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Chapter 1

Introduction

This thesis presents testing procedures focusing on multiple binary endpoints in clinical

trials and a measure in the analysis of ordinal categorical variables using contingency

tables. This chapter discusses the background and previous research. Additionally, it

describes the purpose of this thesis and outlines the main results of this study.

1.1 Background

Discussion of the choice of the primary endpoints is essential in the preliminary steps

of a confirmatory clinical trial. In pilot studies and exploratory phases of clinical trials,

which of several endpoints will be used as the primary endpoints for the confirmatory

phase of the trial will be discussed. While the CONSORT statement provides guidance

on how to report the results of randomized controlled trials, there is no guidance to

inform the optimal choice of endpoints or methodologies available to quantify endpoints

as best. There is a increasing recognition that trial endpoints do not always capture

outcomes that are clinically meaningful to patients and clinicians, and therefore, pa-

tient preference information must also be considered (McLeod, 2019). Therefore, the

choice of endpoints could be better enhanced by understanding their characteristics

and properties, and the importance related to this discussion is growing. If the type of

primary endpoints used in the trials is a categorical variable, using contingency tables

to understand characteristics among multiple endpoints may provide good information

to stimulate discussion.

Contingency tables are a basic tool used to examine the relationship between row
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and column of ordinal categorical variables. For example, the Pearson χ2 statistic is

commonly used to test the null hypothesis of statistical independence (Agresti, 2013).

When statistical independence is rejected, we are interested in describing the association

between the row and column categories. Summary measures of association have been

proposed, such as the Cramér V , gamma, and uncertainty coefficient. For details, see

for instance Agresti (2013, Sec. 2.4) and Bishop et al. (1975, Sec. 11.3). Additionally,

the recent development of association measures is described, for example, in Beh et al.

(2007), Lombardo (2011), Wei and Kim (2017, 2021), Zhang et al. (2021), and Wei et

al. (2022).

Contingency tables with the same row and column classifications are called square

contingency tables. These tables are used for unaided distance vision data, social

mobility data, and longitudinal data in biomedical research. The analysis of square

contingency tables considers the issue of symmetry rather than independence because

it is not sensible to treat these data as independent.

Bowker (1948) introduced the simple symmetry model and proposed a test for the

hypothesis of symmetry. When the symmetry model fits the given data poorly, we

are interested in measuring the degree of departure from symmetry. Tomizawa (1994)

proposed a measure that represents the degree of departure from symmetry expressed

using the Shannon entropy or Kullback–Leibler information. In the real world, the

Shannon entropy is widely applied as a measure of complexity, for example in Fernandes

and Araújo (2020). The measure lies between 0 and 1, and its value equals 0 if and

only if the symmetry model holds. Additionally, the degree of departure from symmetry

increases as the value of the measure increases.

In clinical trials, it is important to statistically evaluate the similarity of the mea-

sures and to plan in advance whether multiple endpoints should be used. The identifi-

cation of one statistical property, symmetry, will contribute to the characterization of

key variables.

Consider a confirmatory clinical trial in which the result of variable choices was

to use several correlated binary response variables. For example, in recent clinical

trials for patients with psoriasis, the percentage of patients with at least 75 percent

improvement in the psoriasis area-and-severity index (PASI) score and the percentage

with a physician’s global assessment score of 0 or 1 at weeks 24 and 52 were used as

primary endpoints to demonstrate the superiority of a test treatment (Reich et al.,

2011). In clinical trials of rheumatoid arthritis, the percentage of patients achieving a
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20 percent short-term improvement in the American College of Rheumatology criteria

(ACR20) and the percentage achieving long-term low disease activity (Disease Activity

Score: DAS28-ESR ≤ 3.2) are often used as primary endpoints (Smolen et al., 2016).

In IgA nephropathy affecting multiple areas, full clinical remission and a decrease in

estimated Glomerular Filtration Rate (eGFR) of at least 15 mL per minute per 1.73

m2 from baseline are sometimes used in primary assessment (Rauen et al., 2015). In

the above trials, all of the primary endpoints were binary and often have a continuous

latent distribution.

In clinical trials for a variety of diseases, it is often useful to evaluate efficacy using

multiple primary endpoints. Most trials use multiple endpoints only to evaluate non-

inferiority or superiority, but some trials have been conducted to confirm the non-

inferiority and superiority of all endpoints. For example, a clinical trial to confirm

the efficacy of four-factor prothrombin complex concentrate (4F-PCC) included two

primary endpoints (Goldstein et al., 2015), namely the percentage of patients with a

hemostatic effect and the percentage with a decrease in the international normalized

ratio (INR). In the above trial, superiority was only evaluated if there was non-inferiority

for both endpoints. When we confirm not only non-inferiority but also superiority, the

use of the closed testing procedure (Marcus et al., 1976) for the primary analysis is

reasonable, and in this case, no adjustment is needed to control the type I error rate. In

general, however, it is difficult to demonstrate the superiority of two or more endpoints

because the power decreases as the number of endpoints increases.

For multiple continuous endpoints, Perlman and Wu (2004) proposed a testing pro-

cedure that is applicable to the framework mentioned above. Moreover, Tamhane

and Logan (2004) suggested the Union-intersection(UI)-Intersection-union(IU) test and

showed that their method could be controlled Type I error in the same way as the Perl-

man and Wu’s procedure. Nakazuru et al. (2014) proposed a more powerful procedure

by modifying Perlman and Wu’s procedure using the approximate likelihood ratio test

(ALRT) defined by Glimm et al. (2002). However, methods using multiple binary

endpoints in the above frameworks are not well enough developed.

The a priori evaluation of the characteristics of multiple endpoints and the use

of statistical methods appropriate to the purpose of the study will contribute to the

conduct of high-quality clinical trials.
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1.2 Research objectives

The objective of this thesis is to develop a methodology for the design and analysis of

clinical trials with multiple categorical variables as primary endpoints. Figure 1 shows

the schema of the study. When planning a clinical trial, it is necessary to charac-

terize the categorical variables used in the trial. There are few reports of procedures

that evaluate the characteristics among categorical variables using partial measures to

express the degree of departure from partial symmetry in contingency tables. Further-

more, the accuracy of estimation is essential for methods applied in clinical trials. We

should also consider proposing a measure with small variance for application to the

design of clinical trials. The first objective is to propose an idea for determining which

category of the two categorical variables is asymmetric, using confidence intervals for

the partial measures. This objective also includes proposing a new symmetry measure

with minimum variance that combines those partial measures in the class of weighted

averages.

In addition, new testing procedures need to be developed that can be applied in

clinical trials with multiple binary endpoints as primary endpoints. In the framework

that recognizes a treatment effect only if there is superiority on at least one endpoint and

non-inferiority on the remaining endpoints, no testing procedure has been developed

that uses multiple binary variables as the primary endpoints. Therefore, the second

objective is to propose a testing procedure that is appropriate when all endpoints are

binary with a framework in which the treatment effect is confirmed only when there is

superiority of at least one endpoint and non-inferiority of the remaining endpoints. In

addition, the objective includes proposing a testing procedure for the case where the

binary endpoints have a latent distribution.
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Figure 1 Schema of thesis

The Framework is determined from among the objectives of superiority, 
non-inferiority or a combination of the two. We propose a method for 
testing the combination of superiority and non-inferiority in multiple 
endpoints framework.

Planning

Two or more primary endpoints are used

Continuous
† Binary (with/without latent distribution)(Chap. 
3 and 4)
Ordinal category variable
Time-to-event

Multiple primary endpoints

Continuous
Binary (with/without latent 
distribution)
Ordinal category variable
Time-to-event

Co-primary endpoints

The primary endpoint is determined by the characterization of variables expressing the treatment effect.

† We propose a new measure using contingency tables as a method for characterizing variables (Chap.2).

Treatment effects are 
compared between groups 
using common statistical 
tests.

Propose various methods for planning and testing procedures in clinical 
trials with multiple categorical variables.

Testing Methods

One primary endpoint

† Key themes in this thesis

1.3 Analysis of Contingency Table

1.3.1 Contingency Table

When an endpoint consists of several categories and an individual’s data falls into

one of the categories, the endpoint can be considered categorical variable. Categorical

data consists of the frequency of observations occurring in each category. Let Yj be a

categorical variable and have R levels. When considering two endpoints with R levels,

we can represent the data Y1, Y2 in a rectangular table with R × R cells. A table

in this format, where the cells contain the frequency counts of the results, is called a

contingency table. In particular, a contingency table in which the rows and columns

consist of the same level is called a square contingency table.
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1.3.2 Measures of departure from symmetry in contingency

tables

Consider an R×R square contingency table having the same row and column classifi-

cations. Let prc denote the probability that an observation will fall in the (r, c)th cell

of the table (r = 1, . . . , R; c = 1, . . . , R). The simple symmetry model introduced by

Bowker (1948) is defined by

prc = pcr (r ̸= c).

When the symmetry model does not hold for a given dataset, we are interested in

evaluating the degree of departure from symmetry. Assuming prc + pcr is not equal to

zero for r < c, the measure is defined as

ΦT =
1

δ log 2

∑∑
r ̸=c

prc log
2prc

prc + pcr
,

where δ =
∑∑

r ̸=c prc.

Let πrc = prc/(prc + pcr) for r = 1, . . . , R; c = 1, . . . , R; r ̸= c. The conditional

probability that an observation falls in cell (r, c) or (c, r) in the table is πrc. The

measure ΦT can be expressed as

ΦT =
∑∑

r<c

(
prc + pcr

δ

)
ϕrc,

where

ϕrc =
1

log 2

(
πrc log

πrc
1/2

+ πcr log
πcr
1/2

)
.

It should be noted that ϕrc is the normalized Kullback–Leibler information between

(πrc, πcr) and (1/2, 1/2). That is, the measure ΦT is the weighted average of ϕrc.

1.4 Multiple testing procedure

This section introduces the problems in statistical inference with multiple endpoints

and the test hypotheses. We focus on a randomized clinical trial comparing p (≥ 2)

endpoints with two treatment groups. There are n1 subjects in the test group and n2
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subject in the control group. Let Yijk (i = 1, 2; j = 1, . . . , p; k = 1, . . . , ni) denote the

response variable of the jth primary endpoint of the ith treatment in the kth subject.

Set X = (X1, . . . , Xp)
t with Xj = (Y 1j − Y 2j) (j = 1, . . . , p), where Y ij (i = 1, 2; j =

1, . . . , p) is the sample mean or proportion for the jth endpoint to the ith treatment.

1.4.1 Multiple testing principles

(a) Familywise error rate

The concept of a Type I error rate originated from the problem of testing a single

hypothesis. The Type I error rate is defined as the probability of rejecting the null

hypothesis when it is true. For example, consider testing each of the p endpoints in

the treatment and control groups. Let µ1j be the true mean of the response to the jth

endpoint in the treatment group and µ2j be the true mean of the response to the jth

endpoint in the control group. The treatment effect of the jth endpoint in each group

is assumed to be positive if µij is positive. The null hypothesis that the difference in

treatment effects of jth endpoint is not greater than 0

H0(j) : µ1j − µ2j ≤ 0

is tested versus a one-sided alternative

H1(j) : µ1j − µ2j > 0.

The Type I error rate for H0(j) is the probability of concluding that hypothesis H0(j)

is rejected when the difference in treatment effects actually no grater than 0. Each of

the p null hypotheses is tested so that the proportion of incorrect rejections does not

exceed the significance level α, i.e. α = 0.05. There is interest for the family of null

hypotheses when concluding treatment effects using multiple endpoints.

Familywise error rate (FWER) is defined as the probability of rejecting at least one

true null hypothesis. In particular, the FWER calculated under the assumption that

several p null hypotheses are simultaneously true is known as weak control. On the

other hand, if T is the index set of true null hypotheses, strong control of the FWER is
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require that

sup FWER = max
T

sup
{µ1j(T )}
{µ2j(T )}

P
(
Reject at least one H0(j), j ∈ T

)
≤ α

where the supremum is taken over all µ1j − µ2j satisfying less than 0 for j ∈ T , over 0

for j /∈ T , and the maximum is taken over all index sets T . Strong control of the FWER

for primary objectives is mandated by regulators in all confirmatory clinical trials.

(b) Union-Intersection testing

In clinical trials, multiple testing can generally be formulated as a union-intersection

problem. In the union-intersection framework, if there is evidence of a treatment effect

for at least one individual objective, the global hypothesis of no effect is rejected.

Let H0(h) denote the null hypothesis, and H1(h) denote the alternative hypothesis

corresponding to the hth objective, h = 1, . . . ,M . H0 defined as the intersection of the

hypotheses, is tested versus the union of the alternative hypotheses H1:

H0 :
M⋂
h=1

H0(h) versus H1 :
M⋃
h=1

H1(h).

In union-intersection testing, conducting individual tests at unadjusted α levels leads

to an inflated probability of rejecting H0 and compromises the validity of statistical

inference. To address this problem, a multiplicity adjustment method needs to be

utilized to control the appropriately defined probability of a Type I error.

(c) Intersection-Union testing

Intersection-union testing is a test where significant results for two or more objectives

are required simultaneously in order to recognize a treatment effect. The intersection-

union method involves testing the union of the null hypotheses H0 against the intersec-

tion of the alternative hypotheses H1:

H0 :
M⋃
h=1

H0(h) versus H1 :
M⋂
h=1

H1(h).

When global hypothesis H0 is rejected, one concludes that all H1’s are true, i.e., there

is evidence of positive effect with respect to all of the M objectives.
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An interesting feature of the intersection-union test is that no multiplicity adjust-

ment is needed to control for FWER, i.e. individual tests can be performed at nominal

significance levels.

(d) Hypothesis based on a combination of superiority and non-

inferiority tests

In clinical trials, we assume that superiority of test treatment is recognized when the

responses to the test treatment is greater than that to the control treatment. That is, a

maximum value of δj(j = 1, . . . , p) greater than 0 indicates an improvement of at least

one endpoint of the test treatment compared to the control treatment. Furthermore,

we consider the combined hypothesis for the superiority of at least one endpoint and

the non-inferiority of the remaining endpoints. Therefore, we consider a null hypothesis

H0 and an alternative hypothesis expressed by

H0 :

{
max
1≤j≤p

δj ≤ 0

}
∪
{

min
1≤j≤p

(δj + ϵj) ≤ 0

}
versus H1 : not H0,

where ϵj > 0 (j = 1, . . . , p) is the non-inferiority margin of the jth endpoint that

denotes a prespecified positive constant. H0 is also expressed as

H0 ≡ H
(0)
0 ∪

{
H

(1)
0 ∪ · · · ∪H(p)

0

}
,

which defines the sub hypothesis of superiority “H
(0)
0 : max

1≤j≤p
δj ≤ 0” and the sub

hypothesis of non-inferiority “H
(j)
0 : δj ≤ −ϵj”, for j = 1, . . . , p. H

(0)
0 is adaptable to

the one-sided ALRT, and the IUT (Berger, 1982) can be applied to test H0.

