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Chapter 1

Introduction

1.1 Background

Many fields use categorical data analysis. These include social science, medical,

and pharmaceutical fields. Categorical data analysis such as the voting behavior

or occupational choices of parents and their children often uses contingency tables

to organize data. A categorical variable is a measurement scale consisting of a

series of categories. For example, average temperatures consist of “below normal,”

“normal,” and “above normal,” while voting behaviors consist of “Conservative,”

“Labor,” and “Liberal” for each voting party in the United Kingdom.

According to the measurement scale, categorical variables are distinguished into

nominal and ordinal. An order cannot be assigned to nominal variables, while ordi-

nal categories have a natural ordering relationship. Examples of nominal categories

are the names of different regions, “Asia,” “Europe,” and “North America,” and

the status of cancer, “presence” and “absence.” Examples of ordinal variables are

responses to a questionnaire such as “too little,” “about right,” and “too much.”

Whether the contingency table involves nominal or ordinal categories influences

the analysis method. Analysis methods for nominal categories are independent

of the category arrangement, whereas methods for nominal categories depend on

the category order. Therefore, an analysis method that suits the characteristics of

each one is necessary.

First, in a two-way or multi-way contingency table, a general concern is whether

row and column categories are independent. For example, given data on smoking

and lung cancer, it is natural to be interested in whether smoking has a negative

(or positive) effect on lung cancer or whether they are related. If two categories

are independent, they are unassociated. For this reason, Goodman (1979b) called

a model in which such independence holds the null association model. If inde-

pendence does not hold for the row and column categories, the interest shifts to
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the degree of association between the row and column variables. For this reason,

various measures have been proposed to measure the degree of association between

a row and a column (e.g., Yule’s coefficient, Cramér’s coefficient, and Goodman

and Kruskal’s coefficient).

Now, consider a unique contingency table with the same row and column classi-

fications. Such a contingency table is called a square contingency table. Table 1.1

(Upton, 1977) shows the change in voting parties in the United Kingdom between

1964 and 1970. The number of people whose voting party (or abstention) did not

change between the two years is 63, 72, 25, and 5, in order from “Conservative,”

which includes about 77% of the respondents in the tabulation. Thus, a square

contingency table tends to have many observations in or near the main diagonal

cell. Consequently, independence analysis is almost useless for square contingency

tables. For such data, symmetric (or asymmetric) structures other than the main

diagonal cell are of interest (i.e., the probability structures when row and column

values differ).

The concept of symmetry in square contingency tables was first introduced by

McNemar (1947) in 2 × 2 tables. Bowker (1948) extended it to R × R tables.

The marginal homogeneity model, which has looser restrictions, was proposed to

address the severe restrictions of the symmetry model. In practice, contingency ta-

bles cannot be analyzed using only the symmetrical model. Therefore, models with

characteristic changes to the symmetric cells have also been proposed. These in-

clude the conditional symmetry model (McCullagh, 1978), the diagonals-parameter

symmetry model (Goodman, 1979a), and the linear diagonals-parameter symmetry

model (Agresti, 1983a).

Table 1.2 shows the results of a panel survey of voters’ party support in Erie

County, Ohio, in 1940, which is the table of Bishop et al. (1975, p.270) with the

t − 2 time point as marginalized and reordering categories. In an election cam-

paign, long-term voter support and candidates who can win the floating vote are

important factors in determining the winner. In the present data, we are inter-

ested in whether the observations are symmetry with respect to the center point

of the contingency table. While the symmetry model has a symmetry structure of

probabilities with respect to the main diagonal of the contingency table, we can

consider a model with a probability structure symmetric with respect to the center

point of the contingency table. Wall and Lienert (1976) proposed such a model as

the point symmetry model.

Agresti (2002) discussed model decomposition. Assuming that model M1 can

be decomposed into M2 and M3, model M1 holds if and only if both M2 and M3

hold. Caussinus (1965) gave the decomposition of the symmetry model.

In contingency table analysis, that the above models are most likely not ap-
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plicable. If a model does not hold, interest often shifts to the degree of departure

from the model. Tomizawa (1994) proposed a measure for the degree of depar-

ture from the symmetry model using Kullback-Leibler information content and

Pearson’s chi-squared. Tomizawa et al. (1998) redefined the above measure using

power divergence. Tomizawa (1995) and Tomizawa and Makii (2001) also devised

measures of the departure from the marginal homogeneity model. These measures

are defined as the weighted arithmetic mean, while Saigusa et al. (2016) expressed

a measure by defining it as the weighted geometric mean. Among the structures

with the largest departure from the symmetry model, two stand out: structures

with all zeros in the upper triangle and structures with all zeros in the lower tri-

angle. Tahata et al. (2009) proposed a measure to distinguish between these two.

Researchers continue to develop additional models, decompositions, and measures.

This thesis aims to review previous works of symmetry on contingency tables

and to propose new measures of the departure from the model associated with

marginal probabilities. Various models and measures have been proposed, which

are related to marginal probabilities. However, the generalization of the measure

proposed by Iki and Tomizawa (2018) has not been considered. Additionally, the

weighted harmonic mean type measures with respect to marginal homogeneity

have not been treated. Therefore, we propose such measures in Chapters 2 and 3.

This thesis is organized as follows. The rest of Chapter 1 introduces existing

models, decomposition theorems, and measures for contingency table analysis.

Chapter 2, which is based on Saito et al. (2022a), proposes a measure of the

departure from the marginal point symmetry model of a two-way contingency

table and extends the measure to a multi-way table. Chapter 3, which is based

on Saito et al. (2022b), details two measures for the local marginal homogeneity

model. Chapter 4 presents the conclusions of this study.

1.2 Preliminaries

1.2.1 Joint and Marginal Probabilities

First, we present the probabilities for R×C contingency tables. Let X1 and X2

denote the row and column variables, respectively, and let pij = Pr(X1 = i, X2 =

j) denote the probability that an observation will fall in the (i, j)th cell of the

table (i = 1, . . . , R; j = 1, . . . , C). Probability {pij} is the joint distribution X1

and X2. These satisfy
∑R

i=1

∑C
j=i pij = 1. Let pi· =

∑C
t=1 pit = Pr(X1 = i) and

p·j =
∑R

t=1 ptj = Pr(X2 = j). Then {pi·} is the marginal distribution of X1 and

{p·j} is the marginal distribution of X2.

Second, we show the probabilities for multi-way contingency tables. For the
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R1 × · · · ×Rk contingency table (k ≥ 2), let i = (i1, . . . , ik) for it = 1, . . . , Rt (t =

1, . . . , k), and let pi denote the probability that an observation will fall in the ith

cell of the table. Let Xt (t = 1, . . . , k) denote the tth variable. The hth-order

(h = 1, . . . , k − 1) marginal probability Pr(Xs1 = i1, . . . , Xsh = ih) is denoted as

psi , where s = (s1, . . . , sh) and i = (i1, . . . , ih) with 1 ≤ s1 < · · · < sh ≤ k and

it = 1, . . . , Rst(t = 1, . . . , h). For example, consider an R1 × R2 × R3 contingency

table, pi = Pr(X1 = i1, X2 = i2, X3 = i3) (i = (i1, i2, i3)). The second-order

marginal probability p
(1,3)
(t1,t2)

=
∑

i2
pi = Pr(X1 = t1, X3 = t2), and the first-order

marginal probability p
[2]
t1 =

∑
i1

∑
i3
pi = Pr(X2 = t1).

1.2.2 Various Symmetry Models

(a) R×R tables

Consider R × R contingency tables with the same row and column classifica-

tions. The symmetry (S) model (Bowker, 1948) is defined as

pij = pji for all (i, j) (i = 1, . . . , R; j = 1, . . . , R),

(see also Agresti, 2002; Bishop et al., 1975; Kateri, 2014). The S model indicates

that the probability of an observation falling in the (i, j)th cell is equal to the

probability of the observation falling in the (j, i)th cell. That is, this model has a

symmetric structure of {pij} with respect to the main diagonal of the table. The

cumulative probability is defined as

Cij =


Pr(X1 ≤ i,X2 ≥ j) =

i∑
s=1

R∑
t=j

pst when i < j,

Pr(X1 ≥ i,X2 ≤ j) =
R∑
s=i

j∑
t=1

pst when i > j.

Then the S model can also be expressed as

Cij = Cji for all (i, j) (i = 1, . . . , R; j = 1, . . . , R; i ̸= j).

The marginal homogeneity (MH) model (Stuart, 1955) is given by

pi· = p·i for all i (i = 1, . . . , R).

See also Bishop et al. (1975). The MH model indicates that the row marginal

distribution and the column marginal distribution are identical. Note that the

S model is more restrictive than the MH model. The cumulative probability is
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defined as

G1(i) = Pr(X1 ≤ i,X2 ≥ i+ 1) =
i∑

s=1

R∑
t=i+1

pst,

G2(i) = Pr(X1 ≥ i+ 1, X2 ≤ i) =
R∑

s=i+1

i∑
t=1

pst.

The MH model can also be expressed as

G1(i) = G2(i) for all i (i = 1, . . . , R − 1).

Caussinus (1965) proposed the quasi-symmetry (QS) model, which is defined

as

pij = µαiβjψij (i = 1, . . . , R; j = 1, . . . , R),

where {ψij = ψji}. A special case of the QS model with {αi = βi} is the S model.

Let the odds ratio for rows i and j (> i) and columns s and t (> s) be noted by

θi<j;s<t. Namely, θi<j;s<t = (pispjt)/(pitpjs). Using the odds ratio, the QS model

can also be expressed as

θi<j;s<t = θs<t;i<j (i < j; s < t).

Thus, the QS model indicates the symmetry structure with respect to the odds

ratio. Caussinus (1965) gave the following for the decomposition of the S model.

Theorem 1.1. The S model holds if and only if both the QS and MH models hold.

The S model rarely holds in contingency table analysis because it is highly

constrained. Therefore, when the S model does not hold, it can be decomposed

into multiple models with looser constraints. It is possible to determine which

structures do not hold based on the fit of the decomposed models. In Theorem

1.1, for example, if the QS and S models fit the data poorly and the MH model

fits the data well, the S model does not hold due to the failure of the QS model.

The partial symmetry model (Saigusa et al., 2016) is defined as

pij = pji for at least one (i, j) (i = 1, . . . , R; j = 1, . . . , R; i ̸= j).

The partial symmetry model indicates that the cell probability that an observation

falls in the (i, j)th cell (i < j) is equal to the probability that the observation falls

in the (j, i)th cell for at least one (i, j). Note that the S model implies the partial

symmetry model.

The local symmetry model (Saigusa et al., 2019b) is defined as

pij = pji for only one (i, j) (i = 1, . . . , R; j = 1, . . . , R; i ̸= j).
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The local symmetry model indicates that the cell probability that an observation

falls in the (i, j)th cell (i < j) is equal to the probability that the observation falls

in the (j, i)th cell for only one (i, j).

The cumulative partial symmetry (CPS) model (Saigusa et al., 2019a) is defined

as

Cij = Cji for at least one (i, j) (i = 1, . . . , R; j = 1, . . . , R; i ̸= j).

Note that the S model implies the CPS model.

The cumulative local symmetry (CLS) model (Saigusa et al., 2020b) is defined

as

Cij = Cji for only one (i, j) (i = 1, . . . , R; j = 1, . . . , R; i ̸= j).

The partial marginal homogeneity (PMH) model (Saigusa et al., 2020a) is

defined as

pi· = p·i for at least one i (i = 1, . . . , R).

This model indicates the homogeneity for one or more pairs of marginal probabil-

ities. Note that the MH model implies the PMH model.

The cumulative partial marginal homogeneity (CPMH) model (Nakagawa et al.,

2020) is defined as

G1(i) = G2(i) for at least one i (i = 1, . . . , R − 1).

It should be noted that the structure of the CPMH model differs from those of the

MH and PMH models. It is easy to see that the MH model implies the CPMH

model.

The point-symmetry (PS) model is defined as

pij = pi∗j∗ (i = 1, . . . , R; j = 1, . . . , R),

where i∗ = R + 1 − i (Tomizawa, 1985; Wall and Lienert, 1976). This model

states that the probability that an observation falls in the (i, j)th cell is equal to

the probability that it falls in a point symmetric (i∗, j∗)th cell with respect to the

center point (or cell).

The marginal point-symmetry (MPS) model is defined as

pi· = pi∗· and p·j = p·j∗ (i = 1, . . . , R; j = 1, . . . , R).

This indicates that the row (column) marginal distribution is point symmetric

with respect to the midpoint of the row (column) categories.

Tomizawa (1985) defined the quasi point-symmetry (QPS) model as

pij = µαiβjψij (i = 1, . . . , R; j = 1, . . . , R),
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where ψij = ψi∗j∗ . The PS model is a special case of the QPS model, which is

obtained by putting {αi = αi∗} and {βj = βj∗}. Using the odds ratios, the QPS

model can also be expressed as

θi<j;s<t = θj∗<i∗;t∗<s∗ (i < j; s < t).

Note that the QPS model is unique in that the odds ratio is point symmetric.

Tomizawa (1985) gave the decomposition of the PS model as:

Theorem 1.2. The PS model holds if and only if both QPS and MPS models hold.

Consider an ordinal square contingency table. When the symmetric structure

does not hold, McCullagh (1978) defined the conditional symmetry (CS) model as

pij = γpji (1 ≤ i < j ≤ R).

The CS model indicates that the probability that an observation falls in (i, j)th

cell for i < j is γ times higher than the probability that the observation falls

in (j, i)th cell. Namely, the ratios of symmetric cell probabilities (i.e., {pij/pji})
depend on one parameter γ. The CS model with γ = 1 is the S model.

Goodman (1979a) defined the diagonals-parameter symmetry (DPS) model as

pij = δj−ipji (1 ≤ i < j ≤ R).

The DPS model indicates that the ratios of the symmetric cell probabilities depend

on only the distance j − i from the main diagonal. When {δj−i = 1}, this model

becomes the S model, but when {δj−i = γ}, it becomes the CS model.

Agresti (1983a) defined the linear diagonals-parameter symmetry (LDPS) model

as

pij = ηj−ipji (1 ≤ i < j ≤ R).

The LDPS model indicates that the log ratios of symmetric probabilities can be

expressed as a linear function of the distance from the main diagonal. The LDPS

model has only one more parameter than the S model, and η = 1 is a special case

equal to the S model. The LDPS model is a special case of the DPS model in

which {δj−i = ηj−i}.
Tomizawa (1990c) proposed the polynomial diagonals-parameter symmetry

(PDPS) model which includes the S, CS, and LDPS models in special cases. Ad-

ditionally, Tomizawa (1987, 1990a,b, 1991) gave several decompositions related to

the PDPS model. Recently, Kateri and Papaioannou (1997), Kateri and Agresti

(2007), and Tahata (2020) proposed various symmetry models based on the f -

divergence (Csiszár and Shields, 2004). The f -divergence includes the Kullback-

Leibler divergence and the power divergence (Read and Cressie, 1988).
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(b) Rk tables

Consider Rk contingency tables (k ≥ 2) with the same classifications. The

complete symmetry (Sk) model is defined as

pi = pj

for any permutation j = (j1, . . . , jk) of i = (i1, . . . , ik). See Bhapkar and Darroch

(1990) and Lovison (2000). The Sk model can be expressed in the log-linear form

as

log pi = λ(i),

where λ(i) = λ(j) for any permutation j = (j1, . . . , jk) of i = (i1, . . . , ik).

