n2
= gf. (3.2.4)

Regarding the variance of σ̃2
1/n1 + σ̃2

2/n2, we assume that the variables h1(X1i) (i = 1, . . . , n1)

and h2(X2i) (i = 1, . . . , n2) follow approximately normal distributions in the same way as in

Brunner et al. (2018, Section 3.5.2), and we approximate the variance as

Var[σ̃2
1/n1 + σ̃2

2/n2] ≈
2

n2
1(n1 − 1)

Var(2h1(X11))
2 +

2

n2
2(n2 − 1)

Var(2h2(X21))
2

=
2

n1 − 1

(
4Var(h1(X11))

n1

)2

+
2

n2 − 1

(
4Var(h2(X21))

n2

)2

= 2g2f. (3.2.5)

By solving the above two equations (3.2.4) and (3.2.5), we obtain

f =

{
4Var(h1(X11))

n1
+ 4Var(h2(X21))

n2

}2

1
n1−1

(
4Var(h1(X11))

n1

)2
+ 1

n2−1

(
4Var(h2(X21))

n2

)2 =
{Var(µ̃11) + Var(µ̃22)}2

1
n1−1Var(µ̃11)2 +

1
n2−1Var(µ̃22)2

.
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Then, the distribution of (σ̃2
1/n1 + σ̃2

2/n2)/(gf) is approximated by that of the random variable

Zf/f . Because
√
N{µ̃11 − (µ̂11 − µ11)}

p→ 0 and
√
N{µ̃22 − (µ̂22 − µ22)}

p→ 0 as N → ∞, we

estimate f with

f̂ =

{
n1−1
n1

∑n1
i=1(µ̂

(i)
11 − µ̂11)

2 + n2−1
n2

∑n2
j=1(µ̂

(j)
22 − µ̂22)

2
}2

{n1−1
n1

∑n1
i=1(µ̂

(i)
11−µ̂11)2}2

n1−1 +
{n2−1

n2

∑n2
j=1(µ̂

(j)
22 −µ̂22)2}2

n2−1

by replacing Var(µ̃11) and Var(µ̃22) with VarJ(µ̂11) and VarJ(µ̂22), respectively. Therefore, the

null distribution of (µ̂11− µ̂22)
2/{VarJ(µ̂11)+VarJ(µ̂22)} is approximated by the F -distribution

with 1 and f̂ degrees of freedom. The approximated p-value is then defined by

p̂(σ̂2
J , f̂) = 1− FF (1,f̂)

(
γ̂(1− γ̂)

2σ̂2
J

NTBG

)
,

where FF (1,f̂) denotes the distribution of the F -distribution with 1 and f̂ degrees of freedom.

It can easily be seen that f̂ → ∞ (N → ∞), and that the F (1, f̂)-distribution converges

to the chi-square distribution with one degree of freedom. The performance of these p-value

approximations is numerically verified in Section 3.3.1.

Furthermore, under the sequence of alternatives H1N : µ = N−1/2δ, the asymptotic power

of the test statistic TBG is given by

lim
N→∞

P
(
γ̂(1− γ̂)

2σ̂2
0

NTBG > χ2
1,α

∣∣∣∣ H1N

)
= P

(
χ2
1

(
γ(1− γ)(δ1 − δ2)

2

4σ2
0

)
> χ2

1,α − γ(1− γ)(δ1 + δ2)
2

4σ2
0

)
from Theorem 3.2.1 (ii). Here, δ1 and δ2 are expressed as

δ1 = lim
N→∞

N1/2{EL(X11, X21)− EL(X11, X12)},

δ2 = lim
N→∞

N1/2{EL(X11, X21)− EL(X21, X22)}.

Here, we assume that X = Lp[a, b] (p ≥ 1) and L(x, y) = ∥x− y∥p. In addition, we assume the

exchangeability of the limit and expectation. For a simple location-shift model, we consider the

sequence of alternatives

HL
1N : X2

d
= X1 +

∆√
N

,

where ∆ is a non-zero constant function. Denote X11, X12
i.i.d.∼ P1 and X21, X22

i.i.d.∼ P2. We

then obtain

δ1 = lim
N→∞

N1/2{E∥X11 −X21∥p − E∥X11 −X12∥p}

= lim
N→∞

∫
Lp[a,b]

∫
Lp[a,b]

N1/2

{∥∥∥∥x1 − x2 −
∆√
N

∥∥∥∥
p

− ∥x1 − x2∥p

}
dP1(x1)dP1(x2)
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=

∫
Lp[a,b]

∫
Lp[a,b]

∫ b
a |x1(s)− x2(s)|p−2{x1(s)− x2(s)}(−∆)ds

∥x1 − x2∥p−1
p

dP1(x1)dP1(x2)

= −∆ · E

[∫ b
a |X11(s)−X12(s)|p−2{X11(s)−X12(s)}ds

∥X11 −X12∥p−1
p

]
= 0

from the Gâteaux derivative (3.1.1). Similarly, the equation δ2 = 0 also holds because X11 −
X12

d
= X21 −X22 under HL

1N . This means that the asymptotic power of the test statistic TBG
p

for HL
1N coincides with the size of the test. This result suggests that TBG

p has lower power than

other distribution homogeneity tests such as TBF
p for the location-shift model. Meanwhile, for

a simple scale-shift model, we consider the sequence of alternatives

HS
1N : X2

d
=

(
1 +

∆√
N

)
X1,

where ∆ is non-zero constant function. We then have

δ1 = lim
N→∞

N1/2{E∥X11 −X21∥p − E∥X11 −X12∥p}

= lim
N→∞

∫
Lp[a,b]

