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Abstract

As the computing capability of Central Processing Units (CPUs) has been gradually
reaching the peak, Graphics Processing Units (GPUs) are utilized for general purpose
applications that require high computational power. While CPUs have tens of comput-
ing cores at most, GPUs have hundreds to thousands of cores enabling thousands of
threads to run in parallel, resulting in its tremendous computing power. Additionally,
the programmability of GPUs has been improved rapidly through providing special
programming languages, libraries, and tools. Thus, GPUs are playing an important
role in various application domains.

The more GPUs are widely utilized, the more sophisticatedly GPU compilers need
to optimize GPU programs to execute the programs efficiently. Typical GPU compilers
separately compile CPU host and GPU device codes, and a function written in the
device code is called a kernel. Optimizations for GPUs are mainly classified into intra-
kernel optimizations and inter-kernel ones. Intra-kernel optimizations transform a single
kernel into more efficient one while inter-kernel ones improve overall performance of
GPU programs by analyzing multiple kernels and the host code.

This thesis proposes both intra- and inter-kernel optimizations inspired by tradi-
tional code motion based techniques. First, as intra-kernel optimizations, two methods
that remove not only redundant expressions but also branch divergence, which occurs
when GPU software threads follow different paths in some conditional branches and
decreases the performance of GPU kernels, are proposed. Their approaches are to take
advantage of the property where both true and false sides of divergent branches are
executed. Considering the property, the proposed methods speculatively hoist expres-
sions in one side of divergent branches out of them without decreasing performance.
Thus, the speculative code motion contributes to branch divergence reduction. Second,
as an inter-kernel optimization, this thesis proposes a code motion based kernel fusion
approach, which exposes the fusibility of kernels by moving them along control flows, so
that it increases the opportunities of fusing them. Although traditional methods con-
sider only data dependency between candidate kernels, the proposed method considers
not only the data dependency but also a control flow of a program. Therefore, the
proposed method can fuse more kernels than traditional methods. The experimental
results show that both intra- and inter-kernel optimizations of the proposed methods
improve the performance of GPU programs in some benchmarks.
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Chapter 1

Introduction

High-performance computing has been in great demand for modern applications, such
as machine learning, image processing, data mining, and virtual reality. Although the
applications are traditionally implemented on Central Processing Units (CPUs), the
required computing capability exceeds the CPU performance. Therefore, to meet the
high demand of computing capability, Graphics Processing Units (GPUs) are utilized
for general purpose applications. GPUs, which have thousands of processing cores, give
the tremendous computing power, playing a central role in modern high-performance
computing.

The programmability of GPUs has been improved rapidly for the last decade. Pro-
grammers write GPU programs using programming languages such as Compute Unified
Device Architecture (CUDA) [76] and OpenCL [5]. The LLVM compiler infrastructure
[2, 57] supports GPU programs in each intermediate representation (IR) level, Multi-
Level IR (MLIR) [4] and LLVM-IR [3]. Most GPU compilers such as CUDA nvcc [78]
and ROCm HIPCC [6] separately compile a CPU host and GPU device code. In the
compilation process, a CPU and GPU code are respectively compiled into IR codes
and optimized to be executed efficiently on a target system. The rest of this chapter
describes the CUDA programming model, introduces compiler optimizations for GPU
programs, and gives the proposed approaches in the thesis.

1.1 CUDA Programming Model

CUDA is the most commonly used GPU programming language, based on the Single
Instruction Multiple Thread (SIMT) execution model. The CUDA programmers write
the host code processed on CPUs and the device code processed on GPUs separately
in a program. The function written for the device code is specially called a kernel. In
the kernel, there may be performance bottlenecks for GPU programs as described in
the followings.

Branch Divergence

In the SIMT execution model, SIMT threads are grouped into warps, and threads
in a warp must execute the same instruction. In a GPU kernel, if the threads in a
warp evaluate the branch condition of a branch instruction, and some threads in a
warp evaluate the condition to true while the others evaluate it to false, both true and
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false sides of the branch are executed in sequential. This is called branch divergence.
The threads that evaluate the condition to true execute the true-path while the other
threads that evaluate the condition to false wait without doing anything, and vice
versa. Consequently, branch divergence takes both costs of the true and false sides of a
divergent branch, significantly reducing performance of a kernel.

In the execution environments, some code motion based approaches such as Partial
Redundancy Elimination (PRE) [70, 54, 55, 16, 48] and scalar replacement [12, 13,
18, 98] may increase branch divergence, because the destinations of the code motion
may include divergent branches. In this case, they may increase executed instructions
compared with original ones, decreasing execution efficiency of a kernel. Therefore, the
approaches cannot simply be applied to a kernel with branch divergence.

1.2 Compiler Optimization for GPU Programs

Compiler optimization techniques for GPU programs can be categorized into two main
types based on the difference of their optimization scope: intra-kernel optimizations
and inter-kernel optimizations. Intra-kernel optimizations aim to optimize each kernel
in a device code while inter-kernel ones analyze several kernels and the host code with
callers of them, improving overall performance of the program. Generally, intra-kernel
optimizations are orthogonal to inter-kernel ones, so that these two types of optimiza-
tions can be applied to GPU programs simultaneously.

1.3 Proposed Approach in the Thesis

This thesis proposes both intra-kernel and inter-kernel optimizations based on code
motion techniques. They improve performance of GPU programs by reducing branch
divergence and enhancing kernel fusion in terms of respectiveness.

As discussed in Section 1.1, branch divergence is the major source of performance
bottlenecks of a GPU kernel. Additionally, although PRE is an effective code optimiza-
tion technique that not only removes partially redundant expressions but also moves
invariant expressions out of loops, it may increase branch divergence and reduce per-
formance of a kernel. The code motion based technique proposed in the thesis as an
intra-kernel optimization, which is called Speculative Sparce Code Motion (SSCM), ex-
tends PRE not only to remove redundant expressions but also to reduce the divergence
through speculative code motion. In a divergent branch, where both true and false sides
are executed, SSCM speculatively hoists the expression that exists only on one side of
a divergent branch before the branch without decreasing performance. The property
of speculative code motion contributes to reducing branch divergence. Additionally,
speculative code motion makes more expressions redundant [40, 35, 11, 112, 118], so
that SSCM eliminates more expressions than traditional methods, resulting in fur-
ther performance improvement. However, most of GPU kernels have both divergent
branches and non-divergent branches, and speculative code motion for non-divergent
branches may decrease performance. Therefore, SSCM enables selective application of
speculative code motion to improve the performance of kernels with divergent and/or
non-divergent branches.
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As well as PRE, scalar replacement, which removes inter-iteration redundant mem-
ory accesses in a loop, may also increase branch divergence because it inserts memory
accesses into some program paths. Therefore, it is difficult to effectively apply scalar
replacement to a GPU kernel. Another code motion based technique proposed in the
thesis as an intra-kernel optimization, which is called Speculative Scalar Replacement
based on Question Propagation (SSRQP), makes scalar replacement effective in a kernel
by not only removing redundant memory accesses in a loop but also reducing branch
divergence through speculative code motion. It is based on question propagation [88],
which checks whether each expression is redundant while propagating questions on a
control flow graph, in terms of redundancy checking. As well as SSCM, SSRQP also
takes advantage of the property of a divergent branch to effectively apply speculative
code motion without decreasing performance, and hence applies it to only divergent
branches. Furthermore, SSRQP checks whether each insertion point of an expression is
included in divergent branches and does not insert any expression into the destinations
of divergent branches, so that it does not increase branch divergence.

On the other hand, kernel fusion based methods, which is one of inter-kernel op-
timizations, improve performance by combining several kernels into a single one. Be-
cause GPU kernels must store their input and output data in global memory that
is the costliest for accessing, many GPU applications have a bottleneck for accessing
memories. Fusing these kernels into one and utilizing faster on-chip memory instead
of global memory improve performance. Thus, traditional kernel fusion based methods
fuse kernels in which one kernel is data-dependent on the other. However, traditional
methods miss many fusion opportunities because they focus only on data dependency
between consecutive kernels. That is, traditional methods can fuse only consecutive
kernels on a control flow graph. This thesis proposes a novel kernel fusion method
as an inter-kernel optimization, called Kernel Fusion based on Code Motion (KFCM).
KFCM exposes the fusibility of kernels based on code motion, which is implemented by
dataflow analyses based on the traditional dataflow equations used in PRE [54, 55] and
partial dead code elimination (PDE) [56]. PRE and PDE are code optimizations that
eliminate partially redundant expressions and partially dead statements, respectively.
These properties enable KFCM to consider not only flow insensitive fusibility between
consecutive kernels but also flow sensitive one between kernels on a control flow of a
program. Thus, KFCM can fuse more kernels than traditional methods, reducing more
kernel launch overhead and increasing other code optimization opportunities.

Contributions

As mentioned above, this thesis presents two types of a code motion based branch
divergence reduction technique and the kernel fusion technique based on code motion.
More specifically, their contributions are as follows:

• Code motion based branch divergence reduction: SSCM and SSRQP en-
able PRE and scalar replacement to remove partially redundant expressions and
redundant memory accesses in GPU kernels, respectively. Furthermore, by tak-
ing advantage of the property of branch divergence, both methods speculatively
hoist an expression out of a divergent branch without decreasing performance,
contributing to branch divergence reduction. Besides, the methods selectively
apply speculative code motion to only divergent branches but not non-divergent
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ones because speculative code motion for non-divergent branches may decrease
performance. The experimental evaluation shows the effectiveness of SSCM and
SSRQP across a number of benchmarks.

• Kernel fusion based on code motion techniques: A new kernel fusion based
method, KFCM, is introduced by a flow-sensitive approach based on code motion.
KFCM is designed based on dataflow analyses utilizing dataflow equations of
traditional code motion based optimizations. Thus, KFCM can fuse more kernels
based on flow-sensitive fusibility than traditional methods. Experimental results
show the effectiveness of KFCM for well-known benchmarks.

1.4 Organization of the Thesis

This thesis consists of the following chapters.

• Chapter 1: Introduction gives brief explanations of a GPU programming lan-
guage with the SIMT execution model and branch divergence as its problem. This
chapter also introduces two types of compiler optimizations for GPU programs
and describes how the proposed methods improve performance of GPU programs.

• Chapter 2: Preliminaries introduces the basic terminologies for compiler op-
timization techniques used in the rest of the thesis. Moreover, the chapter in-
troduces the NVIDIA GPU architecture and the details of CUDA programming
model. Finally, the chapter details types of compiler optimizations for GPU pro-
grams.

• Chapter 3: Code Motion introduces traditional redundancy elimination tech-
niques based on code motion and shows how the techniques remove a redundant
expression in a program.

• Chapter 4: Code Motion Based Branch Divergence Reduction discusses
how PRE and scalar replacement are extended to reduce branch divergence. This
work was published in [29] and [30].

• Chapter 5: Kernel Fusion Based on Code Motion discusses how KFCM
is realized based on traditional dataflow equations. The experimental evaluation
shows how effective KFCM is and how many kernels KFCM can fuse compared
with a traditional method. This work was published in [31].

• Chapter 6: Related Work presents different branch divergence reduction tech-
niques and kernel fusion based methods. This chapter also discusses other intra-
and inter-kernel optimizations for GPU programs.

• Chapter 7: Conclusion concludes the thesis by summarizing the proposed
methods and shows the future work.
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Chapter 2

Preliminaries

In this chapter, first, the basic terminologies for a compiler optimization used in the
thesis are described. Second, the details of the architecture of NVIDIA GPUs are
presented. Third, the terminologies of CUDA and its programming model are described.
Finally, types of compiler optimizations for GPU programs are detailed.

2.1 Basic Terminology

This thesis assumes that a Control Flow Graph (CFG) has already been generated for
each function defined in a program. A CFG is a directed graph G(N , E, s, e) with a
node set N and an edge set E ⊂ N × N . Each node n ∈ N represents a basic block
consisting of continuous statements without any branch in the middle or represents one
statement. Each edge (n,m) ∈ E represents the control flow between nodes n and m. s
and e denote the unique start node and end node of G, which are assumed not to have
any predecessors and successors, respectively. Every node n ∈ N is assumed to lie on
a path from s to e. pred(n) =df {m | (m,n) ∈ E} and succ(n) =df {m | (n,m) ∈ E}
denote the set of all predecessors and successors of a node n, respectively. Moreover,
critical edges [54, 55], which lead from nodes with more than one successor to nodes
with more than one predecessor, may block an effective code motion. For example, in
Figure 2.1a, the edge leading from node 2 to node 3 is a critical edge. The critical edges
are assumed to be eliminated by inserting synthetic nodes on the edges, as illustrated
in Figure 2.1b.

It is assumed that a basic block is divided into two partitions, as shown in Figure
2.2. The division point of a basic block is defined as the point immediately after the
last modification statement, which modifies some operands of a considered expression
e. The former partition is called an entry part, and the latter is called an exit part.
If there is no modification statement in a basic block, the entire basic block is defined
as an entry part, while an exit part is defined as empty. The first expression e of an
entry part is called entry computation, and the expression of an exit part is called exit
computation. When inserting an expression, it is inserted at either an entry part or an
exit part. The insertion points at an entry part and an exit part are called an entry
insertion point and an exit insertion point, respectively. Thus, the insertion point is
immediately before entry computation or exit computation if there is the computation,
or immediately before the first modification statement if there is no entry computation,
and there is a modification statement. Otherwise, the insertion point is the end of each
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Figure 2.1: Critical edges and their elimination
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Figure 2.2: How to divide a basic block

part.
A node m dominates a node n if and only if every path from s to n contains m.

A node m postdominates a node n if and only if every path from n to e contains m.
Additionally, a node m is called the immediate dominator of a node n if and only if
m dominates n, m is not equal to n, and the node dominating n does not exist on
every path from m to n except for m. Inversely, a node m is called the immediate
post-dominator of a node n if and only if m postdominates n, m is not equal to n, and
the node postdominating n does not exist on every path from n to m except for m [7].
A node m is control-dependent on a node n if and only if there is a non-empty path from
n to m such that m postdominates all the nodes except n on the path [71]. Control
dependency for an augmented CFG, which is the CFG augmented with a special node
ENTRY that has one edge going to the start node s and another edge going to the
end node e [26], is assumed to be computed. Notice here that the node ENTRY is
non-divergent.

Two memory references have dependence if there exists some paths of CFG from
the first reference to the second reference and both references access the same mem-
ory location [13]. The dependence is called loop-carried dependence if two dependent
references are in different iterations of a loop. If two dependent references are in the
same iteration of a loop, the dependence is called loop-independent dependence. The
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threshold of a loop-carried dependence is the number of loop iterations between two
dependent references. If the threshold is constant throughout the execution of the loop,
the threshold is called consistent threshold.

An expression e is available at node n if each path from the start node s to n includes
node m that has e and any operands of e are not modified on the path between m and
n. Further, e is partially available at node n if e is available at some nodes of the
predecessors of n. If e is available at node n, n is up-safe for e. If an expression e exists
at node n and is available immediately before n, e is totally redundant at n and can
be eliminated by replacing it with the variable that holds the value of e. On the other
hand, if e exists at node n and is partially available immediately before n, e is partially
redundant at n and cannot simply be removed as totally redundant expressions. An
expression e is anticipated at node n if each path from n to the end node e includes
node m that has e and any operands of e are not modified on the path between n and
m. Moreover, e is partially anticipated at node n if e is anticipated at some nodes of
the successors of n. If e is anticipated at node n, n is down-safe for e.

2.2 GPU Architecture

NVIDIA has been introducing GPUs for not only graphics applications but also gen-
eral purpose computing. GPUs have thousands of processing cores, high arithmetic
throughput, and high memory bandwidth. Thus, the tremendous computing power has
made GPUs the standard accelerator in many scientific domains.

The NVIDIA A100 GPU is based on the Ampere architecture [75]. A100 GPU
consists of 108 streaming multiprocessors (SMs), and each SM has 64 FP32 cores, 32
FP64 cores, 64 INT32 cores, and 4 third-generation Tensor cores. Each SM also contains
256 KB of register files and 192 KB of on-chip memory that is configured as L1 cache
and shared memory. Besides, A100 GPU has 40 MB of L2 cache and 40 GB of global
memory. The memory bandwidth is 1555 GB/sec with a 5120-bit memory interface.

2.3 CUDA

As mentioned in Section 1.1, CUDA [76] is the most used GPU programming language
with the SIMT execution model. CUDA provides extensions to C and C++ languages
to allow programmers to write the code executed on GPUs. The function executed
on GPUs is called a kernel. Programmers launch each kernel in the host code with a
hierarchical execution configuration, called a grid. A grid consists of three-dimensional
thread blocks (TBs). TBs also consist of three-dimensional threads, which run concur-
rently on a single SM. Each TB in a grid and each thread in a TB has a unique ID,
respectively. The threads in a TB are grouped into warps. Each warp consists of 32
threads with the datapath of Single Instruction Multiple Data (SIMD). The NVIDIA
H100 GPU introduces a thread block cluster that is a group of TBs, enabling efficient
cooperation of threads across multiple SMs [80, 79]. Occupancy is defined as the ratio
of active warps on a GPU to the maximum number of active warps that can be run on
the GPU.