Bhapkar and Darroch (1990) defined the hth-order (h = 1, . . . , k − 1) quasi-

symmetry (QSk
h) model, which expressed as

log pi = λ+
k∑

t=1

λt(it) +
∑∑
1≤t1<t2≤k

λt1t2(it1 ,it2 ) + · · ·+
∑

· · ·
∑

1≤t1<···<th≤k

λt1...th(it1 ,...,ith ) + λ(i),

where λ(i) = λ(j) for any permutation j = (j1, . . . , jk) of i = (i1, . . . , ik).

For a fixed h (h = 1, . . . , k− 1), the hth-order marginal symmetry (Mk
h) model

is defined as

psi = psj = pti,

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih) and for any s = (s1, . . . , sh)

and t = (t1, . . . , th) with 1 ≤ t1 ≤ · · · ≤ th ≤ k and it = 1, . . . , R (t = 1, . . . , k)

(Bhapkar and Darroch, 1990; Tomizawa and Tahata, 2007). For the case of h = 1,

the Mk
1 model is expressed as

p
[1]
i = · · · = p

[k]
i (i = 1, . . . , R),

where p
[t]
i = Pr(Xt = i). This model indicates the homogeneity structure of the

1st-order marginal distribution.

Bhapkar and Darroch (1990) extended Theorem 1.1 to multi-way contingency

tables as follows:

Theorem 1.3. For an Rk table and fixed h (h = 1, . . . , k − 1), the Skmodel holds

if and only if both the QSk
h and Mk

h models hold.

The point-symmetry (PSk) model is defined as

pi = pi∗ for any i

where i∗ = (i∗1, . . . , i
∗
k) for i

∗
t = R + 1− it (t = 1, . . . , k) (Wall and Lienert, 1976).
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For fixed h (h = 1, . . . , k − 1), Tahata and Tomizawa (2008) defined the hth-

order quasi point-symmetry (QPk
h) model as

log pi = u+
k∑

t=1

ut(it) +
∑∑
1≤t1<t2≤k

ut1t2(it1 ,it2 )

+ · · ·+
∑

· · ·
∑

1≤t1<···<tk−1≤k

ut1...tk−1(it1 ,...,itk−1
) + u12...k(i) for any i,

where ut1...tl(it1 ,...,itl ) = ut1...tl(i∗t1 ,...,i
∗
tl
) (l = h+ 1, . . . , k; 1 ≤ t1 < · · · < tl ≤ k).

For fixed h (h = 1, . . . , k − 1), Tahata and Tomizawa (2008) also defined the

hth-order marginal point-symmetry (MPk
h) model as

psi = psi∗ for any s = (s1, . . . , sh),

where i = (i1, . . . , ih) and i∗ = (i∗1, . . . , i
∗
h).

Tahata and Tomizawa (2008) extended Theorem 1.2 to multi-way contingency

tables as follows:

Theorem 1.4. For an Rk table and fixed h (h = 1, . . . , k − 1), the PSk model

holds if and only if both the QPk
h and MPk

h models hold.

1.2.3 Measures of Departure from Models

In data analysis, when a model does not hold, it is interesting to measure the

distribution of {pij} degree of departure from the model. On the one hand, the

goodness-of-fit test can be used to determine whether the distribution of {pij}
is adapted to the model. On the other hand, the test statistic cannot be used

to compare the distance from the model across contingency tables since the test

statistic depends on the dimension R (e.g., the number of categories) and sam-

ple size. Consequently, various measures have been proposed for the degree of

departure from the model.

For square contingency tables with nominal categories, Tomizawa (1994) con-

sidered two kinds of measures (ϕS and ψS) to represent the departure from sym-

metry. Assuming that {pij+pji > 0}, i ̸= j, the measures ϕS and ψS are expressed

as

ϕS =
1

log 2

R∑
i=1

R∑
j=1
j ̸=i

p∗ij log

(
p∗ij
psij

)
,

ψS =
R∑
i=1

R∑
j=1
j ̸=i

(p∗ij − psij)
2

psij
,
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where

p∗ij =
pij
δ
, psij =

p∗ij + p∗ji
2

, δ =
R∑
i=1

R∑
j=1
j ̸=i

pij.

Note that ϕS is 1/ log 2 times Kullback-Leibler information, while ψS is Pearson’s

chi-squared type discrepancy. Note that (i) the measures lie between 0 and 1,

(ii) the measures equal 0 if and only if the S model holds, and (iii) the measures

equal 1 if and only if the degree of departure from symmetry is the largest in a

sense (i.e., complete asymmetry) that pij = 0 (pji > 0) or pji = 0 (pij > 0) for

i = 1, . . . , R; j = 1, . . . , R; i ̸= j.

Tomizawa et al. (1998) defined a generalization of these measures as

Φ
(λ)
S =

λ(λ+ 1)

2λ − 1
I(λ)({p∗ij}; {psij}) for λ > −1

where

I(λ)({p∗ij}; {psij}) =
1

λ(λ+ 1)

R∑
i=1

R∑
j=1
j ̸=i

p∗ij

{(
p∗ij
psij

)λ

− 1

}
.

The value at λ = 0 is the continuous limit as λ → 0, where λ is a real num-

ber selected by the user. Note that Φ
(0)
S and Φ

(1)
S are the same as ϕS and ψS,

respectively. Indeed, I(λ)({p∗ij}; {psij}) is the power divergence between the two

conditional distributions {p∗ij} and {psij}.
Let pcij = pij/(pij + pji) for i = 1, . . . , R; j = 1, . . . , R; i ̸= j. Note that pcij

indicates the conditional probability that an observation falls in the (i, j)th cell,

for the condition that the observation will fall in the (i, j)th or (j, i)th cell of the

R×R table, and pcij = 1/2 for all i and j if and only if the S model holds. Then,

Φ
(λ)
S can be expressed as

Φ
(λ)
S =

λ(λ+ 1)

2λ − 1

∑∑
i<j

(p∗ij + p∗ji)I
(λ)
ij

(
{pcij, pcji};

{
1

2
,
1

2

})
,

where

I
(λ)
ij

(
{pcij, pcji};

{
1

2
,
1

2

})
=

1

λ(λ+ 1)

{
pcij

[(
pcij
1/2

)λ

− 1

]
+ pcji

[(
pcji
1/2

)λ

− 1

]}
.

Moreover, Φ
(λ)
S can be expressed as

Φ
(λ)
S =

∑∑
i<j

(p∗ij + p∗ji)ϕ
(λ)
ij ,

where

ϕ
(λ)
ij = 1− λ2λ

2λ − 1
H

(λ)
ij ({pcij, pcji}),

H
(λ)
ij ({pcij, pcji}) =

1

λ

{
1− (pcij)

λ+1 − (pcji)
λ+1
}
.
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Additionally, note that H
(λ)
ij ({pcij, pcji}) is Patil and Taillie (1982)’s diversity index

of degree λ for the conditional distribution {pcij, pcji}. In special cases, this index

includes the Shannon entropy (when λ = 0) and the Gini concentration or the

Simpson index (when λ = 1). The measure is expressed as the weighted arithmetic

mean of {ϕ(λ)
ij }.

Saigusa et al. (2016) proposed a useful measure to determine the degree of

departure from the partial symmetry model. Assuming that {pij + pji > 0} for

i ̸= j, the measure is expressed as the weighted geometric mean of {ϕ(λ)
ij }, which

is given as

Φ
(λ)
S(G) =

∏∏
i<j

{
ϕ
(λ)
ij

}(p∗ij+p∗ji)

for λ > −1,

and the value at λ = 0 is the continuous limit as λ→ 0. Note that (i) the measure

lies between 0 and 1, (ii) the measure equals 0 if and only if the partial symmetry

model holds, and (iii) the measure equals 1 if and only if the degree of departure

from partial symmetry is the largest.

Saigusa et al. (2019b) reported a measure to determine the degree of departure

from the local symmetry model. Assume that {pij + pji ̸= 0} for i < j, and

pkl ̸= plk for any k < l except (k, l) = (a, b) with only one (a, b), a < b. Then the

measure is expressed as the weighted harmonic mean of {ϕ(λ)
ij }, which is given as

Φ
(λ)
S(H) =

∏∏
i<j

ϕ
(λ)
ij

∑∑
i<j

(p∗ij + p∗ji)
∏∏

s<t
(s,t) ̸=(i,j)

ϕ
(λ)
st


for λ > −1,

and the value at λ = 0 is the continuous limit as λ→ 0. Note that (i) the measure

lies between 0 and 1, (ii) the measure equals 0 if and only if the local symmetry

model holds, and (iii) the measure equals 1 if and only if the degree of departure

from local symmetry is the largest. If all {ϕ(λ)
ij } are not equal to 0, then the

measure can be written as

Φ
(λ)
S(H) =

1∑∑
i<j

p∗ij + p∗ji

ϕ
(λ)
ij

.

For square contingency tables with ordered categories, Tomizawa et al. (2001)

proposed a measure that represents the degree of departure from symmetry. As-

suming {C∗
ij + C∗

ji ̸= 0} for i ̸= j,

E
(λ)
S =

λ(λ+ 1)

2λ − 1
I(λ)({C∗

ij}; {Cs
ij}) for λ > −1

11



where

I(λ)({C∗
ij}; {Cs

ij}) =
1

λ(λ+ 1)

R∑
i=1

R∑
j=1
j ̸=i

C∗
ij

{(
C∗

ij

Cs
ij

)λ

− 1

}
,

and

C∗
ij =

Cij

∆
, Cs

ij =
C∗

ij + C∗
ji

2
, ∆ =

R∑
i=1

R∑
j=1
j ̸=i

Cij,

and the value at λ = 0 is the continuous limit as λ→ 0. Note that (i) the measure

lies between 0 and 1, (ii) the measure equals 0 if and only if the S model holds, and

(iii) the measure equals 1 if and only if the degree of departure from symmetry is

the largest in the sense that Cij = 0 (Cji > 0) or Cji = 0 (Cij > 0) for all i < j.

Additionally, (iv) the value of Φ
(λ)
S is invariant to row and column reordering, but

the value of E
(λ)
S depends on the order of the rows and columns.

Tahata et al. (2009) proposed a measure that can distinguish two kinds of

complete asymmetries. Assuming that {pij + pji ̸= 0}, the measure φ is expressed

as

φ =
4

π

∑∑
i<j

(p∗ij + p∗ji)
(
θij −

π

4

)
,

where

θij = arccos

 pij√
p2ij + p2ji

 .

Note that (i) the measure lies between −1 and 1, (ii) the measure equals −1 if

and only if pji = 0 (pij > 0) for all i < j, and (iii) the measure equals 1 if and

only if pij = 0 (pji > 0) for all i < j. Additionally, the measure equals 0 if the

average of θij − π/4 for i < j equals 0 when that an observation falls in one of the

off-diagonal cells of the table. Therefore, we refer to this structure as the average

symmetry when the measure equals 0. Note that if the symmetry model holds,

then the average symmetry holds. However, the converse does not hold.

1.3 Review of Previous Studies

This section reviews previous studies related to Chapters 2 and 3.

1.3.1 Measures for MPS

Consider an R×C contingency table. Tomizawa (1985) defined the MPS model

as

pi· = pi∗· and p·j = p·j∗∗ (i = 1, . . . , R; j = 1, . . . , C),
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where i∗ = R + 1− i and j∗∗ = C + 1− j. Let

δ1 =

[R
2
]∑

i=1

(pi· + pi∗·), δ2 =

[C
2
]∑

j=1

(p·j + p·j∗∗).

Additionally, let

qi· =
pi·
δ1
, qi∗· =

pi∗·
δ1
, qci· =

qi·
qi· + qi∗·

, qci∗· =
qi∗·

qi· + qi∗·
,

(
i = 1, . . . ,

[
R

2

])
,

and

q·j =
p·j
δ2
, q·j∗∗ =

p·j∗∗

δ2
, qc·j =

q·j
q·j + q·j∗∗

, qc·j∗∗ =
q·j∗∗

q·j + q·j∗∗
,

(
j = 1, . . . ,

[
C

2

])
.

Assuming {pi· + pi∗· ̸= 0} and {p·j + p·j∗∗ ̸= 0}, Yamamoto et al. (2011) defined a

measure of the degree of departure from MPS for a two-way table as

ψ
(λ)
MPS =

δ1ψ
(λ)
1 + δ2ψ

(λ)
2

δ1 + δ2
for λ > −1,

where

ψ
(λ)
1 = 1− λ2λ

2λ − 1

[R
2
]∑

i=1

(qi· + qi∗·)H
(λ)
1i ({qci·, qci∗·})

with

H
(λ)
1i ({qci·, qci∗·}) =

1

λ

{
1− (qci·)

λ+1 − (qci∗·)
λ+1
}
,

and

ψ
(λ)
2 = 1− λ2λ

2λ − 1

[C
2
]∑

j=1

(q·j + q·j∗∗)H
(λ)
2j

({
qc·j, q

c
·j∗∗
})

with

H
(λ)
2j

({
qc·j, q

c
·j∗∗
})

=
1

λ

{
1−

(
qc·j
)λ+1 −

(
qc·j∗∗

)λ+1
}

The submeasures ψ
(λ)
1 and ψ

(λ)
2 must lie between 0 and 1. Therefore, ψ

(λ)
MPS must

lie between 0 and 1. Note that (i) ψ
(λ)
MPS equals 0 (i.e., ψ

(λ)
1 = ψ

(λ)
2 = 0) if and only

if the MPS model holds, and (ii) ψ
(λ)
MPS equals 1 (i.e., ψ

(λ)
1 = ψ

(λ)
2 = 1) if and only

if the degree of departure from MPS is the largest in the sense that qci· = 0 (then

qci∗· = 1) or qci∗· = 0 (then qci· = 1) for i = 1, . . . ,
[
R
2

]
, and qc·j = 0 (then qc·j∗∗ = 1) or

qc·j∗∗ = 0 (then qc·j = 1) for j = 1, . . . ,
[
C
2

]
.

There are four characteristic structures with the largest departure from MPS.

When a contingency table is divided into four regions with respect to the center

points of the row and column, the probability structure concentrates in either the

upper right, upper left, lower right, or lower left regions of the contingency table.
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Although these probability structures clearly differ, Yamamoto et al. (2011)’s mea-

sure cannot distinguish between them because all the values are 1. Therefore, Iki

and Tomizawa (2018) defined a measure that distinguishes between the probability

structures’ lower right and upper left, as

φMPS =
δ1φ1 + δ2φ2

δ1 + δ2
,

where

φ1 =
4

π

[R2 ]∑
i=1

(qi· + qi∗·)
(
θ1(i) −

π

4

)
,

with

θ1(i) = arccos

(
pi·√

p2i· + p2i∗·

)
,

and

φ2 =
4

π

[C2 ]∑
j=1

(q·j + q·j∗∗)
(
θ2′(j) −

π

4

)
,

with

θ2′(j) = arccos

 p·j√
p2·j + p2·j∗∗

 .

