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Abstract 

Utilization of spaces for human activities has significantly expanded over the past several 

decades. Both private and government sectors are actively involved in improving the 

commercial and scientific value of space. With an increased number of functional objects 

populating the orbits around earth, the amount of space debris has also accumulated at an 

alarming rate. This is hazardous for both the current and future space missions because 

such objects require sudden evasive maneuvers and continuous monitoring Therefore, 

space debris mitigation has become an important theme in the sphere of space-related 

research.  

Dealing with this issue is not simple because of the multiple stages of work 

involved in completing a successful implementation of a mitigation mission. One 

challenge is that target bodies such as debris and malfunctional satellites can have 

arbitrary rotational motions. The chaser satellite must then travel along a fly around orbit 

with close-proximity and formation flying. The velocity and position vectors of both 

objects should align simultaneously for safer docking opportunities. To keep the chaser 

at a constant distance from the target, the chaser’s thrusters must be fired intelligently. 

Because resources are limited in space, optimizing fuel consumption while achieving 

control requirements is a challenge. To overcome this issue, a model predictive control 

(MPC) based algorithm is developed for a target-chaser rendezvous situation to optimize 

fuel consumption while considering the thruster constraints and memory usage. It is 
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compared with several conventional controllers to evaluate the effectiveness of the 

algorithm. 

Once the target and chaser are locked in fixed relative motion, the chaser satellite 

can move closer to capture the target using different types of grappling mechanisms.  

Here, another challenge that occurs is in the form of ambiguities that arise in inertial 

properties while capturing objects. To stabilize the attitude of a spacecraft, a typical 

control algorithm requires accurate inertia measurements. When the spacecraft captures 

an unknown object, its body configuration and mass change, leading to changes in its 

dynamics and inertial properties. This can produce tumbling effects and possible 

deorbiting scenarios due to the sudden shift in momentum. Thus, the control algorithm 

needs robustness to cope with these ambiguities and parameter variations. To cope with 

this situation, an intelligent attitude control algorithm is developed for a satellite with 

partially known inertial properties. By combining inertia estimation with a neural 

network-based controller, the objectives of control design can be achieved. A comparison 

was performed with several other control schemes to evaluate the performance using 

simulation environments for validation. 

Another underlying issue when dealing with space crafts in space is the 

perturbations that arise due to different reasons. One such reason is the perturbations due 

to fuel slosh. In general, a spacecraft comprises several flexible and rigid bodies. Fuel, in 

particular, is contained in a separate enclosure and could hold a significant portion of the 

total mass of the satellite; however, due to microgravity, it can move freely within its 

limited space. The motion of fuel can cause disturbances in the translational and rotational 

control of satellites. To overcome this issue, the sloshing dynamics are analyzed, and a 

control algorithm is developed considering the sliding mode control together with an error 

minimizing criterion to suppress the fuel slosh and attitude error of the satellite. This is 
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compared with several conventional controllers for performance evaluation using 

computer simulations. 

Keywords: 
Space debris mitigation, Model predictive control, Neural-networks, Sliding 

mode control, Attitude control, Orbit control 
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CHAPTER 1 

INTRODUCTION 

1.1. Introduction 

Over the past several decades, utilization of spaces for human activities has rapidly 

increased. With easier access to space, the number of nations and organizations that are 

active in space has significantly grown. This is largely through joint research work at the 

International Space Station (ISS), advances in communication networks, and other space 

related activities. More than 2000 satellites are currently in operation with mega 

constellations in development, which will congest the remaining areas. However, as more 

and more objects are populating space, the amount of space related debris has also 

gradually increased over the years. As of 2021, the US Space Surveillance Network 

officially categorized more than 21000 space debris in the earth’s orbit [1]. This is 

excluding the small-scale debris which ranges from 1 to 10 cm and pieces that are less 

difficult to detect and monitor due to size and large number. Most of these are failed 

satellites, rocket upper stages, space-mission related parts, and fragments left from 

collisions between satellites and due to explosions. These cause frequent changes to 

orbital paths of active satellites and risky environments for commercially valuable orbital 

planes and increase the probability of creating a massive number of smaller debris via 

collisions. Thus, the risks that these debris pose for the safety of astronauts and space 

missions cannot be taken lightly. Furthermore, space debris also shortens the lifespans of 

active satellites as they must be constantly alert for potential impacts and have to perform 

evasive manoeuvres when needed. Therefore, active removal of space debris has been 

identified as a vital component in securing safe access to space for the future space related 

activities as well as for the sustainable development of space for mankind. 
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Figure 1.1 Accumulation of space debris over the years : Orbital Space Debris Quarterly News 2021 [1] 

The success of space debris mitigation programs depends on collaborative work 

among state and institutional bodies that govern and oversee the space industry. The 

primary goals of space debris mitigation can be summarized as follows: minimizing the 

growth of debris in the future space missions and reducing the space debris currently in 

orbit. The accumulation of future space debris can be minimized by adopting rigorous 

regulatory procedures for future space missions. The currently operative satellites can 

also follow such regulations at the end of their lifespans if the systems on board support 

such configurations and manoeuvres. The parts that are unable to move on their own, 

such as difunctional satellites, find it challenging to follow any such schemes. This is 

where an external mechanism can be applied to capture such objects. This, in particular, 

has been discussed and researched as a viable solution to regulate the growing amount of 

space debris. However, it is a process that involves background work both in space and 

on earth for successful implementation. 
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Figure 1.2 Sequence of the space debris mitigation procedure 