A kernel can access multiple GPU memories during execution, including three kinds
of off-chip memories and one kind of on-chip memory. Off-chip memory includes global,
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Figure 2.3: (a) Host code processed on CPUs; (b) device code processed on GPUs.

constant, and texture memory that are shared by all GPU threads and the CPU. On-
chip memory includes shared memory that is shared among threads within a TB on the
GPU.

Figure 2.3 shows a simple CUDA code that adds one vector to another vector. In
the host code, first, the data on a host-side memory is copied to a device-side memory
(lines 3-4). Second, the values of the variables grid and block are set to (100,1,1) and
(256,1,1), respectively (lines 5-6). The type of these variables is dim3 that represents
a three-dimensional structure. In this simple code, both grid and block have one-
dimension. Third, the kernel kernelAdd is launched with the two launch configurations,
grid and block (line 7). Finally, the result of kernelAdd is copied to a host-side
memory (line 8). Figure 2.3b shows the kernel kernelAdd, which adds the vector x

to the vector y and stores the result into the vector z. In the device code, first, the
flattened index of a thread within its one-dimensional TB is computed (line 2). Second,
each thread loads the data t1 and t2 from the memory location to which x[tid] and
y[tid] correspond, respectively (lines 3-4). Third, each thread adds t1 and t2 and
stores the result into t3 (line 5). Finally, each thread stores t3 into the memory location
to which z[tid] corresponds (line 6). As shown in the code, global memory is used for
the data communication between CPUs and GPUs.

2.4 Types of Compiler Optimizations for GPU Pro-

grams

As mentioned in Section 1.2, compiler optimization techniques for GPU programs are
categorized into two main types, intra-kernel optimizations and inter-kernel ones. In
this section, the two types of optimizations are described in detail.

2.4.1 Intra-kernel Optimization

Intra-kernel optimizations analyze a single kernel and transform it into the more efficient
one. A lot of traditional optimizations such as peephole optimizations and dataflow
analysis based optimizations [17, 51, 45, 46] are included in this category, although they
are not GPU-specific optimizations. As intra-kernel optimizations for GPUs, there are
several types as follows:
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• Branch divergence reduction techniques reduce the divergence in each kernel,
resulting in performance improvement. Many techniques have been proposed,
classified into software-based approaches [19, 36, 116, 110, 37, 8, 72, 86, 64, 21,
20, 90] that reduce the harmful influence of branch divergence on performance
and hardware-based approaches [33, 69, 32, 24, 10, 87, 25, 50, 41, 107, 113, 114]
that try not to cause branch divergence.

• Intra-kernel data locality improvement approaches [108, 15, 59, 62, 101, 100]
improve GPU cache utilization in a single kernel. Most approaches expose data
reuse opportunity between TBs within a kernel by scheduling TBs.

• Dimensionally redundant instruction elimination techniques [52, 111, 106,
65, 53, 115] remove redundant instruction executions at the grid, TB, and warp
level. The warp-, TB-, and grid-wide redundant instructions often exist in a
multi-dimensional TB and grid, causing performance degradation.

• Occupancy optimizations [92, 93, 38] try to retain high occupancy, which
requires more GPU resources such as registers. Improving occupancy increases
thread- and instruction-level parallelism and promotes hiding memory latency.

2.4.2 Inter-kernel Optimization

This type of optimization analyzes multiple kernels and improve overall performance of
a GPU program. Some optimizations analyze both a host code and a device code to
collect inter-kernel information that indicates whether the program can be optimized
integrally. There are several types of inter-kernel optimizations for GPUs as follows:

• Kernel fusion methods [61, 102, 103, 104, 85, 84, 109, 27, 28, 67] achieve perfor-
mance improvement by combining two or more kernels into a single one. Fusing
kernels reduces kernel launch overhead and expensive data communication with
GPU memory.

• Inter-kernel data locality improvement approaches [63, 42, 105] improve en-
ergy efficiency and performance by exploiting inter-kernel data reuse when mul-
tiple kernels operate on the same data.

• Kernel scheduling and co-execution techniques [105, 83, 117, 58, 91, 66]
execute multiple kernels concurrently by scheduling kernels and co-execute the
kernels, resulting in full utilization of GPU resources.
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Chapter 3

Code Motion

Modern optimizing compilers transform an input program into the optimized one to
execute the program efficiently. In the process, to remove redundant expressions, the
compilers perform code motion. The code motion based techniques improve perfor-
mance of a program by avoiding unnecessary recomputations of an expression. This is
achieved by replacing the original expressions with the variable that holds the result
of the expression calculated at suitable program points. The one of code motion based
approach is Partial Redundancy Elimination (PRE) [70, 54, 55, 16, 48], which not only
removes partially redundant expressions but also moves invariant expressions out of
loops. PRE performs safe code motion, i.e., does not introduce a new computation
on any execution path to preserve the semantics of the original program. Thus, PRE
does not perform speculative code motion, which introduces a new computation on some
execution paths. Although speculative code motion may decrease performance because
it costs the new computation introduced on some paths, it can increase totally redun-
dant expressions and remove more expressions. Therefore, speculative code motion can
remarkably improve performance in some cases.

In the rest of this chapter, the detail of PRE and speculative code motion are
described in Section 3.1 and Section 3.2, respectively.

3.1 Partial Redundancy Elimination

The first algorithm of PRE is proposed by Morel and Renvoise [70]. The key idea of
the algorithm is to obtain computationally optimal results, that is, the results where
the number of expressions on each execution path cannot be decreased any further
as long as safe code motion is performed. In the process of obtaining the optimal
results, the algorithm places expressions as early as possible in a program. This strategy
performs unnecessary code motion and increases register pressure. To extend it in
terms of minimizing the register pressure, Knoop et al. proposed Lazy Code Motion
(LCM) [54, 55], which is widely adopted by modern optimizing compilers. The key
idea of LCM is to obtain computationally and lifetime optimal results, i.e., to place an
expression as late as possible while maintaining computational optimality. First, as well
as the algorithm developed by Morel and Renvoise, LCM computes the earliest insertion
points. Second, by delaying the earliest points while preserving the optimality, it finds
the latest insertion points. Finally, it moves an expression into the latest points and
replaces the original expression with the variable that holds the result of the expression.
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Figure 3.1: (a) Original CFG; (b) the CFG after applying PRE proposed by Morel and
Renvoise to the CFG in (a); (c) the CFG after applying LCM to the CFG in (a).

PRE proposed by Morel and Renvoise transforms the CFG in Figure 3.1a into the
one in Figure 3.1b by moving the expression a+b to node 1 and replacing the original
expression with the variable t. In contrast, LCM transforms the CFG in Figure 3.1a
into the one in Figure 3.1c by moving the expression to nodes 2, 7, and 8. Although
both the PRE and LCM remove the redundancy of the expression a+b, unnecessary
register pressure is avoided in the CFG shown in Figure 3.1c compared to the CFG in
Figure 3.1b.

3.2 Speculative Code Motion

Speculative code motion introduces a new computation on some execution paths, which
may decrease performance but can increase totally redundant expressions. Although
speculative code motion is not performed by PRE because of safety, it is significantly
effective in some cases. Several methods that extend traditional PRE to perform specu-
lative code motion have been proposed [40, 35, 11, 112, 118]. They perform speculative
code motion if performance benefit is expected for the speculation by entirely decreasing
the execution frequency.

Consider the application of speculative code motion to the CFG shown in Figure
3.2a. It moves the expression a+b to node 1 as shown in the CFG in Figure 3.2b
although the exit of node 1 is not down-safe. This code motion introduces the new
computation on the execution path 1 → 3 → 4 → 6 → 7, so that it may decrease
performance. However, it is expected to increase performance if the execution path
3 → 2 → 3 is executed many times. Once the expression a+b is moved to node 1, the
expression in node 5 becomes totally redundant. Thus, the redundancy is removed by
simply applying Common Subexpression Elimination (CSE) as shown in Figure 3.2c.
In contrast, traditional PRE such as LCM performs no transformation for the CFG in
Figure 3.2a because neither the code motion from node 2 to node 1 nor the one from
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(a) Original CFG (b) CFG after speculation
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Figure 3.2: (a) Original CFG; (b) the CFG after moving the expression a+b from node
2 to node 1; (c) the CFG after applying Common Subexpression Elimination (CSE) to
the CFG in (b).

node 5 to node 1 is safe, even though it may give performance improvement.
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Chapter 4

Code Motion Based Branch
Divergence Reduction

In this chapter, to improve performance of GPU kernels by reducing branch divergence,
two code motion based techniques as intra-kernel optimizations, SSCM and SSRQP,
are proposed. SSCM and SSRQP enable the traditional PRE and scalar replacement
approaches to be applicable to GPU kernels that cause branch divergence, respectively.
By exploiting the property of branch divergence, both methods speculatively hoist an
expression out of a divergent branch without decreasing performance. The speculative
code motion makes more expressions redundant, so that the proposed methods can
remove more redundant expressions than traditional approaches. Further, both SSCM
and SSRQP selectively apply speculative code motion to only divergent branches but
not non-divergent branches because speculative code motion for non-divergent branches
may decrease performance. To prove effectiveness of the methods, they are evaluated
across a number of benchmarks.

The rest of the chapter is organized as follows. Section 4.1 gives the behavior of
branch divergence and its problem in further detail. Section 4.2 and Section 4.3 describe
SSCM and SSRQP, respectively. Finally, Section 4.4 summarizes this chapter.

4.1 Branch Divergence

As mentioned in Section 1.1, branch divergence can become significant performance
bottlenecks of GPU kernels with the SIMT execution model. In the model, a kernel
must execute the statements in both true and false sides of a divergent branch because
each warp has just a single control flow.

In Figure 4.1a, assume that the conditional branches at nodes 1 and 2 cause branch
divergence. As illustrated in Figure 4.1c, a warp has eight threads, which are represented
by squares. The black squares represent executing threads, and the gray ones represent
waiting threads. Consider the execution of the code shown in Figure 4.1a. First, all
the threads execute statements at node 1 in parallel. At node 1, the threads from t0

through t3 evaluate the branch condition p to true while the threads from t4 through
t7 evaluate it to false. Thus, branch divergence occurs at node 1. Second, the threads
from t0 through t3 execute statements at node 2 in the true side of node 1. During
the execution of the true side of node 1, the threads from t4 through t7 wait without
doing anything, as shown in Figure 4.1c. At node 2, t0 and t1 evaluate the branch
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Figure 4.1: Divergent branches and behavior of threads

condition q to true while t2 and t3 evaluate it to false. The threads t0 and t1 execute
statements at node 3 in the true side of node 2. At this time, t2 and t3 wait until the
completion of the execution at node 3. Next, t2 and t3 execute statements at node 4
in the false side of node 2. At this time, t0 and t1 wait. After the execution at node 4,
the threads from t0 through t3 execute statements at node 5. After that, the threads
from t4 through t7 execute statements at node 6 in the false side of node 1. During
the execution, the threads from t0 through t3 wait. Finally, all the threads execute
statements at node 7.

The NVIDIA Volta GV100 and later GPUs support Independent Thread Scheduling
(ITS) [73, 74]. It enables threads in the same warp to perform finer-grain synchroniza-
tion and cooperation between the threads. ITS can interleave execution of statements
in divergent branches, reducing the overhead of branch divergence in a program. Fig-
ure 4.2 compares the thread scheduling of Pascal and earlier GPUs to one of Volta
and later GPUs. In Figure 4.2a, the conditional branch is assumed to be divergent.
Pascal and earlier GPUs execute statements in the true-path of the branch and then
the false-path in order (Figure 4.2b). In contrast, Volta and later GPUs interleave the
execution of the true-path with the execution of the false-path (Figure 4.2c). Thus,
ITS makes threads in a warp more flexible and gives higher efficiency for fine-grained
parallel algorithms. However, the execution is still in SIMT fashion. In other words,
active threads in a warp execute the same instruction. Therefore, branch divergence
still decreases performance of a kernel.

As discussed above, branch divergence takes both costs of the true and false sides
of a divergent branch to execute it, decreasing performance of a kernel. Code motion
based approaches, such as PRE and scalar replacement, may increase branch divergence
and decrease performance. Therefore, they cannot simply be applied to GPU programs
with branch divergence.

As shown in Figure 4.1a, expressions originally exist in one side of the divergent
branch node 2 and in node 7, and the expression in node 7 is partially redundant.
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Figure 4.2: Independent thread scheduling

The traditional PRE transforms Figure 4.1a into Figure 4.1b. In Figure 4.1b, the
redundancy is removed by PRE. However, the expressions appear in both sides of
the divergent branches at nodes 1 and 2. Therefore, execution efficiency is reduced
compared with Figure 4.1a because of the divergence at nodes 1 and 2.

4.2 Speculative Sparse Code Motion

This section describes the detailed algorithm of SSCM. SSCM is realized by extending
Sparse Code Motion (SCM) [89] so that SCM takes branch divergence into account.
In the rest of this section, first, the algorithm of SCM is described. Second, SCM is
extended to SSCM.

4.2.1 Sparse Code Motion

SCM [89] is realized by extending LCM [54, 55], which is a traditional PRE approach.
In the following, the concept of SCM is defined, and behavior of SCM for an input
program is described.

SCM consists of the following four steps:

1. Application of LCM: SCM applies LCM to an input program.

2. Computation of safe insertion points: SCM computes up-safe program points,
down-safe points, and earliest points.

3. Computation of down-safety closure and down-safety region: SCM computes the
down-safety closure ρ(n) and down-safety region R.

4. Determination of sparse insertion points: SCM finds the insertion points of an
expression and transforms a program based on the insertion points.

Each step is explained below, where the details and significance of the steps 2 and 3
are particularly described, and the outlines of the steps 1 and 4 are given.
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Figure 4.3: Dataflow equations for SCM

Application of LCM

SCM first applies LCM, which suppresses unnecessary code motion of PRE, to an input
program. SCM inserts an expression at the optimal program point considering register
pressure, as well as LCM. For the details of LCM, see Ref. [54, 55].

Computation of Safe Insertion Points

To compute safe insertion points, SCM defines the following predicates such as NdSafe,
XdSafe, NuSafe, XuSafe, NEarliest, and XEarliest using the dataflow equations in
Figure 4.3, where the predicates NComp, XComp, and Transp are locally determined.
Each predicate denotes the followings:

• NComp(B): B has an entry computation.

• XComp(B): B has an exit computation.

• Transp(B): B does not have a modification statement.

• NdSafe(B): the entry insertion point of B is down-safe.

• XdSafe(B): the exit insertion point of B is down-safe.

• NuSafe(B): the entry insertion point of B is up-safe.
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• XuSafe(B): the exit insertion point of B is up-safe.

• NEarliest(B): the entry insertion point of B is down-safe, but an expression
cannot be moved to any predecessor of B.

• XEarliest(B): the exit insertion point of B is down-safe, but an expression cannot
be moved to the entry insertion point of B.

These predicates and dataflow equations used in SCM are the same as ones used in
LCM. For ease of understanding, the notations Comp, DnSafe, UpSafe, and RelComp
are also used as defined in the followings:

• Comp =df NComp

• DnSafe =df NdSafe ∪ XdSafe

• UpSafe =df NuSafe ∩ XuSafe

• RelComp =df Comp \ UpSafe

Computation of Down-safety Closure and Down-safety Region

In addition to down-safety, SCM defines down-safety closure ρ(n) and down-safety re-
gion R. The definitions quoted from Ref. [89] are shown in the following. The down-
safety closure ρ(n) represents a set of nodes that is considered as the program points
where an expression can be moved from the CFG nodes n and succ(n). Down-safety
region R represents a set of nodes that is considered as the program points where an
expression can be moved in the entire CFG. These are based on the idea of adjust-
ing insertion points determined by LCM; SCM considers down-safe and non-up-safe
points as the program points where an expression is hoistable. Down-safety closure
ρ(n) is defined as the minimum set satisfying the following properties for CFG nodes
n ∈ DnSafe\UpSafe:

1. n ∈ ρ(n)

2. ∀m ∈ ρ(n)\Comp.succ(m) ⊆ ρ(n)

3. ∀m ∈ ρ(n).pred(m) ∩ ρ(n) ̸= ϕ ⇒ pred(m)\UpSafe ⊆ ρ(n)

With down-safety closure, down-safety region R is defined as follows:

1. RelComp ⊆ R ⊆ DnSafe\UpSafe

2. ρ(R) = R

Furthermore, SCM defines a set of program points R-Earliest that is the closest to the
start node s in down-safety region R. The definition from Ref. [89] is shown below.
R− Earliest(n) ⇔df n ∈ R ∩ ((n = s) ∪ ∃m ∈ pred(n).