1.5 Outline of Chapters

The rest of this thesis is organized as follows. Chapter 2 proposes a measure that

represents the degree of departure from symmetry in the class of weighted averages

that has the smallest variance. This chapter is based on Ishihara, Yamamoto, Tahata

and Tomizawa (2022). Chapter 3 proposes a testing procedure for multiple primary

endpoints that are binary with a framework in which the treatment effect is confirmed

only when there is the superiority of at least one endpoint and non-inferiority of the re-
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maining endpoints. This chapter is based on Ishihara and Yamamoto (2021a). Chapter

4 proposes a testing procedure for multiple binary endpoints with latent distribution

with a framework in which the treatment effect is confirmed only when there is the su-

periority of at least one endpoint and non-inferiority of the remaining endpoints. This

chapter is based on Ishihara and Yamamoto (2021b). Finally, Chapter 5 presents the

conclusions of this study and suggests future research.

Chapter 2

Regarding Chapter 2, we propose a symmetry measure in the class of weighted

averages.

Let nrc denote the observed frequency in the (r, c)th cell of the contingency table

(r = 1, . . . , R; c = 1, . . . , R). We consider the weighted average of estimator of {ϕrc},
that is

Φ =
∑∑

r<c

wrcϕ̂rc,

where ϕ̂rc is the estimator of ϕrc, the weights {wrc} satisfy all wrc > 0, and
∑∑

r<c

wrc =

1. In addition, ϕ̂rc (r < c) is asymptotically distributed normal as N(ϕrc, σ
2
rc) indepen-

dently. Thus, the measure Φ has an asymptotically normal distribution with mean∑∑
r<c

wrcϕrc,

and variance

σ2 =
∑∑

r<c

(wrc)
2σ2

rc.

In an analogous manner to Agresti (1984, p.170), we derive the weights {w∗
rc} so as

to minimize the variance of Φ with the constraint that all wrc > 0 and
∑∑

r<c

wrc = 1.

We obtain

w∗
rc =

1/σ2
rc∑∑

s<t

1/σ2
st

,
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ΦS =
∑∑

r<c

w∗
rcϕ̂rc.

This measure has the smallest variance among measures in the class of weighted

averages. It should be noted that we should estimate the variances {σ2
rc} because these

are unknown.

We propose the estimated measure as follows:

Φ̂S =
∑∑

r<c

ŵ∗
rcϕ̂rc,

where ŵ∗
rc is given by w∗

rc with {prc} replaced by {p̂rc}. The proposed measure approx-

imates the measure in the class of weighted averages that has the smallest variance.

Chapter 3

Regarding Chapter 3, we propose the intersection-union test (IUT) statistic when

multiple endpoints are binary. From the multivariate central limit theorem, X =

(X1, . . . , Xp)
t is approximately normally distributed with mean ∆ and the covariance

matrix Σ. Let A be the positive definite matrix such that AtA = Σ̂−1 where Σ−1 is the

inverse matrix of Σ, and Σ̂ is the estimated covariance matrix. Furthermore, according

to the procedure of Nakazuru et al. (2014), B is defined as the matrix substituting the

off-diagonal elements of A with their absolute values. Consider the two transformations

such that

uA ≡ (uA1, . . . , uAp)
t = AX and

uB ≡ (uB1, . . . , uBp)
t =

(
detA

detB

)2/p

BX.

The proposed IUT rejects H0 if and only if

T (0) : min(u2A, u
2
B) > d and

T (j) :
Xj + ϵj√

π́1j(1−π́1j)
n1

+
π́2j(1−π́2j)

n2

> zα for j = 1, . . . , p,
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where u2A and u2B are defined by

u2A =

p∑
j=1

max(uAj, 0)
2,

u2B =

p∑
j=1

max(uBj, 0)
2.

zα represents the upper 100α th percentile of the standard normal distribution. π́ij is

the MLE of πij derived under the sub null hypothesis of non-inferiority H
(j)
0 , and T (j) is

a statistic commonly used in non-inferiority tests of binary endpoints (Farrington and

Manning, 1990). Further, d is a constant determined by

p∑
j=0

p!

j! (p− j)!

1

2p
Pr(χ2

j > d) = α.

Here, χ2
j denotes the χ2 distribution with j degrees of freedom, χ2

0 is defined as the

constant zero, and α is the nominal significant level.

T (0) and T (j) are test statistics corresponding to the null hypotheses for superiority

for at least one endpoint H
(0)
0 and non-inferiority for all endpoints H

(1)
0 , . . . , H

(p)
0 , re-

spectively. Two types of estimators for T (0) are proposed by obtaining the estimated

covariance matrix Σ̂, which can be derived under the sub null hypothesis or the sub

alternative hypothesis. In particular, T
(0)
0 is defined as the statistic for testing H

(0)
0

using an estimator obtained under the sub null hypothesis, and T
(0)
1 is the statistic for

testing H
(0)
0 using an estimator obtained under the sub alternative hypothesis H

(0)
1 for

testing superiority for at least one endpoint.

Chapter 4

Regarding Chapter 4, we propose the IUT statistic when multiple endpoints are

binary and those have latent continuous distribution.

We assume that Yik are dichotomized random variables of continuous unobserv-

able response Zik = (Zi1k, . . . , Zipk)
t (i = 1, 2; k = 1, . . . , ni). We also assume that

Zik are independently distributed as a standardized p-variate normal distribution with

Corr(Zijk, Zij′k) = γ(i)jj′ for all j ̸= j′. For each variable Zik, there is a single threshold

gij = Φ−1(1− πij) (i = 1, 2; j = 1, . . . , p) that partitions the latent distribution, where

Φ−1 is the inverse function of the standard normal cumulative distribution function.
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Then, the binary response Yijk (i = 1, 2; j = 1, . . . , p; k = 1, . . . , ni) can be defined as

Yijk =

{
1, Zijk ≥ gij

0, Zijk < gij.

Let the true proportion vector be the ith treatment πi = (πi1, . . . , πip)
t with difference

of proportion ∆ = (δ1, . . . , δp)
t = π1 − π2 and the covariance matrix Σ that is defined

as follows:

Σ = Σ(1) +Σ(2)

=
1

n1

 π11(1− π11) · · · ρ(1)1p
√
π11(1− π11)

√
π1p(1− π1p)

...
. . .

...

ρ(1)p1
√
π11(1− π11)

√
π1p(1− π1p) · · · π1p(1− π1p)


+

1

n2

 π21(1− π21) · · · ρ(2)1p
√
π21(1− π21)

√
π2p(1− π2p)

...
. . .

...

ρ(2)p1
√
π21(1− π21)

√
π2p(1− π2p) · · · π2p(1− π2p)

 ,

where Σ(i)(i = 1, 2) is the covariance matrix of (Y i1, . . . , Y ip)
t. Note that X is approx-

imately normally distributed with mean ∆ and covariance matrix Σ. The correlation

coefficient ρ(i)jj′ is expressed as

ρ(i)jj′ =
ϕ(i)jj′ − πijπij′√

πij(1− πij)
√
πij′(1− πij′)

,

where ϕ(i)jj′ is the joint probability of two response variables (Yijk, Yij′k).

To determine the statistics of IUT, we need to estimate several parameters. For

the sake of simplicity, the process of constructing statistics is divided into the following

four steps.

Step1. Estimating the cut-off point gij

We assume that ĝij is the estimator of the latent cut-off point gij, and is estimated

as ĝij = Φ−1(1 − π̃ij), where π̃ij is the maximum likelihood estimator (MLE) of the

marginal probability derived by the p-variate Bernoulli distribution. π̃ij (and ĝij) can

be given in two ways depending on the estimation under the sub-null hypothesis H
(0)
0

or the sub alternative hypothesis H
(0)
1 : not H

(0)
0 .
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Step2. Estimate the joint and marginal probabilities

The estimator of the joint probability ϕ(i)jj′ is given in two ways, depending on

the estimatiors π̃ij that determines ĝij. Furthermore, the estimator of the marginal

probability πij constructing Σ and ρ(i)jj′ should not be π̃ij, which is obtained from the

p-variate Bernoulli distribution, but should instead take into account the latent distribu-

tion function. Let π̂ij denote the estimator of πij and be given by π̂ij = Prob(Zij ≥ ĝij).

Step3 and 4. Estimate the test statistics of an ALRT and IUT

In the same way as the assumptions in Chapter 3, we propose the ALRT rejects

H
(0)
0 if and only if

T (0) : min(u2A, u
2
B) > c.

Furthermore, we consider the statistics of an IUT to test hypothesis H0 versus H1.

More precisely, the proposed IUT rejects H0 if and only if

T (0) : min(u2A, u
2
B) > d and

T (j) :
Xj + ϵj√

π́1j(1−π́1j)
n1

+
π́2j(1−π́2j)

n2

> zα for j = 1, . . . , p.
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Chapter 2

Partial Asymmetry Measures for

Square Contingency Tables

2.1 Introduction

In categorical data analysis, contingency tables are a basic tool used to examine the

relationship between row and column categories. For example, the Pearson χ2 statistic

is commonly used to test the null hypothesis of statistical independence (Agresti, 2013,

p.75).

When statistical independence is rejected, we are interested in describing the as-

sociation between the row and column categories. Summary measures of association

have been proposed, such as the Cramér V , gamma, and uncertainty coefficient. For

details, see for instance Agresti (2013, Sec. 2.4) and Bishop et al. (1975, Sec. 11.3).

Additionally, the recent development of association measures is described, for example,

in Beh et al. (2007), Lombardo (2011), Wei and Kim (2017, 2021), Zhang et al. (2021),

and Wei et al. (2022).

Contingency tables with the same row and column classifications are called square

contingency tables. These tables are used for unaided distance vision data, social

mobility data, and longitudinal data in biomedical research. The analysis of square

contingency tables considers the issue of symmetry rather than independence because

it is not sensible to treat these data as independent.

Bowker (1948) introduced the simple symmetry model and proposed a test for the

hypothesis of symmetry. When the symmetry model fits the given data poorly, we are

interested in measuring the degree of departure from symmetry. Tomizawa (1994) pro-
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posed a measure that represents the degree of departure from symmetry expressed using

the Shannon entropy or Kullback–Leibler information. In the real world, the Shannon

entropy is widely applied as a measure of complexity, for example in Fernandes and

Araújo (2020). The measure lies between 0 and 1, and its value equals 0 if and only

if the symmetry model holds. Additionally, the degree of departure from symmetry

increases as the value of the measure increases.

In the present chapter, we propose a measure that represents the degree of departure

from symmetry using a different approach. We also consider a partial measure that

represents the degree of departure from symmetry for each of several pairs. If the

asymmetry appears to be similar in the various pairs, it may be useful to pool the

values of the measure into a single summary measure of partial asymmetry. In an

analogous manner to Agresti (1984, p.170), we consider taking a weighted average of

the sample values as a summary measure. The properties of the proposed measure are

given, and it has a characteristic that is different from that of Tomizawa’s measure.

2.2 Review of Previous Research

Consider an R×R square contingency table having the same row and column classifi-

cations. Let prc denote the probability that an observation will fall in the (r, c)th cell

of the table (r = 1, . . . , R; c = 1, . . . , R). The simple symmetry model introduced by

Bowker (1948) is defined by

prc = pcr (r ̸= c).

This model indicates the symmetry structure with respect to the cell probabilities.

Bowker (1948) proposed a test for the hypothesis of symmetry.

When the symmetry model does not hold for a given dataset, we are interested

in evaluating the degree of departure from symmetry. Tomizawa (1994) proposed a

measure that represents the degree of this departure expressed using Shannon entropy

or Kullback–Leibler information. Assuming prc + pcr is not equal to zero for r < c,

the measure is defined as

ΦT =
1

δ log 2

∑∑
r ̸=c

prc log
2prc

prc + pcr
,
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where δ =
∑∑

r ̸=c prc. The measure ΦT has three properties: (i) 0 ≤ ΦT ≤ 1; (ii) the

table has a symmetrical structure if and only if ΦT = 0; (iii) there is a structure for

which either prc = 0 or pcr = 0 for r ̸= c if and only if ΦT = 1.

Let πrc = prc/(prc + pcr) for r = 1, . . . , R; c = 1, . . . , R; r ≠ c. The conditional

probability that an observation falls in cell (r, c) or (c, r) in the table is πrc. It should

be noted that the symmetry model can be expressed as

πrc = πcr

(
=

1

2

)
(r < c).

The measure ΦT can be expressed as

ΦT =
∑∑

r<c

(
prc + pcr

δ

)
ϕrc,

where

ϕrc =
1

log 2

(
πrc log

πrc
1/2

+ πcr log
πcr
1/2

)
.

It should be noted that ϕrc is the normalized Kullback–Leibler information between

(πrc, πcr) and (1/2, 1/2). That is, the measure ΦT is the weighted average of ϕrc.

We review ϕrc in ΦT . The partial measure ϕrc represents the degree of departure

from symmetry for a pair of symmetric cells because: (i) 0 ≤ ϕrc ≤ 1; (ii) there is a

symmetrical structure for the pair of (r, c) and (c, r) cells if and only if ϕrc = 0; (iii)

there is a structure for which either prc = 0 or pcr = 0 for the pair of (r, c) and (c, r)

cells if and only if ϕrc = 1. That is, the measure ϕrc expresses partial asymmetry.

2.3 The Proposed Measure

Let nrc denote the observed frequency in the (r, c)th cell of the table (r = 1, . . . , R;

c = 1, . . . , R). We assume that {nrc} have a multinomial distribution:

n!∏r
r=1

∏r
c=1 nrc!

r∏
i=1

r∏
j=1

pnrc
rc ,
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where n =
∑r

r=1

∑r
c=1 nrc. Let p̂

t be the 1×R2 vector

p̂t = (p̂t(12), p̂
t
(13), . . . , p̂

t
(R−1,R), p̂11, . . . , p̂RR),

where

p̂t(rc) = (p̂rc, p̂cr), p̂rc =
nrc
n
, p̂rr =

nrr
n
,

and the superscript “t” denotes transpose.

Furthermore, let us define the vector p in terms of prcs in the same way as p̂. Let

ϕ̂rc denote the sample version of ϕrc. Namely, the estimated ϕrc is given as

ϕ̂rc =
1

log 2

(
π̂rc log

π̂rc
1/2

+ π̂cr log
π̂cr
1/2

)
,

where π̂rc = p̂rc/(p̂rc + p̂cr) and π̂cr = p̂cr/(p̂rc + p̂cr). Let ϕ̂ be the R(R − 1)/2 × 1

vector:

ϕ̂ = (ϕ̂12, ϕ̂13, . . . , ϕ̂R−1,R)
t,

and we define the vector ϕ in terms of ϕrcs in a similar manner to ϕ̂. From Appendix

(a), ϕ̂ is asymptotically distributed as normal with mean ϕ and covariance matrix

σ2[ϕ̂] =


σ2
12 0 · · · 0

0 σ2
13

...
...

