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Chapter 1

Introduction

The thesis is based on [17] and [16].
In the thesis, we study pseudo-Riemannian surfaces of constant mean and scalar

curvature and non-diagonalizable shape operator in pseudo-sphere or pseudo-hyper-
bolic space.

The notion of finite typeness of isometric immersions into a Euclidean space was
introduced by B.-Y. Chen in the late 1970’s (see [6], [7], [5], [9] etc.). Later, the finite
typeness of isometric immersions into a Euclidean space or, in more general, a pseudo-
Euclidean space has been studied by many geometers (see [6], [7], [5] etc.). B.-Y.
Chen and P. Piccinni [8] extended the notion of the finite typeness to C∞-maps and
studied the finite typeness of the Gauss map (which is not an immersion) of isometric
immersions. Recently, B. Bektaş, E.Ö. Canfes, U. Dursun and R. Yeǧin have studied
the finite typeness of the pseudo-spherical (resp. the pseudo-hyperbolic) Gauss maps
of isometric immersions into the pseudo-sphere (resp. the pseudo-hyperbolic space)
(see [4], [3], [2], [22]).

LetM be an n-dimensional pseudo-Riemannian manifold of index t, and let Em
ν be

an m-dimensional pseudo-Euclidean space of index ν. The smooth map φ : M → Em
ν

is said to be of finite type if φ has the spectral decomposition: φ = φ1+ · · ·+φk with
φi : M → Em

ν ’s non-constant maps such that ∆φi = λiφi, where ∆ is the Laplacian
operator of M and λi are constants. Here, if λi’s are mutually distinct then φ is said
to be of k-type. Denote by Sm−1

ν the (m− 1)-dimensional pseudo-sphere of constant
curvature 1 and index ν, and by Hm−1

ν the (m − 1)-dimensional pseudo-hyperbolic
space of constant curvature −1 and index ν. Let M be an n-dimensional oriented
pseudo-Riemannian manifold of index t and x : M ↪→ Sm−1

ν ⊂ Em
ν an isometric

immersion. Let G(n + 1,m)t be the Grassmannian manifold consisting of (n + 1)-
dimensional oriented non-degenerate subspaces of index t of Em

ν . Define the map
ν̃ : M → G(n + 1,m)t by ν̃(p) = x(p) ∧ x∗(e

p
1) ∧ x∗(e

p
2) ∧ · · · ∧ x∗(e

p
n) for p ∈ M ,

where (ep1, . . . , e
p
n) is an orthonormal frame of TpM compatible with the orientation

of M . This map ν̃ is called the pseudo-spherical Gauss map of x. Similarly, for
an isometric immersion x : M ↪→ Hm−1

ν ⊂ Em
ν+1, the pseudo-hyperbolic Gauss map

ν̃ : M → G(n+ 1,m)t+1 is defined.
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D. S. Kim and Y. H. Kim [14] classified such Lorentzian surfaces in the 3-
dimensional de Sitter space S3

1 and anti-de Sitter space H3
1 as follows.

Theorem 1.1 ([14], see Theorem 3.1). Let M2
1 be a Lorentzian surface in S3

1 or
H3

1. If the mean and Gaussian curvatures are constant and the shape operator is not
diagonalizable at a point, then M2

1 is an open part of a complex circle or a B-scroll.

B. Bektaş, E.Ö. Canfes and U. Dursun [2] determined the type number of the
pseudo-spherical Gauss map of B-scroll in S3

1.
In the following, we describe the contents of this thesis.
We recall basic terminology and facts related to pseudo-Riemannian submanifolds

and null curves in Chapter 2, as preliminaries.
In Chapter 3, we determine the type numbers of the pseudo-hyperbolic Gauss

maps of a complex circle and a B-scroll in the 3-dimensional anti-de Sitter space.
The following theorem is one of the main results in the thesis.

Theorem 1.2 (see Theorem 3.3). Let M be an oriented Lorentzian surface in H3
1 of

constant mean and Gaussian curvatures and non-diagonalizable shape operator. The
following facts hold.

(i) M is an open part of a complex circle of radius −1 if and only if the pseudo-
hyperbolic Gauss map is of 1-type.

(ii) If M is the complex circle of radius κ (Re(κ) = −1, κ ̸= −1), then the pseudo-
hyperbolic Gauss map is of infinite type.

(iii) M is an open part of a non-flat B-scroll if and only if the pseudo-hyperbolic
Gauss map is of null 2-type.

(iv) If M is a flat B-scroll, then the pseudo-hyperbolic Gauss map is of infinite type.

Also, we investigate the behavior of type numbers of the pseudo-hyperbolic Gauss
map along the parallel family of such oriented Lorentzian surfaces in the 3-dimensional
anti-de Sitter space. Furthermore, we investigate the type number of the pseudo-
hyperbolic Gauss map of generalized umbilical hypersurfaces which are natural gen-
eralizations of B-scrolls in Sn+1

1 and Hn+1
1 given by [1].

In Chapter 4, we find ruled surfaces with the above null curves which have non-
diagonalizable shape operators, constant mean curvatures and constant scalar cur-
vatures. As the preparations, we construct Frenet frame fields along a null curve
when it is not a bi-null Cartan curve in a pseudo-sphere with index 2 and a pseudo-
hyperbolic space with index 2, respectively. The theory of the Frenet frame field
along a null curve γ in a pseudo-Riemannian manifold (M, ⟨ , ⟩) has been developed
by [10], [11], [13] and [12], where γ is a null curve satisfying ⟨γ̇, γ̇⟩ = 0 and γ̇ ̸= 0. If
M is a Lorentzian manifold, the Frenet frame field can be constructed uniquely for
a null curve γ satisfying γ(2) ̸= 0. Such a frame field is called the Cartan frame field
and a null curve γ with the Cartan frame field is called the Cartan curve. In the
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case where M is E3
1, a B-scroll is one of the most known ruled surfaces over a Cartan

curve γ. It is defined as the image of the immersion x : I × R → E3
1 parameterized

by
x(s, t) = γ(s) + tB(s),

where B is a null vector field along γ such that ⟨γ̇, B⟩ = −1. Note that a B-scroll
is a non-degenerate hypersurface in E3

1 and it has some properties as follows: the
mean curvature is non-zero constant, Gaussian curvature is constant and the shape
operator is non-diagonalizable everywhere. In the case whereM is S3

1 or H3
1, a B-scroll

is defined by the same way as in E3
1. M. Magid [18] and L. J. Aĺıas, A. Ferrández and

P. Lucas [1] constructed some examples of hypersurfaces which are generalizations of
B-scrolls in En+1

1 , Sn+1
1 or Hn+1

1 , and they called such a hypersurface the generalized
umbilical hypersurface. We remark that γ(2) is a spacelike vector field if γ is in a
Lorentzian manifold.

If M is a pseudo-Riemannian manifold with index 2, Frenet frame fields cannot
be constructed uniquely for a null curve γ since there are both cases where γ(2) is
non-null and null (see [10], [11] and [13] for instance). In the case where γ is a bi-
null curve, that is, ⟨γ(2), γ(2)⟩ = 0 and γ(2) ̸= 0, M. Sakaki [20] constructed a Frenet
frame field more directly. It is called a bi-null Cartan frame field and a bi-null curve
γ with a bi-null Cartan frame field is called a bi-null Cartan curve. M. Sakaki, A.
Uçum and K. İlarslan [21] studied ruled surfaces over a bi-null Cartan curve in E5

2.
In this paper, we consider the case where M is Sn+1

2 or Hn+1
2 and a null curve γ in

M satisfies ⟨γ(2), γ(2)⟩ ̸= 0, that is, γ is not a bi-null curve. In Chapter 4, we will
show some examples of ruled hypersurfaces over a null curve γ in Sn+1

2 and Hn+1
2 . In

this paper, we consider the case where γ(2) is non-null everywhere. Then, there are
both cases where γ(2) is spacelike and timelike. We prove that these hypersurfaces
satisfy properties as the generalized umbilical hypersurfaces in Chapter 3: the mean
curvature is non-zero constant, the scalar curvature is constant and the minimal
polynomial of the shape operator is (x + a)2 for some constant a. We explain those
details in Chapter 4.

Finally, we consider the higher codimensional case of B-scroll. D. S. Kim, Y.
H. Kim and D. W. Yoon [15] extended a B-scroll in E3

1 to in Em
1 and named it

the generalized B-scroll. In Chapter 5, we construct ruled surfaces similar to the
generalized B-scroll in S5

2 or H5
2.

Let γ be a null curve in S5
2 or H5

2 and γ(2) is non-null. We put A = γ̇. The
following is one of the main results of this paper.

Theorem 1.3 (see Theorem 5.2). Let (A,B,C, Z1, Z2) be a Frenet frame field along
γ in S5

2 or H5
2 such that B is a null vector field, ⟨A,B⟩ = −1 and ⟨B,C⟩ = 0. We

define the immersion from I ×R into S5
2 or H5

2 by x(s, t) = γ(s) + tB(s) and denote
an image of x by M . Then, M is a non-degenerate Lorentzian ruled surface along γ
satisfying the following.

(i) In the case where Z1 is non-null, we put εC = ⟨C,C⟩ and ε1 = ⟨Z1, Z1⟩. For
some constants k2 and k3, the mean curvature and the minimal polynomial
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of the shape operator derived from the normalized mean curvature vector are
εCk

2
2 + ε1k

2
3 and P (x) = (x− (εCk

2
2 + ε1k

2
3))

2, respectively.

(ii) In the case where Z1 is null, for some constant k2, the mean curvature and the
minimal polynomial of the shape operator derived from the normalized mean
curvature vector are k2

2 and P (x) = (x− k2
2)

2, respectively.

Moreover, a non-degenerate Lorentzian ruled surface along γ equipped with Frenet
frame field is one of the above two cases.
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Chapter 2

Preliminaries

2.1 Basic notions and facts

Fix 0 ≤ ν ≤ m and let ⟨ , ⟩ be the symmetric non-degenerate (0, 2) tensor on Rm

defined by

(2.1) ⟨v, w⟩ = −
ν∑

i=1

viwi +
m∑

j=ν+1

vjwj

for v = (v1, . . . , vm) and w = (w1, . . . , wm). By the standard isomorphism between Rm

to TpRm, we extended ⟨ , ⟩ to a symmetric non-degenerate (0, 2) tensor field on Rm.
The pair (Rm, ⟨ , ⟩) is called a pseudo-Euclidean space with index ν. We denote it by
Em

ν and call ⟨ , ⟩ a pseudo-Euclidean metric with index ν. In general, a pair (M, g) of
an m-dimensional smooth manifold M and a symmetric non-degenerate (0, 2) tensor
field g on M of constant index ν is called a pseudo-Riemannian manifold. According
to the definition of g, M is a Riemannian manifold if index ν = 0. In particular, M
is called a Lorentzian manifold if index ν = 1. Let (x1, . . . , xm) be a local coordinate
system on M , and we put ∂i = ∂/∂xi. The components of g can be written locally
by gij = ⟨∂i, ∂j⟩ for 1 ≤ i, j ≤ m. Then, g is locally expressed as

g =
m∑

i,j=1

gijdx
i ⊗ dxj.

For x ∈ Em
ν and c > 0, we put

Sm−1
ν (c) = {x = (x1, . . . , xm) ∈ Em

ν | ⟨x, x⟩ = 1/c }

and
Hm−1

ν−1 (−c) = {x = (x1, . . . , xm) ∈ Em
ν | ⟨x, x⟩ = −1/c },

where ⟨ , ⟩ is defined by (2.1). Then Sm−1
ν (c) (resp. Hm−1

ν−1 (−c)) is an (m − 1)-
dimensional pseudo-Riemannian submanifold in Em

ν of constant curvature c and index
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ν (resp. constant curvature −c and index ν− 1), and called a pseudo-sphere (resp. a
pseudo-hyperbolic space). In particular, Sm−1

1 (c) and Hm−1
1 (−c) are called a de Sitter

space and an anti-de Sitter space, respectively. For simplicity, we denote Sm−1
ν (1) and

Hm−1
ν−1 (−1) by Sm−1

ν and Hm−1
ν−1 , respectively.

LetMt be an n-dimensional pseudo-Riemannian submanifold of index t in Em
ν . Let

∇̃ be the Levi-Civita connections of Em
ν and ∇ the induced connection on Mt. Also,

let ∇⊥ be the normal connection of Mt in Em
ν . For simplicity, we denote all metrics by

the common symbol ⟨ , ⟩. We take a local orthonormal frame field (e1, . . . , en) of the
tangent bundle TMt of Mt, and a local orthonormal frame field (en+1, . . . , em) of the
normal bundle T⊥Mt ofMt in Em

ν . Denote the signatures of e1, e2, . . . , en, en+1, . . . , em
by εA := ⟨eA, eA⟩ = ±1 where A = 1, . . . ,m. Let {ω̃AB}A,B=1,...,m be the connection
form of ∇̃ with respect to (e1, . . . , en, en+1, . . . , em). Similarly, let {ωij}i,j=1,...,n be the
connection form of ∇ with respect to (e1, . . . , en) and {ω⊥

rs}r,s=n+1,...,m the connection
form of ∇⊥ with respect to (en+1, . . . , em), that is, ∇̃, ∇ and ∇⊥ are expressed by

∇̃X(eA) =
m∑

B=1

εBω̃AB(X)eB,

∇X(ei) =
n∑

j=1

εjωij(X)ej

and

∇⊥
X(er) =

m∑
s=n+1

εsω
⊥
rs(X)es

for X ∈ TMt, respectively.
Throughout this section, we define the following range of indices: 1 ≤ A,B ≤ m,

1 ≤ i, j, k, l ≤ n and n + 1 ≤ r, s ≤ m. Also, let h be the second fundamental form
of Mt, and we describe the coefficients of h as hr

ij, that is, h(ei, ej) =
∑m

r=n+1 h
r
ijer.

For the simplicity, we denote Aer by Ar, where Aer is the shape operator of Mt in
the direction er. Noting ωAB + ωBA = 0, the Gauss formula is given by

(2.2) ∇̃ekei =
n∑

j=1

εjωij(ek)ej +
m∑

r=n+1

εrh
r
kier,

and the Weingarten formula is given by

(2.3) ∇̃eker = −Ar(ek) +
m∑

s=n+1

εsω
⊥
rs(ek)es.