¬Transp(m) ∪m /∈ R ∪ UpSafe)
SCM finds sparse insertion points of an expression in the down-safety region.
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Figure 4.4: Effects of PRE and SCM

Determination of Sparse Insertion Points

Using the predicates and down-safety region mentioned above, SCM finds sparse inser-
tion points of an expression, transforming a program based on them. First, SCM selects
the down-safety region where the number of R-Earliest points for RelComp points is
the fewest. Second, SCM inserts an expression at R-Earliest points in the down-safety
region and removes expression occurrences at RelComp points. Through the trans-
formation, SCM reduces the number of occurrences of an expression. In this process,
because SCM inserts expressions into program points in the down-safety region as well
as LCM, SCM does not perform speculative code motion that may increase the execu-
tion of expressions on some execution paths. See Ref. [89] for details of how to find
insertion points in SCM.

LCM transforms the CFG shown in Figure 4.4a into the one shown in Figure 4.4b.
SCM finds the down-safety region for the CFG in Figure 4.4b, getting two regions that
consist of node 3 and nodes 6, 7, and 8, respectively. Finally, SCM finds sparse insertion
points of an expression for the CFG in Figure 4.4b. Consequently, SCM gets node 6
as the insertion point, i.e., SCM transforms the CFG in Figure 4.4b into the one in
Figure 4.4c by inserting an expression into node 6 and removing expression occurrences
in nodes 7 and 8. Compared with the number of occurrences of the expression in Figure
4.4b, SCM can decrease it from three to two, as shown in Figure 4.4c. Notice that the
number of the expression occurrences can be decreased to one if the insertion to node
1 is allowed. However, because node 1 is not down-safe, it results in speculative code
motion, which introduces a new expression on the execution path 1 → 2 → 4 → 5 →
10. LCM and SCM do not perform such speculative code motion.

4.2.2 Extension of SCM

In this section, SCM described in the previous section is extended to SSCM to allow
speculative code motion. As well as SCM, SSCM consists of the following four steps:

1. Application of LCM,

18



������ � � ��	
� � � ��������� � ������ � �

������ � � ��	
� � �

����������������������������������� � ��
� ���������

���������

� ����� 	 ����

� ���������
���������

� 	�ℎ�����

����Set of a basic block ends 
with a divergent branch

(1)

(2)

(3)

������ � � ����� � � ���	
���� � ������ � �

������ � �

������������������������������������������������������������������ � ��
� ���	
���� � ����������

����	
���

� �	�ℎ������

�������� � � ������ � � � ���������� � ����������
����	
���

�������� � � ������ � � ��������

(b)

(c)

(a)

Figure 4.5: Dataflow equations for SSCM

2. Computation of safe insertion points,

3. Computation of down-safety closure and down-safety region, and

4. Determination of sparse insertion points.

Steps 1, 3, and 4 are similar to SCM; their explanations are omitted in this section,
and the step 2 is presented in detail.

Computation of Safe Insertion Points

In SSCM, the dataflow equations of SCM shown in Figure 4.3 are changed to ones in
Figure 4.5. As shown in Figure 4.5, the equation (2) in Figure 4.5a is added to the
equations of down-safety in Figure 4.3a, where the other equations are the same as ones
in SCM. The equation (2) in Figure 4.5a is computed if B ends with a divergent branch
instruction. In this case, if B is partially anticipated at the exit insertion point, it is
regarded as a down-safe node. In other words, if branch divergence occurs, statements
included in the true and false sides of the branch are executed. Thus, speculatively
hoisting an expression before the branch does not decrease execution efficiency, which
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Figure 4.6: Effects of speculative sparse code motion

means that an expression can be safely hoisted out of the branch. In SCM, regardless
of branch divergence, a node that is partially anticipated at the exit insertion point is
not down-safe. That is, SSCM considers a larger down-safety region than SCM does.
In particular, this property enables SSCM to achieve more sparse code motion than
SCM.

Moreover, for a non-divergent branch, SSCM applies the same equation as one in
SCM, as shown in Figure 4.5a (3), which does not perform speculative code motion
that may decrease execution efficiency. The extension also contributes to the selective
application of SSCM and SCM depending on the occurrence of branch divergence.

Figure 4.6a shows the CFG in which the shaded nodes cause branch divergence.
Consider the application of SSCM to the CFG. First, the application of LCM results
in the CFG shown in Figure 4.6b. Computing the dataflow equations in Figure 4.5,
XdSafe at node 4 becomes true through Figure 4.5a (2) because node 4 is a divergent
branch. Once XdSafe becomes true, which means the exit insertion point at node 4
is down-safe, the entry insertion points of nodes 2 and 6 also become down-safe by
computing the XdSafe, so that the exit insertion point at node 1 becomes down-safe
though node 1 is non-divergent branch. Second, the down-safety region for the CFG
in Figure 4.6b, which consists of nodes 1, 2, 3, 4, 6, 7, and 8, is found. Exploring the
sparse insertion point of an expression in the down-safety region, node 1 is found as
the insertion point. Finally, the CFG shown in Figure 4.6c is obtained by inserting an
expression into node 1 and removing expressions at nodes 3, 7, and 8 in the CFG in
Figure 4.6b. Comparing the number of occurrences of the expression in Figure 4.6b
with the one in Figure 4.6c, it is found that the number of them decreases from three
to one. Moving a+b at node 3 in Figure 4.6b before the branch at node 4 is speculative
code motion that introduces new computations on the execution path 1 → 2 → 4 → 5
→ 10. In PRE and SCM, such speculative code motion is not allowed. Furthermore,
because branch divergence also occurs at the branch at node 6, both expressions at
nodes 7 and 8 in Figure 4.6b are executed in order. SSCM hoists the expressions out of
the branch with them, as well as SCM, shown in Figure 4.6c, which directly contributes
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to branch divergence reduction.
Although the termination of this algorithm is not discussed, SCM and SSCM have

monotonicity of the dataflow analysis [7], which guarantees that a solver of the dataflow
analysis terminates. Moreover, the computational complexity of SSCM is of order
O(N

7
2 ), where N is the size of an input program. This is because SSCM consists

of LCM and SCM, which are accomplished in time O(N2) and O(N
7
2 ), respectively

[54, 55, 89].

4.2.3 Evaluation

To evaluate the effectiveness of the proposed method, two kinds of experiments were
conducted. One is a comparison of execution efficiency for the eight benchmarks, and
the other one is a comparison of execution efficiency based on the number of threads.
The open-source software Ocelot CUDA compiler [23] was used for the experiments.
The Ocelot is a backend for PTX [82] similar to a GPU assembly code and also works
as a PTX optimizer. Furthermore, the divergence analysis [19] implemented in Ocelot
was utilized to identify divergent branches. The description of an environment in the
experiments are as follows:

• OS: Ubuntu 16.04 LTS,

• CPU: Intel Core i7-4770K,

• GPU: Geforce GTX TITAN Black, and

• CUDA Toolkit 5.0.

Experiment A

In the experiment, the proposed SSCM and traditional methods were implemented,
compared in terms of the execution time of object codes for the eight benchmarks.
The benchmarks are two programs (barnshut, knn) of Treelogy benchmark [39], one
program (cfd) of Rodinia benchmark [14], two programs (FDTD3D, eigenvalues) of
NVIDIA SDK Sample code [77], and two programs (histo, mri-q) of Parboil benchmark
[95]. Moreover, two kernel functions for eigenvalues were measured. The program of
barnshut is the n-body simulation that computes forces acting on a body due to its
interaction with other bodies by using kd-trees. knn finds the k-nearest neighbors to
each query point by using kd-trees. cfd is an unstructured grid finite volume solver for
the three-dimensional Euler equations for compressible flow. FDTD3D applies a finite
differences time domain progression stencil on a 3D surface. eigenvalues computes all
eigenvalues of a tridiagonal symmetric matrix of arbitrary size. histo computes 2-D
saturating histogram with a maximum bin count of 255. mri-q computes a matrix Q
representing the scanner configuration for calibration used in a 3D magnetic resonance
image reconstruction algorithms.

First, these methods were applied to the PTX code obtained by the NVIDIA CUDA
compiler, nvcc [78], with the optimization option O3. Figure 4.7 shows the results of
the experiment. In the figure, O3 represents the execution time of the object code
generated by nvcc with the optimization option O3, where O3 is used as a baseline
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Figure 4.7: Experiment A: comparison of execution speed

in the evaluation. The LCM, SCM, SPRE, and SSCM in the figure represent the ex-
ecution time when applying LCM, SCM, speculative PRE, and SSCM, respectively,
to the PTX code generated by nvcc with O3. Each result is shown as the ratio of
each execution time to the baseline. As shown in Figure 4.7, the proposed method
SSCM improved performance for six programs: barnshut, knn, cfd, FDTD3D, eigen-
values(MultiIntervals), and histo. For the program of barnshut, the proposed method
performs speculative code motion that is never performed by LCM and SCM at di-
vergent branches. Thus, it could remove redundancy and suppress branch divergence
more than LCM and SCM, which contributes to performance improvement. On the
other hand, LCM could not perform any transformation. SCM statically decreased the
number of expressions, but it achieved less efficiency than SSCM because it does not
perform speculative code motion for divergent branches. SPRE performed speculative
code motion without considering branch divergence, but it achieved the same result as
SSCM. For the program of knn, SPRE and SSCM improved the performance by 5% ap-
proximately. These methods hoisted expressions speculatively for divergent branches,
removing redundancy and reducing branch divergence more than LCM and SCM. SPRE
did not decrease the performance because of speculative code motion without consider-
ing branch divergence. For the program of cfd, all the methods of LCM, SCM, SPRE,
and SSCM improved the performance by 8% approximately by removing many redun-
dant expressions. SPRE and SSCM did not perform speculative code motion. For the
program of FDTD3D, SSCM improved the performance by 8.07% while LCM and SCM
could not perform any transformation and get performance gain. SSCM hoisted many
expressions in a loop speculatively for divergent branches, contributing to redundancy
elimination and branch divergence reduction. In contrast, SPRE achieved less effi-
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ciency than other methods because it speculatively hoisted many expressions without
considering branch divergence and introduced new expressions into some paths. For
the program of eigenvalues(MultiIntervals), SSCM improved the performance through
speculative code motion for divergent branches in a loop, which removed redundancy
and reduced branch divergence more than LCM and SCM. SPRE performed speculative
code motion without considering branch divergence, decreasing the performance. For
the program of histo, LCM decreased the performance because it increased branch di-
vergence by inserting expressions into the destinations of divergent branches. However,
SCM, SPRE, and SSCM achieved performance improvement by hoisting the expressions
before the branches.

Although the proposed method improved the performance of the above mentioned
six programs, it was not able to improve that of eigenvalues(bisectKernelLarge) and
mri-q. For the program of eigenvalues(bisectKernelLarge), LCM and SCM eliminated
some redundant expressions in a loop but they could not improve performance. SPRE
and SSCM performed speculative code motion for divergent branches, which could not
contribute to performance improvement. For the program of mri-q, all the methods
removed redundancy, and SCM, SPRE, and SSCM hoisted expressions before divergent
branches. However, all the methods could not improve the performance. SSCM per-
forms code motion based on the results of the divergence analysis, which pessimistically
determines whether each branch causes branch divergence or not [19]. Therefore, the
proposed method might perform speculative code motion for non-divergent branches,
decreasing the performance. In summary, this experiment has indicated that the pro-
posed method is particularly effective for the tree traversal program (knn) and the
simulating programs (cfd and FDTD3D). Generally, tree traversal and simulating pro-
grams tend to have more divergent branches than image processing and linear algebra
programs. Thus, for programs with the property, SSCM is particularly more effective
than other methods.

Experiment B

In this experiment, the improvement in execution efficiency was compared by changing
the number of TBs and the number of threads. In GPU programs, as the number of
threads per TB increases, the number of registers that can be used by one thread de-
creases. Because the method with code motion tends to extend the lifetime of variables
and increase register pressure, this experiment is important to know the effect of the
method with code motion on GPUs. The sample program, MCML (Monte Carlo Mod-
eling of Light Transport in Multi-Layered Tissues) [44], which is relatively less tuned
than the benchmarks used in Experiment A, was used. The proposed method was
applied to the PTX code of the sample program obtained by using nvcc with the opti-
mization option O3 and compared the performance of them for settings of the number
of TBs in starting the kernel function to 1, 30, 60, 120, and 240, and settings of the
number of threads to 32, 64, 128, 192, and 256.

Figure 4.8 shows the results of the experiment. The execution efficiency decreased
when the number of TBs was 30 and the number of threads was 128 and 192, when
the number of TBs was 60 and the number of threads was 32, and when the number of
TBs was 120 and the number of threads was 32. The decrease in execution efficiency
was up to 8.9%. However, in other cases, the efficiency was improved. In particular,
66.4% improvement was obtained when the number of TBs was 240, and the number
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Figure 4.8: Experiment B: comparison of execution speed

of threads was 128. The reason why execution efficiency decreased is that some register
spilled over because of the lack of register resources shared by threads in one TB. In
contrast, the reason why the efficiency increased is that the efficiency improved by the
proposed method for suppressing branch divergence exceeded the efficiency decreased
by the lack of register resources.

4.3 Speculative Scalar Replacement based on Ques-

tion Propagation

In this section, the algorithm of SSRQP is described in detail. First, an outline of
question propagation [88] is introduced. Second, the algorithm of scalar replacement
based on question propagation (SRQP) [96], which is the basis of SSRQP, is described.
Thrid, SRQP is extended to SSRQP by considering branch divergence. Finally, SSRQP
and related methods are evaluated through the well-known benchmarks.

4.3.1 Question Propagation

Question propagation [88] is a method that checks whether each expression is redundant
or not by propagating questions on a CFG. As methods using the question propaga-
tion, partial redundancy elimination based on question propagation (PREQP) [99, 97]
and SRQP [96] have been proposed. These methods apply a sequence of processes to
each CFG node, which consists of a statement at most, while traversing a CFG in topo-
logical sort order. If the current node has an expression e, they check whether e can be
eliminated by propagating a query about availability backwardly in order to determine
whether the lexically same expressions as e exist at the node where the query is prop-
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Figure 4.9: Example of PREQP

agated. This expression e is called a questionary expression. If a query is propagated
to a node that has the same expression as a questionary expression, the node returns
true as its answer which is forwardly propagated to the originating node of the query.
Conversely, if a query is propagated to a node that has the statement that modifies
the operands of a questionary expression, the node returns false. If both true and false
are returned to a node n from the predecessors, another question propagation checks
whether n is down-safe through propagating a query about anticipatability forwardly.
If the query is propagated to a node that has the same expression as the questionary
expression, the node returns true. Once n is found to be down-safe, the questionary
expression is inserted into the node that returns false as its answer about availability
to make the questionary expression totally redundant at n, so that n returns true as
its answer about availability toward the originating node of the propagation. Conse-
quently, e is decided to be redundant if the originating node gets true as its answer
about availability.

The question propagation in PREQP about the expression a+ b at node 4 is illus-
trated in Figure 4.9a. First, it propagates queries about availability to check whether
a+ b is available to the predecessors of node 4. Second, the query propagated to node
3 returns true as its answer because a + b is available in node 3, as shown in Figure
4.9b. On the other hand, the query propagated to node 2 does not solve its answer
because there are no statement in node 2. In this case, the query is propagated further
to the predecessor of node 2. The query propagated to node 1 returns false because the
operand of a+ b is modified by the statement a = x at the node. As a result, both true
and false are obtained at node 4, which denotes the questionary expression is partially
redundant. To remove the redundancy, as illustrated in Figure 4.9c, a query about
anticipatability is propagated in order to check whether node 4 is down-safe. Conse-
quently, true as the answer is obtained, so that node 4 is found down-safe. Finally, the
expression a+ b at node 4 is removed by inserting the same expression to node 2, which
results in the CFG shown in Figure 4.9d.
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4.3.2 Scalar Replacement Based on Question Propagation

Scalar replacement based on question propagation (SRQP) is an extension of PREQP
to scalar replacement. SRQP checks whether each array reference expression e at each
CFG node is redundant over iterations through question propagation.

In SRQP, the answer of a query about availability is a tuple of isAvail and isReal,
where isAvail represents whether a questionary expression is available and isReal rep-
resents the fact of reaching some occurrences of the same expression as a questionary
expression. The expression that originates question propagation is an array reference
expression such as A[i], of which the operands of the questionary expression include A
and i. In the propagation process, the answer of a query about availability at node n
is determined as follows:

(1) If n is the start node s, the answer is (false, false).

(2) If n is the node where the query has already been propagated twice, the answer
is (false, false).

(3) If n is the node where the same query has already been propagated, the answer
is (true, false).

(4) If n contains a statement that may modify the operands of a questionary expres-
sion or a memory location accessed through it, the answer is (false, false).

(5) If n has the same expression as a questionary expression, the answer is (true,
true).

(6) If n has definitions of the operands of a questionary expression and is visited for
the first time, the operands are replaced with the right-hand side of the definition
statement for algebraic conversion.

