
学位論文

Online Machine Learning Algorithms

to Optimize Performances of

Complex Wireless Communication

Systems

（オンライン型機械学習アルゴリズム
による複雑無線通信システムの
性能最適化に関する研究）

2021年 9月

大島 浩嗣



Abstract

This paper consists of six sections: introduction of this paper is in Chap-
ter 1, the issues of current and future wireless communication systems are 
pointed out in Chapter 2, then the introduction of machine learning to over-
come these issues are discussed in Chapter 3. The proposed two schemes, 
supervised learning based modeling and optimization based decisioning, and 
simple reinforcement learning based decisioning are introduced in Chapter 4 
and 5 respectively, where the evaluation and the verification of the proposed 
schemes through real device experiments and computer simulations are also 
shown in these sections. Following are a brief summary of Chapters in this 
paper.

In Chapter 1, the background and the aim of this research are shown. Ad-
vancement of wireless communication technologies has brought us enormous 
positive change all over the world. Yet, from the viewpoint of exploiting its 
capability, there are still some issues to maximize their performance, which 
raises two simple questions. One question is that how to build models of 
today’s and future complex wireless systems. Another question is that how 
to decide optimal action by using the models of wireless communication sys-
tems.

In Chapter 2, issues of today’s and future wireless communication systems 
are indicated, especially in terms of optimizing their performance. Classical 
mathematical formulation based optimization scheme cannot be applied any 
more for today’s complex wireless communication systems, because the com-

plexity of the systems prevent building mathematical model. It opens the



window of applications of machine learning technologies to optimize perfor-

mances of wireless communication systems.

In Chapter 3, application of machine learning technologies and its issues

are discussed, then the proposed schemes in this research are introduced.

Classical optimization of performances of wireless communication systems

is based on mathematical formulation, which cannot be applied to today’s

complex, time-varying system usage. A data-driven modeling, by machine

learning, is an aid for this issue. Deep reinforcement learning, deep learning

based modeling and reinforcement learning based decision for action, is a

state-of-the-art scheme in recent research fields. It has recently applied in

the field of wireless communication a lot. However, it does not mean that

all issues of current and future wireless systems can be solved by it. There

still exist future works to be pointed out. One point is to seek alternatives

for modeling to realize continuous function based modeling to obtain better

solutions for continuous systems. Another point is to seek the feasible yet

effective scheme if the amount of available information is small, like in IoT

systems. Corresponding to these points, two novel schemes are proposed

which are different not only from classical mathematical optimization but

also from current state-of-the-art deep reinforcement learning approach.

In Chapter 4, one of the proposed schemes, supervised learning based

modeling and optimization, is formulated and examined through experi-

ments. It uses some amount of information to build the model of the wireless

communication system, and obtain optimal parameters by an optimization

algorithm. This is based on cognitive cycle using machine learning. It uses

by supervised machine learning algorithm to build the performance model

of the systems, obtains the optimal parameters by solving the optimization

problem, takes action according to the decision, and updates the performance

model in online manner. Two applications are shown: IEEE 802.11 WLAN

and space communication. Through both real-world experiments and com-

puter simulations, the validity of the proposed scheme is confirmed.

In Chapter 5, another proposed scheme, simple yet easily-implementable



reinforcement learning, by MAB problem formulation is formulated and ex-
amined through experiments. By using a novel, light-weight, and distributed 
TOW algorithm, it realizes adaptive learning wireless communication sys-
tems whose capabilities in software and/or hardware are limited like IoT. 
Two applications are shown: heterogeneous network selection and channel 
selection in massive IoT. Through both real-world experiments and computer 
simulations, the validity of the proposed scheme is confirmed. These results 
show the effectiveness and feasibility of the proposed schemes.

This paper provides two novel approaches from wide viewpoint of current 
application of machine learning to wireless communication. The proposed 
scheme using supervised learning and optimization gives a better alterna-
tive of deep reinforcement learning especially when parameters are continu-
ous. Another proposed scheme using simple reinforcement learning based on 
TOW, a ligh-weight MAB algorithm, provides feasible solution to increase 
performances of wireless communication systems where amount of available 
information is small like IoT. This research opened a new field of applica-
tion of online machine learning technologies to optimize today’s and future 
complex wireless communication systems.
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Chapter 1

Introduction

1.1 Background

Recent advancement of wireless communication technologies brings the tech-

nologies to widely deployed and used all over the world. Along with widespread

of usage, the requirements and use cases are becoming higher and broader,

which leads to highly complex wireless communication systems.

Today’s wireless communication systems are becoming large scale net-

works, where a large number of wireless devices are deployed in rather small

area like massive IoT, and where the structures of networks are becoming

more heterogeneous: multiple radio access technologies are used simultane-

ously in a mobile terminal, multiple radio transmission range are deployed,

various requirements of application traffic are needed, etc. The complexity

of wireless communication systems come from another way: the interaction

among not only the functions inside wireless devices but also wireless devices

through radio interferences. Moreover, the number of parameters to control

in a device is large enough, due to the multiple layered structure of radio

systems, which prevents the operators or systems to choose optimal values.

For example, for the last factor, there is the layered structure of wireless

devices : physical layer handles the wireless link through transmission power

control or , MAC layer deals with the management of wireless link by choos-
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ing appropriate modulation and coding scheme etc., also manages the access

to wireless resource in time domain duplex (TDD) or carrier-sensing multi-

ple access with collision avoidance (CSMA/CA). Network layer gives rout-

ing management and labeling of network address, typically internet protocol

(IP). Transport layer handles the transportation of data on communication

networks through the 2 way protocol like transport control protocol (TCP)

or 1 way protocol like user datagram protocol (UDP). Session, presentation,

and application layer has more according to user demand of application of

communication networks.

These structures, namely open systems interconnection model (OSI model)

of seven abstraction layers, are aimed to design as flexible as much in order to

manage and meet various communication needs and demands with scalabil-

ity. On those structures, the function among different layers are designed to

be more independent, less-combined way for maintaining the flexibility and

scalability. It brings flexible wireless communication systems such as IEEE

802.11 wireless local area network (WLAN) or 3GPP long term evolution

(LTE) or 5G which can use common TCP/IP protocols on the internet.

On the other hand, just because the functions in each layer are designed

independently, it is important but difficult to optimize end-to-end commu-

nication performance as a whole system. It can be easily understood just

if considering the amount of wireless parameters is so large: modulation

scheme of radio signals, selection of radio frequency and bandwidth, trans-

mission power, and access scheme to wireless resources, etc. In addition, as

mentioned above, higher layer protocols should be included to optimize user

experience. It means that the conventional optimization of the performance

of wireless communication systems are not able to be applied any more, be-

cause it is based on mathematical formulation which is too complex to be

realized. It is essential to solve this issue in order to optimize the perfor-

mance of future wireless system like Beyond 5G/6G, which is and will be

becoming more and more complex.

The aim of this paper is to find a novel engineering scheme to overcome

2



this issue by introducing a new technologies. It introduces machine learning

technologies, which are data-driven modeling approaches, and have been de-

veloped very recently to solve issues in various fields of the society. In the

field of wireless communications, some applications of machine learning tech-

nologies have been researched recently, such as supervised learning for signal

processing, deep learning to predict the traffic demand and emphasize the

quality of experience (QoE), etc. These researches mainly focus in a certain

layer or function, which seems to be not enough to optimize the end-to-end

communication quality as a whole. It also can be said that they are tend

to be theoretical analysis and the implementation to real wireless devices

or the operation of them are not researched yet. Indeed, to the best of my

knowledge, there are less than 10 % of IEEE published papers which include

whole wireless communication system optimization and the verification of

prototyping of them, shown in Fig.1.1.

The performance of wireless communication systems are to be defined as

an end-to-end communication quality, which requires the optimized set of

parameters of wireless devices from in physical layer protocol to application

layer protocol, and also required the optimized network among wireless/wired

communication nodes. Considering using machine learning technologies, the

more date is preferable to build more precise model of wireless communica-

tion systems, and take better actions. However, in the real world equipments,

it is not always realized such data-rich environment: wireless devices are fun-

damentally short in their resources such as limited amount of battery, limited

amount of central processing unit (CPU) power, namely, computational re-

sources, and limited amount of parameters to control due to software or

hardware restrictions.

It can be said that it is crucially important to seek an implementable,

highly flexible, and higher capable wireless communication systems and its

basic scheme to optimize them by using machine learning technologies in

today’s and future wireless communication systems like beyond 5G or 6G.
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1.2 Purpose of Research

Based on the understanding of current status and issues indicated previous

section, this paper proposes an online machine learning algorithms to opti-

mize performances of complex wireless communication systems. These enable

wireless communication systems to adapt the environment and the demand

of traffic autonomously and intelligently in online manner. Applications in-

cluding implementation on the wireless devices and verification through both

real world experiments and computer simulations are also shown.

It is expected that more data obtained and more parameters can be con-

trolled, intelligent wireless communication systems using machine learning

can take better actions and reach higher performance in various environ-

ments and use cases. However, there are lots of limitations in real world

devices, in terms of quantity and quality, which come from the software and

hardware capability. Deep learning technologies [1] are novel applications

and very strong tools for data-driven modeling for various systems and vari-

ous purposes. It is an application of supervised learning and recently became

famous of image recognition and Google AlphaGo [6]; in the latter case the

combination of deep learning and Q-learning, deep reinforcement learning

(DRL) was used. While many literatures has recently applied DRL for the

wireless communication field [150–288], there are still challenges and open

issues: How to implement on and operate with real devices on condition that

they process the large amount of data based on high computational capacity.

It would be hard to realize enough if considering mobile devices which have

rather short resources of hardware.

Considering those issues, this paper proposes a new schemes of optimiz-

ing the performance of complex wireless communication systems using ma-

chine learning technologies. The main proposal is composed of two schemes

based on the mapping of conventional and existing optimization schemes:

one scheme is a supervised learning based modeling and optimization, an-

other scheme is a simple reinforcement learning based optimal decision using

a multi-armed bandit (MAB) algorithm.
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The first scheme is based on supervised modeling like DRL, but the al-

gorithm uses rather continuous function, and the optimization algorithm is

introduced which is similar to the conventional theoretical and mathemati-

cal optimization approaches, not like in the trial-and-error based reinforce-

ment learning approaches. It would be more suitable if the relation among

parameters and resulting performances is rather continuous, such as net-

work throughput performance and parameters like transmission power or

the length of waiting time etc. In this paper, as an example of continuous

function, support vector regression (SVR) and particle swarm optimization

(PSO) algorithm are introduced for the decision of optimal parameters in

feasible time. In order to validate the possibilities of real world implemen-

tation, these algorithms are implemented on IEEE 802.11 wireless local area

network (WLAN) devices and experiments using these devices are examined.

The computer simulations are also conducted to verify the scalability of pro-

posed scheme. In addition, a different application for space communication

area, emulator-based network experiments are conducted and verified.

The second scheme is a simple reinforcement learning approach, which

is based on the formulation of MAB problem and uses a novel MAB algo-

rithm called tug-of-war (TOW). It can be applied to light-weight devices like

massive IoT. Those devices require distributed algorithms to optimize their

decision, especially in time-varying situation. Simple reinforcement learning,

based on the MAB problem formulation, can satisfy the requirements. In

this paper, as examples of applications of this scheme, heterogeneous net-

work selection is examined with real wireless devices. Also, Zigbee network

in dense use case is examined through computer simulations.