The mean curvature vector H and the scalar curvature S of Mt in Em
ν are defined by

(2.4) H =
1

n

m∑
r=n+1

εrtrArer
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and

(2.5) S = n2⟨H,H⟩ − ∥h∥2,

respectively, where ∥h∥2 =
∑n

i,j=1

∑m
r=n+1 εiεjεrh

r
ijh

r
ji. Denote by ∇̂h the covariant

derivative of h with respect to ∇ and ∇⊥. Let

(∇̂ekh)(ei, ej) =
m∑

r=n+1

εrh
r
ij;ker.(2.6)

Then we have

(2.7) hr
ij;k = hr

jk;i,

(2.8) hr
jk;i = ei(h

r
jk)−

n∑
l=1

εl(h
r
lkωjl(ei) + hr

ljωkl(ei)) +
m∑

s=n+1

εsh
s
jkω

⊥
sr(ei),

(2.9) R⊥(ej, ek; er, es) = ⟨[Ar, As](ej), ek⟩ =
n∑

i=1

εi(h
r
ikh

s
ij − hr

ijh
s
ik),

where R⊥ is the normal curvature tensor of Mt.
Let x : Mt ↪→ Sm−1

ν (c) or Hm−1
ν−1 (−c) ⊂ Em

ν be an isometric immersion. Denote by
h and H the second fundamental form and the mean curvature vector of Mt in Em

ν ,
respectively. Let ĥ and Ĥ be the second fundamental form and of the mean curvature
vector of Mt in Sm−1

ν (c) or Hm−1
ν−1 (−c), respectively. Then, h and H are written by ĥ

and Ĥ as

H = Ĥ − εcx,(2.10)

h = ĥ(X,Y )− εc⟨X,Y ⟩x.(2.11)

Hence, (2.5) is rewritten as

S = εcn(n− 1) + n2⟨Ĥ, Ĥ⟩ − ∥ĥ∥2,(2.12)

where ε = +1 if in Sm−1
ν (c) and ε = −1 if in Hm−1

ν−1 (−c).
The gradient vector field ∇f of f ∈ C∞(Mt) is defined by ∇f =

∑n
i=1 εiei(f)ei,

and Laplacian operator ∆ of Mt with respect to the induced metric is given by
∆ =

∑n
i=1 εi(∇eiei − eiei).

Let λ be a real constant number, and let H be the mean curvature of Mn
t in

M̄n+1
ν , that is, H = εn+1Hen+1.

Proposition 2.1.1 ([1]). Let Mn
t be a hypersurface in M̄n+1

ν . Then ∆H = λH if
and only if one of the following statemnts holds:

(i) Mn
t is minimal in M̄n+1

ν .

(ii) Mn
t has nonzero constant mean curvature H and tr(S2) = (1/n)tr(S)2.

Moreover, the constant λ is always given by λ = n⟨H,H⟩ = n(c+ εn+1H2).
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2.2 Frenet frame field along a null curves

Definition 2.2.1. A tangent vector v of pseudo-Riemannian manifold M is said to
be spacelike if ⟨v, v⟩ > 0 or v = 0, timelike if ⟨v, v⟩ < 0, and null if ⟨v, v⟩ = 0 and
v ̸= 0. Especially, a curve γ(s) in M is said to be a null curve if γ̇(s) is null for all s.

Definition 2.2.2. A basis {E1, . . . , En} of En
ν is called an orthonormal basis if

E1, . . . , En satisfy

⟨Ei, Ej⟩ =


−δij (i, j = 1, . . . , ν)

δij (i, j = ν + 1, . . . , n)

0 (1 ≤ i < j ≤ n).

Let B = {X1, Y1, . . . , Xp, Yp, E1, . . . , En−2p} be a basis of En
ν , where 1 ≤ p ≤ n/2. Let

k, l and i, j be 1 ≤ k, l ≤ p and 1 ≤ i, j ≤ n− 2p, respectively. Then, B is called an
pseudo-orthonormal basis if X1, Y1, . . . , Xp, Yp, E1, . . . , En−2p satisfy

⟨Xk, Xk⟩ = ⟨Yk, Yk⟩ = 0, ⟨Xk, Yl⟩ = −δkl,

⟨Xk, Ei⟩ = ⟨Yk, Ei⟩ = 0, ⟨Ei, Ej⟩ = εiδij,

where εi = −1 if 1 ≤ i ≤ q and εi = 1 if q + 1 ≤ i ≤ n− 2p for p+ q = ν.

In the case where (M, ⟨ , ⟩,∇) is an n-dimensional Riemannian manifold, a Frenet
curve and its order are defined for C∞-curve γ in M as follows. Let γ be parameter-
ized by s, and we put V1 := γ̇. Then, γ is called a Frenet curve of order d if there is
an orthonormal frame field (V1, . . . , Vd) and differential positive functions k1, . . . , kd−1

such that

∇γ̇Vj(s) = −kj−1(s)Vj−1(s) + kj+1(s)Vj+1(s),(2.13)

where 1 ≤ d ≤ n, 1 ≤ j ≤ d and V0 ≡ Vd+1 ≡ 0, and (V1, . . . , Vd) is said to be
a Frenet frame field of γ. We put γ(2) = ∇γ̇ γ̇ and γ(i) = ∇γ̇γ

(i−1) for 1 ≤ i ≤ d.
Then, we find {γ̇, . . . , γ(i)} is a linearly independent family by substituting (2.13) for
∇γ̇γ

(i) inductively. In the case where (M, ⟨ , ⟩,∇) is a pseudo-Riemannian manifold,
an order of a curve in M is defined as follows.

Definition 2.2.3. Let γ be a curve in pseudo-Riemannian manifold Mn
ν and 1 ≤ i ≤

n. Then, d is called an order of γ if d is the largest number of i such that {γ̇, . . . , γ(i)}
is a linearly independent family.

Definition 2.2.4. Let γ be a null curve of order 3 in S3
1(⊂ E4

1) or H3
1(⊂ E4

2), and let
(A,B,C) be a pseudo-orthonormal tangent frame field of S3

1 or H3
1 along γ. Then,

(A,B,C) is called the Cartan frame field along γ if it satisfies
γ̇(s) = A(s),

Ȧ(s) = k1(s)C(s),

Ḃ(s) = k2C(s) + εγ,

Ċ(s) = k2A(s) + k1(s)B(s)

(2.14)
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for some positive-valued functions k1 and k2, where ε = +1 if γ is in S3
1 or ε = −1 if

γ is in H3
1. Let M be the Lorentzian ruled surface in S3

1 or H3
1 defined as the image

of the immersion x(s, t) = γ(s) + tB(s). If k2 is non-zero constant, then M is called
the B-scroll over γ.

B(s2)

γ̇(s1) = A(s1)

B(s3)

light cone

γ

B(s1)

γ̇(s3) = A(s3)

γ → null geodesic

null geodesic

γ̇(s2) = A(s2)

Figure 2.1: B-scroll over γ

Fact 2.2.1 ([2], [17]). The unit normal vector field N of the B-scroll in S3
1 or H3

1 is
given by N = k2tB(s)+C(s). The shape operator AN with respect to (∂x/∂s, ∂x/∂t)
is expressed as

AN =

(
−k2 0

−k1(s) −k2

)
.

Thus, the mean curvature H is a non-zero constant −k2, Gaussian curvature is a
constant and the minimal polynomial of its shape operator is P (x) = (x+ k2)

2.

Remark 2.2.1. Let M be a B-scroll in S3
1 or H3

1 and H the mean curvature vector
field of M in S3

1 or H3
1. Then M satisfies ∆H = λH for a real constant λ.
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Chapter 3

Classification of Lorentzian
hypersurfaces in a de Sitter space
and anti-de Sitter space

In this chapter, we determine the type number of the pseudo-hyperbolic Gauss
map of Lorentzian hypersurfaces of constant mean and scalar curvature and non-
diagonalizable shape operator in pseudo-sphere or pseudo-hyperbolic space. First,
we consider the type number of the pseudo-hyperbolic Gauss map of such Lorentzian
hypersurfaces in the 3-dimensional de Sitter space S3

1 and anti-de Sitter space H3
1.

3.1 Known results and main theorem

D.S. Kim and Y.H. Kim[14] classified the Lorentzian surfaces of constant mean and
Gaussian curvatures and non-diagonalizable shape operator in the 3-dimensional de
Sitter S3

1 and anti-de Sitter H3
1 space as follows.

Theorem 3.1 ([14]). Let M2
1 be a Lorentzian surface in S3

1 or H3
1. If the mean and

Gaussian curvatures are constant and the shape operator is not diagonalizable at a
point, then M2

1 is an open part of a complex circle or a B-scroll.

B. Bektaş, E.Ö. Canfes and U. Dursun [2] determined the type number of the
pseudo-spherical Gauss map of an oriented Lorentzian surface in S3

1 of non-zero con-
stant mean curvature and non-diagonalizable shape operator at a point.

Theorem 3.2 ([2]). An oriented Lorentzian surface in S3
1 of constant mean curvature

and non-diagonalizable shape operator is of null 2-type pseudo-spherical Gauss map
if and only if it is an open part of a non-flat B-scroll over a null curve.

In this chapter, we determined the type numbers of the pseudo-hyperbolic Gauss
maps of such Lorentzian surfaces in H3

1 of constant mean and Gaussian curvatures
and non- diagonalizable shape operator at a point. The following theorem is one of
the main results.
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Theorem 3.3. Let M be an oriented Lorentzian surface in H3
1 of constant mean and

Gaussian curvatures and non-diagonalizable shape operator. The following facts hold.

(i) M is an open part of a complex circle of radius −1 if and only if the pseudo-
hyperbolic Gauss map is of 1-type.

(ii) If M is the complex circle of radius κ (Re(κ) = −1, κ ̸= −1), then the pseudo-
hyperbolic Gauss map is of infinite type.

(iii) M is an open part of a non-flat B-scroll if and only if the pseudo-hyperbolic
Gauss map is of null 2-type.

(iv) If M is a flat B-scroll, then the pseudo-hyperbolic Gauss map is of infinite type.

3.2 Finite typeness of pseudo-hyperbolic

Gauss map

Definition 3.2.1. Let φ : Mt → Hm−1
ν−1 ⊂ Em

ν (resp. φ : Mt → Sm−1
ν ⊂ Em

ν ) be a
smooth map. Then φ is said to be of finite type in Hm−1

ν−1 (resp. in Sm−1
ν ) if φ has the

following spectral decomposition:

φ = φ1 + φ2 + · · ·+ φk,

where φi : Mt → Em
ν ’s are non-constant map such that ∆φi = λiφi with λi ∈ R,

i = 1, 2, . . . , k. If φ has this spectral decomposition and λi’s are mutually distinct
constant, then the map φ is said to be of k-type, and when one of λi’s is equal to
zero, the map φ is said to be of null k-type.

For a map of finite type, the following fact holds.

Lemma 3.2.1. Let φ : Mt → Hm−1
ν−1 or Sm−1

ν be a smooth map. If ∆2φ = 0, then
∆φ = 0 or φ is of infinite type.

Proof. Assume that φ is of finite type and φ has the following spectral decomposition:
φ = φ1 + φ2 + · · ·+ φk with ∆φi = λiφi for λi ∈ R and i = 1, 2, . . . , k. Then we have

0 = ∆2φ = λ2
1φ1 + · · ·+ λ2

kφk.

Therefore we have k = 1 and λ1 = 0, that is, ∆φ = 0.

Let G(n+ 1,m) be the Grassmannian manifold consisting of (n+ 1)-dimensional
oriented non-degenerate subspaces of Em

ν , and let G(n+1,m)t+1 be the submanifold
of G(n + 1,m) consisting of (n + 1)-dimensional oriented non-degenerate subspaces
of index t+ 1 of Em

ν . Let (ẽ1, . . . , ẽm) and (ê1, . . . , êm) be two orthonormal frames of
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Em
ν . Let ẽi1 ∧ · · · ∧ ẽin+1 and êj1 ∧ · · · ∧ êjn+1 be two vectors in

∧n+1 Em
ν . Define an

indefinite inner product ⟨⟨, ⟩⟩ on
∧n+1 Em

ν by

⟨⟨ẽi1 ∧ · · · ∧ ẽin+1 , êj1 ∧ · · · ∧ êjn+1⟩⟩ = det (⟨ẽil , êjk⟩) , (l, k = 1, . . . , n+ 1).

Therefore, we may identify
∧n+1 Em

ν with the pseudo-Euclidean space EN
q for some

positive integer q, where N =
(

m
n+1

)
. The Grassmannian manifold G(n + 1,m)t+1

can be imbedded into a pseudo-Euclidean space
∧n+1 Em

ν ≃ EN
q by assigning Π ∈

G(n + 1,m)t+1 to ẽ1 ∧ · · · ∧ ẽn+1 , where (ẽ1, . . . , ẽn+1) is an orthonormal basis of Π
compatible with the orientation of Π.

Let x : Mt ↪→ Hm−1
ν−1 ⊂ Em

ν be an isometric immersion. For the immersion x, we
define a map ν̃ : Mt → G(n+ 1,m)t+1 by

ν̃(p) = x(p) ∧ x∗(e
p
1) ∧ x∗(e

p
2) ∧ · · · ∧ x∗(e

p
n) (p ∈ Mt),

where (ep1, . . . , e
p
n) is an orthonormal frame of TpMt compatible with the orientation

of Mt. The map ν̃ is called the pseudo-hyperbolic Gauss map of x. In the sequel, we
rewrite x∗(ei) by ei.

Let (e1, . . . , en) be an local orthonormal frame field of TMt compatible with the
orientation ofMt and (en+1, . . . , em) an local orthonormal frame field of T⊥Mt defined
an open set U of Mt, respectively.
The first derivative of the pseudo-hyperbolic Gauss map ν̃ is given by

(3.1) eiν̃ =
n∑

k=1

m−1∑
r=n+1

εrh
r
ikx ∧ e1 ∧ · · · ∧ er︸︷︷︸

k−th

∧ · · · ∧ en.