The ranges of {θ1(i)} and {θ2(j)} are 0 ≤ θ1(i) ≤ π
2
and 0 ≤ θ2(j) ≤ π

2
. Thus, the

submeasures φ1 and φ2 lie between −1 and 1. Therefore, the measure φMPS also

lies between −1 and 1. Note that (i) when the MPS model holds, φMPS = 0, but

the converse does not hold, (ii) φMPS = 1 (i.e., φ1 = φ2 = 1) if and only if pi· = 0

(then pi∗· > 0) and p·j = 0 (then p·j∗∗ > 0) for i = 1, . . . ,
[
R
2

]
and j = 1, . . . ,

[
C
2

]
,

and (iii) φMPS = −1 (i.e., φ1 = φ2 = −1) if and only if pi∗· = 0 (then pi· > 0) and

p·j∗∗ = 0 (then p·j > 0) for i = 1, . . . ,
[
R
2

]
and j = 1, . . . ,

[
C
2

]
. Iki and Tomizawa

(2018) called the φ1 = 1 (φ2 = 1) row (column) and φ1 = −1 (φ2 = −1) row

(column) the upper complete asymmetry with respect to the midpoint and the

lower complete asymmetry, respectively. Hence, only two of the four probability

structures can be distinguished. We propose a measure that can distinguish the

other two.

Consider an R1 × R2 × · · · × Rk contingency table. According to Tahata and

Tomizawa (2008), the 1st-order MPk
1 model written as

p
[j]
i = p

[j]
i∗ (i = 1, . . . , Rj; j = 1, . . . , k),

where i∗ = Rj + 1 − i. Yamamoto et al. (2011) and Iki and Tomizawa (2018)

showed that submeasures for a first-order marginal distribution can be expressed

in terms of solely the marginal distribution. Therefore, the measure proposed by
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Iki and Tomizawa (2018) and the proposed measure for a two-way table can be

extended for a multi-way table by expressing it as a weighted arithmetic mean

over the number of categories in the submeasures. See Chapter 2 for details and

1.4.1 for an outline.

1.3.2 Measures for Various MH

In the study of measures, determining whether a contingency table contains

nominal or ordinal categories is crucial because the categories influence how the

table is handled. For a contingency table with nominal categories, the value of the

measure must be invariant upon replacing the categories. By contrast, for a table

with ordinal categories, the value of the measure must change upon replacing the

categories. For this reason, two models are defined. One uses cell or marginal

probabilities, while the other uses cumulative probabilities. As indicated in 1.2.2

(a), six models related to the S model have been proposed. The S model is de-

fined as “all,” the partial symmetry model as “least one,” and the local symmetry

model as “only one.” Models redefine each of these models in terms of cumula-

tive probability. For each model, a measure is proposed. For nominal category

contingency tables, Tomizawa et al. (1998), Saigusa et al. (2016), and Saigusa

et al. (2019b) proposed measures for the S model, the partial symmetry model,

and the local symmetry model are proposed, respectively. For ordinal category

contingency tables, Tomizawa et al. (2001), Saigusa et al. (2019a), and Saigusa

et al. (2020b) developed measures of the S model, the CPS model, and the CLS

model, respectively. See Table 1.3.

Consider an R×R contingency table with nominal categories. The MH model

is defined as

pi· = p·i for all i (i = 1, . . . , R).

The PMH model (Saigusa et al., 2020a) is defined as

pi· = p·i for at least one i (i = 1, . . . , R).

Then let

πi =
pi· + p·i

2
, p1(i) =

pi·
pi· + p·i

, p2(i) =
p·i

pi· + p·i
.

Assuming that {pi· + p·i ̸= 0}, Tomizawa and Makii (2001) defined a measure of

the degree of departure from MH as

ψ
(λ)
MH(A) =

R∑
i=1

πiψ
(λ)
i for λ > −1,
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where

ψ
(λ)
i = 1− λ2λ

2λ − 1
I
(λ)
i ,

I
(λ)
i =

1

λ

{
1− (p1(i))

λ+1 − (p2(i))
λ+1
}
.

The measure ψ
(λ)
MH(A) lies between 0 and 1. Note that (i) the MH model holds if

and only if ψ
(λ)
MH(A) = 0 (i.e., all ψ

(λ)
i are equal to 0) and (ii) ψ

(λ)
MH(A) = 1 if and only

if the degree of departure from MH is the largest in the sense that pi· = 0 (then

p·i > 0) or p·i = 0 (then pi· > 0) for all i = 1, . . . , R. The measure is expressed as

the weighted arithmetic mean of {ψ(λ)
i }.

Saigusa et al. (2020a) defined a measure of the degree of departure from PMH

as

ψ
(λ)
MH(G) =

R∏
i=1

(
ψ

(λ)
i

)πi

for λ > −1.

The measure ψ
(λ)
MH(G) lies between 0 and 1. Note that (i) the PMH model holds if

and only if ψ
(λ)
MH(G) = 0 (i.e., at least one ψ

(λ)
i is equal to 0) and (ii) ψ

(λ)
MH(G) = 1

if and only if the degree of departure from PMH is the largest in the sense that

pi· = 0 (then p·i > 0) or p·i = 0 (then pi· > 0) for all i = 1, . . . , R. The measure is

expressed as the weighted geometric mean of {ψ(λ)
i }.

The MH model is also expressed as

G1(i) = G2(i) for all i (i = 1, . . . , R − 1).

The CPMH model (Nakagawa et al., 2020) is defined as

G1(i) = G2(i) for at least one i (i = 1, . . . , R − 1).

Let for s = 1, 2,

G∗
s(i) =

Gs(i)

∆
, Gc

s(i) =
Gs(i)

G1(i) +G2(i)

, ∆ =
R−1∑
i=1

(G1(i) +G2(i)).

Assuming that {G1(i) + G2(i) ̸= 0}, Tomizawa et al. (2003) defined a measure of

the degree of departure from MH as

τ
(λ)
MH(A) =

R−1∑
i=1

(G∗
1(i) +G∗

2(i))ω
(λ)
i for λ > −1,

where

ω
(λ)
i = 1− λ2λ

2λ − 1
H

(λ)
i ,

H
(λ)
i =

1

λ

{
1− (Gc

1(i))
λ+1 − (Gc

2(i))
λ+1
}
.
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The measure τ
(λ)
MH(A) lies between 0 and 1. Note that (i) the MH model holds if

and only if τ
(λ)
MH(A) = 0 (i.e., all ω

(λ)
i are equal to 0) and (ii) τ

(λ)
MH(A) = 1 if and only

if the degree of departure from MH is the largest in the sense that G1(i) = 0 (then

G2(i) > 0) or G2(i) = 0 (then G1(i) > 0) for all i = 1, . . . , R − 1. The measure is

expressed as the weighted arithmetic mean of {ω(λ)
i }.

Nakagawa et al. (2020) defined a measure of the degree of departure from PMH

as

τ
(λ)
MH(G) =

R−1∏
i=1

(
ω
(λ)
i

)(G∗
1(i)

+G∗
2(i)

)

for λ > −1.

The measure τ
(λ)
MH(G) lies between 0 and 1. Note that (i) the CPMH model holds

if and only if τ
(λ)
MH(G) = 0 (i.e., at least one ω

(λ)
i is equal to 0) and (ii) τ

(λ)
MH(G) = 1

if and only if the degree of departure from CPMH is the largest in the sense that

G1(i) = 0 (then G2(i) > 0) or G2(i) = 0 (then G1(i) > 0) for all i = 1, . . . , R − 1.

The measure is expressed as the weighted geometric mean of {ψ(λ)
i }.

To date, no model related to MH has been proposed that corresponds to the

local symmetry and CLS models. See Table 1.4. Therefore, we propose models

and measures that correspond to these models and their measures. See Chapter 3

for details and 1.4.2 for an outline.

1.4 Outline of the Chapters

1.4.1 Chapter 2

Chapter 2 proposes a measure of departure from another marginal average

point-symmetry model. Then this measure is extended to multi-way contingency

tables.

Yamamoto et al. (2011) showed that the measure of the marginal point symme-

try is 1in four cases. Iki and Tomizawa (2018) proposed a measure to distinguish

two of these cases. In Chapter 2, we propose a measure to differentiate the other

two types in two-way contingency tables. We also extend the proposed measure

to multi-way tables.

For an R× C contingency table, the MPS model is defined by

pi· = pi∗· and p·j = p·j∗∗ (i = 1, . . . , R; j = 1, . . . , C).

Assuming that {pi· + pi∗· ̸= 0} and {p·j + p·j∗∗ ̸= 0}, we defined a measure to

represent the degree of departure from marginal point-symmetry as

γMPS =
δ1γ1 + δ2γ2
δ1 + δ2

,
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where

δ1 =

[R2 ]∑
i=1

(pi· + pi∗·), δ2 =

[C2 ]∑
j=1

(p·j + p·j∗∗)

and

γ1 =
4

π

[R2 ]∑
i=1

(qi· + qi∗·)
(
θ1(i) −

π

4

)
with

θ1(i) = arccos

(
pi·√

p2i· + p2i∗·

)
and

γ2 =
4

π

[C2 ]∑
i=1

(q·j + q·j∗∗)
(
θ2(j) −

π

4

)
with

θ2(j) = arccos

 p·j∗∗√
p2·j + p2·j∗∗

 ,

The submeasure γ1 has characteristics such that (1) γ1 = 1 if and only if

pi· = 0 for i = 1, . . . ,
[
R
2

]
, and (2) γ1 = −1 if and only if pi∗· = 0 for i = 1, . . . ,

[
R
2

]
.

Similarly, the submeasure γ2 has characteristics such that (1) γ2 = 1 if and only

if p·j∗∗ = 0 for j = 1, . . . ,
[
C
2

]
, and (2) γ2 = −1 if and only if p·j = 0 for j =

1, . . . ,
[
C
2

]
. The measure γMPS has the following characteristics: (1) γMPS = 1 if

and only if γ1 = γ2 = 1, and (2) γMPS = −1 if and only if γ1 = γ2 = −1.

Note that if the MPS model holds, γ1 = 0 and γ2 = 0, but the converse does

not hold. Similarly, if the MPS model holds, then γMPS = 0, but the converse

does not hold.

For an R1 ×R2 × · · · ×Rk contingency table, let the 1st-order marginal prob-

ability of the jth dimension be

p
[j]
i = Pr(Xj = i) (i = 1, . . . , Rj, j = 1, . . . , k).

The MPk
1 model is defined as

p
[j]
i = p

[j]
i∗ (i = 1, . . . , Rj; j = 1, . . . , k).

Assuming that {p[j]i + p
[j]
i∗ ̸= 0}, we define a measure to represent the degree of

departure from the 1st-order marginal point symmetry as

ΓMPS =

k∑
j=1

(yjδjΓj + (1− yj)δjΓj∗)

k∑
l=1

δl

,
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where

Γj =
4

π

[
Rj
2

]∑
i=1

(
q
[j]
i + q

[j]
i∗

)(
θj(i) −

π

4

)
with

θj(i) = arccos

 p
[j]
i√(

p
[j]
i

)2
+
(
p
[j]
i∗

)2


and

Γj∗ =
4

π

[
Rj
2

]∑
i=1

(
q
[j]
i + q

[j]
i∗

)(
θj(i∗) −

π

4

)
with

θj(i∗) = arccos

 p
[j]
i∗√(

p
[j]
i

)2
+
(
p
[j]
i∗

)2


and

q
[j]
i =

p
[j]
i

δj
, q

[j]
i∗ =

p
[j]
i∗

δj
,

δj =

[
Rj
2

]∑
i=1

(
p
[j]
i + p

[j]
i∗

) (
i = 1, . . . ,

[
Rj

2

]
, j = 1, . . . , k

)
,

where y = (y1, . . . , yj, . . . , yk) and yj is equal to 0 or 1 (j = 1, . . . , k). For example,

when we consider γMPS with k = 2, y = (1, 0). Similarly, when we consider the

measure of Iki and Tomizawa (2018), y = (1, 1).

The submeasure Γj is satisfied when (1) Γj = 1 if and only if p
(j)
i = 0 for

i = 0, . . . ,
[
Rj

2

]
and (2) Γj = −1 if and only if p

(j)
i∗ = 0 for i = 0, . . . ,

[
Rj

2

]
.

Similarly, the submeasure Γj∗ is satisfied when (1) Γj∗ = 1 if and only if p
(j)
i∗ = 0

for i = 0, . . . ,
[
Rj

2

]
and (2) Γj∗ = −1 if and only if p

(j)
i = 0 for i = 1, . . . ,

[
Rj

2

]
.

The measure ΓMPS is satisfied when (1) ΓMPS = 1 if and only if all significant Γj

or Γj∗ equal 1 (j = 1, . . . , k), and (2) ΓMPS = −1 if and only if all significant Γj

or Γj∗ equal −1. (3) When yj corresponds to the j digit of a binary number (e.g.,

y = (1, 0, 0) correspond to 100), ΓMPS of the corresponding complement of y is

obtained by changing the sign of ΓMPS of y.

1.4.2 Chapter 3

In Chapter 3, we propose (i) the local marginal homogeneity model and a

measure of the degree of departure from this model, and (ii) the cumulative local

marginal homogeneity model and its measure.
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For square contingency tables with nominal categories, we define the local

marginal homogeneity (LMH) model as

pi· = p·i for only one i (i = 1, . . . , R).

Assuming that pi·+p·i ̸= 0 (i = 1, . . . , R) and pi· ̸= p·i for any i except for only

one a, we propose the following measure:

ψ
(λ)
MH(H) =

R∏
s=1

ψ(λ)
s

R∑
i=1

πi R∏
s=1
s ̸=i

ψ(λ)
s


(λ > −1),

where πi = (pi· + p·i)/2, p1(i) = pi·/(pi· + p·i), p2(i) = p·i/(pi· + p·i),

ψ
(λ)
i = 1− λ2λ

2λ − 1
I
(λ)
i ,

I
(λ)
i =

1

λ

{
1−

(
p1(i)

)λ+1 −
(
p2(i)

)λ+1
}
.

For λ = 0, ψ
(0)
MH(H) = limλ→0 ψ

(λ)
MH(H). Note that λ is a real value chosen by the

user.

For any λ > −1, ψ
(λ)
MH(H) has the following characteristics:

1. Measure ψ
(λ)
MH(H) must lie between 0 and 1;

2. ψ
(λ)
MH(H) = 0 if and only if the LMH model holds;

3. ψ
(λ)
MH(H) = 1 if and only if the degree of departure from LMH is the largest

in the sense that pi· = 0 (then p·i > 0) or p·i = 0 (then pi· > 0) for all

i = 1, . . . , R.

When the LMH model does not hold, it is easy to see that

ψ
(λ)
MH(H) =

(
R∑
i=1

πi

ψ
(λ)
i

)−1

.

Namely, the measure is expressed as the weighted harmonic mean of {ψ(λ)
i }.

For square contingency tables with ordered categories, we define the cumulative

local marginal homogeneity (CLMH) model as

G1(i) = G2(i) for only one i (i = 1, . . . , R − 1).
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Assuming that G1(i) + G2(i) ̸= 0 (i = 1, . . . , R − 1) and G1(i) ̸= G2(i) for any i

expect for only one a, we propose the following measure:

τ
(λ)
MH(H) =

R−1∏
s=1

ω(λ)
s

R−1∑
i=1

(G∗
1(i) +G∗

2(i)

) R−1∏
s=1
s ̸=i

ω(λ)
s


(λ > −1),

where G∗
s(i) = Gs(i)/∆ (∆ =

∑R−1
i=1 (G1(i) + G2(i))), G

c
s(i) = Gs(i)/(G1(i) + G2(i))

(s = 1, 2),

ω
(λ)
i = 1− λ2λ

2λ − 1
H

(λ)
i ,

H
(λ)
i =

1

λ

{
1−

(
Gc

1(i)

)λ+1 −
(
Gc

2(i)

)λ+1
}
.