(7) If any above rules are not applied, the query is propagated to all of the predecessors
of n.

The above rules are applied in order from the top to the bottom. In the process
of question propagation, an answer can be solved locally in each node if any of rules
(1) to (6) is satisfied. If an answer cannot be solved locally, SRQP propagates a query
according to the rule (7) and applies the rules to the predecessors.

As shown in the rule (2), different queries are allowed to visit a node at most twice
to analyze loop-carried availability and remove inter-iteration redundant expressions.
As shown in the rule (3), the answer of isAvail is true if the same query has already
been propagated to n. This is because the result of question propagation corresponds
to the maximum fixed point of the dataflow equations. Moreover, as shown in the rule
(4), a questionary expression must not be propagated beyond a modification statement
of the questionary expression. The modification includes a store statement to the same
memory location as the array reference. In general, it is difficult to decide whether two
memory references access the same memory location because one may be an alias of
the other. In order to expose such alias relation, pointer analysis or alias analysis may
be required. If a store statement may modify the memory location referenced, SRQP
conservatively considers that the referenced memory location is modified. As shown in
the rule (6), the operand i of a questionary expression is replaced with the right-hand
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side of a definition statement such as i = i+ 1. That is, the operand i is replaced with
i+ 1. By means of this rule, SRQP can analyze loop-carried availability.

If all of the queries propagated to predecessors of n have true as their answers
of isAvail, the answer of isAvail at n is also true. If the answers of isAvail from
predecessors of n have both true and false, a questionary expression at n is partially
available. At this time, SRQP inserts a questionary expression into the predecessors
where the answers are false if the expression is anticipated at n, so that the answer
at n becomes true. Notice here that if predecessors that have true as their answers
of isAvail are caused by repropagating a query to the same point without reaching an
occurrence of the same expression as a questionary expression, unnecessary insertions
at predecessors with false result in such as ineffective code motion through empty loops
(called hoisting-through-the-loop effect [22]), as illustrated in Figure 4.10b. To avoid the
unnecessary insertions, SRQP defines a predicate isReal, which represents the fact of
reaching some occurrences of the same expression as a questionary expression. SRQP
inserts new expressions only if some of predecessors with true as their answers of isAvail
also have true as isReal. As shown in Figure 4.10c, the propagation to node 3 does not
satisfy this requirement, whereas the one to node 5 satisfies isReal. As a result, SRQP
inserts a new expression into node 4. Note that the result is the same as that of LCM
[54, 55], and the predicate isReal works the same way as the predicate Latest used in
LCM.

SRQP checks anticipatability through propagating another query as well as avail-
ability. The query about anticipatability is forwardly propagated contrary with the
one about availability. In addition, a questionary expression of a query about antici-
patability contains all the operands that have been algebraically converted during the
propagation of a query about availability. For example, it may contains i and i + 1,
where the operand i have been converted to i+1. At this time, this means that SRQP
checks the anticipatability of A[i] and A[i+1] at the same time. The answer of a query
about anticipatability at node n is decided as follows:

(1) If n is the end node e, the answer is false.

(2) If n is the node where the same query has already been propagated, the answer
is true.
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(3) If n contains a statement that may modify the operands of a questionary expres-
sion or a memory location accessed through it, the answer is false.

(4) If n has the same expression as a questionary expression, the answer is true.

(5) If any above rules are not applied, the query is propagated to all of the successors
of n.

As described above, SRQP checks availability and anticipatability for each array
reference expression e at n. Let (isAvailp, isRealp) be the value returned as the result of
propagation from the predecessors of n, and let isDownSafe be the result of propagation
of a query about anticipatability at n. The condition for the availability of e at n is as
follows: ∏

p∈pred(n)

isAvailp ∨ isDownSafe ∧
∪

p∈pred(n)

isRealp

If the above condition is true, n returns true toward the originating node of the prop-
agation.

Consider the question propagation for the expression A[i] in node 8 in Figure 4.11a,
where an array reference A[i] denotes the memory access to the i-th element of the array
A. First, SRQP propagates a query about availability to the predecessors of node 8 to
check the availability of A[i]. When the query visits node 2, it is propagated further to
nodes 1 and 9. The query propagated to node 9 is propagated further to node 8. At
this time, SRQP performs algebraic conversion of the questionary expression because
node 8 has the statement i = i+ 1. Hence, SRQP converts the questionary expression
A[i] to A[i + 1]. Next, the query about A[i + 1] is propagated to the predecessors
of node 8 as shown in Figure 4.11b. The query propagated to node 7 is propagated
further to the predecessors of node 7. The one about A[i + 1] propagated to node 5
gives true as its answer because the expression A[i+1] exists in the node. On the other
hand, the one propagated to node 6 is propagated further to the predecessors of node
6, resulting in false as its answer according to the rules (2) and (4). Consequently, at
node 7, both true and false as answers of queries about availability are obtained as
illustrated in Figure 4.11c. Since the information of down-safety is required to generate
an answer at node 7 from the answers at predecessors, SRQP forwardly propagates a
query about anticipatability to check whether node 7 is down-safe. In the process of
the propagation, it checks whether the expression A[i] or A[i + 1] is anticipated. As
a result, the query about anticipatability gives true as the answer of node 8, which
denotes that node 7 is down-safe. Thus, node 7 returns true as its answer of the query
about availability to node 8, and node 6, which returns false as its answer of a query
about availability, is marked as the destination of insertion of the questionary expression
A[i+1]. Remember that the query for A[i+1] is propagated from node 8 to node 3. It is
propagated further to the predecessors of node 3, and it gives false as its answer as well
as node 6. Consequently, as shown in Figure 4.11d, both true and false as answers of
queries about availability are obtained at node 8. Similarly to the case in node 7, SRQP
checks whether node 8 is down-safe through propagating a query about anticipatability.
The query results in true for down-safety at node 8, so that node 8 returns true as its
answer of the query about availability to node 9, and node 3 is marked as an insertion
point of the questionary expression A[i+ 1]. As shown in Figure 4.11e, node 2 obtains
true as the answer of node 9 and false as the answer of node 1. Similarly to the case in
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nodes 7 and 8, SRQP checks whether node 2 is down-safe through propagating a query
about anticipatability. The query results in true for down-safety at node 2, so that
node 2 returns true as its answer of the query about availability, and node 1 is marked
as an insertion point of the questionary expression A[i]. As a result, node 8 that is the
originating node of a query obtains true as the answer of the query about availability.
Based on the result of the question propagation, SRQP transforms the CFG in Figure
4.11a to the one in Figure 4.11f through inserting t2 = A[i] into node 1 and t = A[i+1]
into nodes 3 and 6, which are the nodes marked during the propagation.

In the CFG illustrated in Figure 4.11f, the redundancy of an array reference between
A[i] and A[i+1] is removed. However, if the branch nodes 2 and 4 are divergent, branch
divergence is increased compared to the CFG in Figure 4.11a. This is because of the
insertion into nodes 3 and 6, which are the destinations of divergent branches at nodes
2 and 4.

4.3.3 Extension of SRQP

In this section, SRQP is extended in the following points:

(1) insertion of expressions considering branch divergence, and

(2) propagation of a query about speculation and code motion based on the answer.

Insertion of Expressions Considering Branch Divergence

As mentioned in the previous section, the application of SRQP may increase branch di-
vergence. The increase is suppressed through insertion of expressions based on a control
dependency property. Here, a control dependence region of non-divergence (CDRND)
is defined as follows:

definition. A control dependence region of non-divergence is the set of nodes that are
control-dependent on only non-divergent branches.

A CDRND denotes a region where branch divergence is not increased by insertion
of expressions, which makes a partially redundant expression totally redundant. When
inserting an expression to a node, whether the node is included in a CDRND is checked.
If a node where an expression is inserted is not in a CDRND, the insertion is suppressed
in order not to increase branch divergence.

Consider a CDRND of the CFG in Figure 4.11, where the branch nodes 2 and 4
are divergent while the node 8 is non-divergent. In addition, a control dependency
is computed for the augmented CFG [26], of which the special node ENTRY to be
non-divergent. Nodes 3, 4, and 7 are control-dependent on node 2, and nodes 5 and
6 are control-dependent on node 4. On the other hand, nodes 2, 8, and 9 are control-
dependent on node 8, and nodes s, 1, 2, and 8 are control-dependent on the special node
ENTRY. Thus, the CDRND of the CFG consists of nodes s, 1, 2, 8, and 9. Therefore,
the insertion of expressions into nodes 3 and 6 is suppressed in Figure 4.11f.

SRQP is extended to Extended SRQP (ESRQP) through suppression of insertion
based on a CDRND. As mentioned above, if a node obtains true and false as the
answers of queries about availability from the predecessors, SRQP inserts a questionary
expression into the node that returns false. On the other hand, ESRQP checks whether
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the node that returns false is included in a CDRND. It inserts a questionary expression
into the node only if it gives true for whether the node is included in a CDRND, resulting
in suppression of increase in branch divergence. The pseudocode of the algorithm of
ESRQP is shown in Appendix 4.5.1.

Propagation of a Query About Speculation and Code Motion Based on the
Answer

Utilizing the property that both destinations of a divergent branch are executed, an
expression that exists in only one side of a divergent branch can be speculatively hoisted
out of it without decreasing execution efficiency. Through adding the speculative code
motion, ESRQP is extended, which is called Speculative SRQP (SSRQP). SSRQP is
realized by propagating a query about speculation.

The effectiveness of speculative code motion for a divergent branch is illustrated in
Figure 4.12. In the figure, the shaded nodes 1 and 4 cause branch divergence. In Figure
4.12a, expressions exist in only one side of the destinations of these branches, and the
expression in node 5 is partially redundant. Traditional PRE or scalar replacement
cannot remove the redundancy because of safety. On the other hand, utilizing the
property of branch divergence, the expression in node 2 can be hoisted to node 1
speculatively as shown in Figure 4.12b. In consequence of this, the expression A[i]
becomes available at node 5, so that it can be eliminated as shown in Figure 4.12c.
In addition, branch divergence of the CFG in Figure 4.12c is reduced more than that
in Figure 4.12a because the statements at nodes 2 and 5, which are control-dependent
on divergent branches, are suppressed. Thus, speculative code motion for a divergent
branch makes more expressions available without decreasing execution efficiency and
reduces branch divergence.
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A query about speculation is propagated to check whether an expression can be
hoisted out of a divergent branch speculatively. The propagation realizes speculative
code motion from node m to node n based on a control dependency relation between m
and n. As discussed above, branch divergence can be reduced by hoisting an expression
from a node that is control-dependent on a divergent branch out of the branch. The
answer of a query about speculation is a tuple of an answer that denotes whether
speculative code motion can be performed and a set of nodes to which a questionary
expression e is inserted if the answer is true. The query about speculation (e, m, n) is
backwardly propagated based on the following rules:

(1) If n is the start node s, the answer is (false, ∅).

(2) If n is a node where the same query has already been propagated, the answer is
(true, ∅).

(3) If n contains a store statement which may modify the memory location referenced
by the questionary expression, or a definition statement of the operands of the
questionary expression, the answer at n is decided by the following rules:

(i) If n is a divergent branch node, the answer is decided by the following rules:

(a) If m is control-dependent on n, the answer is (true, {n}).
(b) If m is not control-dependent on n, the answer is (false, ∅).

(ii) If n is not a divergent branch node, the answer is (false, ∅).

(4) If n is a divergent branch node, the answer is decided by the following rules:

(i) If m is control-dependent on n, the query is propagated further to the prede-
cessors of n to check whether e can be hoisted to an earlier node; therefore m
is replaced with n. Let qans be the answer in which the propagation results.
The answer at n is decided by the following rules:

(a) If qans is (true, x), the answer is also qans.

(b) If qans is (false, x), the answer is (true, {n}).
(ii) If m is not control-dependent on n, the answer is the result of the query

propagated further.

(5) If n is a non-divergent branch node, the answer is decided by the following rules:

(i) If n is down-safe, the answer is decided by the following rules:

(a) If m is control-dependent on n, the answer is the result of the query
propagated further after replacing m with n.

(b) If m is not control-dependent on n, the answer is the result of the query
propagated further.

(ii) If n is not down-safe, the answer is (false, ∅).

(6) If any above rules are not applied, the query is propagated to all of the predecessors
of n.
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The above rules are applied in order from the top to the bottom. Here, m and
n are initialized to the node where a query about speculation originates, A query is
propagated to the predecessors p of n while n is replaced with p, so that n represents
the node where the query is currently being propagated. Let (canHoist, Node) be the
answer of a query about speculation. If canHoist is true, e can be speculatively hoisted
to the nodes in Node. Conversely, any transformation cannot be performed if canHoist
is false.

In the process of propagation, it is blocked by a store statement which may modify
the memory location referenced by e or a definition statement of the operands of e
because e cannot be hoisted beyond such a statement. Thus, as shown in the rule (3),
the answer at node n is decided based on whether n with a store statement or a definition
statement is a divergent branch node. If n is a divergent branch node, whether m is
control-dependent on n is also checked. If m is control-dependent on n, the answer is
(true, {n}) because the hoisting from m to n contributes to reducing branch divergence
and making more expressions available. If m is not control-dependent on n, the hoisting
from m to n is ineffective, so that the answer is (false, ∅). These correspond to the rule
(3)(i). On the other hand, If n is not a divergent branch node, the hoisting from m to n
is also ineffective, so that the answer is (false, ∅). This corresponds to the rule (3)(ii).

As shown in the rule (4), if n is a divergent branch node and m is control-dependent
on n, the query is propagated further to the predecessors of n after m is replaced with
n to check whether e can be hoisted to an earlier node than n. This means that the
rule checks whether n is control-dependent on an earlier node that is a divergent branch
node. If the result of the further propagation is (true, x), e can be hoisted to the nodes
in x. Conversely, if it is (false, x), e cannot be hoisted to the nodes in x. However, e can
be speculatively hoisted to n, so that the answer at n is (true, {n}). These correspond
to the rule (4)(i). On the other hand, if m is not control-dependent on n, the hoisting
from m to n is ineffective. Thus, whether m is control-dependent on an earlier node
that is a divergent branch node is checked through the further propagation. The answer
at n depends on the result of the propagation, corresponding to the rule (4)(ii).

As shown in the rule (5), if n is a non-divergent branch node, the rule needs to
check whether n is down-safe. If n is down-safe, e can be hoisted from m to n safely,
so that the rule also checks whether m is control-dependent on n. If m is control-
dependent on n, m is replaced with n to check whether n is control-dependent on an
earlier node that is a divergent branch node, and then the query is propagated further
to the predecessors of n. If m is not control-dependent on n, the query is propagated
further without replacing m with n to check the control dependence between m and
an earlier node than n. These correspond to the rule (5)(i). On the other hand, if
n is not down-safe, e cannot be hoisted to n safely, so that the answer is (false, ∅),
corresponding to the rule (5)(ii).

A program is transformed based on the result of propagation of a query about
speculation after ESRQP finds that an expression e which originates a query about
availability is not redundant. The pseudocode of the algorithm of propagation of a
query about speculation is shown in Appendix 4.5.2.

Consider the application of SSRQP to the CFG in Figure 4.13. In the figure, the
shaded nodes 2 and 4 cause branch divergence. First, SSRQP visits node 5 and propa-
gates a query about availability for the expression A[i+1]. The result of the propagation
is false, so that as illustrated in Figure 4.13a, SSRQP propagates a query about spec-
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Figure 4.13: Example of application of SSRQP

ulation (A[i + 1], 5, 4) to the predecessor of node 5 in order to check whether it can
speculatively hoist the expression to an earlier node than node 5. When the query visits
node 4, the rule (4)(i) is applied because node 4 is a divergent branch node and does
not have a store statement or a definition statement, so that the query (A[i+ 1], 4, 2)
is propagated to node 2. Next, at node 2, the rule (4)(i) is applied as well as node 4,
so that the query (A[i + 1], 2, 1) is propagated to node 1, and the query (A[i + 1], 2,
9) is propagated to node 9. At node 1, the rule (3)(ii) is applied because the statement
i = 0 is a definition statement of A[i + 1] and node 1 is not a divergent branch node.
Thus, the former query gives the answer (false, ∅) at node 1 as shown in Figure 4.13b.
On the other hand, at node 9, the rule (6) is applied, so that the query (A[i + 1], 2,
8) is propagated to node 8. At node 8, the query gives the answer (false, ∅) because
the rule (3)(ii) is applied. Consequently, at node 2, both answers obtained from the
predecessors are (false, ∅) as illustrated in Figure 4.13b. In this case, the rule (4)(i)(b)
is applied, so that the answer (true, {2}) is returned toward node 5. In consequence,
the originating node 5 obtains the answer (true, {2}), so that SSRQP hoists A[i + 1]
from node 5 to node 2 speculatively. Second, SSRQP propagates a query about avail-
ability for the expression A[i] at node 8. As a result, it can remove the inter-iteration
redundancy between A[i+1] and A[i] because of the speculative code motion of A[i+1]
from node 5 to node 2. Finally, it obtains the CFG in Figure 4.13c.