1.3 Outline

The rest of this paper are following: starting with the indication of issues of

current and future wireless communication systems in Chapter 2, various ap-

proaches of the optimal decisioning by machine learning based modeling are
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reviewed in Chapter 3 and the proposed schemes are indicated. In Chapter 4,

one of the proposed schemes, supervised learning modeling and optimization

algorithm, is elaborated and some experimental results are shown. In Chap-

ter 5, another scheme, simple reinforcement learning based optimal decision

using an MAB algorithm called tug-of-war (TOW), is elaborated and some

experimental results are shown. Both chapters include implementation on

real world devices and experiments. Finally, in Chapter 6, conclusion and

some remarks are described.
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Figure 1.1: Categorization of search results from IEEE Xplore journal papers

(cited at least once from others) with keywords “wireless” and “machine

learning”.
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Chapter 2

Issue of Current and Future

Wireless System

2.1 Introduction

5G system [18] has just been deployed several regions in the world very

recently. Comparing to 4G/LTE or 3G, the major difference of 5G system

is that there is no single technology to develop like OFDM in 4G/LTE or

CDMA in 3G.

A 5G system network consists of radio access network (5G NR) and core

network (5G CN). For 5G NR, physical transmission technologies are pro-

posed such as OFDM(A) on higher frequency band like 60 GHz millimeter

wave, massive MIMO with beam foaming, and so on. For 5G CN, several

network management technologies are required such as network function vir-

tualization (NVF), software defined network (SDN), edge computing, and

network slicing. Along with them, 5G system is more comprehensive: it can

include legacy 4G/LTE system, licensed assisted access (LAA) / licensed

shared access (LSA) assuming the usage of industrial, scientific, medical

(ISM) band frequency which requires a certain channel access scheme for

sharing spectrum with other wireless systems like listen before talk (LBT).

From the view point of performance requirements, there are three major
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requirements for 5G system: enhanced mobile broad band (eMBB), massive

machine type communications (mMTC), and ultra-reliable low latency com-

munications (URRC). Fundamentally, these are different aspects of require-

ments each other. Indeed, as use cases, various independent scenarios are

proposed based on these requirements: a rapid download of large data such

as movie data of some gigabytes (GB) by satisfying eMBB, a management of

massive amounts of mobile sensors like IoT devices by satisfying mMTC, and

telemedicine with extreme low latency wireless network by satisfying URRC.

To satisfy these extreme requirements of 5G system, high performance

devices/equipments are needed in the wireless communication systems, while

being capable of managing low-end devices like IoT. All these requirements

and use cases means, the current and future wireless communication systems

are becoming more and more complex and heterogeneous.

2.2 Research challenge to optimize future wire-

less communication system

2.2.1 New era of machine learning equipped wireless

communication systems

Several literatures indicate that the management of 5G/Beyond 5G system

requires machine learning technologies [26, 51–53, 55, 64, 149]. For example,

in [149], applications of machine learning in wireless communication systems

are shown as in Table 2.1.

2.2.2 Cognitive radio technology

Cognitive radio [3] is a classical but fundamental concept of a wireless sys-

tem which can adapt the various change of environment: sudden increase or

decrease of traffic demand, variation of wireless channel, contention among

wireless transmitters, and so on. The key idea of cognitive radio is learning
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Table 2.1: Machine learning algorithm to enhance cellular networks (modified

from [149]).

Function Examples Algorithms

Sensing

Detection of network

anomalies or events

by multiple-entry data

from hybrid sources

Logistic Regression (LR),

Support Vector Machine (SVM),

Hidden Markov Model (HMM)

Mining

Classifying services

according to the

required provisioning

mechanisms

(e.g., bandwidth,

error rate, latency)

Supervised learning:

- Gradient Boosting Decision Tree (GBDT),

Unsupervised learning:

- Spectral Clustering,

- One-class SVM,

- Replicator Neural Networks (RNN)

Prediction

Forecasting the trend of

UE mobility or

the traffic volume of

different services

Kalman Filtering (KL),

Auto-Regressive Moving Average (ARMA),

Auto-Regressive Integrated Moving

Average (ARIMA),

Deep Learning (DL):

- Recurrent Neural Networks (RNN),

- Long-Short Term Memory (LSTM),

Compress Sensing (CS)

Reasoning

Configuration of a series

of parameters

to better adapt services

Dynamic Programming (DP):

- Branch-and-Bound Method,

- Primal-and-Dual Method,

Reinforcement Learning (RL):

- Actor-critic Method,

- Q-Learning Method,

Transfer Learning (TL)
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and action, and the feedback cycle of them. This concept is very similar to

that of machine learning, especially online machine learning like reinforce-

ment learning. It observes environmental variables, peformance, then makes

a policy to adapt the change in environment, then makes action according

updated policy, then observes the result to update the policy more sophisti-

cated one.

It is clear that this concept, cognitive radio or cognitive cycle [4], will

be suitable to the complex future wireless communication systems. In ad-

dition, recent advancement in the field of machine learning technologies can

boost the progress of cognitive radio development through realizing and im-

plementing the key idea, learning, to the wireless systems in real world.

In this paper, according to the above mentioned viewpoints, the appli-

cation of machine learning technology, especially online manner, to optimize

complex wireless communication systems are researched.

2.3 Summary

In summary, current 5G or beyond 5G/6G communication systems bring

about the difficulties, to optimize their performance, which are consist of

various protocols and layers inside a communication node, heterogeneity of a

communication network, and the interaction among them and environment,

namely, their complexity as a whole end-to-end system. As a result, some

new technologies are required to improve the whole system performance. In

this paper, the applications of machine learning technology is proposed and

discussed through categorization of application to optimize complex wireless

communication systems. Next section elaborates that point.
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Chapter 3

Machine Learning for Wireless

System

In this section, various machine learning application for wireless communi-

cation systems are reviewed in terms of the amount of information available

in each system model, the type of decision of best action within each sys-

tem. Through comparing to conventional and current research works, the

approach of this paper is indicated clearly.

To begin with the conclusion of this section, there are two major issues

in current and future complex wireless communication systems. These arise

from the simple question: How the wireless nodes decide optimal action in

today’s complex wireless communication systems. The issues are following:

• Issue 1. Classical one-way optimal decision is not suitable for complex,

time-varying situations any more. We have to seek the alternatives.

• Issue 2. Classical mathematical formulation and optimization tech-

nique can not be applied to complex, time-varying situations any more.

We have to try other approaches.

13



3.1 Cognitive radio

Cognitive radio technology, proposed by Mitola in [3] in 1999, is a fundamen-

tal concept of intelligent wireless communication system. Fig.3.1a shows the

cognition cycle proposed by Mitola [3]. It learns environment and the behav-

ior of wireless communication nodes, make trial-and-error to seek best action

to improve the performance. Haykin showed a cognitive cycle of intelligent

radio in [4]. Fig.3.1b shows the cognitive cycle proposed by Haykin [4]. An

intelligent radio shown in this figure observes wireless environment, conducts

radio-scene analysis, and estimates channel state and builds the predictive

model. It uses this model to estimate channel capacity and control the trans-

mission power and manages the spectrum to use. It then transmits radio

signals, which in consequence becomes feedback for the radio itself.

These works did not refer to examples of learning algorithms though,

still it is a comprehensive model of adaptive and intelligence modern wireless

communication system.

3.2 Classical Optimization and Current Ma-

chine Learning Approach

There has been a number of literatures seeking the optimal decision of wire-

less communication systems through mathematical and theoretic formulation

of wireless channel and transmission power control [39]- [44], modulation and

coding, the behavior of MAC protocol [2] or higher layer protocol, etc. The

common approach of these researches is to define the mathematical model of

the function of wireless communication system, then to formulate the max-

imization (or minimization) problem, and to obtain the optimal solution by

solving the problem.

A good point of these ”classical” approach is that the theoretical optimal

solutions or parameters, or at least upper- or lower-bound of them can be

obtained, under the assumption of the continuity of the function described.
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On the other hand, in terms of the modeling of wireless communication

systems, the classical approach generally focused on a certain layer perfor-

mance such as channel capacity in physical layer or throughput in MAC

layer, and cannot cover whole system modeling. Indeed, current and future

complex wireless communication systems are hard to be described mathe-

matically as a whole system. Due to this limitation, the classical approach

faces fundamental difficulty in applying the optimization of modern wireless

communication systems.

Machine learning technologies, which are becoming more and more im-

portant solution for various issues in current society, could cope with this

difficulty. They give the strong tool to build a whole system model by using

numerous collection of data in a wireless communication system and wire-

less communication network. Machine learning technologies, includling deep

learning and its relatives, have been more and more researched in the field

of communication technology very recently [51–148].

3.3 Optimal Decision by using Machine Learn-

ing Technologies

When using machine learning to optimize the decision and action of wire-

less communication systems, there are two points of view. One point is

the amount of data. Supervised learning, especially deep learning and its

relatives need and can deal with numerous amount of data, to extract the

characteristics of the system from which the data is collected. If the amount

of data is limited, then reinforcement learning approach would be more suit-

able. It can make optimal decision through the iteration of trial and error

cycle under rather the environment of limited information and parameters

to control.

Another point is to how to decide the optimal action to achieve higher

performance. There are two strategy: decision by learning scheme or by op-

timization algorithm, namely maximization or minimization of a formula. If
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the change of the environment surrounding wireless communication systems

are relatively slow, and if the relation between parameters and performance

is continuous, not discrete, then optimization algorithm would be suitable.

It is also notable that if the relation between parameters and performance is

discrete, then reinforcement learning approach would be suitable as well.

Fig.3.2 shows the relation of these approaches and examples of applica-

tion of optimizing wireless communication systems. The approaches of the

research in this paper are on two panes of this figure. One on the upper-

left pane is a sort of simple reinforcement learning, using MAB, multi-armed

bandit problem formulation. Another on the lower-right pane is well-known

cognitive cycle based approach using machine learning (mainly supervised)

and optimization algorithm. To the best of my knowledge, former researches

by the latter approach, are hardly found. These are elaborated in the follow-

ing sections.

3.3.1 Classical theoretical model and optimal decision

The lower-left pane in Fig.3.2 indicates “classical” theoretical model and

optimization. It uses mathematical formulation of wireless communication

systems, usually focusing on a certain layer (or two layers like physical layer

and MAC layer). Then the problem is converted to the optimization problem:

optimization are applied for maximization or minimization of the equation

formulated above, which gives the optimal parameters of the equation. The

obtained optimal parameters are, under the assumption of continuity of the

function expressed in the formulated equation, theoretically optimal values

by definition. There many good examples of this type of researches, such as

water-filling optimization of transmission power [290].
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3.3.2 Deep learning based model and reinforcement

learning based decision

Deep learning (DL) is a newly developed and a rapidly spreading technique

in various fields in the current society. It is an advanced form of a artificial

neural network, and a kind of supervised learning. The first achievement of

the DL was in the field of computer vision. It seems to simulate a human

image recognition, and the impact of that spread all over the world.

In the filed of wireless communication systems, DL technique has been

introduced in various layers of communication [55]. The early applications of

DL are in the estimation of parameters of propagation channel [65, 85, 258],

device location estimation [68,101,113,113,116,117,139], etc.

Deep reinforcement learning (DRL) has been applied very recently in

the field of wireless communication systems. DRL is a combination of deep

learning and reinforcement learning as shown in Fig.3.3. It can be said as an

implementation of cognitive cycle: it learns the relation among environment,

parameter, action, and performance of the wireless communication node by

deep learning. It also decides its action by seeking better action through

trial-and-error: reinforcement learning. The major strong point of DRL is

to build the performance model by deep learning in online manner, and to

utilize it to predict the performance of the systems when certain parameters

are deployed. Reinforcement learning, usually Q-learning based algorithm, is

applied to seek better actions by evaluating the results, update its network,

and choose predicted better parameters by using deep learning. Note that

DRL always requires the information of the state of wireless communication

systems, which might unrealistic in the real world.

3.3.3 Supervised learning based model and optimal de-

cision

DRL is a strong technique to seek better decision of wireless communication

systems as described in the previous section. However, there are some as-
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sumptions and limitations. First, it needs a large amount of data due to the

training in deep learning. It leads some temporal training overhead in the

real world implementation. Second, it uses reinforcement learning: even if

the variables are continuous and are able to be optimized by minimization

or maximization of continuous functions, it is forced to do trial-and-error

processes. It may suffer form insufficient performance due to the fact that

the number of trial is finite in the real world. In other words, the DRL

approach can be underperform than the classical mathematical formulation

and optimization approach. It is because the classical scheme brings about

theoretically determined parameters which will achieve maximum or at least

some sort of upper-bound performance of wireless communication systems. It

can not be assured in general that the DRL approach reaches the theoretical

maximum performance.

