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Chapter 1

Introduction

The thesis is based on [17] and [16].

In the thesis, we study pseudo-Riemannian surfaces of constant mean and scalar
curvature and non-diagonalizable shape operator in pseudo-sphere or pseudo-hyper-
bolic space.

The notion of finite typeness of isometric immersions into a Euclidean space was
introduced by B.-Y. Chen in the late 1970’s (see [6], [7], [5], [9] etc.). Later, the finite
typeness of isometric immersions into a Euclidean space or, in more general, a pseudo-
Euclidean space has been studied by many geometers (see [6],[7], [5] etc.). B.-Y.
Chen and P. Piccinni [8] extended the notion of the finite typeness to C*°-maps and
studied the finite typeness of the Gauss map (which is not an immersion) of isometric
immersions. Recently, B. Bektas, E.O. Canfes, U. Dursun and R. Yegin have studied
the finite typeness of the pseudo-spherical (resp. the pseudo-hyperbolic) Gauss maps
of isometric immersions into the pseudo-sphere (resp. the pseudo-hyperbolic space)
(see [4], (3], 2], [22]).

Let M be an n-dimensional pseudo-Riemannian manifold of index ¢, and let E]" be
an m-dimensional pseudo-Euclidean space of index v. The smooth map ¢ : M — E
is said to be of finite type if ¢ has the spectral decomposition: ¢ = ¢; + - - - + ¢ with
¢; : M — E"’s non-constant maps such that A¢; = \;¢;, where A is the Laplacian
operator of M and \; are constants. Here, if \;’s are mutually distinct then ¢ is said
to be of k-type. Denote by S™~! the (m — 1)-dimensional pseudo-sphere of constant
curvature 1 and index v, and by H™"! the (m — 1)-dimensional pseudo-hyperbolic
space of constant curvature —1 and index v. Let M be an n-dimensional oriented
pseudo-Riemannian manifold of index ¢ and x : M < S™! C E™ an isometric
immersion. Let G(n + 1,m); be the Grassmannian manifold consisting of (n + 1)-
dimensional oriented non-degenerate subspaces of index ¢ of E". Define the map
v:M — Gn+1,m), by v(p) = x(p) A x.(e]) Axu(e5) A+ Axy(el) for p € M,
where (el,...,eP) is an orthonormal frame of 7,M compatible with the orientation
of M. This map v is called the pseudo-spherical Gauss map of x. Similarly, for
an isometric immersion x : M — H"!' C E,, the pseudo-hyperbolic Gauss map
v:M— G(n+1,m)y is defined.



D. S. Kim and Y. H. Kim [14] classified such Lorentzian surfaces in the 3-
dimensional de Sitter space S? and anti-de Sitter space H? as follows.

Theorem 1.1 ([14], see Theorem 3.1). Let M? be a Lorentzian surface in S} or
M. If the mean and Gaussian curvatures are constant and the shape operator is not
diagonalizable at a point, then M? is an open part of a complex circle or a B-scroll.

B. Bektas, E.O. Canfes and U. Dursun [2] determined the type number of the
pseudo-spherical Gauss map of B-scroll in S?.

In the following, we describe the contents of this thesis.

We recall basic terminology and facts related to pseudo-Riemannian submanifolds
and null curves in Chapter 2, as preliminaries.

In Chapter 3, we determine the type numbers of the pseudo-hyperbolic Gauss
maps of a complex circle and a B-scroll in the 3-dimensional anti-de Sitter space.
The following theorem is one of the main results in the thesis.

Theorem 1.2 (see Theorem 3.3). Let M be an oriented Lorentzian surface in H; of
constant mean and Gaussian curvatures and non-diagonalizable shape operator. The
following facts hold.

(i) M is an open part of a complex circle of radius —1 if and only if the pseudo-
hyperbolic Gauss map is of 1-type.

(ii) If M is the complex circle of radius k (Re(k) = —1, k # —1), then the pseudo-
hyperbolic Gauss map is of infinite type.

(iii) M s an open part of a non-flat B-scroll if and only if the pseudo-hyperbolic
Gauss map is of null 2-type.

(iv) If M is a flat B-scroll, then the pseudo-hyperbolic Gauss map is of infinite type.

Also, we investigate the behavior of type numbers of the pseudo-hyperbolic Gauss
map along the parallel family of such oriented Lorentzian surfaces in the 3-dimensional
anti-de Sitter space. Furthermore, we investigate the type number of the pseudo-
hyperbolic Gauss map of generalized umbilical hypersurfaces which are natural gen-
eralizations of B-scrolls in S7™! and H{™ given by [1].

In Chapter 4, we find ruled surfaces with the above null curves which have non-
diagonalizable shape operators, constant mean curvatures and constant scalar cur-
vatures. As the preparations, we construct Frenet frame fields along a null curve
when it is not a bi-null Cartan curve in a pseudo-sphere with index 2 and a pseudo-
hyperbolic space with index 2, respectively. The theory of the Frenet frame field
along a null curve ~ in a pseudo-Riemannian manifold (M, (, )) has been developed
by [10], [11], [13] and [12], where v is a null curve satisfying (¥,%) = 0 and 4 # 0. If
M is a Lorentzian manifold, the Frenet frame field can be constructed uniquely for
a null curve v satisfying 7® # 0. Such a frame field is called the Cartan frame field
and a null curve v with the Cartan frame field is called the Cartan curve. In the



case where M is 3| a B-scroll is one of the most known ruled surfaces over a Cartan
curve v. It is defined as the image of the immersion x : I x R — E3 parameterized
by

x(s,1) = (s) + tB(s),

where B is a null vector field along v such that (¥, B) = —1. Note that a B-scroll
is a non-degenerate hypersurface in E? and it has some properties as follows: the
mean curvature is non-zero constant, Gaussian curvature is constant and the shape
operator is non-diagonalizable everywhere. In the case where M is S or H3, a B-scroll
is defined by the same way as in E3. M. Magid [18] and L. J. Alfas, A. Ferrdndez and
P. Lucas [1] constructed some examples of hypersurfaces which are generalizations of
B-scrolls in E}*!, ST or H™, and they called such a hypersurface the generalized
umbilical hypersurface. We remark that ) is a spacelike vector field if 7 is in a
Lorentzian manifold.

If M is a pseudo-Riemannian manifold with index 2, Frenet frame fields cannot
be constructed uniquely for a null curve 7 since there are both cases where v® is
non-null and null (see [10], [11] and [13] for instance). In the case where «y is a bi-
null curve, that is, (y?),7®) = 0 and 4 # 0, M. Sakaki [20] constructed a Frenet
frame field more directly. It is called a bi-null Cartan frame field and a bi-null curve
~v with a bi-null Cartan frame field is called a bi-null Cartan curve. M. Sakaki, A.
Ucum and K. Tlarslan [21] studied ruled surfaces over a bi-null Cartan curve in ES.
In this paper, we consider the case where M is S§™ or Hyt and a null curve v in
M satisfies (v, ) = 0, that is, v is not a bi-null curve. In Chapter 4, we will
show some examples of ruled hypersurfaces over a null curve v in S5 and Hj ™. In
this paper, we consider the case where v(? is non-null everywhere. Then, there are
both cases where 7(?) is spacelike and timelike. We prove that these hypersurfaces
satisfy properties as the generalized umbilical hypersurfaces in Chapter 3: the mean
curvature is non-zero constant, the scalar curvature is constant and the minimal
polynomial of the shape operator is (z + a)? for some constant a. We explain those
details in Chapter 4.

Finally, we consider the higher codimensional case of B-scroll. D. S. Kim, Y.
H. Kim and D. W. Yoon [15] extended a B-scroll in E} to in E7* and named it
the generalized B-scroll. In Chapter 5, we construct ruled surfaces similar to the
generalized B-scroll in S§ or H3.

Let v be a null curve in S5 or H3 and +® is non-null. We put A = 4. The
following is one of the main results of this paper.

Theorem 1.3 (see Theorem 5.2). Let (A, B,C, Z, Zy) be a Frenet frame field along
v in Sy or H3 such that B is a null vector field, (A, B) = —1 and (B,C) = 0. We
define the immersion from I x R into S5 or H3 by x(s,t) = v(s) + tB(s) and denote
an image of x by M. Then, M is a non-degenerate Lorentzian ruled surface along ~y
satisfying the following.

(i) In the case where Zy is non-null, we put ec = (C,C) and €, = (Z1,Z;). For
some constants ko and ks, the mean curvature and the minimal polynomial



of the shape operator derived from the normalized mean curvature vector are
eckd + e1ki and P(z) = (v — (eck3 + &1k32))?, respectively.

(ii) In the case where Zy is null, for some constant ko, the mean curvature and the
minimal polynomial of the shape operator derived from the normalized mean
curvature vector are k3 and P(x) = (x — k3)?, respectively.

Moreover, a non-degenerate Lorentzian ruled surface along v equipped with Frenet
frame field is one of the above two cases.



Chapter 2

Preliminaries

2.1 Basic notions and facts

Fix 0 < v < m and let (, ) be the symmetric non-degenerate (0,2) tensor on R™

defined by

(2.1) (v,w) = — Zviwi + Z vjw,
i=1

Jj=v+1

forv = (vy,...,v,) and w = (wy, ..., w,). By the standard isomorphism between R™
to T,R™, we extended (, ) to a symmetric non-degenerate (0,2) tensor field on R™.
The pair (R™, (, )) is called a pseudo-Euclidean space with index v. We denote it by
E™ and call (, ) a pseudo-Euclidean metric with index v. In general, a pair (M, g) of
an m-dimensional smooth manifold M and a symmetric non-degenerate (0, 2) tensor
field g on M of constant index v is called a pseudo-Riemannian manifold. According
to the definition of g, M is a Riemannian manifold if index v = 0. In particular, M
is called a Lorentzian manifold if index v = 1. Let (2!, ...,2™) be a local coordinate
system on M, and we put 9; = 9/0x°. The components of g can be written locally
by gi; = (0;,0;) for 1 <i,j < m. Then, g is locally expressed as

g = Z gijdxi (024 d:Ej.
ij=1
For x € E' and ¢ > 0, we put
S te) ={z=(21,...,2m) EEI|(2,2) =1/c}

and
HT:ll(_C) = {ZL’ = (Ilﬂ S ,[L’m) cE} | <I7I> = _1/0}7

where (, ) is defined by (2.1). Then S”'(c) (resp. H™'(—c)) is an (m — 1)-
dimensional pseudo-Riemannian submanifold in E* of constant curvature ¢ and index



v (resp. constant curvature —c and index v — 1), and called a pseudo-sphere (resp. a
pseudo-hyperbolic space). In particular, S7*"!(c) and H* *(—c) are called a de Sitter
space and an anti-de Sitter space, respectively. For simplicity, we denote S™~1(1) and
H”™}(—1) by S™! and H”', respectively.

Let M; be an n-dimensional pseudo-Riemannian submanifold of index ¢ in E’. Let
V be the Levi-Civita connections of E”* and V the induced connection on M,. Also,
let V*+ be the normal connection of M; in E™. For simplicity, we denote all metrics by
the common symbol (, ). We take a local orthonormal frame field (ey,...,e,) of the
tangent bundle T'M; of M;, and a local orthonormal frame field (e, 11, ..., é€,) of the
normal bundle 7+ M, of M, in E™. Denote the signatures of e, es, ..., €n,€n41,-..,6m
by €4 := (ea,e4) = £1 where A =1,...,m. Let {Oap}a =1, m be the connection
form of V with respect to (€1, -, €nyEni1,. -, En). Similarly, let {w;;}i j=1,. » be the
connection form of V with respect to (e1, ..., e,) and {wy; }rs=n+1,...m the connection

.....

form of V+ with respect to (€,41,...,em), that is, V, V and V= are expressed by

and

for X € T'M,, respectively.