∫
Lp[a,b]

N1/2

{∥∥∥∥x1 − (1 + ∆√
N

)
x2

∥∥∥∥
p

− ∥x1 − x2∥p

}
dP1(x1)dP1(x2)

=

∫
Lp[a,b]

∫
Lp[a,b]

∫ b
a |x1(s)− x2(s)|p−2{x1(s)− x2(s)} · {−∆ · x2(s)}ds

∥x1 − x2∥p−1
p

dP1(x1)dP1(x2)

= −∆ · E

[∫ b
a |X11(s)−X12(s)|p−2{X11(s)X12(s)−X2

12(s)}ds
∥X11 −X12∥p−1

p

]

and

δ2 = lim
N→∞

N1/2{E∥X11 −X21∥p − E∥X21 −X22∥p}

= lim
N→∞

N1/2{E∥X11 −X21∥p − E∥X11 −X12∥p + E∥X11 −X12∥p − E∥X21 −X22∥p}

= δ1 + lim
N→∞

N1/2{E∥X11 −X12∥p − E∥X21 −X22∥p}

= δ1 − lim
N→∞

∫∫
Lp[a,b]2

N1/2

{∥∥∥∥x1 − x2 +
∆√
N

(x1 − x2)

∥∥∥∥
p

− ∥x1 − x2∥p

}
dP1(x1)dP1(x2)

= δ1 −∆ ·
∫∫

Lp[a,b]2

∫ b
a |x1(s)− x2(s)|pds

∥x1 − x2∥p−1
p

dP1(x1)dP1(x2)

= δ1 −∆ ·
∫∫

Lp[a,b]2
∥x1 − x2∥pdP1(x1)dP1(x2)

= δ1 −∆ · E∥X11 −X12∥.

Therefore, we obtain the equations δ1 − δ2 = ∆ · E∥X11 −X12∥ and

δ1 + δ2 = 2δ1 −∆ · E∥X11 −X12∥
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= −∆ · E

[∫ b
a |X11(s)−X12(s)|p−2{2X11(s)X12(s)− 2X2

12(s)}ds
∥X11 −X12∥p−1

p

]

−∆ · E

[∫ b
a |X11(s)−X12(s)|p−2{X11(s)−X12(s)}2ds

∥X11 −X12∥p−1
p

]

= −∆ · E

[∫ b
a |X11(s)−X12(s)|p−2{X2

11(s)−X2
12(s)}ds

∥X11 −X12∥p−1
p

]
= 0.

The asymptotic power is then given by

P
(
χ2
1

(
∆2γ(1− γ)µ2

11

4σ2
0

)
> χ2

1,α

)
,

and this value increases as γ reaches close to 1/2, and decreases as the coefficient of variation

of E[∥X11 −X12∥p|X11] (i.e., σ0/µ11) increases.

3.3 Simulation studies

Extending the test procedure described in Section 3.1 to practical applications is not straightfor-

ward because the true smooth trajectories cannot be directly observed. For example, in the DTI

(diffusion tensor imaging) study as discussed in Pomann et al. (2016), the data on the subject are

noisy and discretely observations. Hence, when using certain methods, it is necessary to carry

out a pre-smoothing of discretely observed functional data. Suppose that we observe data aris-

ing from two groups, {(t1ij , Y1ij) : j = 1, . . . ,m1i}n1
i=1 and {(t2ij , Y2ij) : j = 1, . . . ,m2i}n2

i=1, where

t1ij , t2ij ∈ [0, 1]. The notation of the time points, t1ij and t2ij , allows for different observation

points within the two groups. It is assumed that Y1ij ’s and Y2ij ’s are independent realizations of

two underlying (stochastic) processes observed with noise on a finite grid of points. Specifically,

assume that

Y1ij = X1i(t1ij) + ε1ij and Y2ij = X2i(t2ij) + ε2ij , (3.3.6)

where X11, . . . , X1n1

i.i.d.∼ P1 and X21, . . . , X2n2

i.i.d.∼ P2 are independent and square-integrable

random functions over [0, 1]. The measurement errors {ε1ij} and {ε2ij} are independent and

identically distributed with mean 0, and variance σ2
1 and σ2

2, respectively. We assume that

σ2
1 = σ2

2 =: σ2. By applying the common functional principal component analysis (FPCA)

techniques (Benko et al., 2009) and the R package “refund”, the functional data are reconstructed

as

X̂zi(t) = µ̂(t) +
K∑
k=1

ξ̂zikϕ̂k(t) (z = 1, 2; i = 1, . . . ,mz),

where ξ̂zik (z = 1, 2; i = 1, . . . ,mz; k = 1, . . . ,K) are the estimated FPC scores, µ̂(·) is the

estimated mean function and ϕ̂k(·) (k = 1, . . . ,K) are the eigenfunctions subject to
∫ 1
0 ϕ̂k(t)