These discussion give an insight of a better solution of using machine

learning technologies to optimize wireless communication systems. What if

some sort of mathematical optimization can be applied to seek the best pa-

rameters, while using machine learning as a tool to build the performance

model of wireless communication systems? The answer proposed in this

paper is the wireless communication systems optimization method based on

cognitive cycle using machine learning and an optimization algorithm. It uses

a supervised (or unsupervised, depending on the problem) learning to build

the performance model of wireless communication systems, and defining the

optimization problem using this performance model as a function of vari-

ables, observables, and performance of the systems. Then, by solving that

optimization problem, the optimal parameters are obtained. After taking

actions according to the optimum parameters, wireless communication sys-

tems observe the results, then update the performance model by the machine

learning. This feedback loop is an implementation of a cognitive cycle based

on machine leaning, taking advantages of classical mathematical formulation

approach. The detail of the proposed scheme is elaborated in the following

section. Note that the word “optimization” used here means mathematical
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optimization: the maximization or minimization of certain functions, not in

a strict meaning of simple optimization problem.

3.3.4 Simple Reinforcement Learning Decision

The assumption of the proposed cognitive cycle approach described in the

previous section is that the communication nodes in wireless communication

systems to be optimized can obtain and control various observables and pa-

rameters. However, wireless equipments in the real world, especially simple

devices like IoT sensors, can not deal with such multiple parameters in gen-

eral. Indeed, one or a few parameters to control, the same as observables, are

typical in IoT devices. In addition, the computational resources and commu-

nication methods are limited in such devices. So, more simple, light-weight

algorithms are worth to be developed.

The multi-armed bandit (MAB) problem [19] is a simple machine learning

problem, while achieving good performance in the limitation of finite number

of trials. It is used in some area of wireless communication systems, like a

channel selection in a cognitive radio [7, 8], or the resource allocation in 5G

small cell [289], but the numbers of researches is limited. In addition, very

a few or none of them show the experimental validation of the research by

implementing on wireless devices.

In this paper, a light-weight and high performance algorithm is proposed

using the Tug-of-War (TOW) algorithm which has been developed recently.

It can achieve as high performance as well-known algorithm like UCB-1

tuned, while the implementation is very simple [23–25]. It is also worth

to be noted that the TOW does not require any information of the current

state of the system.

3.4 Summary

In summary, this paper proposes two novel approaches which are different

from classical mathematical optimization and current state-of-the-art deep
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reinforcement learning. The first proposed approach is that the wireless

communication systems optimization method based on cognitive cycle using

machine learning. It uses machine learning to build the performance model of

the systems, obtain the optimal parameters by the optimization formulation,

and update the performance model in online manner. The second approach

is a simple reinforcement learning, MAB problem formulation. By using a

light-weight algorithm, it is more feasible in terms of the implementation and

the operation of wireless devices like IoT.
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Chapter 4

Optimal decision through

cognitive cycle using supervised

learning based model

Wireless traffic and the number of wireless communication devices have in-

creased rapidly in recent years. However, the frequency bands suitable for

current technologies have already been exploited; thus, the resources are lim-

ited. Moreover, the radio environment becomes more unpredictable because

of two reasons. First, not only the volume but also the type of traffic is

increasing, making the usage of the radio resource more complex. Second,

distributed wireless networks such as the IEEE 802.11 wireless local area

networks (WLANs) are widely deployed, and the inner- and inter-system

interactions cannot be predicted easily.

Cognitive radio technologies [3, 4] have recently been developed to im-

prove the radio resource usage of wireless networks under such situations.

The basic concept of cognitive radio technology is the adaptation of the be-

havior of wireless systems through the recognition and learning of the radio

environment. Cognitive radio systems observe and recognize the wireless

network environment, make reconfiguration decisions, and apply the corre-

sponding action to reconfigure the network. Using this approach, various
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radio parameters can be optimized through appropriate actions.

However, wireless systems have recently become increasingly complex.

Various physical layer techniques such as code division multiplexing, fre-

quency hopping, orthogonal frequency division multiplexing (OFDM), and

Multiple-Input-Multiple-Output (MIMO) technology have been developed.

Channel access techniques in MAC layer such as time division multiple ac-

cess, frequency division multiple access, carrier sense multiple access with

collision avoidance (CSMA/CA) have been developed. Higher layer protocol

such as IP, and TCP or UDP are also used for wireless communication. Each

layer technique has a number of parameters, and modern wireless systems

are equipped with various combinations of those techniques. It means that

the relations among radio variables and system performance are further com-

plicated. It makes general cross-layer modeling of wireless systems difficult.

Consequently, the optimization of whole wireless systems through cross-layer

modeling cannot be realized.

One of the solutions for the above-mentioned issues is the machine learn-

ing technology. Machine learning is data-driven modeling that can provide a

predictable model of wireless communications. The relation between the ac-

tion and performance is learned by increasing the number of samples. Thus,

the complex relations among various radio parameters and network perfor-

mance can be obtained, which improves the precision of decision-making for

the best performance.

This section proposes a wireless system optimization method based on

the cognitive cycle using machine learning. The main contribution of this

research is the clarification of why and how machine learning is adopted in a

cognitive cycle in the current context of wireless communication. In the sec-

tion 4.1, The section 4.2 introduces machine learning technologies for wireless

communication systems and some related works. In the section 4.3, the for-

mulation of the optimization of wireless systems is discussed, followed by a

description of the concept of the proposed optimization method in the section

4.4. Section 4.5 and 4.6 show an implementation of the proposed scheme:
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cognitive cycle and supervised machine learning based modeling. Section

4.7 shows an example of application in IEEE 802.11 WLAN, conducting the

verification of the proposed method through computer simulation and exper-

imental testbed. Section 4.8 shows another example of application in space

communication, conducting the verification of the proposed method through

computer emulations. Section 4.9 gives the summary.

4.1 Cognitive radio

The concept of cognitive radio was first proposed by J. Mitola [3]. Cognitive

radio is described as an intelligent radio that can learn from its past expe-

rience and autonomously decide its actions suitable for radio environments

and needs for communication. The proposed cognitive cycle [3, 5] is a feed-

back cycle of observation, learning, decision, and action. S. Haykin proposed

a more concrete process of cognitive radio in [4] from an engineering per-

spective. He addressed the following fundamental tasks for a cognitive radio:

radio-scene analysis, channel-state estimation, transmit-power control, and

dynamic spectrum management. Wireless network nodes can change the ra-

dio parameters of transmission and reception in order to avoid interference

among users and improve communication quality.

In general, wireless communication needs learning as a means of establish-

ing wireless links and satisfying the communication qualities. For example,

radio frequency (RF) module controls the coding rate based on the received

signal strength indicator (RSSI) to reduce error probability of wireless link.

It means that the RF module learn the relationship between inputs (RSSI,

coding rate) and output (link quality). In cognitive radio networks, cog-

nitive engine should determine and coordinate the actions of the cognitive

radio based on learning of the environment. The relationship of inputs and

outputs becomes more complicated in cognitive radio networks due to its

flexibilities such as software-defined radios. The cognitive radio can control

various parameters: frequency, channel, coding rate, transmission power, etc.
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The relationship between these parameters and the performance of wireless

communication is hardly formulated. Thus, the machine learning technolo-

gies, which can learn the complex, non-linear relationship among various

information would be the solution.

4.2 Machine learning for wireless system

Technologies for next-generation wireless networks, such as 5G, are one of

the major topics in the field of wireless communication today. In [26], discus-

sions about the possibilities of machine learning technologies for the next-

generation 5G network are given. Supervised learning techniques can be

used to support channel state estimation in MIMO systems. Unsupervised

learning for cell clustering, especially in heterogeneous networks, and rein-

forcement learning for the decision-making process of mobile users are also

suggested. Authors of [27] have discussed Autonomic Communications in

future software-driven networks. In particular, they suggested the potential

of machine learning in network optimization and the needs to redesign more

decentralized concepts.

In the next-generation wireless networks, networks become heterogeneous.

There is a discussion of licensed shared access (LSA) [28]- [30]: 5G net-

work nodes can use not only licensed spectrum but also unlicensed bands.

S. Haykin discussed the comprehensive function of a cognitive dynamic sys-

tem to organize the communications using both licensed and unlicensed

bands [31]. The need for dynamic spectrum management by a cognitive

dynamic system in 5G was discussed. In [32], the authors analyzed the per-

formance optimization of heterogeneous cognitive wireless networks. A typi-

cal optimization problem of load balancing was analyzed in both centralized

and decentralized cases. In [33], the authors introduced machine learning

in mobile terminals in order to optimize the aggregation method for IEEE

1900.4 [34] heterogeneous wireless networks and maximize throughput.
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4.3 Cross Layer Modeling of Wireless System

Several studies have attempted to understand the relations among various

variables and performance to optimize wireless networks [35]- [44]. These

researches generally focused on a certain layer performance such as channel

capacity in physical layer and throughput in MAC layer, and does not cover

higher layer application throughputs. For an example of the optimization

of the wireless network capacity, we refer to the resource allocation problem

in [40]. In principle, assuming ideal link adaptation, the formulation of the

sum capacity of a multicell wireless network is expressed as

𝐶 (𝑼, 𝑷) = 1

𝑁

𝑁∑
𝑛=1

log(1 + Γ( [𝑼]𝑛, 𝑷)),

where 𝑁 is the total number of cells, Γ is the signal to interference and noise

ratio (SINR) at the receiver, 𝑼 is the set of users simultaneously scheduled

across all cells, [𝑼]𝑛 is the users in cell 𝑛, and 𝑷 is the transmit power of

the scheduled users. Then, the capacity optimization problem by resource

allocation is formulated as

arg max
𝑼,𝑷

𝐶 (𝑼, 𝑷). (4.1)

As referred in [40], this problem is nonconvex, so the solution is not straight-

forward; still this equation represents the fundamental relations among radio

variables and system performance.

For another example, in [44], the optimization problem of cooperative

sensing in cognitive radio networks was analyzed. This is a sensing-throughput

tradeoff problem: a strict sensing policy minimizes the possibilities of inter-

ference to the primary user though the opportunities to gain more throughput

would be missed, and vice versa. The achievable MAC layer throughputs of

the secondary users 𝑅 can be given as

𝑅(𝜏, 𝑘, 𝜖) = 𝐶0𝑃(𝐻0)
(
1 − 𝜏

𝑇

)
(1 − P 𝑓 (𝜏, 𝑘, 𝜖)),

where 𝜏 is the sensing time, 𝑇 is the total frame time (including sensing time

𝜏), 𝑘 is the number of sensing results of sensor nodes (1 ≤ 𝑘 ≤ 𝑁, 𝑁 is the
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total number of sensor nodes), and 𝜖 is the threshold parameter of the energy

detector at the sensor node. 𝐶0 is the ideal throughput of the secondary users

if the primary user is always absent, 𝑃(𝐻0) is the probability of the primary

user being absent in the channel, and P 𝑓 is the probability of false alarm.

Focusing on the maximization of the secondary users’ throughput, i.e., the

minimum probability of detection of the primary user is assumed, the sensing

threshold 𝜖 can be given by the function of 𝜏, 𝑘, and received signal-power-to-

noise ratio (SNR). Under this condition, the optimization of the throughput

of secondary users is formulated as

arg max
𝜏,𝑘

𝑅(𝜏, 𝑘). (4.2)

Since the throughput depends on the probabilities of false alarm and detec-

tion, which depend on SNR, equation (4.2) can be expressed as a function of

𝜏, 𝑘, and SNR. This formulation was examined by computer simulation and

optimal values of 𝜏 and 𝑘 for a given SNR were obtained.