Remember that SRQP increases branch divergence because it inserts A[i + 1] into
nodes 3 and 6 as shown in Figure 4.11f. On the other hand, as illustrated in Figure
4.13c, SSRQP hoists the expression speculatively, so that it does not increase branch
divergence and furthermore makes A[i + 1] available across the loop iteration at node
8.
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Computational Complexity

As described above, SSRQP is realized by extending SRQP in terms of a CDRND and
propagation of a query about speculation. SRQP is based on question propagation [88]
whose worst-case time is O(N3), where N is the size of an input program. To utilize
a CDRND, a control dependency needs to be computed, and it can be computed in
time O(N2) [26]. Additionally, propagation of a query about speculation is also based
on question propagation, so that its worst-case time is O(N3). Therefore, SSRQP is
accomplished in time O(N3).

4.3.4 Evaluation

To evaluate the effectiveness of the proposed method, it is compared with traditional
approaches about execution efficiency for three benchmarks. The proposed method has
been implemented on the open-source software Ocelot CUDA compiler [23]. The Ocelot
is a backend for PTX [82] corresponding to a GPU assembly code and also works as
a PTX optimizer. Furthermore, the divergence analysis [19] implemented in Ocelot is
used to identify divergent branches. The descriptions of experimental environments are
as follows:

• Environment 1

– OS: Ubuntu 16.04 LTS,

– CPU: Intel Core i7-4770K,

– GPU: Geforce GTX TITAN Black, and

– CUDA Toolkit 5.0.

• Environment 2

– OS: Ubuntu 18.04 LTS,

– CPU: Intel Core i9-9900K,

– GPU: NVIDIA TITAN RTX, and

– CUDA Toolkit 11.1.

In the experiments, the proposed method and the related methods, SRQP, ESRQP,
and SSRQP S, were implemented. SRQP neither considers a CDRND nor applies prop-
agation of a query about speculation. ESRQP considers a CDRND without applying
propagation of a query about speculation. SSRQP S considers a CDRND and applies
propagation of a query about speculation to move an expression speculatively without
considering branch divergence. The execution time of object codes is compared for the
three benchmarks, Rodinia [14], Treelogy [39], and NVIDIA SDK sample code [77].
For SobelFilter and bilateralFilter in NVIDIA SDK sample code, the memory access
pattern is changed, and execution efficiency is compared before and after the change.
The change will be described later. Each program was executed 10 times. The average
of all execution time is reported. Execution time is measured by the CUDA profiler
nvprof [81].
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First, these methods are applied to the PTX code generated by the NVIDIA CUDA
compiler, nvcc. Figures 4.14 and 4.16 show the results of the experiments in the en-
vironment 1 for Rodinia and Treelogy benchmark, respectively. Figures 4.15 and 4.17
show the experimental results in the environment 2 for these benchmarks, respectively.
The baseline for comparison is the execution time of the object code generated by nvcc
with the optimization option O3. In the rest of this section, this baseline is called
O3. In the figures, SRQP, ESRQP, SSRQP S, and SSRQP respectively represent the
execution time when applying SRQP, ESRQP, SSRQP S, and SSRQP to the PTX code
used by the baseline O3. Each result is normalized by O3.

As illustrated in Figure 4.14, the proposed method SSRQP improved performance
for five programs in Rodinia benchmark in the environment 1: b+tree,bfs, huffman,
lavaMD, and leukocyte. For the program of b+tree, SRQP, ESRQP, and SSRQP im-
proved the execution efficiency by 21%, 21%, 22%, respectively. These mothods moved
loop-invariant expressions out of the loop. SSRQP could move more loop-invariant ex-
pressions out of the loop than SRQP and ESRQP did through hoisting some expressions
speculatively. On the other hand, SSRQP S achieved less efficiency than other meth-
ods did because it hoisted many expressions without considering branch divergence and
introduced new expressions into some paths. For the program of bfs, SSRQP S and SS-
RQP improved the execution efficiency by 19.6%, 22.5%, respectively through moving
loop-invariant expressions out of the loop. SRQP and ESRQP could not have an op-
portunity to transform, so that they could not get performance gain. For the program
of huffman, all methods improved the execution efficiency by 7% through removing
intra-iteration redundancy. For the program of lavaMD, SRQP, ESRQP, and SSRQP
improved the execution efficiency by about 1.5% through removing intra-iteration re-
dundancy. SSRQP S hoisted many expressions speculatively through the propagation
of a query about speculation, but it could not improve the execution efficiency. For
the program of leukocyte, SRQP and ESRQP could improve the execution efficiency
by 1% through removing intra-iteration redundancy. SSRQP S could remove a lot of
intra-iteration redundancy through speculative code motion without considering branch
divergence, resulting in the improvement of the efficiency by 4%. Since SSRQP per-
forms speculative code motion that considers branch divergence, it could remove less
redundancy than SSRQP S, resulting in the improvement of the efficiency by 3%. For
the programs of backprop and srad, SSRQP S could improve the execution efficiency
while the other methods could not transform the programs. On the other hand, for the
programs of hotspot, lud, and particlefilter, SSRQP S reduced the execution efficiency of
them. This is because SSRQP S hoists expressions speculatively for not only divergent
branches but also non-divergent branches. For the programs of heartwall, kmeans, my-
ocyte, nw, and pathfinder, SSRQP and other methods had an opportunity to transform,
but they could not improve the execution efficiency of those programs. For the other
programs, all methods did not have an opportunity to transform, so that they could
not get performance gain.

As shown in Figure 4.15, the result in the environment 2 showed the almost same
tendency as the one in the environment 1. However, for the program of b+tree, SSRQP S
improved more execution efficiency than SRQP and ESRQP did. In addition, SSRQP
could improve the most efficiency of the four methods. SRQP, ESRQP, SSRQP S, and
SSRQP improved the efficiency by 58.5%, 58.5%, 84.9%, 88%, respectively.

As shown in Figure 4.16, SSRQP improved performance for three programs barnshut,
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Figure 4.14: Comparison of execution speed of Rodinia benchmark in the environment
1. Each result is normalized by the baseline O3.
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Figure 4.15: Comparison of execution speed of Rodinia benchmark in the environment
2. Each result is normalized by the baseline O3.

kmeans, and knearestneighbor in Treelogy benchmark in the environment 1. SSRQP S
and SSRQP improved the execution efficiency of them by about 10%, 40%, and 3%,
respectively while SRQP and ESRQP could not transform the programs. This is be-
cause the speculative code motion that SSRQP S and SSRQP performed made some
expressions totally redundant.

As illustrated in Figure 4.17, in the environment 2, all methods could not improve
performance for five programs in Treelogy benchmark: barnshut, fastmultipole, knear-
estneighbor, nearestneighbor, and pointcorr. For the program of kmeans, SSRQP S and
SSRQP improved the execution efficiency by about 10%, but it was less efficient than
ones in the environment 1.

In these two benchmarks, geometric mean speedup in the environment 1 for SRQP,
ESRQP, SSRQP S, and SSRQP is 1.011, 1.011, 1.026, and 1.034, respectively, and one in
the environment 2 is 1.02, 1.02, 1.032, and 1.032, respectively. These methods could not
improve performance of many programs because benchmark programs are well known
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and have already been heavily optimized. Nevertheless, the proposed method could
get great performance gains in three programs (b+tree and bfs of Rodinia benchmark,
and kmeans of Treelogy benchmark). The three programs include the graph traversal
algorithm that has many memory operations in a loop. Thus, the proposed method
was significantly effective for them. On the other hand, ESRQP obtained the same
performance gain as SRQP. Moreover, although SSRQP S obtained performance gains
a little greater than SSRQP in some cases, it obtained much less execution efficiency
than SSRQP in some cases. Therefore, SSRQP S is not practical. From the above, the
proposed method, which considers a CDRND and speculative code motion based on
branch divergence, is the best of these methods.

As mentioned above, for SobelFilter and bilateralFilter in NVIDIA SDK sample
code, the memory access pattern was changed, and experiments are conducted with
them. The access pattern of the original programs was coalesced, so that there were
redundant memory accesses among threads, which could not be removed. Therefore,
the memory access pattern was changed, which transformed redundant accesses among
threads into ones within each thread. Figures 4.18a and 4.18b show the pattern of the
memory accesses before and after the modification. The figure shows the 2nd to 10th
elements of an array are calculated on three threads with three iterations of a loop.
Assume that calculating the i-th element needs to access the i-1th and i+1th elements.
In Figure 4.18a, thread t1 calculates the 2nd, 5th, and 8th elements, t2 does the 3rd,
6th, and 9th ones, and t3 does the 4th, 7th, and 10th ones for each loop iteration.
There are no redundant memory accesses within each thread, but there are redundant
ones among threads. That is, at the first iteration of the loop, since thread t1 accesses
the 1st, 2nd, and 3rd elements, and t2 does the 2nd, 3rd and 4th ones, the accesses
to the 2nd and 3rd elements are redundant between these two threads. As well, since
thread t3 accesses the 3rd, 4th, and 5th elements, the accesses to the 3rd and 4th ones
are redundant between t2 and t3. This type of redundancy exists at each iteration,
and it is difficult to remove the redundancy. On the other hand, in Figure 4.18b, in
the loop iterations, thread t1 calculates the 2nd, 3rd, and 4th elements, t2 does the
5th, 6th and 7th ones, and t3 does the 8th, 9th and 10th ones, respectively. In this
case, there is no redundancy among threads in the same iteration. Instead, there is
redundancy across iterations within each thread. Since thread t1 accesses the 1st, 2nd,
and 3rd elements at the 1st iteration of the loop, and it accesses the 2nd, 3rd and 4th
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Figure 4.19: Comparison of execution speed of SobelFilter and bilateralFilter in Nvidia
SDK in the environment 1. Each result is normalized by the baseline O3.

ones at the 2nd iteration, the accesses to the 2nd and 3rd ones are redundant in this
iteration. This type of redundancy exists in each thread, and it can be removed by
scalar replacement.

The execution efficiency before and after changing the memory access pattern as
described above was compared. Figures 4.19 and 4.20 show the experimental results of
SobelFilter and bilateralFilter in the environments 1 and 2, respectively. Each result is
normalized by O3, which represents the execution time of the object code before the
modification of the access pattern with the optimization option O3. SRQP, ESRQP,
SSRQP S, and SSRQP represent the same ones as in Figures 4.14, 4.15, 4.16, and
4.17. O3 mod represents the execution time of the object code after the modification
of the access pattern with the optimization option O3. SRQP mod, ESRQP mod, SS-
RQP S mod, and SSRQP mod represent the execution time when respectively applying
SRQP, ESRQP, SSRQP S, and SSRQP to the PTX code of O3 mod.

For the program of SobelFilter, SRQP, ESRQP, SSRQP S, and SSRQP could not
transform and improve the PTX code of O3. In the environment 1, as shown in Fig-
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Figure 4.20: Comparison of execution speed of SobelFilter and bilateralFilter in Nvidia
SDK in the environment 2. Each result is normalized by the baseline O3.

ure 4.19, O3 mod decreased the execution efficiency by 2% because the change of the
memory access pattern prevents the memory coalescing optimization. SRQP mod, ES-
RQP mod, SSRQP S mod and SSRQP mod could remove inter-iteration redundancy.
However, SSRQP S mod hoisted expressions speculatively without considering branch
divergence, and the number of statements to be executed increased, so that it decreased
the execution efficiency by 9% in the environment 1. SRQP mod, ESRQP mod and SS-
RQP mod could improve the efficiency by 2% in the environment 1 because SRQP mod
and ESRQP mod do not perform speculative code motion, and SSRQP mod suppresses
speculative code motion for non-divergent branches. In the environment 2, as shown in
Figure 4.20, all methods could not improve the efficiency after modifying the memory
access pattern. O3 mod and SSRQP S mod did not decrease the efficiency. The modi-
fication that prevents the memory coalescing optimization and speculative code motion
did not affect the performance of this program in the environment 2. For the program
of bilateralFilter, as well as SobelFilter, SRQP, ESRQP, SSRQP S and SSRQP could
not transform and improve the PTX code of O3. In the environment 1, for the same
reason as SobelFilter, O3 mod decreased the execution efficiency by 5% as shown in
Figure 4.19. SRQP mod, ESRQP mod, SSRQP S mod and SSRQP mod could remove
inter-iteration redundancy and improve the efficiency by 14%, 14%, 8%, and 14%, re-
spectively. SSRQP S mod was less efficient than other methods for the same reason as
SobelFilter. In the environment 2, as shown in Figure 4.20, O3 mod decreased the ex-
ecution efficiency by 11%. SRQP mod, ESRQP mod, and SSRQP mod could improve
the efficiency by 3%, and SSRQP S mod could not improve the efficiency.

Most GPU programs access memory through the pattern shown in Figure 4.18a.
This pattern coalesces memory access, so that it has few memory transactions. In
addition, the pattern has a high rate of cache hit because the spatial locality of the
pattern is high at the same iteration. In general, the strided memory access shown in
Figure 4.18b is less efficient than the coalesced access shown in Figure 4.18a. However,
since the access to a register is faster than the memory access, the execution speed of a
program can be faster if the data is stored in a register as many as possible. The results
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of this experiment show that the proposed method can improve the execution efficiency
of GPU programs by changing the pattern of the memory access and applying scalar
replacement to increase accesses through registers.

4.4 Summary

SSCM and SSRQP are introduced to reduce branch divergence and improve perfor-
mance of a GPU kernel. SSCM is designed by extending the dataflow equations used
in traditional PRE. The extension allows a partially anticipated expression at a di-
vergent branch to be considered as fully anticipated, enabling speculative code motion
without penalty by utilizing the property of branch divergence. Based on the code mo-
tion, SSCM makes more expressions redundant than traditional method, so that it can
improve performance further. SSRQP is proposed by making SRQP consider branch
divergence when propagating a query. As well as SSCM, SSRQP performs speculative
code motion without decreasing performance at a divergent branch, eliminating more
redundancy and improving performance. Moreover, SSRQP introduces a CDRND as a
condition in inserting a compensation code. Based on the CDRND, SSRQP suppresses
inserting an expression into the node where branch divergence may increase. There-
fore, SSRQP does not increase branch divergence in addition to eliminating redundant
memory accesses and reducing the divergence through speculative code motion.

4.5 Appendix

4.5.1 Algorithm of Extended SRQP Based on a CDRND

Algorithm 1.1 Extended SRQP based on a CDRND: Propagate

1: function Propagate(n, q)
2: let isDownSafe := antqp(n, q)
3: let Nf := ∅
4: for all p ∈ pred(n)
5: let (isAvailp, isRealp) := Local(p, q)
6: if isAvailp then add p to Nf

7: let isAvail :=
∏

p∈pred(n) isAvailp
8: let isReal :=

∪
p∈pred(n) isRealp

9: if both true and false are in isAvailp then
10: if Nf ⊆ CDRND then
11: if isAvail ∨ (isDownSafe ∧ isReal) then
12: add Nf to insert dst
13: isAvail := true
14: if isAvail ∨ (isDownSafe ∧ isReal) then return (isAvail, isReal)
15: else return (false, false)
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Algorithm 1.2 Extended SRQP based on a CDRND: Local

1: function Local(n, q)
2: if n = s then return (false, false)
3: if answer [n] ̸= ⊥ then return answer [n]
4: if visited [n] > 1 then return (false, false)
5: if query [n] = q then return (true, false)
6: query [n] := q
7: visited [n]++
8: for i=instSize(n) to 0
9: let inst := getInstruction(n,i)
10: if mayAlias(q, inst) then
11: answer [n] := (false, false)
12: return (false, false)

13: if isSameVal(q, inst) then
14: answer [n] := (true, true)
15: return (true, true)

16: if isDefVal(q, inst) ∧ visited [n] = 1 then updateQuery(q, inst)

17: let rlt := Propagate(n, q)
18: answer [n] := rlt
19: return rlt

4.5.2 Algorithm of Propagation of a Query About Speculation

Algorithm 2.1 Propagation of a query about speculation: PropagateSpeculativeQuery

1: function PropagateSpeculativeQuery(e,m, n)
2: for all p ∈ pred(n)
3: let (canHoistp, Nodep) := Local Spec(e,m,p)
4: if canHoistp is false then add p to Np

5: let canHoist :=
∏

p∈pred(n) canHoistp
6: let Node :=

∪
p∈pred(n) Nodep

7: if (both true and false are in canHoistp) ∧ (Np ⊆ CDRND) ∧ (n is down-safe)
then

8: Node := Node ∪ Np

9: canHoist := true
10: if canHoist then return (true, Node)
11: else return (false, ∅)
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Algorithm 2.2 Propagation of a query about speculation: Local Spec

1: function Local Spec(e,m, n)
2: if n = s then return (false, ∅)
3: if answer[n] ̸= ⊥ then return answer[n]
4: if query [n] = q then return (true, ∅)
5: query [n] := (e, m)
6: let rlt := ⊥
7: if containsMayAlias(e,n) ∨ containsDefVal(e,n) then
8: if n is a divergent branch node then
9: if m is control-dependent on n then rlt := (true, {n})
10: else rlt := (false, ∅)
11: else rlt := (false, ∅)
12: else
13: if n is a divergent branch node then
14: if m is control-dependent on n then
15: m := n
16: let (canHoist, Node) := PropagateSpeculativeQuery(e,m, n)
17: if canHoist is false then (canHoist, Node) := (true, {n})
18: rlt := (canHoist, Node)
19: else rlt := PropagateSpeculativeQuery(e,m, n)

20: else if n is a non-divergent branch node then
21: if n is down-safe then
22: if m is control-dependent on n then
23: m := n
24: rlt := PropagateSpeculativeQuery(e,m, n)
25: else rlt := PropagateSpeculativeQuery(e,m, n)

26: else rlt := (false, ∅)
27: else rlt := PropagateSpeculativeQuery(e,m, n)

28: answer[n] := rlt
29: return rlt
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Chapter 5

Kernel Fusion Based on Code
Motion

In this chapter, KFCM is introduced, which is the code motion based kernel fusion
technique that can fuse more kernels than traditional methods.