For λ = 0, we define τ
(0)
MH(H) = limλ→0 τ

(λ)
MH(H). This measure holds the following

properties, which are the same as the measure of the CLMH model. For any

λ > −1,

1. Measure τ
(λ)
MH(H) must lie between 0 and 1;

2. τ
(λ)
MH(H) = 0 if and only if the probability table has the structure of CLMH;

3. τ
(λ)
MH(H) = 1 if and only if the probability table has the structure of complete

marginal inhomogeneity in the sense that G1(i) = 0 (then G2(i) ̸= 0) or

G2(i) = 0 (then G1(i) ̸= 0) for all i = 1, . . . , R − 1.

It should be noted that the measure τ
(λ)
MH(H) is expressed as the weighted harmonic

mean of {ω(λ)
i }.
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Table 1.1: Voting changes in the 1964 and 1966 British Elections; from Upton

(1977).

1964

1966 Conservative Labor Liberal Abstention Total

Conservative 63 3 8 3 77

Labor 6 72 8 1 87

Liberal 2 3 25 0 30

Abstention 5 4 5 5 19

Total 76 82 46 9 213

Table 1.2: Stationary transitions in a panel study of potential voters in Erie

County, Ohio, 1940 (Bishop et al., 1975).

Time t

Time t-1 Republican Undecided Democrat Total

Republican 646 32 7 685

Undecided 83 391 69 543

Democrat 18 28 506 552

Total 747 451 582 1780
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Table 1.3: Six measures involved in the S model.

For nominal categories For ordered categories

Symmetry model Tomizawa et al. (1998) Tomizawa et al. (2001)

Partial Symmetry model Saigusa et al. (2016) Saigusa et al. (2019a)

Local Symmetry model Saigusa et al. (2019b) Saigusa et al. (2020b)

Table 1.4: Six measures involved in the MH model.

For nominal categories For ordered categories

MH model Tomizawa and Makii (2001) Tomizawa et al. (2003)

PMH model Saigusa et al. (2020a) Nakagawa et al. (2020)

LMH model Chapter 3 Chapter 3

23



Chapter 2

Measure of Departure from

Marginal Point-Symmetry for

Multi-Way Contingency Tables

2.1 Introduction

Firstly, consider R×C rectangular contingency tables with ordered categories

to call two-way tables. Let pij denote the probability that an observation will fall

in the (i, j)th cell of the table (i = 1, . . . , R; j = 1, . . . , C). Tomizawa (1985)

proposed the point-symmetry model for R× C contingency tables as follows:

pij = pi∗j∗∗ (i = 1, . . . , R; j = 1, . . . , C), (2.1.1)

where i∗ = R + 1 − i and j∗∗ = C + 1 − j. See Tomizawa (1985), Tomizawa and

Tahata (2007), and Tahata and Tomizawa (2014) for the details. Tomizawa (1985)

also proposed the marginal point-symmetry model defined by

pi· = pi∗· (i = 1, . . . , R),

p·j = p·j∗∗ (j = 1, . . . , C),
(2.1.2)

where

pi· =
C∑

j=1

pij and p·j =
R∑
i=1

pij.

The model (2.1.2) indicates that the row marginal distribution is

point-symmetric with respect to the midpoint and the column marginal distri-

bution is also point-symmetric with respect to the midpoint. Let [x] denote the

maximum integer which is not larger than a real number x. For example, when

R = 4,
[
R
2

]
= 2, and when C = 7,

[
C
2

]
= 3. The marginal point-symmetry model
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is also expressed as essentially

pi· = pi∗·

(
i = 1, . . . ,

[
R

2

])
,

p·j = p·j∗∗

(
j = 1, . . . ,

[
C

2

])
.

Secondly, suppose we have Rk contingency tables (k ≥ 2) with ordered cate-

gories, to call multi-way tables. Let Xl (l = 1, . . . , k) be random variables. Let

pi denote the probability that an observation will fall in the i = (i1, . . . , ik)th cell

of the table (in = 1, . . . , R; n = 1, . . . , k). Wall and Lienert (1976) proposed the

point-symmetry model defined by

pi = pi∗ for any i = (i1, . . . , ik), (2.1.3)

where i∗ = (i∗1, . . . , i
∗
k) and i

∗
t = R + 1− it.

The hth-order (1 ≤ h < k) marginal probability is defined by psi that is

psi = Pr(Xs1 = i1, . . . , Xsh = ih), where s = (s1, . . . , sh), 1 ≤ s1 < · · · < sh ≤ k

and in = 1, . . . , R (n = 1, . . . , h). For a fixed h = 1, . . . , k − 1, Tahata and

Tomizawa (2008) proposed the marginal point-symmetry model defined by

psi = psi∗ for any s = (s1, . . . , sh). (2.1.4)

When the model does not hold, we are interested in measuring the degree of

departure from the model. Tomizawa et al. (2007) proposed the measure from

the point-symmetry model (2.1.1). For the measure from the marginal point-

symmetry model (2.1.2), Yamamoto et al. (2011) proposed the power-divergence

type measure of ψ(λ). When the measure ψ(λ) = 1, there are four types of complete

asymmetry for i = 1, . . . , [R/2]; j = 1, . . . , [C/2], (i) pi· = 0 and p·j = 0, (ii)

pi∗· = 0 and p·j = 0, (iii) pi· = 0 and p·j∗∗ = 0, and (iv) pi∗· = 0 and p·j∗∗ = 0.

However, we cannot distinguish four types of complete asymmetry the type (i) to

(iv). In some cases, it is important to know which type of asymmetry we have. In

a clinical trial, when row and column variables denote conditions before treatment

and after treatment, respectively, the type (i) denotes that treatment has no effect,

but the type (ii) denotes that treatment has a remarkable effect.

Iki and Tomizawa (2018) proposed a measure using marginal average point-

symmetry that is expanded marginal point-symmetry. That measure lets us dis-

tinguish the type (i) and type (iv) complete asymmetry. However, that measure

cannot judge the type (ii) and type (iii) complete asymmetry.

This chapter proposes a measure expanded to 1st-ordered marginal point-

symmetry for multi-way tables. In Section 2, we propose an improved measure of

Iki and Tomizawa (2018) and give a large-sample confidence interval. In Section

3, we extend the measure to multi-way tables.
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2.2 Two-way tables

2.2.1 Measure

Consider the R× C contingency tables. Let

qi· =
pi·
δ1
, qi∗· =

pi∗·
δ1

(
i = 1, . . . ,

[
R

2

])
,

q·j =
p·j
δ2

and q·j∗∗ =
p·j∗∗

δ2

(
j = 1, . . . ,

[
C

2

])
.

Assume that {pi· + pi∗· ̸= 0} and {p·j + p·j∗∗ ̸= 0}. We propose the measure to

represent the degree of departure from marginal point-symmetry defined by

γMPS =
δ1γ1 + δ2γ2
δ1 + δ2

, (2.2.1)

where

δ1 =

[R2 ]∑
i=1

(pi· + pi∗·), δ2 =

[C2 ]∑
j=1

(p·j + p·j∗∗)

and

γ1 =
4

π

[R2 ]∑
i=1

(qi· + qi∗·)
(
θ1(i) −

π

4

)
(2.2.2)

with

θ1(i) = arccos

(
pi·√

p2i· + p2i∗·

)
and

γ2 =
4

π

[C2 ]∑
i=1

(q·j + q·j∗∗)
(
θ2(j) −

π

4

)
(2.2.3)

with

θ2(j) = arccos

 p·j∗∗√
p2·j + p2·j∗∗

 ,

We indicate that the sub-measure γ1 in (2.2.2) represents the degree of de-

parture from point-symmetry of row marginal distribution, and the sub-measure

γ2 in (2.2.3) represents the degree of departure from point-symmetry of column

marginal distribution. The measure γMPS in (2.2.1), which is the weighted sum

of the sub-measure γ1 and γ2, represents the degree of departure from marginal

point-symmetry.

The ranges of {θ1(i)} and {θ2(j)} are 0 ≤ θ1(i) ≤ π
2
and 0 ≤ θ2(j) ≤ π

2
. Thus,

the submeasure γ1 and γ2 lie between −1 and 1. Therefore, the measure γMPS lies

between −1 and 1.
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The submeasure γ1 has characteristics that (1) γ1 = 1 if and only if pi· = 0 for

i = 1, . . . ,
[
R
2

]
, and (2) γ1 = −1 if and only if pi∗· = 0 for i = 1, . . . ,

[
R
2

]
. Similarly,

the submeasure γ2 has characteristics that (1) γ2 = 1 if and only if p·j∗∗ = 0 for

j = 1, . . . ,
[
C
2

]
, and (2) γ2 = −1 if and only if p·j = 0 for j = 1, . . . ,

[
C
2

]
. The

measure γMPS has characteristics that (1) γMPS = 1 if and only if γ1 = γ2 = 1,

and (2) γMPS = −1 if and only if γ1 = γ2 = −1.

Note that if the marginal point-symmetry model (2.1.2) holds, we have γ1 = 0

and γ2 = 0; but the converse dose not hold. Similarly, if the marginal point-

symmetry model holds, then we have γMPS = 0; but the converse dose not hold.

We also note that if the submeasure γ1 = 0 and γ2 = 0, then measure γMPS = 0;

but the converse dose not hold.

For example, consider the artificial probabilities in Tables 2.1a, 2.1b and 2.1c.

For Table 2.1a, since there is the structure of the type (iii) complete asymmetry

that is pi· = 0 (i.e., γ1 = 1) and p·j∗∗ = 0 (i.e., γ2 = 1), we see that the measure

γMPS = 1 . Also for Table 2.1b, since there is the structure of the type (ii) complete

asymmetry that is pi∗· = 0 (i.e., γ1 = −1) and p·j = 0 (i.e., γ2 = −1), we see that

the measure γMPS = −1. For Table 2.1c, since there is the structure of the type

(i) complete asymmetry that is pi· = 0 (i.e., γ1 = 1) and p·j = 0 (i.e., γ2 = −1),

we see that the measure γMPS = 0.

2.2.2 Approximate confidence interval

Let nij denote the observed frequency in the (i, j)th cell of the table (i =

1, . . . , R; j = 1, . . . , C). Assuming that a multinomial distribution applies to the

R × C table, we shall consider an approximate standard error and large-sample

confidence interval for the measure γMPS and the submeasure γ1 and γ2 using

the delta method, description of which are given by, for example, Bishop et al.

(1975). The sample version of γMPS, i.e., γ̂MPS, is given by γMPS with {pij}
replaced by {p̂ij}, where p̂ij = nij/N and N =

∑∑
nij. Using the delta method,√

N(γ̂MPS − γMPS) has asymptotically (as N → ∞) a normal distribution with

mean zero and variance

σ2[γMPS] =
R∑
i=1

C∑
j=1

pij

(
∂γMPS

∂pij

)2

,

where

∂γMPS

∂pij
=(δ1 + δ2)

−2

{
(δ1 + δ2)

(
δ1
∂γ1
∂pij

+ δ2
∂γ2
∂pij

)}
+ (δ1 + δ2)

−2

{
(γ1 − γ2)

(
δ2
∂δ1
∂pij

− δ1
∂δ2
∂pij

)}
,
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with

∂δ1
∂pij

=

1 (i = 1, . . . ,
[
R
2

]
,
[
R+1
2

]
+ 1, . . . , R, j = 1, . . . , C),

0 otherwise,

∂δ2
∂pij

=

1 (i = 1, . . . , R, j = 1, . . . ,
[
C
2

]
,
[
C+1
2

]
+ 1, . . . , C),

0 otherwise,

∂γ1
∂pij

=



4

πδ1

{
arccos

(
pi·√

p2i· + p2i∗·

)
− pi∗·(pi· + pi∗·)

p2i∗· + p2i·

}
− γ1 + 1

δ1

(i = 1, . . . ,
[
R
2

]
, j = 1, . . . , C),

4

πδ1

{
arccos

(
pi∗·√
p2i· + p2i∗·

)
+
pi∗·(pi· + pi∗·)

p2i∗· + p2i·

}
− γ1 + 1

δ1

(i =
[
R+1
2

]
+ 1, . . . , R, j = 1, . . . , C),

0 otherwise,

and

∂γ2
∂pij

=



4

πδ2

arccos

 p·j∗∗√
p2·j + p2·j∗∗

+
p·j∗∗(p·j + p·j∗∗)

p2·j∗∗ + p2·j

− γ2 + 1

δ2

(i = 1, . . . , R, j = 1, . . . ,
[
C
2

]
),

4

πδ2

arccos

 p·j√
p2·j + p2·j∗∗

− p·j∗∗(p·j + p·j∗∗)

p2·j∗∗ + p2·j

− γ2 + 1

δ2

(i = 1, . . . , R, j =
[
C+1
2

]
+ 1, . . . , C),

0 otherwise.

Let σ̂2[γMPS] denote σ2[γMPS] with {pij} replaced by {p̂ij}. Then,

σ̂[γMPS]/
√
N is an estimator of approximate standard error of γ̂MPS, and(

γ̂MPS − Zα
2

√
σ̂2[γMPS]

N
, γ̂MPS + Zα

2

√
σ̂2[γMPS]

N

)
is an approximate (1 − α) confidence interval for γMPS. Here, Zα/2 is the upper

α/2 point of the standard normal distribution.

As for γ̂1 and γ̂2,
√
N(γ̂k − γk) asymptotically has (as n → ∞) a normal

distribution with mean zero and variance

σ2[γk] =
R∑
i=1

C∑
j=1

pij

(
∂γk
∂pij

)2

,

and (
γ̂k − Zα

2

√
σ̂2[γk]

N
, γ̂k + Zα

2

√
σ̂2[γk]

N

)
is an approximate (1 − α) confidence interval for γk (k = 1, 2).
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2.3 Multi-way tables

Consider the R1 × · · · × Rk contingency tables (k ≥ 2). Let Xl (l = 1, . . . , k)

be lth random variables. Let pi denote the probability that an observation will

fall in the i = (i1, . . . , ik)th cell of the table (it = 1, . . . , Rt; t = 1, . . . , k).

2.3.1 Measure

Let

δj =

[
Rj
2

]∑
i=1

(
p
[j]
i + p

[j]
i∗

)
,

where 1st-order marginal probability of the jth dimension is

p
[j]
i = Pr(Xj = i) (i = 1, . . . , Rj, j = 1, . . . , k).

Assume that {p[j]i + p
[j]
i∗ ̸= 0}. We propose a measure to represent the degree of

departure from the marginal point-symmetry defined by

ΓMPS =

k∑
j=1

(yjδjΓj + (1− yj)δjΓj∗)

k∑
l=1

δl

,

where

Γj =
4

π

[
Rj
2

]∑
i=1

(
q
[j]
i + q

[j]
i∗

)(
θj(i) −

π

4

)
with

θj(i) = arccos

 p
[j]
i√(

p
[j]
i

)2
+
(
p
[j]
i∗

)2


and

Γj∗ =
4

π

[
Rj
2

]∑
i=1

(
q
[j]
i + q

[j]
i∗

)(
θj(i∗) −

π

4

)
with

θj(i∗) = arccos

 p
[j]
i∗√(

p
[j]
i

)2
+
(
p
[j]
i∗

)2
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and

q
[j]
i =

p
[j]
i

δj
, q

[j]
i∗ =

p
[j]
i∗

δj

(
i = 1, . . . ,

[
Rj

2

]
, j = 1, . . . , k

)
,

where y = (y1, . . . , yj, . . . , yk) and yj is equal to 0 or 1 (j = 1, . . . , k). For example,

when we consider γMPS with k = 2, we see y = (1, 0). Similarly, when we consider

the measure of Iki and Tomizawa (2018), we see y = (1, 1).