The formulations of optimization problems (4.1) and (4.2) can be gen-

eralized as follows: let the radio parameters be 𝑝 (such as 𝑼, 𝑷, or 𝜏, 𝑘),

the observed radio environment be 𝑧 (such as SINR or SNR), and the sys-

tem performance be 𝑦 (such as capacity or throughput). Then, they can

be formulated as 𝑦 = 𝑓 (𝑝, 𝑧), where 𝑓 represents the relations among radio

parameters, environment, and performance. Then, the optimization problem

is formulated as

arg max
𝒑

𝐸 (𝒚) = arg max
𝒑

𝐸 ( 𝑓 ( 𝒑, 𝒛)), (4.3)

where 𝐸 (𝒚) is the utility function of throughputs, for example, the summation

of the expected throughput of each node. By solving the above equation, the

optimal set of parameters ( 𝒑) required to maximize the network performance

is obtained. This can be done if the relation between the inputs and output

is mathematically described.

In recent wireless systems, however, the situation has become more com-

plicated. As mentioned above, modern wireless systems are equipped with
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various technologies in each layer. Some systems transmit signals on a single

carrier with frequency hopping, and others on a multicarrier with OFDM.

The channel access of one protocol is TDMA, and others’ is CSMA/CA.

In general, applications of wireless communication use higher layer protocol

such as IP, and TCP or UDP. Therefore, we need to consider various ob-

servables 𝒛 and parameters 𝒑. Moreover, the relations among these variables

and network performance are hardly known. Consequently, the mathematical

formulation of function 𝑓 cannot be realized.

Machine learning technologies, which have the fundamental characteris-

tics of data-driven modeling, are the aid of this difficulty. By using them,

the hidden and complex relations among various wireless observables and

parameters and network performance can be obtained. We propose a gen-

eralized cross-layer modeling of wireless system performance using machine

learning. In the proposed modeling, 𝐸 (𝒚) can denote utility of whole system

performance including application. 𝒑 denotes various layers’ parameter, 𝒛

denotes various observables. The optimization method using the proposed

modeling is described in the next subsection.

4.4 Optimization based on cognitive cycle

Fig.4.1 depicts the concept of the proposed wireless system optimization

method using machine learning. It is based on cognitive cycle, as described

below.

4.4.1 Measurement of environment and performance

The observables of environment 𝒛 are collected, which include not only the

radio status but also MAC statistics, or higher layer statistics. As for 𝒑,

various parameters of the wireless node or network are considered. Besides

these variables, network performance 𝑦 is observed. They are a set of samples,
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[Measurement]

Environment z, parameter p, 

and performance y

S = {(p1, z1, y1), ..., (pn , zn , yn)}

Action with current 

parameter

Wireless 

Channel

[Update learning model]

y = f (p, z)

Using S, update f by machine learning

[Decision of optimal action]

arg max E(y) = arg max E(f (p, z))

p p

[Reconfiguration to optimized parameters]

Change radio parameter to p*

Cognitive Radio

Figure 4.1: The proposed method based on cognitive cycle using machine

learning.

𝑆, for a machine learning algorithm:

𝑆 = {( 𝒑1, 𝒛1, 𝑦1), ( 𝒑2, 𝒛2, 𝑦2), ..., ( 𝒑𝒏, 𝒛𝒏, 𝑦𝑛)}.

4.4.2 Update learning model

Using 𝑆, the cognitive engine builds and update the model 𝑓 by machine

learning:

𝑦 = 𝑓 ( 𝒑, 𝒛). (4.4)

The updating manner depends on the type of algorithm. For supervised

learning, it uses 𝑆 as training data, and for unsupervised learning, it uses 𝑆

for clustering, or dimension reduction.
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4.4.3 Decision of optimal action

By solving the optimization problem (4.3), a cognitive engine decides an

optimal action to adopt the current situation. The solution of (4.3), 𝒑∗,

yields the optimal parameters for communication entities.

4.4.4 Reconfiguration to optimized parameters

After deciding the optimal action, to use parameter 𝒑∗, the cognitive engine

starts to reconfigure the wireless network. Necessary information is sent to

communication entities. Fig.4.2 shows the whole system concept.

Wireless communication system

                                  by optimization algorithm

                                  (max./min. of continuous

                                   function:  f(p))

Environment:

Wireless Channel

Modeling

Decision

Action

Obtain

observables

Take action

Supervised learning based-modeling and optimization

Figure 4.2: The proposed supervised learning based modeling and optimiza-

tion based decisioning scheme.

In the next section, we will describe a wireless network sample for intro-

ducing and evaluating our proposed method.

33



4.5 Implementation and Evaluation

4.5.1 Application to IEEE 802.11 WLAN

In this section, we evaluate the proposed optimization method by applying

it to the IEEE 802.11 WLAN. As an example of an optimization scenario,

we consider the parameter optimization of the IEEE 802.11 stations (STAs)

operated in the infrastructure mode. Each STA and cognitive controller

connected to access points (APs) has functions of a cognitive engine described

in the previous section and runs the cognitive cycle as mentioned below.

4.5.2 Measurement of environment and performance

Each STA measures wireless environment 𝒛, obtains the current radio param-

eter 𝒑, and performance 𝑦, and then adds a sample to 𝑆. 𝒛 includes the radio

status at the STA, such as the received signal strength indicator (RSSI) and

wireless link quality. 𝒑 includes wireless parameters such as transmit power,

operating channel, and address of connecting AP. The uplink or downlink

throughput is considered as the performance index 𝑦.

4.5.3 Update learning model

The cognitive engine in the STA updates the learning model 𝑓 by using 𝑆.

We consider supervised learning for the evaluation. The cognitive engine

builds a model that represents the relations among 𝒛, 𝒑, and 𝑦 from training

samples 𝑠, and then sends the information of the model to the cognitive

controller.

4.5.4 Decision of optimal action

The cognitive controller solves the optimization problem (4.3) by using the

information of the model from STAs, and obtains the optimal parameters

𝒑∗ of STAs. The information of the optimal parameters is sent to STAs to

reconfigure the network.
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4.5.5 Reconfiguration to optimized parameters

The STA changes its wireless parameters according to 𝒑∗, and then continues

the cycle starting from the measurement of environment and performance.

4.6 Implementation of learning and optimiza-

tion

We use support vector regression (SVR) as a learning algorithm, similar

to [33]. SVR is an analog output version of support vector machines (SVMs)

[45]. In SVR, the estimation function 𝑓 can be expressed as [46]

𝑓 (𝒙) =
𝑙∑
𝑖=1

(𝛼′𝑖 − 𝛼𝑖)𝐾 (𝒙, 𝒙𝑖) + 𝑏, (4.5)

where 𝑙 is the number of training samples, 𝒙𝑖 is the input of the training

samples ( 𝒑 and 𝒛), 𝒙 is an unknown input set for the learning algorithm,

and 𝐾 is a kernel function. 𝛼𝑖, 𝛼
′
𝑖 , and 𝑏 are unknown parameters obtained

by the optimization technique proposed in [46], using training samples 𝒑, 𝒛,

and 𝑦.

We formulate the optimization problem (4.3) in the evaluation as below:

arg max
𝒑

𝑁∑
𝑛=1

log (1 + 𝑓 ( 𝒑𝑛, 𝒛𝑛)), (4.6)

where 𝑁 is the number of STAs, 𝒑𝑛 is the possible parameter set for STA-𝑛,

𝒛𝑛 is the current measured quality of the radio environment at STA-𝑛, and

𝑓 ( 𝒑𝑛, 𝒛𝑛) is the estimated throughput of STA-𝑛 obtained using the through-

put model described above. Here, we use the logarithmic utility function

of throughput considering fairness among STAs, where STAs with lower

throughput have relatively larger gains for the objective function than those

with higher throughput.
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4.7 Application for IEEE 802.11 devices

We implement the method for the IEEE 802.11 WLAN devices. The exper-

iments are coordinated in our university laboratory working space [49].

The IEEE 802.11 WLAN APs and STAs are operated in the 2.4 GHz

ISM band. Laptop PCs with Ubuntu 14.04 are used as both STAs and APs.

In each cognitive cycle, the STA observes the delay and packet loss ratio

through pinging, RSSI from its connecting AP using the iwconfig command,

the number of packets around the STA using tcpdump command as the link

quality (𝒛), and the throughput (𝑦) using the TCP iPerf command. The STA

sets the transmission power, channel number (from 1 to 13), and data rate

at the physical layer (from 6 to 54 Mb/s) for the current wireless parameters

( 𝒑).

The STA then builds the throughput model through SVR, and sends

information regarding the SVR model to its connecting AP. The AP sends

it to the cognitive controller. We have setup one of the APs as the cognitive

controller, which calculates the optimal set of STA parameters 𝒑∗, returns

the result to the AP, and then the STA obtains the result from its connecting

AP. To reduce the calculation costs for solving the optimization problem, we

use the particle swarm optimization (PSO) algorithm [47,48] at the cognitive

controller.

In the experiment, three APs and nine STAs are operated in channels 1,

6, and 11 in IEEE 802.11g. The operating channel is fixed for each AP. The

locations of all APs and STAs are fixed during the experiment. We use uplink

TCP throughputs to evaluate the performance since uplink traffic generally

makes radio resource usage more competitive in CSMA/CA. We also add

background UDP traffic of approximately 8 Mb/s on channel 11. To verify

the performance of the proposed system, the uplink throughput performance

is compared with that of other algorithms, focusing on the selection of the

connecting AP at the STA as follows: (A) selection by RSSI, (B) random

selection, (C) selection by radio resource utilization, and (D) selection of

the number of STAs as equally as possible among channels. In algorithm (A)
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using RSSI, the STA selects an AP with the highest RSSI. This seems to be a

popular method for devices in the market. In algorithm (C), the STA selects

the AP of a channel where the minimum number of packets is observed in

each cycle. In each algorithm, each cycle runs for 30 s. All STAs start iPerf

traffic of 2 s at the same time in each cycle. Before starting the proposed

method, the STA observes the radio environment in each channel for 1 hour

and utilizes it as training data.
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Figure 4.3: Improvement in throughput relative to (A)RSSI by time in each

algorithm. Copyright(C)2020 IEICE, [302] Fig.2

Fig. 4.3 shows the moving average throughput by time for each algorithm.

Throughputs are normalized by those in RSSI. The time is expressed as the

number of cognitive cycle, and the throughput is averaged every 10 cycles

(5 minutes). The proposed method shows greater throughput than other

algorithms, indicating that the STAs can select APs effectively.

Fig. 4.4 compares the average throughput per channel among the algo-

rithms. The utilization-based algorithm (C) shows higher throughput at

channel 6, where it is detected as the most vacant channel. However, the

throughputs at the other channels are much lower. This algorithm is based

37



0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 6 11

N
o

rm
al

iz
ed

 T
h
ro

u
g

h
p

u
t

WLAN Channel

(A)RSSI (B)Random (C)Utilization (D)EqualSTA Proposed

Figure 4.4: Average throughput at each channel. Throughput is normalized

by those in (A)RSSI. Copyright(C)2020 IEICE, [302] Fig.2

on the observations of a wireless environment but does neither learns, nor

optimizes the whole system.

In contrast, the proposed method, which has a function of learning and

optimization, shows higher throughput at channels 1 and 6 and lower through-

put at channel 11, which has higher background traffic. As a whole, the

proposed method can improve the network performance. These results indi-

cate that the proposed method can build the appropriate throughput model

through learning, and can select the optimized wireless parameters that im-

proves the whole network performance.

Channel selection at each station

In order to investigate the detail of the results, the total system throughput

increased, the channel selection and the throughput of STAs are examined

here. Fig.4.5 and Fig.4.6 show the channel selections and the throughputs

of STAs whose throughputs are increased with the proposed algorithm com-
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pared to those with RSSI. STA04, for example, selects channels of 1 and 6

with the proposed algorithm, whereas with RSSI based algorithm, it selects

only channel of 11. The throughputs with RSSI based algorithm are lower

than those with the proposed algorithm though the time.