2dt =

1 and
∫ 1
0 ϕ̂k(t)ϕ̂ℓ(t)dt = 0 for k ̸= ℓ. Here, the truncation K is a suitably large integer; for
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example, it is selected by the percentage of the explained variance (such as τ = 95%). See

Pomann et al. (2016) for further details. If the overall sets of pooled observed points are

T = {(2i− 1)/(2M) : i = 1, 2, . . . ,M}, the Lp-distance can be approximated as

∥X̂zi − X̂z′j∥p ≈

(
1

2M

M∑
t=1

∣∣∣∣∣
K∑
k=1

(ξ̂zik − ξ̂z′jk)ϕ̂k

(
2t− 1

2M

)∣∣∣∣∣
p)1/p

.

In the case of p = 2, the L2-distance is approximated by ∥X̂zi− X̂z′j∥2 ≈
√∑K

k=1(ξ̂zik − ξ̂z′jk)2,

and which is the K-dimensional Euclidean distance for FPC scores. Then, the test statistics

TBF
2 and TBG

2 correspond to those of Baringhaus and Franz (2004) and Biswas and Ghosh (2014)

for finite-dimensional data, respectively. Furthermore, the null hypothesis H0 : P1 = P2 reduces

to HK
0 : {ξ1k}Kk=1

d
= {ξ2k}Kk=1, where the superscript K in HK

0 emphasizes the dependence of

the reduced null hypothesis on the finite truncation K. The L2-norm-based kernel L2(x, y) =

∥x− y∥2 is not a strongly negative definite kernel, and Theorem 3.1.2 does not hold. However,

because the Euclidean norm-based kernel is a strongly negative definite kernel, the test statistics

TBF
2 and TBG

2 based on the L2-norm are justified in the sense of testing the approximated null

hypothesis HK
0 .

3.3.1 Type I error rate for the asymptotic Biswas–Ghosh type tests

First, we set the threshold parameter value to τ = 0.95 and compare the accuracy of the

Type I error rates for various p-value approximations of the asymptotic Biswas–Ghosh type test

TBG
q (0 < q ≤ 2), which is the test based on the kernel L(x, y) = ∥x − y∥q. We construct data

sets {(t1ij , Y1ij) : j = 1, . . . ,m1i}n1
i=1 and {(t2ij , Y2ij) : j = 1, . . . ,m2i}n2

i=1 using model (3.3.6)

for t1ij = t2ij = tj observed points within [0, 1]. In this section, we set T = {(2i − 1)/(2M) :

i = 1, . . . ,M} (M = 100), and consider the dense sampling design m1i = m2i = 100 and the

sparse sampling design m1i = m2i = 20, respectively. Throughout this study, it is assumed that

ε1ij , ε2ij are independent Gaussian variables with mean zero and variance 0.25. Here,

X1i(t) = µ1(t) +

∞∑
k=1

ξ1ikϕ1k(t) and X2i(t) = µ2(t) +

∞∑
k=1

ξ2ikϕ2k(t),

where ϕ1k(t) and ϕ2k(t) (k ≥ 1) are Fourier basis functions, for example, ϕ11(t) = ϕ21(t) =√
2 sin(2πt), ϕ12(t) = ϕ22(t) =

√
2 cos(2πt); and ξ1ik and ξ2ik are uncorrelated random variables,

respectively, with Var(ξ1ik) = λ1k and Var(ξ2ik) = λ2k. Setting ϕzk(t) = ϕk(t) allows us to study

different types of departure from the null hypothesis in which the underlying processes of the

two data sets are the same.

For simplicity, we set µ1(t) = µ2(t) = 0 for all values of t, and λ1 = 10, λ2 = 5, λ3 = 2, and

λk = 0 for k ≥ 4. As some configurations of ξ1ik and ξ2ik, we apply the following distributions:

(A) set ξ1ik, ξ2ik ∼ N(0, λk), where N(µ, σ2) denotes the normal distribution with mean µ and

variance σ2

(B) set ξ1ik, ξ2ik ∼ T4(0, λk), where Tν(µ, σ
2) denotes the Student T -distribution with ν degrees

of freedom with mean µ and the variance σ2.
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In addition, we add the following simulation setting (C):

(C) generates the data from the stochastic process on [0, 1], introduced through

Xzi(t) =

K∑
n=1

√
2 sin

((
n− 1

2

)
πt
)(

n− 1
2

)
π

Zzn, (z = 1, 2),

where {Z1n}Kn=1 and {Z2n}Kn=1 are independent Gaussian variables with mean zero and

variance one, and K = 100.

We provide the empirical size of the Lq-norm-based Biswas–Ghosh type test TBG
q and the

accuracy of several p-value approximations. As the p-value approximations, we consider the

simple approximated p-value of TBG
q , i.e.,

p̂q(S
2
0) = 1− Fχ2

1

(
γ̂(1− γ̂)

2S2
0

NTBG
q

)
,

and the proposed p-value approximations

p̂q(σ̂
2
J) = 1− Fχ2

1

(
γ̂(1− γ̂)

2σ̂2
J

NTBG
q

)
,

p̂q(σ̂
2
J , f̂) = 1− FF (1,f̂)

(
γ̂(1− γ̂)

2σ̂2
J

NTBG
q

)
,

where S2
0 , σ̂

2
J , and f̂ are defined in Section 3.1. All results described in this section are based

on the nominal level α = 0.05 and 10, 000 Monte Carlo replications.