As demonstrated in Figure 1.2, the process of capturing space debris can be 

stripped down to a few key points for simplicity. The first part is launching of the shuttle 

equipped with a spacecraft specifically designed to capture space debris. This comes at 

the end of groundwork that includes identifying the type of debris that is to be captured, 

research into the required technology and mechanisms, development of such systems and 

testing. Once all systems are in place, the chaser satellite can be launched into space and 

deployed to its initial orbit. In parallel, the target debris must be tracked for preliminary 

studies. Since these debris can be in space for extended periods of time, their physical 

properties could be different from their original status. For example, in the case of fuel 

leakages, the inertial properties could unnoticeably change. Apart from this, these debris 

do not have any internal mechanisms to control themselves and could be orbiting on a 

plane with arbitrary rotational motions. Once the capturing satellite settles in its initial 

orbit, a manoeuvre is performed to change its orbit and move the chaser satellite close to 

the target body. When both objects are in close proximity, their relative motions are 

Deorbit and 

 discard 
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aligned and an external mechanism such as robotic arms, tethers, and nets could be used 

to capture the unknown object. After completing this step, the attitude and orientation of 

this combined body must be brought to a desired value. Then, the final phase of the 

removal process can be performed by increasing the orbit of the debris to a graveyard 

orbit or by decreasing the orbit by reducing the speed and discarding it safely by burning 

with the help of atmospheric drag. 

1.2. Contributions in this dissertation 

Developing control algorithms for space systems dealing with the above situations is a 

complex issue which involves several steps including identifying the target using visuals 

and other means, approaching the target in an efficient manner, deploying a capturing 

mechanism, and controlling the combined system after the capturing process to safely 

deorbit the debris. Considering all these aspects, the author has concentrated on 

developing controllers that can be utilized for a space debris mitigation program 

considering both orbit and attitude control scenarios. The first objective focuses on the 

orbit control aspect. The second and third objectives focus on attitude control considering 

the two situations in which it can be utilized. 

• Orbit control of a satellite considering a target chaser situation. 

• Attitude control of a satellite when an uncooperative object is attached. 

• Controlling satellites under fuel slosh situations. 

1.2.1. Orbit control of a satellite considering a target chaser situation. 

When capturing an arbitrary object orbiting the earth, it is important to move closer to the 

object before deploying any grappling mechanism. Generally, these objects do not have 

any stored energy to control their movement; thus, they can remain in rotational motion 

Initial orbit of the chaser satellite 
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about their principal axes. The chaser satellite must assess the distance between the target 

and chaser itself and the rotational movement of the target before safely connecting with 

the target itself. 

 

Figure 1.3 Motion of target and chaser bodies when approaching the capturing process 

 The first part of this research involved identifying the relative motion between objects in 

space.  After that, an analysis of an model predictive control (MPC)-based algorithm was 

performed to analyse the orbital rendezvous for a target chaser situation with limitations 

on controller outputs to minimize fuel consumption. In conventional MPC algorithms, 

high processing power and memory usages are some of the setbacks when limitations are 

considered. To overcome these issues, a region-free based algorithm is proposed. With 

this method, the requirement for on board solvers is removed by performing calculations 

offline, and then, the memory usage is reduced in comparison to general and explicit 

MPC-based controllers because only the applicable values are selected for storage. The 

methodology explains the relative motion between objects in space and the development 

of several controller designs based on the above method, linear quadratic regulator 
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(LQR)-based methods, and Clohessy-Wiltshire (CW)-based methods for performance 

comparison.  

1.2.2. Attitude control of a satellite when an uncooperative object is 

attached. 

The second objective of this research is developing an attitude-control system for a 

satellite while capturing uncooperative objects in space. The challenge is that it is not 

possible to entirely know the actual mass and inertial properties of these objects. To cope 

with the complexities associated with designing such a system, this research concentrates 

on two key areas explicitly. The initial system is a combination of two separate parts: the 

chaser and the target. The chaser (assumed to be a satellite) has known inertial properties, 

and the target’s inertial properties are partially known. When the two objects are 

combined after the capturing procedure, the new system is expected to have known initial 

velocity and orientation. The first part of the research was to identify the system’s inertial 

matrix. This is performed using the recursive least squares algorithm combined with 

satellite velocity and acceleration.  

 

Figure 1.4 Target and chaser bodies soon after the capture process 
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The next priority in this research is designing a control algorithm to control the 

attitude of the combined system. This can range from using simple control schemes 

derived using state feedback to using optimal nonlinear controllers such as linear 

quadratic regulators and sliding mode controllers as well as artificial intelligence-based 

controllers like fuzzy logic controllers and neural network-based controllers. Initially, the 

derived the equations of motion of a rigid body spacecraft in space based on Euler’s 

method are used to implement a simple proportional derivative (PD)-based controller 

with a feedback system. Then, a fuzzy based controller is implemented to further improve 

the performance. After that, an adaptive PD-based controller along with estimated inertia 

is used to control the system. Finally, a neural network-based adaptive controller is 

introduced as in improvement over these controllers. Although neural network-based 

controllers could require a high processing power to complete the calculations, it is 

assumed that this controller can be strategically utilized for the stabilization process of 

the combined system soon after the capturing procedure is completed. 

1.2.3. Controlling satellites under fuel slosh situation. 

The third objective of this research is to control the attitude of the satellites under fuel 

slosh situations. A satellite comprises rigid and flexible components. When the satellite 

is in transitional or rotational motion, it generates additional forces and moments in these 

parts. Generally, free moving liquid fuel is stored inside fixed containers inside the 

satellite. The above-mentioned movements can cause oscillations and arbitrary motion of 

the liquid. This leads to changes in the centre of mass of the satellite and leads to 

inaccuracies and disturbances in the stability of the system. Because the satellites can 

store large amounts of total mass in liquid form to carry out missions in space, the 

vibrations and disturbances can be considerably large and must be compensated properly 
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when designing the control algorithm. 