Yeǧin and Dursun proved the following fact.

Lemma 3.2.2 ([22]). Let Mt be an n-dimensional oriented pseudo-Riemannian sub-
manifold of index t of a pseudo-hyperbolic Hm−1

ν ⊂ Em
ν+1. Then the Laplacian of the

pseudo-hyperbolic Gauss map ν̃ : Mt → G(n + 1,m) ⊂ EN
q , N =

(
m

n+1

)
for some q is

given by

∆ν̃ = ∥ĥ∥2ν̃ + nĤ ∧ e1 ∧ · · · ∧ en − n
n∑

k=1

x ∧ e1 ∧ · · · ∧DekĤ︸ ︷︷ ︸
k−th

∧ · · · ∧ en

+
n∑

i,k=1
j ̸=k

m−1∑
r,s=n+1

r<s

εrεsR
r
sjkx ∧ e1 ∧ · · · ∧ er︸︷︷︸

j−th

∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧ en

(3.2)

where Rr
sjk = RD(ej, ek; er, es).

In case of n = m− 2, Yeǧin and Dursun have the following fact.
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Lemma 3.2.3 ([22]). For an oriented pseudo-Riemannian hypersurface Mt with in-
dex t of Hn+1

ν−1 ⊂ En+2
ν we have

(3.3) ∆(en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en) = −nĤν̃ − nen+1 ∧ e1 ∧ e2 ∧ · · · ∧ en

where Ĥ is the mean curvature Mt in Hn+1
ν−1, that is, Ĥ = εn+1Ĥen+1.

Lemma 3.2.4. If there exists a polynomial P (t) = (t − λ1)(t − λ2) with mutually
distinct roots λ1, λ2 ∈ R such that P (∆)ν̃ = 0, then ν̃ is of at most 2-type or infinite
type.

Proof. Assume that ν̃ is of finite type and it has the following spectral decomposition;
ν̃ = ν̃λ̂1

+ · · ·+ ν̃λ̂k
with ∆ν̃λ̂i

= λ̂iν̃λ̂i
(1 ≤ i ≤ k). Then we have

0 = P (∆)ν̃ = P (∆)(ν̃λ̂1
+ · · ·+ ν̃λ̂k

)

=
k∑

i=1

(λ̂i − λ1)(λ̂i − λ2)ν̃λ̂i
.

Thus, we have (λ̂i − λ1)(λ̂i − λ2) = 0 (1 ≤ i ≤ k). Hence, we have λ̂i = λ1 or λ2 for
all i, that is, ν̃ is of at most 2-type. Hence the statement of this lemma follows.

3.3 The proof of Theorem 3.3

Let Cn+1 be the (n + 1)-dimensional complex vector space which is identified with
R2n+2. Define a non-degenerate symmetric bilinear form ⟨ , ⟩ of the Cn+1(= R2n+2)
by

(3.4) ⟨z, w⟩ = Re

(
n+1∑
i=1

ziwi

)
,

where z = (z1, . . . , zn+1) and w = (w1, . . . , wn+1) ∈ Cn+1. Note that ⟨z, z⟩ =∑n+1
i=1 x2

i −
∑n+1

i=1 y2i when z = (x1 +
√
−1y1, . . . , xn+1 +

√
−1yn+1) (xi, yi ∈ R, i =

1, . . . , n + 1). Let g̃ be a pseudo-Euclidean metric of index n + 1 on the (2n + 2)-
dimensional affine space R2n+2(= Cn+1) induced from ⟨ , ⟩.

Definition 3.3.1. Fix a non-zero complex number κ. We put

Sn
C(κ) = {(z1, z2, . . . , zn+1) ∈ Cn+1 = E2n+2

n+1 |
n+1∑
i=1

z2i = κ},

that is,
∑n+1

i=1 (x
2
i − y2i ) = Re(κ) and 2

∑n+1
i=1 xiyi = Im(κ) for zi = xi +

√
−1yi

(xi, yi ∈ R). This submanifold Sn
C(κ) is called a complex sphere of radius κ. In

particular, when n = 1, it is called a complex circle of radius κ.
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Remark 3.3.1.

Sn
C(κ) ⊂


S2n+1
n+1 (Re(κ)) (if Re(κ) > 0)

H2n+1
n (Re(κ)) (if Re(κ) < 0)

The complex circle S1
C(κ) ⊂ H3

1 is parameterized as x(z) =
√
κ(cos z, sin z) (z ∈

C).

Proof of (i) and (ii) of Theorem 3.3. Let M be the complex circle of radius κ in H3
1.

Then, M is parameterized as

x(z) =
√
κ(cos z, sin z) (z ∈ C),

where
√
κ is one (with smaller argument) of squared roots of κ. Note that M is

included byH3
1 because of Re(κ) = −1. For the convenience, we put

√
κ = d1+

√
−1d2

and z = x+
√
−1y. By simple calculations, we have

⟨xx,xx⟩ = −1, ⟨xx,xy⟩ = −2d1d2, ⟨xy,xy⟩ = 1.

Also, we can show that the unit normal vector field N of M in H3
1 is given by

N = (d2 +
√
−1d1)(cos z, sin z). With respect to the frame field (xx,xy), the shape

operator AN in the direction N is expressed as

AN =

(
α −β
β α

)
,

where α = −2d1d2/(d
2
1 + d22) and β = 1/(d21 + d22). Put e1 := xx, ẽ2 := xy −⟨xy, e1⟩e1

and e2 := ẽ2/|ẽ2|. Then (e1, e2) forms an orthonormal tangent frame field on M .
Note that ⟨e1, e1⟩ = −1, ⟨e2, e2⟩ = 1 and |ẽ2|2 = 1 + 4d21d

2
2. With respect to (e1, e2),

the shape operator AN is expressed as

AN =

(
0 |ẽ2|β

−|ẽ2|β 2α

)
.

Thus, by remarking α = −2d1d2β and d21 − d22 = −1, we obtain Ĥ = α and ∥ĥ∥2 =
2(α2 − β2), where Ĥ and ĥ denote the mean curvature and the second fundamental
form of M in H3

1. Hence, M is flat by (2.12). By (3.2) and (3.3), we obtain

∆ν̃ = 2(α2 − β2)ν̃ + 2αN ∧ e1 ∧ e2,(3.5)

∆2ν̃ = 4((α2 − β2)2 − α2)ν̃ + 4α(α2 − β2 − 1)N ∧ e1 ∧ e2.(3.6)

Hence,

∆2ν̃ − 2(α2 − β2 − 1)∆ν̃ + 4β2ν̃ = 0.(3.7)

Therefore ν̃ is either of finite type with type number k ≤ 2 or of infinite type by
Lemma 3.2.4.
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If κ = −1, then we have d1 = 0 and hence α = 0. Therefore it follows from (3.5)
that ∆ν̃ = −2β2ν̃, that is, ν̃ is of 1-type. If κ ̸= −1, then we have α ̸= 0. Hence
it follows from (3.5) that ν̃ is of not 1-type. Therefore ν̃ is of 2-type or of infinite
type. Suppose that it is of 2-type, and that ν̃ has a decomposition ν̃ = ν̃1 + ν̃2 with
∆ν̃1 = λ1ν̃1 and ∆ν̃2 = λ2ν̃2, where λ1, λ2 ∈ R are mutually distinct. From (3.5) and
(3.6), ν̃1 and ν̃2 can be expressed as

ν̃1 = aν̃ + bN ∧ e1 ∧ e2,(3.8)

ν̃2 = (1− a)ν̃ − bN ∧ e1 ∧ e2(3.9)

for some constants a and b. By substituting (3.8) and (3.9) into (3.5) and (3.6), and
comparing coefficient of ν̃ and N ∧ e1 ∧ e2, we have

(λ1 − λ2)a = 2(α2 − β2)− λ2,
(λ1 − λ2)b = 2α,
(λ2

1 − λ2
2)a = 4(α2 − β2)2 − 4α2 − λ2

2,
(λ2

1 − λ2
2)b = 4α(α2 − β2 − 1).

(3.10)

Thus, we obtain

(3.11) λ2
2 − 2(α2 − β2 − 1)λ2 + 4β2 = 0.

The discriminant of (3.11) is

(3.12)

(α2 − β2 − 1)2 − 4β2 = (α2 − β2)2 − 1

= − 1

(d21 + d22)
4
(16d81 + 16d61 + 32d41 + 16d21)

< 0.

Therefore, there is no λ2 ∈ R satisfying (3.11). Thus a contradiction arises. Hence,
ν̃ is of infinite type. Conversely, assume that the pseudo-hyperbolic Gauss map is of
1-type. From (3.2), we obtain that ∥ĥ∥2 is constant and Ĥ = 0. Hence, the Gaussian
curvature is constant from (2.12). By Fact 3.1, (iii) and (iv) of Theorem 3.3 (which
will be shown in the next section), M is an open part of a complex circle of radius
−1.

Proof of (iii) and (iv) of Theorem 3.3. Let (A,B,C) be the Cartan frame field along
a null curve γ in H3

1 given by Definition 2.2.4. Then, the immersion x(s, t) = γ(s) +
tB(s) parametrizes the B-scroll over a null curve γ. We have

xs(s, t) = A(s) + t(k2C(s)− γ(s)) and xt(s, t) = B(s),

and hence

⟨xs,xs⟩ = t2(k2
2 − 1), ⟨xs,xt⟩ = −1 and ⟨xt,xt⟩ = 0.
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The unit normal vector field of x is given by N(s, t) = k2tB(s) +C(s). With respect
to the frame (xs,xt), the shape operator AN in the direction N is expressed as

AN =

(
−k2 0

−k1(s) −k2

)
.(3.13)

When |k2| > 1 and t ̸= 0, an orthonormal frame field (e1, e2) on M is given by

e1 =
xs

|xs|
, e2 = e1 + |xs|xt.

By simple calculations, we have

AN(e1) =
1

|xs|
AN(xs)

=
1

|xs|
(−k2xs − k1(s)xt)

= − 1

|xs|

(
k2|xs|e1 + k1(s)

1

|xs|
(e2 − e1)

)
=

(
−k2 +

k1(s)

t2|k2
2 − 1|

)
e1 −

k1(s)

t2|k2
2 − 1|

e2,

AN(e2) = AN(e1) +
⟨xs,xs⟩
|xs|

AN(xt)

=
k1(s)

t2|k2
2 − 1|

e1 +

(
−k2 −

k1(s)

t2|k2
2 − 1|

)
e2.

Thus, with respect to an orthonormal frame (e1, e2), the shape operator AN is ex-
pressed as

AN =

(
−k2 +

k1(s)

t2|k22−1|
k1(s)

t2|k22−1|

− k1(s)

t2|k22−1| −k2 − k1(s)

t2|k22−1|

)
and hence we have Ĥ = −k2 and ∥ĥ∥2 = 2k2

2. When |k2| < 1 and t ̸= 0, we put
e1 = xs/|xs| and e2 = e1 − |xs|xt. Similarly, we have Ĥ = −k2 and ∥ĥ∥2 = 2k2

2.
Hence, M is a non-flat B-scroll by (2.12) when k2

2 ̸= 1 and t ̸= 0. We put e3 := N
and

ν̃1 :=
1

k2
2 − 1

(−ν̃ + k2e3 ∧ e1 ∧ e2),(3.14)

ν̃2 :=
1

k2
2 − 1

(k2
2 ν̃ − k2e3 ∧ e1 ∧ e2).(3.15)

It is clear that ν̃ = ν̃1 + ν̃2. Using (3.2) and (3.3), we obtain that ∆ν̃1 = 0 and
∆ν̃2 = 2(k2

2 − 1)ν̃2. On the other hand, by using (3.1) and (3.3), we have

e1(ν̃) = ε1

(
−k2 +

k1(s)

t2(k2
2 − 1)

)
x ∧ e3 ∧ e2 − ε1

k1(s)

t2(k2
2 − 1)

x ∧ e1 ∧ e3,
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e1(e3 ∧ e1 ∧ e2) = ε1e3 ∧ x ∧ e2,

and hence

e1(ν̃1) =
ε1k1(s)

t2(k2
2 − 1)2

(x ∧ e3 ∧ e2 − x ∧ e1 ∧ e3) ̸= 0.

Therefore ν̃ is of null 2-type.
When k2

2 = 1 or t = 0, an orthonormal frame field (e1, e2) on M is given by

e1 =
1√
2
(xs + xt), e2 =

1√
2
(xs − xt).

By simple calculations, we have

AN(e1) =

(
−k2 −

k1(s)

2

)
e1 +

k1(s)

2
e2,

AN(e2) = −k1(s)

2
e1 +

(
−k2 +

k1(s)

2

)
e2.

Thus, with respect to an orthonormal frame (e1, e2), the shape operator AN is ex-
pressed as

AN =

(
−k2 − k1(s)

2
−k1(s)

2
k1(s)
2

−k2 +
k1(s)
2

)
,

and hence we have Ĥ = −k2 and ∥ĥ∥2 = 2k2
2. Hence M is a flat B-scroll by (2.12).

Using (3.2) and (3.3), we obtain ∆ν̃ = 2ν̃−2k2e3∧e1∧e2 ̸= 0 and ∆2ν̃ = 0. Therefore
ν̃ is of infinite type by Lemma 3.2.1.

Conversely, assume that the pseudo-hyperbolic Gauss map ν̃ is of null 2-type.
Then, from (3.1), (3.2) and (3.3), we obtain

∆ν̃ = ∥ĥ∥2ν̃ + 2Ĥe3 ∧ e1 ∧ e2,(3.16)

∆2ν̃ = (∥ĥ∥2 − 2)∆ν̃ + (∆(∥ĥ∥2)− 4Ĥ2 + 2∥ĥ∥2)ν̃

− 2
2∑

j=1

εjej(∥ĥ∥2)h3
j1x ∧ e3 ∧ e2 − 2

2∑
j=1

εjej(∥ĥ∥2)h3
j2x ∧ e1 ∧ e3.