Tables 3.1 and 3.2 show that the empirical size of the asymptotic tests when the total sample

size ranges from 20 to 400. The simulation results for the dense sampling design (Table 3.1)

showed a similar pattern as that of the sparse sampling design (Table 3.2). Under all settings,

the accuracy of the proposed p-value approximations based on the jackknife variance estimators

is verified to be close to the nominal level α = 0.05. Because the jackknife variance estimator has

a positive bias, the asymptotic tests incorporating it tend to obtain conservative results. This

property is confirmed by the fact that p̂q(σ̂
2
J) and p̂q(σ̂

2
J , f̂) are more conservative than p̂q(S

2
0)

in all cases listed in Tables 3.1 and 3.2. In particular, the Welch–Satterthwaite approximation

p̂(σ̂2
J , f̂) works effectively when the sample size is moderate and large. However, the Type I error

rates of the asymptotic tests may not be controlled at the nominal level when the sample sizes

n1 and n2 are small. In such cases, the approximate permutation test is recommended instead

of the asymptotic test, although it is more computationally expensive.

3.3.2 Power comparison

To describe the characteristics of the interpoint distance-based tests, we conducted a simulation

study with respect to the empirical power of the test statistics. We consider some functional

samples defined in [0, 1], which are considered the realizations of a stochastic process that has

continuous trajectories within the interval [0, 1]. Furthermore, we assume the sparse sampling
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Table 3.1. Type I error rate of the asymptotic test TBG
q in the dense sampling design

Setting (n1, n2) p̂1(S
2
0) p̂2(S

2
0) p̂1(σ̂

2
J) p̂2(σ̂

2
J) p̂1(σ̂

2
J , f̂) p̂2(σ̂

2
J , f̂)

A (10, 10) 0.262 0.261 0.070 0.071 0.051 0.050
(20, 20) 0.120 0.119 0.059 0.059 0.050 0.050
(40, 40) 0.076 0.075 0.054 0.053 0.050 0.049
(60, 60) 0.065 0.064 0.052 0.051 0.050 0.048

(100, 100) 0.063 0.064 0.055 0.055 0.054 0.054
(200, 200) 0.056 0.057 0.053 0.053 0.052 0.052
(5, 15) 0.291 0.291 0.096 0.095 0.064 0.063
(10, 30) 0.135 0.133 0.077 0.077 0.060 0.060
(20, 60) 0.081 0.080 0.058 0.058 0.051 0.050
(30, 90) 0.065 0.065 0.056 0.056 0.050 0.050
(50, 150) 0.062 0.063 0.055 0.055 0.051 0.051
(100, 300) 0.054 0.053 0.051 0.050 0.049 0.048

B (10, 10) 0.207 0.206 0.063 0.063 0.041 0.040
(20, 20) 0.098 0.098 0.055 0.054 0.046 0.046
(40, 40) 0.068 0.068 0.050 0.050 0.046 0.045
(60, 60) 0.063 0.063 0.052 0.053 0.050 0.050

(100, 100) 0.056 0.057 0.050 0.051 0.048 0.049
(200, 200) 0.052 0.053 0.050 0.050 0.049 0.049
(5, 15) 0.237 0.237 0.095 0.094 0.064 0.064
(10, 30) 0.114 0.112 0.078 0.077 0.062 0.062
(20, 60) 0.072 0.072 0.067 0.067 0.060 0.059
(30, 90) 0.067 0.068 0.066 0.065 0.061 0.060
(50, 150) 0.057 0.057 0.059 0.060 0.056 0.056
(100, 300) 0.054 0.055 0.055 0.055 0.053 0.053

C (10, 10) 0.277 0.275 0.078 0.079 0.057 0.057
(20, 20) 0.121 0.119 0.059 0.059 0.049 0.049
(40, 40) 0.080 0.078 0.056 0.054 0.053 0.051
(60, 60) 0.069 0.068 0.054 0.054 0.051 0.053

(100, 100) 0.061 0.060 0.054 0.051 0.053 0.050
(200, 200) 0.055 0.054 0.051 0.051 0.053 0.050
(5, 15) 0.292 0.291 0.112 0.110 0.083 0.080
(10, 30) 0.138 0.137 0.086 0.086 0.071 0.069
(20, 60) 0.086 0.087 0.069 0.069 0.061 0.060
(30, 90) 0.073 0.073 0.064 0.062 0.057 0.056
(50, 150) 0.062 0.061 0.055 0.055 0.053 0.052
(100, 300) 0.053 0.054 0.052 0.051 0.051 0.050
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Table 3.2. Type I error rate of the asymptotic test TBG
q in the sparse sampling design