 

Figure 1.5 Fuel slosh phenomena as seen when moving on a fixed frame 

To solve this, a novel sliding mode control-based algorithm is developed to 

supress fuel slosh while achieving the control goals. Sliding mode control (SMC) is 

considered a robust control method with the added advantages of resilience toward 

disturbances and system uncertainties. However, chattering phenomena form a inherent 

drawback of this method. By incorporating the proposed SMC, this issue can be solved 

in the control design phase. Furthermore, with the addition of optimal control concepts, 

which is a systematic approach to solve the required performance criteria, this approach 

is further expanded. The optimization process is performed offline, thereby reducing the 

computational requirements for the onboard controllers. The performance analysis is 

performed using computer-based simulations, and the results are compared with those of 

conventional controllers in the form of conventional SMC and PID control to verify the 

effectiveness of the proposed algorithm.  
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CHAPTER 2 

MPC-BASED ORBIT CONTROLLER DESIGN FOR THE FLY-AROUND 

SCENARIO CONSIDERING FUEL OPTIMIZATION 

2.1. Background and Literature Review 

Currently, public and private organizations around the world are seeking solutions to 

tackle the space debris problem. The Japan Aerospace Exploration Agency (JAXA) and 

the European Space Agency (ESA) are public organizations that have initiated debris 

removal methods. JAXA proposed deployment of tethers as a solution to debris 

mitigation in the KITE mission [2] carried out in 2016. ClearSpace-1 [3] is supervised by 

ESA to conduct space debris removal using a satellite equipped with robotic arms. Private 

companies such as Kawasaki Heavy Industries and Astroscale are also performing 

demonstrations to find viable solutions to the space debris problem. The former has a 

planned demonstration mission, Debris Removal Unprecedented Micro-Satellite, to 

capture a mock object using an extendable boom as the capture mechanism [4]. 

Astroscale’s ELSA-d is based on magnetic structures placed on the target itself for 

retrieval through the capture process [5]. 

In the above situations, a thrust is generated by the satellites’ propulsion system 

to deorbit the debris once it is captured by a grappling mechanism. Debris is an 

uncooperative object that undergoes arbitrary rotational motion. The chaser satellite 

should fly in such a way that both the target and the chaser align in a specific way and the 

relative rotational motion is canceled out. Several studies have been conducted regarding 

the relative motion between objects in space. Zhenqi et al. [6] described the use of a state-

dependent Riccatti equation–based control and linear quadratic regulator (LQR)–based 

control to maintain a constant distance from a target body while minimizing fuel 

consumption and settling time. Kumar [7] investigated the continuous thrust Clohessy–
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Wiltshire (CW) model with varying initial conditions for low-thrust relative motion. 

Here, optimization is performed considering state and co-state vectors and is formulated 

as a two-point value problem. 

With the limited amount of resources available for satellite missions in space and 

restrictions caused by propulsion systems in controller implementation in practical 

situations, these optimization strategies must be constrained when designing a control 

system [8]. For such cases, model predictive control (MPC) is an attractive alternative 

because of its constraint optimization capabilities. The conventional MPC, for example, 

can be convenient when systems are equipped with resources to compensate for the 

extensive processing performance. For example [9],  an MPC based algorithm was 

developed for a satellite with the objective of docking with a tumbling object. Here, 

multiple constraints are considered in relation with control and docking parameters. The 

objective function is derived to minimize the fuel usage while realizing the required 

tracking objectives. Another MPC-based controller was proposed in [10] for a spacecraft 

docking situation. The cost function was based on the unconstrained linear quadratic (LQ) 

problem with fixed and time varying constraints. By incorporating soft and hard 

constraints they reduced the computational needs for the MPC problem. This is further 

expanded to use as an explicit MPC controller to remove the need of an onboard solver. 

In both situations, MPC is used with linearized constraints, and optimization problems 

have been solved using quadratic programming methods with high horizon parameter 

values. In close-proximity rendezvous control, a longer control horizon might be a 

requirement for adequate system behavior. This is vital when the actuator outputs are very 

small for delicate maneuvers. When coupled with small sampling rates and high variable 

count in the optimization problem, this approach can demand extensive computational 

power from the onboard computer and may require a dedicated solver in the chasing 
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satellite [11]. One solution is solving the optimization problem explicitly, as realized in 

[12] and [13], where the control gains are mapped as polyhedral regions and are used as 

lookup tables in the online calculations to minimize the burden on computational 

requirements. However, this can also lead to high memory requirements with a high 

number of states and control inputs [14]. This issue can be addressed with a region-free-

based MPC design as studied in [15] and [16], where instead of storing the critical 

regions, the solutions for locally optimal active sets are calculated offline and stored 

together with dual variables online. 

The rest of the chapter is structured as follows. With the methodology, the 

controller design based on MPC and other control schemes are discussed. Next, the 

simulation results pertaining to the derived control algorithms and dynamic equations are 

provided. A summary of the work is mentioned at the end. 

2.2.  Methodology 

2.2.1. Relative Motion between Two Objects 

Let us consider the earth’s center as the origin with a target and a chaser orbiting the earth, 

as denoted in Fig. 2.1. Assuming the target body as the center of a moving reference 

frame, [x, y, z] completes the right-hand orthogonal coordinate system, with each axis 

pointing toward the orbital radius, transverse, and angular momentum directions. 
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Figure 2.1 The target and chaser in LVLH frame with origin at the centre of the Earth 

 

When the perturbations are assumed to be negligible, the dynamics equations of 

relative motion between the target and chaser can be derived by solving the corresponding 

second-order differential equations. When the distance between the chaser and target is 

relatively small compared to the distance between the target and the center of the earth, 

and the target’s orbit happens to be of circular motion; CW or Hill’s equation can be 

derived as follows [17]: 

�̈� = 3𝜔2𝑥 + 2𝜔�̇� + 𝛼𝑥. (1) 

�̈� = −2𝜔�̇� + 𝛼𝑦. (2) 

�̈� = −𝜔2𝑧 + 𝛼𝑧. (3) 

𝜔 =  √𝜇 𝑟3⁄ . (4) 

where (x, y, z) are the position coordinates, and (�̇�, �̇� , �̇�) correspond to the relative 

velocities. 𝜇 is the geocentric gravitational constant, r is the orbital radius, and 
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(𝛼𝑥, 𝛼𝑦 , 𝛼𝑧) are acceleration components of the chaser. By using position and velocity 

coordinates as state variables, the continuous-time state equation can be obtained as 

follows: 

�̇� = 𝐴𝑥 + 𝐵u. (5) 

With the matrices being  

𝑥 =  

[
 
 
 
 
 
𝑥
𝑦
𝑧
�̇�
�̇�
�̇�]
 
 
 
 
 

. 