(3.17)

Since ν̃ is of null 2-type, we can put ν̃ = ν̃1 + ν̃2 with ∆ν̃1 = 0 and ∆ν̃2 = λ2ν̃2
(λ2 ̸= 0), where ν̃1 is non-constant. Then we have ∆2ν̃ = λ2∆ν̃. This together
with (3.17) implies ej(∥ĥ∥2) = 0 (i.e. ∥ĥ∥2 is constant) and λ2 = ∥ĥ∥2 − 2. Hence

the Gaussian curvature is constant, that is, ∆(∥ĥ∥2) = 0. This together with (3.17)
implies that ∥ĥ∥2 = 2Ĥ. Hence, from (2.12), we have

S = −2 + 4Ĥ2 − ∥h∥2 = −2 + ∥ĥ∥2 = λ2 ̸= 0.

By Fact 3.1, (i) and (ii) of Theorem 3.3, M is an open part of a non-flat B-scroll.
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3.4 Parallel surfaces of B-scroll and complex circle

In this section, we consider the parallel surface of a complex circle and a B-scroll in
H3

1. We study the behavior of the type numbers of the pseudo-hyperbolic Gauss map
along the parallel family of those.

Definition 3.4.1. Let M̄ be a pseudo-Riemannian manifold andM a pseudo-Rieman-
nian hypersurface of M̄ with unit normal vector field N . Let αNp denote the geodesic
in M̄ with α̇Np(0) = Np at p ∈ M . Then we know that, for u ∈ R sufficiently close to
0, the map xu : M → M̄ defined by xu(p) := expx(p) uNp = αNp(u) is an immersion,

where expx(p) denotes the exponential map of M̄ at x(p). We denote the image of
the immersion x by Mu. Then, Mu is called the parallel surface of M at distance u.

O

H3
1

x(p)
N(p)

x(p′)

αNp(u)

αNp′
(u)

x(M) xu(M)

αNp′

αNp

Figure 3.1: parallel surface

Example 3.4.1. Let x : M ↪→ Sn+1
1 (⊂ En+2

1 ) be a Lorentzian hypersurface and N
its unit normal vector field. Then xu is given by xu(p) = (cos u)x(p) + (sinu)Np

(p ∈ M).

Example 3.4.2. Let x : M ↪→ Hn+1
1 (⊂ En+2

2 ) be a Lorentzian hypersurface and N
its unit normal vector field. Then xu is given by xu(p) = (cosh u)x(p) + (sinhu)Np

(p ∈ M).

We prove the following two theorem for the pseudo-hyperbolic Gauss map of the
parallel family of a complex circle and a B-scroll.

Theorem 3.4. Let M be a complex circle in H3
1, and let u be any real number. The

parallel surface Mu of M at distance u is a complex circle and the radius κu of the
complex circle Mu moves over the whole of {z ∈ C |Re(z) = −1} when u moves
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over R. Hence the only parallel surface of M has the pseudo-hyperbolic Gauss map
of 1-type and other parallel surfaces of M have the pseudo-hyperbolic Gauss map of
infinite type.

Proof. Let M be a complex circle in H3
1 and κ the radius of M . Let

√
κ = d1+

√
−1d2

for d1, d2 ∈ R. Since M ⊂ H3
1, we have Re(κ) = d21 − d22 = −1. We remember that a

unit normal vector field N of M is given by N(z) = (d2+
√
−1d1)(cos z, sin z). Hence

the parallel surface Mu of M at distance u is parameterized by

xu(z) = coshu · (d1 +
√
−1d2)(cos z, sin z) + sinhu · (d2 +

√
−1d1)(cos z, sin z)

= κu(cos z, sin z),

where κu is the complex number satisfying

√
κu = (d1 coshu+ d2 sinhu) +

√
−1(d2 coshu+ d1 sinhu).

Thus, Mu is the complex circle of radius κu. It is easy to show that κu moves over the
whole of {z ∈ C |Re(z) = −1} when u moves over (−∞,∞). There the statement of
Theorem 3.4 follows from (i) and (ii) of Theorem 3.3.

Theorem 3.5. Let M be a B-scroll in H3
1 and u ∈ R sufficiently close to 0. If M

is flat (resp. non-flat), then the parallel surface Mu also is a flat (resp. non-flat)
B-scroll. Hence the type numbers of the pseudo-hyperbolic Gauss maps of the parallel
surfaces of a B-scroll are equal to that of the original B-scroll.

Proof. We consider a B-scroll M in H3
1 parameterized as x(s, t) = γ(s)+ tB(s). Since

N(s, t) = k2tB(s) + C(s), the parallel surface Mu of M is parameterized as

xu(s, t) = r(u)tB(s) + (sinhu)C(s) + (coshu)γ(s),

where we set r(u) = coshu+ k2 sinhu. By simple calculations, we have

∂xu

∂s
= r(u)A(s) + k1(s)(sinhu)B(s) + r(u)t(−γ(s) + k2C(s)),

∂xu

∂t
= r(u)B(s),

and hence 〈
∂xu

∂s
,
∂xu

∂s

〉
= r(u)(−2k2 sinhu+ r(u)t2(k2

2 − 1)),〈
∂xu

∂s
,
∂xu

∂t

〉
= −r(u)2,〈

∂xu

∂t
,
∂xu

∂t

〉
= 0.

(3.18)
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If r(u) = 0, then xu is not immersion. Hence, we need to assume that

arctanh−1
k2

< u < ∞ if k2 > 1,

−∞ < u < arctanh−1
k2

if k2 < −1,

−∞ < u < ∞ if |k2| ≤ 1.

(3.19)

The unit normal vector field Nu of Mu is given by

Nu(s, t) =
k2 + r(u) sinh u

coshu
tB(s) + (coshu)C(s) + (sinhu)γ(s).

Hence the shape operator ANu in the direction Nu is expressed with respect to the
usual frame (∂xu/∂s, ∂xu/∂t) as

ANu =

(
−α 0

− k1(s)
r(u)2

−α

)
,

where α = (k2 + r(u) sinh u)/(r(u) cosh u). When ∂xu/∂s is non-null, we put

e1 :=
1∣∣∂xu

∂s

∣∣ ∂xu

∂s
, ẽ2 :=

1∣∣∂xu

∂s

∣∣
(
−r(u)2

∂xu

∂s
−
〈
∂xu

∂s
,
∂xu

∂s

〉
∂xu

∂t

)
.

We have |ẽ2| = r(u)2. We put e2 := (1/r(u)2)ẽ2. Then, with respect to an orthonor-
mal frame (e1, e2), the shape operator ANu is expressed as

ANu =

(
−α + β −β

β −α− β

)
,

where β = k1(s)/(r(u)(−2k2 sinhu+ r(u)t2(k2
2 − 1)). Thus, the mean curvature

Ĥu = −α and ∥ĥu∥2 = 2α2.
When ∂xu/∂s is null, an orthonormal frame field (e1, e2) on Mu is given by

e1 =
1√
2r(u)

(
∂xu

∂s
+

∂xu

∂t

)
, e2 =

1√
2r(u)

(
∂xu

∂s
− ∂xu

∂t

)
.

With respect to (e1, e2), the shape operator ANu is expressed as

ANu =

(
−α− β′ −β′

β′ −α + β′

)
,

where β′ = k1(s)/2r(u)
2. Thus, the mean curvature Ĥu = −α and ∥ĥu∥2 = 2α2.

In both cases, it follows that Mu has constant Gaussian curvature. Hence, Mu is a
B-scroll or a complex circle by Fact 3.1. By Theorem 3.4, Mu is a B-scroll. By (2.12),
Mu is flat if α2 = 1 and Mu is non-flat if α2 ̸= 1.

Assume that Mu is flat for some u ̸= 0. Then we have α2 = 1 and hence
r(u)(− sinhu ± coshu) = k2. From this relation, we have k2 = ±1. Hence we
obtain the second-half of statement of this theorem.
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Remark 3.4.1. We put

u+ :=

{
∞ (k2 ≥ −1)
arctanh(−1

k2
) (k2 < −1)

and

u− :=

{
−∞ (k2 ≤ 1)
arctanh(−1

k2
) (k2 > 1).

(3.20)

If u+ < ∞ (resp. u− > −∞), then Mu+ (resp. Mu−) is a focal submanifold of M by
(3.18).

Remark 3.4.2. In S3
1, we can derive the following fact similar to Theorem 3.5 and

Remark 3.4.1. We put

u+ :=

{
arctan −1

k2
(k2 < 0)

π
2

(k2 > 0)
and

u− :=

{
−π

2
(k2 < 0)

arctan −1
k2

(k2 > 0).

(3.21)

Mu+ and Mu− are a focal submanifold of M .

when r(u) = 0

x0(M) = x(M)

geodesic
x0(p) = x(p)

xu2(p)

xu2(M)
xu1(M)

xu1(p)

Np

xr−1(u)(M)

x0(M) = x(M)

x0(p) = x(p)

xu2(p)

xu2(M)
xu1(M)

xu1(p)

Np

xr−1(u)(M)

in the case of k2 < −1

xu(p)

Figure 3.2: focal submanifold of B-scroll

3.5 Generalized umbilical hypersurfaces in Sn+1
1

and Hn+1
1

In this section, we determined the type number of the pseudo-hyperbolic Gauss map
of two hypersurfaces which are natural generalizations of B-scrolls in Hn+1

1 and Sn+1
1
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given by [1].

Definition 3.5.1 ([18]). LetMn
1 be an n-dimensional Lorentzian hypersurface in (n+

1)-dimensional Lorentzian manifold M̃n+1
1 , and we assume that the shape operator of

Mn
1 is not diagonalizable. If the shape operator has the only non-zero real eigenvalue,

then Mn
1 is called the generalized umbilical hypersurface.

Remark 3.5.1. LetMn
1 be a generalized umbilical hypersurface in Sn+1

1 or Hn+1
1 and H

the mean curvature vector field of M in Sn+1
1 or Hn+1

1 . Then Mn
1 satisfies ∆H = λH

for a real constant λ (see [1]).

Let (V, ⟨ , ⟩) be a Lorentzian space, that is, a semi-Euclidean space with index 1.
If A is a self-adjoint symmetric linear operator on V, A can be put into one of the
following four forms [19];

(I)

a1 0
. . .

0 an

 , (II)


a0 0
1 a0

a1
. . .

an−2

 ,

(III)



a0 0 0
0 a0 1
−1 0 a0

a1
. . .

an−3


, (IV)


a0 b0
−b0 a0

a1
. . .

an−2

 ,

where b0 ̸= 0. The eigenvalues of (IV) are complex, while those of (I), (II) and (III)
are real. A is represented with respect to an orthonormal basis in the case (I) and
(IV) and with a pseudo-orthonormal basis in the case (II) and (III), respectively.
Recalling (3.13), the shape operator of the B-scroll in S3

1 or H3
1 is (II).

L. J. Aĺıas, A. Ferrández and P. Lucas [1] gave some examples of generalized
umbilical hypersurfaces whose shape operators are (II) and (III) satisfying ∆H = λH
for a real constant λ. In this paper, we consider two hypersurfaces given in [1] whose
shape operators are (II). First, we describe the construction of a frame field along a
null curve γ in a Lorentzian manifold, and its existence and uniqueness.

Next proposition is about the frame field along a null curve in a Lorentzian mani-
fold which is constructed by the same way as the Frenet frame field. E. Cartan proved
that the existence and uniqueness of the Frenet type frame field along a null curve
of E3

1, which is called a Cartan frame field. Later, K. L. Duggal and A. Bejancu [10]
extended it to a null curve in a general Lorentzian manifold.

Moreover, D. H. Jin [13] simplified their equations for the Frenet frame field by
taking a special parameter. The following proposition is already proved by their
way. We remark that the proof is more direct and plainer and we proved it without
assuming that a parameter of a null curve is specific.
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Proposition 3.5.1. Let γ be a null curve of order d ≥ 3 in an n-dimensional
Lorentzian manifold (M, ⟨ , ⟩,∇). Then, there is a frame field (A,B,C, Z1, . . . , Zd−3)
along γ satisfying

(3.22)

⟨A,A⟩ = ⟨B,B⟩ = 0, ⟨A,B⟩ = −1,

⟨A,C⟩ = ⟨B,C⟩ = 0, ⟨C,C⟩ = 1,

⟨A,Zi⟩ = ⟨B,Zi⟩ = ⟨C,Zi⟩ = 0,

⟨Zi, Zj⟩ = δij

and

(3.23)



γ̇ = A,

∇γ̇A = k1C,

∇γ̇C = k2A+ k1B,

∇γ̇B = k2C + k3Z1,

∇γ̇Z1 = k3A+ k4Z2,

∇γ̇Z2 = −k4Z1 + k5Z3,

...

∇γ̇Zd−4 = −kd−2Zd−5 + kd−1Zd−3,

∇γ̇Zd−3 = −kd−1Zd−4,

where ki (i = 1, . . . , d− 1) are positive-valued functions.

Definition 3.5.2. This frame field (A,B,C, Z1, . . . , Zd−3) is called the Cartan frame
field along γ.

We remark that our definition of the Cartan frame field along γ(s) is slightly dif-
ferent from the definition in the paper of A. Ferrández, A. Giménez and P. Lucas [12]
since their definition is applied only to the case where a null curve γ is parametrized
by a pseudo-arc parameter, that is, γ satisfies ⟨∇γ̇ γ̇,∇γ̇ γ̇⟩ = 1.

A null curve in a Lorentzian manifold M equipped with the Cartan frame field is
called the Cartan curve. The next proposition ensures the uniqueness and existence
of the Cartan curve for any non-zero functions. It is proved in [12], [10] and [11] and
a simple proof is also found in [17].

Proof. First we show that ∇γ̇A is non-null. Suppose that ∇γ̇A is null. Since γ is of
order d(≥ 3), A and ∇γ̇A are linearly independent. Denote by W1 the 2-dimensional
subspace spanned by A and ∇γ̇A. Also we have

⟨A,∇γ̇A⟩ =
1

2
γ̇⟨A,A⟩ = 0.