The rest of this chapter is organized as follows. Section 5.1 describes a traditional
kernel fusion based method and its problem. Section 5.2 presents the proposed method,
KFCM. In Section 5.3, the experimental results of KFCM are presented. Finally, Section
5.4 gives the summary.

5.1 Kernel Fusion

Kernel fusion based methods [104, 84, 85, 28, 27, 102, 103, 109, 67] achieve perfor-
mance improvement by combining two or more kernels into one. Because the fusion
decreases the number of kernels, it reduces kernel launch overhead, improving perfor-
mance. However, the major potential performance gain of kernel fusion comes from
increasing opportunities for optimizations by enlarging each kernel. For example, ker-
nel fusion can effectively reduce expensive data communication with global memory.
Typical kernels have input/output data, which must be stored in the global memory
with the highest communication cost of memories in a GPU. Kernel fusion enables ker-
nels to share some data on other memories at a lower cost, reducing traffic with global
memory.

Figure 5.1 shows a simple fusion scenario of two CUDA [76] kernels. As shown in
Figure 5.1a, the kernels Kernel1 and Kernel2 first read input data from global memory
and write output data to global memory at the end. On the host side, the function
main serially launches the kernels. Here, the output of Kernel1 is used by Kernel2 as
the input. As shown in Figure 5.1b, traditional kernel fusion based methods combine
Kernel1 and Kernel2 into fusedKernel. Once they are fused, out1[threadIdx.x]
in the right-hand side of the statement at line 7 can be replaced with rlt1. This will
enable the fusion to eliminate a load statement from global memory, as indicated by a
copy assignment at line 8. Furthermore, the statement that writes to out1 at line 6 can
be eliminated if a compiler knows that d out1 is never used in the rest of the function
main. As a result, the fusion decreases the number of kernel launches from two to one,
improving the performance.

Thus, traditional kernel fusion based methods are effective for various GPU appli-
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Figure 5.1: Example of applying a traditional kernel fusion based method to a simple
CUDA code.

cations but miss fusion opportunities in cases as shown in Figure 5.2a. As shown in the
figure, Kernel1 and Kernel2 cannot simply be fused using traditional methods because
Kernel1 is not always executed before Kernel2. In such cases, the proposed method
assumes that the launch statement of Kernel2 has been hoisted to then and else sides
of the if-statement. At this time, Kernel1 and Kernel2 can be fused in the then side
by combining them into fusedKernel, as shown in Figure 5.2b. The proposed method
achieves the kernel fusion based on code motion, as explained in Section 5.2.

5.2 Kernel Fusion Based on Code Motion

This section describes the details of KFCM. KFCM comprises two fusion phases, and
each phase consists of a fusibility analysis and transformation based on the result.
The first fusion phase performs a backward fusibility analysis, which hoists each kernel
launch statement to the earliest program points without lengthening any execution
path. The phase checks whether the hoisted launch statement is adjacent to some
other launch statements. Once adjacent ones are detected, they are fused as a single
kernel. In contrast, the second fusion phase performs a forward fusibility analysis, which
sinks each kernel launch statement to the latest program points without lengthening
any execution path. The phase checks adjacency as well as the first phase and fuses
adjacent launch statements. The second phase is performed only when the first phase
does not result in any fusion. These fusibility analyses are implemented as dataflow
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Figure 5.2: (a) Simple code in which traditional kernel fusion based methods cannot
fuse the kernels Kernel1 and Kernel2; (b) code after applying the proposed method to
the program shown in (a). The proposed method can combine Kernel1 and Kernel2

into fusedKernel on the true-path of a conditional branch and insert Kernel2 as a
compensation code on the false-path.

analyses. Their definitions are given by dataflow equations in Sections 5.2.1 and 5.2.2,
respectively. The fusion phases are applied to each node in a CFG until there is no
change. The behaviors of the overall algorithm of KFCM are illustrated in Section
5.2.3.

In the rest of this section, the CFG in Figure 5.3a is used as a motivation. As
shown in the figure, K1, K2, K3, and K4 are kernels, of which kernel launch statements
are represented by klsK1, klsK2, klsK3, and klsK4. KFCM eventually transforms the
CFG given in Figure 5.3a into the one given in Figure 5.3b.

5.2.1 Backward Fusion Phase

At the first phase of the proposed kernel fusion, the proposed method applies the
backward kernel fusion (BKF), which determines fusible kernels backwardly and fuses
them, to a program. BKF is based on a dataflow analysis similar to PRE, which is a
code optimization that eliminates partially redundant expressions [54, 55]. BKF solves
a dataflow equation for each kernel launch statement klsK in a program and transforms
the program based on the result. The goal of this phase is to hoist klsK and fuse the
kernel K with other kernels existing at earlier program points. In the hoisting process,
some single kernel launch statements may be inserted as a compensation code to hold
the program semantics if necessary. This phase consists of the following steps:

(1) Computing local predicates;

(2) Computing down-safety points;

(3) Finding program points where a kernel K is fusible with other kernels by hoisting
klsK ;
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Figure 5.3: (a) CFG used as a motivation; (b) result of applying KFCM to the CFG in
(a).

(4) Computing insertion points of klsK ; and

(5) Hoisting klsK and fusing kernels.

The details of the above steps are described as follows.

Computing Local Predicates

First, BKF computes the local predicates Launch and Transp for a kernel launch state-
ment klsK . Each predicate is represented as follows:

• Launch(n)klsK : n has klsK .

• Transp(n)klsK : n has neither a modification statement of klsK nor the other kernel
launch statements.

For example, consider K1(d1,a) in Figure 5.3a. The predicate Launch(4)klsK1
is true,

and LaunchklsK1
for the other nodes are false. Moreover, the predicates TranspklsK1

for
the nodes {3, 4, 5, 7, 8, 10, 12} are true. However, TranspklsK1

for the nodes {1, 2,
6, 9, 11} are false because there are modification statements in the nodes {1, 2} and
the other kernel launch statements in the nodes {6, 9, 11}. Thus, the Transp property
of klsK holds the order between kernels by killing Launch of the other kernel launch
statements.
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Figure 5.4: Dataflow equations for a down-safety analysis.

Computing Down-Safety Points

The local predicates defined in the previous section are used to compute down-safety
program points for klsK . The down-safety program points indicate the region where
klsK can be hoisted without lengthening any execution path. BKF seeks the program
points where to hoist klsK in the region. The down-safety is defined by the predicates
NdSafe and XdSafe by solving the dataflow equations shown in Figure 5.4. Each
predicate for klsK represents the following.

• NdSafe(n)klsK : the entry of n is down-safe with respect to klsK .

• XdSafe(n)klsK : the exit of n is down-safe with respect to klsK .

Figure 5.5a shows the result of the down-safety analysis for the kernel K2 at node 6.
As shown in the figure, NdSafe(5)klsK2

, NdSafe(6)klsK2
, XdSafe(4)klsK2

, and XdSafe(5)klsK2

are true. On the other hand, NdSafe(4)klsK2
is false because klsK2 is killed by klsK1 at

node 4.

Finding Kernel Fusion Points

Once down-safety points for a kernel launch statement klsK are computed, BKF checks
where a kernel K can be fused with other kernels. Assume that klsK and klsK2 are
launch statements for different kernels. When the exit of a node n is down-safe with
respect to klsK and n has klsK2, kernels K and K2 are fusible at the exit of n because
klsK can be hoisted immediately after klsK2. To characterize the program points,
BKF introduces the predicate XFusible shown in Figure 5.6. XFusible(n, klsK , klsK2)
indicates that a kernel K is fusible with another kernel K2 at the exit of a node n by
hoisting klsK to the exit of n.

For example, in Figure 5.5a, the kernel K2 is fusible with K1 at the exit of node
4 because XFusible(4, klsK2, klsK1) is true. This means that the exit of node 4 is
down-safe with respect to K2(d2,a), and node 4 has K1(d1,a). However, fusing the
two kernels requires hoisting K2(d2,a) to the exit of node 4. This hoisting must insert
a compensation code to preserve the semantics of the program. The insertion points
are computed as follows.

Computing Insertion Points

This section shows how BKF decides insertion points of a kernel launch statement klsK
as a compensation code. The process of deciding the insertion points is similar to LCM
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Figure 5.5: (a) Result of applying the down-safety analysis to the CFG in Figure
5.3a and finding a kernel fusion point; (b) result of computing insertion points in the
backward fusion phase.
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Figure 5.6: Dataflow equation for the predicate XFusible.

[54, 55]. LCM is a traditional PRE approach comprising two analyses of earliestness
and latestness based on down-safety and delayability, respectively. In the latestness
part, BKF is the same as LCM. On the other hand, BKF gives a new definition to the
earliestness. Each analysis step is described as follows.

First, BKF computes the earliest points of down-safety. Here, earliestness is defined
by the predicates NDnEarliest and XDnEarliest in the dataflow equations shown in
Figure 5.7. Each predicate for klsK represents the following.

• NDnEarliest(n)klsK : the entry of n is down-safe with respect to klsK , but klsK
cannot be moved to any predecessor of n.

• XDnEarliest(n)klsK : the exit of n is down-safe with respect to klsK , but klsK is
killed in n.

Notice that BKF does not regard different occurrences of the same kernel as the same,
unlike redundant expressions in LCM. Therefore, the earliest points of BKF are com-
puted within each down-safety region without considering up-safety.

Second, BKF computes the delayability of klsK . The delayability analysis is essen-
tially the same as that of LCM. Notice here that the statement klsK decided to be
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Figure 5.7: Dataflow equations for an earliestness analysis.
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Figure 5.8: Dataflow equations for a delayability analysis.

fused with other kernel launch statements in the previous section cannot be delayed
beyond the kernel fusion point. The delayability is defined by the predicates NDelayed
and XDelayed in the dataflow equations shown in Figure 5.8. Each predicate for klsK
represents the followings.

• NDelayed(n)klsK : klsK can be delayed to the entry of n from NDnEarliest or
XDnEarliest point.

• XDelayed(n)klsK : klsK can be delayed to the exit of n from NDnEarliest or
XDnEarliest point.

Finally, BKF computes the latest program points based on delayability. The latest
points represent program points where klsK cannot be delayed any further. The latest-
ness is defined by the predicates NLatest and XLatest in the dataflow equations shown
in Figure 5.9. Each predicate for klsK represents the followings.

• NLatest(n)klsK : klsK can be delayed to the entry of n, but it cannot be delayed
further.
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Figure 5.9: Dataflow equations for a latestness analysis.
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Figure 5.10: (a) Result of backward analyses and transformation based on them with
respect to K2; (b) result of forward analyses with respect to K3.

• XLatest(n)klsK : klsK can be delayed to the exit of n, but it cannot be delayed
further.

Figure 5.5b shows the result of computing earliestness, delayability, and latestness.
As shown in the figure, NDnEarliest(5)klsK2

and XDnEarliest(4)klsK2
are true. There-

fore, NDelayed(5)klsK2
, XDelayed(5)klsK2

, and XDelayed(4)klsK2
are true. However,

NDelayed(6)klsK2
is false because XFusible(4, klsK2, klsK1) is true. The statement

klsK2 cannot be delayed beyond the fusion point, although XDelayed(4)klsK2
is true.

Consequently, XLatest(4)klsK2
and XLatest(5)klsK2

are true.

Hoisting a Statement and Fusing Kernels

Once all predicates are computed, BKF applies transformations, i.e., actual insertions
and kernel fusion of klsK , to the program based on the predicates. First, klsK is inserted
into the entry (or exit) of a node n that satisfies NLatest(n)klsK (or XLatest(n)klsK )
= true. Second, the kernels K and K2 are fused at n that satisfies XFusible(n, klsK ,
klsK2) = true.

Figure 5.10a shows the result of applying the insertion based on latestness and the
fusion of the kernel K2 with K1 to the CFG in Figure 5.3a. According to the latest-
ness analysis, the predicates XLatest(4)klsK2

and XLatest(5)klsK2
are true; therefore,

K2(d2,a) is inserted into the exit of nodes 4 and 5. Furthermore, the kernels K2 and K1

are fused at node 4 because XFusible(4, klsK2, klsK1) is true. The name of the fused
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Figure 5.11: Dataflow equations for a sinkability analysis.

kernel is Fused1 2 in the figure.

5.2.2 Forward Fusion Phase

The proposed kernel fusion finds fusible kernels for each kernel launch statement back-
wardly and forwardly in this order. If some fusible kernels are found by BKF, KFCM
applies BKF to the next statement; otherwise, the forward kernel fusion (FKF) is ap-
plied to the current statement. FKF finds fusible kernels forwardly and fuses them
based on the dataflow equations similar to PDE, which is a code optimization that
eliminates partially dead statements [56]. This phase aims to sink a kernel launch
statement klsK and fuse K with kernels that exist in later program points. This phase
includes the following steps:

(1) Computing sinkability of klsK ;

(2) Finding program points where a kernel K is fusible with other kernels by sinking
klsK ;

(3) Computing insertion points of klsK ; and

(4) Sinking klsK and fusing kernels.

The details of the above steps are described as follows.

Computing Sinkability

As an initial step, FKF analyzes sinkability of klsK , which gives the program points
where klsK is sinkable. Because klsK can be sunk until it is killed, it may be sunk
immediately before other kernel launch statements at a later program point. In this
case, these kernels can be candidates to be fused. The details of fusion points are
presented in the following step. The sinkability is defined by the predicates NSinkable
and XSinkable in the dataflow equations shown in Figure 5.11. Each predicate for klsK
is represented as follows:

• NSinkable(n)klsK : klsK is sinkable at the entry of n.

• XSinkable(n)klsK : klsK is sinkable at the exit of n.

Figure 5.10b shows the result of the sinkability analysis for the kernel K3. As
shown in the figure, NSinkable(10)klsK3

, NSinkable(11)klsK3
, XSinkable(9)klsK3

, and
XSinkable(10)klsK3

are true.
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Figure 5.12: Dataflow equation for the predicate NFusible.
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Figure 5.13: Dataflow equations for the predicates NInsert and XInsert.

Finding Kernel Fusion Points

Once the program points where klsK is sinkable are given by a sinkability analysis, FKF
finds the program points where K can be fused with other kernels. Assume that klsK
and klsK2 are launch statements for different kernels. Kernels K and K2 are fusible at
the entry of a node n where klsK is sinkable and klsK2 exists. To characterize the pro-
gram points, FKF introduces the predicate NFusible shown in Figure 5.12. NFusible(n,
klsK , klsK2) means that a kernel K is fusible with another kernel K2 at the entry of n
by sinking klsK to the entry of n.

Figure 5.10b shows that the kernel K3 is fusible with K4 at the entry of node 11
because klsK3 is sinkable, and klsK4 exists there. It means that NFusible(11, klsK3,
klsK4) is true. However, to fuse them without changing semantics, FKF has to insert
klsK3 as a compensation code as well as BKF. The insertion points are computed as
described in the followings.

Computing Insertion Points

In FKF, insertion points of klsK as a compensation code are decided as a result of the
sinking. Here, klsK cannot be sunk across the program point where a kernel K can
be fused with other kernels. Thus, the predicates NInsert and XInsert are defined in
the dataflow equations shown in Figure 5.13. Each predicate for klsK is represented as
follows:

• NInsert(n)klsK : klsK can be sunk to the entry of n, where it cannot be sunk
further.

• XInsert(n)klsK : klsK can be sunk to the exit of n, where it cannot be sunk further.

As shown in Figure 5.10b, klsK3 cannot be sunk to the later program point than the
entry of node 11 because the kernel K3 is fusible with K4 at the point. Moreover, klsK3

cannot be sunk to the later point than the exit of node 10 because it is not sinkable at
the entry of the successor of node 10. Therefore, NInsert(11)klsK3

and XInsert(10)klsK3

are true.