Throughout this section, we define the following range of indices: 1 < A, B < m,
1<i, gkl <mandn+1<r s <m. Also, let h be the second fundamental form
of M;, and we describe the coefficients of h as hj;, that is, h(e;, e;) = >0, 1 hijer.

159 r=n+1
For the simplicity, we denote A.. by A,, where A., is the shape operator of M; in

the direction e,. Noting wap + wpa = 0, the Gauss formula is given by

(22) @ekei = Zsjwij(ek)ej + Z Er Zier,
j=1

r=n+1

and the Weingarten formula is given by

(2.3) Veer = —A(ex) + Z esw(er)es.

s=n+1

The mean curvature vector H and the scalar curvature S of M, in E]' are defined by

1 m
2.4 H=- trA.e,
(2.4) LS cne

r=n+1

10



and

(2.5) S =n*(H,H) — |||,

respectively, where |[h||*> = 377 _ Y7 sigje hi;hy;. Denote by Vh the covariant
derivative of h with respect to V and V+. Let

m

(2.6) (Ve h)(eies) = > ephipen
r=n+1
Then we have
(27) h:j;k = h;k;ﬂ
(2.8) Wes = €)= > allhpwilen) + hjww(e) + > eshiwn(e:),
=1 s=n+1
(2'9) Rl(ejv €k; Er, 68> = <[A7”’ AS](ej)a ek’) = Zsz( Zkhfg - sz fk)>

i=1
where RT is the normal curvature tensor of M,.

Let x : My < S?~Y(c) or H™'(—c) C E” be an isometric immersion. Denote by
h and H the second fundamental form and the mean curvature vector of M; in EJ,
respectively. Let h and H be the second fundamental form and of the mean curvature
vector of M, in S7!(c) or H!'(—c), respectively. Then, h and H are written by h
and H as
(2.10) H = H — ecx,
(2.11) h=h(XY)—ec(X,Y)x.
Hence, (2.5) is rewritten as
(2.12) S =een(n—1)+n?(H,H) — ||h|?,

where ¢ = +1 if in S !(c) and ¢ = —1 if in H"*(—c).

The gradient vector field Vf of f € C®°(My) is defined by Vf = >"" | gie;(f)es,
and Laplacian operator A of M; with respect to the induced metric is given by
A =37 e(Vee —eie).

~ Let A be a real constant number, and let H be the mean curvature of M;" in
M1 that is, H = e, 1 Hen 1.
Proposition 2.1.1 ([1]). Let M} be a hypersurface in M. Then AH = \H if
and only if one of the following statemnts holds:

(i) M} is minimal in ML,

(i) M has nonzero constant mean curvature H and tr(S?) = (1/n)tr(S)?2.

Moreover, the constant X is always given by X\ = n{H, H) = n(c+ e, .1 H?).

11



2.2 Frenet frame field along a null curves

Definition 2.2.1. A tangent vector v of pseudo-Riemannian manifold M is said to
be spacelike if (v,v) > 0 or v = 0, timelike if (v,v) < 0, and null if (v,v) = 0 and
v # 0. Especially, a curve v(s) in M is said to be a null curve if 4(s) is null for all s.

Definition 2.2.2. A basis {E,...,E,} of E! is called an orthonormal basis if
Ey, ... E, satisfy
—6y (hj=1,....v)
(Ei, E;) = < 05 (i,j=v+1,...,n)
0 (1<i<j<n).
Let B={X,Y1,....X,,Y,, By, ..., B9y} be a basis of E}}, where 1 <p <n/2. Let
k.l and i,j be 1 <kl <pand1l<1i,j<n—2p, respectively. Then, B is called an
pseudo-orthonormal basis it X1,Y1,...,X,,Y,, Ey, ..., E,_ o, satisty
( Xk Xi) = (Yi, Yi) = 0, (X4, Y1) = — 0,
(Xi, Ei) = (Yi, Ey) =0, (B}, E;) = €045,

where ¢; = —1if 1 <i<qgandeg; =1lifg+1<i<n—2pforp+q=v.

In the case where (M, (, ), V) is an n-dimensional Riemannian manifold, a Frenet
curve and its order are defined for C'"*°-curve v in M as follows. Let v be parameter-
ized by s, and we put V; :=+. Then, v is called a Frenet curve of order d if there is

an orthonormal frame field (V4, ..., V;) and differential positive functions kq, ..., kg1
such that
(2.13) ViVi(s) = =kjo1(s)Vi-1(s) + Kja(s)Viga(s),

where 1 < d <n, 1 <j<dand Vj = Vguy =0, and (V4,...,Vy) is said to be
a Frenet frame field of v. We put v? = V.4 and 4V = Viy0=D for 1 < i < d.
Then, we find {¥,...,7®} is a linearly independent family by substituting (2.13) for
Vv inductively. In the case where (M, (, ), V) is a pseudo-Riemannian manifold,
an order of a curve in M is defined as follows.

Definition 2.2.3. Let v be a curve in pseudo-Riemannian manifold M and 1 <7 <
n. Then, d is called an order of  if d is the largest number of 7 such that {¥,...,7®}
is a linearly independent family.

Definition 2.2.4. Let v be a null curve of order 3 in S3(C E{) or H?(C E3), and let
(A, B,C) be a pseudo-orthonormal tangent frame field of S? or H} along . Then,
(A, B,C) is called the Cartan frame field along ~y if it satisfies

3(5) = Als),
- Als) = R(5)C5),
' B(s) = koC(s) + €7,
C(s) = kyA(s) + ki(s)B(s)

12



for some positive-valued functions k; and ky, where e = +1 if v isin S? or ¢ = —1 if
7 is in H. Let M be the Lorentzian ruled surface in S? or H? defined as the image
of the immersion x(s,t) = vy(s) + tB(s). If ky is non-zero constant, then M is called
the B-scroll over 7.

v — null geodesic

null geodesic

light cone -~ )
A(s2) = A(s2) =

Figure 2.1: B-scroll over

Fact 2.2.1 ([2], [17]). The unit normal vector field N of the B-scroll in S} or H is
given by N = kot B(s)+C(s). The shape operator Ay with respect to (0x/0s, 0x/0t)

is expressed as
—ko 0
Ay = .
N (—]{?1 (S) —]{52)

Thus, the mean curvature H is a non-zero constant —ko, Gaussian curvature is a
constant and the minimal polynomial of its shape operator is P(z) = (z + ko).

Remark 2.2.1. Let M be a B-scroll in S or H? and H the mean curvature vector
field of M in S} or H. Then M satisfies AH = AH for a real constant \.

13



Chapter 3

Classification of Lorentzian
hypersurfaces in a de Sitter space
and anti-de Sitter space

In this chapter, we determine the type number of the pseudo-hyperbolic Gauss
map of Lorentzian hypersurfaces of constant mean and scalar curvature and non-
diagonalizable shape operator in pseudo-sphere or pseudo-hyperbolic space. First,
we consider the type number of the pseudo-hyperbolic Gauss map of such Lorentzian
hypersurfaces in the 3-dimensional de Sitter space S and anti-de Sitter space HS3.

3.1 Known results and main theorem

D.S. Kim and Y.H. Kim[14] classified the Lorentzian surfaces of constant mean and
Gaussian curvatures and non-diagonalizable shape operator in the 3-dimensional de
Sitter S? and anti-de Sitter H? space as follows.

Theorem 3.1 ([14]). Let M? be a Lorentzian surface in S? or H3. If the mean and
Gaussian curvatures are constant and the shape operator is not diagonalizable at a
point, then M is an open part of a complex circle or a B-scroll.

B. Bektas, E.O. Canfes and U. Dursun [2] determined the type number of the
pseudo-spherical Gauss map of an oriented Lorentzian surface in S? of non-zero con-
stant mean curvature and non-diagonalizable shape operator at a point.

Theorem 3.2 ([2]). An oriented Lorentzian surface in'S of constant mean curvature
and non-diagonalizable shape operator is of null 2-type pseudo-spherical Gauss map
if and only if it is an open part of a non-flat B-scroll over a null curve.

In this chapter, we determined the type numbers of the pseudo-hyperbolic Gauss
maps of such Lorentzian surfaces in H3 of constant mean and Gaussian curvatures
and non- diagonalizable shape operator at a point. The following theorem is one of
the main results.

14



Theorem 3.3. Let M be an oriented Lorentzian surface in H3 of constant mean and
Gaussian curvatures and non-diagonalizable shape operator. The following facts hold.

(i) M is an open part of a complex circle of radius —1 if and only if the pseudo-
hyperbolic Gauss map is of 1-type.

(ii) If M is the complex circle of radius k (Re(k) = —1, k # —1), then the pseudo-
hyperbolic Gauss map is of infinite type.

(iii) M s an open part of a non-flat B-scroll if and only if the pseudo-hyperbolic
Gauss map is of null 2-type.

(iv) If M is a flat B-scroll, then the pseudo-hyperbolic Gauss map is of infinite type.

3.2 Finite typeness of pseudo-hyperbolic
Gauss map

Definition 3.2.1. Let ¢ : M; — H™ ' C E™ (resp. ¢ : M; — S™ ' C E™) be a
smooth map. Then ¢ is said to be of finite type in H™ ' (resp. in S™~!) if ¢ has the
following spectral decomposition:

O=0¢1+ 2+ + Oy,

where ¢; : M; — E’s are non-constant map such that A¢; = \;¢; with \; € R,
1 =1,2,..., k. If ¢ has this spectral decomposition and \;’s are mutually distinct
constant, then the map ¢ is said to be of k-type, and when one of \;’s is equal to
zero, the map ¢ is said to be of null k-type.

For a map of finite type, the following fact holds.

Lemma 3.2.1. Let ¢ : M; — H™ ' or S™! be a smooth map. If A’¢ = 0, then
A¢ =0 or ¢ is of infinite type.

Proof. Assume that ¢ is of finite type and ¢ has the following spectral decomposition:
O =0¢1+ Pa+ -+ ¢p with Ag; = N\;o; for \; e Rand i = 1,2,...,k. Then we have

0=A% =\ + -+ \igy.
Therefore we have k = 1 and A\; = 0, that is, A¢ = 0. O]

Let G(n+ 1,m) be the Grassmannian manifold consisting of (n + 1)-dimensional
oriented non-degenerate subspaces of E", and let G(n + 1,m);,; be the submanifold
of G(n + 1,m) consisting of (n + 1)-dimensional oriented non-degenerate subspaces
of index t + 1 of E™. Let (é1,...,€,) and (€1, ...,€,) be two orthonormal frames of

15



n+1EYn

m ~ ~ ~ ~ .
E7. Let €, A--- A€, , and €; A---Aej, , betwo vectors in /\ ", Define an

indefinite inner product ((,)) on AT E” by

<<€“ /\.../\gin+1 ) /e\j1 /\"'/\/éjn+1>> = det (<,€V%z’/6\1k>)v (lvk = 17"'7n+1)'

Therefore, we may identify A m with the pseudo-Euclidean space Ef]V for some

positive integer ¢, where N = (). The Grassmannian manifold G(n + 1,m).

n+1
can be imbedded into a pseudo-Euclidean space /\”Jrl E ~ Eév by assigning II €
G(n+1,m);1 toeg A--- ANéyr1 , where (€1,...,€,41) is an orthonormal basis of I

compatible with the orientation of II.
Let x : My < H™ ' C E™ be an isometric immersion. For the immersion x, we
define a map v : My — G(n + 1,m);11 by

v(p) = x(p) Axu(e)) Axu(€g) A--- Axu(er)  (p € My,

where (e}, ..., eP) is an orthonormal frame of T, M, compatible with the orientation
of M;. The map v is called the pseudo-hyperbolic Gauss map of x. In the sequel, we
rewrite x,(e;) by ;.