We point out that the sub-measure Γj and Γj∗ represent the degree of departure

from point-symmetry of jth marginal distribution. The measure ΓMPS, being the

weighted sum of all of significant Γj or Γj∗ (j = 1, . . . , k), represents the degree of

departure from marginal point-symmetry.

The ranges of {θj(i)} and {θj(i∗)} are 0 ≤ θj(i) ≤ π
2
and 0 ≤ θj(i∗) ≤ π

2
. Thus, the

submeasure Γj and Γj∗ lie between −1 and 1. Therefore, the measure ΓMPS lies

between−1 and 1. The submeasure Γj satisfies that (1) Γj = 1 if and only if p
[j]
i = 0

for i = 0, . . . ,
[
Rj

2

]
and (2) Γj = −1 if and only if p

[j]
i∗ = 0 for i = 0, . . . ,

[
Rj

2

]
.

Similarly, the submeasure Γj∗ satisfies that (1) Γj∗ = 1 if and only if p
[j]
i∗ = 0 for

i = 0, . . . ,
[
Rj

2

]
and (2) Γj∗ = −1 if and only if p

[j]
i = 0 for i = 1, . . . ,

[
Rj

2

]
. The

measure ΓMPS satisfied that (1) ΓMPS = 1 if and only if all of significant Γj or Γj∗

is equal to 1 (j = 1, . . . , k), and (2) ΓMPS = −1 if and only if all of significant Γj

or Γj∗ is equal to −1. (3) When yj corresponds to j digit of binary number, e.g.

y = (1, 0, 0) correspond to 100, ΓMPS of correspondent ones complement of y is

obtained by changing the sign of ΓMPS of y.

2.3.2 Approximate confidence interval

We give an approximate standard error and large-sample confidence interval

for the measure ΓMPS using the delta method. Let ni1···ik denote the observed

frequency in the (i1, . . . , ik)th cell of the table (it = 1, . . . , Rt; t = 1, . . . , k). Let

N =

R1∑
i1=1

· · ·
Rk∑
ik=1

ni1···nk
.

We estimate ΓMPS by Γ̂MPS is given by ΓMPS with {pi1···ik} replaced by {p̂i1···ik},
where p̂i1···ik = ni1···ik/N . Using the delta method, as N → ∞,

√
N(Γ̂MPS−ΓMPS)

asymptotically has a normal distribution with mean zero and variance

σ2[ΓMPS] =

R1∑
i1=1

· · ·
Rk∑
ik=1

pi1···ik

(
∂ΓMPS

∂pi1···ik

)2

,
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where

∂ΓMPS

∂p
[j]
i

=

(
k∑

l=1

δl

)−2 [{ k∑
j=1

(
yjδj

∂Γj

∂p
[j]
i

+ (1− yj)δj
∂Γj∗

∂p
[j]
i

)}(
k∑

l=1

δl

)]

+

(
k∑

l=1

δl

)−2
 k∑

j=1

(yjΓj + (1− yj)Γj∗)

 k∑
l=1
l ̸=j

δl
∂δj

∂p
[j]
i

− δj

k∑
l=1
l ̸=j

∂δl

∂p
[j]
i




with

∂δj

∂p
[j]
i

=

1
(
i = 1, . . . ,

[
Rj

2

]
,
[
Rj+1

2

]
+ 1, . . . , Rj

)
,

0 otherwise,

∂Γj

∂p
[j]
i

=

4

πδj

arccos

 p
[j]
i√(

p
[j]
i

)2
+
(
p
[j]
i∗

)2
−

p
[j]
i∗

(
p
[j]
i + p

[j]
i∗

)
(
p
[j]
i∗

)2
+
(
p
[j]
i

)2
− Γj + 1

δj(
i = 1, . . . ,

[
Rj

2

])
,

4

πδj

arccos

 p
[j]
i∗√(

p
[j]
i

)2
+
(
p
[j]
i∗

)2
+

p
[j]
i∗

(
p
[j]
i + p

[j]
i∗

)
(
p
[j]
i∗

)2
+
(
p
[j]
i

)2
− Γj + 1

δj(
i =

[
Rj+1

2

]
+ 1, . . . , R

)
,

0 otherwise,

and

∂Γj∗

∂p
[j]
i

=

4

πδj

arccos

 p
[j]
i∗√(

p
[j]
i

)2
+
(
p
[j]
i∗

)2
+

p
[j]
i∗

(
p
[j]
i + p

[j]
i∗

)
(
p
[j]
i∗

)2
+
(
p
[j]
i

)2
− Γj∗ + 1

δj(
i = 1, . . . ,

[
Rj

2

])
,

4

πδj

arccos

 p
[j]
i√(

p
[j]
i

)2
+
(
p
[j]
i∗

)2
−

p
[j]
i∗

(
p
[j]
i + p

[j]
i∗

)
(
p
[j]
i∗

)2
+
(
p
[j]
i

)2
− Γj∗ + 1

δj(
i =

[
Rj+1

2

]
+ 1, . . . , R

)
,

0 otherwise.
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Let σ̂2[ΓMPS] denote σ2[ΓMPS] with {pi1···ik} replaced by {p̂i1···ik}.
Then, σ̂[ΓMPS]/

√
N is an estimator of the approximate standard error of Γ̂MPS,

and (
Γ̂MPS − Zα

2

√
σ̂2[ΓMPS]

N
, Γ̂MPS + Zα

2

√
σ̂2[ΓMPS]

N

)

is an approximate 1−α confidence interval for ΓMPS. Here, Zα/2 is the upper α/2

point of the standard normal distribution.

2.4 Examples

2.4.1 Example 1 (Two-way table)

Consider the data in Tables 2.2a and 2.2b taken directly from Agresti (2002).

These data describe the results of a randomized, double-blind clinical trial com-

paring an active hypnotic drug with a placebo in patients with insomnia. The

outcome variable is a patient’s reported time to fall asleep going to bed, mea-

sured using four categories (<20 minutes, 20-30 minutes, 30-60 minutes, and >60

minutes).

We see from Table 2.3a that for the data in Table 2.2a, the estimated value of

the sub-measure γ1 is 0.545, and the confidence interval for γ1 does not include zero.

Also, Table 2.3a shows that the estimated value of the sub-measure γ2 is 0.584,

and the confidence interval for γ2 does not include zero. Since the importance of

sub-measure γ1 and γ2 are almost the same, the measure γMPS is estimated to lie

between γ1 and γ2, and the confidence interval for γMPS does not include zero.

As for Table 2.3b for the data in Table 2.2b, the estimated value of the sub-

measure γ1 is 0.512 and the confidence interval for γ1 does not include zero. From

Table 2.3b, the estimated value of the sub-measure γ2 is 0.000, and the confidence

interval for γ2 contains zero. Iki and Tomizawa (2018) considered the structure of

the column is the average column point-symmetry.

In addition, when we compare the data in Tables 2.2a and 2.2b using the

estimated sub-measure γ1, the degree of departure toward pi· = 0 (then pi∗· > 0)

for i = 1, 2 is almost same for the data in Tables 2.2a and 2.2b. However, when

we compare using the estimated submeasure γ2, for patient’s reported time after

treatment, the degree of departure toward p·j = 0 (then p·j∗∗ > 0) for j = 1, 2

is greater in Active treatment than in Placebo treatment. Therefore, patient’s

reported time after treatment in Active treatment would tend to be shorter than

that in Placebo treatment.
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2.4.2 Example 2 (Three-way table)

Consider the data in Tables 2.4a and 2.4b taken from the 2016 General Social

Survey (Smith et al., 2018) conducted by the National Opinion Research Center

at the University of Chicago. These describe the cross classifications of subject’s

opinions regarding government spending on Education, Environment, and Assis-

tance to the poor in 1984 and 2016. The common response categories are ‘too

little’, ‘about right’, and ‘too much’.

When y = (1, 1, 1), the measure takes 1 when Education, Environment, and

Assistance to the poor are all too much and takes −1 when all are too little.

When y = (1, 1, 0), it takes 1 when Education and Environment are too much, and

Assistance to the poor is too little and takes −1 when Education and Environment

are too little, and Assistance to the poor is too much. When y = (1, 0, 1), it takes

1 when Education and Assistance to the poor are too much, and Environment is

too little, and the measure takes −1 when Education and Assistance to the poor

are too little, and Environment is too much. When y = (1, 0, 0), it takes 1 when

Education is too much, and Environment and Assistance to the poor are too little,

and it takes −1 when Education is too little, and Environment and Assistance

to the poor are too much. By changing the value of y, we can see where the

frequencies are concentrated in the three-way contingency table.

No apparent difference in the measure values for any y in Table 2.5 indicates

that the trend in answers has not changed between 1984 and 2016. The measures of

y = (1, 1, 1) are −0.820 in Table 2.5a and −0.857 in Table 2.5b, respectively, which

indicates that many people believe that government spending is not sufficient on

the environment, education, and assistance to the poor.

As mentioned in Section 3.1, Property (3), comparing y = (1, 1, 1) and y =

(0, 0, 0) in Table 2.5a, the measures estimate only change sign. This is a natu-

ral result if we note that when y = (0, 0, 0), the measure is 1 when Education,

Environment, and Assistance to the poor are too little.

2.4.3 Example 3 (Three-way table)

Consider the data in Tables 2.6a and 2.6b obtained from Japan Meteorological

Agency. These are obtained from the daily atmospheric temperatures at Sapporo,

Tokyo, and Naha in Japan in 2010 and 2016, using three levels, ‘below normal’,

‘normal’, and ‘above normal’. y = (1, 1, 0) and y = (1, 0, 1) are greatly different

between 2010 and 2016. Comparing y = (1, 1, 0) and y = (1, 1, 1), we can see that

in 2010, the average temperature in Naha was slightly below normal on many days.

On the other hand, in 2016, there were considerably more days with above-normal

temperatures. Next, comparing y = (1, 0, 1) and y = (1, 1, 1), we can see that
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there were more days in 2010 than in 2016 when the temperature in Tokyo was

slightly above normal. Finally, comparing the measures for y = (1, 1, 1) for 2010

and 2016 shows that 2016 has somewhat higher values, indicating that the overall

temperature is higher in 2016 for these three cities.

2.5 Concluding remarks

We proposed a new measure to distinguish two kinds of complete asymmetry

for the midpoint. Since the measure ΓMPS always ranges between −1 and 1 inde-

pendent of the dimension k and the sample size N , ΓMPS is useful for comparing

the degrees of departure from marginal point-symmetry in several tables. Our

measure is the extension of the measure given by Iki and Tomizawa (2018). Since

sub-measures Γj and Γj∗ depend only on the marginal frequency of jth dimension,

one can easily calculate our measure even though k increases.
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Table 2.1: Artificial probabilities

(a) γMPS = 1

Y

X (1) (2) (3) (4) Total

(1) 0 0 0 0 0

(2) 0 0 0 0 0

(3) 0.3 0.2 0 0 0.5

(4) 0.2 0.3 0 0 0.5

Total 0.5 0.5 0 0 1

(b) γMPS = −1

Y

X (1) (2) (3) (4) Total

(1) 0 0 0.3 0.2 0.5

(2) 0 0 0.2 0.3 0.5

(3) 0 0 0 0 0

(4) 0 0 0 0 0

Total 0 0 0.5 0.5 1

(c) γMPS = 0

Y

X (1) (2) (3) (4) Total

(1) 0 0 0 0 0

(2) 0 0 0 0 0

(3) 0 0 0.3 0.2 0.5

(4) 0 0 0.2 0.3 0.5

Total 0 0 0.5 0.5 1
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Table 2.2: Insomniac patients reported time (in minutes) to fall asleep after going

to bed from Agresti (2002).

(a) Active treatment

Follow-up

Initial < 20 20-30 30-60 > 60 Total

< 20 7 4 1 0 12

20-30 11 5 2 2 20

30-60 13 23 3 1 40

> 60 9 17 13 8 47

Total 40 49 19 11 119

(b) Placebo treatment

Follow-up

Initial < 20 20-30 30-60 > 60 Total

< 20 7 4 2 1 14

20-30 14 5 1 0 20

30-60 6 9 18 2 35

> 60 4 11 14 22 51

Total 31 29 35 25 120

Table 2.3: The estimated measures, approximate standard errors, and approximate

95% confidence interval for measures are applied to Tables 2.2a and 2.2b.

(a) For Table 2.2a

Measure Estimated measure Standard error Confidence interval

γMPS 0.564 0.056 (+0.454, +0.675)

γ1 0.545 0.087 (+0.375, +0.714)

γ2 0.584 0.082 (+0.424, +0.745)

(b) For Table 2.2b

Measure Estimated measure Standard error Confidence interval

γMPS 0.256 0.053 (+0.152, +0.361)

γ1 0.512 0.089 (+0.337, +0.688)

γ2 0.000 0.115 (−0.226, +0.226)

36



Table 2.4: Opinions regarding government on “Education”, “Environment”, and

“Assistance to the poor” in 1984 and 2016 from the 2016 General Social Survey

(Smith et al., 2018).

(a) Opinions about government spending in 1984

Assistance to the poor

Education Environment too little about right too much

too little 152 34 14

too little about right 45 20 8

too much 19 2 2

too little 34 19 4

about right about right 18 26 7

too much 5 3 2

too little 4 4 5

too much about right 9 1 6

too much 2 2 1

(b) Opinions about government spending in 2016

Assistance to the poor

Education Environment too little about right too much

too little 612 110 30

too little about right 134 55 11

too much 51 11 11

too little 85 30 6

about right about right 46 43 9

too much 9 11 5

too little 12 8 3

too much about right 16 16 8

too much 13 8 13
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Table 2.5: The estimated measures, approximate standard errors, and approximate

95% confidence interval for measures are applied to Tables 2.4a and 2.4b.

(a) For Table 2.4a

y Estimated measure Standard error Confidence interval

(1,1,1) −0.820 0.075 (−0.968, −0.673)

(1,1,0) −0.277 0.025 (−0.326, −0.229)

(1,0,1) −0.301 0.027 (−0.353, −0.249)

(1,0,0) 0.242 0.040 (+0.165, +0.319)

For the complement of (1,1,1)

(0,0,0) 0.820 0.075 (+0.673, +0.968)

(b) For Table 2.4b

y Estimated measure Standard error Confidence interval

(1,1,1) −0.857 0.044 (−0.943, −0.772)

(1,1,0) −0.274 0.012 (−0.298, −0.250)

(1,0,1) −0.338 0.015 (−0.368, −0.309)

(1,0,0) 0.245 0.022 (+0.201, +0.289)
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Table 2.6: The daily atmospheric temperatures at Sapporo, Tokyo, and Naha in

Japan in 2010 and 2016 (Japan Meteorological Agency, 2022).

(a) The daily atmospheric temperatures in 2010

Naha

Sapporo Tokyo below normal normal above normal

below normal 19 4 5

below normal normal 5 2 3

above normal 35 12 45

below normal 4 1 3

normal normal 1 0 1

above normal 11 3 11

below normal 49 4 16

above normal normal 8 0 6

above normal 41 11 62

(b) The daily atmospheric temperatures in 2016

Naha

Sapporo Tokyo below normal normal above normal

below normal 6 6 29

below normal normal 2 0 12

above normal 8 4 63

below normal 4 1 7

normal normal 1 1 3

above normal 3 0 15

below normal 35 5 31

above normal normal 6 0 24

above normal 21 7 71
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Table 2.7: The estimated measures, approximate standard errors, and approximate

95% confidence interval for measures are applied to Tables 2.6a and 2.6b.