(6) 

𝐴 =

[
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3𝜔2 0 0 0 2𝜔 0
0 0 0 −2𝜔 0 0
0 0 −𝜔2 0 0 0]

 
 
 
 
 

. 

(7) 

𝐵 =

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1]

 
 
 
 
 

. 

(8) 

𝑢 = [

𝛼𝑥

𝛼𝑦

𝛼𝑧

]. 
(9) 

2.2.2. MPC Design 

MPC is a control method in which a short time span is initially considered, and the control 

input is optimized within that period to bring the predicted system output closer to the 
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required system output. It is then transferred to the actual system to observe the behavior 

of the output. The time span is then moved a step forward, and the whole process is 

repeated to calculate the next control input. This process is performed iteratively to 

manipulate system behavior at each time step while moving forward. Generally, the 

method used to determine the manipulation quantity is based on the optimization 

problem. While solving optimization problems that minimize the evaluation function for 

a certain interval, the control quantity is expressed in terms of the manipulation quantity 

using the state equation (dynamic model). The advantage of MPC over other control 

methods is that, although the state and input constraints are limited to closed set 

constraints, the target can be controlled by explicitly stating the input. The discrete-time 

state space model is described below. 

𝑥𝑝(𝑘 + 1) = 𝐴𝑝𝑥𝑝(𝑘) + 𝐵𝑝𝑢(𝑘). (10) 

𝑦𝑝(𝑘) = 𝐶𝑝𝑥𝑝(𝑘). (11) 

 
 

where 𝑥𝑝(𝑘) and 𝑢(𝑘)  are the state quantity vector and control input vector at 

time step k, respectively. A, B, and C are the state, input, and output matrices, 

respectively. Moreover, by defining the difference in the state variable delta and the 

control input variable delta, we get 

∆𝑥𝑝(𝑘) = 𝑥𝑝(𝑘) − 𝑥𝑝(𝑘 − 1). (12) 

∆𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1). (13) 

 
 

The increment in the state and output can be written as 
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∆𝑥𝑝(𝑘 + 1) = 𝐴𝑝∆𝑥𝑝(𝑘) + 𝐵𝑝∆𝑢(𝑘). (14) 

𝑦𝑝(𝑘 + 1) − 𝑦𝑝(𝑘) = 𝐶𝑝𝐴𝑝∆𝑥(𝑘) + 𝐶𝑝𝐵𝑝∆𝑢(𝑘). (15) 

Considering a new state variable using 

𝑥(𝑘) = [
∆𝑥𝑝(𝑘)𝑇

𝑦𝑝(𝑘)
]

𝑇

. 
(16) 

(10) and (11) can be rewritten as follows: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘). (17) 

𝑦(𝑘) = 𝐶𝑥(𝑘). (18) 

with the matrices being  

𝐴 = [
𝐴𝑝 0𝑝

𝑇

𝐶𝑝𝐴𝑝 1
]. 

(19) 

𝐵 = [
𝐵𝑝

𝐶𝑝𝐵𝑝
]. 

(20) 

𝐶 = [0𝑝 1]. (21) 

 

where 0𝑝  =  [ 0 0 . . .0].  The following optimization problem to minimize the 

evaluation function can then be solved for each time step. Here, 𝑟 ∈ 𝑅𝑛,  𝑄 ∈ 𝑅𝑛×𝑛, and 

𝑅 ∈ 𝑅𝑛×𝑛 are the reference, input, and weight coefficients, respectively. 𝐻𝑝 and 𝐻𝑢 are 

the prediction and control horizon, respectively. 
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min
∆𝑢

(∑ [𝑥(𝑖|𝑘) − 𝑟(𝑖|𝑘)]𝑇𝑄[𝑥(𝑖|𝑘) − 𝑟(𝑖|𝑘)]𝐻𝑝
𝑖=1  +

∑ ∆𝑢(𝑖|𝑘)𝑇𝑅∆𝑢(𝑖|𝑘)𝐻𝑢−1
𝑖=0 ). 

(22) 

such that 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘). 

 

(23) 

𝑢𝑚𝑎𝑥 ≥ 𝑢 ≥ 𝑢𝑚𝑖𝑛 (24) 

 

With the control input column ∆𝑢  denoted by 

∆𝑈(𝑘) = [∆𝑢(𝑘), … . . , ∆𝑢(𝑘 + 𝐻𝑢 − 1)]𝑇. (25) 

the optimization problem is given by 

min
∆𝑈(𝑘)

𝑉(=
1

2
∆𝑈𝑇𝐻∆𝑈 + 𝜃𝑇(𝑘)𝐹∆𝑈). (26) 

such that 

𝐺∆𝑈 ≤ 𝑊 + 𝑆𝜃(𝑘). (27) 

 

The variables are 𝑄 = 𝑑𝑖𝑎𝑔[] ∈ 𝑅𝐻𝑝×𝐻𝑝, 𝑅 = 𝑑𝑖𝑎𝑔[] ∈ 𝑅𝐻𝑢×𝐻𝑢, 𝐺 ∈

𝑅2𝑚𝐻𝑢×𝑚𝐻𝑢, 𝑊 ∈ 𝑅2𝑚𝐻𝑢×1 , and 𝑆 ∈ 𝑅2𝑚𝐻𝑢×(2𝑛+𝑚) 

𝐹 = [
2𝜑𝑇𝑄∅

0𝑚

−2𝑄∅
] , 𝜃(𝑘) = [

𝑥(𝑘)
𝑢(𝑘 − 1)

𝑟

]. 