Let (e1,...,e,) be an local orthonormal frame field of T'M; compatible with the
orientation of M; and (e,41, ..., €,) an local orthonormal frame field of T+ M, defined
an open set U of M, respectively.

The first derivative of the pseudo-hyperbolic Gauss map v is given by

n

(3.1) Z Z S X A LA A e Aces Aen.

Yegin and Dursun proved the following fact.

Lemma 3.2.2 ([22]). Let M, be an n-dimensional oriented pseudo-Riemannian sub-
manifold of index t of a pseudo-hyperbolic H'~* C EI*,,. Then the Laplacian of the
pseudo-hyperbolic Gauss map v : My — G(n+1,m) C Eév, N = (nTl) for some q is
given by

n
Aﬁ:||fL||217+n]:I/\61/\---/\en—an/\el/\---/\DEkI:I/\---/\en
— S~——

k—th
(3.2)
+Z Z 67»5stkx/\el/\ AN eT AN e; N--Ney,
i,k=1r,s=n+1 ]fﬁz k:ﬁz

J;Ak r<s
where R”,, = RP(ej, ex; e, e5)
sjk jr Cky Cry,Cs)-

In case of n = m — 2, Yegin and Dursun have the following fact.

16



Lemma 3.2.3 ([22]). For an oriented pseudo-Riemannian hypersurface M, with in-
dex t of HI'"] C Er2 we have

(33) A(€n+1/\€1/\62/\..-/\en):—n’}—lﬂ_nen+1/\el/\€2/\.../\en

where H is the mean curvature M, in H’,}f%, that is, H = e, 1Heny.

Lemma 3.2.4. If there exists a polynomial P(t) = (t — M\1)(t — A2) with mutually
distinct roots A1, Ao € R such that P(A)v = 0, then v is of at most 2-type or infinite

type.

Proof. Assume that v is of finite type and it has the following spectral decomposition;
v=105 + -+ 05, with Avg = A5, (1 <@ < k). Then we have

0= P(A)ir = P(A)(By, + -+ 3,

1

I
—
—~
>
|
>~
e
S~—
—~
>
|
>~
S
N~—
[
>

Thus, we have (A; — ) (A — Ag) = 0 (1 < i < k). Hence, we have A; = A or Ay for
all 7, that is, 7 is of at most 2-type. Hence the statement of this lemma follows. [

3.3 The proof of Theorem 3.3

Let C"*! be the (n + 1)-dimensional complex vector space which is identified with
R?*"*2. Define a non-degenerate symmetric bilinear form ( , ) of the C"*!(= R*"*2)
by

n+1
(3.4) (z,w) = Re (Z ziwi> :

where z = (21,...,2,11) and w = (wy,...,wyy1) € C'1. Note that (z,2) =

Sta? = S y? when 2 = (21 4+ V1Y, oo, Tt + V= 1Yns) (Toy € R, i =
1,...,n+1). Let g be a pseudo-Euclidean metric of index n + 1 on the (2n + 2)-
dimensional affine space R*"*?(= C"*') induced from ( , ).

Definition 3.3.1. Fix a non-zero complex number x. We put

n+1
Sg(ﬂ) = {(217227 o 7Zn+1> - (Cn+1 = ]E?L:L:ii2 ’ ZZZQ = K}},
i=1

that is, S0 (22 — y?) = Re(k) and 23" 2y, = Im(k) for z = 2; + V=1
(z;,y; € R). This submanifold Sg(k) is called a complex sphere of radius k. In
particular, when n = 1, it is called a complex circle of radius k.
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Remark 3.3.1.
St (Re(k))  (if Re(k) > 0)
St(k) C
H2"! (Re(k)) (if Re(r) <0)
The complex circle S¢(k) C H? is parameterized as x(z) = /k(cos z,sin z) (z €

C).

Proof of (i) and (i) of Theorem 3.3. Let M be the complex circle of radius « in Hj.
Then, M is parameterized as

x(2) = Vk(cos z,sinz) (2 € C),

where /k is one (with smaller argument) of squared roots of k. Note that M is
included by H? because of Re(k) = —1. For the convenience, we put \/k = d;++v/—1ds
and z = x + v/—1y. By simple calculations, we have

(Xpy Xg) = —1,  (Xp,Xy) = —2d1dy,  (x,,%,) = 1.

Also, we can show that the unit normal vector field N of M in H3 is given by
N = (dy + v/—1d;)(cos z,sin z). With respect to the frame field (x,,x,), the shape
operator Ay in the direction N is expressed as

a —f
w=(53)

where o = —2dydy/(d? + d3) and 8 = 1/(d} + d3). Put e; := X, €3 := x, — (X,, €1)€1
and ey := é5/|€s|. Then (e, ey) forms an orthonormal tangent frame field on M.
Note that {ej,e;) = —1, (ez,€9) = 1 and |éx|? = 1 + 4d3d3. With respect to (ey, e2),
the shape operator Ay is expressed as

_ 0 [éfB
Ay = ( —|&5|B 22a )

Thus, by remarking a = —2d,dy and df — d3 = —1, we obtain H = a and ||h|]> =
2(a? — 3?), where H and h denote the mean curvature and the second fundamental
form of M in H3. Hence, M is flat by (2.12). By (3.2) and (3.3), we obtain

(3.5) Av =2(a® — B2 +2aN Aej A ey,

(3.6) A0 =4((a? - %) — aP)0 +4a(a® — B2 — 1)N Aep Aes.
Hence,

(3.7) A*D —2(a® — 32— 1)Av +45%0 = 0.

Therefore 7 is either of finite type with type number £ < 2 or of infinite type by
Lemma 3.2.4.
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If kK = —1, then we have d; = 0 and hence oo = 0. Therefore it follows from (3.5)
that Av = —23%0, that is, 7 is of 1-type. If k # —1, then we have a # 0. Hence
it follows from (3.5) that 7 is of not 1-type. Therefore 7 is of 2-type or of infinite
type. Suppose that it is of 2-type, and that 7 has a decomposition 7 = v, + 5 with
ADy = My and Ay = \oily, where A\j, A2 € R are mutually distinct. From (3.5) and
(3.6), 7, and D, can be expressed as

(38) ﬂl =av + bN N (WA €9,
(39) 52 = (1 —a)ﬁ—bN/\el/\eg

for some constants a and b. By substituting (3.8) and (3.9) into (3.5) and (3.6), and
comparing coefficient of 7 and N A e; A eo, we have

()\1 — )\2)& = 2( 2 52) — )\2,
(A1 — A2)b = 20,

3.10

. (X — X)a = 4(a® - ) - da® - X3,
(At = ADb = dafa® — 2 - 1)

Thus, we obtain

(3.11) A —2(a? = B2 = 1)+ 48> =0.

The discriminant of (3.11) is

(@ =B = 1) —4p% = (o® — §7)” -
_ ; 8 6 4 2
(3.12) - @ (16d5 + 165 + 32d] + 16d2)

< 0.

Therefore, there is no Ay € R satisfying (3.11). Thus a contradiction arises. Hence,
v is of infinite type. Conversely, assume that the pseudo-hyperbolic Gauss map is of
1-type. From (3.2), we obtain that ||A||? is constant and H = 0. Hence, the Gaussian
curvature is constant from (2.12). By Fact 3.1, (iii) and (iv) of Theorem 3.3 (which
will be shown in the next section), M is an open part of a complex circle of radius
—1. O

Proof of (iii) and (iv) of Theorem 3.5. Let (A, B, C) be the Cartan frame field along
a null curve ~ in H? given by Definition 2.2.4. Then, the immersion x(s,t) = v(s) +
tB(s) parametrizes the B-scroll over a null curve v. We have

Xs(s,t) = A(s) + t(koC(s) —y(s)) and x(s,t) = B(s),
and hence

(Xo,Xs) = t2(k3 — 1), (X4, %) =—1 and (x;,%x,)=0.
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The unit normal vector field of x is given by N(s,t) = kot B(s) + C(s). With respect
to the frame (xg,Xy), the shape operator Ay in the direction N is expressed as

(3.13) Ay = ( _;1]?8) _(3{2 ) .

When |ks| > 1 and ¢ # 0, an orthonormal frame field (e, e3) on M is given by

XS
ep = —, ey =e€1+ |Xs|X¢-
||
By simple calculations, we have
Anler) = —Ax(xs)
N(€1) = N(Xs
x|
L (—hax, — a(s)x0)
= —R2Xs — R1(S5)X¢
||
L (kabeder + ha(s) i ea - )
= - 2|1Xs|€1 1S €2 — €
|XS| |XS|

k1(s) ki(s)
= —k‘ _— _——
(2+ﬁ%—u>“ Pt

An(e2) = An(er) + <XS7XS>AN(Xt)

]
ki(s) ki(s)
- ey — 2T
ﬂ%—ﬂ“*(Q 2K —1])

Thus, with respect to an orthonormal frame (ey,es), the shape operator Ay is ex-

pressed as
ki1(s) ki1(s)
Ay — —ka + t2\li2 1] t2\li§fl|
N = k1(s) k1(s)

TRRE 1] —hy — 12|k2—1]

and hence we have H = —ky and ||h)|2 = 2k2. When |kp] < 1 and t # 0, we put
e1 = Xo/|%s| and ey = ey — |xs|x¢. Similarly, we have H = —k, and HhH2 = 2k3.
Hence, M is a non-flat B-scroll by (2.12) when k2 # 1 and t # 0. We put e3 := N
and

. 1
(314) V= E(

i 1
(3.15) vy 1= W(

—U+ k2€3 VANCAIAN 62),
k%ﬁ — k2€3 Ner A 62).

It is clear that 7 = 7y + . Using (3.2) and (3.3), we obtain that Ay = 0 and
Ay = 2(k3 — 1)D5. On the other hand, by using (3.1) and (3.3), we have

. ky(s k1(s
61(V) =&1 <—k2+%)X/\63/\62 —61752“;%#_)1)X/\61/\63,
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er(es Nep Aey) =er1es AX A ey,

and hence i (s)
~ € S
el(Vl):m(){/\e?)/\eg_)(/\el/\eg)#o.

Therefore 7 is of null 2-type.
When k2 =1 or ¢ = 0, an orthonormal frame field (e, es) on M is given by

1
e = —=(Xs +x¢), €=

V2

By simple calculations, we have

(x5 — X¢).

Sl

An(er) = <—k2 . ’“;S)) e1+ klés)eg,

Ay(en) = —P18) (—k2 + klés)> es.

Thus, with respect to an orthonormal frame (e, es), the shape operator Ay is ex-

pressed as
—ky — k1(s) _ki(s)
_ 2 2
Ay = k1(s) oy 4 )]

2 2

and hence we have H = —k, and ||h||2 = 2k2. Hence M is a flat B-scroll by (2.12).
Using (3.2) and (3.3), we obtain Av = 20—2ksezAej Aey # 0 and A%0 = 0. Therefore
v is of infinite type by Lemma 3.2.1.