(a) For Table 2.6a

y Estimated measure Standard error Confidence interval

(1,1,1) 0.213 0.039 (+0.137, +0.290)

(1,1,0) 0.268 0.036 (+0.198, +0.337)

(1,0,1) −0.097 0.030 (−0.156, −0.039)

(1,0,0) −0.043 0.036 (−0.113, +0.027)

(b) For Table 2.6b

y Estimated measure Standard error Confidence interval

(1,1,1) 0.378 0.047 (+0.286, +0.470)

(1,1,0) −0.027 0.026 (−0.078, +0.024)

(1,0,1) 0.205 0.030 (+0.146, +0.264)

(1,0,0) −0.200 0.040 (−0.278, −0.122)
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Chapter 3

Measures of Departure from

Local Marginal Homogeneity for

Square Contingency Tables

3.1 Introduction

Consider R × R contingency tables with the same row and column classifica-

tions. In such contingency tables, the test of independence is meaningless because

the observations are concentrated on the main diagonal cell. Therefore, we would

like to perform an analysis with respect to the symmetry of the contingency table.

Let pij denote the probability that an observation will fall in the (i, j)th cell of the

table (i = 1, . . . , R; j = 1, . . . , R). For nominal contingency tables, several sym-

metry models with respect to the main diagonal are considered. The symmetry

(S) model (Bishop et al., 1975; Bowker, 1948) is defined as

pij = pji for all (i, j; i ̸= j).

The partial symmetry (PS) model (Saigusa et al., 2016) is defined as

pij = pji for at least one (i, j; i ̸= j).

The local symmetry (LS) model (Saigusa et al., 2019b) is defined as

pij = pji for only one (i, j; i ̸= j).

The LS model indicates that the cell probability that an observation will fall in

the ith row category and the jth (> i) column category is equal to the probability

that the observation falls in the jth row category and the ith column category for

only one (i, j). Because of the strong constraints of the S model, various models
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using the marginal probabilities have been proposed to loosen the constraints. The

marginal homogeneity (MH) model (Stuart, 1955) is defined as

pi· = p·i for all i = 1, . . . , R,

where pi· =
∑R

t=1 pit, and p·i =
∑R

s=1 psi. The partial marginal homogeneity

(PMH) model (Saigusa et al., 2020a) is defined as

pi· = p·i for at least one i = 1, . . . , R.

In addition to these, other symmetry (e.g., quasi symmetry (Caussinus, 1965))

models or asymmetry (e.g., conditional symmetry (McCullagh, 1978), diagonal-

parameter symmetry (Goodman, 1979a), linear diagonals-parameter symmetry

(Agresti, 1983a)) models are proposed.

For square contingency tables with ordered categories, some symmetry models

are also proposed, including cumulative probabilities from the upper-right and

lower-left corners of the table. Denote the row and column variables by X and Y .

The cumulative probability is defined as

Cij =


P (X ≤ i, Y ≥ j) =

i∑
s=1

R∑
t=j

pst when i < j,

P (X ≥ i, Y ≤ j) =
R∑
s=i

j∑
t=1

pst when i > j.

Then the S model can also be expressed as

Cij = Cji for all (i, j; i ̸= j).

The cumulative partial symmetry (CPS) model (Saigusa et al., 2019a) is defined

as

Cij = Cji for at least one (i, j; i ̸= j).

The cumulative local symmetry (CLS) model (Saigusa et al., 2020b) is defined as

Cij = Cji for only one (i, j; i ̸= j).

The CLS model describes the probability that an observation will fall in the ith

row category or below and the jth (> i) column category or above (upper-right

corner) is equivalent to the probability that the observation falls in the jth row

category or above and the ith column category or below (lower-left corner) for

only one (i, j). Some marginal homogeneity models are also proposed which have

cumulative probabilities. The cumulative probability is defined as

G1(i) = P (X ≤ i, Y ≥ i+ 1) =
i∑

s=1

R∑
t=i+1

pst,

G2(i) = P (X ≥ i+ 1, Y ≤ i) =
R∑

s=i+1

i∑
t=1

pst.
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Then the MH model is also expressed as

G1(i) = G2(i) for all i = 1, . . . , R − 1.

The cumulative partial marginal homogeneity (CPMH) model (Nakagawa et al.,

2020) is defined as

G1(i) = G2(i) for at least one i = 1, . . . , R − 1.

Some statistics for testing the goodness of fit of the MH model are given by, for

example, Stuart (1955), Bhapkar (1966), Fleiss and Everitt (1971), Bishop et al.

(1975) and Agresti (1983b). Consider now several square tables. When there is

no structure of MH in each of these tables, we are interested in measuring and

comparing the degrees of departure from MH in the tables. The test statistic can

be used for testing the goodness-of-fit of the MH model, but it is not suitable to

use the test static for the comparison of the degrees of departure from the MH

model in several square tables. See Tomizawa et al. (2003) details.

We mention that statistics cannot measure the degree of departure from the

model for some contingency tables that do not fit the model. Therefore, mea-

sures have been proposed to measure the degree of departure from the model. In

the analysis of two-way contingency tables, the degree of departure from indepen-

dence is assessed by using measures of association between the row and column

variables. Measures of the association include, for example, Yule’s coefficients

of association and colligation (Yule, 1912, 1900), Cramér’s coefficient (Cramér,

1946), and Goodman and Kruskal’s coefficient (Goodman and Kruskal, 1954).

For contingency tables with nominal categories, measures to represent the de-

gree of departure from the S, PS, and LS models have been developed (Saigusa

et al., 2016, 2019b; Tomizawa et al., 1998). These measures are given as forms of

weighted arithmetic, geometric and harmonic means of a diversity index by Patil

and Taillie (1982), consisting of cell probabilities. In the sense that the values of

these measures do not depend on the order of the categories, these measures may

not be suitable for ordered contingency tables. For square contingency tables with

ordered categories, several measures of the structure of cumulative probability are

proposed, which incorporate information about the order of the categories. The

measures for the S, CPS, and CLS models are given as weighted arithmetic, ge-

ometric and harmonic means of the diversity index consisting of the cumulative

probabilities Cij (Saigusa et al., 2019a, 2020b; Tomizawa et al., 2001). Similarly,

measures to represent the degree of departure from several MH models are pro-

posed. For square contingency tables with nominal categories, the measures for

the MH and PMH models are given as weighted arithmetic and geometric means
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of the diversity index consisting of the marginal probabilities Tomizawa and Makii

(Altun and Aktaş, 2018; Saigusa et al., 2020a; Tomizawa and Makii, 2001). The

values of these measures do not depend on the order of the categories. For square

contingency tables with ordered categories, the measures for the MH and CPMH

models are given as weighted arithmetic and geometric means of the diversity in-

dex consisting of the cumulative probabilities G1(i) and G2(i) (Nakagawa et al.,

2020; Tomizawa et al., 2003).

On the other hand, Rand index (Rand, 1971) is proposed as a correspondence

measure between different partitions. Hubert and Arabie (1985) introduce an

extension of the Rand index and its application to rows and columns of contingency

tables. The application to contingency tables is based on dividing the entire sample

with respect to row and column categories to form a contingency table. Therefore,

the symmetry-related measures and Rand index have different objectives. Also,

the Rand index is calculated based on the number of samples in each contingency

table cell, while the measures proposed in prior studies and this chapter are not.

This chapter aims to propose local marginal homogeneity models for the marginal

probabilities and the cumulative probabilities. Moreover, we propose weighted

harmonic mean measures for the proposed models. Section 3.2 proposes new mea-

sures for the local homogeneity of marginal probabilities pi· and p·i with nominal

categories and cumulative probabilities G1(i) and G2(i) with ordered categories.

Section 3.3 consists approximate confidence interval of the measures. Section 3.4

denotes the properties of the measures using artificial data sets. Section 3.6 shows

examples that apply to the measures.

3.2 New models and measures

In section 3.2.1, we propose a new model which has the structure of the local

marginal homogeneity for a square contingency table with nominal categories and

its measure, which expresses the degree of departure from the model. In section

3.2.2, we also define another model with the cumulative local marginal homogeneity

structure for a square contingency table with ordered categories and its measure.

3.2.1 For nominal category

For square contingency tables with nominal categories, we propose the local

marginal homogeneity (LMH) model defined by

pi· = p·i for only one i (i = 1, . . . , R).
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The LMH model describes that the probability that an observation will fall in

the ith row category is equal to that of the observation falling in the ith column

category for only one i.

Assume that pi· + p·i ̸= 0 (i = 1, . . . , R) and pi· ̸= p·i for any i except for only

one a. We propose the following measure:

ψ
(λ)
MH(H) =

R∏
s=1

ψ(λ)
s

R∑
i=1

πi R∏
s=1
s ̸=i

ψ(λ)
s


(λ > −1),

where πi = (pi· + p·i)/2, p1(i) = pi·/(pi· + p·i), p2(i) = p·i/(pi· + p·i),

ψ
(λ)
i = 1− λ2λ

2λ − 1
I
(λ)
i ,

I
(λ)
i =

1

λ

{
1−

(
p1(i)

)λ+1 −
(
p2(i)

)λ+1
}
.

For λ = 0, we define that ψ
(0)
MH(H) = limλ→0 ψ

(λ)
MH(H). Note that λ is a real value

chosen by users. The index I
(λ)
i is a diversity index of degree-λ for {p1(i), p2(i)}.

We note that the diversity index includes the Shanon entropy (when λ = 0) and

the Gini concentration (when λ = 1) in special cases. For more details of this

diversity index, see Patil and Taillie (1982). We can rewrite submeasure ψ
(λ)
i as

follows:

ψλ
i =

λ(λ− 1)

2λ − 1
D

(λ)
i

(
{pk(i)};

{
1

2

})
,

D
(λ)
i

(
{pk(i)};

{
1

2

})
=

1

λ(λ+ 1)

[
p1(i)

{(
p1(i)

1/2

)λ

− 1

}
+ p2(i)

{(
p2(i)

1/2

)λ

− 1

}]
.

D
(λ)
i is a powerdivergence between two distributions {p1(i), p2(i)} and {1/2, 1/2}.

We note that the power divergence includes teh Kullback-Leibler (KL) information

(when λ = 0) and the Peason chi-wquared type discrepancy (when λ = 1) in special

cases. For more ditails of teh power divergence, see Cressie and Read (1984) and

Read and Cressie (1988). For any λ > −1, the ψ
(λ)
MH(H) has characteristics that

1. the measure ψ
(λ)
MH(H) must lie between 0 and 1.

2. ψ
(λ)
MH(H) = 0 if and only if the LMH model holds.

3. ψ
(λ)
MH(H) = 1 if and only if the degree of departure from LMH is the maximum

in the sense that pi· = 0 (then p·i > 0) or p·i = 0 (then pi· > 0) for all

i = 1, . . . , R.
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When the LMH model does not hold, it is easy to see that

ψ
(λ)
MH(H) =

(
R∑
i=1

πi

ψ
(λ)
i

)−1

.

Namely, the measure is expressed as the weighted harmonic mean of {ψ(λ)
i }.

The measure ψ
(λ)
MH(H) is appropriate for analyzing the data on a nominal scale

because the value of ψ
(λ)
MH(H) is invariant under the same arbitrary permutation of

the row and column categories.

3.2.2 For ordered category

For square contingency tables with ordered categories, we propose the cumu-

lative local marginal homogeneity (CLMH) model defined by

G1(i) = G2(i) for only one i (i = 1, . . . , R − 1).

The CLMH model describes that the probability that an observation will fall in

the ith row category or below and the i + 1th column category or above is equal

to the probability that the observation falls in the i + 1th row category or above

and the ith column category or below for only one i.

Assume that G1(i) + G2(i) ̸= 0 (i = 1, . . . , R − 1) and G1(i) ̸= G2(i) for any i

expect for only one a. We propose the following measure:

τ
(λ)
MH(H) =

R−1∏
s=1

ω(λ)
s

R−1∑
i=1

(G∗
1(i) +G∗

2(i)

) R−1∏
s=1
s ̸=i

ω(λ)
s


(λ > −1),

where G∗
s(i) = Gs(i)/∆ (∆ =

∑R−1
i=1 (G1(i) +G2(i))), G

c
s(i) = Gs(i)/(G1(i) +G2(i)),

ω
(λ)
i = 1− λ2λ

2λ − 1
H

(λ)
i ,

H
(λ)
i =

1

λ

{
1−

(
Gc

1(i)

)λ+1 −
(
Gc

2(i)

)λ+1
}
.

For λ = 0, we define that τ
(0)
MH(H) = limλ→0 τ

(λ)
MH(H). The measure holds the

following properties same as the measure of the LMH model in Section 3.2.1. For

any λ > −1,

1. the measure τ
(λ)
MH(H) must lie between 0 and 1.

2. τ
(λ)
MH(H) = 0 if and only if the probability table has the structure of CLMH,
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3. τ
(λ)
MH(H) = 1 if and only if the probability table has the structure of complete

marginal inhomogeneity in the sense that G1(i) = 0 (then G2(i) ̸= 0) or

G2(i) = 0 (then G1(i) ̸= 0) for all i = 1, . . . , R − 1.

It should be noted that the measure τ
(λ)
MH(H) is expressed as the weighted harmonic

mean of {ω(λ)
s }.

3.3 Approximate confidence interval of the mea-

sures

In this section, we construct an approximate confidence interval for ψ
(λ)
MH(H) and

τ
(λ)
MH(H). As see in Section 3.2, the measures ψ

(λ)
MH(H) and τ

(λ)
MH(H) are the function

of pij. For the sake of general discussion, we firstly consider Φ(λ) as a function of

pij and construct an approximate confidence interval for it. Then, we obtain the

approximate confidence intervals of the measures ψ
(λ)
MH(H) and τ

(λ)
MH(H) by replacing

Φ
(λ)
MH(H) with ψ

(λ)
MH(H) and τ

(λ)
MH(H). Let nij denote the observed frequency in the

(i, j)th cell of the table (i = 1, . . . , R; j = 1, . . . , R). Assuming that a multinomial

distribution applies to the R×R table, we shall consider the approximate standard

error and the large-sample confidence interval of the measure Φ(λ) using the delta

method, the description of which is given by, for example, Bishop et al. (1975) and

Agresti (2002). The sample version of Φ(λ), i.e. Φ̂(λ), is given by Φ(λ) with {pij}
replaced by {p̂ij}, where p̂ij = nij/N and N =

∑R
i=1

∑R
j=1 nij. Using the delta

method,
√
N
(
Φ̂(λ) − Φ(λ)

)
asymptotically (as N → ∞) has a normal distribution

with mean zero and variance σ2, where

σ2 =
R∑
i=1

R∑
j=1

pij

(
∂Φ(λ)

∂pij

)2

−

(
R∑
i=1

R∑
j=1

pij
∂Φ(λ)

∂pij

)2

(λ > −1).

Let σ̂2 denote σ2 with {pij} replaced by {p̂ij}. Then σ̂/
√
N is an estimated ap-

proximate standard error for Φ̂(λ), and Φ̂(λ) ± zα/2σ̂/
√
N is approximate (1 − α)

confidence limits for Φ(λ), where zα/2 is the upper α/2 point of the standard normal

distribution.