Fig.4.7 shows the channel selections and the throughputs of STAs whose

throughputs keep those levels. STA02, for example, selects channels of 6

and 11 with the proposed algorithm, whereas with RSSI based algorithm,

it selects only channel of 1. The throughputs with the proposed algorithm

are similar to those with RSSI based algorithm though the time, sometimes

lower and sometimes higher, and even as average.

Fig.4.8 shows the channel selections and the throughputs of STAs whose

throughputs keep those levels. With RSSI algorithm, these STAs select chan-

nels of 1 or 6, because RSSI to APs using these channels is higher than that

of channel 11. On the other hand, with the proposed algorithm, STAs select

sometimes channel 11. Due to the background traffic applied to channel 11,

the throughputs in the proposed algorithm decrease. Note that the through-

puts with RSSI algorithm are relatively higher than those in Fig.4.5 and

Fig.4.6, where the throughputs increase. This results come from the opti-

mization algorithm introduced in Eq.(4.6), i.e. STAs with lower throughputs

and higher throughputs are optimized by this equation.
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(a) Channel selection at STA04.
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(b) Throughput at STA04.
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(c) Channel selection at STA05.
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(d) Throughput at STA05.

Figure 4.5: STAs where throughputs increase.
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(a) Channel selection at STA06.
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(b) Throughput at STA06.

!

"

!!

# $ !# !$ %# %$ &# &$ '# '$ $# $$

(
)*
)+
,)
-
./
0
12
2
)*

345).65427

!"#$$%&

(38#9.6:;<=<>)-7 (38#9.6?((@7

(c) Channel selection at STA09.
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(d) Throughput at STA09.

Figure 4.6: STAs where throughputs increase (continued).

41



!

"

!!

# $ !# !$ %# %$ &# &$ '# '$ $# $$

(
)*
)+
,)
-
./
0
12
2
)*

345).65427

!"#$$%&

(38#!.69:;<;=)-7 (38#!.6>((?7

(a) Channel selection at STA01.
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(b) Throughput at STA01.
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(c) Channel selection at STA02.
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(d) Throughput at STA02.

Figure 4.7: STAs where throughputs are similar.
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(a) Channel selection at STA03.
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(b) Throughput at STA03.
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(c) Channel selection at STA07.
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(d) Throughput at STA07.
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(e) Channel selection at STA08.
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(f) Throughput at STA08.

Figure 4.8: STAs where throughputs decrease.
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4.7.1 Evaluation by computer simulation

We also conduct a computer simulation for an extended evaluation of the

proposed method. The basic implementation is the same as that in the ex-

periments already shown. The binary programs of learning and optimization

are also the same as those in the experimental devices. Network simulator

QualNet 7.4 [50] is used for the platform of computer simulation. The num-

ber of STAs is 21 and that of APs is 3; the operating channels are 1,6, and

11. The variables of learning sample ( 𝒑, 𝒛, 𝑦) are the same as those in the

experiment conducted in the laboratory. STAs in the proposed system send

uplink TCP traffic of two types of offered loads. The background traffic is

generated by constant bit rate (CBR) traffic. The offered load of channel

6 is rather smaller than that of channels 1 and 11. The detailed settings

of simulation are shown in Table 4.1. The main difference in settings from

those of the experiments is the offered load variation of STAs in the proposed

system. Similar to the experimental results, computer simulation shows the

improvement by introducing the proposed method, as shown in Fig. 4.9 and

Fig. 4.10. From Fig. 4.10, the proposed cognitive cycle using machine learn-

ing can optimize the choice of channel in accordance with the formulation of

(4.6).

Channel selection at each station

In order to investigate the detail of the results, the total system throughput

increased, the channel selection and the throughput of STAs are examined

here. Fig.4.11–4.13 show the channel selections and the throughputs of STAs

whose throughputs are increased with the proposed algorithm compared to

those with RSSI. STA04, for example, selects channels of 1 and 6 with the

proposed algorithm, whereas with RSSI based algorithm, it selects only chan-

nel of 11. The throughputs with RSSI based algorithm are lower than those

with the proposed algorithm though the time.
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Table 4.1: Simulation settings

Parameter Value

Area size 20 m x 20 m

Number of ieteration 10 times

Pathloss model Free space decay

Channel model Additive white gaussian noise (AWGN)

Traffic in proposed system TCP of 1.4 Mbps in 6 STAs

TCP of 0.7 Mbps in 15 STAs

Number of background APs 3 APs in each channel

Number of background STAs 5 STAs in channel 1

1 STA in channel 6

7 STAs in channel 11

Background traffic CBR of 500 Kbps/STA in channel 1

CBR of 100 Kbps in channel 6

CBR of 500 Kbps/STA in channel 11
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Figure 4.9: Improvement in throughput relative to (A)RSSI by time in each

algorithm in computer simulation.
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Figure 4.10: Average throughput at each channel in computer simulation.

Throughput is normalized by those in (A)RSSI.
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(a) Channel selection at STA05.
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(b) Throughput at STA05.

!

"

!!

# $ !# !$ %# %$ &# &$ '# '$ $# $$ "#

(
)*
)+
,)
-
./
0
12
2
)*

345).65427

!"#$$%&

(38#9.6:;<=<>)-7 (38#9.6?((@7

(c) Channel selection at STA09.
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(d) Throughput at STA09.

Figure 4.11: STAs where throughputs increase.
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(a) Channel selection at STA04.
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(b) Throughput at STA04.
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(c) Channel selection at STA08.
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(d) Throughput at STA08.
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(e) Channel selection at STA06.
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(f) Throughput at STA06.

Figure 4.12: STAs where throughputs increase (continued).
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(a) Channel selection at STA02.
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(b) Throughput at STA02.
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(c) Channel selection at STA01.
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(d) Throughput at STA01.

Figure 4.13: STAs where throughputs increase (continued).
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(a) Channel selection at STA03.
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(b) Throughput at STA03.
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(c) Channel selection at STA07.
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(d) Throughput at STA07.

Figure 4.14: STAs where throughputs decrease.
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4.8 Application for space communication

The propose supervised learning based optimization scheme is applied for

space communication. Fig.4.15 shows an example of future wireless commu-

nication system in the space, indicated in [295].

Relay station

Lunar gateway

Earth
Moon

Lunar base

connected by 6G
  384,400 km  

Figure 4.15: An example of future wireless communication between the Earth

and the Moon. The basic concept is in [295]

One of the characteristic of space communication different from terrestrial

wireless communication is large communication delay. The main component

of communication delay is a propagation delay, which is shown in Table 4.2.

The distance from the Earth to the Moon, for example, is 384,400 km in

average, where the bidirectional wireless communication experiences at least

more than 2.56 seconds. This scale of delay is to be handled at higher

layer than physical or MAC layers, namely, transport layer with such as

TCP. However, the physical and MAC parameters have also to be taken into
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consideration: modulation and coding scheme (MCS), transmission power

etc. This is the similar situation that is shown in previous subsection in

the application for IEEE 802.11 devices. Therefore, in this subsection, the

application of proposed supervised learning based optimization scheme to

the space communication is examined.

Table 4.2: The relation between distance in one way (km) and two way

propagation delay (ms). The propagation media is assumed to be vacuum,

i.e. the refractive index is 1.0.

Distance (one way, km) Propagation delay (two way, ms)

1,000 6.67

5,000 33.36

10,000 66.71

30,000 200.14

50,000 333.56

100,000 667.13

200,000 1,333.26

300,000 2,001.38

400,000 2,668.51

450,000 3,002.08

4.8.1 System model

Fig.4.16 shows the system model of evaluation. The wireless communication

network is simplified a direct communication between the ground station

on the Earth and the satellite near the Moon. The ground station run the

proposed scheme: optimal decisioning of communication parameters of from

physical layer to transport layer. Here, the specifications of physical and
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Table 4.3: Availabe MCS

MCS index Modulation and coding rate

1 QPSK 1/4

2 QPSK 1/3

3 QPSK 2/5

4 QPSK 1/2

5 QPSK 3/5

6 QPSK 2/3

7 QPSK 3/4

8 8PSK 2/3

9 8PSK 3/4

10 16QAM 2/3

11 16QAM 3/4

12 32QAM 2/3

13 32QAM 3/4

MAC layer are abstract models: wireless communication nodes, including

the base station on the Earth and a satellite near the Moon, transmit signals

using some modulation and coding scehems (MCSs). Table 4.3 shows the

MCS indexes of the evaluation. Other parameters, MTU and TCP algorithms

are: MTU 500 to 1,500 Byte, and TCP algorithms are Reno, cubic, and

Bottleneck Bandwidth and Round-trip propagation time (BBR) [296].

4.8.2 Implementation and Evaluation

Table 4.4 shows the algorithms for evaluation. These corresponds with right

quadrants of Fig.3.2, i.e. the amount of available information is large and
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the decisioning is done by learning or optimization algorithm.

Table 4.4: Algorithms of modeling and decisioning using supervised learning.

ID Modeling Decisioning

(1) Deep learning Reinforcement learning: MAB with 𝜖-Greedy

(2) Support vector regression Reinforcement learning: MAB with 𝜖-Greedy

(3) Support vector regression Optimization (using PSO)

Desktop computer where Ubuntu 17.10 is installed is used for emulation

of space communication, by using tc command. For the application traffic,

image file of 10 MByte is transfered by a socket program. The duration of

transferring is monitored to obtain the throughput. Parameters such as de-

lay corresponding radio propagation in space and other processing factors,

and packet error rare are variable. In order to train each alorithm, several

pre-traing with random sampling parameters was conducted before the ex-

periments and used for each algorithm to build the model. Table 4.5 shows

other settings of parameters.

As a reference algorithm, a deep reinforcement learning, as previously

shown in Fig.3.3 is examined through experiments. It is to evaluate the right

panes of Fig.3.2.

In Fig.4.17 shows the throughput results of those algorithms with the

communication distance of 390,000 km. It roughly corresponds to the dis-

tance between the Earth and the Moon (384,400 km), where the thoughput

performances show the superiority of the proposed algorithm. The percent-

age values show the relative throughput increase or decrease to that of deep

reinforcement learning (DRL) algorithm (deep learning with 𝜖-Greedy algo-

rithm). The proposed algorithm, support vector regression (SVR) modeling

and optimization algorithm (using PSO), show +18 % increase of through-

put. On the other hand, the through put of supervised learning modeling

and reinforcement learning decision, i.e. SVR and 𝜖-Greedy algorithm, show
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Table 4.5: Parameters for experiments.

Parameter Value

iterations 10 times

number of pre-traing iterations 500

commnication delay propagation delay in space

pathloss model free space attenuation

center frequency 14.25 GHz

lower throughput than that of DRL, which means +60 % increase by using

optimization algorithm, instead of 𝜖-Greedy algorithm.

Fig.4.18–Fig.4.20 show the parameters selected by each algorithm. Fig.4.18

corresponds to the algorithm (1), deep learning based modeling and rein-

forcement learning based decisioning with 𝜖-Greedy algorithm, Fig.4.19 cor-

responds to the algorithm (2), SVR based modeling and reinforcement learn-

ing based decisioning with 𝜖-Greedy algorithm, Fig.4.20 corresponds to the

proposed algorithm (3), SVR based modeling and optimization algorithm

based decisioning (with PSO).

Fig.4.22 shows the parameters selected by the algorithm (1), deep learning

based modeling and reinforcement learning based decisioning with 𝜖-Greedy

algorithm in communication distance of 450,000 km.

Fig.4.23 shows the parameters selected by the algorithm (2), SVR based

modeling and MAB algorithm based decisioning in communication distance

of 450,000 km.