Conversely, assume that the pseudo-hyperbolic Gauss map 7 is of null 2-type.
Then, from (3.1), (3.2) and (3.3), we obtain

(3.16) A = ||h||>0 + 2Hes A ey A e,

A% = (||h]2 = 2)A7 + (A([[A]?) — 452 + 2]|||2) 7
2

2
—2) e (AP x Aes Aoy =2 eje(|h]*)hix Aer Aes.
j=1

j=1

(3.17)

Since  is of null 2-type, we can put U = 14 + 1 with Av; = 0 and Ay = Aoy
(Ao # 0), where 7y is non-constant. Then we have A*Z = \Ap. This together
with (3.17) implies e;([|A]|?) = 0 (i.e. ||A]|? is constant) and Xy = ||2]|? — 2. Hence
the Gaussian curvature is constant, that is, A(||2]|2) = 0. This together with (3.17)
implies that ||2]|2 = 2. Hence, from (2.12), we have

S = 2441 — ||h||* = =2+ ||h]|> = Ay #£ 0.

By Fact 3.1, (i) and (ii) of Theorem 3.3, M is an open part of a non-flat B-scroll. [
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3.4 Parallel surfaces of B-scroll and complex circle

In this section, we consider the parallel surface of a complex circle and a B-scroll in
3. We study the behavior of the type numbers of the pseudo-hyperbolic Gauss map
along the parallel family of those.

Definition 3.4.1. Let M be a pseudo-Riemannian manifold and M a pseudo-Rieman-
nian hypersurface of M with unit normal vector field N. Let o n, denote the geodesic
in M with dy,(0) = N, at p € M. Then we know that, for u € R sufficiently close to
0, the map x" : M — M defined by x"(p) := expy, ulN, = ay,(u) is an immersion,
where exp,,) denotes the exponential map of M at x(p). We denote the image of
the immersion x by M,. Then, M, is called the parallel surface of M at distance u.

« N,

x"(M)

aNp/

Figure 3.1: parallel surface

Example 3.4.1. Let x : M < S} (C E!*?) be a Lorentzian hypersurface and N
its unit normal vector field. Then x* is given by x"(p) = (cosu)x(p) + (sinu)N,
(pe M).

Example 3.4.2. Let x : M < H}"(C E5*?) be a Lorentzian hypersurface and N
its unit normal vector field. Then x* is given by x"(p) = (coshu)x(p) + (sinh u)N,
(pe M).

We prove the following two theorem for the pseudo-hyperbolic Gauss map of the
parallel family of a complex circle and a B-scroll.

Theorem 3.4. Let M be a complex circle in H3, and let u be any real number. The
parallel surface M™ of M at distance u is a complex circle and the radius k* of the
complez circle M" moves over the whole of {z € C|Re(z) = —1} when u moves
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over R. Hence the only parallel surface of M has the pseudo-hyperbolic Gauss map
of 1-type and other parallel surfaces of M have the pseudo-hyperbolic Gauss map of
infinite type.

Proof. Let M be a complex circle in H? and & the radius of M. Let \/k = d; + V—1d,
for di,dy € R. Since M C H3, we have Re(k) = d3 — d3 = —1. We remember that a
unit normal vector field NV of M is given by N(2) = (dy++/—1d;)(cos 2, sin z). Hence
the parallel surface M" of M at distance u is parameterized by

x"(z) = coshu - (dy + vV —1dg)(cos z,sin z) + sinh u - (dy + v/ —1d;)(cos z, sin 2)
= K"(cos z,sin z),
where k" is the complex number satisfying

V& = (dy coshu + dy sinhu) + v/ —1(dy coshu + d; sinh ).

Thus, M™" is the complex circle of radius k". It is easy to show that k" moves over the
whole of {z € C|Re(z) = —1} when u moves over (—oo,00). There the statement of
Theorem 3.4 follows from (i) and (ii) of Theorem 3.3. O

Theorem 3.5. Let M be a B-scroll in H3 and u € R sufficiently close to 0. If M
is flat (resp. non-flat), then the parallel surface M, also is a flat (resp. non-flat)
B-scroll. Hence the type numbers of the pseudo-hyperbolic Gauss maps of the parallel
surfaces of a B-scroll are equal to that of the original B-scroll.

Proof. We consider a B-scroll M in H parameterized as x(s,t) = v(s)+tB(s). Since
N(s,t) = kot B(s) + C(s), the parallel surface M* of M is parameterized as

x"(s,t) = r(u)tB(s) + (sinhu)C(s) + (coshu)y(s),

where we set 7(u) = coshu + ko sinh u. By simple calculations, we have

6;‘: — r(u)A(s) + k1 (s)(sinh w) B(s) + r{(w)t(—(s) + k2C(s)),
ox"
< B,

and hence
ox" ox"\ . 9,9
<g, E> = r(u)(—2kysinh u + r(u)t*(k; — 1)),

ox" Ox"\ 9
(3.18) <g, E> = —r(u)7,
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If 7(u) = 0, then x" is not immersion. Hence, we need to assume that

arctanh;—; <u<oo if  ky>1,
(3.19) —00 < U < arctanh;—; if ko < —1,
—00 < U < 00 if ko < 1.

The unit normal vector field N* of M* is given by

kg +r(u)sinhu
N coshu

N"(s,t) tB(s) + (coshu)C(s) + (sinhu)vy(s).

Hence the shape operator Ay« in the direction N" is expressed with respect to the
usual frame (0x"/0s,0x"/0t) as

Ao — —Q 0
v\ k)

where a = (ko + r(u) sinhu)/(r(u) coshu). When 0x"/3ds is non-null, we put

. 1 oox* 1 5, OX" ox" ox"\ ox“
o g T e (T ey T\ B s ) o )

Bs

We have |ép] = r(u)?. We put ey := (1/r(u)?)éy. Then, with respect to an orthonor-
mal frame (e, €2), the shape operator Ayw is expressed as

(a8 P
ave= (75005,

where 8 = ki(s)/(r(u)(—2kgsinhu + 7(u)t*(k3 — 1)). Thus, the mean curvature
H, = —a and ||h,|* = 222
When 0x"/0s is null, an orthonormal frame field (e, ez) on M, is given by

o 1 (8X“+8x“) o — 1 (8}(“ _8X“)
YT V2ry \as ot ) T \ruy \ s ot )

With respect to (eq, ez2), the shape operator Ay, is expressed as

B —Of—ﬁ/ _ﬁl
AN“—< 6/ —Oé—f—ﬁ,)’

where 8/ = k(s)/2r(u)®. Thus, the mean curvature H, = —a and ||h,||> = 202.
In both cases, it follows that M, has constant Gaussian curvature. Hence, M, is a
B-scroll or a complex circle by Fact 3.1. By Theorem 3.4, M, is a B-scroll. By (2.12),
M, is flat if a® = 1 and M, is non-flat if a? # 1.

Assume that M, is flat for some u # 0. Then we have a? = 1 and hence
r(u)(—sinhu £ coshu) = ko. From this relation, we have ky = £1. Hence we
obtain the second-half of statement of this theorem. O
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Remark 3.4.1. We put

Uy 1= { > 1 (ks 2 —1) and
(3.20) arctanh(7) Ek‘g < —1)

U== arctanh(;—;) (ko > 1).
If uy < oo (resp. u— > —o0), then M,  (resp. M,_) is a focal submanifold of M by
(3.18).

Remark 3.4.2. In S3, we can derive the following fact similar to Theorem 3.5 and
Remark 3.4.1. We put

. . | arctan o (ke <0) and
' D (k2 <0)
- | arctan 7+ (k2 > 0)
M, and M,_ are a focal submanifold of M.

geodesic /

in the case of ky < —1

Figure 3.2: focal submanifold of B-scroll

3.5 Generalized umbilical hypersurfaces in S|t
and H}t!

In this section, we determined the type number of the pseudo-hyperbolic Gauss map
of two hypersurfaces which are natural generalizations of B-scrolls in H? ™ and S7*!
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given by [1].

Definition 3.5.1 ([18]). Let M{* be an n-dimensional Lorentzian hypersurface in (n+
1)-dimensional Lorentzian manifold ]\;[1”“, and we assume that the shape operator of
M7 is not diagonalizable. If the shape operator has the only non-zero real eigenvalue,
then M7 is called the generalized umbilical hypersurface.

Remark 3.5.1. Let M7 be a generalized umbilical hypersurface in S or Hf™' and H
the mean curvature vector field of M in S"™ or H} . Then M} satisfies AH = \H
for a real constant A (see [1]).

Let (V,(,)) be a Lorentzian space, that is, a semi-Euclidean space with index 1.
If A is a self-adjoint symmetric linear operator on V, A can be put into one of the
following four forms [19];

Qo 0
ap 0 1 ap
() - : (IT) a1 ,
0 an, =
Qp—2
ao 0 0
0 ao 1 jﬁ; bO
-1 0 ao 0 ‘o a
(I11) o . (IV) | ,
Ap—2

where by # 0. The eigenvalues of (IV) are complex, while those of (I), (II) and (III)
are real. A is represented with respect to an orthonormal basis in the case (I) and
(IV) and with a pseudo-orthonormal basis in the case (II) and (III), respectively.
Recalling (3.13), the shape operator of the B-scroll in S? or HY is (I1).

L. J. Alias, A. Ferrdndez and P. Lucas [1] gave some examples of generalized
umbilical hypersurfaces whose shape operators are (IT) and (II1) satisfying AH = A\H
for a real constant A. In this paper, we consider two hypersurfaces given in [1] whose
shape operators are (II). First, we describe the construction of a frame field along a
null curve v in a Lorentzian manifold, and its existence and uniqueness.

Next proposition is about the frame field along a null curve in a Lorentzian mani-
fold which is constructed by the same way as the Frenet frame field. E. Cartan proved
that the existence and uniqueness of the Frenet type frame field along a null curve
of E?, which is called a Cartan frame field. Later, K. L. Duggal and A. Bejancu [10]
extended it to a null curve in a general Lorentzian manifold.

Moreover, D. H. Jin [13] simplified their equations for the Frenet frame field by
taking a special parameter. The following proposition is already proved by their
way. We remark that the proof is more direct and plainer and we proved it without
assuming that a parameter of a null curve is specific.
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Proposition 3.5.1. Let v be a null curve of order d > 3 in an n-dimensional
Lorentzian manifold (M, {, ), V). Then, there is a frame field (A, B,C, Zy, ..., Z;_3)
along v satisfying

AA)=(B,B)=0, (A B)=-1,

AC)=(B,C)=0, (C,C)=1,
A

(3:22) Z) = (B, Z) = (C.Z) =,
Zi, Zj) = i
and
( ¥=A4,
VoA =k,

V;iC = kyA+ ki B,
V4B = kyC + ks Zy,
(3.23) V2 = ksA + kyZs,
ViZy = —ksZy + k5Zs,

ViZiy=—kaoZqgs+ka1243,
\ Vs5Zi3=—kq 1244,
where k; (i =1,...,d—1) are positive-valued functions.

Definition 3.5.2. This frame field (A, B,C, Z, ..., Z4_3) is called the Cartan frame
field along ~.

We remark that our definition of the Cartan frame field along ~(s) is slightly dif-
ferent from the definition in the paper of A. Ferrandez, A. Giménez and P. Lucas [12]
since their definition is applied only to the case where a null curve ~ is parametrized
by a pseudo-arc parameter, that is, v satisfies (V;7, V) = 1.

A null curve in a Lorentzian manifold M equipped with the Cartan frame field is
called the Cartan curve. The next proposition ensures the uniqueness and existence
of the Cartan curve for any non-zero functions. It is proved in [12], [10] and [11] and
a simple proof is also found in [17].