53



��� ���

���

�

��������	

�




��������	

� �



�

��������	

�


 ��������	� �



��������	

� �


 ������������������	�

� ��������	

��������	

Figure 5.14: (a) Motivating example of capturing second order effects; (b) result of
sinking the kernel K1; (c) result of hoisting the kernel K2 and fusing it with K1.

Sinking a Statement and Fusing Kernels

As the final step, FKF applies transformations, i.e., actual insertions and fusion, based
on the predicates obtained in the above steps. First, klsK is inserted into the entry (or
exit) of a node n that satisfies NInsert(n)klsK (or XInsert(n)klsK ) = true. Second, the
kernels K and K2 are fused at n that satisfies NFusible(n, klsK , klsK2) = true.

Figure 5.3b shows the result of inserting klsK3 and fusing K3 with K4 in the CFG
in Figure 5.10a. The predicates NInsert(11)klsK3

and XInsert(10)klsK3
are true; hence,

K3(d3,a) is inserted to the entry of node 11 and the exit of node 10. The kernel K3 is
fused with K4 at node 11 because NFusible(11, klsK3, klsK4) is true. As shown in the
figure, Fused3 4 is a new name given to a single kernel in which the fusion results.

5.2.3 Application of KFCM

Each KFCM phase has a second order effect on the other phase. For example, in the
case shown in Figure 5.14a, any kernel cannot be fused by only applying either of the
phases. However, once the kernel K1 is sunk to node 4 (Figure 5.14b), it can be fused
with the kernel K2 at node 4 by hoisting K2 (Figure 5.14c). To effectively capture the
second order effect, both phases are applied to each statement one by one while visiting
nodes in a CFG from the start node to the end node. The process is repeated to capture
all effects until there is no change.

The computational complexity of KFCM is O(N2), where N is the size of an input
program. This is because KFCM consists of BKF and FKF that are uni-directional
analyses and thus accomplished in time O(N2) [49]. To capture all the second order
effect, BKF and FKF must be applied repeatedly until there is no change, so that the
complexity of KFCM becomes O(N3).
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5.3 Evaluation

This section shows the effectiveness of the proposed method through the results of
experiments conducted for a well-known benchmark, NVIDIA SDK sample code, and
real-world applications. The main purpose of the experiments is to investigate the
followings:

• How effective KFCM is compared with a traditional method.

• How many kernels KFCM can fuse compared with a traditional method.

In the followings, first, the experimental environment and the implementation of KFCM
are introduced. Next, the details of the experimental results are described.

5.3.1 Environment and Implementation

The proposed method has been implemented on LLVM [2, 57]. To compare the proposed
method with a traditional method, the traditional method was implemented based on a
flow insensitive approach that fuses only originally consecutive kernels. In what follows,
the traditional one is called KFtrad. In the experiments, first, a CUDA code is compiled
to the LLVM intermediate representation (IR) code using Clang [1]. Second, KFCM
and KFtrad are applied to the IR code to generate an optimized IR code, respectively.
Finally, the optimized IR code is compiled to an object code by LLVM. The experiments
were conducted in the following environment.

• OS: Ubuntu 18.04 LTS,

• CPU: Intel Core i9-9900K,

• GPU: NVIDIA TITAN RTX,

• CUDA Toolkit 11.1, and

• Clang/LLVM 11.1.0.

The experiments assume that it is unnecessary to insert any global synchronization,
which is a synchronization between thread blocks, between kernels to be fused. It must
be manually checked because it is difficult to analytically decide whether to insert the
synchronization. In the experiments, all programs do not need any global synchroniza-
tion except for the program gaussian of the Rodinia benchmark. For gaussian, a global
synchronization is manually inserted between kernels to be fused. On the other hand,
a local synchronization is conservatively inserted, which is a synchronization between
the threads in the same thread block, between fused kernels, even if it is unnecessary.

As mentioned in Section 5.2.3, second order effects can be generated after applying
both phases of KFCM to one kernel launch statement. To capture the effects, KFCM
was implemented such that it visits nodes in a CFG in the reverse postorder. The
application of KFCM to all the nodes is repeated until there is no change.
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Table 5.1: Comparison of speedup in Rodinia benchmark [14], NVIDIA SDK sample
code [77], and GPU Computing Gems (GCG) [43]. Each result is normalized by the
baseline O3.

Rodinia KFtrad KFCM KFCM over KFtrad

bfs 0.99x 0.99x -
cfd 1.35x 1.48x 1.10x
gaussian 1.02x 1.02x -
huffman 1.00x 1.00x 1.00x
hybridsort 1.02x 1.02x -
lud 1.03x 1.04x 1.01x
particlefilter 1.03x 1.03x -
srad v1 1.06x 1.11x 1.05x
srad v2 1.22x 1.22x -

NVIDIA SDK KFtrad KFCM KFCM over KFtrad

eigenvalues 1.00x 1.25x 1.25x
lineOfSight 1.00x 1.22x 1.22x
mergeSort 1.01x 1.01x -
newdelete 1.02x 1.02x -

GCG KFtrad KFCM KFCM over KFtrad

barneshut 1.16x 1.21x 1.05x
bspline 1.02x 1.02x -
IFS 1.00x 1.05x 1.05x
pathReg 1.18x 1.60x 1.35x
rna folding gpu 1.00x 1.00x 1.00x

5.3.2 Experimental Results

KFCM and KFtrad are compared for the execution time of the well-known Rodinia
benchmark [14], NVIDIA SDK sample code [77], and the real-world applications in
GPU Computing Gems (GCG) [43]. Each program is executed 10 times, and the
average of all the execution time is reported. Moreover, the number of reduced kernel
launches because of kernel fusion was measured. The CUDA profiler nvprof [81] was
used to measure them. The baseline for comparison is the code generated by Clang
with the optimization option O3. In what follows, this baseline is called O3.

Performance Comparison

Table 5.1 presents the speedup of KFtrad and KFCM by ratio for the baseline O3.
For each program in the first column, the speedup of KFtrad and KFCM are shown in
the second and third columns, respectively. The last column represents the speedup
given by KFCM compared with KFtrad. In the Rodinia benchmark, eight programs
of 23 programs have some fusible kernels. Notice that the program srad of the eight
programs has two implementations, srad v1 and srad v2 ; therefore, both versions are
reported. In the other 15 programs, the seven programs (heartwall, hotspot, hotspot3D,
lavaMD, nn, pathfinder, and streamcluster) have only one kernel, and the other eight
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programs (b+tree, backprop, dwt2d, kmeans, leukocyte, mummergpu, myocyte, and nw)
have only kernels with no fusion opportunity, which have some modification statements
between them or are executed exclusively. The program of bfs implements a breadth-
first search algorithm which traverses all the connected components in a graph. cfd is
an unstructured grid finite volume solver for the three-dimensional Euler equations for
compressible flow. gaussian solves systems of equations using the gaussian elimination
method. huffman implements a parallel variable-length encoder of Huffman coding on
a GPU. hybridsort is a parallel sorting algorithm by utilizing a bucket sort and a merge
sort. lud is an LU decomposition algorithm to calculate the solutions of a set of lin-
ear equations. particlefilter is a statistical estimator of the location of a target object
when noisy measurements of the target’s location and an idea of the object’s path in
a Bayesian framework are given. srad is speckle reducing anisotropic diffusion, which
is a diffusion method for ultrasonic and radar imaging applications based on partial
differential equations. srad v1 processes a real image, and srad v2 randomizes the in-
puts. In NVIDIA SDK sample code, experiments were conducted for the programs in
6 Advanced. The four programs that have some fusible kernels are reported; the other
programs in 6 Advanced have either only one kernel or kernels with no fusion opportu-
nity. The program of eigenvalues computes all eigenvalues of a tridiagonal symmetric
matrix of arbitrary size. lineOfSight is a simple line-of-sight algorithm; when a height
map and a ray originating at an observation point are given, the program computes
all the points along the ray that are visible from the observation point. mergeSort
is a sorting algorithm using a merge sort on a GPU. newdelete is a sample program
that demonstrates dynamic global memory allocation. In the real-world applications
of GCG, the five programs of nine available programs have some fusible kernels. In
the table, the program iteratedfunctionsystems is abbreviated as IFS. In the other four
programs, the three programs (GenomeSearch, LDPCdec, and ch4estatics) have only
one kernel, and the program MultiSVM has no CUDA implementation. The program
of barneshut is a n-body simulation that computes forces acting on a body due to its
interaction with other bodies. bspline is a deformable volumetric registration algo-
rithm using B-splines. iteratedfunctionsystems implements a real-time rendering of the
fractal flame algorithm. pathReg traces photon paths by utilizing path regeneration.
rna folding gpu is an RNA folding algorithm using dynamic programming.

As presented in the table, for the eight programs, bfs, gaussian, hybridsort, par-
ticlefilter, srad v2, mergeSort, newdelete, and bspline, KFtrad and KFCM transformed
them similarly, resulting in the same speedup. For the other 10 programs, KFCM could
fuse more kernels than KFtrad, resulting in more performance gain. In particular, for
the five programs, huffman, eigenvalues, lineOfSight, IFS, and rna folding gpu, KFCM
could fuse some kernels although KFtrad could not fuse any kernel. For the Rodinia
benchmark, NVIDIA SDK sample code, and GCG, KFtrad achieves geometric mean
speedups of 1.07, 1.01, and 1.07, respectively. In contrast, KFCM achieves geometric
mean speedups of 1.09, 1.12, and 1.16 for the three benchmarks, respectively. Overall,
KFCM achieves a geometric mean speedup of 1.12, whereas KFtrad achieves a geometric
mean speedup of 1.06.

The Number of Reduced Kernel Launches

The number of kernel launches affects the overall performance. Therefore, the number
of kernel launches reduced by kernel fusion was measured. Table 5.2 presents the degree
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Table 5.2: Comparison of the number of kernel launches in Rodinia benchmark [14],
NVIDIA SDK sample code [77], and GPU Computing Gems (GCG) [43].

Rodinia O3 KFtrad KFCM ReductionKFtrad
ReductionKFCM

bfs 24 15 15 37.5% 37.5%
cfd 14003 8003 6003 42.9% 57.1%
gaussian 30 15 15 50.0% 50.0%
huffman 46 46 44 - 4.4%
hybridsort 68 64 64 5.9% 5.9%
lud 46 31 30 32.6% 34.8%
particlefilter 396 99 99 75.0% 75.0%
srad v1 502 402 301 19.9% 40.0%
srad v2 4 2 2 50.0% 50.0%

NVIDIA SDK O3 KFtrad KFCM ReductionKFtrad
ReductionKFCM

eigenvalues 300 300 201 - 33%
lineOfSight 403 403 304 - 24.6%
mergeSort 49 37 37 24.5% 24.5%
newdelete 6 5 5 16.7% 16.7%

GCG O3 KFtrad KFCM ReductionKFtrad
ReductionKFCM

barneshut 93 78 66 16.1% 29.0%
bspline 96 72 72 25.0% 25.0%
IFS 1275 1275 1200 - 5.9%
pathReg 10026 7512 6420 25.1% 36.0%
rna folding gpu 75774 75774 75771 - 0.004%

of the reduction. As presented in the table, for each program in the first column, the
number of kernel launches in O3, KFtrad, and KFCM are shown in the second, third, and
fourth columns, respectively. The fifth and sixth columns show the ratio of the number
of kernel launches reduced by KFtrad and KFCM to the one reduced by O3. For the eight
programs, bfs, gaussian, hybridsort, particlefilter, srad v2, mergeSort, newdelete, and
bspline, since KFtrad and KFCM transformed them similarly, both methods achieved
the same reduction. For the other 10 programs, KFCM reduced the number of kernel
launches more than KFtrad because KFCM could fuse more kernels in those programs
than KFtrad. For the Rodinia benchmark, NVIDIA SDK sample code, and GCG, KFtrad

reduced the number of kernel launches by a geometric mean of 39.2%, 10.9%, and
14.0%, respectively. KFCM reduced the number of kernel launches by a geometric
mean of 43.5%, 24.9%, and 20.3% for the three benchmarks, respectively. Overall,
KFCM reduced the number of kernel launches by a geometric mean of 33.8%, whereas
KFtrad reduced it by a geometric mean of 27.1%. The experimental result shows that
KFCM has the potential to fuse more kernels than KFtrad.

5.3.3 Discussions of the Experiments

KFCM performs well in the experiments. It reduces more kernel launches than a tra-
ditional method by fusing more kernels, improving the performance. The experimental
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results show that KFCM is particularly effective compared with KFtrad for the fluid dy-
namics (cfd), linear algebra (eigenvalues), and simulating programs (lineOfSight, bar-
neshut, and pathReg). The programs have many kernels and launch them in branches
and loops. Since KFCM exposes the fusibility of kernels by a flow sensitive approach,
KFCM is effective for the programs that has many kernel launches in branches and
loops. However, the current KFCM has some issues that may decrease performance
through fusing all fusible kernels. That is, fusing kernels may not always give better
performance than leaving the kernels original. For example, when the kernels include
ones consuming a lot of GPU memories, fusing them may decrease performance. To
address the issue, it would be effective for KFCM to introduce an objective function
that estimates the benefits of each kernel fusion, as reported by Qiao et al. [85] and
Wahib et al. [102, 103]. Besides, the effectiveness of KFCM may depend on the appli-
cation order of the two fusion phases, BKF and FKF. The current KFCM first applies
BKF to an input program and then applies FKF, but, in some cases, reversing the
application order may give better performance. Furthermore, the current KFCM fuses
candidate kernels only vertically. As reported by Li et al. [60, 61], horizontal kernel
fusion is beneficial when fused kernels include some memory-intensive kernels and some
compute-intensive ones, which require different types of GPU resources. The horizontal
kernel fusion would enable KFCM to result in better performance.

KFCM creates the fused kernel in a device code, so that it increases the size of
the device code. In the experiments, KFCM increased the size of a device code by a
geometric mean of 35.6%. However, the average size of a device code before applying
KFCM was 32.0 kilobytes while the one after applying KFCM was 39.8 kilobytes. Thus,
the increased size was insignificantly small compared to the size of the input data of
GPU programs.

5.4 Summary

This chapter describes a novel method that fuses more kernels in GPU programs than
a traditional kernel fusion based method by a flow sensitive approach. The proposed
method exposes the fusibility of kernels based on dataflow analyses utilized in traditional
code optimizations. The experimental results have shown that the proposed method
can fuse more kernels and perform better than the traditional method for the well-
known benchmark programs, NVIDIA SDK sample code, and real-world applications.
The proposed method has achieved a geometric mean speedup of 1.12 and reduced the
number of kernel launches by a geometric mean of 33.8%.
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Chapter 6

Related Work

Many techniques that improve the performance of GPU programs have been developed.
In this chapter, first, existing branch divergence reduction techniques are discussed.
Second, kernel fusion based methods are discussed. Finally, some other optimizations
for GPU programs are described, categorized as intra- and inter-kernel optimizations.

6.1 Branch Divergence Reduction

Coutinho et al. [19] proposed branch fusion that reduces the computational cost of a
divergent branch by combining computations with the same operator in the true and
false sides of the branch into a single statement. However, this method may need to
insert new branches and select statements. The insertion may decrease performance of
GPU programs. The number of the insertions depends on the order of statements in an
original branch. Saumya et al. [90] proposed a control flow melding technique, called
Divergence-Aware-Region-Melder (DARM), which can handle more general control flow
structures than branch fusion. DARM can meld similar control flow subgraphs inside a
if-then-else region. In the melding process, DARM recursively melds divergent control
flow at the level of subgraphs of a CFG, allowing threads to reconverge early and
reducing branch divergence. Han and Abdelrahman proposed branch distribution [36]
that hoists the computations with the same operator in a divergent branch as a single
computation out of the branch. When the method finds the computation with the
same operator in a branch, it inserts a new branch with the same condition as the
original branch and then moves the target computations out of the branch. If the
operands of target computations are different, it is necessary to introduce temporary
variables to retain the suitable values. Thus, branch distribution may insert many new
branches; therefore, it is effective only when the effectiveness of hoisting statements out
of a branch is greater than the cost of the inserted branches and the concentration of
hoisted statements to one place. Damani et al. [21] proposed Common Subexpression
Convergence (CSC). When true and false sides of a divergent branch contain common
expressions, CSC moves such expressions to a convergent program point, enabling more
threads to execute them in parallel.

Wu et al. [110] transform an unstructured control flow graph to a structured one,
which contributes to the reduction of branch divergence. In an unstructured CFG,
some basic blocks may be executed 2 times or more because of the divergence. On the
other hand, in a structured CFG, such redundant execution does not occur. However,
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this method increases the code size exponentially because it performs transformation
by copying code. Anantpur et al. [8] transform an unstructured CFG to a structured
one through the linearization based on the idea of guarded execution of basic blocks.
For each basic block of a CFG, the linearization method creates a guard basic block to
guard its execution. The mechanism reconverges divergent threads as early as possible.
In addition, it does not duplicate code, so that it incurs only a linear increase in the
number of basic blocks. Reissmann et al. [86] proposed a control flow restructuring
technique that consists of loop restructuring and branch restructuring. Loop restructur-
ing converts all loops to tail-controlled loops, and branch restructuring ensures proper
nesting of control flow. These restructuring techniques work by adding predicates and
branches to a CFG, so that they avoid the risk of exponential code inflation.