(28) 
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𝐻 = 2𝑅 + 2∅𝑇𝑄∅. (29) 

𝜑 = [
𝐶𝐴
⋮

𝐶𝐴𝐻𝑝
]. 

(30) 

∅ = [

𝐶𝐵 0 ⋯ 0
𝐶𝐴𝐵 𝐶𝐵 ⋯ 0

⋮ ⋮ ⋮ ⋮
𝐶𝐴𝐻𝑢−1𝐵 𝐶𝐴𝐻𝑢−2𝐵 ⋯ 𝐶𝐵

]. 

(31) 

With Eq. (26), the quadratic problem can be considered as a problem of 

minimizing V by updating the initial value θ(k) in every time step while taking ∆U(k) as 

a variable. Here, if the Hessian matrix H is symmetric and semi-positive definite, V can 

be considered as a convex function. In addition, if the constraint (G∆U ≤ W + Sθ(k)) is a 

closed set, it is possible to obtain a global optimal solution for this optimization problem 

using quadratic programming–based solvers. 

2.2.3. Region-Free MPC 

In Explicit MPC, instead of solving Eq. (26–27) at each time step (hence the online 

programming), calculations are performed offline for the total range of θ to derive the 

optimum controller gains, making it a multiparametric quadratic programming problem. 

In such a case, for 𝜃(𝑘) and ∆𝑈(𝑘), the following relationship can be explicitly applied 

as a piecewise affine state feedback equivalent to MPC:  

∆𝑈(𝑘) = 𝐾𝑗  𝜃(𝑘) + ℎ𝑗 . (32) 

𝑖𝑓 𝜃 ∈ 𝑋𝑗  
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where 𝑋𝑗 denotes the polyhedral critical regions [18]. 

In region-free MPC, all possible combinations of constraints, active or inactive, 

are calculated in advance offline. Next, for each of these combinations, the relationship 

between the initial value θ and the optimal input ∆U* is stored in the feedback format. 

For online calculations, the combination to which the initial value θ belongs is then 

identified, and the optimal input ∆U*is calculated. Both rely on the Karush–Kuhn–Tucker 

(KKT) conditions to solve the optimization problem [16]. KKT conditions are the 

conditions that must be satisfied by the optimal ∆U* and dual variable z*. 

𝐻∆𝑈∗ + 𝐹𝑇𝜃 + 𝐺𝐴
𝑇𝑧∗ = 0. 

(33.1) 

              𝐺𝒜∆𝑈∗ = 𝑊𝒜 + 𝑆𝒜𝜃. 
(33.2) 

              𝐺𝑁∆𝑈∗ < 𝑊𝑁 + 𝑆𝑁𝜃. 
(33.3) 

              𝑧∗ > 0. 
(33.4) 

         𝑧∗𝑇(𝐺𝒜∆𝑈∗ − 𝑊𝒜 − 𝑆𝒜𝜃) = 0. 
(33.5) 

 

where 𝒜 𝑎𝑛𝑑 𝑁 are the sets of active and inactive constraints, respectively. If a 

solution for the KKT conditions exists, the combination (𝒜,𝑁) of active and inactive 

constraints can be considered to exist for a certain value of θ. The number of all 

combinations can be very large with an increase in the number of constraints. However, 

the presence of even one inactive constraint makes the combination inactive. The optimal 

solution for a combination can be obtained using Eq. (33.1). 
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∆𝑈∗ = −𝐻−1(𝐹𝑇𝜃 + 𝐺𝒜
𝑇𝑧∗). (34.1) 

∆𝑈∗ = 𝑉𝒜𝜃 + 𝑣𝒜𝑧∗. (34.2) 

   𝑉𝒜 = −𝐻−1𝐹𝑇. (34.4) 

𝑣𝒜 = −𝐻−1𝐺𝒜
𝑇. (34.5) 

 

Substituting ∆U* in Eq. (33.2) yields 

         𝑧∗ = −(𝐺𝒜𝐻−1𝐺𝒜
𝑇)

−1
(𝑊𝒜 + (𝑆𝒜 + 𝐺𝒜𝐻−1𝐹𝑇)𝜃). (35.1) 

         𝑧∗ = 𝑄𝒜𝜃 + 𝑞𝒜. (35.2) 

         𝑞𝒜 = −(𝐺𝒜𝐻−1𝐺𝒜
𝑇)

−1
𝑊𝒜. (35.3) 

𝑄𝒜 = −(𝐺𝒜𝐻−1𝐺𝒜
𝑇)

−1
(𝑆𝒜 + 𝐺𝒜𝐻−1𝐹𝑇). (35.4) 

 

𝑉𝒜, 𝑣𝒜 , 𝑄𝒜, and 𝑞𝒜 can be generated offline and used in the online 

implementation using Eq. (34-35) to calculate ∆𝑈∗ while fulfilling the conditions below, 

thereby reducing the amount of memory required in comparison to storing all the 

combinations offline. 

              𝑧∗ > 0 (36) 
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              𝐺𝒜∆𝑈∗ − (𝑊𝒜 + 𝑆𝒜𝜃 ) ≤0 (37) 

2.2.4. Linear Quadratic Regulator (LQR) 

To compare the performance among several controllers, an LQR is initially utilized as a 

type of optimal control strategy. It uses the state feedback of the system to measure the 

states and generates a control response while minimizing the cost function 𝑉𝑐. Assume 

the system is given as  

X(k+1) = AX(k) +BU(k). (38) 

 

The cost function is 

𝑉𝑐 = min∑ 𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢∞
𝑛=0 . (39) 

 

Q and R denote the weighting matrices corresponding to the states and input 

matrices, respectively. Optimal gain K is calculated by solving the discrete-time algebraic 

Riccati equation. 