Proof. First we show that VA is non-null. Suppose that V;A is null. Since v is of
order d(> 3), A and V;A are linearly independent. Denote by W; the 2-dimensional
subspace spanned by A and V;A. Also we have

1
Let (e = A,eo = V;A,e3,...,¢,) be a frame field along v(s). Then we have

0 0 %

((eive))=| VO
ko k

27



This contradicts the fact that (,) is Lorentzian. Therefore V;A is non-null.

We put by = /[(V54,V;A4)|, C = (1/k)V4A and ¢ := (C,C). We have

1

" V+(Vsy) € Span{y, V44, V4 (V59)}.

L\
1

Also we have (V,C,C) =0 and (A4, C) =0, hence

(3.25) (V4C, A) = —(C,954) = —ky(C,C) (£0).

Let (61 = C,éy = A, é3,...,6,) be a frame field along v such that (és,...,¢é,) is a
frame field of Span{C}*. Then we have

ec 00 0
0 0
((eie)) = | Y
; *
0
Therefore we have e = 1 and (V;C, A) = —Fk; because (,) is Lorentzian. Since  is

of order d(> 3), we have dim(Span{A, V;C}) = 2. From these facts, it follows that
Span{A, V;C'} is a 2-dimensional Lorentzian space. There is a unique null vector
B € Span{ A, V,C} such that (A, B) = —1. It can be expressed as V;C = aA + bB
for some functions a and b since V;,C € Span{A, B}. We have b = k; by (3.25). We
set ky := a. Put W, = Span{A, B, C}*, which is an (n — 3)-dimensional Euclidean
space. We put R

ViB=aA+bB+cC+7Z (ZeW,).

We have
—a=(V:B,B) =0,

¢=(VyB,C) = —(B,ViC) = ks.
If d = 3, then we have Z = 0. In the sequel, we consider the case of d > 4. We put

ks = |Z| and Z; = Z/|Z|. Then V5B can be expressed as V4B = koC' + ksZ;. We
put

>

ViZ) = aA+bB +¢C+ 27, + Z,
where Z € Span{A, B, C, Z,}*. Then we have

—b=(VsZ1,A) = —(Z,,k,C) = 0,
—a=(V521,B) = —(Z1,koC + k3 Zy) = —ks,
= (Va,Zl,C;') = (Z1,keA+ k1 B) =0,

(
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If d =4, then we have Z = 0. In the sequel, we consider the case of d > 5. Then
we have Z # 0. We put ky = |Z| and Zy, = Z/|Z|. Then V,Z; can expressed as
VﬁZl = k3A + /{3422. We put

ViZy=aA+bB +¢C+ 57, + 575 + Z,

where Z € Span{A, B,C, 7, Zy}t. Then we have @ = b=¢=2 =0and 3 = —k,.
If d =5, then we have Z = 0. In the sequel, we consider the case of d > 6. Then
we have Z # 0. We put ks = |Z] and Z3 = Z/|Z|. Then V.Z, is expressed as

ViZy = —ksZy + ks Z3. By repeating the same discussion, we can derive the relations
in Lemma 3.5.1. [
Proposition 3.5.2. Let ky,..., kg1 be differentiable non-zero functions on (sg —

g,80+¢) for some smalle > 0. Let py be a point in EY and (A%, B®,C° 79, ..., Z9 )
pseudo-orthonormal vectors in EY at pg. Then, there is a unique Cartan curve 7y of
order d in E} such that v(so) = po, and its Cartan frame field (A, B,C,Zy, ..., Zq_3)
satisfies

A(sg) = A°, B(so) = B°, C(s0) = C°, Zi(s0) = 27, ..., Za—3(s0) = Zy_s.

Proof. Weput V := (A+B)/v2and W := (A—B)/+/2. Let F be a matrix consisting
column vector fields V,W,C, Zy,..., Z4 3, thatis F = (VW C Zy --- Z;_3). We put

0 0 %(kl + ky)
X = 0 0 —%(kl — ko)
\/Li(kl + ]{?2) %(lﬁ — k?Q) 0
and
0 —ky
ky O
Y = ,
0 —kigo 0
ka2 0 —ka—1
0 ki1 0
and we define a coefficient matrix K by
\/iikg 0 - 0
1
X 751@3 0o - 0
0o 0 - 0
T T
K = %kg _Tik?’ 0
0 0 0
. . . Y
0 0 0
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Then, by (3.23), we have
(3.26) F =FK.

If an initial value is given, then the solution is unique. We prove that the solution
satisfies (3.22). We put E := diag(—1,1,...,1). Let ® be a solution of (3.26) with
E as the initial value. It is easy to check that the solution is expressed as F' = FOE®
for any initial value F° and EK is skew-symmetric. Hence
d -1 -1

E(EF E)(s)=—-EK(s)F(s)E

=(EK(s))F~'(s)E

='K(s)(EF'E)(s).

By
t(I)(S(]) = tE = E,
(E®'E)(s0) = E,

we obtain 'F' = EF~'E. Hence, the columns of F form an orthonormal basis for R}
and V is timelike. Thus F' satisfies (3.22). When we put ~y f A(t)dt, ~ is null
curve satisfying (3.22) and (3.23).

Finally, we prove the uniqueness of v with Cartan frame field F'. Let v and 7 be
Cartan curves. Assume that k; of v in (3.23) coincides with that of 4 for all 4. Let F
and F be pseudo-orthogonal matrices defined by F' = VWCZy - Zy 3) for 7 and
F=(VWCZ - Zy 3) for 4, respectively. We put F° := F(sq) and FO = F(sp).
When we put L := F(F°)~!, by the uniqueness of the solution of ODE (3.26) with
the same initial value, we have F = LF. In particular, A = LA because V = LV
and W = LW. Put b:= ~(so) — L7(so). Then we have

(s) = 2(su) + [ Ayt

S0
= LA(sp) +b+/ LA(t)dt
S0
= LA(s) +0.
Since L is a pseudo-orthogonal matrix, v and 4 are congruent. O

If M in Proposition 3.5.1 is Hf or S}, we can rewrite (3.23) by replacing V with
the standard connection V of the ambient space Ej ™ or Ef*!, and one can easily see
that the following corollary follows.

Corollary 3.5.1. Let v be a null curve v of order d > 3 in H} (resp. SV) and
(A,B,C,Zy,...,Zq_3) the Cartan frame field along v. Then, with respect to the
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standard connection V of Ei*Y (resp. B, the following relations hold;
(VA =§kC,

ViC = koA + k1B,

V5B = kyC + ks Zy + e,

Vi Zy = ksA + ks Zs,

@"yZi = —kivoZi1+ kipsZin (2<1<d—4),
\ViZa-3 = —ka-1Za-a,
where e = —1 (resp. € = +1).

Next, we determine the type number of the pseudo-hyperbolic Gauss map of hy-
persurfaces given by [1] whose shape operator is (II). For simplicity, we put x(s, ¢, z) =
X(s,t, 21,20, -, Zn—2), |2 = 21 + 25+ - -+ 22_, and X, = 9x/Ds (resp. x, and x.,).
Proposition 3.5.3. Let (A, B,C,Zy,...,Z,_2) be the Cartan frame field of a null
curve v C Hy . Assume that ki(s) # 0, k3 = 1 and k; are non-zero constants for

i=3,...,n—2. The immersion x : I x R x R"2 — H"! Cc E5*? given by
|2 D
(3.27) gm@=1+7~mww@+2@m¢_7ﬂ@
j=1
parametrizes an oriented Lorentzian hypersurface of H™Y, where z = (21,..., 2q_2) €

R™!. Denote by M} the image of x. Then, the pseudo-hyperbolic Gauss map of M}
18 infinite type.

Proof. By a straightforward computation, we have

 ki(s)kal2)?

x5 = A(s) 5

B(s) 4 katC(s) + kst Z1(s) + ”i 2 Z;(s) — ty(s),
X = B(s),
Xz, = 2i7Y(s) + Zi(s) — ka2:C(s).

The unit normal vector field N of the Lorentzian hypersurface M7 in H™ is given
by

n—2 2 2
z ko2
N(s,t,2) = kot B(s) + ko szZj(s) + (1 — %) C(s)+ %7(3),
j=1
where z = (z1, ..., 2,—2). With respect to (xs, X¢, Xz, .., X, ,), the shape operator

Ap is expressed as
—ko 0
—ki(s) —ko O

0
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By Corollary 3.5.1, we obtain

<Zl7 Zl> — ki?
<Zz >—k12+2+k1+3 (2<i<n-—3),
(3.29) <Zn ) k2,
<Zz > (i#j or 1#j+2),
<Z7,7 z+2> = —kz’+3/fz‘+4 (1<i<n-—4)
and
n—2 ] ) n—3
Z 22)(Zi, Zy) = kizi + Z(k12+2 + k)2l + ks
ij=1 i=2
+ 2(—kaksz123 — -+ — kp_1kn2n_a2n—2)
n—3
= kizi +kizh g+ Y (Kiyozi — kirszin).
i=1
Hence
n—2 .
(X, Xs) = —kiko|2|*(A, B) + K3t*(C, C) + K3t*(Z1, Z0) + Y %212, Z;)
ij=1
n—2 ) )
+ t2<’y, ’)/> + 2]€3t<Zl, Z Zij) — k1k2|2|2<B7 2’1Z1>
j=1
n—3
(3.30) = kiko|2[*(1+ ks21) + K312 + K327 + ) (Kiyozi — kipazin)?
=1
+ kn n—3 — 2k3]€422t,
n—2
(Xs,Xz,) = katdr; + Z 2(Z, Z;)
j=1
/{th — k422 (Z = ].)
=< kizazic1 — kipszin (2<i<n-3) ,
kpzn—3 (t=n-—2)
<X8axt> - _(]- + |Z|2 + k321), <Xtaxt> - <Xtaxzi> - 07 <Xzi7XZj> = 5%]
We put ¢; =x,, (1 <j<n-—2)and
n—2
(3.31) €n—1 = Xg — Z<XS, e;)e;.
j=1
If €,,_1 is non-null, we put
1 . 1 ~ -
(332> €n—1 = 77— 6n—1, €n = ~—(<X87Xt>en71 - <€n71> en71>xt>
|€n1] |€n1]
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and e, := €,/(Xs,x;). With respect to the orthonormal frame field (e, ...,e,), the
shape operator Ay is expressed as

— ko

0

AN - —]{;2 ’
O —ky — « —o
o —ks + «x

where a = &,,_1k1]€,|/|€n_1]?. If €,_1 is null, we put

(a4 %)
Cn-1'= —(— - 1\En-1 T X¢),
2(6n-1,%y)2
(3.33) v2(e . xi)
€p = ﬁ(én—l — Xt).
\/§<€n—17 Xt>§
With the pseudo-orthonormal frame field (ey,...,e,), the shape operator Ay is ex-
pressed as
— ks O
AN = _k2 )
O —ko — « -
o —ko + «x
where o« = —ky(s)/2. In both cases, |12 = n and the mean curvature H = —ky. By
(2.12), M} is scalar flat. Hence, Av = nv —2koN Aep Aey # 0 and A?0 = 0 by (3.2)
and (3.3). Therefore, v is of infinite type by Lemma 3.2.1. O

Proposition 3.5.4. Let (A, B,C,Zy,...,Z,_2) be the Cartan frame field of a null
curvey C Hyt. Assume that ki (s) # 0 and that k3 # 1 and k; are non-zero constants
fori=3,4,...,n —2. Define the immersion x : [ x R x R*~2 — H'"™' C Ei*? by

k2 — ko(1 —
(3.34) x(s,t,2) = il—_i_f%)v +tB(s) + Z 2;Z;(s ZET][]S;))C(S),

where f(2) = \/1 — (=1+ k3)|z|2. Then, it parametrizes a Lorentzian hypersurface
M7 of H"+1 mn a nezghborhood of the origin. Then, the pseudo-hyperbolic Gauss map
of M7 is null 2-type.