Setting (n1, n2) p̂1(S
2
0) p̂2(S

2
0) p̂1(σ̂

2
J) p̂2(σ̂

2
J) p̂1(σ̂

2
J , f̂) p̂2(σ̂

2
J , f̂)

A (10, 10) 0.273 0.272 0.066 0.066 0.047 0.047
(20, 20) 0.121 0.120 0.060 0.060 0.052 0.051
(40, 40) 0.076 0.075 0.052 0.052 0.048 0.048
(60, 60) 0.067 0.068 0.053 0.052 0.051 0.050

(100, 100) 0.056 0.056 0.049 0.050 0.048 0.048
(200, 200) 0.056 0.056 0.052 0.052 0.052 0.052
(5, 15) 0.306 0.307 0.095 0.094 0.062 0.061
(10, 30) 0.134 0.133 0.073 0.073 0.058 0.057
(20, 60) 0.082 0.081 0.060 0.059 0.052 0.051
(30, 90) 0.071 0.071 0.059 0.059 0.054 0.053
(50, 150) 0.062 0.062 0.054 0.054 0.051 0.052
(100, 300) 0.054 0.053 0.052 0.052 0.051 0.051

B (10, 10) 0.217 0.215 0.062 0.061 0.041 0.041
(20, 20) 0.104 0.103 0.056 0.057 0.047 0.047
(40, 40) 0.068 0.068 0.050 0.051 0.046 0.046
(60, 60) 0.061 0.062 0.051 0.051 0.048 0.048

(100, 100) 0.057 0.057 0.051 0.051 0.048 0.049
(200, 200) 0.052 0.053 0.049 0.050 0.049 0.049
(5, 15) 0.250 0.248 0.096 0.095 0.066 0.066
(10, 30) 0.117 0.117 0.080 0.079 0.066 0.066
(20, 60) 0.075 0.075 0.065 0.065 0.058 0.058
(30, 90) 0.063 0.064 0.062 0.062 0.057 0.057
(50, 150) 0.055 0.056 0.055 0.055 0.053 0.053
(100, 300) 0.055 0.055 0.055 0.055 0.054 0.053

C (10, 10) 0.274 0.272 0.072 0.073 0.053 0.053
(20, 20) 0.127 0.127 0.064 0.064 0.053 0.054
(40, 40) 0.077 0.078 0.054 0.054 0.050 0.050
(60, 60) 0.069 0.070 0.054 0.054 0.052 0.051

(100, 100) 0.061 0.060 0.053 0.053 0.052 0.051
(200, 200) 0.055 0.054 0.051 0.050 0.050 0.050
(5, 15) 0.300 0.297 0.114 0.112 0.082 0.082
(10, 30) 0.140 0.139 0.081 0.081 0.067 0.066
(20, 60) 0.088 0.087 0.069 0.067 0.060 0.058
(30, 90) 0.071 0.071 0.060 0.061 0.057 0.055
(50, 150) 0.063 0.064 0.057 0.058 0.054 0.054
(100, 300) 0.059 0.059 0.055 0.055 0.054 0.054
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design used in Section 3.3.1. However, we can obtain similar results even for the dense sam-

pling design. In this section, we provide a numerical comparison of the proposed tests and the

functional Anderson–Darling (FAD) test introduced by Pomann et al. (2016). The FAD test is

based on the Bonferroni correction of the p-value pk (k = 1, . . . ,K) of the univariate two-sample

Anderson–Darling test (Pettitt, 1976) for each common FPC scores {ξ̂1ik}n1
i=1 and {ξ̂2ik}n2

i=1.

First, we generate data {(t1ij , Y1ij) : j = 1, . . . ,m1i}n1
i=1 and {(t2ij , Y2ij) : j = 1, . . . ,m2i}n2

i=1

using model (3.3.6). We consider the underlying stochastic model

Xzi(t) = µz(t) + ξzi1
√
2 sin(2πt) + ξzi2

√
2 cos(2πt), (z = 1, 2).

Here, we consider the following settings:

(A-1) location shift : Set the mean functions as µ1(t) = t and µ2(t) = t + 2δt3. Generate

the coefficients as ξ1i1, ξ2i1 ∼ N(0, 10) and ξ1i2, ξ2i2 ∼ N(0, 5). The index δ controls the

departure in the mean behavior of the two distributions.

(A-2) scale shift : Set µ1(t) = µ2(t) = 0. Generate the coefficients ξ1i1 ∼ N(0, 10), ξ2i1 ∼
N(0, 10(1+2δ)) and ξ1i2, ξ2i2 ∼ N(0, 5). The index δ controls the difference in the variance

of the first basis coefficient between the two data sets.

(B-1) location shift : Set the mean functions as µ1(t) = t and µ2(t) = t + 2δt3. Generate the

coefficients as ξ1i1, ξ2i1 ∼ T4(0, 10) and ξ1i2, ξ2i2 ∼ T4(0, 5).

(B-2) scale shift : Set µ1(t) = µ2(t) = 0. Generate the coefficients ξ1i1 ∼ T4(0, 10), ξ2i1 ∼
T4(0, 10(1 + 2δ)) and ξ1i2, ξ2i2 ∼ T4(0, 5).