. . . 0

0 · · · 0 σ2
R−1,R

 ,

where

σ2
rc =

πrcπcr
n(prc + pcr)

( 1

log 2
(log πrc − log πcr)

)2
(r < c).

It should be noted that the set ϕ̂12, . . . , ϕ̂R−1,R is asymptotically mutually indepen-

dent for large n.
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We consider the weighted average of {ϕ̂rc}, that is

Φ =
∑∑

r<c

wrcϕ̂rc, (2.1)

where the weights {wrc} satisfy all wrc > 0 and
∑∑

r<c

wrc = 1. We see from Appendix

(a) that ϕ̂rc (r < c) is asymptotically distributed normal as N(ϕrc, σ
2
rc) independently.

Thus, the measure Φ has an asymptotically normal distribution with mean∑∑
r<c

wrcϕrc,

and variance

σ2 =
∑∑

r<c

(wrc)
2σ2

rc.

In an analogous manner to Agresti (1984, p.170), we derive the weights {w∗
rc} so as

to minimize the variance of Φ with the constraint that all wrc > 0 and
∑∑

r<c

wrc = 1.

From Appendix (b), we obtain

w∗
rc =

1/σ2
rc∑∑

s<t

1/σ2
st

.

Then, we consider the following measure, which represents the degree of departure

from symmetry:

ΦS =
∑∑

r<c

w∗
rcϕ̂rc.

The measure ΦS has the smallest variance among measures in the class of weighted

averages given in Equation (2.1). It should be noted that we should estimate the

variances {σ2
rc} because these are unknown.

We propose the estimated measure as follows:

Φ̂S =
∑∑

r<c

ŵ∗
rcϕ̂rc,
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where ŵ∗
rc is given by w∗

rc with {prc} replaced by {p̂rc}. The proposed measure ap-

proximates the measure in the class of weighted averages that has the smallest vari-

ance. The estimated measure Φ̂T is the weighted average of ϕ̂rc using the weights

{ŵrc = (p̂rc + p̂cr)/δ̂}, where δ̂ =
∑∑

r≠c p̂rc. On the other hand, the proposed mea-

sure Φ̂S is the weighted average of ϕ̂rc using the weights {ŵ∗
rc}. It should be noted

that (i) ŵrc = (p̂rc + p̂cr)/δ̂ indicates the estimated conditional probability that the

observation falls in (r, c) or (c, r) cells on the condition that the observation falls in off-

diagonal cells and (ii) the weight ŵ∗
rc becomes larger as the variance of partial measure

ϕ̂rc decreases.

2.4 Numerical Examples

The objective is to confirm the difference in the single summary measure for sym-

metry by comparing the weights {ŵrc} and {ŵ∗
rc}. Consider the artificial data in

Table 2.1(a)–(d) with n = 1000 and Table 2.1(e) with n = 200. Table 2.1(a)–(d)

are generated from the random numbers of the multinomial distribution based on the

cell probability tables (a), (b), (c), and (d) in Table 2.2, respectively. Table 2.1(e) is

generated from the random numbers of the multinomial distribution based on the cell

probability table in Table 2.2(a). The artificial cell probability tables of Table 2.2 focus

in particular on the probabilities of cells (1, 2) and (2, 1), and the four patterns (a),

(b), (c), and (d) are set according to the combination of partial symmetry/asymmetry.

We shall apply the partial measure ϕrc. Table 2.3 shows the estimated partial measure

ϕ̂rc, estimated variance σ̂2
rc, Bonferroni corrected confidence interval for ϕrc, estimated

weights {ŵrc} for Φ̂T , and estimated weights {ŵ∗
rc} for Φ̂S. Figure 2.1 visualizes the

estimated partial measure ϕ̂rc and Bonferroni corrected confidence interval for ϕrc. The

Bonferroni corrected confidence interval for ϕ12 applied to the data in Table 2.1(a) does

not contain zero, indicating that there is a partially asymmetric structure in cells (1, 2)

and (2, 1). Furthermore, the Bonferroni corrected confidence interval for ϕ12 does not

overlap with the Bonferroni corrected confidence intervals for ϕrc for any other pair of

cells, indicating that cells (1, 2) and (2, 1) are partially asymmetric compared to every

other pair of cells. The ŵ∗
12 of Φ̂S is remarkably smaller than the ŵ12 of Φ̂T , and the

value of Φ̂S is smaller than that of Φ̂T . The value of ϕ̂12 applied to the data in Table
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2.1(b) is as large as the value of ϕ̂12 applied to the data in Table 2.1(a). However, it

cannot be shown that there is a partially asymmetric structure in cells (1, 2) and (2, 1)

in Table 2.1(b) because the Bonferroni corrected confidence interval for ϕ12 is wide and

contains zero. Both Φ̂S and Φ̂T in Table 2.1(b) have small values of ŵ12 and ŵ∗
12, and

in particular, the ŵ∗
12 for Φ̂S is remarkably small.

On the other hand, the value of ϕ̂12 applied to the data in Table 2.1(c) indicates

that there is a partially symmetric structure in cells (1, 2) and (2, 1) because the value

of ϕ̂12 is small and the Bonferroni corrected confidence interval for the ϕ12 contains

zero. In addition, the ŵ∗
12 in Table 2.1(c) is large, indicating that the weight of Φ̂S is

larger when the pair of cells is more frequent than others and has a partially symmetric

structure. Both Φ̂S and Φ̂T applied to the data in Table 2.1(c) are close to zero because

of the greater weight of the pair of cells (1, 2) and (2, 1) that show partial symmetry

compared to the pairs of cells (4, 5) and (5, 4) and (3, 4) and (4, 3) that show partial

asymmetry. The values of ϕ̂rc applied to the data in Table 2.1(d) indicate that the pair

of cells (1, 2) and (2, 1), the pair of cells (1, 4) and (4, 1), the pair of cells (2, 3) and

(3, 2) and the pair of cells (3, 5) and (5, 3) have a partially symmetric structure because

the Bonferroni corrected confidence intervals of ϕ12, ϕ14, ϕ23 and ϕ35 include zero. It

can be seen that the values of ŵ12 and ŵ14 for Φ̂T are similar, while the value of ŵ∗
14 for

Φ̂S is large compared to ŵ∗
12.

The value of ϕ̂12 applied to the data in Table 2.1(e) is about the same as the value

applied to the data in Table 2.1(a), but the Bonferroni corrected confidence interval is

wider due to the smaller sample size, making it relatively difficult to conclude partial

asymmetry for the pair of cells (1, 2) and (2, 1). The magnitude of ϕ̂12 applied to Table

2.1(e) does not differ much from the results applied to Table 2.1(a). However, the values

of ŵ∗
12 and Φ̂S are greater when applied to Table 2.1(e) than Table 2.1(a). It should

be noted that the weight ŵ∗
rc becomes larger as the variance of the partial measure ϕ̂rc

decreases, and the weight ŵrc becomes larger as the proportion (nrc+ ncr)/n increases.

2.5 Example

Consider the data in Table 2.4, derived from the national survey on educational at-

titudes of high school students and their mothers in Japan in 2012. To clarify the

structure of educational inequalities in contemporary Japanese society and the actual

educational awareness of parents and children, a postal survey was conducted among
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second-year high school students and their mothers throughout Japan, using the same

framework as the national survey on the educational awareness of high school stu-

dents and their mothers conducted in November 2002. The data describe the cross-

classification of mothers’ and fathers’ birth orders. For example, for the 179 high school

students whose mothers’ birth order is “First” and whose fathers’ birth order is “Sec-

ond”, the mother is the eldest daughter and the father is the second son. The partial

symmetry of cells (1, 2) and (2, 1) means that the probability of high school students

whose mother is the eldest daughter and whose father is the second son is equal to that

of high school students whose mother is the second daughter and whose father is the

eldest son.

Let G2
S and χ2

S denote the likelihood ratio and Pearson’s chi-squared statistics for

testing the goodness of fit of the symmetry model, i.e.,

G2
S = 2

∑∑
r ̸=c

nrc log(2nrc/(nrc + ncr)),

and

χ2
S =

∑∑
r<c

(nrc − ncr)
2/(nrc + ncr).

For large samples, G2
S and χ2

S have a chi-squared null distribution with R(R − 1)/2

degrees of freedom. From G2
S = 14.58 and χ2

S = 14.17 with six degrees of freedom

for the data in Table 2.4, these values indicate the lack of a symmetrical structure.

Note that the exact test introduced by West (2008) is well known as a test for the

contingency table including structural zeros. As the proposed measure does not require

the frequency of the diagonal components, West’s test was also conducted assuming

that the diagonal components are structural zeros. The simulated p-value from West’s

test is 0.085, which indicates that the rows and columns are independent. The value of

Φ̂T is 0.0184, and the Bonferroni corrected confidence interval is (0.000003, 0.036719),

which does not include zero.

Next, we measured the degree of departure from partial symmetry for each pair of

cells. We shall apply the partial measure ϕrc for the data in Table 2.4. Table 2.5 shows

the estimated values for ϕrc and σ
2
rc, Bonferroni corrected confidence intervals for ϕrc,

estimated weights {ŵrc} and {ŵ∗
rc}, and estimated measures Φ̂S and Φ̂T . According to

the magnitudes of the estimates, ϕrc can explain the partial symmetry for each pair of
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cells in Table 2.4. The Bonferroni corrected confidence interval for the ϕrc for all pairs

of cells contains zero, which indicates that there is a partially symmetrical structure in

each birth order category in the mother–father pairs.

Furthermore, the estimated departure from symmetry is smaller with Φ̂S, which

uses different weights than Φ̂T . Figure 2.2 plots estimated weights ŵrc and ŵ
∗
rc. Cells

(1, 2) and (2, 1) have similar frequencies and are more frequent than the other cells.

Then, weights ŵrc and ŵ
∗
rc are similar and large. On the other hand, the pair of cells

(2, 3) and (3, 2) have similar frequencies, but are less frequent than the pair of cells

(1, 2) and (2, 1). In such cases, ŵ∗
rc is larger than ŵrc. Therefore, Φ̂S has a higher

weight than Φ̂T when the pair of cells has a lower frequency than another pair of cells

and when the cells have similar frequencies. Conversely, ŵ∗
rc is smaller than ŵrc when

the frequencies are different, as in the pair of cells (1, 3) and (3, 1). Since the weights

{ŵ∗
rc} and {ŵrc} take different values, the single summary measures Φ̂S and Φ̂T also

take different values. As mentioned above, there is a partially symmetrical structure

in each birth order category in the mother–father pairs. Then, the proposed measure

may be reasonable to express the degree of departure from symmetry.

2.6 Concluding Remarks

We proposed a partial measure to express the degree of departure from partial symme-

try. The measure was constructed as the weighted average of partial measures expressed

using the Shannon entropy or Kullback–Leibler information. The composition of the

proposed measure ΦS is similar to that of the measure proposed by Tomizawa (1994)

in the sense that they are classes of weighted averages. However, they differ in that

the weights multiplied by the partial measure are constructed so as to minimize the

measure’s variance. This measure increase with the degree of departure from symmetry,

allowing us to see how far away the probability structure of the contingency table is

from complete asymmetry.

The measures Φ̂S and Φ̂T are invariant under the arbitrary simultaneous permuta-

tions of row and column categories, and therefore, it is possible to apply these measures

to analyze the data on a nominal scale, as well as on an ordinal scale if one cannot use

the information about the order in which the categories are listed.

We compared the weights used to construct the measures Φ̂S and Φ̂T . Those used

to construct Φ̂T are large when the frequency of the pair of cells is high compared to
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others. On the other hand, the weight of Φ̂S is higher when the frequency of the pair of

cells is higher than others and when the structure is partially symmetric. Conversely,

when the frequency of the pair of cells is lower than others and the structure is partially

asymmetric, the weights of Φ̂S are smaller than those of Φ̂T .

In the present study, Bonferroni corrected confidence intervals for partial measures

were used to interpret the partially asymmetric structure of the data. Alternatively,

global tests for the null hypothesis that all ϕrc are equally zero, and multiplicity cor-

rection for paired comparisons also need to be considered and are left as future works.

We should note, however, that Φ̂S cannot be calculated if any of the off-diagonal

cells are zero. As such, the proposed measure should be used for contingency tables

with large sample sizes.
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Appendix

(a) : Derivation of σ2
rc

From the central limit theorem, p̂ is asymptotically distributed as normal N(p,Σ1(p)),

where Σ1(p) is the R
2 ×R2 matrix

Σ1(p) =
1

n
(D(p)− ppt),

where D(p) denotes a diagonal matrix with the ith element of p as the rth diagonal

element. Then, we also obtain

ϕ̂ = ϕ+ d1(p)(p̂− p) + o(||p̂− p||),

where d1(p) = ∂ϕ/∂pt is the R(R − 1)/2 × R2 matrix. Thus, ϕ̂ is asymptotically

distributed as normal N(ϕ, σ2[ϕ̂]), where

σ2[ϕ̂] = d1(p)Σ1(p)d1(p)
t.

Let π̂t be the 1×R(R− 1) vector:

π̂t = (π̂t
(12), π̂

t
(13), . . . , π̂

t
(R−1,R)),

where π̂t
(rc) = (π̂rc, π̂cr). Noting that ϕ̂ is a function of only {πrc}, we obtain

d1(p) =
∂ϕ

∂πt
· ∂π
∂pt

.

It should be noted that ∂ϕ/∂πt is the R(R − 1)/2 × R(R − 1) matrix and ∂π/∂pt is

the R(R− 1)×R2 matrix. By obtaining ∂π/∂pt, we can see that σ2[ϕ̂] is expressed as

σ2[ϕ̂] =
( ∂ϕ
∂πt

)
· Σ2(p) ·

( ∂ϕ
∂πt

)t
,
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where Σ2(p) is the R(R− 1)×R(R− 1) matrix:

Σ2(p) =


Σ12(p) 0 · · · 0

0 Σ13(p)
...

...
. . . 0

0 · · · 0 ΣR−1,R(p)

 ,

where

Σrc(p) =
1

n(prc + pcr)

(
πrc(1− πrc) −πrcπcr
−πrcπcr πcr(1− πcr)

)
(r < c).

Thus, σ2[ϕ̂] is also expressed as follows:

σ2[ϕ̂] =


σ2
12 0 · · · 0

0 σ2
13

...
...

. . . 0

0 · · · 0 σ2
R−1,R

 ,

where

σ2
rc =

πrcπcr
n(prc + pcr)

( 1

log 2
(log πrc − log πcr)

)2
(r < c).
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(b) : Derivation of w∗
rc

Let w be the R(R− 1)/2× 1 vector:

w = (w12, w13, . . . , wR−1,R)
t.