Fig.4.24 shows the parameters selected by the algorithm (3), SVR based

modeling and optimization algorithm based decisioning (with PSO) in com-

munication distance of 450,000 km.
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4.9 Summary

In this section we proposed a wireless system optimization method based on

the cognitive cycle using machine learning. We reviewed several studies of

traditional wireless system optimization problem, and showed that formu-

lations of those problems can be generalized as the relations among radio

variables and system performance. Modern wireless systems are becoming

increasingly complex, and the optimization of them is a challenging issue.

Based on the formulation of the optimization problem, we indicated that

the machine learning technology, data-driven modeling that can provide a

predictable model of wireless communications, can be a solution. The pro-

posed method was evaluated by applying it to the IEEE 802.11 WLAN. Since

the proposed method is based on a comprehensive, learning-based cognitive

cycle, it can be applied to various wireless system optimization problems

such as an adaptive MIMO parameter selection, a frequency selection and a

transmit power control in heterogeneous cellular networks, and the selection

of radio interfaces in a smartphone. It is important to investigate what type

of machine learning algorithm is suitable for each system. From the view-

point of practical implementation, it is also necessary to develop optimization

algorithms to solve the problem of a large scale network.
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Earth Moon

  around 384,400 km  

Super-long distance wireless communication in space

Optimal decision using machine learning (ML)

Parameters

[Physical layer]

Modulation scheme

Coding rate

[MAC layer]

Maximum transmission unit

(MTU)

[Transport layer]

Transport protocol's

algorithm

Modeling

Decision

Action

Optimal decisioning

Wireless space

environment

Update model

by ML

Decide optimal

parameters by ML

or optimization

Using optimal

parameters

Figure 4.16: A system model to verify the proposed scheme in the future

wireless communication between the Earth and the Moon as an example of

proposed scheme.
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Figure 4.17: Throughput of each algorithm with communication distance

390,000 km.
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Figure 4.18: Selected parameters through iterations with algorithm (1) in

390,000 km.
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Figure 4.19: Selected parameters through iterations with algorithm (2) in

390,000 km.
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Figure 4.20: Selected parameters through iterations with algorithm (3) in

390,000 km.
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Figure 4.21: Throughput of each algorithm with communication distance

450,000 km.
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Figure 4.22: Selected parameters through iterations with algorithm (1) in

450,000 km.
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Figure 4.23: Selected parameters through iterations with algorithm (2) in

450,000 km.
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Figure 4.24: Selected parameters through iterations with algorithm (3) in

450,000 km.
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Chapter 5

Simple reinforcement learning

based decision

Wireless traffic and the number of wireless communication devices have in-

creased rapidly in recent years. However, the frequency bands suitable for

current technologies have already been exploited; thus, the resources are

limited. Cognitive radio technologies [3, 4] have recently been developed to

improve the radio resource usage of wireless networks under such situations.

The basic concept of cognitive radio technology is the adaptation of the be-

havior of wireless systems through the recognition and learning of the radio

environment. Cognitive radio systems observe and recognize the wireless

network environment, make decisions, and take appropriate actions. Using

this approach, various radio parameters can be optimized for the demand of

wireless communications.

There are two types of cognitive radio systems; a spectrum sharing cog-

nitive radio and a heterogeneous cognitive radio. As for spectrum-sharing

cognitive radio, cognitive users utilize vacant frequency bands to improve

radio resource usage. An effective channel sensing scheme is necessary for

cognitive users, since the vacant radio resources changes dynamically due

to other users’ resource usage. Lai et al. modeled a cognitive radio as a

multi-armed bandit (MAB) problem [7,8]. The multi-armed bandit problem
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maximizes the total rewards provided from slot machines by optimizing the

selection of slot machines that probabilistically provide rewards. In their

model, channel selection of a cognitive radio is defined as a MAB problem

under the assumption of probabilistic vacancy of each channel. In previous

work [9], a novel MAB algorithm called tug-of-war and its application for

the selection of the channel in wireless LANs have been proposed. It gave an

efficient dynamic spectrum-sharing for cognitive radio.

On the other hand, recent wireless devices are equipped with multiple

wireless interfaces like smartphones. Various wireless networks such as 3G,

LTE and Wi-Fi are available. Moreover, like access points in Wi-Fi, a mobile

terminal can choose from multiple access networks. Ideally, in such a hetero-

geneous network, a user may choose the best wireless network through gath-

ering various information on each network. Several literatures have studied

heterogeneous wireless network selection. There are two types of approaches:

network-centric and user-centric. In the network centric approach [10–12],

the decision of the selection is done at a central controller. It assumes the

detail information of each network status is available at the central controller.

However, it is difficult to exchange information among various wireless net-

works which are operated independently. Therefore, in this section, we focus

on the selection of wireless networks at the mobile terminal.

Several studies investigated the wireless network selection at the mobile

terminal [13–16]. Most of them needs various information of networks, or

computational capacity. Authors have studied the optimizations of wire-

less systems based on cognitive cycle using machine learning [17]. In [17],

mobile terminals gather various information of radio environments and com-

munication performance, builds the performance model by machine learning.

However, it is not always possible for mobile devices to gather information

of all networks, nor to spear battery resources for complex calculations. It is

important for the heterogeneous network selection to seek the better solution

as much as and as fast as possible under the limited information about the

networks. At the same time, it is also important for mobile devices to sup-
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press the complexity of calculations for making decisions. These constraint

and requirement are closely similar to those in the MAB problem. In the

MAB problem, a player of slot machines tries to obtain maximum reward

through finite trials. Therefore, the MAB problem approach can be the aid

of heterogeneous network selection.

In this section, we propose an efficient wireless network selection tech-

nique of cognitive radio using the tug-of-war MAB algorithm. After the

formulation of the algorithm is shown, an implementation and experimental

results using a wireless device with Wi-Fi and LTE are shown. Then, as an-

other example of the application of the proposed algorithm, channel selection

in IoT devices is implemented and verified through computer simulations.

5.1 Wireless System Optimization as MAB

problem

The multi-armed bandit (MAB) problem [19] is a simple machine learning

problem, where a player attempts to obtain the maximum reward from mul-

tiple slot machines. The aim of the MAB is to decide which slot machine

should be selected in order to obtain maximum reward through finite tri-

als. The assumption is that the player does not have any prior information

on each slot machine. The player starts to gather information on each slot

machine through trying as many slot machines as possible. Then the player

estimates which slot machine has the highest expected reward, and select

that slot machine to play. Through this process, the player gets more re-

wards. There is a trade-off between exploitation and exploration. If the

player takes long time for estimation, the player can estimate the reward

more precisely, though the time for play the selected slot machine becomes

short. If the player takes only short time for estimation, the player can take

long time to play the selected slot machine, though the reward of that slot

machine might be low. Fig.5.1 shows the concept of MAB problem optimal

decisioning in wireless communication systems.
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Figure 5.1: The concept of MAB problem optimal decisioning.
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Figure 5.2: Network selection in cognitive radio as a multi-armed bandit

problem.
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In this paper, we apply the MAB problem to the wireless network selection

in a cognitive mobile terminal. Fig.5.2 shows the model. The cognitive

mobile terminal, as a player in the MAB problem, has 𝑁 available wireless

networks. Wireless networks correspond to the slot machines in the MAB

problem. The terminal maintains an estimator 𝑄𝑖 of each wireless network

𝑖 (𝑖 = [1, 𝑁]) according to the obtained rewards of the wireless network. The

rewards can be anything such as throughput, delay, or other observables of

the network performance, though the overheads to obtain them is preferable

to be small. When the terminal communicates, it selects the network which

can be expected highest rewards based on the estimator of each wireless

network. To solve the MAB problem, we use a novel algorithm called tug-

of-war (TOW) model described in the next section.

5.2 Multi-armed bandit algorithm

To solve MAB problems, several algorithms have been proposed [20–22], such

as 𝜖-greedy algorithm, softmax algorithm, and UCB1-tuned algorithm. Al-

though the UCB1-tuned algorithm is known as the best algorithm among

parameter-free algorithms, the tug-of-war (TOW) model [23–25] has approx-

imately the same performance as the UCB1-tuned algorithm. The TOW

model can adapt the variable environment where the reward probability

changes dynamically. Therefore, the TOW model is fitted for solving the

problem of decision-making in cognitive terminals.

5.3 Tug-of-war model

The tug-of-war (TOW) model is a multi-armed bandit algorithm inspired by

the behavior of the amoeboid organism [23–25]. Unlike other algorithms for

estimating the reward probability of each slot machine, the TOW dynamics

uses a unique learning method which is equivalent to updating all machines’

estimates simultaneously based on the volume conservation law. In the TOW
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model, the decision is made according to the displacements of the imaginary

volume-conserving objects, which increase or decrease along with rewards, as

shown in Fig.5.3. The TOW model of two machines are formulated as below.

Imagine that the player plays a slot machine A or B at a time. When playing

the machine A, if the player gets rewards, then 1 is added to an estimator

𝑄𝐴, otherwise, 𝜔 is decreased (punishment). After playing time step 𝑡, the

displacement of machine A, 𝑋𝐴 (= −𝑋𝐵), is expressed as followings:

𝑋𝐴 (𝑡 + 1) = 𝑄𝐴 (𝑡) −𝑄𝐵 (𝑡) + 𝛿(𝑡), (5.1)

𝑄𝐴 (𝑡) = 𝑁𝐴 (𝑡) − (1 + 𝜔)𝐿𝐴 (𝑡), (5.2)

where 𝛿(𝑡) is a fluctuation, 𝑁𝑖 (𝑡) (𝑖 ∈ {𝐴, 𝐵}) counts the number of times

that machine 𝑖 has been played until time 𝑡, 𝐿𝑖 (𝑡) counts the number of pun-

ishments when playing machine 𝑖 until time 𝑡. 𝜔 is a weighting parameter to

be described below.

X
Initial 

position

BA

X
B

- +-+

X
A

2 > n )b(2 = n )a(

Figure 5.3: (a) The TOW model with two slot machines. A solid bar keeps

its shape constant. (b) The TOW model with several slot machines. A

branched cylinder is filled with uncompressive fluid.

Let probabilities of providing rewards in the machines 𝑖 be 𝑃𝑖 (𝑖 ∈ 𝐴, 𝐵).
Considering the ideal situation where the sum of the reward probabilities

𝛾 = 𝑃𝐴 + 𝑃𝐵 is known to the player, the expected reward 𝑄′
𝑖 (𝑖 ∈ 𝐴, 𝐵) is
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given as

𝑄′
𝐴 = 𝑁𝐴

𝑁𝐴 − 𝐿𝐴
𝑁𝐴

+ 𝑁𝐵
(
𝛾 − 𝑁𝐵 − 𝐿𝐵

𝑁𝐵

)
= 𝑁𝐴 − 𝐿𝐴 + (𝛾 − 1)𝑁𝐵 + 𝐿𝐵, (5.3)

𝑄′
𝐵 = 𝑁𝐴

(
𝛾 − 𝑁𝐴 − 𝐿𝐴

𝑁𝐴

)
+ 𝑁𝐵

𝑁𝐵 − 𝐿𝐵
𝑁𝐵

= 𝑁𝐵 − 𝐿𝐵 + (𝛾 − 1)𝑁𝐴 + 𝐿𝐴. (5.4)

If we define 𝑄′′
𝑗 = 𝑄′

𝑗/(2 − 𝛾), we can obtain the difference of estimates in

ideal situation as:

𝑄′′
𝐴 −𝑄′′

𝐵 = (𝑁𝐴 − 𝑁𝐵) −
2

2 − 𝛾 (𝐿𝐴 − 𝐿𝐵) . (5.5)

On the other hand, the difference of 𝑄𝐴 and 𝑄𝐵 from Eq.(5.2) is given by

𝑄𝐴 −𝑄𝐵 = (𝑁𝐴 − 𝑁𝐵) − (1 + 𝜔) (𝐿𝐴 − 𝐿𝐵) . (5.6)

From above two equations, we can obtain the nearly optimal weighting pa-

rameter 𝜔 in terms of 𝛾 as:

𝜔 =
𝛾

2 − 𝛾 . (5.7)

If the number of machines is 𝑛 (𝑛 > 2), 𝜔 = 𝛾/(2− 𝛾) is given by 𝛾 = 𝑃1 + 𝑃2,
where 𝑃1 and 𝑃2 are the first- and second- highest reward probabilities,

respectively [24]. Then Eq.(5.1) can be expressed as:

𝑋𝑖 (𝑡) = 𝑄𝑖 (𝑡) −
1

𝑛 − 1

𝑛∑
𝑘=1,≠𝑖

𝑄𝑘 (𝑡) + 𝜁𝑖 (𝑡), (5.8)

where 𝜁 is a fluctuation for each slot machine. The player selects the machine

which has the highest 𝑋𝑖 (𝑡). We use the following 𝜁𝑖 (𝑡) in this paper:

𝜁𝑖 (𝑡) = 𝐴 cos
(
2𝜋𝑡

𝑛
+ 2(𝑖 − 1)𝜋

𝑛

)
, (5.9)

where 𝐴 is the amplitude of the fluctuation.
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5.4 Application of the MAB algorithm to wire-

less network selection

5.4.1 Heterogeneous network selection

as a multi-armed bandit problem

The major challenges in the selection of wireless network at the mobile ter-

minal in heterogeneous environments are below:

• Making efficient decision under the situation where few information of

each network is available.