Let (e1 = A, e2 = ∇γ̇A, e3, . . . , en) be a frame field along γ(s). Then we have

(⟨ei, ej⟩) =

 0 0
0 0

*

* *

 .
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This contradicts the fact that ⟨, ⟩ is Lorentzian. Therefore ∇γ̇A is non-null.
We put k1 =

√
|⟨∇γ̇A,∇γ̇A⟩|, C = (1/k1)∇γ̇A and εC := ⟨C,C⟩. We have

∇γ̇C =

(
1

k1

)·

∇γ̇A+
1

k1
∇γ̇(∇γ̇ γ̇) ∈ Span{γ̇,∇γ̇ γ̇,∇γ̇(∇γ̇ γ̇)}.(3.24)

Also we have ⟨∇γ̇C,C⟩ = 0 and ⟨A,C⟩ = 0, hence

(3.25) ⟨∇γ̇C,A⟩ = −⟨C,∇γ̇A⟩ = −k1⟨C,C⟩ (̸= 0).

Let (ê1 = C, ê2 = A, ê3, . . . , ên) be a frame field along γ such that (ê2, . . . , ên) is a
frame field of Span{C}⊥. Then we have

(⟨êi, êj⟩) =


εC 0
0 0

0 · · · 0

0
...
0

∗

 .

Therefore we have εC = 1 and ⟨∇γ̇C,A⟩ = −k1 because ⟨, ⟩ is Lorentzian. Since γ is
of order d(≥ 3), we have dim(Span{A,∇γ̇C}) = 2. From these facts, it follows that
Span{A,∇γ̇C} is a 2-dimensional Lorentzian space. There is a unique null vector
B ∈ Span{A,∇γ̇C} such that ⟨A,B⟩ = −1. It can be expressed as ∇γ̇C = aA+ bB
for some functions a and b since ∇γ̇C ∈ Span{A,B}. We have b = k1 by (3.25). We
set k2 := a. Put W2 = Span{A,B,C}⊥, which is an (n − 3)-dimensional Euclidean
space. We put

∇γ̇B = âA+ b̂B + cC + Z (Z ∈ W2).

We have
−â = ⟨∇γ̇B,B⟩ = 0,

−b̂ = ⟨∇γ̇B,A⟩ = ⟨B,∇γ̇A⟩ = −k1⟨B,C⟩ = 0,

ĉ = ⟨∇γ̇B,C⟩ = −⟨B,∇γ̇C⟩ = k2.

If d = 3, then we have Z = 0. In the sequel, we consider the case of d ≥ 4. We put
k3 = |Z| and Z1 = Z/|Z|. Then ∇γ̇B can be expressed as ∇γ̇B = k2C + k3Z1. We
put

∇γ̇Z1 = ǎA+ b̌B + čC + ž1Z1 + Ẑ,

where Ẑ ∈ Span{A,B,C, Z1}⊥. Then we have

−b̌ = ⟨∇γ̇Z1, A⟩ = −⟨Z1, k1C⟩ = 0,

−ǎ = ⟨∇γ̇Z1, B⟩ = −⟨Z1, k2C + k3Z1⟩ = −k3,

č = ⟨∇γ̇Z1, C⟩ = ⟨Z1, k2A+ k1B⟩ = 0,

ž1 = ⟨∇γ̇Z1, Z1⟩ = 0.
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If d = 4, then we have Ẑ = 0. In the sequel, we consider the case of d ≥ 5. Then
we have Ẑ ̸= 0. We put k4 = |Ẑ| and Z2 = Ẑ/|Ẑ|. Then ∇γ̇Z1 can expressed as
∇γ̇Z1 = k3A+ k4Z2. We put

∇γ̇Z2 = ãA+ b̃B + c̃C + z̃1Z1 + z̃2Z2 + Z̃,

where Z̃ ∈ Span{A,B,C, Z1, Z2}⊥. Then we have ã = b̃ = c̃ = z̃2 = 0 and z̃1 = −k4.
If d = 5, then we have Z̃ = 0. In the sequel, we consider the case of d ≥ 6. Then
we have Z̃ ̸= 0. We put k5 = |Z̃| and Z3 = Z̃/|Z̃|. Then ∇γ̇Z2 is expressed as
∇γ̇Z2 = −k4Z1+k5Z3. By repeating the same discussion, we can derive the relations
in Lemma 3.5.1.

Proposition 3.5.2. Let k1, . . . , kd−1 be differentiable non-zero functions on (s0 −
ε, s0+ε) for some small ε > 0. Let p0 be a point in En

1 and (A0, B0, C0, Z0
1 , . . . , Z

0
d−3)

pseudo-orthonormal vectors in En
1 at p0. Then, there is a unique Cartan curve γ of

order d in En
1 such that γ(s0) = p0, and its Cartan frame field (A,B,C, Z1, . . . , Zd−3)

satisfies

A(s0) = A0, B(s0) = B0, C(s0) = C0, Z1(s0) = Z0
1 , . . . , Zd−3(s0) = Z0

d−3.

Proof. We put V := (A+B)/
√
2 andW := (A−B)/

√
2. Let F be a matrix consisting

column vector fields V,W,C, Z1, . . . , Zd−3, that is F = (V W C Z1 · · · Zd−3). We put

X =

 0 0 1√
2
(k1 + k2)

0 0 − 1√
2
(k1 − k2)

1√
2
(k1 + k2)

1√
2
(k1 − k2) 0


and

Y =



0 −k4
k4 0

. . .

0 −kd−2 0
kd−2 0 −kd−1

0 kd−1 0


,

and we define a coefficient matrix K by

K =



X

1√
2
k3 0 · · · 0

1√
2
k3 0 · · · 0

0 0 · · · 0
1√
2
k3 − 1√

2
k3 0

0 0 0
...

...
...

0 0 0

Y


.
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Then, by (3.23), we have

Ḟ = FK.(3.26)

If an initial value is given, then the solution is unique. We prove that the solution
satisfies (3.22). We put E := diag(−1, 1, . . . , 1). Let Φ be a solution of (3.26) with
E as the initial value. It is easy to check that the solution is expressed as F = F 0EΦ
for any initial value F 0 and EK is skew-symmetric. Hence

d

ds
(EF−1E)(s) = −EK(s)F−1(s)E

= t(EK(s))F−1(s)E

= tK(s)(EF−1E)(s).

By
tΦ(s0) =

tE = E,

(EΦ−1E)(s0) = E,

we obtain tF = EF−1E. Hence, the columns of F form an orthonormal basis for Rn
1

and V is timelike. Thus F satisfies (3.22). When we put γ(s) =
∫ s

s0
A(t)dt, γ is null

curve satisfying (3.22) and (3.23).
Finally, we prove the uniqueness of γ with Cartan frame field F . Let γ and γ̃ be

Cartan curves. Assume that ki of γ in (3.23) coincides with that of γ̃ for all i. Let F
and F̃ be pseudo-orthogonal matrices defined by F = (V W C Z1 · · ·Zd−3) for γ and
F̃ = (Ṽ W̃ C̃ Z̃1 · · · Z̃d−3) for γ̃, respectively. We put F 0 := F (s0) and F̃ 0 := F̃ (s0).
When we put L := F 0(F̃ 0)−1, by the uniqueness of the solution of ODE (3.26) with
the same initial value, we have F = LF̃ . In particular, A = LÃ because V = LṼ
and W = LW̃ . Put b := γ(s0)− Lγ̃(s0). Then we have

γ(s) = γ(s0) +

∫ s

s0

A(t)dt

= Lγ̃(s0) + b+

∫ s

s0

LÃ(t)dt

= Lγ̃(s) + b.

Since L is a pseudo-orthogonal matrix, γ and γ̃ are congruent.

If M in Proposition 3.5.1 is Hn
1 or Sn

1 , we can rewrite (3.23) by replacing ∇ with
the standard connection ∇̃ of the ambient space En+1

2 or En+1
1 , and one can easily see

that the following corollary follows.

Corollary 3.5.1. Let γ be a null curve γ of order d ≥ 3 in Hn
1 (resp. Sn

1) and
(A,B,C, Z1, . . . , Zd−3) the Cartan frame field along γ. Then, with respect to the
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standard connection ∇̃ of En+1
2 (resp. En+1

1 ), the following relations hold;

∇̃γ̇A = k1C,

∇̃γ̇C = k2A+ k1B,

∇̃γ̇B = k2C + k3Z1 + εγ,

∇̃γ̇Z1 = k3A+ k4Z2,

∇̃γ̇Zi = −ki+2Zi−1 + ki+3Zi+1 (2 ≤ i ≤ d− 4),

∇̃γ̇Zd−3 = −kd−1Zd−4,

where ε = −1 (resp. ε = +1).

Next, we determine the type number of the pseudo-hyperbolic Gauss map of hy-
persurfaces given by [1] whose shape operator is (II). For simplicity, we put x(s, t, z) =
x(s, t, z1, z2, . . . , zn−2), |z|2 = z21 + z22 + · · ·+ z2n−2 and xs = ∂x/∂s (resp. xt and xzj).

Proposition 3.5.3. Let (A,B,C, Z1, . . . , Zn−2) be the Cartan frame field of a null
curve γ ⊂ Hn+1

1 . Assume that k1(s) ̸= 0, k2
2 = 1 and ki are non-zero constants for

i = 3, . . . , n− 2. The immersion x : I × R× Rn−2 → Hn+1
1 ⊂ En+2

2 given by

(3.27) x(s, t, z) =

(
1 +

|z|2

2

)
γ(s) + tB(s) +

n−2∑
j=1

zjZj(s)−
k2|z|2

2
C(s)

parametrizes an oriented Lorentzian hypersurface of Hn+1
1 , where z = (z1, . . . , zn−2) ∈

Rn−1. Denote by Mn
1 the image of x. Then, the pseudo-hyperbolic Gauss map of Mn

1

is infinite type.

Proof. By a straightforward computation, we have

xs = A(s)− k1(s)k2|z|2

2
B(s) + k2tC(s) + k3tZ1(s) +

n−2∑
j=1

zjŻj(s)− tγ(s),

xt = B(s),

xzi = ziγ(s) + Zi(s)− k2ziC(s).

The unit normal vector field N of the Lorentzian hypersurface Mn
1 in Hn+1

1 is given
by

N(s, t, z) = k2tB(s) + k2

n−2∑
j=1

zjZj(s) +

(
1− |z|2

2

)
C(s) +

k2|z|2

2
γ(s),

where z = (z1, . . . , zn−2). With respect to (xs,xt,xz1 , . . . ,xzn−2), the shape operator
AN is expressed as

(3.28) AN =


−k2 0

−k1(s) −k2 0

0
−k2

. . .

−k2

 .
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By Corollary 3.5.1, we obtain

⟨Ż1, Ż1⟩ = k2
4,

⟨Żi, Żi⟩ = k2
i+2 + k2

i+3 (2 ≤ i ≤ n− 3),

⟨Żn−3, Żn−3⟩ = k2
n,

⟨Żi, Żj⟩ = 0 (i ̸= j or i ̸= j ± 2),

⟨Żi, Żi+2⟩ = −ki+3ki+4 (1 ≤ i ≤ n− 4)

(3.29)

and

n−2∑
i,j=1

zizj⟨Żi, Żj⟩ = k2
4z

2
1 +

n−3∑
i=2

(k2
i+2 + k2

i+3)z
2
i + k2

nz
2
n−3

+ 2(−k4k5z1z3 − · · · − kn−1knzn−4zn−2)

= k2
4z

2
1 + k2

nz
2
n−3 +

n−3∑
i=1

(ki+2zi − ki+3zi+1)
2.

Hence

⟨xs,xs⟩ = −k1k2|z|2⟨A,B⟩+ k2
2t

2⟨C,C⟩+ k2
3t

2⟨Z1, Z1⟩+
n−2∑
i,j=1

zizj⟨Żi, Żj⟩

+ t2⟨γ, γ⟩+ 2k3t⟨Z1,
n−2∑
j=1

zjŻj⟩ − k1k2|z|2⟨B, z1Ż1⟩

= k1k2|z|2(1 + k3z1) + k2
3t

2 + k2
4z

2
1 +

n−3∑
i=1

(ki+2zi − ki+3zi+1)
2(3.30)

+ k2
nz

2
n−3 − 2k3k4z2t,

⟨xs,xzi⟩ = k3tδ1i +
n−2∑
j=1

zj⟨Zi, Żj⟩

=


k3t− k4z2 (i = 1)
ki+2zi−1 − ki+3zi+1 (2 ≤ i ≤ n− 3)
knzn−3 (i = n− 2)

,

⟨xs,xt⟩ = −(1 + |z|2 + k3z1), ⟨xt,xt⟩ = ⟨xt,xzi⟩ = 0, ⟨xzi ,xzj⟩ = δij.

We put ej = xzj (1 ≤ j ≤ n− 2) and

(3.31) ẽn−1 := xs −
n−2∑
j=1

⟨xs, ej⟩ej.

If ẽn−1 is non-null, we put

(3.32) en−1 :=
1

|ẽn−1|
ẽn−1, ẽn :=

1

|ẽn−1|
(⟨xs,xt⟩en−1 − ⟨ẽn−1, ẽn−1⟩xt)
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and en := ẽn/⟨xs,xt⟩. With respect to the orthonormal frame field (e1, . . . , en), the
shape operator AN is expressed as

AN =


−k2

. . .

−k2
0

0 −k2 − α −α
α −k2 + α

 ,

where α = εn−1k1|ẽn|/|ẽn−1|2. If ẽn−1 is null, we put

(3.33)

en−1 :=
1

√
2⟨ẽn−1,xt⟩

1
2

(ẽn−1 + xt),

en :=
1

√
2⟨ẽn−1,xt⟩

1
2

(ẽn−1 − xt).

With the pseudo-orthonormal frame field (e1, . . . , en), the shape operator AN is ex-
pressed as

AN =


−k2 0

. . .

−k2
0

0 −k2 − α −α
α −k2 + α

 ,

where α = −k1(s)/2. In both cases, ∥ĥ∥2 = n and the mean curvature Ĥ = −k2. By
(2.12), Mn

1 is scalar flat. Hence, ∆ν̃ = nν̃− 2k2N ∧ e1 ∧ e2 ̸= 0 and ∆2ν̃ = 0 by (3.2)
and (3.3). Therefore, ν̃ is of infinite type by Lemma 3.2.1.