Next, we consider the stochastic processes, for each z = 1, 2 and i = 1, . . . , nz,

Xzi(t) = µzt+ σz

K∑
n=1

√
2 sin

((
n− 1

2

)
πt
)(

n− 1
2

)
π

Zzin,

where {Zzin}Kn=1 are independent Gaussian variables with mean zero and variance one. For each

z = 1, 2, the stochastic processes Xzi(t)’s converge to the Wiener processes with drift µz and

infinitesimal variance σ2
z as K → ∞. Here, we set K = 100 and consider the following settings:

(C-1) location shift : Set µ1 = 0, µ2 = δ and σ1 = σ2 = 1.

(C-2) scale shift : Set µ1 = µ2 = 0 and σ1 = 1, σ2 = 1 + δ.

All the results in this section are based on α = 0.05 level of significance and 10, 000 Monte

Carlo replications. We conducted the asymptotic tests based on p̂1(σ̂
2
J , f̂) and p̂2(σ̂

2
J , f̂) under

these settings. The simulation results of p̂q(S
2
0) and p̂q(σ̂

2
J) are omitted from the viewpoint of

controlling the Type I error rate. For comparison, we conducted the approximate permutation

tests of TBF
q and TBG

q (q = 1, 2). The distributions of TBF
q and TBG

q are approximated through

empirical distributions based on 1, 000 permutations.

The results of the numerical comparison are listed in Tables 3.3 and 3.4. In the location-shift

models (Table 3.3), because the estimator σ̂2
J is unaffected by shifts, the results of the asymptotic
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Table 3.3. Empirical powers for location-shift models

Permutation Asymptotic

Setting (n1, n2) δ FAD TBF
1 TBF

2 TBG
1 TBG

2 p̂1(σ̂
2
J , f̂) p̂2(σ̂

2
J , f̂)

A-1 (10, 10) 2.0 0.419 0.097 0.102 0.065 0.068 0.057 0.058
3.0 0.803 0.245 0.319 0.120 0.154 0.116 0.138
4.0 0.962 0.558 0.746 0.261 0.384 0.223 0.311

(5, 15) 2.0 0.353 0.120 0.126 0.069 0.069 0.079 0.081
3.0 0.628 0.178 0.205 0.102 0.109 0.125 0.136
4.0 0.879 0.334 0.484 0.168 0.224 0.185 0.223

(20, 20) 2.0 0.464 0.157 0.185 0.064 0.068 0.062 0.065
3.0 0.904 0.596 0.794 0.176 0.256 0.154 0.220
4.0 0.997 0.976 0.996 0.446 0.716 0.421 0.677

(10, 30) 2.0 0.395 0.116 0.130 0.066 0.068 0.074 0.076
3.0 0.817 0372 0.515 0.121 0.162 0.145 0.174
4.0 0.978 0.832 0.960 0.314 0.518 0.283 0.415

B-1 (10, 10) 2.0 0.448 0.141 0.155 0.066 0.070 0.058 0.059
3.0 0.800 0.407 0.539 0.139 0.181 0.129 0.156
4.0 0.943 0.738 0.869 0.325 0.485 0.222 0.325

(5, 15) 2.0 0.324 0.111 0.122 0.055 0.063 0.082 0.083
3.0 0.661 0.226 0.295 0.111 0.138 0.130 0.142
4.0 0.864 0.511 0.650 0.194 0.283 0.193 0.245

(20, 20) 2.0 0.498 0.228 0.278 0.066 0.075 0.062 0.066
3.0 0.903 0.772 0.864 0.176 0.273 0.143 0.204
4.0 0.986 0.981 0.988 0.457 0.712 0.416 0.607

(10, 30) 2.0 0.416 0.192 0.213 0.074 0.079 0.085 0.088
3.0 0.771 0.514 0.655 0.114 0.147 0.120 0.165
4.0 0.953 0.886 0.934 0.313 0.490 0.269 0.398

C-1 (10, 10) 1.0 0.326 0.386 0.357 0.222 0.209 0.234 0.206
1.5 0.641 0.746 0.720 0.482 0.450 0.516 0.482
2.0 0.884 0.941 0.933 0.785 0.768 0.790 0.744

(5, 15) 1.0 0.279 0.283 0.267 0.167 0.154 0.205 0.195
1.5 0.488 0.597 0.557 0.354 0.325 0.378 0.360
2.0 0.761 0.815 0.792 0.639 0.605 0.603 0.571

(20, 20) 1.0 0.681 0.731 0.686 0.338 0.292 0.366 0.329
1.5 0.959 0.974 0.969 0.779 0.742 0.784 0.723
2.0 0.998 0.998 0.998 0.971 0.959 0.981 0.971

(10, 30) 1.0 0.505 0.555 0.518 0.252 0.233 0.265 0.235
1.5 0.885 0.908 0.886 0.649 0.599 0.608 0.574
2.0 0.992 0.992 0.986 0.921 0.897 0.900 0.855
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Table 3.4. Empirical powers for scale-shift models

Permutation Asymptotic

Setting (n1, n2) δ FAD TBF
1 TBF

2 TBG
1 TBG

2 p̂1(σ̂
2
J , f̂) p̂2(σ̂

2
J , f̂)

A-2 (10, 10) 2.0 0.065 0.114 0.121 0.440 0.445 0.428 0.428
3.0 0.097 0.178 0.178 0.633 0.636 0.588 0.586
4.0 0.110 0.231 0.232 0.733 0.731 0.678 0.677