Then, the measure Φ is expressed as Φ = wtϕ̂.

From Appendix (a), the mean and variance of Φ are approximately calculated

as follows:

E(Φ) = wtϕ,

V ar(Φ) = wtσ2[ϕ̂]w.

Then, we can obtain the following w∗ so as to minimize V ar(Φ) with the constraint

that wt1d (d = R(R− 1)/2) is unity (1d is the d× 1 vector of 1 elements):

w∗
rc =

1/σ2
rc∑∑

s<t

1/σ2
st

(r < c).
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Table 2.1 Artificial data.

(a) (1) (2) (3) (4) (5)

(1) 37 544 12 7 8
(2) 102 26 15 15 12
(3) 9 8 29 10 11
(4) 9 9 12 40 12
(5) 14 9 10 11 29

(b) (1) (2) (3) (4) (5)

(1) 47 11 37 44 48
(2) 3 38 34 37 49
(3) 44 44 52 56 48
(4) 38 25 55 45 47
(5) 35 25 51 43 44

(c) (1) (2) (3) (4) (5)

(1) 33 316 13 18 18
(2) 321 37 20 18 20
(3) 7 6 26 16 14
(4) 5 5 1 30 19
(5) 5 10 5 2 35

(d) (1) (2) (3) (4) (5)

(1) 39 4 70 42 50
(2) 5 34 45 110 84
(3) 17 12 54 103 63
(4) 31 14 20 39 48
(5) 9 29 26 6 46

(e) (1) (2) (3) (4) (5)

(1) 7 103 1 1 4
(2) 19 10 2 2 4
(3) 2 1 6 2 2
(4) 3 4 4 5 2
(5) 1 2 4 1 8
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Table 2.2 Artificial cell probability tables.

(a) (1) (2) (3) (4) (5)

(1) 0.030 0.570 0.010 0.010 0.010
(2) 0.010 0.030 0.010 0.010 0.010
(3) 0.010 0.010 0.030 0.010 0.010
(4) 0.010 0.010 0.010 0.030 0.010
(5) 0.010 0.010 0.010 0.010 0.030

(b) (1) (2) (3) (4) (5)

(1) 0.040 0.008 0.040 0.040 0.040
(2) 0.004 0.040 0.040 0.040 0.040
(3) 0.040 0.040 0.050 0.050 0.050
(4) 0.040 0.040 0.050 0.040 0.049
(5) 0.040 0.040 0.050 0.049 0.040

(c) (1) (2) (3) (4) (5)

(1) 0.030 0.320 0.015 0.015 0.015
(2) 0.320 0.030 0.021 0.019 0.024
(3) 0.005 0.007 0.030 0.020 0.016
(4) 0.005 0.006 0.005 0.030 0.018
(5) 0.005 0.007 0.004 0.003 0.030

(d) (1) (2) (3) (4) (5)

(1) 0.040 0.003 0.080 0.050 0.050
(2) 0.003 0.040 0.050 0.100 0.080
(3) 0.020 0.010 0.050 0.100 0.064
(4) 0.030 0.020 0.020 0.040 0.050
(5) 0.010 0.020 0.020 0.020 0.040
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Table 2.3 Estimate of measure ϕrc, estimated approximate variance for ϕrc,

Bonferroni corrected confidence interval for ϕrc, weights for measures ΦS and ΦT ,

and estimates of measures ΦS and ΦT , applied to Table 4.1(a)–(d).

Applied
Data

Cells ϕ̂rc σ̂2
rc

Confidence
Interval for ϕrc

ŵ∗
rc ŵrc Φ̂S Φ̂T

(a) (1,2), (2,1) 0.37075 0.0012005 (0.273, 0.468) 0.057987 0.769964
(1,3), (3,1) 0.01477 0.0020088 (−0.111, 0.141) 0.034653 0.025030
(1,4), (4,1) 0.01130 0.0020219 (−0.115, 0.138) 0.034428 0.019070
(1,5), (5,1) 0.05434 0.0068561 (−0.178, 0.287) 0.010153 0.026222
(2,3), (3,2) 0.06789 0.0081116 (−0.185, 0.321) 0.008582 0.027414 0.02624 0.29124
(2,4), (4,2) 0.04557 0.0053039 (−0.159, 0.25) 0.013124 0.028605
(2,5), (5,2) 0.01477 0.0020088 (−0.111, 0.141) 0.034653 0.025030
(3,4), (4,3) 0.00597 0.0007797 (−0.072, 0.084) 0.089277 0.026222
(3,5), (5,3) 0.00164 0.0002246 (−0.04, 0.044) 0.309966 0.025030
(4,5), (5,4) 0.00136 0.0001710 (−0.035, 0.038) 0.407178 0.027414

(b) (1,2), (2,1) 0.25041 0.0422558 (−0.327, 0.827) 0.000032 0.018088
(1,3), (3,1) 0.00539 0.0001914 (−0.033, 0.044) 0.006979 0.104651
(1,4), (4,1) 0.00387 0.0001357 (−0.029, 0.037) 0.009848 0.105943
(1,5), (5,1) 0.01777 0.0006101 (−0.052, 0.087) 0.002190 0.107235
(2,3), (3,2) 0.01189 0.0004362 (−0.047, 0.071) 0.003063 0.100775 0.00036 0.01843
(2,4), (4,2) 0.02719 0.0012416 (−0.072, 0.126) 0.001076 0.080103
(2,5), (5,2) 0.07727 0.0028494 (−0.073, 0.227) 0.000469 0.095607
(3,4), (4,3) 0.00006 0.0000015 (−0.003, 0.004) 0.877858 0.143411
(3,5), (5,3) 0.00066 0.0000193 (−0.012, 0.013) 0.069221 0.127907
(4,5), (5,4) 0.00143 0.0000457 (−0.018, 0.02) 0.029264 0.116279

(c) (1,2), (2,1) 0.00004 0.0000002 (−0.001, 0.001) 0.999900 0.759237
(1,3), (3,1) 0.06593 0.0090727 (−0.201, 0.333) 0.000022 0.023838
(1,4), (4,1) 0.24463 0.0252616 (−0.202, 0.691) 0.000008 0.027414
(1,5), (5,1) 0.24463 0.0252616 (−0.202, 0.691) 0.000008 0.027414
(2,3), (3,2) 0.22065 0.0205989 (−0.182, 0.624) 0.000010 0.030989 0.00006 0.06270
(2,4), (4,2) 0.24463 0.0252616 (−0.202, 0.691) 0.000008 0.027414
(2,5), (5,2) 0.08170 0.0074074 (−0.16, 0.323) 0.000027 0.035757
(3,4), (4,3) 0.67724 0.0521067 (0.036, 1.318) 0.000004 0.020262
(3,5), (5,3) 0.16853 0.0225185 (−0.253, 0.59) 0.000009 0.022646
(4,5), (5,4) 0.54628 0.0432851 (−0.038, 1.13) 0.000005 0.025030

(d) (1,2), (2,1) 0.00892 0.0028433 (−0.141, 0.159) 0.113903 0.011421
(1,3), (3,1) 0.28736 0.0075340 (0.044, 0.531) 0.042986 0.110406
(1,4), (4,1) 0.01644 0.0006424 (−0.055, 0.088) 0.504107 0.092640
(1,5), (5,1) 0.38383 0.0134101 (0.059, 0.709) 0.024150 0.074873
(2,3), (3,2) 0.25751 0.0106028 (−0.032, 0.547) 0.030545 0.072335 0.11518 0.28830
(2,4), (4,2) 0.49139 0.0071440 (0.254, 0.729) 0.045333 0.157360
(2,5), (5,2) 0.17837 0.0039745 (0.001, 0.355) 0.081484 0.143401
(3,4), (4,3) 0.35950 0.0061895 (0.139, 0.58) 0.052323 0.156091
(3,5), (5,3) 0.12854 0.0037881 (−0.044, 0.301) 0.085494 0.112944
(4,5), (5,4) 0.49674 0.0164609 (0.137, 0.857) 0.019674 0.068528

(e) (1,2), (2,1) 0.37599 0.0064089 (0.151, 0.601) 0.486330 0.743902
(1,3), (3,1) 0.08170 0.0740741 (−0.682, 0.846) 0.042077 0.018293
(1,4), (4,1) 0.18872 0.1177550 (−0.775, 1.152) 0.026469 0.024390
(1,5), (5,1) 0.27807 0.1280000 (−0.726, 1.282) 0.024350 0.030488
(2,3), (3,2) 0.08170 0.0740741 (−0.682, 0.846) 0.042077 0.018293 0.23244 0.30922
(2,4), (4,2) 0.08170 0.0370370 (−0.459, 0.622) 0.084155 0.036585
(2,5), (5,2) 0.08170 0.0370370 (−0.459, 0.622) 0.084155 0.036585
(3,4), (4,3) 0.08170 0.0370370 (−0.459, 0.622) 0.084155 0.036585
(3,5), (5,3) 0.08170 0.0370370 (−0.459, 0.622) 0.084155 0.036585
(4,5), (5,4) 0.08170 0.0740741 (−0.682, 0.846) 0.042077 0.018293

32



Table 2.4 Cross-classification of mothers’ and fathers’ birth orders.

Fathers’ Birth Order

Mothers’ Birth Order First Second Third Fourth or More Total

First 224 179 53 22 478
Second 162 153 35 15 365
Third 37 37 18 11 103

Fourth or more 12 7 3 5 27

Total 435 376 109 53 973

Table 2.5 Estimate of measure ϕrc, estimated approximate variance for ϕrc,

Bonferroni corrected confidence interval for ϕrc, estimates of measures of ΦS and ΦT ,

and weights for measures of ΦS and ΦT , applied to Table 2.4.

Cells ϕ̂rc σ̂2
rc

Confidence
Interval for ϕrc

ŵ∗
rc ŵrc Φ̂S Φ̂T

(1,2), (2,1) 0.0018 0.00002 (−0.008, 0.012) 0.5864 0.5951
(1,3), (3,1) 0.0229 0.00072 (−0.048, 0.094) 0.0123 0.1571
(1,4), (4,1) 0.0633 0.00514 (−0.126, 0.252) 0.0017 0.0593
(2,3), (3,2) 0.0006 0.00002 (−0.012, 0.013) 0.3986 0.1257 0.0018 0.0184
(2,4), (4,2) 0.0976 0.01192 (−0.190, 0.386) 0.0007 0.0384
(3,4), (4,3) 0.2504 0.04226 (−0.292, 0.793) 0.0002 0.0244
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Figure 2.1 Estimate of measure ϕrc and Bonferroni corrected confidence interval for

ϕrc applied to Table 2.1.
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Figure 2.2 The weight for each pair of symmetric cells obtained by applying the

proposed method and Tomizawa (1994) to Table 2.4.
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Chapter 3

A Testing Procedure in Clinical

Trials with Multiple Binary

Endpoints

3.1 Introduction

In confirmatory clinical trials, the efficacy of a test treatment is sometimes assessed

using multiple primary endpoints. For example, in recent clinical trials for patients

with psoriasis, the percentage of patients with at least 75 percent improvement in the

psoriasis area-and-severity index (PASI) score and the percentage with a physician’s

global assessment score of 0 or 1 at weeks 24 and 52 were used as primary endpoints to

demonstrate the superiority of a test treatment (Reich et al., 2011). In clinical trials

of rheumatoid arthritis, the percentage of patients achieving a 20 percent short-term

improvement in the American College of Rheumatology criteria (ACR20) and the per-

centage achieving long-term low disease activity (Disease Activity Score: DAS28-ESR

≤ 3.2) are often used as primary endpoints (Smolen et al., 2016). In IgA nephropathy

affecting multiple areas, full clinical remission and a decrease in estimated Glomerular

Filtration Rate (eGFR) of at least 15 mL per minute per 1.73 m2 from baseline are

sometimes used in primary assessment (Rauen et al., 2015). In the above trials, all of

the primary endpoints were binary, and most were used only to evaluate superiority,

even though there was evidence of non-inferiority for some endpoints whose superior-

ity could not be confirmed. Since it is difficult to demonstrate that each endpoint is

statistically significant when the number of endpoints is not small, this chapter deals
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with the case where the test treatment is superior for at least one of the endpoints and

is not clinically inferior for the remaining endpoints.

For multiple continuous endpoints, Perlman and Wu (2004) proposed a testing pro-

cedure that is applicable to the framework mentioned above. Moreover, Tamhane

and Logan (2004) suggested the Union-intersection(UI)-Intersection-union(IU) test and

showed that their method could be controlled Type I error in the same way as the Perl-

man and Wu’s procedure. Nakazuru et al. (2014) proposed a more powerful procedure

by modifying Perlman and Wu’s procedure using the approximate likelihood ratio test

(ALRT) defined by Glimm et al. (2002). However, no method for multiple binary

endpoints has been developed yet. Therefore, we herein propose a testing procedure

that is appropriate when all endpoints are binary.

This chapter is structured as follows. In Section 2, we define several notations to

formulate the problem. In Section 3, we consider new statistics in order to test a hy-

pothesis that includes superiority of at least one endpoint and non-inferiority of the

remaining endpoints when all endpoints are binary. In Section 4, we provide a numer-

ical experiment using Monte Carlo simulation to illustrate the behavior of the power

and type I error rate of the proposed test. In addition, we compared the power of the

test of only superiority for at least one endpoint with that of the test of superiority for

at least one endpoint plus non-inferiority for all endpoints. Finally, in Section 5, we

summarize our findings and present concluding remarks.

3.2 Notations

To simplify the case, we consider comparing p endpoints with two treatment groups

comprising n1 and n2 subjects. Without loss of generality, we assume that efficacy is

recognized when the proportion of responses to the test treatment is greater than that

to the control treatment. Let Yijk (i = 1, 2; j = 1, . . . , p; k = 1, . . . , ni) denote the

binary response of the kth subject to the ith treatment at the jth endpoint. Suppose

that the random vectors of responses Yik = (Yi1k, . . . , Yipk)
t (i = 1, 2; k = 1, . . . , ni)

are independently distributed as a p-variate Bernoulli distribution with E(Yijk) = πij,

V(Yijk) = πij(1 − πij), and Corr(Yilk, Yil′k) = ρ(i)ll′ for all l ̸= l′, where the superscript

“t” denotes transpose. Generally, the probability mass function for Yik (i = 1, 2; k =
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1, . . . , ni) can be written as

P(Yi1k = yi1k, . . . , Yipk = yipk) = θ
∏p

j=1(1−yijk)
(i)0,0,...,0 × θ

yi1k
∏p

j=2(1−yijk)
(i)1,0,...,0

× θ
(1−yi1k)yi2k

∏p
j=3(1−yijk)

(i)0,1,...,0 × · · · × θ
∏p

j=1 yijk

(i)1,1,...,1 ,

where θ(i)0,0,...,0, . . . , θ(i)1,1,...,1 are joint probabilities when Yik takes values from

(0, . . . , 0), . . . , (1, . . . , 1), respectively, and θ(i)0,0,...,0 + · · ·+ θ(i)1,1,...,1 = 1. Note that the

following equations hold:

πij =
∑

(s1,s2,...,sp)∈S
sj=1

θ(i)s1,s2,...,sp ,

where S = {(s1, s2, . . . , sp)|sj = 0, 1, j = 1, . . . , p} is a set with all pair of response

values as elements. Set X = (X1, . . . , Xp)
t with Xj = (Y 1j − Y 2j) (j = 1, . . . , p),

where Y ij (i = 1, 2; j = 1, . . . , p) is the sample proportion for the jth endpoint to the

ith treatment. Let the true proportion vector be the ith treatment πi = (πi1, . . . , πip)
t

with difference of proportion ∆ = π1 − π2, and the covariance matrix Σ is defined as

follows:

Σ = Σ(1) +Σ(2)

=
1

n1

 π11(1− π11) · · · ρ(1)1p
√
π11(1− π11)

√
π1p(1− π1p)

...
. . .