Proposition 3.5.4. Let (A,B,C, Z1, . . . , Zn−2) be the Cartan frame field of a null
curve γ ⊂ Hn+1

1 . Assume that k1(s) ̸= 0 and that k2
2 ̸= 1 and ki are non-zero constants

for i = 3, 4, . . . , n− 2. Define the immersion x : I × R× Rn−2 → Hn+1
1 ⊂ En+2

2 by

(3.34) x(s, t, z) =
k2
2 − f(z)

−1 + k2
2

γ(s) + tB(s) +
n−2∑
j=1

zjZj(s)−
k2(1− f(z))

−1 + k2
2

C(s),

where f(z) =
√
1− (−1 + k2

2)|z|2. Then, it parametrizes a Lorentzian hypersurface
Mn

1 of Hn+1
1 in a neighborhood of the origin. Then, the pseudo-hyperbolic Gauss map

of Mn
1 is null 2-type.

Proof. The unit normal vector field N of the Lorentzian hypersurface Mn
1 in Hn+1

1 is
given by

N(s, t, z) = k2tB(s) + k2

n−2∑
j=1

zjZj(s) +
−1 + k2

2f(z)

−1 + k2
2

C(s) +
k2(1− f(z))

−1 + k2
2

γ(s).
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With respect to (xs,xt,xz1 , . . . ,xzn−2), the shape operator AN derived from N is
the same form as (3.28).

We prove that xzi is spacelike for any i = 1, 2, . . . , n − 2. By a straightforward
computation, we have

(3.35) ⟨xzi ,xzi⟩ =
z2i

f(z)2
(−1 + k2

2) + 1.

In the case where −1 + k2
2 > 0, xzi is spacelike. In the case where −1 + k2

2 < 0, we
obtain

(3.36)

⟨xzi ,xzi⟩ =
z2i

f(z)2
(−1 + k2

2) + 1

>
|z|2

f(z)2
(−1 + k2

2) + 1

=
1

1− (−1 + k2
2)|z|2

> 0

since f(z) > 0. Thus, xzi is spacelike in both cases. We put e1 := xz1 , ẽj :=
xj −

∑j−1
k=1⟨xj, ek⟩ek and ej := ẽj/|ẽj| for 2 ≤ j ≤ n − 2. Then, ej is spacelike. We

obtain AN(ej) = −k2ej by a straightforward computation. We put

ẽn−1 := xs −
n−2∑
j=1

⟨xs, ej⟩ej.

If ẽn−1 is non-null, we define en−1, ẽn and en by (3.31) and (3.32), respectively. With
respect to the orthonormal frame field (e1, . . . , en), the shape operator AN is expressed
as

(3.37) AN =


−k2

. . .

−k2
0

0 −k2 − α −α
α −k2 + α

 ,

where α = −k1(s)|ẽn|/|ẽn−1|. If ẽn−1 is null, we define en−1 and en by (3.33). With
respect to the pseudo-orthonormal frame field (e1, . . . , en), the shape operator AN is
expressed as

(3.38) AN =


−k2

. . .

−k2
0

0 −k2 − α −α
α −k2 + α

 ,
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where α = −k1(s)/2. In both cases, ∥ĥ∥2 = nk2
2, the mean curvature Ĥ = −k2 and

the scalar curvature S = n(n− 1)(k2
2 − 1) ̸= 0. Hence,

(3.39)
∆ν̃ = nk2

2 ν̃ − nk2en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en,

∆2ν̃ = n2k2
2(k

2
2 − 1)ν̃ − nk2(k

2
2 − 1)en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en,

where en+1 = N . We put

ν̃1 :=
1

k2
2 − 1

(−ν̃ + k2en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en),

ν̃2 :=
1

k2
2 − 1

(k2
2 ν̃ − k2en+1 ∧ e1 ∧ e2 ∧ · · · ∧ en).

It is clear that ν̃ = ν̃1 + ν̃2. Using (3.2) and (3.3) we obtain that ∆ν̃1 = 0 and
∆ν̃2 = n(k2

2 − 1)ν̃2. On the other hand, by using (3.1) and (3.3), we have

(3.40)
en−1(ν̃) = εn−1(−k2 + β)x ∧ e1 ∧ · · · ∧ en−2 ∧ en+1 ∧ en

− εn−1βx ∧ e1 ∧ · · · ∧ en−2 ∧ en−1 ∧ en+1

and

(3.41) en−1(en+1 ∧ e1 ∧ · · · ∧ en) = εien+1 ∧ e1 ∧ · · · ∧ en−2 ∧ x ∧ en,

where β = k1(s)|ẽn|/|ẽn−1| if ẽn−1 is non-null or β = −k1(s)/2 if ẽn−1 is null. Hence,

en−1(ν̃1) =
εn−1β

k2
2 − 1

(x ∧ e1 ∧ · · · ∧ en−2 ∧ en+1 ∧ en − x ∧ e1 ∧ · · · ∧ en−1 ∧ en)

̸= 0

by (3.40) and (3.41). Therefore ν̃ is of null 2-type.

Remark 3.5.2. Submanifolds parametrized by x in (3.27) and (3.34) are Lorentzian
hypersurfaces of Hn+1

1 satisfying that each shape operator is non-diagonalizable ev-
erywhere and the mean and scalar curvature are constants. In particular, the mean
curvature H is −k2( ̸= 0) and the minimal polynomial P (x) of the shape operator is
(x+ k2)

2.

Remark 3.5.3. There is a relation between Example 3.5.3 and 3.5.4. One can easily
check that the parametrization x defined by (3.34) uniformly converges in C∞ to x
defined by (3.27) on a fixed neighborhood of z = 0 as k2

2 → 1.
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Chapter 4

Generalized umbilical
hypersurfaces in Sn+12 and Hn+1

2

The purpose of this chapter is to find some pseudo-Riemannian hypersurfaces in Sn+1
2

and Hn+1
2 similar to generalized umbilical hypersurfaces in Chapter 3.5. First, we

describe the construction of a frame field along a null curve γ in a pseudo-Riemannian
manifold with index 2, and its existence and uniqueness. Second, we construct a non-
degenerate hypersurface in Sn+1

2 and Hn+1
2 satisfying following conditions. The mean

curvature H and scalar curvature are constant and H ̸= 0, and the shape operator
is non-diagonalizable.

Let V be an n-dimensional vector space with index 2 and A a self-adjoint sym-
metric linear operator on V . Put G := (⟨vi, vj⟩)ij for a basis (v1, . . . , vn) of V , where
⟨ , ⟩ is a scalar product on V . In the case of index 1, the form A is one of the only
four forms in Section 3.5, however the forms A can take are various when the index
is 2 (see [19]). Thus, we just introduce some of forms needed in this paper;

(I) G =



0 −1
−1 0

−1
1

. . .

1


, A =


λ 0
1 λ

λ
. . .

λ



(II) G =



0 −1
−1 0

0 −1
−1 0

1
. . .

1


, A =



λ 0
1 λ

λ 0
1 λ

λ
. . .

λ


,

where λ is a real number. The matrix G defined by ⟨ , ⟩ with respect to the frame
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field (A,B,C, Z1, . . . , Zd−3) in Proposition 4.1.1 is of the form (I). In the following
Proposition 4.1.1, we will consider a null curve γ satisfying that ∇γ̇ γ̇ is non-null. On
the other hand, the Frenet type frame field proven by M. Sakaki, A. Uçum and K.
İlarslan [21] is of the form (II). In that paper, they assume that ∇γ̇ γ̇ is null for a null
curve γ. A null curve γ in En

2 is called a bi-null curve if ∇γ̇ γ̇ is null. As we described
in Chapter 4.1, a frame field in Proposition 4.1.1 and the existence and uniqueness
are already proved by K. L. Duggal, A. Bejancu and D. H. Jin (see [10] and [11]).
We give another proof of those which is more direct and simple.

4.1 Cartan fame field along a null curves in

a pseudo-Riemannian manifold with index 2

Let (M, ⟨ , ⟩,∇) be an n-dimensional pseudo-Riemannian manifold with index 2 and
γ a null curve of order d ≥ 4 in M . Assume that ∇γ̇ γ̇ is non-null. Put A = γ̇ and
k1 =

√
|⟨∇γ̇A,∇γ̇A⟩|. We defined a vector field C by C = (1/k1)∇γ̇A. Note that

⟨C,C⟩ = ±1. Let B be a null vector field along γ with ⟨A,B⟩ = −1 and ⟨B,C⟩ = 0.
In this section, we assume the following.

Assumption 4.1. There exists a one parameter family of linearly independent non-
null vectors (Z̃1, . . . , Z̃d−3) along γ such that

γ(j+3) ∈ Span{A,B,C, Z̃1, . . . , Z̃j} for all 1 ≤ j ≤ d− 3,(4.1)

Span{γ(1), . . . , γ(d)} = Span{A,B,C, Z̃1, . . . , Z̃d−3}(4.2)

and

(4.3) Span{A,B,C} ⊥ Span{Z̃1, . . . , Z̃d−3}.

Remark 4.1.1. We remark that a one parameter family of linearly independent vectors
(Z̃1, . . . , Z̃d−3) along γ satisfying (4.1), (4.2) and (4.3) always exists. However, we
cannot choose all of Z̃1, . . . , Z̃d−3 which are non-null always. Thus, the nontrivial
point of Assumption 4.1 is what all Z̃j are non-null.

Proposition 4.1.1. Let γ be a null curve of order d ≥ 4 in an n-dimensional pseudo-
Riemannian manifold (M, ⟨ , ⟩,∇) with index 2. Assume that ∇γ̇ γ̇ is non-null. Under
Assumption 4.1, there exists uniquely a frame field (A,B,C, Z1, . . . , Zd−3) along γ
satisfying the following conditions;

(4.4)

⟨A,A⟩ = ⟨B,B⟩ = 0, ⟨A,B⟩ = −1,

⟨A,C⟩ = ⟨B,C⟩ = 0, ⟨C,C⟩ = εC ,

⟨A,Zi⟩ = ⟨B,Zi⟩ = ⟨C,Zi⟩ = 0,

⟨Zi, Zj⟩ = εiδij
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and

(4.5)



γ̇ = A,

∇γ̇A = k1C,

∇γ̇C = k2A+ εCk1B,

∇γ̇B = εCk2C + k3Z1,

∇γ̇Z1 = ε1k3A+ k4Z2,

ε2∇γ̇Z2 = −ε1k4Z1 + ε2k5Z3,

...

εd−4∇γ̇Zd−4 = −εd−5kd−2Zd−5 + εd−4kd−1Zd−3,

εd−3∇γ̇Zd−3 = −εd−4kd−1Zd−4

for some positive-valued functions ki (i = 1, . . . , d − 1), εC = ±1 and εi = ±1. If
εC = −1 then εi = 1 for all 1 ≤ i ≤ d − 3 and if εC = 1 then there is a unique
1 ≤ j ≤ d− 3 such that εj = −1 and εi = 1 (i ̸= j).

Proof. We put A := γ̇. In the case where ∇γ̇A is timelike, this proposition is proved
by the same way as in the proof of Proposition 3.5.1 since the index of M is 2 (see
[17]). Thus, we prove this proposition in the case where ∇γ̇A is spacelike. Recall that
k1 =

√
|⟨∇γ̇A,∇γ̇A⟩| and C = (1/k1)∇γ̇A. In this case, εC = ⟨C,C⟩ = 1 since∇γ̇A is

spacelike. Then, Span{A,∇γ̇C} is a non-degenerate 2-dimensional Lorentzian space
since ⟨A,∇γ̇C⟩ = −k1 ̸= 0 and A is null. Therefore, there is a unique null vector
field B in Span{A,∇γ̇C} such that ⟨A,B⟩ = −1 and ⟨B,C⟩ = 0. Putting k2 =
−⟨∇γ̇C,B⟩, ∇γ̇C can be written as∇γ̇C = k2A+k1B. By ⟨C,C⟩ = 1, Span{A,B,C}
is a non-degenerate 3-dimensional Lorentzian space, that is, Span{A,B,C}⊥ is an
(n−3)-dimensional Lorentzian space since M is of index 2. By Assumption 4.1, there
is a vector field Z̃1 ∈ Span{A,B,C}⊥ along γ satisfying

(4.6) ∇γ̇B = aA+ bB + cC + dZ̃1

with some functions a, b, c and d. Actually, we have −b = ⟨∇γ̇B,A⟩ = 0, −a =
⟨∇γ̇B,B⟩ = 0 and c = ⟨∇γ̇B,C⟩ = k2. Thus, (4.6) becomes ∇γ̇B = k2C + Z̃1.
Put k3 = |Z̃1| and Z1 = (d/k3)Z̃1. Remark that k3 is a positive function since Z̃1 is
non-null by Assumption 4.1. Then, (4.6) can be rewritten as

∇γ̇B = k2C + k3Z1.

Also, ∇γ̇Z1 is expressed as

∇γ̇Z1 = a′A+ b′B + c′C + d′Z1 + e′Z̃2

with some functions a′, b′, c′, d′ and e′. By a straightforward computation, it can be
rewritten as

∇γ̇Z1 = ε1k3A+ e′Z̃2,
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where ε1 = ⟨Z1, Z1⟩ and Z̃2 is a vector field along γ in Span{A,B,C, Z1}⊥. Put
k4 = |Z̃2| and Z2 = (e′/k4)Z̃2. Hence, we have

∇γ̇Z1 = ε1k3A+ k4Z2

and put ε2 = ⟨Z2, Z2⟩.
Hereafter, we prove inductively that a vector field Zj along γ satisfies (4.4) and

(4.5) for j = 2, . . . , d− 4, that is, Zj satisfies the following equation;

(4.7) εj∇γ̇Zj = −εj−1kj+2Zj−1 + εjkj+3Zj+1

for j = 2, . . . , d− 4, where εj = ⟨Zj, Zj⟩ = ±1 and ⟨Zi, Zj⟩ = εjδij.
In the case where j = 2, there is a vector field Z̃3 in Span{A,B,C, Z1, Z2}⊥ such

that
∇γ̇Z2 ∈ Span{A,B,C, Z1, Z2} ⊕ Span{Z̃3}

since γ is order d ≥ 3. If Z̃3 is non-null, we put k5 = |Z̃3|, Z3 = (1/k5)Z̃3 and
ε3 = ⟨Z3, Z3⟩. By a straight forward computation, we have

ε2∇γ̇Z2 = −ε1k4Z1 + ε2k5Z3.