The confidence interval of the measure ψ
(λ)
MH(H) is given by ∂Φ(λ)/∂pij replaced

by γ
(λ)
ij , where

γ
(λ)
ij = −

(
ψ

(λ)
MH(H)

)2 1(
ψ

(λ)
i

)2A12(i) +
1(

ψ
(λ)
j

)2A21(j)

 (λ ̸= 0),
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with

A12(i) =
ψ

(λ)
i

2
− 2λ−1(λ+ 1)

2λ − 1
p2(i)

{(
p1(i)

)λ − (p2(i))λ} ,
A21(i) =

ψ
(λ)
i

2
+

2λ−1(λ+ 1)

2λ − 1
p1(i)

{(
p1(i)

)λ − (p2(i))λ} ,
and the confidence interval of the measure τ

(λ)
MH(H) is also given by ∂Φ(λ)/∂pij

replaced by β
(λ)
ij , where

β
(λ)
ij =



(
τ
(λ)
MH(H)

)2
∆

j−1∑
k=i

B12(k) + (j − i)
τ
(λ)
MH(H)

∆
(i < j),(

τ
(λ)
MH(H)

)2
∆

i−1∑
k=t

B21(k) + (i− j)
τ
(λ)
MH(H)

∆
(i > j),

with

B12(k) =
2λ(λ+ 1)Gc

2(k)

(2λ − 1)(ω
(λ)
k )2

{(
Gc

1(k)

)λ − (Gc
2(k)

)λ}− 1

ω
(λ)
k

,

B21(k) =
2λ(λ+ 1)Gc

1(k)

(2λ − 1)(ω
(λ)
k )2

{(
Gc

2(k)

)λ − (Gc
1(k)

)λ}− 1

ω
(λ)
k

,

and γ
(0)
ij = limλ→0 γ

(λ)
ij , β

(0)
ij = limλ→0 β

(λ)
ij .

3.4 Properties of measures

In this section, we check the properties of measures in this chapter and their

relationship to the measures proposed in previous studies using artificial data.

Firstly, we show that the proposed measures are the smallest in each of the nominal

contingency tables and ordered contingency tables. Denote the measures for MH

and PMH for nominal contingency tables ψMH(A) and ψMH(G), respectively (see

Appendix 3.A). Since arithmetic mean is larger than geometric mean, it holds

that

ψ
(λ)
MH(H) ≤ ψ

(λ)
MH(G) ≤ ψ

(λ)
MH(A) (3.4.1)

and the equal signs can be used only when

ψ
(λ)
1 = ψ

(λ)
2 = · · · = ψ

(λ)
R .

This means that, from the formula ψ
(λ)
i , the ratio of p1(i) and p2(i) is equal for all

i.
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Denote the measure for MH and CPMH for ordered contingency tables τMH(A)

and τMH(G), respectively (see Appendix 3.A). In the same matter as in the discus-

sion above, it holds that

τ
(λ)
MH(H) ≤ τ

(λ)
MH(G) ≤ τ

(λ)
MH(A) (3.4.2)

and equal signs can be used only when

ω
(λ)
1 = ω

(λ)
2 = · · · = ω

(λ)
R−1.

From the formula ω
(λ)
i , the ratio of Gc

1(i) and G
c
2(i) is also equal for all i.

Now we check the above properties by using the artificial data, Table 3.1 and

Table 3.2. As we can see from a glance at Table 3.2, the properties (3.4.1) and

(3.4.2) are satisfied. Table 3.1a is a table with p1· = p·1 and G1(1) = G2(1). From

Table 3.2a(a) and Table 3.2b(a), it can be confirmed that ψ
(λ)
MH(H) = τ

(λ)
MH(H) = 0.

In Table 3.1c and 3.1d, as we can see from the actual calculation, Gc
1(i)/G

c
2(i) is

equivalent to 1/2 or 2, ω
(λ)
1 = ω

(λ)
2 = ω

(λ)
3 and p1(i)/p2(i) are equal to 1/3 or 3,

ψ
(λ)
1 = ψ

(λ)
2 = ψ

(λ)
3 = ψ

(λ)
4 , respectively. Therefore, it can be confirmed that

ψ
(λ)
MH(H) = ψ

(λ)
MH(G) = ψ

(λ)
MH(A) and τ

(λ)
MH(H) = τ

(λ)
MH(G) = τ

(λ)
MH(A) from Table 3.2a(d)

and Table 3.2b(c). Tables 3.1b and 3.1c have numbers (1) and (4) interchanged.

ψ
(λ)
MH(H) is invariant from Table 3.2a(b) and (c), but τ

(λ)
MH(H) has changed from

Table 3.2b(b) and (c). Therefore, it can be confirmed that τ
(λ)
MH(H) is the measure

that takes the order into account. Table 3.1e and 3.1f are examples of contingency

tables that have the structure of the greatest departure from CLMH and LMH,

respectively. They do not necessarily have the same structure.

3.5 Simulation

This section simulates the probability of coverage of confidence intervals for

the LMH and CLMH model measures.

Simulations were performed on 4 × 4 randomly generated contingency tables.

The tables with sample sizes of 200, 500, and 1000 were generated 1000 times

according to the probability structure of the contingency tables. Confidence inter-

vals for the LMH and CLMH measures were calculated with eight lambda values

(−0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) to determine the probability of the actual

measures falling within the 95% confidence interval.

The confidence interval is sufficiently reliable since it exceeds 90% in most of

the cells in Table 3.3. The probability of an actual measure falling in the confidence

interval increases as the sample size increases, but this is not the case for some

cells, e.g., sample size 1000 for λ = 0.0 in Table 3.3a. This may be because when

49



the sample size is large, the simulation completes without problems, even when

the scale takes extreme values.

3.6 Example

In this section, we show examples of the adaptation of each measure for nominal

or ordered contingency tables.

This actual data is an example of a contingency table with nominal categories

taken from Upton (1977), showing the change in voting party for the three parties

(Conservative, Labour, and Liberal) and abstention in 1964, 1966, and 1970. Table

3.4a shows the results of estimating the measure ψ
(λ)
MH(H) for the change in voting

party from 1964 to 1966, and Table 3.4b estimates the measure for the difference

in voting party from 1966 to 1970 to see the degree of departure from the LMH

model. Table 3.4a shows that the change in 1964 and 1966 fit the LMH model

well. Table 3.4b shows that the degree of departure from the LMH model is more

significant for the changes in voting parties between 1966 and 1970 than between

1964 and 1966.

This real data is an example of a contingency table with ordered categories

are taken from Tominaga (1979), which shows the cross-classifications of Japanese

fathers’ and their son’s occupational status in 1955 and 1975, respectively. Al-

though it may be nonsense to think of occupational classes in modern society, we

will treat them as an ordered category according to the references. The status

of each category number is (1)Professional and Managers, (2)Clerical and Sales,

(3)Skilled manual, Semiskilled manual, and Unskilled manual, and (4)Farmers.

Table 3.5a shows the results of estimating the measure τ
(λ)
MH(H) for the father’s and

son’s occupational class as of 1955, and Table 3.5b estimates the measure for the

father’s and son’s occupational class as of 1975 to see the degree of departure from

the CLMH model. From Table 3.5, the values in the confidence interval of τ
(λ)
MH(H)

are greater for Table 3.5b than for Table 3.5a. Therefore, the degree of departure

from the CLMH model for father-son pairs is estimated to be larger in 1975 than

in 1955.

3.7 Concluding remarks

For R × R square contingency tables, we proposed the LMH model for nom-

inal categories and the CLMH model for ordered categories. Also, we proposed

harmonic mean-type measures of departure from them. As shown in the example

in Section 3.6, there are two types of categories which are nominal and ordered.
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Suppose we apply an ordered measure to a nominal contingency table. In that

case, we introduce extra information, and if we use a nominal measure to an or-

dered contingency table, information about the order will be lost. Therefore, to

analyze the contingency table, it is necessary to consider whether the elements of

the categories are ordered or not.

As described in Section 3.1, the measures of MH, PMH, and LMH models are

constructed using arithmetic, geometric, and harmonic mean, respectively. We

would like to express these three measures in a single formula.
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Table 3.1: Artificial data

(a)

(1) (2) (3) (4) Total

(1) 0.12 0.09 0.07 0.02 0.30

(2) 0.08 0.09 0.12 0.02 0.31

(3) 0.06 0.03 0.06 0.05 0.20

(4) 0.04 0.01 0.08 0.06 0.19

Total 0.30 0.22 0.33 0.15 1.00

(b)

(1) (2) (3) (4) Total

(1) 0.16 0.12 0.05 0.03 0.36

(2) 0.02 0.10 0.03 0.02 0.17

(3) 0.04 0.01 0.14 0.02 0.21

(4) 0.04 0.10 0.00 0.12 0.26

Total 0.26 0.33 0.22 0.19 1.00

(c)

(1) (2) (3) (4) Total

(1) 0.12 0.10 0.00 0.04 0.26

(2) 0.02 0.10 0.03 0.02 0.17

(3) 0.02 0.01 0.14 0.04 0.21

(4) 0.03 0.12 0.05 0.16 0.36

Total 0.19 0.33 0.22 0.26 1.00

(d)

(1) (2) (3) (4) Total

(1) 0.02 0.09 0.12 0.04 0.27

(2) 0.02 0.03 0.03 0.02 0.10

(3) 0.02 0.01 0.08 0.04 0.15

(4) 0.03 0.17 0.22 0.06 0.48

Total 0.09 0.30 0.45 0.16 1.00

(e)

(1) (2) (3) (4) Total

(1) 0.00 0.20 0.00 0.10 0.30

(2) 0.00 0.00 0.30 0.05 0.35

(3) 0.00 0.00 0.00 0.35 0.35

(4) 0.00 0.00 0.00 0.00 0.00

Total 0.00 0.20 0.30 0.50 1.00

(f)

(1) (2) (3) (4) Total

(1) 0.00 0.20 0.00 0.45 0.65

(2) 0.00 0.00 0.00 0.00 0.00

(3) 0.00 0.05 0.00 0.30 0.35

(4) 0.00 0.00 0.00 0.00 0.00

Total 0.00 0.25 0.00 0.75 1.00
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Table 3.2: Values of six measures for Table 1 which are related to various Marginal

Homogeneity model.

(a) Measures of nominal categories

Applied tables

(a) (b) (c) (d) (e) (f)

ψ̂
(λ)
MH(A) λ

0.00 0.019 0.029 0.029 0.189 0.416 1.000

0.50 0.024 0.036 0.036 0.230 0.420 1.000

1.00 0.026 0.039 0.039 0.250 0.422 1.000

ψ̂
(λ)
MH(G) λ

0.00 0.000 0.011 0.011 0.189 0.076 1.000

0.50 0.000 0.014 0.014 0.230 0.087 1.000

1.00 0.000 0.016 0.016 0.250 0.092 1.000

ψ̂
(λ)
MH(H) λ

0.00 0.000 0.002 0.002 0.189 0.012 1.000

0.50 0.000 0.002 0.002 0.230 0.015 1.000

1.00 0.000 0.002 0.002 0.250 0.017 1.000

(b) Measures of ordered categories

Applied tables

(a) (b) (c) (d) (e) (f)

τ̂
(λ)
MH(A) λ

0.00 0.022 0.060 0.082 0.180 1.000 0.877

0.50 0.028 0.075 0.101 0.217 1.000 0.897

1.00 0.031 0.082 0.111 0.234 1.000 0.905

τ̂
(λ)
MH(G) λ

0.00 0.000 0.052 0.082 0.046 1.000 0.847

0.50 0.000 0.065 0.101 0.056 1.000 0.878

1.00 0.000 0.071 0.111 0.060 1.000 0.889

τ̂
(λ)
MH(H) λ

0.00 0.000 0.044 0.082 0.004 1.000 0.811

0.50 0.000 0.055 0.101 0.005 1.000 0.855

1.00 0.000 0.061 0.111 0.006 1.000 0.871
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Table 3.3: Simulation results for LMH and CLMH.

(a) Result of LMH

sample size

λ 200 500 1000

−0.5 0.941 0.955 0.949

0.0 0.939 0.929 0.897

0.5 0.874 0.890 0.918

1.0 0.949 0.941 0.965

1.5 0.940 0.956 0.910

2.0 0.962 0.940 0.951

2.5 0.939 0.851 0.923

3.0 0.934 0.948 0.943

(b) Result of CLMH

Sample size

λ 100 500 1000

−0.5 0.874 0.885 0.940

0.0 0.946 0.951 0.954

0.5 0.906 0.948 0.885

1.0 0.942 0.940 0.947

1.5 0.937 0.950 0.952

2.0 0.934 0.962 0.917

2.5 0.939 0.934 0.948

3.0 0.936 0.927 0.875
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Table 3.4: The estimated measures, estimated approximate standard errors, and

approximate 95% confidence interval for ψ
(λ)
MH(H), applied to Voting changes among

1964, 1966 and 1970 British Elections; from Upton (1977).

(a) Result from voting changes between 1966 and 1964 British Election

λ
Estimated Standard Confidence

measure error interval

−0.5 0.0000 0.0005 ( −0.0009, 0.0010 )

0.0 0.0001 0.0008 ( −0.0015, 0.0016 )

0.5 0.0001 0.0010 ( −0.0019, 0.0021 )

1.0 0.0001 0.0011 ( −0.0021, 0.0023 )

1.5 0.0001 0.0011 ( −0.0021, 0.0023 )

2.0 0.0001 0.0011 ( −0.0021, 0.0023 )

2.5 0.0001 0.0010 ( −0.0019, 0.0021 )

3.0 0.0001 0.0009 ( −0.0018, 0.0020 )

(b) Result from voting changes between 1966 and 1970 British Election

λ
Estimated Standard Confidence

measure error interval

−0.5 0.0079 0.0033 ( 0.0014, 0.0144 )

0.0 0.0133 0.0056 ( 0.0024, 0.0243 )

0.5 0.0167 0.0070 ( 0.0030, 0.0304 )

1.0 0.0184 0.0077 ( 0.0033, 0.0335 )

1.5 0.0188 0.0079 ( 0.0034, 0.0343 )

2.0 0.0184 0.0077 ( 0.0033, 0.0335 )

2.5 0.0173 0.0072 ( 0.0031, 0.0315 )

3.0 0.0158 0.0066 ( 0.0028, 0.0288 )
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Table 3.5: The estimated measures, estimated approximate standard errors, and

approximate 95% confidence interval for τ
(λ)
MH(H), applied to cross-classifications of

Japanese father’s and his son’s occupational status in 1955 and 1975 (Tominaga,

1979).