...

ρ(1)p1
√
π11(1− π11)

√
π1p(1− π1p) · · · π1p(1− π1p)


+

1

n2

 π21(1− π21) · · · ρ(2)1p
√
π21(1− π21)

√
π2p(1− π2p)

...
. . .

...

ρ(2)p1
√
π21(1− π21)

√
π2p(1− π2p) · · · π2p(1− π2p)

 ,

where Σ(i)(i = 1, 2) is covariance matrix of (Y i1, . . . , Y ip)
t. In addition, the correlation

between the jth and j′th endpoints of the ith treatment (i = 1, 2; j, j ′ = 1, . . . , p; j ̸= j′)

is written using the joint probability ϕ(i)jj′ as

ρ(i)jj′ =
ϕ(i)jj′ − πijπij′√

πij(1− πij)
√
πij′(1− πij′)

.
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ϕ(i)jj′ can be simply written as the summation of joint probability θ(i)s1,s2,...,sp where

sj = sj′ = 1 as follows:

ϕ(i)jj′ =
∑

(s1,s2,...,sp)∈S
sj=sj′=1

θ(i)s1,s2,...,sp . (3.1)

On the other hand, ϕ(i)jj′ can be also determined using the odds ratio ψ(i)jj′ as follows

(Dale, 1986; le Cessie and van Houwelingen, 1994):

ϕ(i)jj′ =

{ 1+(πij+πij′ )(ψ(i)jj′−1)−S(πij ,πij′ ,ψ(i)jj′ )

2(ψ(i)jj′−1)
if ψ(i)jj′ ̸= 1

πijπij′ if ψ(i)jj′ = 1,

where S(πij, πij′ , ψ(i)jj′) =
√

(1 + (πij + πij′)(ψ(i)jj′ − 1))2 + 4ψ(i)jj′(1− ψ(i)jj′)πijπij′ and

ψ(i)jj′ is described as

ψ(i)jj′ =
ϕ(i)jj′(1− πij − πij′ + ϕ(i)jj′)

(πij − ϕ(i)jj′)(πij′ − ϕ(i)jj′)
.

Since 0 < πij < 1 and 0 < πij′ < 1, ρ(i)jj′ is not free to range over (−1, 1) (Bahadur,

1961). That is, ρ(i)jj′ is bounded below by

max

(
−
√

πijπij′

(1− πij)(1− πij′)
,−

√
(1− πij)(1− πij′)

πijπij′

)
, (3.2)

and above by

min

(√
πij(1− πij′)

πij′(1− πij)
,

√
πij′(1− πij)

πij(1− πij′)

)
. (3.3)

From the multivariate central limit theorem, X = (X1, . . . , Xp)
t is approximately nor-

mally distributed with mean ∆ and the covariance matrix Σ.

Consider a hypothesis H0 and an alternative hypothesis expressed by

H0 :

{
max
1≤j≤p

δj ≤ 0

}
∪
{

min
1≤j≤p

(δj + ϵj) ≤ 0

}
versus H1 : not H0,

where δj = π1j−π2j (j = 1, . . . , p) is true difference of proportions at the jth endpoint,

and ϵj > 0 (j = 1, . . . , p) is the non-inferiority margin of the jth endpoint that denotes

39



a prespecified positive constant. H0 is also expressed as

H0 ≡ H
(0)
0 ∪

{
H

(1)
0 ∪ · · · ∪H(p)

0

}
,

which defines the sub hypothesis of superiority for at least one endpoint “H
(0)
0 : max

1≤j≤p
δj ≤

0” and the sub hypothesis of non-inferiority for all endpoints “H
(j)
0 : δj ≤ −ϵj”, for

j = 1, . . . , p. The intersection-union test (IUT) can be applied to test H0 (Berger,

1982).

3.3 Proposed IUT

We propose a new IUT for testing H0 versus H1. Let A be the positive definite ma-

trix such that AtA = Σ̂−1 where Σ−1 is the inverse matrix of Σ, and the estimated

covariance matrix Σ̂ is defined as follows:

Σ̂ = Σ̂(1) + Σ̂(2)

=
1

n1


π̂11(1− π̂11) · · ·

∑
(s1,s2,...,sp)∈S

s1=sp=1

θ̂(1)s1,s2,...,sp − π̂11π̂1p

...
. . .

...∑
(s1,s2,...,sp)∈S

s1=sp=1

θ̂(1)s1,s2,...,sp − π̂11π̂1p · · · π̂1p(1− π̂1p)



+
1

n2


π̂21(1− π̂21) · · ·

∑
(s1,s2,...,sp)∈S

s1=sp=1

θ̂(2)s1,s2,...,sp − π̂21π̂2p

...
. . .

...∑
(s1,s2,...,sp)∈S

s1=sp=1

θ̂(2)s1,s2,...,sp − π̂21π̂2p · · · π̂2p(1− π̂2p)

 .

π̂ij is the estimator of πij, and is obtained by the maximum likelihood estimator

(MLE) of θ(i)0,0,...,0, θ(i)0,1,...,0, . . . , θ(i)1,1,...,1. Let θ̂(i)0,0,...,0, θ̂(i)0,1,...,0, . . . , θ̂(i)1,1,...,1 denote

the MLE of θ(i)0,0,...,0,

θ(i)0,1,...,0, . . . , θ(i)1,1,...,1, which can be obtained under the sub null hypothesis H
(0)
0 or the

sub alternative hypothesis H
(0)
1 : not H

(0)
0 . In particular, under the sub null hypothesis

H
(0)
0 , the Lagrange multiplier method is useful to obtain the MLE. On the other hand,

under the sub alternative hypothesis H
(0)
1 , θ̂(i)0,0,...,0, θ̂(i)0,1,...,0, . . . , θ̂(i)1,1,...,1 are obtained
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in a closed form as sample proportions.

The statistic uA = (uA1, . . . , uAp)
t = AX is approximately distributed as a p-variate

normal distribution with mean A∆ and covariance matrix I (the identity matrix). For

simplicity, we use the set of eigen vectors multiplied by the square root of the corre-

sponding eigenvalue to represent A, because A is not uniquely determined. Further-

more, according to the procedure of Nakazuru et al. (2014), B is defined as the matrix

substituting the off-diagonal elements of A with their absolute values. Consider the

two transformations such that

uA ≡ (uA1, . . . , uAp)
t = AX and

uB ≡ (uB1, . . . , uBp)
t =

(
detA

detB

)2/p

BX.

In these assumption, the proposed IUT rejects H0 if and only if

T (0) : min(u2A, u
2
B) > c and

T (j) :
Xj + ϵj√

π́1j(1−π́1j)
n1

+
π́2j(1−π́2j)

n2

> zα for j = 1, . . . , p,

where u2A and u2B are defined by

u2A =

p∑
j=1

max(uAj, 0)
2,

u2B =

p∑
j=1

max(uBj, 0)
2.

zα represents the upper 100α th percentile of the standard normal distribution. π́ij is

the MLE of πij derived under the sub null hypothesis of non-inferiority H
(j)
0 , and T (j) is

a statistic commonly used in non-inferiority tests of binary endpoints (Farrington and

Manning, 1990). Further, c is a constant determined by

p∑
j=0

p!

j! (p− j)!

1

2p
Pr(χ2

j > c) = α.

Here, χ2
j denotes the χ2 distribution with j degrees of freedom, χ2

0 is defined as the

constant zero, and α is the nominal significant level.
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T (0) and T (j) are test statistics corresponding to the null hypotheses for superiority

for at least one endpoint H
(0)
0 and non-inferiority for all endpoints H

(1)
0 , . . . , H

(p)
0 , re-

spectively. Two types of estimators for T (0) are proposed by obtaining the estimated

covariance matrix Σ̂, which can be derived under the sub null hypothesis or the sub

alternative hypothesis. In particular, T
(0)
0 is defined as the statistic for testing H

(0)
0

using an estimator obtained under the sub null hypothesis, and T
(0)
1 is the statistic for

testing H
(0)
0 using an estimator obtained under the sub alternative hypothesis H

(0)
1 for

testing superiority for at least one endpoint.

3.4 Simulation study

3.4.1 Type I error rate and power

We use a Monte Carlo study to compare the type I error rate and power of test types

using T
(0)
0 vs. T

(0)
1 in the case p = 2. We consider n1 = n2 = 50, 100, 200, ϵ1 = ϵ2 =

0.2, and α = 0.05. The random numbers are generated from a two-variate Bernoulli

distribution with various mean vectors πi = (πi1, πi2)
t. The correlation between the

endpoints assumes ρ = 0, 0.4, 0.6 with reference to Offen et al. (2007) and Sankoh

et al. (1999), which indicated the correlation coefficients between multiple endpoints

in clinical trials are approximately equal to 0.4. The generation of simulated data

is repeated 1,000,000 times to calculate the type I error rates and 100,000 times to

calculate the powers.

Table 3.1 shows the type I error rates for the two test types. These are cases in

which the type I error rate is greater than the nominal significance level for the T
(0)
1 test

type. The T
(0)
0 test type is more conservative than the T

(0)
1 test type. Table 3.2 shows

the empirical powers of the two tests. The power of the T
(0)
1 test type is better when

the proportional difference of at least one endpoint is large, but because of α-violation,

only the T
(0)
0 test type can be used in practice.

3.4.2 Example-based simulation

We performed the other simulation based on a trial confirming the efficacy of intensive

supportive care plus immunosuppression in IgA nephropathy (Rauen et al., 2015). We
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are interested in the degree to which power is reduced by simultaneously demonstrating

superiority of at least one endpoint and non-inferiority of the remaining endpoints. To

explore this issue, we compare the power calculated by above example confirming supe-

riority for at least one endpoint using two primary endpoints with the power adding the

non-inferiority test for all endpoints to the superiority test for at least one endpoint.

We considered n1 = n2 = 50, 100, 200, ϵ1 = ϵ2 = 0.2, α = 0.05 and using T
(0)
0 test

type. Random numbers were generated from a two variate Bernoulli distribution with

mean vectors π1 = (0.18, 0.26)t and π2 = (0.05, 0.28)t according to actual proportions

obtained in the trial. The correlation between the endpoints assumed ρ = −0.1, 0, 0.3

according to restrictions in Section 3.2. The generation of simulated data was repeated

100,000 times. Table 3.3 shows the power comparison between the proposed testing pro-

cedure and test of only superiority for at least one endpoint. As sample size increased,

the difference in power between test of only superiority for at least one endpoint and

that of superiority for at least one endpoint plus non-inferiority for all endpoints dis-

appeared. On the other hand, the power is remarkably decrease when sample size is

small and the correlation between two endpoints is increased.

3.4.3 Power reduction by adding non-inferiority test to supe-

riority test

We also confirm the performance in the case of p = 3. We considered n1 = n2 =

50, 100, 200, ϵ1 = ϵ2 = 0.2, and α = 0.05. Random numbers were generated from a

three-variate Bernoulli distribution with various mean vectors πi = (πi1, πi2, πi3)
t. The

correlation common to any two of the three endpoints assumed ρ = 0, 0.4, 0.6. The

generation of simulated data was repeated 100,000 times.

Table 3.4 shows the power comparison between the proposed testing procedure and

test of only superiority for at least one endpoint for the case of p = 3. Similarly as in

the case p = 2, adding a non-inferiority test did not reduce the power so much when

the sample size is large. Conversely, the power was greatly reduced when the treatment

effects were partially within the non-inferiority margin for a small sample size.
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3.5 Concluding remarks

In this chapter, we developed a testing procedure that demonstrated efficacy when su-

periority of at least one binary endpoint and non-inferiority of the remaining binary

endpoints were confirmed. We derived two types of test statistics using estimators ob-

tained under the sub null hypothesis H
(0)
0 and the sub alternative hypothesis H

(0)
1 , and

these procedures were compared in a numerical experiment using Monte Carlo simula-

tion.

The numerical experiment clearly demonstrated that the T
(0)
0 test type was always

more conservative than the T
(0)
1 test type. Not only that, non-negligible α-violation

occurred in the T
(0)
1 test type in studies with large sample sizes. Because α-violation

is a serious issue in confirmatory clinical trials, we should consider the study size and

employ test statistics using T
(0)
0 . We would also like to note that section 5.6 of the

ICH E9 guideline contains information related to the need to adjust the Type I er-

ror rate. Furthermore, it has also been found that the T
(0)
1 test type has significantly

lower power than the T
(0)
0 test type when the proportional difference of at least one

endpoint is small. Based on the performance of the power and controlling the type I

error rate, we recommend the use of the T
(0)
0 test type in the clinical trial. In addition,

this study showed that if at least one treatment effect was within the non-inferiority

margin, remarkably conservative results were obtained. When the correlation coeffi-

cient increases, type I error rates tend to increase, as Nakazuru et al. (2014) pointed

out in their paper. In particular, this problem is caused by the fact that the area where

the sample space exceeds the rejection region is considered to be large when the mean

difference for one endpoint is zero and that for the other endpoint is less than zero. To

avoid this problem, correlations between outcomes should be investigated before the

planning stages of trials. Therefore, we believe that the proposed IUT can be used in

practice with certain correlation coefficients when the study has a large sample size.

Simulations also show that there is only a minimal decrease in power if the pro-

portion of responses for the test treatment were completely or partly better than the

control treatment. By contrast, the power was greatly reduced when the treatment

effects were partially within the non-inferiority margin for a small sample size. In a

clinical trial, the testing procedure should be chosen based on the scientific objective

of what evidence should be presented for the effect of the intervention. If the objective

of the trial is to show not only the superiority of at least one endpoint but also the

non-inferiority of remaining endpoints, and if all endpoints are binary variables, the
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proposed method would be practical.
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Table 3.1 Type I error rates.