• Practical algorithm which can be implemented on resource-constraint

mobile devices.

To overcome these issues, several studies investigated algorithms and perfor-

mances of them. In [13], a non-cooperative game formulation and analysis

were given for Wi-Fi and cellular network selection on the mobile terminal.

Results of computer simulations showed that the game can converge to Nash

equilibria. However, the assumption that the mobile terminal can get the in-

formation of other mobile user is not always possible. In [16], a reinforcement

learning solution and simulation analysis were given for heterogeneous cel-

lular networks. Even though the simulation results showed the convergence

speed and the suppression of overheads, it requires feedback information from

the networks, which is only feasible in the cellular networks. It is important

for the mobile terminal in heterogeneous network to select the better net-

work without the coordination from the networks. At the same time, it is

also important for mobile devices to suppress the complexity of calculations

for making decisions. These constraint and requirement are closely similar

to those in the MAB problem.

We propose the wireless network selection technique based on the MAB

problem. As described in the previous section, we use the TOW algorithm to

solve the MAB problem. Fig.5.4 shows the concept of proposed wireless net-
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Wireless 

Network #1

Wireless 

Network #2

Wireless 

Network #N...

Mobile terminal

- Obtain network performance Zi
- Judge reward (+1) or punishment (-ω) and update esimator Qi
- Update displacements X of all network

- Select network i* which has highest X

[Select the network by the tug-of-war model]

(iteration)

Figure 5.4: Concept of the proposed wireless system which selects the wireless

network based on the MAB algorithm.
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work selection. The mobile terminal, capable of connecting various kind of

wireless networks 𝑆𝑖 (𝑖 ∈ {1, 2, ...𝑁}), has the function of TOW algorithm. It

observes the performance of the network 𝑍𝑖, where 𝑖 is the selected network.

𝑍𝑖 can be any indexes of performance such as throughput, delay, or other

metrics of wireless networks. The TOW algorithm then judges whether the

reward or the punishment is to be added, by evaluating the obtained per-

formance of network 𝑖. If the reward is given, it updates the estimator as

𝑄𝑖 + 1, otherwise, updates the estimator as 𝑄𝑖 − 𝜔. Then, 𝑋, the displace-

ment of each network, is updated as described in Eq.(5.8). Note that all

𝑋 𝑗 ( 𝑗 ∈ {1, 2, ..., 𝑖, ..., 𝑁}, not only the selected network 𝑖, are updated here.

The algorithm in the mobile terminal is as follows:

1. Start observing the performance of each wireless network 𝑖. All net-

works are monitored at least once.

2. Update 𝑄𝑖 and all 𝑋 based on the observation of network 𝑖 by Eq.(5.2)

and Eq.(5.8).

3. Select a wireless network 𝑖∗ with highest 𝑋𝑖.

4. Observe the performance of the selected network and decide whether

the reward or the punishment is to be given.

5. Back to 2 and continue.

5.4.2 Implementation and Evaluation

Implementation of the proposed scheme

In order to validate the proposed method in heterogeneous wireless network

environment, we implement the proposed algorithm to a wireless device and

perform experiments. The TOW algorithm is installed on Ubuntu Linux in

Laptop PC as a cognitive mobile terminal, which is equipped both 802.11n/ac

(2.4GHz and 5GHz) and LTE communication module. To judge the reward

or punishment (1 or −𝜔) in Eq.(5.2), we use average throughput of wireless
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networks as a threshold. If the observed throughput of wireless network 𝑖

is larger than the average, then the reward is given for 𝑄𝑖, otherwise the

punishment is given. We use the first- and second- highest reward probabil-

ities among the networks as 𝛾 in Eq.(5.7). The experiments are conducted

in and around the university building. The mobile terminal selects the wire-

less network from two Wi-Fi networks (2.4GHz and 5GHz) of the university

infrastructure and LTE, to communicate to the server.

Experimental setup

We use iperf command to observe the throughput. The parameter 𝐴 of the

fluctuation in Eq.(5.9) is set to 5. Each iteration cycle has about 2 seconds.

The locations of the experiments are (a) Laboratory room, (b) Inside the

building, and (c) Outside. The average receive signal strength indicator

(RSSI) of Wi-Fi is shown in Table 5.1.

Table 5.1: Average RSSI of Wi-Fi

Location Wi-Fi 2.4GHz Wi-Fi 5GHz

(a) Laboratory room -36.0 -37.0

(b) Inside the building -39.0 -76.0

(c) Outside -73.0 -81.0

Verification of the proposed scheme

Fig.5.5 shows an example of network selections of the proposed algorithm.

The values 𝑋 of the TOW algorithm in Eq.(5.8 are also shown. In each case,

after the initial trial of all wireless networks, the selection of the wireless

network is converged to the highest performance network. Note that the

values 𝑋 of unselected networks are also updated (decreased) through itera-

tion. Even though the estimators 𝑄 of unselected networks in Eq.(5.2) are

not updated, the displacements 𝑋 of all networks are updated in Eq.(5.8).
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Figure 5.5: Examples of the value 𝑋 in the TOW algorithm (left) and the

results of network selection (right).
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This is the unique characteristic of the TOW model, as described in the pre-

vious section. In the case (a) and (b), the values 𝑋 of Wi-Fi 5 GHz and 2.4

GHz, which have higher RSSI and throughput in laboratory room and inside

the building, become larger according to the number of iteration, while 𝑋

of unselected Wi-Fi and LTE become smaller. As a result, the selection is

converged to Wi-Fi 5 GHz and 2.4 GHz. In the case (c), where the signal

strength from Wi-Fi access point becomes much lower, the value 𝑋 of LTE

becomes larger according to the number of iteration, while 𝑋 of unselected

Wi-Fi and LTE become smaller. As a result, the selection of the networks is

converged to LTE.
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Figure 5.6: Average throughputs of each wireless networks and the proposed

TOW algorithm in different environments.
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Figure 5.7: An example of throughput variation by time in (c-2).

Evaluation of the throughput performance of the proposed scheme

In order to verify the performance in heterogeneous environments, we exam-

ine the throughput in each place. Fig.5.6 shows the average throughputs of

each wireless network and the proposed TOW algorithm are shown. Each

experiment is continued three times, and the throughputs shown here are the

average of them. The locations (c-1) and (c-2) are both outside the building

but different in Wi-Fi traffic situation: (c-1) is more crowded. It is shown

that the proposed TOW algorithm achieve as high average throughput among

other wireless networks. In the laboratory room (a) and inside the building

(b), the throughputs of the proposed system are as high as those of Wi-Fi

in 5GHz and 2.4GHz, respectively. On the other hand, outside the building

(c-1) and (c-2), where the signal strength from Wi-Fi access point becomes

much lower, the throughput of the proposed system is as high as that of LTE.

Moreover, as shown in the case (c-2), the proposed algorithm can achieve as

high performance as LTE on average, where the differences in performance

among all networks are rather small. An example of throughput variation
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by time is shown if Fig.5.7. Throughputs when using only Wi-Fi 2.4 GHz,

5 GHz, or LTE are shown. The values are moving averages of 10 samples.

This figure shows that sometimes the throughputs of Wi-Fi are higher than

LTE, though the averages are lower than that of LTE. The result shows that

the proposed algorithm can estimate the probabilities of rewards among the

wireless networks properly.
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5.5 Application of the MAB algorithm to dy-

namic channel selection in IoT devices

In this section, another example of application of simple reinforcement learn-

ing based optimal decision as introduced in previous section, namely MAB

problem formulation and applying TOW algorithm, is shown. The major

challenges in the selection of wireless channel autonomously at the mobile

terminal in massive IoT use cases are below:

• Making efficient decision under the situation where few or no informa-

tion of each mobile nodes is available.

• Practical algorithm which can be implemented on resource-constraint

mobile devices like IoT.

To overcome these issues, several studies investigated algorithms and per-

formances of them. In [13], a non-cooperative game formulation and analysis

were given for Wi-Fi and cellular network selection on the mobile terminal.

Results of computer simulations showed that the game can converge to Nash

equilibria. However, the assumption that the mobile terminal can get the in-

formation of other mobile user is not always possible. In [16], a reinforcement

learning solution and simulation analysis were given for heterogeneous cel-

lular networks. Even though the simulation results showed the convergence

speed and the suppression of overheads, it requires feedback information from

the networks, which is only feasible in the cellular networks. It is important

for the mobile terminal in heterogeneous network to select the better net-

work without the coordination from the networks. At the same time, it is

also important for mobile devices to suppress the complexity of calculations

for making decisions. These constraint and requirement are closely similar

to those in the MAB problem.
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Figure 5.8: Concept of the proposed wireless system which selects the wireless

network based on the MAB algorithm.
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5.5.1 System model

We propose the wireless network selection technique based on the MAB prob-

lem. As described in the previous section, we use the TOW algorithm to solve

the MAB problem. Fig.5.8 shows the concept of proposed wireless network

selection. The mobile terminal, capable of connecting various kind of wireless

networks 𝑆𝑖 (𝑖 ∈ {1, 2, ...𝑁}), has the function of TOW algorithm. It observes

the performance of the network 𝑍𝑖, where 𝑖 is the selected network. 𝑍𝑖 can

be any indexes of performance such as throughput, delay, or other metrics of

wireless networks. The TOW algorithm then judges whether the reward or

the punishment is to be added, by evaluating the obtained performance of

network 𝑖. If the reward is given, it updates the estimator as 𝑄𝑖+1, otherwise,
updates the estimator as 𝑄𝑖 −𝜔. Then, 𝑋, the displacement of each network,

is updated as described in Eq.(5.8). Note that all 𝑋 𝑗 ( 𝑗 ∈ {1, 2, ..., 𝑖, ..., 𝑁},
not only the selected network 𝑖, are updated here. The algorithm in the

mobile terminal is as follows:

1. Start observing the performance of each wireless network 𝑖. All net-

works are monitored at least once.

2. Update 𝑄𝑖 and all 𝑋 based on the observation of network 𝑖 by Eq.(5.2)

and Eq.(5.8).

3. Select a wireless network 𝑖∗ with highest 𝑋𝑖.

4. Observe the performance of the selected network and decide whether

the reward or the punishment is to be given.

5. Back to 2 and continue.

The algorithm used to applied is the same one, as introduced in previous

section in this paper.
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5.5.2 Implementation and Evaluation

In this example, the computer simulation experiments are conducted, be-

cause the massive IoT scenario requires amount of mobile devices: at least

around some tens of devices which needs some scales of implementation and

experiment in terms of human resources, equipments, and time.