Next, we prove that (4.7) holds up for j = l + 1 if (4.7) holds up for j = l,
where 3 ≤ l ≤ d − 4. We put W (l) = Span{A,B,C, Z1, . . . , Zl}. Especially, W (l)
is a non-degenerate vector space. Note that Zl is non-null for all l. Then, there is a
vector field Z̃l+2 along γ satisfying that {Z1, . . . , Zl+1, Z̃l+2} is a linearly independent
family and

∇γ̇Zl+1 ∈ W (l + 1)⊕ Span{Z̃l+2},
since the order of γ is d. If Z̃l+1 is non-null, put kl+4 = |Z̃l+2|, Zl+2 = (1/kl+4)Z̃l+2

and εl+2 = ⟨Zl+2, Zl+2⟩. Therefore, we obtain

εl+1∇γ̇Zl+1 = −εjkl+3Zl + εl+1kl+4Zl+2

by a straight computation. In the case where j = d− 3, ∇γ̇Zd−3 is in W (d− 3) since
γ is order d. In the same way, we have

εd−3∇γ̇Zd−3 = −εd−4kd−1Zd−4.

Thus, the proof is completed.

The frame field (A,B,C, Z1, . . . , Zd−3) given by Proposition 4.1.1 is called the
Cartan frame field along γ. A null curve in a pseudo-Riemannian manifold with
index 2 equipped with the Cartan frame field is called the Cartan curve.

In the case where ∇γ̇ γ̇ is null, a Frenet type frame field along γ is called the
bi-null Cartan frame field in [21]. Moreover, a bi-null curve γ in En

2 is called a bi-null
Cartan curve if {γ̇, . . . , γ(n−1)} is linearly independent. Ruled surfaces along bi-null
Cartan curves are studied also in [21].

The next proposition ensures the existence and uniqueness of a Cartan curve for
any non-zero functions.
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Proposition 4.1.2. Fix s0 ∈ R. Let k1, . . . , kd−1 be differentiable non-zero func-
tions on (s0 − ε, s0 + ε) for some small ε > 0. Let p0 be a point in En

2 and
(A0, B0, C0, Z0

1 , . . . , Z
0
d−3) pseudo-orthonormal vectors in En

2 at p0. Then, there is
a unique Cartan curve γ of order d in En

2 such that γ(s0) = p0, and its Cartan frame
field (A,B,C, Z1, . . . , Zd−3) satisfies

(4.8)
A(s0) = A0, B(s0) = B0, C(s0) = C0,

Z1(s0) = Z0
1 , . . . , Zd−3(s0) = Z0

d−3.

Proof. First, we prove the existence of γ with a frame field (A,B,C, Z1, . . . , Zd−3)
satisfying the condition only (4.5). Let A,B,C, Z1, . . . , Zd−3 be vector fields satisfying

(4.9)



Ȧ = k1C,

Ċ = k2A+ εCk1B,

Ḃ = εCk2C + k3Z1,

Ż1 = ε1k3A+ k4Z2,

ε2Ż2 = −ε1k4Z1 + ε2k5Z3,

...

εd−4Żd−4 = −εd−5kd−2Zd−5 + εd−4kd−1Zd−3,

εd−3Żd−3 = −εd−4kd−1Zd−4

with initial condition (4.8). Actually, the existence of such vector fields follows from
the general theory of ODE. Define a null curve γ by γ(s) := p0 +

∫ s

s0
A(t)dt. Put

V := (A + B)/
√
2 and W := (A − B)/

√
2. Let F be a matrix consisting of column

vector fields V,W,C, Z1, . . . , Zd−3, that is, F = (V W C Z1 · · ·Zd−3). We put

X =

 0 0 1√
2
(εCk1 + k2)

0 0 1√
2
(−εCk1 + k2)

1√
2
(k1 + εCk2)

1√
2
(k1 − εCk2) 0


and

Y =



0 −ε1ε2k4
k4 0

. . .

0 −εd−4εd−5kd−2 0
kd−2 0 −εd−3εd−4kd−1

0 kd−1 0


,
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and we define a coefficient matrix K by

K =



X

1√
2
k3 0 · · · 0

1√
2
k3 0 · · · 0

0 0 · · · 0
1√
2
k3 − 1√

2
k3 0

0 0 0
...

...
...

0 0 0

Y


.

Then, (4.9) is equivalent to

(4.10) Ḟ = FK.

We remark that the solution of (4.10) is unique for a given initial condition.
Next, we prove that A,B,C, Z1, . . . , Zd−3 along γ satisfy the condition (4.4). Re-

calling the notation of Proposition 4.1.1, −εjεj+1 = −1 for all 1 ≤ j ≤ d − 3 if
εC = −1. If εC = 1, then −εi−1εi = −εiεi+1 = 1 for a unique 1 ≤ i ≤ d− 3 such that
εi = −1 and −εjεj+1 = 1 for j and j+1 ̸= i. We put E := diag(−1, 1, . . . ,−1, . . . , 1).
Let Φ be the solution of (4.10) with initial value E. Put F 0 := F (s0). Then, we have
F 0EΦ(s0) = F 0EE = F 0. Thus, by the uniqueness of the solution of ODE (4.10)
with the same initial value, F = F 0EΦ. Note that EK is skew-symmetric. Hence,

d

ds
(EF−1E)(s) = −EK(s)F−1(s)E

= t(EK(s))F−1(s)E

= tK(s)(EF−1E)(s).

By tΦ(s0) =
tE = E and (EΦ−1E)(s0) = E, we obtain tF = EF−1E, that is, F is

a pseudo-orthogonal matrix. Hence, F satisfies (4.4) because the columns of F form
an orthonormal basis for En

2 and V is timelike. Therefore, a proof of the existence of
Cartan curve γ for functions k1. . . . , kd−1 is completed.

Finally, we prove the uniqueness of γ with Cartan frame field F . Let γ and γ̃ be
Cartan curves. Assume that ki of γ in (4.5) coincides with that of γ̃ for all i. Let F
and F̃ be pseudo-orthogonal matrices defined by F = (V W C Z1 · · ·Zd−3) for γ and
F̃ = (Ṽ W̃ C̃ Z̃1 · · · Z̃d−3) for γ̃, respectively. We put F 0 := F (s0) and F̃ 0 := F̃ (s0).
When we put L := F 0(F̃ 0)−1, by the uniqueness of the solution of ODE (4.10) with
the same initial value, we have F = LF̃ . In particular, A = LÃ because V = LṼ
and W = LW̃ . Put b := γ(s0)− Lγ̃(s0). Then we have

γ(s) = γ(s0) +

∫ s

s0

A(t)dt

= Lγ̃(s0) + b+

∫ s

s0

LÃ(t)dt

= Lγ̃(s) + b.

Since L is a pseudo-orthogonal matrix, γ and γ̃ are congruent.
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4.2 Examples of the generalized umbilical hyper-

surface in Sn+1
2 and Hn+1

2

In this section, we constructed ruled surfaces satisfying the properties similar to
generalized umbilical hypersurfaces in Chapter 3.5. Ruled hypersurfaces given in
examples in this section satisfy the same conditions of Definition 3.5.1 and Remark
3.5.1.

We construct the following six examples of hypersurfaces M in Hn+1
2 and Sn+1

2

by using frame fields of Proposition 4.1.1. Let N be a unit normal vector field of M
in Hn+1

2 or Sn+1
2 and AN the shape operator of M derived from N . For simplicity,

we put x(s, t, z) = x(s, t, z1, z2, . . . , zn−2), |z|2 = ε1z
2
1 + ε2z

2
2 + · · · + εn−2z

2
n−2 and

xs = ∂x/∂s (resp. xt and xzj). Moreover, assume that k1(s) ̸= 0 for all s and k2 is a
nonzero constant.

First, we consider the case where ∇γ̇A is timelike, in other words, εj = +1 for all
1 ≤ j ≤ n− 2.

Example 4.2.1. Let γ be a null curve in Hn+1
2 . The immersion x : I ×R×Rn−2 →

Hn+1
2 ⊂ Rn+2

3 given by

x(s, t, z) =
k2
2 − f(z)

1 + k2
2

γ(s) + tB(s) +
n−2∑
j=1

zjZj(s)−
k2(1 + f(z))

1 + k2
2

C(s)

parametrizes an oriented Lorentzian hypersurface M of Hn+1
2 , where

f(z) =
√

1 + (1 + k2
2)|z|2.

By a straightforward computation, the unit normal vector field of M in Hn+1
2 is given

by

N(s, t, z) = −k2(1 + f(z))

1 + k2
2

γ(s) + k2tB(s) + k2

n−1∑
j=1

zjZj(s)−
−1 + k2

2f(z)

1 + k2
2

C(s),

and the shape operator AN with respect to the frame (xs,xt,xz) is expressed as

AN =


−k2 0
k1(s) −k2

−k2
. . .

−k2

 .

Then, one can easily see that the mean curvature H is −k2, the scalar curvature S
is a non-zero constant and the minimal polynomial P (x) of the shape operator is
(x+ k2)

2.
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Example 4.2.2. Let γ be a null curve Sn+1
2 . Assume that k1(s) ̸= 0 and k2

2 ̸= 1. As
in Example 4.2.1, the immersion x : I × R× Rn−2 → Sn+1

2 ⊂ Rn+2
2 given by

x(s, t, z) =
−k2

2 + f(z)

−1 + k2
2

γ(s) + tB(s) +
n−2∑
j=1

zjZj(s) +
k2(1− f(z))

−1 + k2
2

C(s)

parametrizes an oriented Lorentzian hypersurface of Sn+1
2 in a neighborhood of the

origin, where

f(z) =
√

1 + (−1 + k2
2)|z|2

for z with 1+ (−1+ k2
2)|z|2 > 0. By a straightforward computation, the unit normal

vector field of M in Sn+1
2 is given by

N(s, t, z) =
−k2(1 + f(z))

−1 + k2
2

γ(s) + k2tB(s) + k2

n−1∑
j=1

zjZj(s) +
1− k2

2f(z)

−1 + k2
2

C(s),

and the shape operator AN with respect to the frame (xs,xt,xz) is expressed as

AN =


−k2 0

−k1(s) −k2
−k2

. . .

−k2

 .

Then, one can easily see that the mean curvature H is −k2, the scalar curvature S
is a non-zero constant and the minimal polynomial P (x) of the shape operator is
(x+ k2)

2.

Example 4.2.3. Let γ be a null curve in Sn+1
2 with k2

2 = 1. As in Example 4.2.1,
the immersion x : I × R× Rn−2 → Sn+1

2 ⊂ Rn+2
2 given by

x(s, t, z) = (−1 +
|z|2

2
)γ(s) + tB(s) +

n−2∑
j=1

zjZj(s)−
k2|z|2

2
C(s)

parametrizes an oriented Lorentaisn hypersurface of Sn+1
2 . By a straightforward com-

putation, the unit normal vector field of M in Sn+1
2 is given by

N(s, t, z) = −k2|z|2

2
γ(s) + k2tB(s) + k2

n−1∑
j=1

zjZj(s)− (1 +
|z|2

2
)C(s),

and the shape operator AN with respect to the frame (xs,xt,xz) is expressed as

AN =


−k2 0

−k1(s) −k2
−k2

. . .

−k2

 .
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Then, one can easily see that the mean curvature H is −k2, the scalar curvature S
is zero and the minimal polynomial P (x) of the shape operator is (x+ k2)

2.

Remark 4.2.1. There is a relation between Example 4.2.2 and 4.2.3. In the case where
0 < k2

2 < 1, one can easily check that the parametrization x defined by Example 4.2.2
uniformly converges in C∞ to x defined by Example 4.2.3 on a fixed neighborhood
of z = 0 as k2

2 → 1. In the case where k2
2 > 1, one can easily check a similar

relation between Example 4.2.2 and 4.2.3 as in the case where 0 < k2
2 < 1 without

any condition for z.

Next, we consider the case where ∇γ̇A is spacelike.

Example 4.2.4. Let γ be a null curve in Sn+1
2 . The immersion x : I × R× Rn−2 →

Sn+1
2 ⊂ Rn+2

2 given by

x(s, t, z) =
k2
2 − f(z)

1 + k2
2

γ(s) + tB(s) +
n−2∑
j=1

zjZj(s)−
k2(1 + f(z))

1 + k2
2

C(s)

parametrizes an oriented hypersurface with index 2 of Sn+1
2 in a neighborhood of the

origin, where

f(z) =
√

1− (1 + k2
2)|z|2

for z with 1 − (1 + k2
2)|z|2 > 0. By a straightforward computation, the unit normal

vector field of M in Sn+1
2 is given by

N(s, t, z) = −k2(1 + f(z))

1 + k2
2

γ(s) + k2tB(s) + k2

n−1∑
j=1

zjZj(s)−
−1 + k2

2f(z)

1 + k2
2

C(s),

and the shape operator AN with respect to the frame (xs,xt,xz) is expressed as

AN =


−k2 0

−k1(s) −k2
−k2

. . .

−k2

 .

One can easily see that the mean curvature H is −k2, the scalar curvature S is a
non-zero constant and the minimal polynomial P (x) of the shape operator is (x+k2)

2.