𝐾 = (𝐵𝑇𝑋𝐵 + 𝑅)−1𝐵𝑇𝑋𝐴. (40) 

𝐴𝑇𝑋𝐴 − 𝑋 − 𝐴𝑇𝑋𝐵(𝐵𝑇𝑋𝐵𝑅 )−1 𝐵𝑇𝑋𝐴 + 𝑄 = 0. (41) 

2.2.5. C-W Based Control (Clohessy-Wiltshire) 

Using the CW solution, with a known initial position (𝑥0, 𝑦0, 𝑧0)  and velocity 

(�̇�0, �̇�0, �̇�0), the change in velocity ∆𝑉  required to maneuver to an arbitrary position at 



33 

 

𝑡 = 𝑡0 + 𝜏 is calculated using the equation below [19].   

[

∆𝑉𝑥

∆𝑉𝑦

∆𝑉𝑧

] =  
𝜔

𝐾
[
𝐴1 𝐴2 0
𝐴3 𝐴4 0
0 0 𝐴5

] [

𝑥0

𝑦0

𝑧0

] − [

�̇�0

�̇�0

�̇�0

]. 

(42) 

 

where 

𝐴1 = 4 𝑠𝑖𝑛 𝜔𝜏 − 3𝜔𝜏 𝑐𝑜𝑠 𝜔𝜏. (43.1) 

𝐴2 = −2(1 − 𝑐𝑜𝑠 𝜔𝜏). (43.2) 

𝐴3 = −6𝜔𝜏 𝑠𝑖𝑛 𝜔𝜏 + 14(1 − 𝑐𝑜𝑠 𝜔𝜏). (43.3) 

𝐴4 = 𝑠𝑖𝑛 𝜔𝜏. (43.4) 

𝐴5 = −
𝐾

𝑡𝑎𝑛 𝜔𝜏
. (43.5) 

𝐾 =  3𝜔𝜏 𝑠𝑖𝑛 𝜔𝜏  −  8(1 − 𝑐𝑜𝑠 𝜔𝜏). (43.6) 

2.2.6. Quantizer Design 

Because propulsion systems have limitations in the activation procedure, they cannot 

generate smaller incremental outputs similar to those generated from the control system. 

Hence, a static quantizer is used to simulate limitations on a propulsion system regarding, 

• Control period: the minimum time required to go from ignition at thrust ON to 

burn stop at thrust OFF and vice versa. 
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• Maximum thrust output: the upper limit of the generated thrust. 

• ON and OFF input: the three output values corresponding to the thrust. 

The control period is solved by setting the time-step in the discrete state equation 

used during orbit control. The maximum thrust and ON/OFF constraint is solved using 

the below equation to turn the generated control input from the control algorithm to one 

of the following three possible outputs from the quantizer: 

𝑢 = {

𝑢𝑚𝑎𝑥                          (𝑢 ≥ 𝑢𝑚𝑎𝑥/2)
0             (𝑢𝑚𝑎𝑥/2 > 𝑢 > 𝑢𝑚𝑖𝑛/2)
𝑢𝑚𝑖𝑛                          (𝑢 ≤ 𝑢𝑚𝑖𝑛/2)

 

(44) 

 

The flow diagram denoting the controller implementation is indicated in Fig. 2.2. 

The path that the satellite should follow is fed into the controller in the form of a reference 

input signal. The error between the reference and the satellite’s feedback is calculated and 

used by the controllers to generate control signals, which are fed into the quantizer to 

simulate the output of the propulsion system. Subsequently, this value is provided into 

the satellite’s dynamic model for simulation, and the generated output is used as feedback 

for the error calculation in the next control iteration.  

 

Figure 2.2 Satellite control system implementation. 
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2.3. Simulation Results  

For the fly-around simulation, only the X–Y plane is considered. The parameters and 

their corresponding values used in the simulation are listed in Table (2.1). 

Table 2.1 Simulation conditions considered in this study. 

Parameter Value 

Orbit period 400 s 

Orbit radius 4m 

Initial values (𝑥0, 𝑦0, 𝑥0̇, 𝑦0̇) [m, 𝑚𝑠−1] (0,-5,0,0) 

Input constraints [𝑚𝑚𝑠−2] |𝑢𝑥| ≤ 2.88 

|𝑢𝑦| ≤ 2.88 

Coefficient matrix Q diag [1,1,1,1] 

Coefficient matrix R diag [1,1] 

Prediction horizon 6 

Control horizon 3 

Discrete time period 1s- CW 

2s- LQR 

2s- MPC 

 

Simulation is performed for a period of 1000 s for each control scheme, and Fig. 

2.3 expresses the outputs generated by the satellite model on each occasion. The target 

and chaser orbit the earth in a circular path, and the relative motion between the two at 

close proximity is shown in the figure in detail. Here, the target is assumed to be an object 

situated in the centre of the given figure, with the chaser satellite orbiting it in a circular 

motion. 
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Figure 2.3 Comparison of the fly-around orbits with the three controllers. 

Figs. 2.4 to 2.6 show the changes in radius related to the MPC, LQR, and CW-

based controllers. The reference input given here is to follow a fixed 4-m radius circle. 

The MPC-based controller moves from its initial position to the reference position 

aggressively in a short period, albeit with a slightly unsteady movement along the total 

simulation time because of the shorter control horizon. LQR-based controllers take a 

much longer time to settle into the reference input because it must counter the variations 

due to the quantizer. The CW controller has the least success following the given 

reference, as it is not a robust controller compared to the other two controllers. 
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Figure 2.4 Change in fly-around radius with the MPC-based controller. 

 

Figure 2.5 Changes in the fly-around radius with the LQR-based controller. 

 

Figure 2.6 Changes in the fly-around radius with the C-W based controller. 