(π11, π12), (π21, π22)
n ρ type (0.5, 0.5), (0.5, 0.5) (0.4, 0.5), (0.5, 0.5)

50 0.6 T
(0)
0 0.041 0.023

T
(0)
1 0.047 0.027

0.4 T
(0)
0 0.039 0.015

T
(0)
1 0.045 0.017

0 T
(0)
0 0.033 0.007

T
(0)
1 0.037 0.008

100 0.6 T
(0)
0 0.045 0.027

T
(0)
1 0.047 0.028

0.4 T
(0)
0 0.044 0.017

T
(0)
1 0.046 0.018

0 T
(0)
0 0.045 0.009

T
(0)
1 0.046 0.009

200 0.6 T
(0)
0 0.045 0.023

T
(0)
1 0.046 0.024

0.4 T
(0)
0 0.044 0.015

T
(0)
1 0.045 0.016

0 T
(0)
0 0.049 0.012

T
(0)
1 0.050 0.012

46



Table 3.2 Estimated powers.

(π11, π12), (π21, π22)
n ρ type (0.6, 0.5), (0.5, 0.5) (0.7, 0.5), (0.5, 0.5)

50 0.6 T
(0)
0 0.165 0.434

T
(0)
1 0.184 0.472

0.4 T
(0)
0 0.149 0.399

T
(0)
1 0.163 0.413

0 T
(0)
0 0.138 0.365

T
(0)
1 0.149 0.379

100 0.6 T
(0)
0 0.311 0.782

T
(0)
1 0.320 0.791

0.4 T
(0)
0 0.278 0.748

T
(0)
1 0.285 0.753

0 T
(0)
0 0.283 0.737

T
(0)
1 0.288 0.741

200 0.6 T
(0)
0 0.538 0.969

T
(0)
1 0.542 0.970

0.4 T
(0)
0 0.497 0.969

T
(0)
1 0.501 0.970

0 T
(0)
0 0.524 0.975

T
(0)
1 0.527 0.975
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Table 3.3 Evaluation of the power based on a real trial and the power reduction by

adding the non-inferiority test.

(π11, π12), (π21, π22) : (0.18, 0.26), (0.05, 0.28)
n ρ Only superiority Superiority + non-inferiority (proposed)
50 0.3 0.567 0.379

0 0.485 0.351
-0.1 0.606 0.495

100 0.3 0.814 0.735
0 0.811 0.724

-0.1 0.806 0.721
200 0.3 0.996 0.989

0 0.994 0.986
-0.1 0.990 0.983
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Table 3.4 Evaluation of power reduction by adding the non-inferiority test.

(π11, π12, π13), (π21, π22, π23)

n ρ type
(0.45,0.45,0.45),

(0.4,0.4,0.4)

(0.45,0.45,0.38),

(0.4,0.4,0.4)

(0.45,0.38,0.38),

(0.4,0.4,0.4)

50 0.6 Superiority + non-inferiority 0.132 0.110 0.076

Only superiority 0.140 0.130 0.091

0.4 Superiority + non-inferiority 0.151 0.108 0.069

Only superiority 0.165 0.131 0.085

0 Superiority + non-inferiority 0.163 0.089 0.044

Only superiority 0.229 0.157 0.093

100 0.6 Superiority + non-inferiority 0.221 0.208 0.135

Only superiority 0.222 0.214 0.137

0.4 Superiority + non-inferiority 0.248 0.196 0.115

Only superiority 0.250 0.209 0.122

0 Superiority + non-inferiority 0.423 0.271 0.138

Only superiority 0.447 0.321 0.188

200 0.6 Superiority + non-inferiority 0.335 0.369 0.220

Only superiority 0.335 0.370 0.220

0.4 Superiority + non-inferiority 0.772 0.687 0.475

Only superiority 0.772 0.692 0.478

0 Superiority + non-inferiority 0.944 0.869 0.661

Only superiority 0.945 0.885 0.681
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Chapter 4

A method for testing multiple

binary endpoints with continuous

latent distribution in clinical trials

4.1 Introduction

In confirmatory clinical trials, several correlated binary response variables are used to

assess the efficacy and safety of new treatments. The ICH E9 guideline recommends

that the primary endpoint should consist of only one variable that provides strong sci-

entific evidence of treatment efficacy. However, in clinical trials for a variety of diseases,

it is often useful to evaluate efficacy using multiple primary endpoints. For example, in

clinical trials of patients with rheumatoid arthritis, the percentage of patients achiev-

ing short-term improvement of 20 percent in the American College of Rheumatology

criteria (ACR20) and the percentage achieving long-term low disease activity (Disease

Activity Score (DAS28-ESR) ≤ 3.2) are often used as primary endpoints (e.g., Smolen

et al., 2016). In clinical trials of patients with psoriasis, short- and long-term improve-

ments are simultaneously assessed based on the percentage of patients with at least 75

percent improvement in the psoriasis area-and-severity index (DASI) score (e.g., Reich

et al., 2011). In particular, binary endpoints are often used when it is more meaningful

to diagnose improvement beyond clear standards rather than to assess the disease state

using continuous variables. In such trials, we can consider that all primary endpoints

are binary and often have a continuous latent distribution.

Most trials use multiple endpoints only to evaluate non-inferiority or superiority,

50



but some trials have been conducted to confirm the non-inferiority and superiority of

all endpoints. For example, a clinical trial to confirm the efficacy of four-factor pro-

thrombin complex concentrate (4F-PCC) included two primary endpoints (Goldstein

et al., 2015), namely the percentage of patients with a hemostatic effect and the per-

centage with a decrease in the international normalized ratio (INR). In the above trial,

superiority was only evaluated if there was non-inferiority for both endpoints. When

we confirm not only non-inferiority but also superiority, the use of the closed testing

procedure (Marcus et al., 1976) for the primary analysis is reasonable, and in this case,

no adjustment is needed to control the type I error rate. In general, however, it is

difficult to demonstrate the superiority of two or more endpoints because the power

decreases as the number of endpoints increases. Therefore, developing a procedure that

can confirm the superiority of at least one binary endpoint with latent distribution is a

challenge for statisticians in the design and analysis of clinical trials. The aim of this

chapter was thus to define a testing procedure within a framework in which the efficacy

of a test treatment is confirmed only when the superiority of the treatment relative to

control is evidenced for at least one endpoint, and non-inferiority is demonstrated for

the remaining endpoints.

For multiple continuous endpoints, Perlman and Wu (2004) proposed a testing pro-

cedure that is applicable to the framework mentioned above. Nakazuru et al. (2014)

proposed a more powerful testing procedure using the approximate likelihood ratio test

(ALRT) defined by Glimm et al. (2002). However, there has been inadequate develop-

ment of methods for multiple binary endpoints. Therefore, we herein propose a testing

procedure that is appropriate when all endpoints are binary and have a latent distri-

bution.

4.2 Assumption and Hypotheses

4.2.1 Statistical setting

We focus on a randomized clinical trial comparing p (≥ 2) endpoints with two treat-

ment groups. There are n1 subjects in the test group and n2 subject in the control

group. Let Yijk (i = 1, 2; j = 1, . . . , p; k = 1, . . . , ni) denote the binary response vari-

able of the jth primary endpoint of the ith treatment in the kth subject. Suppose that
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the vectors of binary response variables Yik = (Yi1k, . . . , Yipk)
t (i = 1, 2; k = 1, . . . , ni)

are independently distributed as a p-variate Bernoulli distribution with E(Yijk) = πij,

V(Yijk) = πij(1 − πij), and Corr(Yijk, Yij′k) = ρ(i)jj′ for all j ̸= j′, where the super-

script “t” denotes transpose. In this setting, the correlation coefficient ρ(i)jj′ of the

multivariate Bernoulli distribution is expressed as

ρ(i)jj′ =
ϕ(i)jj′ − πijπij′√

πij(1− πij)
√
πij′(1− πij′)

, (4.1)

where ϕ(i)jj′ is the joint probability of two response variables (Yijk, Yij′k). Note that the

range of ρ(i)jj′ is equal to or less than (−1, 1) depending on the value of πij and πij′

(Bahadur, 1961). That is, ρ(i)jj′ is bounded below by

max

(
−
√

πijπij′

(1− πij)(1− πij′)
,−

√
(1− πij)(1− πij′)

πijπij′

)
, (4.2)

and above by

min

(√
πij(1− πij′)

πij′(1− πij)
,

√
πij′(1− πij)

πij(1− πij′)

)
. (4.3)

Furthermore, we assume that Yik are dichotomized random variables of continuous

unobservable response Zik = (Zi1k, . . . , Zipk)
t (i = 1, 2; k = 1, . . . , ni). We also assume

that Zik are independently distributed as a standardized p-variate normal distribution

with Corr(Zijk, Zij′k) = γ(i)jj′ for all j ̸= j′. For each variable Zik, there is a single

threshold gij = Φ−1(1 − πij) (i = 1, 2; j = 1, . . . , p) that partitions the latent distribu-

tion, where Φ−1 is the inverse function of the standard normal cumulative distribution

function. Then, the binary response Yijk (i = 1, 2; j = 1, . . . , p; k = 1, . . . , ni) can be

defined as

Yijk =

{
1, Zijk ≥ gij

0, Zijk < gij.

Set X = (X1, . . . , Xp)
t with Xj = (Y 1j − Y 2j) (j = 1, . . . , p), where Y ij (i = 1, 2; j =

1, . . . , p) is the sample proportion for the jth endpoint of the ith treatment. Let the true

proportion vector be the ith treatment πi = (πi1, . . . , πip)
t with difference of proportion
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∆ = (δ1, . . . , δp)
t = π1 − π2 and the covariance matrix Σ that is defined as follows:

Σ = Σ(1) +Σ(2)

=
1

n1

 π11(1− π11) · · · ρ(1)1p
√
π11(1− π11)

√
π1p(1− π1p)

...
. . .

...

ρ(1)p1
√
π11(1− π11)

√
π1p(1− π1p) · · · π1p(1− π1p)


+

1

n2

 π21(1− π21) · · · ρ(2)1p
√
π21(1− π21)

√
π2p(1− π2p)

...
. . .

...

ρ(2)p1
√
π21(1− π21)

√
π2p(1− π2p) · · · π2p(1− π2p)

 ,

where Σ(i)(i = 1, 2) is the covariance matrix of (Y i1, . . . , Y ip)
t. Note that X is approx-

imately normally distributed with mean ∆ and covariance matrix Σ.

4.2.2 Hypotheses

Without loss of generality, we assume that test treatment superiority is recognized when

the proportion of responses to the test treatment is greater than that to the control

treatment. That is, a maximum value of δj(j = 1, . . . , p) greater than 0 indicates an

improvement of at least one endpoint of the test treatment compared to the control

treatment. Furthermore, we consider the combined hypothesis for the superiority of at

least one endpoint and the non-inferiority of the remaining endpoints. Therefore, we

consider a hypothesis H0 and an alternative hypothesis expressed by

H0 :

{
max
1≤j≤p

δj ≤ 0

}
∪
{

min
1≤j≤p

(δj + ϵj) ≤ 0

}
versus H1 : not H0,

where ϵj > 0 (j = 1, . . . , p) is the non-inferiority margin of the jth endpoint that

denotes a prespecified positive constant. H0 is also expressed as

H0 ≡ H
(0)
0 ∪

{
H

(1)
0 ∪ · · · ∪H(p)

0

}
,

which defines the sub hypothesis of superiority “H
(0)
0 : max

1≤j≤p
δj ≤ 0” and the sub

hypothesis of non-inferiority “H
(j)
0 : δj ≤ −ϵj”, for j = 1, . . . , p. H

(0)
0 is adaptable to

the one-sided ALRT, and the IUT (Berger, 1982) can be applied to test H0.
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4.3 Estimation procedure of test statistics

To determine the statistics of ALRT and IUT, we need to estimate several parameters.

For the sake of simplicity, the process of constructing statistics is divided into the

following four steps.

Step1. Estimating the cut-off point gij

We assume that ĝij is the estimator of the latent cut-off point gij, and is estimated as

ĝij = Φ−1(1−π̃ij), where π̃ij is the maximum likelihood estimator (MLE) of the marginal

probability derived by the p-variate Bernoulli distribution. Let the probability mass

function of the p-variate Bernoulli distribution be

P(Yi1k = yi1k, . . . , Yipk = yipk) = θ
∏p

j=1(1−yijk)
(i)0,0,...,0 × θ

yi1k
∏p

j=2(1−yijk)
(i)1,0,...,0

× θ
(1−yi1k)yi2k

∏p
j=3(1−yijk)

(i)0,1,...,0 × · · · × θ
∏p

j=1 yijk

(i)1,1,...,1 ,

where θ(i)0,0,...,0, . . . , θ(i)1,1,...,1 are joint probabilities when Yik takes values from

(0, . . . , 0), . . . , (1, . . . , 1), respectively, and θ(i)0,0,...,0 + · · · + θ(i)1,1,...,1 = 1. π̃ij can be

expressed as π̃ij =
∑

(s1,s2,...,sp)∈S,sj=1 θ̂(i)s1,s2,...,sp using the estimator of θ(i)s1,s2,...,sp ,

where S = {(s1, s2, · · · sp)|sj = 0, 1, j = 1, . . . , p} is a set whose elements consist of all

pairs of response values.

In addition, π̃ij (and ĝij) can be given in two ways depending on the estimation of

θ(i)s1,s2,...,sp under the sub-null hypothesis H
(0)
0 or the sub alternative hypothesis H

(0)
1 :

not H
(0)
0 . In particular, under the sub null hypothesis H

(0)
0 , the Lagrange multiplier

method is useful to obtain the MLE. On the other hand, under the sub-alternative

hypothesis H
(0)
1 , the estimator θ̂(i)s1,s2,...,sp is obtained in a closed form as a sample

proportion.

Step2. Estimate the joint and marginal probabilities

The estimator of the joint probability ϕ(i)jj′ in (4.1) is also given in two ways de-

pending on ĝij, which is obtained by the estimation of θ(i)s1,s2,...,sp constructing π̃ij.