Example 4.2.5. Let γ be a null curve in Hn+1
2 . Assume that k1(s) ̸= 0 and k2

2 ̸= 1.
As in Example 4.2.4, the immersion x : I × R× Rn−2 → Hn+1

2 ⊂ Rn+3
3 given by

x(s, t, z) =
k2
2 − f(z)

−1 + k2
2

γ(s) + tB(s) +
n−2∑
j=1

zjZj(s)−
k2(1− f(z))

−1 + k2
2

C(s)
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parametrizes an oriented hypersurface with index 2 of Sn+1
2 in a neighborhood of the

origin, where

f(z) =
√

1− (−1 + k2
2)|z|2

for z with 1− (−1+ k2
2)|z|2 > 0. By a straightforward computation, the unit normal

vector field of M in Hn+1
2 is given by

N(s, t, z) =
k2(1− f(z))

−1 + k2
2

γ(s) + k2tB(s) + k2

n−1∑
j=1

zjZj(s) +
−1 + k2

2f(z)

−1 + k2
2

C(s),

and the shape operator AN with respect to the frame (xs,xt,xz) is expressed as

AN =


−k2 0

−k1(s) −k2
−k2

. . .

−k2

 .

Then, one can easily see that the mean curvature H is −k2, the scalar curvature S
is a non-zero constant and the minimal polynomial P (x) of the shape operator is
(x+ k2)

2.

Example 4.2.6. Let γ be a null curve in Hn+1
2 with k2

2 = 1. As in Example 4.2.4,
the immersion x : I × R× Rn−2 → Hn+1

2 ⊂ Rn+3
3 given by

x(s, t, z) = (1 +
|z|2

2
)γ(s) + tB(s) +

n−2∑
j=1

εjzjZj(s)−
k2|z|2

2
C(s)

parametrizes an oriented hypersurface with index 2 in Sn+1
2 . By a straightforward

computation, the unit normal vector field of M in Hn+1
2 is given by

N(s, t, z) =
k2|z|2

2
γ(s) + k2tB(s) + k2

n−1∑
j=1

εjzjZj(s)(1−
|z|2

2
)C(s),

and the shape operator AN with respect to the frame (xs,xt,xz) is expressed as

AN =


−k2 0
k1(s) −k2

−k2
. . .

−k2

 .

Then, one can easily see that the mean curvature H is −k2, the scalar curvature S
is zero and the minimal polynomial P (x) of the shape operator is (x+ k2)

2.
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Remark 4.2.2. There is a relation between Example 4.2.5 and 4.2.6. One can easily
check that the parametrization x defined by Example 4.2.5 uniformly converges in
C∞ to x defined by Example 4.2.6 on a fixed neighborhood of z = 0 as k2

2 → 1.

Remark 4.2.3. By Proposition 2.1.1, those six examples given by this chapter satisfy
∆H = λH for real consant λ.

By Remark 4.2.1, 4.2.2 and 4.2.3, we emphasize that examples in this section also
satisfy properties of generalized umbilical hypersurfaces in Remark 3.5.3.
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Chapter 5

Generalized B-scroll in S52 and H5
2

In the previous chapter, we studied Lorentzian hypersurfaces with index 2. We
remark that those results are only about pseudo-Riemannian hypersurfaces M , that
is, the case where the codimension of M in M̄ (= Sm

2 or Hm
2 ) is 1. In this chapter, we

consider the case where the codimension of M is larger than 1. More precisely, we
construct 2-dimensional Lorentzian ruled surfaces along null curve γ in S5

2 and H5
2.

5.1 Known results of a generalized B-scroll in Em
1

On the higher codimensional case, D. S. Kim, Y. H. Kim and D. W. Yoon [15] ex-
tended a B-scroll in E3

1 to in Em
1 and named it the generalized B-scroll. Moreover,

they proved the following theorem about the minimal polynomial of the shape oper-
ator of a generalized B-scroll. Hence, at first, to consider 2-dimensional Lorentzian
ruled surfaces along null curves in S5

2 and H5
2, we introduce their results.

Definition 5.1.1 ([15]). Let γ be a null curve in Em
1 and β a null vector field along γ.

Let M be a ruled surface in Em
1 parameterized as an immersion x(s, t) = γ(s)+ tβ(s).

Then, M is called a null scroll if β satisfies γ̇(s) ∧ β(s) ̸= 0 for all s.

Definition 5.1.2 ([15]). Let γ be a null curve in Em
1 and (A,B,C, Z1, . . . , Zm−3)

a frame field along γ satisfying the conditions of (3.22). Let M be a null scroll
such that it is a non-degenerate pseudo-Riemannian surface along γ parameterized
as x(s, t) = γ(s) + tβ(s). Then, M is called a generalized B-scroll if β(s) = B(s) for
all s.

Let H be a mean curvature vector field of a null scroll M . The shape operator of
M derived from H has the minimal polynomial as follows.

Theorem 5.1 ([15]). Let M be a null scroll in an m-dimensional Lorentzian space
Em

1 . If the shape operator AH of M derived from the mean curvature vector field H
has the minimal polynomial of the form (x − a2)2 for some constant a then M is a
generalized B-scroll.

47



Conversely, they proved that the minimal polynomial of AH of a generalized B-
scroll M is given by (x − k2

2)
2, where k2 is a constant appeared in the following

Corollary 5.2.1 (the coefficient of A of Ċ). Similarly, in this chapter, we also study
the minimal polynomial of the shape operator of a ruled surface in S5

2 and H5
2.

5.2 Exapmles of the generalized B-scroll in S52
revisioand H5

2

In the case where in M5
2 , Frenet frame field along a null curve γ in M5

2 is one of the
following two cases if ∇γ̇ γ̇ is non-null. Recalling Proposotion 4.1.1, one can easily
see that the following corollary follows.

Corollary 5.2.1. Let γ be a null curve of order d = 5 in an 5-dimensional pseudo-
Riemannian manifold (M, ⟨ , ⟩,∇) with index 2. Assume that ∇γ̇ γ̇ is non-null. Under
Assumption 4.1, there exists uniquely a frame field (A,B,C, Z1, Z2) along γ satisfying
the following conditions;

(5.1)

⟨A,A⟩ = ⟨B,B⟩ = 0, ⟨A,B⟩ = −1,

⟨A,C⟩ = ⟨B,C⟩ = 0, ⟨C,C⟩ = εC ,

⟨A,Zi⟩ = ⟨B,Zi⟩ = ⟨C,Zi⟩ = 0,

⟨Zi, Zj⟩ = εiδij

and

(5.2)



Ȧ = k1C,

Ċ = k2A+ εCk1B,

Ḃ = εCk2C + k3Z1 + εγ,

Ż1 = ε1k3A+ k4Z2,

Ż2 = εCk4Z1

for some positive-valued functions ki (i = 1, . . . , d − 1), εC , εi = ±1 and i = 1, 2.
Note that ε1 = ε2 = 1 if εC = −1 and ε1 = −ε2 if εC = 1.

The next proposition holds only in the case that a null curve γ is in M5
2 , because

a null vector field Z2 satisfying ⟨Z1, Z2⟩ = −1 is not uniquely if m ≥ 6.

Proposition 5.2.1. Let γ be a null curve in M5
2 , and we put A = γ̇. If ∇γ̇A is

non-null and Z1 is null, there is a unique frame field (A,B,C, Z1, Z2) satisfying

(5.3)

⟨A,A⟩ = ⟨B,B⟩ = 0, ⟨A,B⟩ = −1,

⟨A,C⟩ = ⟨B,C⟩ = 0, ⟨C,C⟩ = 1,

⟨Z1, Z1⟩ = ⟨Z2, Z2⟩ = 0, ⟨Z1, Z2⟩ = −1,

⟨A,Zi⟩ = ⟨B,Zi⟩ = ⟨C,Zi⟩ = 0 (i = 1, 2)
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and

(5.4)



Ȧ = k1C,

Ċ = k2A+ k1B,

Ḃ = k2C + Z1 + εγ,

Ż1 = hZ1,

Ż2 = −A− hZ2,

where k2 and h are non-zero functions.

The vector field Z2 in (5.4) could not be unique when dimM ≥ 6. Note that
a null curve γ in Proposition 5.2.1 is order 4. We also remark that a frame field
(A,B,C, Z1, Z2) in the previous two propositions is a pseudo-orthonormal frame field
along null curve γ, but it is not a bi-null Cartan frame introduced in [21] because
∇γ̇A is null in the bi-null Cartan frame.

Next, we give examples of non-degenerate 2-dimensional Lorentzian ruled sur-
faces in S5

2 or H5
2 satisfying conditions of the generalized B-scroll in the sense of

[15]. Namely, the shape operator AH is non-diagonalizable at any point, the mean
curvature is non-zero constant and Gaussian curvature is constant. Here, we recall
Theorem 5.1, that is, AH derived from the mean curvature vector field H has the
minimal polynomial of the form (x− a2)2 for some constant a.

Example 5.2.1. We consider the case where (A,B,C, Z1, Z2) satisfies (5.1) and
(5.2). Let γ be a null curve in S5

2 or H5
2, and we put A = γ̇. Assume that ∇γ̇A is

non-null and k2 and k3 are non-zero constant. The immersion defined by x(s, t) =
γ(s) + tB(s) parameterizes a non-degenerate 2-dimensional Lorentzian surface, since
(A,B,C, Z1, Z2) satisfies (5.1) and (5.2). By a straightforward computation, its unit
normal vector fields are 

N1(s, t) = k2tB(s) + C(s),

N2(s, t) = ε1k3tB(s) + Z1(s),

N3(s, t) = Z2(s),

and the shape operator ANr derived from Nr are

AN1 =

(
−k2 0
−ε1k3 −k2

)
, AN2 =

(
−ε1k3 0

0 −ε1k3

)
and

AN3 =

(
0 0

−εCε1tk3k4 0

)
.

Thus, the scalar curvature is non-zero constant and the mean curvature vector field
H̃ is written by

H̃ = −εCk2N1 − k3N2.
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We put H = H̃/∥H̃∥. Then, the shape operator AH derived from H with respect to
the frame (xs,xt) and the minimal polynomial P (x) of AH are given by

(5.5) AH =

(
εCk

2
2 + ε1k

2
3 0

k1k2 εCk
2
2 + ε1k

2
3

)
and

(5.6) P (x) = (x− (εCk
2
2 + ε1k

2
3))

2,

where εCk
2
2 + ε1k

2
3 is constant. Note that a null curve γ is order 5 by the condition

(5.2).

Example 5.2.2. We consider the case where (A,B,C, Z1, Z2) satisfies (5.3) and (5.4).
Let γ be a null curve in S5

2 or H5
2, and we put A = γ̇. Assume that ∇γ̇A is non-null

and k2 is non-zero constant. The immersion defined by x(s, t) = γ(s)+ tB(s) param-
eterizes a non-degenerate 2-dimensional Lorentzian surface, since (A,B,C, Z1, Z2)
satisfies (5.3) and (5.4). By a straightforward computation, its unit normal vector
fields are 

N1(s, t) = k2tB(s) + C(s),

N2(s, t) = −tB(s)− 1

2
Z1(s) + Z2(s),

N3(s, t) = −tB(s) +
1

2
Z1 + Z2(s),

and the shape operator ANr derived from Nr are

AN1 =

(
−k2 0
k1 −k2

)
, AN2 =

(
−1 0
0 −1

)
and

AN3 =

(
−1 0
0 −1

)
.

Thus, the scalar curvature is non-zero constant and the mean curvature vector field
H̃ is written by

H̃ = −k2N1 − Z1.

We put H = H̃/∥H̃∥. Then, the shape operator AH derived from H with respect to
the frame (xs,xt) and the minimal polynomial P (x) of AH are given by

AH =

(
k2
2 0

k1k2 k2
2

)
and

(5.7) P (x) = (x− k2
2)

2,

where k2
2 is constant.
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Remark 5.2.1. In the case where γ is in S4
2 or H4

2, we can construct a ruled surface
satisfying conditions of the generalized B-scroll by the same way as Example 5.2.1.
Since S4

2 and H4
2 are non-degenerate pseudo-Riemannian manifolds and we consider

in the case where ∇γ̇ γ̇ is non-null, there is no ruled surface in S4
2 or H4

2 as Example
5.2.2.

Remark 5.2.2. Let Zi (i = 1, 2) be a vector field along γ defined by Example 5.2.2.
Because x(s, t) = γ(s) + tZi(s) is a degenerate surface, there is no non-degenerate
null scroll equipped with a Cartan frame whose mean curvature vector is non-null
except for Example 5.2.1 and 5.2.2 in S5

2 and H5
2. In the case where ∇γ̇ γ̇ is null, there

is no non-degenerate pseudo-Riemannian null scroll equipped with a bi-null Cartan
frame in S5

2 and H5
2 (see [21]).

Remark 5.2.3. Each form of the minimal polynomial (5.6) and (5.7) satisfies the
assumption of Theorem 5.1. Since a B-scroll in S3

1 or H3
1 is equipped with a Cartan

frame, null scrolls given by Example 5.2.1 and 5.2.2 are candidates of a generalized B-
scroll in S5

2 and H5
2. Meanwhile, the eigenvalue of (5.5) is not equal to the coefficient

of a vector field A in Ċ. Also, in Example 5.2.2, a null curve γ in S5
2 or H5

2 is order 4.

Summarizing these examples and Remarks in this chapter, we have the following
theorem.

Theorem 5.2. Let (A,B,C, Z1, Z2) be a Frenet frame field along γ in S5
2 or H5

2 such
that B is a null vector field, ⟨A,B⟩ = −1 and ⟨B,C⟩ = 0. We define the immersion
from I × R into S5

2 or H5
2 by x(s, t) = γ(s) + tB(s) and denote an image of x by

M . Then, M is a non-degenerate Lorentzian ruled surface along γ satisfying the
following.

(i) In the case where Z1 is non-null, we put εC = ⟨C,C⟩ and ε1 = ⟨Z1, Z1⟩. For
some constants k2 and k3, the mean curvature and the minimal polynomial
of the shape operator derived from the normalized mean curvature vector are
εCk

2
2 + ε1k

2
3 and P (x) = (x− (εCk

2
2 + ε1k

2
3))

2, respectively.

(ii) In the case where Z1 is null, for some constant k2, the mean curvature and the
minimal polynomial of the shape operator derived from the normalized mean
curvature vector are k2

2 and P (x) = (x− k2
2)

2, respectively.

Moreover, a non-degenerate Lorentzian ruled surface along γ equipped with Frenet
frame field is one of the above two cases.
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