(5, 15) 2.0 0.042 0.038 0.038 0.140 0.143 0.461 0.460
3.0 0.038 0.036 0.036 0.197 0.194 0.630 0.629
4.0 0.027 0.055 0.055 0.274 0.273 0.750 0.749

(20, 20) 2.0 0.144 0.305 0.306 0.838 0.842 0.823 0.824
3.0 0.262 0.530 0.523 0.961 0.960 0.943 0.944
4.0 0.340 0.633 0.637 0.975 0.974 0.974 0.974

(10, 30) 2.0 0.043 0.123 0.126 0.578 0.575 0.825 0.826
3.0 0.059 0.195 0.195 0.772 0.772 0.944 0.943
4.0 0.052 0.284 0.284 0.859 0.859 0.982 0.992

B-2 (10, 10) 2.0 0.075 0.125 0.125 0.315 0.311 0.274 0.274
3.0 0.082 0.153 0.157 0.461 0.459 0.388 0.386
4.0 0.086 0.195 0.199 0.561 0.553 0.457 0.455

(5, 15) 2.0 0.036 0.033 0.033 0.072 0.072 0.377 0.376
3.0 0.018 0.032 0.030 0.101 0.099 0.502 0.501
4.0 0.047 0.044 0.049 0.142 0.143 0.583 0.581

(20, 20) 2.0 0.136 0.279 0.280 0.619 0.621 0.578 0.578
3.0 0.194 0.399 0.404 0.781 0.784 0.736 0.733
4.0 0.241 0.541 0.542 0.868 0.869 0.826 0.825

(10, 30) 2.0 0.028 0.088 0.085 0.304 0.303 0.624 0.623
3.0 0.053 0.169 0.171 0.458 0.460 0.780 0.781
4.0 0.053 0.257 0.247 0.563 0.562 0.847 0.845

C-2 (10, 10) 1.0 0.093 0.130 0.132 0.512 0.539 0.515 0.545
1.5 0.105 0.224 0.234 0.766 0.796 0.708 0.731
2.0 0.121 0.336 0.357 0.900 0.920 0.845 0.867

(5, 15) 1.0 0.012 0.048 0.050 0.170 0.192 0.536 0.549
1.5 0.012 0.069 0.076 0.362 0.395 0.689 0.712
2.0 0.006 0.064 0.078 0.509 0.565 0.832 0.846

(20, 20) 1.0 0.152 0.310 0.332 0.872 0.891 0.880 0.893
1.5 0.265 0.603 0.625 0.986 0.991 0.987 0.990
2.0 0.443 0.866 0.897 0.999 1.000 0.999 1.000

(10, 30) 1.0 0.028 0.117 0.126 0.634 0.666 0.816 0.839
1.5 0.029 0.267 0.291 0.886 0.913 0.966 0.971
2.0 0.042 0.500 0.536 0.982 0.990 0.998 1.000
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tests based on p̂1(σ̂
2
J , f̂) and p̂2(σ̂

2
J , f̂) are close to the approximate permutation tests of TBG

1

and TBG
2 , respectively. For the location-shift models (A-1) and (B-1), the FAD test shows the

best performance, and the Baringhaus–Franz type test TBF
q was better than the Biswas–Ghosh

type test TBG
q , whereas the L1-norm-based tests are inferior to the L2-norm-based versions.

This result reflects the property of asymptotic power presented in Section 3.1. In the setting

(C-1) with a large number of eigenfunctions, the test TBF
q is higher than the power of the FAD

test, and the L1-norm-based tests are superior to the L2-norm-based tests.

For the scale-shift models (Table 3.4) and the equal sample sizes n1 = n2, the asymptotic

tests based on p̂1(σ̂
2
J , f̂) and p̂2(σ̂

2
J , f̂) are close to the approximate permutation tests of TBG

1

and TBG
2 , respectively. For the unequal sample sizes n1 ̸= n2, note that the asymptotic and

permutation tests of TBG
1 and TBG

2 have different powers because the estimator σ̂2
J is affected

by the shifts in scale. For the scale-shift models (A-2), (B-2), and (C-2), the power of TBG
q is

superior to that of the other tests. In the setting (C-2) with a large number of eigenfunctions,

the power of the L2-norm-based tests is higher than that in the L1-norm-based tests.

3.3.3 Application to diffusion tensor image data analysis

One of the purposes of the diffusion tensor image (DTI) study is to formally assess whether

several imaging modalities vary differently between healthy controls and patients with multi-

ple sclerosis (MS). MS is a disease that affects the central nervous system and, in particular,

damages white matter tracts in the brain through lesions, a loss of myelin, and axonal damage.

As one of the approaches used to visualize white matter tracts, DTI is well known as the mag-

netic resonance imaging method that measures water diffusivity in the brain. To characterize

the microstructure of tissue, one of the measures (referred to as modalities) provided by DTI

is fractional anisotropy (FA), which describes the degree of anisotropy of the water diffusion

process.