ϕ̂(i)jj′ can be given by

ϕ̂(i)jj′ = Prob(Zij ≥ ĝij, Zij′ ≥ ĝij′)

=

∫ ∞

−∞
· · ·
∫ ∞

ĝij

· · ·
∫ ∞

ĝij′

· · ·
∫ ∞

−∞
f(z1, . . . , zp; γ̂(i)jj′)dz1 · · · dzp for all j ̸= j′,
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where f(z1, . . . , zp; γ̂(i)jj′) is the joint density function of Zik and z1, . . . , zp are ran-

dom variables following the standard p-variate normal distribution wherein γ̂(i)jj′ is the

Person’s tetrachoric correlation (Pearson, 1900) calculated from (Yij1, . . . , Yijni
) and

(Yij′1, . . . , Yij′ni
). Therefore, if the latency of the binary response is assumed to have

a standardized multivariate normal distribution, ϕ̂(i)jj′ is determined by γ̂(i)jj′ and the

cut-off point given in Step 1. Furthermore, the estimator of the marginal probabil-

ity πij constructing Σ and ρ(i)jj′ in (4.1) should not be π̃ij, which is obtained from

the p-variate Bernoulli distribution, but should instead take into account the latent

distribution function. Let π̂ij denote the estimator of πij and be given by

π̂ij = Prob(Zij ≥ ĝij)

=

∫ ∞

−∞
· · ·
∫ ∞

ĝij

· · ·
∫ ∞

−∞
f(z1, . . . , zp; γ̂(i)jj′)dz1 · · · dzp for all j.

For example, with p = 2 endpoints, the estimator of ϕ(i)12 is written as

ϕ̂(i)12 =

∫ ∞

gi1

∫ ∞

gi2

f(z1, z2; γ̂(i)12)dz1dz2.

Furthermore, the marginal probabilities πi1 and πi2 are described as follows:

π̂i1 = Prob(Zi1 ≥ ĝi1) =

∫ ∞

−∞

∫ ∞

ĝi1

f(z1, z2; γ̂(i)12)dz1dz2,

π̂i2 = Prob(Zi2 ≥ ĝi2) =

∫ ∞

−∞

∫ ∞

ĝi2

f(z1, z2; γ̂(i)12)dz1dz2.

Along with the estimation of the joint and marginal probabilities, the estimated

covariance matrix Σ̂ is defined as follows:

Σ̂ = Σ̂(1) + Σ̂(2)

=
1

n1

 π̂11(1− π̂11) · · · ϕ̂(1)1p − π̂11π̂1p

...
. . .

...

ϕ̂(1)p1 − π̂11π̂1p · · · π̂1p(1− π̂1p)


+

1

n2

 π̂21(1− π̂21) · · · ϕ̂(2)1p − π̂21π̂2p

...
. . .

...

ϕ̂(2)p1 − π̂21π̂2p · · · π̂2p(1− π̂2p)

 .
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Step3. Estimate the test statistics of an ALRT

We propose an ALRT for H
(0)
0 . Let A be the positive definite matrix such that

AtA = Σ̂−1, whereΣ−1 is the inverse matrix of Σ. The statistic uA = (uA1, . . . , uAp)
t =

AX is approximately distributed as a p-variate normal distribution with mean A∆ and

covariance matrix I (the identity matrix). For simplicity, to represent A we use the set

of eigenvectors multiplied by the square root of the corresponding eigenvalue, because

A is not uniquely determined. Furthermore, according to the procedure of Nakazuru

et al. (2014), B is defined as the matrix substituting the off-diagonal elements of A

with their absolute values. Consider the two transformations such that

uA ≡ (uA1, . . . , uAp)
t = AX and

uB ≡ (uB1, . . . , uBp)
t =

(
detA

detB

)2/p

BX.

In these assumptions, the proposed ALRT rejects H
(0)
0 if and only if

T (0) : min(u2A, u
2
B) > c,

where u2A and u2B are defined by

u2A =

p∑
j=1

max(uAj, 0)
2,

u2B =

p∑
j=1

max(uBj, 0)
2.

c is a constant determined by

p∑
j=0

p!

j! (p− j)!

1

2p
Pr(χ2

j > c) = α.

Here, χ2
j denotes the χ2 distribution with j degrees of freedom, χ2

0 is defined as the

constant zero, and α is the nominal significance level. Note that test statistics T (0) can

be estimated in two ways. One is provided by Σ̂ derived under the sub-null hypothesis

H
(0)
0 , and the other is provided by Σ̂ derived under the sub-alternative hypothesis H

(0)
1 .
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Step4. Estimate the test statistics of an IUT

Based on the Steps 1 to 3 shown above, we consider the statistics of an IUT to test

hypothesis H0 versus H1. More precisely, the proposed IUT rejects H0 if and only if

T (0) : min(u2A, u
2
B) > c and

T (j) :
Xj + ϵj√

π́1j(1−π́1j)
n1

+
π́2j(1−π́2j)

n2

> zα for j = 1, . . . , p,

where π́ij is the MLE of πij derived under the sub null hypothesis of non-inferiority

H
(j)
0 , and T (j) is a statistic commonly used in non-inferiority tests of binary endpoints

(Farrington and Manning, 1990). T (0) and T (j) are test statistics corresponding to the

null hypotheses for superiority H
(0)
0 and non-inferiority H

(1)
0 , . . . , H

(p)
0 , respectively.

In Steps 1 to 3, we stated that there are two types of T (0), and thus we consider that

there are also two types of IUT statistics. Let the IUT statistics using T (0) estimated

under the sub-null hypothesis H
(0)
0 be the T

(0)
0 test type, and the those using T (0)

estimated under the sub-null hypothesis H
(0)
1 be the T

(1)
0 test type.

4.4 Simulation study

4.4.1 Type I error rate

We use a Monte Carlo simulation to compare the type I error rate of the T
(0)
0 test

type and the T
(0)
1 test type in the case p = 2. We consider n1 = n2 = 50, 100, 200,

ϵ1 = ϵ2 = 0.2, and α = 0.05. The random numbers are generated from a standardized

bivariate normal distribution, and response variables are obtained by dichotomizing

random numbers using πi = (πi1, πi2)
t. The correlation between the latent variables

assumes ρ = 0, 0.4, 0.8. The generation of simulated data is repeated 1,000,000 times.

Table 4.1 shows the type I error rates for the two test types. The type I error rate

is greater than the nominal significance level for the T
(0)
1 test type when the correlation

between the endpoints is zero with a large sample size. The T
(0)
0 test type is more

conservative than the T
(0)
1 test type.

57



4.4.2 Power

We use a Monte Carlo simulation to compare the powers of the T
(0)
0 and the T

(0)
1 test

type for the proposed IUT, in the case p = 2. We consider n1 = n2 = 50, 100, 200,

ϵ1 = ϵ2 = 0.2, and α = 0.05. The random numbers are generated from a standardized

bivariate normal distribution, and response variables are obtained by dichotomizing

random numbers using πi = (πi1, πi2)
t. The correlation between the latent variables

assumes ρ = 0, 0.4, 0.6 according to restrictions in Section 4.2. We also compare the

power of the proposed IUT with that of a closed testing procedure that confirms the

superiority of at least one of the two endpoints after the non-inferiority of both of the

two endpoints is confirmed. The Bonferroni-corrected p-value (Bonferroni, 1936) is used

to test for superiority in the closed testing procedure. The generation of simulated data

is repeated 100,000 times.

Table 4.2 shows the empirical powers of the proposed IUT and the closed testing

procedure. The power of the T
(0)
1 test type is greater than that of the T

(0)
0 test type,

and it becomes larger as the correlation between the endpoints increases with the small

sample size. Even when the difference between the endpoints increases, the relationship

between the power of the T
(0)
0 test type and that of the T

(0)
1 test type does not change

much. On the other hand, as the sample size increases, the power of the T
(0)
0 test

type becomes similar to that of the T
(0)
1 test type. Furthermore, the power of the

proposed IUT is always greater than that of the closed testing procedure. The results

for p = 2 and p = 3 in Section 4.4.3 below show that as the number of endpoints that

differ between the two groups increases, the power of the closed testing procedure is

noticeably lower than that of the proposed IUT.

4.4.3 Power of non-inferiority test added to superiority test

We also compare the performance of the proposed IUT and a test excluding the non-

inferiority in the case of p = 2 and p = 3. We consider n1 = n2 = 50, 100, 200, ϵ1 =

ϵ2 = 0.2, α = 0.05, and test type T
(0)
0 . Random numbers are generated from a bivariate

Bernoulli distribution with various mean vectors πi = (πi1, πi2)
t in the case p = 2, and

a three-variate Bernoulli distribution with various mean vectors πi = (πi1, πi2, πi3)
t in

the case of p = 3. The correlation common to any two endpoints is assumed to be

ρ = 0, 0.4, 0.6. The generation of simulated data is repeated 100,000 times.
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Table 4.3 shows a power comparison between the proposed IUT and the superiority

test alone for the case of p = 2. As the sample size increases, regardless of the value of

the correlation coefficient, the powers of the superiority test alone and the IUT remain

similar. Even when the differences between the two groups are partially within the

non-inferiority margin, the relationship between the power of the IUT and that of the

superiority test alone remains comparable.

Table 4.4 shows a power comparison between the proposed IUT and the superiority

test alone for the case of p = 3. As with the case of p = 2, adding a non-inferiority test

does not reduce the power much when the sample size is large. Conversely, the power of

the IUT is greatly reduced when the differences are partially within the non-inferiority

margin for a small sample size.

4.5 Concluding remarks

In this chapter, we developed a testing procedure for studies with multiple binary end-

points and a latent distribution. This was performed within a framework in which

the efficacy of a test treatment is recognized when at least one endpoint demonstrates

superiority and the remaining endpoints demonstrate non-inferiority. We derived two

types of test statistics using cut-off points estimated under the sub null hypothesis H
(0)
0

and the sub-alternative hypothesis H
(0)
1 , and these procedures were compared in a nu-

merical experiment using a Monte Carlo simulation.

The numerical experiment clearly demonstrated that the T
(0)
0 test type was always

more conservative than the T
(0)
1 test type. Furthermore, α-violation occurred in the

T
(0)
1 test type when a sample size was large and the correlation coefficient was zero.

Because α-violation is a serious issue in confirmatory clinical trials, we should choose

a non-inflationary test. Since there was not a large difference in power between the

T
(0)
0 and T

(0)
1 test types, it may be reasonable to preferentially use the T

(0)
0 test type,

especially if the correlation coefficients between the endpoints have not been investi-

gated. Furthermore, this study showed that an increased number of endpoints within

the non-inferiority margin resulted in markedly conservative results, and type I error

rates tended to increase when the correlation coefficient decreased. To avoid this prob-

lem, correlations between outcomes should be investigated before the planning stages

of trials. According to Offen et al. (2007) and Sankoh et al. (1999), the correlation
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coefficients between multiple endpoints in clinical trials are approximately equal to 0.4

and range from 0.2 to 0.8. Therefore, we believe that the proposed IUT can be used in

practice with certain correlation coefficients when the study has a large sample size.

Incidentally, like the proposed testing procedure, a closed testing procedure can be

used for multiple endpoints where the familywise error rate is kept below the nominal

significance level. In the framework of this study, the proposed IUT was shown to be

more powerful than the closed testing procedure regardless of the correlation coefficient

between endpoints, the difference between the endpoints, the number of noticeably

different endpoints, and the sample size. Although the closed testing procedure has

a significant advantage in that it does not require control of the type I error rate in

individual tests when there are inclusion relationships between null hypotheses, it may

be more reasonable to use the proposed IUT in the framework of this study, where the

superiority of at least one endpoint and the non-inferiorities of the remaining endpoints

are confirmed simultaneously.

We also demonstrated a power reduction when the non-inferiority test was added

to the superiority test. Our simulations showed that there was only a minimal decrease

in power when the proportions of responses to the test treatment were all or some-

what higher than that to the control treatment. By contrast, the power was reduced

when the treatment effects were partially within the non-inferiority margin for a small

sample size. In particular, the power decreased remarkably with increasing numbers of

variables within the non-inferiority margin. Furthermore, the smaller the correlation

coefficient, the lower the power of the proposed method in comparison to a procedure

that tested only superiority. Therefore, in a primary analysis using the proposed testing

procedure for certain sample sizes, assuming differences in proportions and correlations

between endpoints, if all endpoints are binary and have a continuous latent distribution

then it is ideal in practice to confirm not only the superiority of at least one endpoint,

but also the non-inferiority of all remaining endpoints.
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Table 4.1 Type I error rates.

(π11, π12), (π21, π22)

n ρ Type of IUT (0.5, 0.5), (0.5, 0.5) (0.4, 0.5), (0.5, 0.5)

50 0.8 T
(0)
0 0.042 0.023

T
(0)
1 0.047 0.026

0.4 T
(0)
0 0.038 0.011

T
(0)
1 0.043 0.013

0 T
(0)
0 0.034 0.007

T
(0)
1 0.038 0.008

100 0.8 T
(0)
0 0.045 0.026

T
(0)
1 0.047 0.027

0.4 T
(0)
0 0.044 0.013

T
(0)
1 0.045 0.013

0 T
(0)
0 0.045 0.009

T
(0)
1 0.046 0.009

200 0.8 T
(0)
0 0.045 0.022

T
(0)
1 0.046 0.022

0.4 T
(0)
0 0.044 0.013

T
(0)
1 0.045 0.013

0 T
(0)
0 0.049 0.012

T
(0)
1 0.050 0.012
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Table 4.2 Estimated powers.

(π11, π12), (π21, π22)

n ρ Type of test
(0.6,0.5),

(0.5,0.5)

(0.7,0.5),

(0.5,0.5)

(0.6,0.6),

(0.5,0.5)

50 0.6 T
(0)
0 (proposed) 0.139 0.343 0.270

T
(0)
1 (proposed) 0.150 0.352 0.288

Closed testing procedure 0.086 0.280 0.168

0.4 T
(0)
0 (proposed) 0.132 0.334 0.285

T
(0)
1 (proposed) 0.143 0.346 0.304

Closed testing procedure 0.079 0.270 0.171

0 T
(0)
0 (proposed) 0.126 0.322 0.321

T
(0)
1 (proposed) 0.134 0.332 0.335

Closed testing procedure 0.062 0.234 0.162

100 0.6 T
(0)
0 (proposed) 0.275 0.703 0.452

T
(0)
1 (proposed) 0.280 0.707 0.460

Closed testing procedure 0.208 0.652 0.342

0.4 T
(0)
0 (proposed) 0.265 0.686 0.489

T
(0)
1 (proposed) 0.269 0.691 0.496

Closed testing procedure 0.203 0.638 0.358

0 T
(0)
0 (proposed) 0.268 0.684 0.575

T
(0)
1 (proposed) 0.271 0.689 0.581

Closed testing procedure 0.186 0.618 0.379

200 0.6 T
(0)
0 (proposed) 0.497 0.961 0.713

T
(0)
1 (proposed) 0.501 0.962 0.716

Closed testing procedure 0.403 0.953 0.579

0.4 T
(0)
0 (proposed) 0.493 0.960 0.757

T
(0)
1 (proposed) 0.497 0.961 0.760

Closed testing procedure 0.402 0.951 0.605

0 T
(0)
0 (proposed) 0.524 0.963 0.841

T
(0)
1 (proposed) 0.526 0.964 0.842

Closed testing procedure 0.404 0.950 0.643
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Table 4.3 Evaluation of power reduction when adding the non-inferiority test for

p = 2.