Proof. The unit normal vector field N of the Lorentzian hypersurface M7 in H ™ is
given by

n—2
N(s,t,z) = kot B(s) + ks ZZij(S) +

j=1

—1+k2f(2)
—1+k3

ka(1— f(2))

C(s) + s

v(s).
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With respect to (Xs,X¢, Xz, - - -, X5, _,), the shape operator Ay derived from N is
the same form as (3.28).

We prove that x,, is spacelike for any ¢+ = 1,2,...,n — 2. By a straightforward
computation, we have

2

“i 2
(3.35) (X5 Xz;) = f(z)Q(_l + k3) + 1.
In the case where —1 + k3 > 0, x,, is spacelike. In the case where —1 + k3 < 0, we
obtain

z
W<_1 +k3)+1
ks 2

> (—1+ k) +1

2
<Xzz'> Xzz'> = -

(3.36) f(2)

B 1

1= (=1+ k)22

>0
since f(z) > 0. Thus, x,, is spacelike in both cases. We put e; = x,,, € =
xj — S0 (x5, e)ex and e == &;/|¢;] for 2 < j < n — 2. Then, e; is spacelike. We

obtain Ay(e;) = —kae; by a straightforward computation. We put

n—2

€n_1 = X5 — Z<Xs, e;)e;.

i=1

If €, is non-null, we define e,,_1, €, and e, by (3.31) and (3.32), respectively. With
respect to the orthonormal frame field (e, .. ., e,), the shape operator Ay is expressed
as

—ky

0

(337) AN = —/{2 )
O —ko — « —o
o —ko +
where o = —ky(8)|€n|/|€n-1]|. If €,—1 is null, we define e,_; and e, by (3.33). With

respect to the pseudo-orthonormal frame field (eq,...,e,), the shape operator Ay is
expressed as

— ko

(3.38) Ay = ke :

O —ky — « —
o —ko +
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where o = —ky(s)/2. In both cases, ||h]|2 = nkZ, the mean curvature H = —k and
the scalar curvature S = n(n — 1)(k3 — 1) # 0. Hence,

(3.39) AU = nk:%z? —nksepir ANep Aes A A ey,
' A0 = n?k3 (k3 — 1)0 — nky(k3 — Depsi Aegr Aea A+ A ey,

where e,.1 = N. We put

1 ~
V= 2—(—V + kf2€n+1 A €1 VAN €9 VANCEIVAY en),
21
. 1 .
Uy = m(kﬁgy - k26n+1 AN WA WANERIA Bn).
s —

It is clear that 7 = Dy + . Using (3.2) and (3.3) we obtain that Ay = 0 and
Ay = n(k3 — 1)1. On the other hand, by using (3.1) and (3.3), we have

en1(V) =en_1(—ka+ B)xANer A= NepgNenr1 Aey,

(340) —en_1fxXANeg AN ANepoANep_1 A epiq
and
(3.41) en1(enpr Ner A - Ney) =cienri ANer A ANey o ANXA ey,
where 8 = k1(s)|én|/|€n—1| if €,_1 is non-null or 5 = —k;(s)/2 if €,_; is null. Hence,
en_1(th) = Z;__lﬁl(x/\el AN NegoNeppr Nep —XANeg A ANepg Aey)
n
by (3.40) and (3.41). Therefore 7 is of null 2-type. O

Remark 3.5.2. Submanifolds parametrized by x in (3.27) and (3.34) are Lorentzian
hypersurfaces of H'"! satisfying that each shape operator is non-diagonalizable ev-
erywhere and the mean and scalar curvature are constants. In particular, the mean
curvature H is —ks(3# 0) and the minimal polynomial P(z) of the shape operator is

(ZIZ’ + k2)2.

Remark 3.5.3. There is a relation between Example 3.5.3 and 3.5.4. One can easily
check that the parametrization x defined by (3.34) uniformly converges in C* to x
defined by (3.27) on a fixed neighborhood of z = 0 as k3 — 1.
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Chapter 4

Generalized umbilical
hypersurfaces in 872”1 and H721+1

The purpose of this chapter is to find some pseudo-Riemannian hypersurfaces in S5
and H;H similar to generalized umbilical hypersurfaces in Chapter 3.5. First, we
describe the construction of a frame field along a null curve v in a pseudo-Riemannian
manifold with index 2, and its existence and uniqueness. Second, we construct a non-
degenerate hypersurface in Sy and Hy ' satisfying following conditions. The mean
curvature H and scalar curvature are constant and H # 0, and the shape operator
is non-diagonalizable.

Let V be an n-dimensional vector space with index 2 and A a self-adjoint sym-
metric linear operator on V. Put G := ((v;, v;));; for a basis (vy,...,v,) of V, where
(, ) is a scalar product on V. In the case of index 1, the form A is one of the only
four forms in Section 3.5, however the forms A can take are various when the index
is 2 (see [19]). Thus, we just introduce some of forms needed in this paper;

0 -1

A0
-1 0 L

. A
0 -1 A0
-1 0 1A

0 -1 A0
II) G = -1 0 , A= 1A :
1 A
1 A

where A is a real number. The matrix G defined by (, ) with respect to the frame
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field (A, B,C,Zy,...,Z4 3) in Proposition 4.1.1 is of the form (I). In the following
Proposition 4.1.1, we will consider a null curve « satisfying that V.7 is non-null. On
the other hand, the Frenet type frame field proven by M. Sakaki, A. Ucum and K.
Ilarslan [21] is of the form (II). In that paper, they assume that V7 is null for a null
curve . A null curve v in E3 is called a bi-null curve if V.7 is null. As we described
in Chapter 4.1, a frame field in Proposition 4.1.1 and the existence and uniqueness
are already proved by K. L. Duggal, A. Bejancu and D. H. Jin (see [10] and [11]).
We give another proof of those which is more direct and simple.

4.1 Cartan fame field along a null curves in
a pseudo-Riemannian manifold with index 2

Let (M, (, ), V) be an n-dimensional pseudo-Riemannian manifold with index 2 and
v a null curve of order d > 4 in M. Assume that V. is non-null. Put A = 4 and
ki = /|(V54,V;A)|. We defined a vector field C' by C' = (1/k;)V;A. Note that
(C,C) = £1. Let B be a null vector field along v with (A, B) = —1 and (B, C) = 0.

In this section, we assume the following.

Assumption 4.1. There exists a one parameter family of linearly independent non-
null vectors (Z1, ..., Z4_3) along « such that

(4.1) Y9+ € Span{A, B,C, Zy,...,Z;} forall1<j<d-—3,
(4.2) Span{yW, ... v} = Span{A, B, C, A Zd_g}

and

(4.3) Span{A, B,C} L Span{Zi,..., Zq_3}.

Remark 4.1.1. We remark that a one parameter family of linearly independent vectors
(Zy,...,Z4_s) along 7 satisfying (4.1), (4.2) and (4.3) always exists. However, we
cannot choose all of Zi,. .., Zy 5 which are non-null always. Thus, the nontrivial
point of Assumption 4.1 is what all Zj are non-null.

Proposition 4.1.1. Let v be a null curve of order d > 4 in an n-dimensional pseudo-
Riemannian manifold (M, (, ), V) with index 2. Assume that V7 is non-null. Under
Assumption 4.1, there exists uniquely a frame field (A, B,C,Zy,...,Zq_3) along
satisfying the following conditions;

(A, A) = (B,B) =0, (AB)=1,
(A,C) = (B.C)=0, (C.C)=c0,
(44 (A, Z) = (B, ->=<c,zi>=o
(Zi, Zj) = €6y
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and

( ¥ =A4,

ViA =k C,

V;iC = kyA +ecki B,
VB = eckyC + k3Zy,
(4.5) ) V2 = e1ksA + kyZs,
€9V Zo = —e1kyZy + 3ks Zs,

€d-aV3Zi_s = —€q_ska_oZq_5 + cq_aka_1Z4_3,

\5d73v"yZd73 = —€g_4kq1Z4_4

for some positive-valued functions k; (i = 1,...,d — 1), ec = £1 and ¢; = £1. If
ec = =1 theneg;, =1 foralll < i < d—3 and if ec = 1 then there is a unique
1<j<d—3suchthate; =—1 ande; =1 (i # j).

Proof. We put A :=+. In the case where V;A is timelike, this proposition is proved
by the same way as in the proof of Proposition 3.5.1 since the index of M is 2 (see
[17]). Thus, we prove this proposition in the case where VA is spacelike. Recall that
k1= +/|(V5A4,V;A)| and C = (1/k1)V;A. In this case, e¢ = (C, C) = 1 since V5 A is
spacelike. Then, Span{A, V;C'} is a non-degenerate 2-dimensional Lorentzian space
since (A,V;C) = —k; # 0 and A is null. Therefore, there is a unique null vector
field B in Span{A, V.C} such that (4, B) = —1 and (B,C) = 0. Putting ks =
—(V:C, B), V;C can be written as V,C = ks A+kB. By (C,C) =1, Span{A4, B,C}
is a non-degenerate 3-dimensional Lorentzian space, that is, Span{A, B,C}* is an
(n—3)-dimensional Lorentzian space since M is of index 2. By Assumption 4.1, there
is a vector field Z; € Span{A, B, C}* along ~ satisfying

(4.6) V5B = aA+bB + cC +dZ,

with some functions a, b, ¢ and d. Actually, we have —b = (V;B,A) = 0, —a =
(VsB,B) = 0 and ¢ = (V4B,C) = ky. Thus, (4.6) becomes V:B = ky,C + Z,.
Put kg = ]21] and Z; = (d/kg)Zl. Remark that k3 is a positive function since Z; is
non-null by Assumption 4.1. Then, (4.6) can be rewritten as

VB = kyC + k3 2.
Also, V47 is expressed as
ViZy=d A+ VB +C+d 7 + €7

with some functions a/, b, ¢, d" and €. By a straightforward computation, it can be

rewritten as 3
VﬁZl = €1k3A + G,ZQ,
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where ¢, = (Zy, Z;) and Z:g is a vector field along v in Span{A, B,C, Z;}*. Put
ky = |Z3| and Zy = (€' /k4)Z5. Hence, we have

V;YZl = 81]€3A + ]{Z4Z2

and put eq = (Z, Zs).
Hereafter, we prove inductively that a vector field Z; along ~ satisfies (4.4) and
(4.5) for j = 2,...,d — 4, that is, Z; satisfies the following equation;

(4.7) eiV5Z; = —€j1kjraZi + €kjs i
fOI' ] = 2, ce ,Cl — 4, where €j = <Z], ZJ> =41 and <Zl, Z]> = 8](5”

In the case where j = 2, there is a vector field Z5 in Span{A, B, C, Z,, Z,}* such
that

VZy € Span{A, B,C, Z\, Zo} @ Span{Zs}

since ~ is order d > 3. If Zs is non-null, we put ks = |Zg|, Zy = (1/1{:5)23 and
e = (Z3, Z3). By a straight forward computation, we have

€2VAYZQ = —51/{5421 + €2k5Z3.