In this section, we investigate the FA profiles along the corpus callosum (CCA-FA profiles)

and test the null hypothesis that these profiles have the same distribution for both the MS

patients and the control subjects. The data used are 100 subjects with MS and 42 healthy

controls available in the R package “refund.” For the MS patients, the number of visits per

subject ranged from 2 to 8, and a total of 340 visits were recorded. These MRI/DTI data

were collected at Johns Hopkins University and the Kennedy Krieger Institute. Each curve is

observed on 93 grids along the corpus callosum. We used the CCA-FA profile data at the time

of the first visit and conducted a two-sample homogeneity test with the following settings:

Case 1: CCA-FA profiles for the 100 MS patients and 42 controls in all data.

Case 2: CCA-FA profiles for the 66 MS patients and 30 controls in males.

Case 3: CCA-FA profiles for the 34 MS patients and 12 controls in females.

Case 4: CCA-FA profiles for 66 men and 34 women among the MS patients.

Case 5: CCA-FA profiles for 30 men and 12 women among the healthy controls.
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For these cases, we conducted some of the two-sample tests described in Section 3.3.2. The

p-values for the Baringhaus–Franz and Biswas–Ghosh type tests are calculated using 100, 000

permutations. In Cases 1–3, the p-values of all tests for both MS patients and the control subjects

were close to zero, indicating a difference between them. The p-values of the asymptotic Biswas–

Ghosh type tests defined in Section 3.1 are also close to zero. For Case 4, the p-values of the

test statistics FAD, TBF
1 , TBF

2 , TBG
1 and TBG

2 are 1.00, 0.77, 0.73, 0.91, and 0.83, respectively.

Furthermore, the p-values of these test statistics in Case 5 are 0.49, 0.50, 0.70, 0.90, and 0.91,

respectively. Therefore, the results in Cases 4 and 5 show that the CCA-FA profiles are not

statistically different between men and women. In addition, the p-values of the asymptotic

Biswas–Ghosh type tests in Cases 4 and 5 are as listed in Table 3.5.

Table 3.5. The p-values of the Biswas–Ghosh type tests in Cases 4 and 5

Permutation Asymptotic

TBG
1 TBG

2 p̂1(S
2
0) p̂2(S

2
0) p̂1(σ̂

2
J) p̂2(σ̂

2
J) p̂1(σ̂

2
J , f̂) p̂2(σ̂

2
J , f̂)

Case 4 0.913 0.831 0.841 0.771 0.847 0.780 0.847 0.781
Case 5 0.898 0.907 0.734 0.758 0.746 0.753 0.749 0.755

From Table 3.5, the p-values of the asymptotic Biswas–Ghosh type tests also showed large

values similar to those of the approximate permutation tests. Furthermore, the p-values of

the asymptotic Biswas–Ghosh type tests are slightly smaller than those of the corresponding

approximate permutation tests. These results may be affected by the non-conservative tendency

of the Type I error rate investigated in Section 3.3.1 when the sample sizes n1 and n2 are unequal.
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Chapter 4

Conclusion

In this paper, we proposed several smoothed bootstrap methods for RSS and investigated their

asymptotic properties. Furthermore, we proposed a two-sample test for functional data and

investigated its asymptotic properties.

In Chapter 2, we proposed several smoothed bootstrap methods based on RSS. We also

examined several bootstrap methods based on RSS data and derived asymptotic properties of

these resampling methods under an imperfect ranking model. First, we proposed smoothed and

symmetrized bootstrap methods, and showed that each bootstrap method has consistency for

the sample mean. Second, we computed the asymptotic MISE for the RSS-based KCDE, as

well as an asymptotic optimal bandwidth that minimizes the MISE. Finally, we investigated the

influence of smoothing and symmetrizing of the bootstrap methods using simulation studies.

Moreover, we also believe that it is necessary to conduct a theoretical study of various bootstrap

methods in the context of the stratified ranked set sampling discussed in Samawi et al. (2017,

2019). In this study, although we considered a bandwidth that minimizes MISE, it is also

important to select the optimum bandwidth according to each purpose.

In Chapter 3, we constructed interpoint distance-based two-sample tests for random ele-

ments on a Banach space. In particular, we considered the homogeneity tests for functional

data. We derived the limiting distribution of the Biswas–Ghosh type test (Biswas and Ghosh,

2014) under contiguous alternatives and proposed a p-value approximation based on a jackknife

variance estimator and the Welch–Satterthwaite equation. In addition, we compared the powers

of the proposed tests and the functional Anderson–Darling test (Pomann et al., 2016). Through

a simulation study, we verified that the proposed p-value approximation achieves a better per-

formance than the p-value approximation based on the naive estimator (Biswas and Ghosh,

2014), and demonstrated that the Biswas–Ghosh type tests are better than the others for the

scale-shift model. In particular, the proposed tests were shown to have better power than the

FAD test for functional data with numerous basis functions. The testing approach based on

the interpoint distance can be easily extended to testing the null hypothesis in which multiple

(more than two) groups of curves have identical distributions. In addition, we can construct a

consistency test using a strongly negative definite kernel for multivariate functional data. Such

detailed studies will be a topic of future research.

47



Bibliography

A. M. Alonso and A. Cuevas. On smoothed bootstrap for density functionals. Journal of

Nonparametric Statistics, 15(4–5):467–477, 2003.
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