 

Figs. 2.7 to 2.9 denote the changes in angular velocities of the MPC-, LQR- and 

CW-based controllers when following the circular reference input with a constant angular 
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velocity. Here, the data again point to faster convergence of the MPC controller toward 

the required reference value. The LQR method has the least wobbling around the target 

value of 0.9 deg/s, but it takes almost 10 times as long as the MPC method to reduce the 

initial speed closer to the target value. The CW method fails to bring the satellite’s speed 

to a respectable value until the last quarter of the simulation time because it is severely 

affected by the quantizer’s restrictions and variations in reference inputs at each time step 

along the X and Y directions. 

 

Figure 2.7 Changes in the fly-around angular velocity with the MPC-based controller. 

 

Figure 2.8 Changes in the fly-around angular velocity with the LQR-based controller. 
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Figure 2.9 Changes in the fly-around angular velocity with the C-W based controller. 

 

The chaser satellite is assumed to have two pairs of thrusters to control the 

movement of the satellite in each direction. Fig. 2.10 and Fig. 2.11 denote the commanded 

inputs (generated from the controller) and the control inputs (generated from the 

quantizer) for each axis with the MPC-based controller. Because the MPC method is 

based on constrained optimization, the commanded inputs are within the maximum 

values that can be generated by the thrusters. 

 

Figure 2.10 Generated control input for a fly-around scenario with the MPC-based controller in the X direction. 
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Figure 2.11 Generated control input for a fly-around scenario with the MPC-based controller in the Y direction. 

 

Figs. 2.12 to 2.15 denote the outputs from the LQR and CW methods to the 

thrusters. On both occasions, the commanded inputs (from the controllers) are much 

higher than the thrusters’ maximum values. Thus, they both fail to bring the satellite’s 

position and angular velocity errors to a minimum value within a short period compared 

with the MPC method.  

 

Figure 2.12 Generated control input for a fly-around scenario with the LQR-based controller in the X direction. 
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Figure 2.13 Generated control input for a fly-around scenario with the LQR-based controller in the Y direction. 

 

 

Figure 2.14 Generated control input for a fly-around scenario with the CW-based controller in the X 

direction. 

 

Figure 2.15 Generated control input for a fly-around scenario with the CW-based controller in the Y 

direction. 

 

Table (2.2) corresponds to the numerical evaluation of the root mean square 

errors (RMSE) pertaining to the position and angular velocity errors with the three 
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controllers in the X and Y directions. The MPC-based method achieved better results in 

position error calculations, whereas the LQR method was superior in the velocity 

calculations.  

Table 2.2 RMSE values for positions and velocities in the X-Y directions. 

Controller Values 

  

 Position X Position Y Velocity X Velocity Y 

     

C-W 0.314 0.191 0.022 0.014 

LQR 0.173 0.143 0.012 0.009 

MPC 0.074 0.122 0.022 0.023 

 

In Table (2.3), the total ∆U requirement for the entire simulation is calculated for 

the corresponding three controllers. Here, ∆U is considered a performance criterion to 

evaluate the fuel consumption from the start to the end of simulation time 𝑇𝑓, in the 

following form of: 

∆𝑈 = ∑|𝑢𝑥,𝑦(𝑖)|

𝑇𝑓 

𝑖=0

 

(45) 

 The MPC-based controller has the lowest ∆U requirement because of the 

constraints used in the optimization. As shown in the previous figures related to the 

outputs from the controllers and quantizers, when these values are higher than the outputs 

obtainable from the thrusters, it can take a longer time to switch the thruster directions in 

the initial phase, which can lead to a larger ∆U requirement to complete the given mission. 
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Table 2.3 ∆U requirement for a total simulation time of 1000 s. 

 

Controller ∆U requirement for total simulation time 

 Direction X Direction Y 

C-W 2.877 2.765 

LQR 1.549 1.731 

MPC 0.821 0.962 

 

 

In the simulation, a control horizon of 3 was used for the MPC-based algorithm. 

When the control horizon increases, the required memory capacity also increases by a 

factor of ~10. A comparison of the memory usage between region-based and region-free 

MPC is given in Table 2.4. 

Table 2.4  Memory requirements with different control horizons for the MPC controller. 

Control horizon Region-free MPC (KB) Region-based MPC (KB) 

1 8.8 18.0 

2 120.6 433.8 

3 1562.3 10288.4 

4 16454.6 230685.6 

 

Even though from the analytical data, we can derive that the MPC-based 

controller shows better performance compared with the LQR and CW based methods, the 

graphical data show that the MPC-based controller has some wobbling effects when it 

tries to follow the required trajectory of 4 m. Because reducing the position error is more 

important compared with angular velocity error, different combinations of control and 

prediction horizons were compared to find a suitable solution together with calculation 

improvement between the conversions of actual control inputs to quantized inputs. The 

wobbling effects were caused by the time interval of 1 s, which was used for simulations. 
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Because the target satellite must follow a trajectory with fine margins, the fluctuations 

that arise within this time interval are higher. This is seen in the Fig. 2.16 that when the 

prediction horizon has increased, although the settling times reduced, the fluctuations 

increased.