Next, we prove that (4.7) holds up for j = [ 4+ 1 if (4.7) holds up for j = [,
where 3 <1 < d—4. We put W(l) = Span{A, B,C, Z,,...,7Z;}. Especially, W(I)
is a non-degenerate vector space. Note that Z; is non-null for all [. Then, there is a
vector field Z,,5 along ~ satisfying that {Zy, ..., Zii1, Zi42} is a linearly independent
family and 3

VﬁZH_l S W(l + 1) S%) Span{Zl+2},

since the order of v is d. If Z,; is non-null, put kjpq = |Zl+2], Ziyo = (1/kl+4)Zl+2
and €140 = (Zj19, Z112). Therefore, we obtain

€141V Ziyr = —€5kip32) + €11 kipaZyio

by a straight computation. In the case where j =d —3, V4 Z;_3 is in W (d — 3) since
v is order d. In the same way, we have

€4-3VyZy_3 = —€q_aka1Z4_4.
Thus, the proof is completed. Il

The frame field (A, B,C, Z1, ..., Z4_3) given by Proposition 4.1.1 is called the
Cartan frame field along . A null curve in a pseudo-Riemannian manifold with
index 2 equipped with the Cartan frame field is called the Cartan curve.

In the case where V.7 is null, a Frenet type frame field along v is called the
bi-null Cartan frame field in [21]. Moreover, a bi-null curve v in E} is called a bi-null
Cartan curve if {¥,...,7™ Y} is linearly independent. Ruled surfaces along bi-null
Cartan curves are studied also in [21].

The next proposition ensures the existence and uniqueness of a Cartan curve for
any non-zero functions.
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Proposition 4.1.2. Fiz s € R. Let ky,..., kg1 be differentiable non-zero func-
tions on (sg — €,80 + €) for some small € > 0. Let py be a point in EY and
(A%, BY,C° 77, ...,Z% ;) pseudo-orthonormal vectors in EY at py. Then, there is
a unique Cartan curve v of order d in EY such that v(so) = po, and its Cartan frame
field (A, B,C, Zy, ..., Zq_3) satisfies

A(So) = AO, B(SQ) = BO, C(So) = CO,

4.8
( ) ZI(SO) = Z?, NN deg(So) = ngg-

Proof. First, we prove the existence of v with a frame field (A, B,C, Zy, ..., Z; 3)
satisfying the condition only (4.5). Let A, B,C, Z1, ..., Z4_3 be vector fields satisfying

( A=kC,

C = koA + ecky B,
B = ecksC + k321,
Z1 = e1ks A + kyZs,

4.9 :
( ) €2Z2 = —81]€4Z1 + Eng,Zg,

Ed—alg-a = —€4-skq—oZq_5 + €q—akq_124_3,

(€d-3Z4—3 = —€q—aka_1Z4_4

with initial condition (4.8). Actually, the existence of such vector fields follows from
the general theory of ODE. Define a null curve v by v(s) := py + f; A(t)dt. Put
V= (A+B)/V2and W := (A — B)/v2. Let F be a matrix consisting of column
vector fields VW, C, Zy,..., Z4 3, thatis, F = (VW CZ; --- Z;_3). We put

0 0 \%(5ck1 + kg)
X = 0 0 \/%(—Eclﬁ + ks)
\%(k’l -+ €Cl€2) \/Lﬁ(kl — Eck2> 0

and

0 —5162]{34

ka 0
Y = ,
0  —e4-4cqg—s5kq—2 0
kq—o 0 —Ed—3Ed—aka—1
0 ka_1 0
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and we define a coefficient matrix K by

1
?5]{73 0 0
X ks 0 0
o 0 --- 0
i i
K = 7§k3 _Tikg 0
0 0 0
. . . Y
0 0 0
Then, (4.9) is equivalent to
(4.10) F =FK.

We remark that the solution of (4.10) is unique for a given initial condition.
Next, we prove that A, B,C, Zy, ..., Z,_3 along « satisfy the condition (4.4). Re-

calling the notation of Proposition 4.1.1, —gjej41 = =1 forall 1 < j < d -3 if
ec =—1. Ife¢ =1, then —¢;_16; = —€;6,.1 = 1 for a unique 1 <7 < d — 3 such that
g;=—land —¢gjej1; = 1for jand j+1 #i. We put £ := diag(—1,1,...,—-1,...,1).

Let @ be the solution of (4.10) with initial value E. Put F" := F(sq). Then, we have
FYE®(sy) = F'EE = F°. Thus, by the uniqueness of the solution of ODE (4.10)
with the same initial value, F' = FCE®. Note that FK is skew-symmetric. Hence,

d%(EF_lE)(s) = —EK(s)F'(s)E
="(EK(s))F~(s)E
='K(s)(EF'E)(s).

By ‘®(sg) = 'E = F and (E® 'E)(sg) = E, we obtain 'F = FF'E, that is, F is
a pseudo-orthogonal matrix. Hence, F' satisfies (4.4) because the columns of F' form
an orthonormal basis for E} and V is timelike. Therefore, a proof of the existence of
Cartan curve v for functions k. ..., kg ; is completed.

Finally, we prove the uniqueness of v with Cartan frame field F'. Let v and ¥ be
Cartan curves. Assume that k; of v in (4.5) coincides with that of 4 for all i. Let F
and F be pseudo-orthogonal matrices defined by F = (VW CZy--- Z4_ 3) for v and
F=(VWCZ - Z; 5) for 7, respectively. We put F° := F(sq) and FO = F(sp).
When we put L := FO(F°)~!, by the uniqueness of the solution of ODE (4.10) with
the same initial value, we have F = LF. In particular, A = LA because V = LV
and W = LW. Put b:= ~(so) — L7(so). Then we have

7(s) = 7(s0) + / At

= LA(so) + b+ / LA(t)dt

S0
= LA(s) + 0.

Since L is a pseudo-orthogonal matrix, v and 4 are congruent. ]
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4.2 Examples of the generalized umbilical hyper-
surface in S;*! and Hj"!

In this section, we constructed ruled surfaces satisfying the properties similar to
generalized umbilical hypersurfaces in Chapter 3.5. Ruled hypersurfaces given in
examples in this section satisfy the same conditions of Definition 3.5.1 and Remark
3.5.1.

We construct the following six examples of hypersurfaces M in Hy* and Syt
by using frame fields of Proposition 4.1.1. Let N be a unit normal vector field of M
in H5™ or S and Ay the shape operator of M derived from N. For simplicity,
we put x(s,t,2) = x(8,t,21, 20, ..., 2n_2), |2]* = €127 + €922 + -+ + £,222 , and
X, = 0x/0s (resp. x; and x_,). Moreover, assume that k;(s) # 0 for all s and ky is a
nonzero constant.

First, we consider the case where V;A is timelike, in other words, €; = +1 for all
1<53<n-2.

Example 4.2.1. Let v be a null curve in Hy™'. The immersion x : I x R x R""2 —
Hy ™ C Ry given by

x(s,t,z) = k_—J;(Q)’y +tB(s —|—sz —i—kfg))(?(s)

parametrizes an oriented Lorentzian hypersurface M of Hj ™, where

= 1+ 1+ R

By a straightforward computation, the unit normal vector field of M in Hy ' is given
by

k — —1+ k2
N(s,t,z) = —2(11—22))7(8) + kot B(s) + k2 > 21Z5(s) — 111—%0(2)0(5)7
j=1

and the shape operator Ay with respect to the frame (x;,x;,x,) is expressed as

—ky 0
k’l(S) —k'g
AN = _kQ

—ky

Then, one can easily see that the mean curvature H is —ks, the scalar curvature S
is a non-zero constant and the minimal polynomial P(z) of the shape operator is
(I‘ + k2)2.
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Example 4.2.2. Let v be a null curve Sj™. Assume that k;(s) # 0 and k2 # 1. As
in Example 4.2.1, the immersion x : I x R x R"~2 — 2! c Ry*? given by

x(s,t,z):%v +tB(s +sz ]@_11_—+fk<2)>0(s)

n+1
SQ

parametrizes an oriented Lorentzian hypersurface of in a neighborhood of the

origin, where

)= 14 (—1 4 K|
for z with 14+ (=14 k§)|z|2 > 0. By a straightforward computation, the unit normal
vector field of M in Sy is given by

—ka(1 4 f(2))
—1+k3

)

N(s,t,2) =
(87 72) _1+k§

v(s) + kot B(s —I—/@Zz] C(s),

and the shape operator Ay with respect to the frame (x,x;,x,) is expressed as
—ko 0
—k‘l(S) —k’g
AN = _kQ

_k2

Then, one can easily see that the mean curvature H is —ko, the scalar curvature S
is a non-zero constant and the minimal polynomial P(x) of the shape operator is
(LL’ + ]{?2)2.

Example 4.2.3. Let v be a null curve in S§™ with k? = 1. As in Example 4.2.1,
the immersion x : I x R x R"~2 — Si*! ¢ Ry given by

n—2
|2* kaz|?
x(s,t,2) = (=1 + 7)’7(8) +tB(s) + ;szj(s) -5 C(s)
parametrizes an oriented Lorentaisn hypersurface of S}, By a straightforward com-
putation, the unit normal vector field of M in Syt is given by
ka2 ]? P
N(s,t,z):—T v(s) + kot B(s —I—l{:gz,zj 5 —)C(s),

and the shape operator Ay with respect to the frame (x,x;,x,) is expressed as

—ko 0
—ki(s) —ko
AN = _k2
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Then, one can easily see that the mean curvature H is —ko, the scalar curvature S
is zero and the minimal polynomial P(x) of the shape operator is (z + k2)?.

Remark 4.2.1. There is a relation between Example 4.2.2 and 4.2.3. In the case where
0 < k2 < 1, one can easily check that the parametrization x defined by Example 4.2.2
uniformly converges in C* to x defined by Example 4.2.3 on a fixed neighborhood
of 2 = 0as k3 — 1. In the case where k3 > 1, one can easily check a similar
relation between Example 4.2.2 and 4.2.3 as in the case where 0 < k3 < 1 without
any condition for z.

Next, we consider the case where V5 A is spacelike.

Example 4.2.4. Let vy be a null curve in S™. The immersion x : [ x R x R"2 —
Syt ¢ Ry given by

ks — f(2) N

A B + Y520 - 2 o)

parametrizes an oriented hypersurface with index 2 of S in a neighborhood of the

origin, where
= 1 - (L + K22

for z with 1 — (1 + k2)|z]*> > 0. By a straightforward computation, the unit normal
vector field of M in Si* is given by

B 2
N(s,t,z)——’“?(i—igz)) (s) + kot B(s +kQZzJ —%Zg(z)as),

and the shape operator Ay with respect to the frame (x;,x;,x,) is expressed as

—ko 0
“ki(s) —ks
AN = _kQ

—ky

One can easily see that the mean curvature H is —ks, the scalar curvature S is a
non-zero constant and the minimal polynomial P(z) of the shape operator is (z+ k).

Example 4.2.5. Let v be a null curve in Hy*'. Assume that k;(s) # 0 and k3 # 1.
As in Example 4.2.4, the immersion x : I x R x R*~2 — H™ c R+ given by

x(s,t,z) = —kél_jé)fy ) +tB(s Z —k2(_11_+f]§§))6’(5)
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SnJrl

parametrizes an oriented hypersurface with index 2 of in a neighborhood of the

origin, where

— 1= (14 K|z

for z with 1 — (=1 + k2)|z|* > 0. By a straightforward computation, the unit normal
vector field of M in Hyt is given by

Moty = 1)

—1 + k2 f(2)

v(s) + kot B(s +/€2sz

and the shape operator Ay with respect to the frame (xg, x;,x,) is expressed as

—ko 0
—]{51(8> _kQ
AN = _k2

—ky

Then, one can easily see that the mean curvature H is —ko, the scalar curvature S
is a non-zero constant and the minimal polynomial P(x) of the shape operator is
(IE + k2>2.