Implementation of the proposed scheme

In order to validate the proposed method in heterogeneous wireless network

environment, we implement the proposed algorithm to a wireless device and

perform experiments. The TOW algorithm is installed on Ubuntu Linux in

Laptop PC as a cognitive mobile terminal, which is equipped both 802.11n/ac

(2.4GHz and 5GHz) and LTE communication module. To judge the reward

or punishment (1 or −𝜔) in Eq.(5.2), we use average throughput of wireless

networks as a threshold. If the observed throughput of wireless network 𝑖

is larger than the average, then the reward is given for 𝑄𝑖, otherwise the

punishment is given. We use the first- and second- highest reward probabil-

ities among the networks as 𝛾 in Eq.(5.7). The experiments are conducted

in and around the university building. The mobile terminal selects the wire-

less network from two Wi-Fi networks (2.4GHz and 5GHz) of the university

infrastructure and LTE, to communicate to the server.

Experimental setup

In order to verify the proposed simple reinforcement algorithm in massive

IoT scenario, network simulation using ns-3 [294] is conducted. The settings

of simulation are shown in Table 5.2.

Two simulation setups are considered as described in 5.3.

Verification of the proposed scheme

The performance index of this simulation is set as frame success rate (FSR),

the ratio of the number of received packets to the total number of transmitted
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Table 5.2: Simulation settings

Parameter Value

Area size 100 m x 100 m

Simulation duration 90 s

Simulation iterations 10 times

Number of repetition 10 times with different random seeds

Pathloss model Free space decay

Propagation channel model Additive white gaussian noise (AWGN)

Wireless standard IEEE 802.15.4

Radio frequency 2.4 GHz

Modulation scheme O-QPSK

Transmission power 1 mW

Radio communication range around 100 m

Mac protocol CSMA/CA

Number of channels 4, 6, 8, 10

Traffic UDP of 100 Byte/0.2 s

Number of coordinators 10

Number of devices 40

Node placement normalized random distribution

Mobility All nodes are stationary

packets. Fig.5.9a shows the FSR of nodes in the scenario A): coordinators

are operated in fixed channels. FSR when devices select their operational

channels by TOW algorithm outperforms those by 𝜖-Greedy algorithm or

by UCB-1 tuned algorithm. It indicates that TOW algorithm can select
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Table 5.3: Two scenarios of channel selection by simple reinforcement learn-

ing based optimal decision in massive IoT.

Case Channel on coordinator Channel on device

A Fixed manually Selected by MAB algorithms

B Selected by MAB algorithms Selected by MAB algorithms

operational channels efficiently among other MAB algorithms.

The scenario B, where not only devices but also coordinators select their

operational channels autonomously, is more difficult where each nodes select

optimal channels, because both coordinators and devices select operational

channels independently, which gives the problem of matching in channel se-

lection among devices and coordinators. This scenario is an example of

highly distributed decision network. The result of this scenario is shown

in Fig.5.9b. FSR when devices select their operational channels by TOW

algorithm outperforms those by 𝜖-Greedy algorithm or by UCB-1 tuned al-

gorithm. It indicates that TOW algorithm can select operational channels

efficiently among other MAB algorithms, even in more distributed selection

scheme than in the scenario B.

Fig.5.10–5.12 show examples of channel selection results at all devices in

each algorithm in the scenario A (channels of coordinators are fixed). From

these figure,

• The selected channels show convergence in the algorithm of TOW.

• The selected channels in the algorithm of UCB-1 also show convergence

but a little fluctuated over time, compared to those in TOW, which

leads the overhead of channel switching.

• The selected channels in the algorithm of 𝜖-Greedy are unstable and

fluctuated compared to the rest of two algorithms. It comes from the

”greedy” exploration characteristic of the algorithm.
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(a) Frame success rate of each algorithm in scenario A.

!"!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#"!

,-./0123456678 9:;<#3=>267 ?@A

B
5C
D
63
E
>
FF
6.
.3
G
C=
6

(b) Frame success rate of each algorithm in scenario B.

Figure 5.9: Average frame success rate of wireless nodes.
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Figure 5.10: The channel selection results at all devices in the scenario A

with 𝜖-Greedy algorithm.
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Figure 5.11: The channel selection results at all devices in the scenario A

with UCB-1 tuned algorithm.
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Figure 5.12: The channel selection results at all devices in the scenario A

with TOW algorithm.

Fig.5.13–5.15 show examples of channel selection results at all devices in

each algorithm in the scenario B (channels of coordinators are also selected

by the same algorithm as devices). Note that in this scenario B, compared to

the scenario A, the channel selection becomes more difficult. It is because the

channel selection is conducted not only devices but also coordinators, which

makes this wireless communication system more complex. There is a problem

of channel matching among devices and coordinators, which may lead some

oscillations among channels, resulting in poor communication performance.

From these figure,

• On average, FSR in each algorithm is lower than that in the scenario

A, which indicates that the channel selection in this scenario is more

difficult than in the scenario A, as indicated above.

• The selected channels show convergence in the algorithm of TOW.

• The selected channels in the algorithm of UCB-1 also show convergence

to equality but a little fluctuated over time, compared to those in TOW,
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which leads the overhead of channel switching.

• The selected channels in the algorithm of 𝜖-Greedy are unstable and

fluctuated compared to the rest of two algorithms. It comes from the

”greedy” exploration characteristic of the algorithm.
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Figure 5.13: The channel selection results at all devices in the scenario B

with 𝜖-Greedy algorithm.

Fig.5.16 shows examples of channel selection results at all devices in each

algorithm in the scenario A (channels of coordinators are fixed).

Fig.5.17 shows examples of channel selection results at all devices in each

algorithm in the scenario B (channels of coordinators are also selected by the

same algorithm as devices).
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Figure 5.14: The channel selection results at all devices in the scenario B

with UCB-1 tuned algorithm.
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Figure 5.15: The channel selection results at all devices in the scenario B

with TOW algorithm.
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(a) The channel selection results at all

devices in the scenario A with 𝜖-Greedy

algorithm.
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(b) The channel selection results at all de-

vices in the scenario A with UCB-1 tuned

algorithm.
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vices in the scenario A with TOW algo-

rithm.

Figure 5.16: Channel selection at STAs in scenario A.
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(a) The channel selection results at all

devices in the scenario B with 𝜖-Greedy

algorithm.
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vices in the scenario B with TOW algo-

rithm.

Figure 5.17: Channel selection at STAs in scenario B.
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5.6 Summary

Due to the advance in mobile wireless systems and the scarcity of the fre-

quency spectrum, it is necessary for mobile devices to utilize wireless net-

works in a heterogeneous environment. Wireless network selection is one of

the realistic problem in current mobile devices. Considering the limitation

of hardware and software complexity in mobile deices, an efficient wireless

network selection in a cognitive way is important. The multi-armed bandit

problem is a simple machine learning problem and applicable for cognitive

radio problem. In this section, we proposed a simple but powerful wireless

network selection technique using the novel multi-armed bandit algorithm

called tug-of-war. Through the implementation and experiments, the effec-

tiveness of the proposed algorithm in a real heterogeneous wireless environ-

ment was shown. Since the proposed technique is based on a simple and

light-weight algorithm, it can be applied to not only smartphones, but also

IoT devices where the system resources are more limited. It is important to

investigate the performance in real application services, and the candidates

of reward indexes.
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Chapter 6

Conclusion

6.1 Summary of this paper

This paper consists of six sections: introduction of this paper is in Chap-

ter 1, the issues of current and future wireless communication systems are

pointed out in Chapter 2, then the introducing machine learning to over-

come these issues are discussed in Chapter 3. The proposed two schemes,

supervised learning based modeling and optimization based decisioning, and

simple reinforcement learning based decisioning are introduced in Chapter 4

and 5 respectively, where the evaluation and the verification of the proposed

schemes through real device experiments and computer simulations are also

shown in these sections. Following are the brief summary of Chapters in this

paper.

In Chapter 1, the background and the aim of this research are shown.

Advancement of wireless communication technologies have brought us enor-

mous positive change all over the world. Yet, from the viewpoint of exploit-

ing its capability, there are still some issues to maximize their performance,

which rises two simple questions. One question is that how to build models

of today’s and future complex wireless systems. Another question is that

how to decide optimal action by using the models of wireless communication

systems.
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In Chapter 2, issues of today’s and future wireless communication systems

are indicated, especially in terms of optimizing their performance. Classical

mathematical formulation based optimization scheme cannot be applied any

more for today’s complex wireless communication systems, because the com-

plexity of the systems prevent building mathematical model. It opens the

window of applications of machine learning technologies to optimize perfor-

mances of wireless communication systems.

In Chapter 3, application of machine learning technologies and its issues

are discussed, then the proposed schemes in this research are introduced.

Classical optimization of performances of wireless communication systems

is based on mathematical formulation, which cannot be applied to today’s

complex, time-varying system usage. A data-driven modeling, by machine

learning, is an aid for this issue. Deep reinforcement learning, deep learning

based modeling and reinforcement learning based decision for action, is a

state-of-the-art scheme in recent research fields. It has recently applied in

the field of wireless communication a lot. However, it does not mean that

all issues of current and future wireless systems can be solved by it. There

still exist future works to be pointed out. One point is to seek alternatives

for modeling to realize continuous function based modeling to obtain better

solutions for continuous systems. Another point is to seek the feasible yet

effective scheme if the amount of available information is small, like in IoT

systems. Corresponding to these points, two novel schemes are proposed

which are different not only from classical mathematical optimization but

also from current state-of-the-art deep reinforcement learning approach.

In Chapter 4, one of the proposed schemes, supervised learning based

modeling and optimization, is formulated and examined through experi-

ments. It uses some amount of information to build the model of the wireless

communication system, and obtain optimal parameters by an optimization

algorithm. This is based on cognitive cycle using machine learning. It uses

by supervised machine learning algorithm to build the performance model

of the systems, obtains the optimal parameters by solving the optimization
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problem, takes action according to the decision, and updates the performance

model in online manner. Two applications are shown: IEEE 802.11 WLAN

and space communication. Through both real-world experiments and com-

puter simulations, the validity of the proposed scheme is confirmed.

In Chapter 5, another proposed scheme, simple yet easily-implementable

reinforcement learning, by MAB problem formulation is formulated and ex-

amined through experiments. By using a novel, light-weight, and distributed

TOW algorithm, it realizes adaptive learning wireless communication sys-

tems whose capabilities in software and/or hardware are limited like IoT.

Two applications are shown: heterogeneous network selection and channel

selection in massive IoT. Through both real-world experiments and computer

simulations, the validity of the proposed scheme is confirmed.

These results show the effectiveness and feasibility of the proposed schemes.

Various applications based on the proposed schemes are currently being de-

veloped [297–300], which proves that this research opened a new field of

application of online machine learning technologies to optimize today’s and

future complex wireless communication systems.

6.2 Achievement of this paper

The major achievements of this paper are:

1. Provided two novel approaches from wide viewpoint of current appli-

cation of machine learning to wireless communication.

2. Proposed scheme using supervised learning and optimization gives a

better alternative of deep reinforcement learning especially when pa-

rameters are continuous.

3. Proposed scheme using simple reinforcement learning based on TOW, a

ligh-weight MAB algorithm, provides feasible solution to increase per-

formances of wireless communication systems where amount of avail-

able information is small like IoT.
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6.3 Concluding remarks

There are some future works which will widen this research. As for applica-

tion to space communication networks, an example verfied in this paper is

quite simple one. This application will develop an optimization problem like

relay network in space, multiple interfaces for radio and optical communica-

tion, etc. In terms of adaptability, rapidly time-varying environment, such

as vehicle communication networks, will require an advancement of learning

technologies proposed in this paper. Some researches such as introducing

forgetting factor to reinforcement learning algorithm, are being conducted.

Through various applications are developed, more fundamental aspects will

be revealed such as an application for convex/non-convex problem, etc.
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