(a) Result in 1955

λ
Estimated Standard Confidence

measure error interval

−0.5 0.0032 0.0094 ( −0.0151, 0.0216 )

0.0 0.0055 0.0158 ( −0.0255, 0.0364 )

0.5 0.0068 0.0198 ( −0.0319, 0.0456 )

1.0 0.0076 0.0218 ( −0.0352, 0.0504 )

1.5 0.0078 0.0224 ( −0.0361, 0.0516 )

2.0 0.0076 0.0218 ( −0.0352, 0.0504 )

2.5 0.0071 0.0205 ( −0.0331, 0.0474 )

3.0 0.0065 0.0188 ( −0.0303, 0.0433 )

(b) Result in 1975

λ
Estimated Standard Confidence

measure error interval

−0.5 0.0713 0.0196 ( 0.0328, 0.1098 )

0.0 0.1172 0.0314 ( 0.0556, 0.1788 )

0.5 0.1443 0.0379 ( 0.0700, 0.2187 )

1.0 0.1576 0.0410 ( 0.0773, 0.2379 )

1.5 0.1611 0.0417 ( 0.0793, 0.2428 )

2.0 0.1576 0.0410 ( 0.0773, 0.2379 )

2.5 0.1495 0.0392 ( 0.0726, 0.2265 )

3.0 0.1385 0.0369 ( 0.0662, 0.2109 )
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Appendix 3.A Measures proposed in previous

studies

The measures for the MH and PMH models for nominal contingency tables and

the MH and CPMH models for ordered contingency tables are shown. Assuming

that pi· + p·i ̸= 0, Tomizawa and Makii (2001) proposed a measure to represent

the degree of departure from the MH model as follows:

ψ
(λ)
MH(A) =

R∑
i=1

πiψ
(λ)
i for λ > −1

where

πi =
pi· + p·i

2
, p1(i) =

pi·
pi· + p·i

, p2(i) =
p·i

pi· + p·i
,

ψ
(λ)
i =


1− λ2λ

2λ − 1
I
(λ)
i for λ ̸= 0,

1− 1

log 2
I
(0)
i for λ = 0,

I
(λ)
i =


1

λ

{
1−

(
p1(i)

)λ+1 −
(
p2(i)

)λ+1
}

for λ ̸= 0,

−p1(i) log p1(i) − p2(i) log p2(i) for λ ̸= 0.

Saigusa et al. (2020a) proposed a measure for the PMH model defined by

ψ
(λ)
MH(G) =

R∏
i=1

(
ψ

(λ)
i

)πi

for λ > −1.

Assuming that G1(i) + G2(i) ̸= 0, Tomizawa et al. (2003) proposed a measure

to represent the degree of departure from the MH model as follows:

τ
(λ)
MH(A) =

R−1∑
i=1

(
G∗

1(i) +G∗
2(i)

)
ω
(λ)
i for λ > −1

where

G∗
s(i) =

Gs(i)

∆
, ∆ =

R−1∑
i=1

(
G1(i) +G2(i)

)
, Gc

s(i) =
Gs(i)

G1(i) +G2(i)

(s = 1 or 2),

ω
(λ)
i =


1− λ2λ

2λ − 1
H

(λ)
i for λ ̸= 0,

1− 1

log 2
H

(0)
i for λ = 0,

H
(λ)
i =


1

λ

{
1−

(
Gc

1(i)

)λ+1 −
(
Gc

2(i)

)λ+1
}

for λ ̸= 0,

−Gc
1(i) logG

c
1(i) −Gc

2(i) logG
c
2(i) for λ ≠ 0.
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Nakagawa et al. (2020) proposed a measure for the CPMH model defined by

τ
(λ)
MH(G) =

R−1∏
i=1

(
ω
(λ)
i

)(G∗
1(i)

+G∗
2(i))

for λ > −1.

It can be seen that the measure ψ
(λ)
MH(A) and τ

(λ)
MH(A) are weighted arithmetic means

of the submeasure ψ
(λ)
i and ω

(λ)
i , respectively. ψ

(λ)
MH(G) and τ

(λ)
MH(G) are also weighted

geometric means of the submeasure ψ
(λ)
i and ω

(λ)
i , respectively.

Appendix 3.B Differentiation of the proposed

measures

3.B.1 Measure of LMH

Consider pij(i = 1, . . . , R, j = 1, . . . , R). Differentiating ψ
(λ)
MH(H) by pij, we

obtain

∂

∂pij
(ψ

(λ)
MH(H)) =

 R∑
i=1

πi R∏
s=1
s ̸=i

ψ(λ)
s




−1

· ∂

∂pij

{
R∏

s=1

ψ(λ)
s

}

+
R∏

s=1

ψ(λ)
s · ∂

∂pij

 R∑
i=1

πi R−1∏
s=1
s ̸=i

ψ(λ)
s




−1

=
(
ψ

(λ)
MH(H)

)2{ πi

(ψ
(λ)
i )2

· ∂ψ
(λ)
i

∂pij
+

πj

(ψ
(λ)
j )2

·
∂ψ

(λ)
j

∂pij

}

−
(
ψ

(λ)
MH(H)

)2{ 1

ψ
(λ)
i

· ∂πi
∂pij

+
1

ψ
(λ)
j

· ∂πj
∂pij

}
.

Considering the derivative of ψ
(λ)
i and ψ

(λ)
j , we obtain

∂ψi

∂pij
=

2λ−1(λ+ 1)

2λ − 1

p2(i)
πi

{(
p1(i)

)λ − (p2(i))λ} ,
∂ψj

∂pij
= −2λ−1(λ+ 1)

2λ − 1

p1(j)
πj

{(
p1(j)

)λ − (p2(j))λ} .
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Because ∂πi/∂pij and ∂πj/∂pij is equal to 1/2, we get

∂

∂pij
(ψ

(λ)
MH(H)) =

(
ψ
(λ)
MH(H)

)2{ πi

(ψ
(λ)
i )2

·
∂ψ

(λ)
i

∂pij
+

πj

(ψ
(λ)
j )2

·
∂ψ

(λ)
j

∂pij

}

−
(
ψ
(λ)
MH(H)

)2{ 1

ψ
(λ)
i

· ∂πi
∂pij

+
1

ψ
(λ)
j

· ∂πj
∂pij

}

= −
(
ψ
(λ)
MH(H)

)2 [ 1

2ψ
(λ)
i

− 2λ−1(λ+ 1)

2λ − 1

p2(i)

(ψ
(λ)
i )2

{(
p1(i)

)λ −
(
p2(i)

)λ}]

−
(
ψ
(λ)
MH(H)

)2 [ 1

2ψ
(λ)
j

+
2λ−1(λ+ 1)

2λ − 1

p2(j)

(ψ
(λ)
j )2

{(
p1(j)

)λ −
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3.B.2 Measure of CLMH

Consider pst(s < t)(s = 1, . . . , R, t = 1, . . . , R). Differentiating τ
(λ)
MH(H) by pst,

we obtain

∂

∂pst
(τ

(λ)
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}
.

Considering the derivative of ω
(λ)
s , we obtain

∂ω
(λ)
s
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=

2λ(λ+ 1)Gc
2(s)

(2λ − 1)(G1(s) +G2(s))
((Gc

1(s))
λ − (Gc

2(s))
λ).

Consider with respect to the derivative of G∗
1(i)+G

∗
2(i). Assume that G∗

1(n) contains

pst and G
∗
1(m) does not contain pst, we have

∂(G∗
1(n) +G∗

2(n))
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=

1
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= −(t− s)

(
1

∆

)
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Substituting these derivatives into the derivative of τ
(λ)
MH(H), we get
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Similarly consider pst(s > t)(s = 1, . . . , R, t = 1, . . . , R). Noting that the deriva-

tive of ω
(λ)
s is

∂ω
(λ)
s
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=

2λ(λ+ 1)Gc
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the derivative of τ
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Appendix 3.C Data tables

3.C.1 The data table of Table 3.2

Table 3.6: Voting changes among 1964, 1966 and 1970 British Elections; from

Upton (1977).

(a) Voting changes between 1966 and 1964 British Election

1964

1966 Conservative Labor Liberal Abstention Total

Conservative 63 3 8 3 77

Labor 6 72 8 1 87

Liberal 2 3 25 0 30

Abstention 5 4 5 5 19

Total 76 82 46 9 213

(b) Voting changes between 1966 and 1970 British Election

1970

1966 Conservative Labor Liberal Abstention Total

Conservative 68 1 1 7 77

Labor 12 60 5 10 87

Liberal 12 3 13 2 30

Abstention 8 2 3 6 19

Total 100 66 22 25 213
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3.C.2 The data table of Table 3.5

Table 3.7: Cross-classifications of father’s and his son’s occupational status in 1955

and 1975 (Tominaga, 1979)

(a) in 1955

Son’s status

Father’s status (1) (2) (3) (4) Total

(1) Professional and Managers 80 72 37 19 208

(2) Clerical and Sales 44 155 61 31 291

(3)
Skilled manual and

Semiskilled manual
26 73 218 45 362

(4) Unskilled manual Farmers 69 156 166 614 1005

Total 219 456 482 709 1866

(b) in 1975

Son’s status

Father’s status (1) (2) (3) (4) Total

(1) Professional and Managers 127 101 54 12 294

(2) Clerical and Sales 86 207 125 13 431

(3)
Skilled manual and

Semiskilled manual
78 124 310 24 536

(4) Unskilled manual Farmers 109 206 437 325 1077

Total 400 638 926 374 2338
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Chapter 4

Discussions and Concluding

Remarks

4.1 Discussions

4.1.1 Properties of measures in Chapter 2

We discuss the characteristics of each measure in Yamamoto et al. (2011), Iki

and Tomizawa (2018), and Saito et al. (2022a) in Table 1.2. Yamamoto et al.

(2011) sets the measure to 1 when the probability is concentrated in one of the

four corner cells. However, from an analytical point of view, each of the four corner

cells has a different meaning: R→R is the number of Republican supporters who

have always supported the Republican party, D→D is the number of Democrat

supporters who have always supported the Democrat party, R→D is the number

of supporters who changed their support from Republic to Democrat, and D→
R is the opposite. Iki and Tomizawa (2018) focuses on whether Republican or

Democrat supporters are more likely to remain. Saito et al. (2022a), on the other

hand, focuses on whether there is a greater flow from Republican to Democrat or

vice versa.

Sub-measure Γj measures whether the probability of jth classification is con-

centrated in the first or the latter half. Therefore, the analyst can determine the

value of yj from the perspective of which part of the classification is more concen-

trated. Table 4.1 shows the probability structure of a 4 × 4× 4 contingency table

with a ΓMPS = 1. Using Table 2.6 as an example, y = (1, 1, 1) if we are interested

in whether all three cities are warming, and y = (1, 1, 0) if Naha is cooling and

the other two cities are warming. Note that Γ∗
j = −Γj, and we can get a rough

estimate of Γ3 by comparing y = (1, 1, 1) and y = (1, 1, 0). Therefore, it is possible

to predict whether the probability of the third classification is concentrated in the
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first or the latter half. However, if you want to predict this, it is better to calculate

the sub-measure Γj. If this is impossible, you need to predict Γj, paying attention

to whether the number of categories is even or odd and whether the data is likely

concentrated in the center of categories.

4.1.2 Select of λ

For the measure ψ
(λ)
MH(H), the analyst may be interested in which value of λ

should be preferred. However, in comparing tables, it seems best to compare the

values of ψ
(λ)
MH(H) for a range of values of λ. For example, consider the artificial

data in Table 4.2. Table 4.3 shows that the confidence intervals slightly overlap

for the λ marked with an asterisk (∗). So, for these cases, it may be impossible

to decide whether the degree of asymmetry is greater for Tables 4.2a or 4.2b.

But generally, for the comparison between the two tables, it would be possible to

conclude if ψ
(λ)
MH(H) is always greater (or always less) for one table than for the

other table. The same can be concluded for τ
(λ)
MH(H).

4.2 Concluding Remarks

In this paper, a new method for contingency table analysis is proposed. The

measures of departure from the marginal point symmetry model for a two-way

contingency table with ordered categories are verified and extended to a multi-

way contingency table. Then a measure of the departure from two local marginal

homogeneity models is devised.

Similar to Tahata et al. (2009), Chapter 2 uses the inverse trigonometric func-

tion to express the direction by allowing the measure to range from −1 to 1. By

extending these functions, we propose a measure of the departure from the 1st-

order marginal point symmetry model in a multi-way contingency table. We also

confirm that this multi-way measure includes the proposed two-way measure. We

only extended the measure to the first-order case, so it seems we could consider

extending it to the MPk
h model. However, this would not be easy.

Chapter 3 proposes a measure of departure from the local marginal homogene-

ity in the case of a contingency table with nominal categories and the case of a

contingency table with ordinal categories. The difference between these measures

is whether or not the category order of the contingency table is interchangeable.

We also consider the relationship between the proposed measures and previous

ones related to the marginal homogeneity model.

As a further development of this study, in Chapter 3, we will consider models

or measures with similar properties to those proposed in this study using similar
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or completely new methods. There have been various proposals for marginal ho-

mogeneity models and their measures for multi-way contingency tables. Further

investigations of these topics are future works.

In summary, this study develops new models and measures for marginal point

symmetry and marginal homogeneity of contingency tables. These models and

measures may contribute to analyzing marginalized elements of contingency tables.
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Table 4.1: Probability structures for ΓMPS to be 1

(a) y = (1, 1, 1)

X3 1 2 3 4

X1/X2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 p333 p343 0 0 p334 p344

4 0 0 0 0 0 0 0 0 0 0 p433 p443 0 0 p434 p444

(b) y = (1, 1, 0)

X3 1 2 3 4

X1/X2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 p331 p341 0 0 p332 p342 0 0 0 0 0 0 0 0

4 0 0 p431 p441 0 0 p432 p442 0 0 0 0 0 0 0 0

(c) y = (1, 0, 1)

X3 1 2 3 4

X1/X2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 p313 p323 0 0 p314 p324 0 0

4 0 0 0 0 0 0 0 0 p413 p423 0 0 p414 p424 0 0

(d) y = (0, 1, 1)

X3 1 2 3 4

X1/X2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 0 0 0 0 0 0 0 0 0 0 p133 p143 0 0 p134 p144

2 0 0 0 0 0 0 0 0 0 0 p233 p243 0 0 p234 p244

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 4.2: Artificial data

(a)

(1) (2) (3) Total

(1) 20 90 120 230

(2) 20 30 30 80

(3) 20 10 80 110

Total 60 130 230 420

(b)

(1) (2) (3) Total

(1) 30 50 100 180

(2) 20 30 10 60

(3) 50 10 90 150

Total 100 90 200 390

Table 4.3: The estimated measures, estimated approximate standard errors, and

approximate 95% confidence intervals for ψ
(λ)
MH(H), applied to Table 4.2.

(a) Result from 4.2a

λ
Estimated Standard Confidence

measure error interval

−0.5∗ 0.05119 0.01348 (0.02476, 0.07761)

0.0∗ 0.08497 0.02197 (0.04191, 0.12804)

0.5 0.10529 0.02687 (0.05262, 0.15796)

1.0 0.11542 0.02923 (0.05813, 0.17271)

1.5 0.11807 0.02983 (0.05961, 0.17653)

2.0 0.11542 0.02923 (0.05813, 0.17271)

2.5 0.10922 0.02786 (0.05462, 0.16382)

3.0∗ 0.10081 0.02601 (0.04983, 0.15179)

(b) Result from 4.2b

λ
Estimated Standard Confidence

measure error interval

−0.5∗ 0.01382 0.00570 (0.00265, 0.02499)

0.0∗ 0.02325 0.00954 (0.00455, 0.04195)

0.5 0.02908 0.01190 (0.00577, 0.05240)

1.0 0.03206 0.01309 (0.00641, 0.05771)

1.5 0.03285 0.01340 (0.00659, 0.05912)

2.0 0.03206 0.01309 (0.00641, 0.05771)

2.5 0.03018 0.01234 (0.00599, 0.05437)

3.0∗ 0.02763 0.01134 (0.00541, 0.04984)
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Altun, G. and Aktaş, S. (2018). Measures of departure from marginal homogeneity
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