Example 4.2.6. Let v be a null curve in Hi ™ with k2 = 1. As in Example 4.2.4,
the immersion x : I x R x R"~2 — Hy™ c R} given by

2]

2  hlz?
x(s,t,2) = (14 7)7 +tB(s) + Zsjzj

220 (s)

parametrizes an oriented hypersurface with index 2 in Sy*!. By a straightforward
computation, the unit normal vector field of M in H5™ is given by

|2 \z|2

k
N(s,t,z) = 2‘2‘ v(s) + kot B(s) +k:225]z] .

—)C(s),

and the shape operator Ay with respect to the frame (x,,x;,x,) is expressed as

—ky 0
/{71(8) —kg
AN = _k;2

—k’g

Then, one can easily see that the mean curvature H is —k,, the scalar curvature S
is zero and the minimal polynomial P(zx) of the shape operator is (z + k2)?.
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Remark 4.2.2. There is a relation between Example 4.2.5 and 4.2.6. One can easily
check that the parametrization x defined by Example 4.2.5 uniformly converges in
C® to x defined by Example 4.2.6 on a fixed neighborhood of z = 0 as k2 — 1.

Remark 4.2.3. By Proposition 2.1.1, those six examples given by this chapter satisfy
AH = \H for real consant \.

By Remark 4.2.1, 4.2.2 and 4.2.3, we emphasize that examples in this section also
satisfy properties of generalized umbilical hypersurfaces in Remark 3.5.3.
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Chapter 5

Generalized B-scroll in Sg and Hg

In the previous chapter, we studied Lorentzian hypersurfaces with index 2. We
remark that those results are only about pseudo-Riemannian hypersurfaces M, that
is, the case where the codimension of M in M (= SJ* or H) is 1. In this chapter, we
consider the case where the codimension of M is larger than 1. More precisely, we
construct 2-dimensional Lorentzian ruled surfaces along null curve v in S5 and Hs.

5.1 Known results of a generalized B-scroll in EY"

On the higher codimensional case, D. S. Kim, Y. H. Kim and D. W. Yoon [15] ex-
tended a B-scroll in E? to in ET* and named it the generalized B-scroll. Moreover,
they proved the following theorem about the minimal polynomial of the shape oper-
ator of a generalized B-scroll. Hence, at first, to consider 2-dimensional Lorentzian
ruled surfaces along null curves in S} and H3, we introduce their results.

Definition 5.1.1 ([15]). Let v be a null curve in E* and § a null vector field along .
Let M be a ruled surface in EJ* parameterized as an immersion x(s,t) = v(s) +t5(s).
Then, M is called a null scroll if § satisfies ¥(s) A B(s) # 0 for all s.

Definition 5.1.2 ([15]). Let v be a null curve in E* and (A, B,C, Zy,..., Zy_3)
a frame field along v satisfying the conditions of (3.22). Let M be a null scroll
such that it is a non-degenerate pseudo-Riemannian surface along v parameterized
as x(s,t) = v(s) + tB(s). Then, M is called a generalized B-scroll if 5(s) = B(s) for
all s.

Let H be a mean curvature vector field of a null scroll M. The shape operator of
M derived from H has the minimal polynomial as follows.

Theorem 5.1 ([15]). Let M be a null scroll in an m-dimensional Lorentzian space
ET. If the shape operator Ay of M derived from the mean curvature vector field H
has the minimal polynomial of the form (x — a*)? for some constant a then M is a
generalized B-scroll.
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Conversely, they proved that the minimal polynomial of Ay of a generalized B-
scroll M is given by (x — k2)?, where ky is a constant appeared in the following
Corollary 5.2.1 (the coefficient of A of C) Similarly, in this chapter, we also study
the minimal polynomial of the shape operator of a ruled surface in S5 and Hs.

5.2 Exapmles of the generalized B-scroll in S}
revisioand H

In the case where in M;, Frenet frame field along a null curve v in MJ is one of the
following two cases if V47 is non-null. Recalling Proposotion 4.1.1, one can easily
see that the following corollary follows.

Corollary 5.2.1. Let v be a null curve of order d =5 in an 5-dimensional pseudo-
Riemannian manifold (M, (, ), V) with index 2. Assume that V7 is non-null. Under
Assumption 4.1, there exists uniquely a frame field (A, B, C, Z1, Z3) along 7y satisfying
the following conditions;

(AA) =(B,B) =0, (A B)=-1,
(5.1) (4,C) =(B,C) =0, (C,C)=ec,
(4,Z;) = (B, ')Z(C,ZD:U
(Zi, Zj) = €i0i
and
(A =k,
C = koA +eck, B,
(5.2) B = eckoC + ksZy + €7,
7, = e1ksA + kyZo,
\Z'2 = eckaZy
for some positive-valued functions k; (i = 1,...,d — 1), ec, e = £1 and i = 1,2.
Note that e1 = ey =1 ifec = —1 and ey = —e5 if e = 1.

The next proposition holds only in the case that a null curve v is in M3, because
a null vector field Z; satisfying (71, Z3) = —1 is not uniquely if m > 6.

Proposition 5.2.1. Let v be a null curve in My, and we put A = 5. If V5A is

non-null and Zy is null, there is a unique frame field (A, B,C, Zy, Zs) satisfying
A)=(B,B)=0, (A B)=-1

A CYy=(B,C)=0, (CC)=1,

Z].aZl> <ZQ7ZZ> _0 <Z1722> :_15

(4,
(5.3) 2
<A7 Zi) = < z> = <C, Zz> =0 (Z = 1’2)
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and

(A =kC,
C = kyA+ kB,
(5.4) B = kyC + Z) + ¢,
Z1 = hZ,,
| Z2 = —A— hZs,

where ko and h are non-zero functions.

The vector field Zy in (5.4) could not be unique when dim M > 6. Note that
a null curve v in Proposition 5.2.1 is order 4. We also remark that a frame field
(A, B,C, Zy1, Z3) in the previous two propositions is a pseudo-orthonormal frame field
along null curve v, but it is not a bi-null Cartan frame introduced in [21] because
V;A is null in the bi-null Cartan frame.

Next, we give examples of non-degenerate 2-dimensional Lorentzian ruled sur-
faces in S§ or H3 satisfying conditions of the generalized B-scroll in the sense of
[15]. Namely, the shape operator Ay is non-diagonalizable at any point, the mean
curvature is non-zero constant and Gaussian curvature is constant. Here, we recall
Theorem 5.1, that is, Ay derived from the mean curvature vector field H has the
minimal polynomial of the form (z — a*)? for some constant a.

Example 5.2.1. We consider the case where (A, B,C, 7, Z5) satisfies (5.1) and
(5.2). Let v be a null curve in S§ or H3, and we put A = 4. Assume that V;A is
non-null and &y and k3 are non-zero constant. The immersion defined by x(s,t) =
v(s) + tB(s) parameterizes a non-degenerate 2-dimensional Lorentzian surface, since
(A, B,C, Zy, Zy) satisfies (5.1) and (5.2). By a straightforward computation, its unit
normal vector fields are

Ni(s,t) = kot B(s) + C(s),
N2(57t) = 81]{53tB<S) + Zl<8),
Ns(s,t) = Za(s),

and the shape operator Ay, derived from N, are

. —/{52 0 . —51]63 0
ANl N (—Elkg —k2> ’ AN2 N < 0 —51/{3)

0 0
AN3 o (—8081t1€3k’4 O> '

Thus, the scalar curvature is non-zero constant and the mean curvature vector field
H is written by

and

F[ = —€Ck32N1 — ngz.
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We put H = H/||H||. Then, the shape operator Ay derived from H with respect to
the frame (x,,x;) and the minimal polynomial P(z) of Ay are given by

_ (eckd +eik2 0
(5.5) An = ( ks eok? 4 eik2

and

(5.6) P(z) = (v — (ecks + 1k3))?,

where eck3 + €1k is constant. Note that a null curve 7 is order 5 by the condition
(5.2).

Example 5.2.2. We consider the case where (A, B, C, Z1, Z,) satisfies (5.3) and (5.4).
Let v be a null curve in S} or Hj, and we put A = 4. Assume that V;A is non-null
and ks is non-zero constant. The immersion defined by x(s,t) = v(s) +tB(s) param-
eterizes a non-degenerate 2-dimensional Lorentzian surface, since (A, B,C, Z1, Z,)

satisfies (5.3) and (5.4). By a straightforward computation, its unit normal vector

fields are
Ni(s,t) = kot B(s) + C(s),

No(s,t) = —tB(s) — %ZI(S) + Zs(s),

1
Ng(S,t) = —tB<S) -+ §Z1 —+ ZQ(S),

and the shape operator Ay, derived from N, are

(=ky O (-1 0
= (3 5) A= (00 0)
-1 0
e (30).

Thus, the scalar curvature is non-zero constant and the mean curvature vector field
H is written by

and

FI = _kQNI - Zl.

We put H = H/||H||. Then, the shape operator Ay derived from H with respect to
the frame (x,,x;) and the minimal polynomial P(z) of Ay are given by

(K 0
An = (k1k2 kg)

(5.7) P(z) = (z — k3)*,

and

where k2 is constant.
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Remark 5.2.1. In the case where v is in S or Hj, we can construct a ruled surface
satisfying conditions of the generalized B-scroll by the same way as Example 5.2.1.
Since Sj and Hj are non-degenerate pseudo-Riemannian manifolds and we consider
in the case where Vs is non-null, there is no ruled surface in S or Hj as Example
5.2.2.

Remark 5.2.2. Let Z; (i = 1,2) be a vector field along 7 defined by Example 5.2.2.
Because x(s,t) = 7y(s) + tZ;(s) is a degenerate surface, there is no non-degenerate
null scroll equipped with a Cartan frame whose mean curvature vector is non-null
except for Example 5.2.1 and 5.2.2 in Sj and Hj. In the case where V74 is null, there

is no non-degenerate pseudo-Riemannian null scroll equipped with a bi-null Cartan
frame in S§ and H3 (see [21]).

Remark 5.2.3. Each form of the minimal polynomial (5.6) and (5.7) satisfies the
assumption of Theorem 5.1. Since a B-scroll in S? or Hf is equipped with a Cartan
frame, null scrolls given by Example 5.2.1 and 5.2.2 are candidates of a generalized B-
scroll in S and Hj. Meanwhile, the eigenvalue of (5.5) is not equal to the coefficient
of a vector field A in C. Also, in Example 5.2.2, a null curve v in S5 or H3 is order 4.

Summarizing these examples and Remarks in this chapter, we have the following
theorem.

Theorem 5.2. Let (A, B,C, Zy, Zy) be a Frenet frame field along v in S5 or H3 such
that B is a null vector field, (A, B) = —1 and (B,C) = 0. We define the immersion
from I x R into S5 or Hj by x(s,t) = v(s) + tB(s) and denote an image of x by
M. Then, M is a non-degenerate Lorentzian ruled surface along ~y satisfying the
following.

(i) In the case where Zy is non-null, we put ec = (C,C) and 1 = (Z1,7Z,). For
some constants ko and k3, the mean curvature and the minimal polynomial
of the shape operator derived from the normalized mean curvature vector are
ecki + e1ki and P(z) = (v — (eck3 + 1k32))?, respectively.

(ii) In the case where Zy is null, for some constant ko, the mean curvature and the
minimal polynomial of the shape operator derived from the normalized mean
curvature vector are k3 and P(x) = (x — k3)?, respectively.

Moreover, a non-degenerate Lorentzian ruled surface along v equipped with Frenet
frame field s one of the above two cases.
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