(π11, π12), (π21, π22)

n ρ Type of test
(0.45,0.45),

(0.4,0.4)

(0.45,0.4),

(0.4,0.4)

(0.45,0.38),

(0.4,0.4)

50 0.8 Superiority + non-inferiority 0.121 0.088 0.082

Only superiority 0.124 0.090 0.086

0.4 Superiority + non-inferiority 0.152 0.090 0.074

Only superiority 0.161 0.100 0.086

0 Superiority + non-inferiority 0.205 0.108 0.081

Only superiority 0.232 0.133 0.107

100 0.8 Superiority + non-inferiority 0.716 0.592 0.548

Only superiority 0.719 0.601 0.566

0.4 Superiority + non-inferiority 0.771 0.632 0.572

Only superiority 0.788 0.673 0.637

0 Superiority + non-inferiority 0.804 0.650 0.579

Only superiority 0.835 0.719 0.680

200 0.8 Superiority + non-inferiority 0.821 0.696 0.660

Only superiority 0.821 0.696 0.660

0.4 Superiority + non-inferiority 0.870 0.745 0.706

Only superiority 0.871 0.748 0.713

0 Superiority + non-inferiority 0.905 0.777 0.725

Only superiority 0.905 0.781 0.738
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Table 4.4 Evaluation of power reduction when adding the non-inferiority test for

p = 3.

(π11, π12, π13), (π21, π22, π23)

n ρ Type of test
(0.45,0.45,0.45),

(0.4,0.4,0.4)

(0.45,0.45,0.38),

(0.4,0.4,0.4)

(0.45,0.38,0.38),

(0.4,0.4,0.4)

50 0.8 Superiority + non-inferiority 0.314 0.244 0.132

Only superiority 0.318 0.294 0.154

0.4 Superiority + non-inferiority 0.410 0.225 0.100

Only superiority 0.435 0.322 0.162

0 Superiority + non-inferiority 0.461 0.192 0.063

Only superiority 0.523 0.344 0.161

100 0.8 Superiority + non-inferiority 0.548 0.536 0.303

Only superiority 0.548 0.562 0.310

0.4 Superiority + non-inferiority 0.673 0.485 0.240

Only superiority 0.674 0.549 0.281

0 Superiority + non-inferiority 0.803 0.492 0.207

Only superiority 0.807 0.598 0.292

200 0.8 Superiority + non-inferiority 0.787 0.809 0.481

Only superiority 0.787 0.812 0.481

0.4 Superiority + non-inferiority 0.951 0.876 0.449

Only superiority 0.951 0.915 0.457

0 Superiority + non-inferiority 0.968 0.833 0.484

Only superiority 0.968 0.854 0.507
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Chapter 5

Discussion and Conclusions

This thesis provided proposals for a methodology for clinical trials with multiple cat-

egorical variables. Especially in the preliminary steps of confirmatory clinical trials,

the characterization of categorical variables can provide valuable information to the

end-users of the study, such as patients and clinicians.

Chapter 2 proposed a symmetry measure of contingency tables that combines partial

measures in the class of weighted averages. The partial measure allowed us to identify

the categories that cause the symmetric structure not to be hold.

A marginal homogeneity model (Stuart, 1955) focusing on marginal probabilities

is also considered a model of homogeneity between ordinal categorical variables. A

measure of homogeneity of marginal probabilities has been proposed by, for example,

Tomizawa, Miyamoto, and Ashihara (2003), and this measure can also be used to

characterize ordinal categorical variables. The method proposed in this thesis has the

advantage of being able to check the structure between cells in detail when symmetry

between categories does not hold. The measures pooled as weighted averages were

compared and characterized with existing measures of symmetry. The choice of primary

endpoints cannot be made only from a statistical perspective and must be discussed

from a clinical perspective as well. The use of symmetry measures and that confidence

intervals may be useful in discussing whether there is a discrepancy between clinical

perceptions and the characteristics of the endpoints.

The methods proposed in Chapters 3 and 4 may be useful when the primary end-

points, selected through various clinical, statistical, and ethical discussions, are multiple

and binary. Chapter 3 describes two statistics in order to test a hypothesis that includes

superiority of at least one endpoint and non-inferiority of the remaining endpoints when
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all endpoints are binary. We showed that using the test statistic estimated under the

sub null hypothesis of superiority is a more conservative result in the sense of α er-

ror. We also show that there is only a minimal decrease in power if the proportion

of responses for the test treatment were completely or partly better than the control

treatment. By contrast, the power was greatly reduced when the treatment effects were

partially within the non-inferiority margin for a small sample size. Chapter 4 proposes

two test statistics for studies with multiple binary endpoints and a latent distribution.

The procedure for obtaining estimates of the test statistic was presented, and two types

of statistics were proposed depending on how the cut-off points of the latent variables

were determined.

In general, the closed testing procedure is commonly used for testing when the null

hypothesis of inclusion holds. It is also applicable to the framework addressed in this

thesis, which recognizes for a treatment effect only when at least one of the endpoints is

superior and remaining endpoints are non-inferior. It would also be important to com-

pare the performance of the proposed method in Chapter 3 with that of the proposed

method in Chapter 4 in the case where the binary endpoints have latent distributions.

Therefore, we compared the power of the closed testing procedure with the methods

treated in Chapters 3 and 4, assuming that when multiple binary endpoints have a

latent continuous distribution.

We consider p = 2, n1 = n2 = 50, 100, 200, ϵ1 = ϵ2 = 0.2, ρ = 0, 0.4, 0.8, and

α = 0.05. The random numbers are generated from a standardized bivariate normal

distribution, and response variables are obtained by dichotomizing random numbers

using πi = (πi1, πi2)
t. The Pearson’s χ2 test and the Bonferroni-corrected p-value

(Bonferroni, 1936) are used to test for superiority in the closed testing procedure. The

generation of simulated data is repeated 100,000 times. Table 5.1 shows the empiri-

cal powers from the closed testing procedure and the power of the IUTs proposed in

Chapters 3 and 4. In all scenarios, the proposed method had higher power than the

closed testing procedure. We also found that the proposed method in Chapter 4 is

slightly higher than the proposed method in Chapter 3 under the assumption of a con-

tinuous latent distribution for the binary endpoints. However, the difference in their

performance is slight, so in practical terms there is no harm in applying the Chapter 3

method even if the binary variables have a potentially continuous distribution.

We also evaluated the performance of the methods in Chapter 4 when the latent

distribution is misidentified. Random numbers are generated from a bivariate lognormal
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distribution, and response variables are obtained by dichotomizing random numbers

using πi = (πi1, πi2)
t. Other settings were the same as in Table 5.1. The power of each

method is shown in Table 5.2. Compared to the closed testing procedure, the methods

in Chapters 3 and 4 have higher power, similar to the results in Table 5.1. We also

found that even when the distribution was misidentified, the Chapter 4 method was

slightly more powerful.

More recently, methods using a mix of multiple binary and continuous variables as

the primary endpoint in situations where latent distributions are assumed have also

been discussed (McMenamin, 2022). In addition, the proposed testing procedure and

the closed testing procedure do not allow the user to specify the order in which the

variables are tested. Considering practicality, the development of a theory that can

be tested according to the user-specified priorities within the framework addressed in

this thesis may be necessary in the future. The types of clinical trials are diversifying,

and there are more and more situations that cannot be handled by simply using a

single primary endpoint as in the past. The results of this study may contribute to the

development categorical analyses in clinical trials because the proposed procedure and

measures can provide a new interpretation.
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Table 5.1 Comparison of the power of proposed methods in Chapter 3 and Chapter 4

and the closed testing procedure.

(π11, π12), (π21, π22)

n ρ Type of test (0.6,0.5), (0.5,0.5) (0.7,0.5), (0.5,0.5) (0.4,0.5), (0.5,0.5)

50 0.8 T
(0)
0 (Chapter 3) 0.1392 0.3038 0.0175

T
(0)
1 (Chapter 3) 0.1498 0.3117 0.0191

T
(0)
0 (Chapter 4) 0.1408 0.3053 0.0179

T
(0)
1 (Chapter 4) 0.1498 0.3117 0.0191

Closed testing procedure 0.0786 0.2386 0.0067

0.4 T
(0)
0 (Chapter 3) 0.1294 0.3253 0.0085

T
(0)
1 (Chapter 3) 0.1415 0.3368 0.0098

T
(0)
0 (Chapter 4) 0.1303 0.3258 0.0087

T
(0)
1 (Chapter 4) 0.1415 0.3368 0.0098

Closed testing procedure 0.0785 0.2606 0.0042

0 T
(0)
0 (Chapter 3) 0.1185 0.3114 0.0052

T
(0)
1 (Chapter 3) 0.1272 0.3230 0.0059

T
(0)
0 (Chapter 4) 0.1196 0.3132 0.0052

T
(0)
1 (Chapter 4) 0.1272 0.3230 0.0059

Closed testing procedure 0.0604 0.2274 0.0019

100 0.8 T
(0)
0 (Chapter 3) 0.2995 0.6976 0.0249

T
(0)
1 (Chapter 3) 0.3077 0.7005 0.0259

T
(0)
0 (Chapter 4) 0.3032 0.6990 0.0257

T
(0)
1 (Chapter 4) 0.3077 0.7005 0.0259

Closed testing procedure 0.2093 0.6342 0.0121

0.4 T
(0)
0 (Chapter 3) 0.2646 0.6810 0.0127

T
(0)
1 (Chapter 3) 0.2699 0.6866 0.0128

T
(0)
0 (Chapter 4) 0.2652 0.6813 0.0127

T
(0)
1 (Chapter 4) 0.2699 0.6866 0.0128

Closed testing procedure 0.2009 0.6320 0.0043

0 T
(0)
0 (Chapter 3) 0.2714 0.6851 0.0066

T
(0)
1 (Chapter 3) 0.2755 0.6892 0.0068

T
(0)
0 (Chapter 4) 0.2719 0.6852 0.0067

T
(0)
1 (Chapter 4) 0.2755 0.6892 0.0068

Closed testing procedure 0.1879 0.6199 0.0043

200 0.8 T
(0)
0 (Chapter 3) 0.5378 0.9531 0.0226

T
(0)
1 (Chapter 3) 0.5415 0.9537 0.0229

T
(0)
0 (Chapter 4) 0.5396 0.9533 0.0228

T
(0)
1 (Chapter 4) 0.5415 0.9537 0.0229

Closed testing procedure 0.4012 0.9475 0.0132

0.4 T
(0)
0 (Chapter 3) 0.4883 0.9604 0.0115

T
(0)
1 (Chapter 3) 0.4938 0.9610 0.0119

T
(0)
0 (Chapter 4) 0.4887 0.9603 0.0115

T
(0)
1 (Chapter 4) 0.4938 0.9610 0.0119

Closed testing procedure 0.3997 0.9520 0.009

0 T
(0)
0 (Chapter 3) 0.5256 0.9645 0.0100

T
(0)
1 (Chapter 3) 0.5280 0.9649 0.0101

T
(0)
0 (Chapter 4) 0.5262 0.9645 0.0099

T
(0)
1 (Chapter 4) 0.5280 0.9649 0.0101

Closed testing procedure 0.4058 0.9509 0.0062
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Table 5.2 Comparison of the power when the latent distribution of the binary

variable is log-normal.

(π11, π12), (π21, π22)

n ρ Type of test (0.6,0.5), (0.5,0.5) (0.7,0.5), (0.5,0.5) (0.4,0.5), (0.5,0.5)

50 0.8 T
(0)
0 (Chapter 3) 0.1397 0.2982 0.0184

T
(0)
1 (Chapter 3) 0.1506 0.3052 0.0207

T
(0)
0 (Chapter 4) 0.1425 0.2999 0.0191

T
(0)
1 (Chapter 4) 0.1505 0.3052 0.0207

Closed testing procedure 0.0814 0.2315 0.0077

0.4 T
(0)
0 (Chapter 3) 0.1219 0.3265 0.0104

T
(0)
1 (Chapter 3) 0.1338 0.3398 0.0119

T
(0)
0 (Chapter 4) 0.1226 0.3271 0.0105

T
(0)
1 (Chapter 4) 0.1338 0.3398 0.0119

Closed testing procedure 0.0725 0.2602 0.0059

0 T
(0)
0 (Chapter 3) 0.1164 0.3198 0.0051

T
(0)
1 (Chapter 3) 0.1273 0.3307 0.0059

T
(0)
0 (Chapter 4) 0.1179 0.3215 0.0051

T
(0)
1 (Chapter 4) 0.1273 0.3307 0.0059

Closed testing procedure 0.0582 0.2305 0.0022

100 0.8 T
(0)
0 (Chapter 3) 0.2995 0.6935 0.0238

T
(0)
1 (Chapter 3) 0.3067 0.6966 0.0252

T
(0)
0 (Chapter 4) 0.3027 0.6953 0.0245

T
(0)
1 (Chapter 4) 0.3067 0.6966 0.0252

Closed testing procedure 0.2103 0.6288 0.0113

0.4 T
(0)
0 (Chapter 3) 0.2626 0.6867 0.0125

T
(0)
1 (Chapter 3) 0.2683 0.6915 0.0126

T
(0)
0 (Chapter 4) 0.2631 0.6873 0.0125

T
(0)
1 (Chapter 4) 0.2683 0.6915 0.0126

Closed testing procedure 0.2009 0.6364 0.0041

0 T
(0)
0 (Chapter 3) 0.2702 0.6810 0.0061

T
(0)
1 (Chapter 3) 0.2750 0.6854 0.0062

T
(0)
0 (Chapter 4) 0.2715 0.6815 0.0061

T
(0)
1 (Chapter 4) 0.2750 0.6854 0.0062

Closed testing procedure 0.1882 0.6168 0.0041

200 0.8 T
(0)
0 (Chapter 3) 0.5292 0.9544 0.0206

T
(0)
1 (Chapter 3) 0.5337 0.9553 0.0211

T
(0)
0 (Chapter 4) 0.5306 0.9547 0.0209

T
(0)
1 (Chapter 4) 0.5337 0.9553 0.0211

Closed testing procedure 0.4015 0.9466 0.0107

0.4 T
(0)
0 (Chapter 3) 0.4874 0.9604 0.0142

T
(0)
1 (Chapter 3) 0.4922 0.9608 0.0143

T
(0)
0 (Chapter 4) 0.4880 0.9604 0.0141

T
(0)
1 (Chapter 4) 0.4922 0.9608 0.0143

Closed testing procedure 0.4011 0.9491 0.0088

0 T
(0)
0 (Chapter 3) 0.5168 0.9646 0.0089

T
(0)
1 (Chapter 3) 0.5197 0.9651 0.0089

T
(0)
0 (Chapter 4) 0.5171 0.9646 0.0089

T
(0)
1 (Chapter 4) 0.5197 0.9651 0.0089

Closed testing procedure 0.3988 0.9491 0.0052
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