Han and Abdelrahman proposed iteration delaying [36], which is applied to a di-
vergent branch within a loop. In each iteration of the loop, the method delays some
statements such that they can be executed together with other unexecuted statements
on the same side of the branch in subsequent iterations. It enables more threads to ex-
ecute in parallel, reducing branch divergence and improving performance. Zhang et al.
[116] proposed G-Streamline to reduce dynamic irregularities in both branch divergence
and memory references. An irregular memory reference occurs when the requested data
lies on multiple memory segments, resulting in more memory transactions than neces-
sary. Their framework reduces both types of irregularities through data reordering and
job swapping. Lin et al. [64] proposed a thread-data remapping technique to achieve
runtime branch divergence reduction. Their technique performs source-to-source trans-
formation on each kernel. The thread-data remapping is performed via shared memory
and within warps. By remapping data, their technique reduces both branch divergence
and memory coalescing overhead. Damani et al. [20] proposed a user-guided speculative
reconvergence mechanism that enables threads in a warp to be reconverged at an ear-
lier program point than the immediate post-dominator of the divergent branch. Their
mechanism utilizes user-guided information to identify common code paths within a
program and exploit reconvergence opportunities.

6.2 Kernel Fusion

Qiao et al. [85, 84] proposed a kernel fusion method to find fusible kernels based on
the minimum cut technique for an image processing DSL. Inspired by traditional loop
fusion techniques [9, 34, 47, 94, 68], their method improves data locality on GPUs.
Their algorithm first constructs a data dependence graph among kernels. Second, it
estimates the benefit of fusing kernels connected by an edge in the graph and assigns
the benefit to the edge as a weight. Finally, the algorithm performs the minimum cut on
the graph, maximizing the benefit of the fusion. Filipoviĉ et al. [27] proposed a kernel
fusion for basic linear algebra subprograms (BLAS) applications. They restrict the
type of fusible kernel to map and reduce because an automatic fusion of generic kernels
is difficult. Lutz et al. [67] proposed Helium, which builds a dynamic task and data
dependency graph for an OpenCL program. Their system analyzes data dependency
between kernels using the runtime information and performs horizontal and vertical
kernel fusion. Wahib and Maruyama [102, 103] proposed a method to formalize a
kernel fusion as an optimization problem. Their method searches the space of possible
kernel fusions to identify optimal fusions.
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Wang et al. [104] proposed three types of fusion targeted for different situations to
reduce energy consumption on GPUs. The three fusions contain the standard vertical
fusion and the horizontal distribution of the computation among different threads or
thread blocks. Li et al. [60, 61] proposed a horizontal kernel fusion based technique
that increases the thread-level parallelism to hide instruction latencies. The technique
searches for the best thread space partition when it fuses kernels horizontally. Their
experimental results show that horizontal fusion is beneficial when fused kernels require
different types of GPU resources.

6.3 Other Optimizations for GPUs

6.3.1 Intra-kernel Optimization

Many dimensionally redundant SIMT instruction elimination techniques [52, 111, 106,
65, 53, 115] have been proposed. With the SIMT execution model, it is well-known that
there are many redundantly executed instructions at the grid, TB, and warp level. The
techniques find and remove the redundancy, saving energy and improving performance.
Recently, Yeh et al. [115] proposed a non-speculative instruction skipping mechanism.
It skips redundant instructions within TBs before they are fetched through static in-
formation markings from a compiler and dynamic information, such as the dimension
size of the TBs known at kernel launch time.

Shobaki et al. [92] proposed a scheduling algorithm that improves occupancy and
Instruction-Level Parallelism (ILP). First, the algorithm searches for a maximum oc-
cupancy schedule. Next, the algorithm searches for the shortest schedule that provides
maximum occupancy. Although minimizing register pressure conflicts with exploit-
ing ILP, the proposed algorithm separates the two problems and efficiently solves one
problem at a time. Shobaki et al. [93] proposed a register-pressure-aware instruction
scheduling algorithm using Ant Colony Optimization (ACO) to solve the compiler op-
timization problem of balancing ILP and Register Pressure (RP). Maximizing ILP con-
flicts with minimizing RP, and these two objectives must be balanced in pre-allocation
scheduling because both ILP and RP affect the performance.

Intra-kernel data locality improvement approaches [108, 15, 59, 62, 101, 100] improve
data cache utilization in a single kernel. Recently, Tripathy et al. [100] proposed the
approach that exploits the inter-TB data cache locality by creating a graph of TBs and
cutting the graph to decide which TBs to group in the same SM, maximizing the cache
utilization between the TBs and improving performance.

6.3.2 Inter-kernel Optimization

Inter-kernel data locality improvement approaches [63, 42, 105] exploit inter-kernel
shared data and improve performance. Huzaifa et al. [42] proposed four TB sched-
ulers that optimize inter-kernel data reuse by scheduling threads that require some
data on the same core as threads from a previous kernel which shared the data. Li
et al. [63] proposed the framework that reduces the impact caused by the memory
oversubscription. With unified virtual memory and demand paging, both CPUs and
GPUs can access some data with the same virtual address on demand. Their frame-
work reuses the inter-kernel shared data on unified virtual memory, reducing the data

62



communication between CPUs and GPUs.
Kernel scheduling and co-execution techniques [105, 83, 117, 58, 91, 66] try to utilize

full GPU resources by scheduling independent kernels and executing concurrently. In
recent work, López-Albelda et al. [66] proposed a software scheduler that performs
a specific TB allocation of co-executing kernels to SMs with low overhead. With the
online profiler that they implemented to obtain information of co-executing kernels, the
scheduler establishes a suitable SM partitioning for concurrent kernels.
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Chapter 7

Conclusion

The thesis proposed intra- and inter-kernel optimizations to improve performance of
GPU programs. In this chapter, the thesis is concluded by presenting the summary in
Section 7.1 and describing the future work in Section 7.2.

7.1 Summary

First, as intra-kernel optimizations, the thesis proposed two methods, SSCM and SS-
RQP, which reduce branch divergence in each GPU kernel and improve performance.
Taking the property of branch divergence into account, SSCM decreases the static num-
ber of expressions and performs speculative code motion for only divergent branches
by extending traditional dataflow equations. The experimental results showed that
SSCM could improve the performance of a kernel with branch divergence although
traditional PRE and speculative PRE that performs speculative code motion for both
non-divergent branches and divergent branches could not improve it. In the experi-
ments, speculative PRE decreased performance because of speculative code motion for
non-divergent branches. In contrast, SSCM selectively applied speculative code motion
for branches, resulting in branch divergence reduction and removing redundancy more
than traditional PRE without penalty. In the best case, SSCM achieved 1.08x speedup
for the well-known and heavily optimized benchmark program compared with the O3
option of the NVIDIA compiler. Additionally, SSRQP performs scalar replacement and
speculative code motion to remove redundant memory accesses in a loop and reduce
branch divergence by extending traditional question propation. SSRQP propagates a
query about speculation to check whether an expression can be hoisted speculatively.
As well as SSCM, SSRQP performs speculative code motion for only divergent branches.
Moreover, utilizing control dependency, SSRQP introduces a CDRND in order to sup-
press inserting expressions into the destinations of divergent branches, resulting in the
suppression of increasing branch divergence. The experimental results have indicated
that SSRQP can improve more execution efficiency of GPU kernels with branch di-
vergence than traditional related techniques. In the best case, SSRQP achieved 1.88x
speedup compared with the O3 option of the NVIDIA compiler.

Second, as an inter-kernel optimization, the thesis proposed KFCM, which is the
code motion based kernel fusion that can fuse more kernels than traditional methods.
KFCM exposes the fusibility of kernels based on dataflow analyses utilized in traditional
code optimizations. KFCM comprises two fusion phases, and each phase consists of
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a fusibility analysis and transformation based on the result. The first fusion phase
performs a backward fusibility analysis, which hoists each kernel launch statement to
the earlier program points without lengthening any execution path. The phase checks
whether the hoisted launch statement is adjacent to some other launch statements.
Once adjacent ones are detected, they are fused as a single kernel. The second fusion
phase performs a forward fusibility analysis, which sinks each kernel launch statement
to the latest program points without lengthening any execution path. As well as the
first phase, this phase checks adjacency and fuses adjacent launch statements. The
experimental results have shown that KFCM can fuse more kernels and perform better
than the traditional method for the well-known benchmark programs, NVIDIA SDK
sample code, and real-world applications. In the best case, KFCM achieved 1.60x
and 1.35x speedup compared with the O3 option of Clang and a traditional method,
respectively.

The intra-kernel optimizations proposed in the thesis tackle the problem of reducing
branch divergence, which causes a significant performance penalty if a GPU kernel has
many divergent branches. On the other hand, the proposed inter-kernel optimization
enhances existing kernel fusion methods by increasing the fusibility of kernels. Al-
though the benchmark programs used in the experiments are well-known and heavily
optimized in terms of intra-kernel, they tend not to be well-optimized in terms of inter-
kernel. Thus, the performance gains of the proposed inter-kernel optimization were
relatively bigger than those of the proposed intra-kernel ones. Furthermore, the intra-
and inter-kernel optimizations are orthogonal, and hence, they can be applied simulta-
neously. KFCM enlarges each kernel in a GPU program by kernel fusion and increases
opportunities for intra-kernel optimizations, making SSCM and SSRQP more effective.
The more important role GPUs play in general purpose applications, the more impor-
tant compiler optimizations for GPUs become. Therefore, both types of optimizations
proposed in the thesis have the potential to significantly improve performance of GPU
applications, contributing to the development of modern high-performance computing.

7.2 Future Work

SSCM utilizes traditional dataflow equations, so that the insertion points are computed
efficiently. However, SSCM performs LCM before computing insertion points, and
hence, it may increase branch divergence. In contrast, SSRQP introduces a CDRND
to suppress the increase in branch divergence. However, it may suppress harmless in-
sertion of SRQP. The insertion into the destinations of divergent branches does not
always increase execution cost of them. That is, the code motion that SSRQP performs
is too conservative. Hence, it is desirable to develop a method that analyzes an actual
execution cost of the programs before and after performing code motion in the presence
of branch divergence. Additionally, the divergence analysis used in the experiments is
a pessimistic analysis, that is, it statically considers a branch that is non-divergent at
runtime to be divergent. Because both SSCM and SSRQP use the result of the diver-
gence analysis, they may apply speculative code motion to non-divergent branches. To
solve the problem, it is desirable to achieve selective application based on the dynamic
checking of branch divergence.

Although the proposed KFCM outperforms a traditional kernel fusion based method,
the current KFCM may not always increase performance because it fuses fusible ker-
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nels without estimating them. Besides, the effectiveness of KFCM may depend on the
application order of the two fusion phases. In addition, the current KFCM performs
only vertical kernel fusion. Combining different types of fusion may enable it to per-
form better. It would open a way for introducing an objective function that estimates
the benefits of each kernel fusion before performing it, making the application order of
fusion phases changeable, and utilizing other types of fusion.
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Nicolás Guil. Flexsched: Efficient scheduling techniques for concurrent ker-
nel execution on gpus. The Journal of Supercomputing, 78:43–71, 2022. doi:

10.1007/s11227-021-03819-z.

[67] Thibaut Lutz, Christian Fensch, and Murray Cole. Helium: A transparent
inter-kernel optimizer for opencl. In Proceedings of the 8th Workshop on Gen-
eral Purpose Processing Using GPUs, GPGPU-8, pages 70–80. ACM, 2015.
doi:10.1145/2716282.2716284.

72

https://doi.org/10.7873/DATE.2014.233
https://doi.org/10.1109/HPCA.2014.6835937
http://arxiv.org/abs/2007.01277
https://doi.org/10.1109/CGO53902.2022.9741270
https://doi.org/10.1109/CGO53902.2022.9741270
https://doi.org/10.1145/3037697.3037709
https://doi.org/10.1145/3037697.3037709
https://doi.org/10.1109/ICCAD51958.2021.9643535
https://doi.org/10.1145/3242089
https://doi.org/10.1109/HPCA.2017.51
https://doi.org/10.1007/s11227-021-03819-z
https://doi.org/10.1007/s11227-021-03819-z
https://doi.org/10.1145/2716282.2716284


[68] K. S. McKinley, S. Carr, and C. Tseng. Improving data locality with loop transfor-
mations. ACM Transactions on Programming Languages and Systems, 18(4):424–
453, jul 1996. doi:10.1145/233561.233564.

[69] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic warp subdivision
for integrated branch and memory divergence tolerance. In Proceedings of the
37th Annual International Symposium on Computer Architecture, ISCA ’10, pages
235–246, New York, NY, USA, 2010. Association for Computing Machinery. doi:
10.1145/1815961.1815992.

[70] E. Morel and C. Renvoise. Global optimization by suppression of partial redun-
dancies. Commun. ACM, 22(2):96–103, feb 1979. doi:10.1145/359060.359069.

[71] R. Morgan. Building an Optimizing Compiler. Digital Press, 1998.

[72] Roman Novak. Loop optimization for divergence reduction on gpus with simt
architecture. IEEE Transactions on Parallel and Distributed Systems, 26(6):1633–
1642, 2015. doi:10.1109/TPDS.2014.2324587.

[73] NVIDIA. Inside volta: The world’s most advanced data center gpu, 2017. URL:
https://developer.nvidia.com/blog/inside-volta.

[74] NVIDIA. Nvidia tesla v100 gpu architecture, 2017. URL:
https://images.nvidia.com/content/volta-architecture/pdf/

volta-architecture-whitepaper.pdf.

[75] NVIDIA. Nvidia a100 tensor core gpu architecture, 2020. URL:
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/

nvidia-ampere-architecture-whitepaper.pdf.

[76] NVIDIA. Cuda c++ programming guide, 2022. URL: https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html.

[77] NVIDIA. Cuda samples, 2022. URL: https://docs.nvidia.com/cuda/

cuda-samples/index.html.

[78] NVIDIA. Nvidia cuda compiler driver nvcc, 2022. URL: https://docs.nvidia.
com/cuda/cuda-compiler-driver-nvcc/index.html.

[79] NVIDIA. Nvidia h100 tensor core gpu architecture, 2022. URL: https://www.
hpctech.co.jp/catalog/gtc22-whitepaper-hopper_v1.01.pdf.

[80] NVIDIA. Nvidia hopper architecture in-depth, 2022. URL: https://developer.
nvidia.com/blog/nvidia-hopper-architecture-in-depth/.

[81] NVIDIA. Profiler user’s guide, 2022. URL: https://docs.nvidia.com/cuda/
profiler-users-guide/index.html.

[82] NVIDIA. Ptx: Parallel thread execution isa, 2022. URL: https://docs.nvidia.
com/cuda/parallel-thread-execution/index.html.

73

https://doi.org/10.1145/233561.233564
https://doi.org/10.1145/1815961.1815992
https://doi.org/10.1145/1815961.1815992
https://doi.org/10.1145/359060.359069
https://doi.org/10.1109/TPDS.2014.2324587
https://developer.nvidia.com/blog/inside-volta
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://www.hpctech.co.jp/catalog/gtc22-whitepaper-hopper_v1.01.pdf
https://www.hpctech.co.jp/catalog/gtc22-whitepaper-hopper_v1.01.pdf
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html


[83] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. Improving
gpgpu concurrency with elastic kernels. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 407–418, New York, NY, USA, 2013.
Association for Computing Machinery. doi:10.1145/2451116.2451160.

[84] B. Qiao, O. Reiche, F. Hannig, and J. Teich. Automatic kernel fusion for image
processing dsls. In Proceedings of the 21st International Workshop on Software
and Compilers for Embedded Systems, SCOPES 2018, pages 76–85. ACM, 2018.

[85] B. Qiao, O. Reiche, F. Hannig, and J. Teich. From loop fusion to kernel fu-
sion: A domain-specific approach to locality optimization. In Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, CGO 2019, pages 242–253. IEEE, 2019.

[86] N. Reissmann, T. L. Falch, B. A. Bjørnseth, H. Bahmann, J. C. Meyer, and
M. Jahre. Efficient control flow restructuring for gpus. In 2016 International
Conference on High Performance Computing Simulation (HPCS), pages 48–57,
2016. doi:10.1109/HPCSim.2016.7568315.

[87] Minsoo Rhu and Mattan Erez. The dual-path execution model for efficient gpu
control flow. In 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), pages 591–602, 2013. doi:10.1109/HPCA.2013.
6522352.

[88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’88, pages 12–27,
New York, NY, USA, 1988. Association for Computing Machinery. doi:10.1145/
73560.73562.
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