 

Figure 2.16 Change in radius with different configurations 
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Figure 2.17 Change in angular velocities with different configurations 

The RMSE of position errors, angular velocity errors, and total delta V 

requirement with the different configurations used in the above scenarios are given in 

Table (2.5). Considering the overall performance in all categories, Nc = 2, Np = 3 and Nc 

= 2, Np = 4 point to the best results. Fig. 2.18 shows the visualized version of the changes 

in the trajectory tracking with different combinations. Furthermore, Table (2.6) 

summarizes the steady state errors which were measured at the end of the simulation time. 
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Table 2.5 RMSE values and delta V for the considered configurations 

Configuration Position 

error in x 

Position 

error in y 

Velocity 

error in x 

Velocity 

error in y 

Delta V in 

x 

Delta V in 

y 

Nc=3 Np=3 0.0205 0.0366 0.0201 0.0209 1.1117 1.3651 

Nc=3 Np=4 0.0404 0.0519 0.0201 0.0207 1.0858 1.2154 

Nc=3 Np=5 0.0540 0.0631 0.0211 0.2064 0.9763 1.1002 

Nc=3 Np=6 0.0643 0.0717 0.0201 0.0206 0.8986 0.9619 

Nc=3 Np=7 0.0349 0.0364 0.2009 0.0206 1.8058 2.4249 

Nc=3 Np=8 0.0436 0.0473 0.0201 0.0206 1.5350 2.4797 

Nc=2 Np=2 0.0208 0.0418 0.0201 0.0210 1.1808 1.3363 

Nc=2 Np=3 0.0205 0.0365 0.0201 0.0209 1.1117 1.3651 

Nc=2 Np=4 0.0388 0.0503 0.0201 0.0207 1.0685 1.1520 

Nc=2 Np=5 0.0542 0.0632 0.0201 0.0206 0.9965 1.4774 

Nc=2 Np=6 0.0649 0.0724 0.0201 0.0206 0.9014 0.9677 

Nc=2 Np=7 0.0724 0.0798 0.0201 0.0206 0.8093 0.9734 

Nc=2 Np=8 0.0777 0.0839 0.0202 0.0205 0.7949 0.9216 

Nc=4 Np=4 0.0404 0.0519 0.0201 0.0207 1.0858 1.2136 

 

Table 2.6 Steady state errors with the considered controllers after the simulation time. 

Configuration Stead state error (m) 

Nc=3 Np=3 0.0032 

Nc=3 Np=4 0.0022 

Nc=3 Np=5 0.0029 

Nc=3 Np=6 0.0027 

Nc=3 Np=7 0.0021 

Nc=3 Np=8 0.0018 

Nc=2 Np=2 0.0023 

Nc=2 Np=3 0.0032 

Nc=2 Np=4 0.0016 

Nc=2 Np=5 0.0019 

Nc=2 Np=6 0.0030 

Nc=2 Np=7 0.0034 

Nc=2 Np=8 0.0030 

Nc=4 Np=4 0.0004 

C-W 0.0014 

LQR 0.0018 
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Figure 2.18 Graphical representation of trajectories with different configurations 

2.4. Summary 

In this chapter, we developed a control algorithm for a fly-around orbit control situation 

between a target and a chaser satellite with limitations. Initially, the relative motion 

between two objects orbiting the earth was studied using related equations. To realize fuel 

optimization while considering the limitations in the storage capabilities of satellites, an 

MPC-based control algorithm was implemented. The simulation results point to success 

in the control strategy in minimizing fuel consumption compared to several conventional 

controls while limiting the memory usage and improving tracking performance. 
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CHAPTER 3 

NEURAL NETWORKS BASED ADAPTIVE ATTITUDE CONTROLLER 

DESIGN FOR A SATELLITE WITH PARTIAL KNOWN INERTIAL 

PROPERTIES 

3.1. Background and Literature Review 

As previously mentioned, a vast majority of research is being conducted to find solutions 

to this ever growing problem of space debris mitigation [20][21] [2] [3]. However, most 

debris are uncooperative objects with different sizes and mass properties which require 

complex design and implementation considerations. Once a debris removal satellite 

captures such an object with a locking mechanism, the dynamics of the combined system 

instantly change causing tumbling and spinning effects and hindering its orbital path. 

Both velocity and orientation of the system should be brought to the desired values for 

safer maneuvering. Therefore, a robust attitude control algorithm is an integral part in 

system design. It should be able identify the uncertainties that arise in the mass properties 

and control the combined system under external torques and perturbations. The main 

objectives of this research are to estimate the unknown inertial properties of the system 

and develop a control algorithm that is sufficiently robust to cope with uncertainties in 

the inertial properties of the system. 

  When estimating the inertia matrix of a satellite, both moment of inertia and 

product of inertia must be considered. Considerable research has been conducted in 

regards to inertia estimation of satellites.  Palimaka and Burlton used the weighted least 

square method to estimate the mass properties [22]. Lee and Wertz proposed an approach 

for inertia tensor estimation using the least squares method [23]. A A combination of the 

extended Kalman filter (EKF) and the least squares was proposed in Ref [24] to filter the 

gryo signals and used batch method to calculate the inertia. A modified law of 
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conservation of angular momentum was used in Ref [25] to estimate both the moment of 

inertia and the product of inertia of the STSAT-3 satellite. Yang et al. [26] proposed an 

improved version for inertia estimation using recursive least squares by combining 

angular velocity and angular acceleration with filtered angular rates through EKF. Kim 

et al. [27] focused on the use of extended Kalman and Savitzky-Golay filters for filtering 

gyro data together with linear least squares method for accurately predicting the inertial 

matrix. 

  An extensive amount of research has been conducted to develop attitude control 

algorithms for satellites. With the probability of fast tumbling effects, large angle 

maneuvering can be performed in the system. Because rigid body parameters vary in an 

unpredictable manner, a highly robust controller is required to maneuver the system to a 

desired orientation. Although nonlinear and robust control theory based algorithms could 

deliver high performance, it could lead to complexities in the design stage and during 

implementation [28].  In retrospect, proportional-integral-derivative (PID) controllers are 

simple and straightforward to implement [29][30][31][32][33].  

 Another class of controllers includes the fuzzy theory based algorithms that 

employ the intuition of human expert knowledge in designing complex systems in a 

simple manner. With the unpredictability of the inertial properties, the control system 

itself should be able to change its output to compensate for changes in system properties. 

Intelligent controllers such as those based on fuzzy control are simple to implement and 

take less burden during computational calculations. With low cost and flexibility for 

handling nonlinear systems with wider operating conditions, such controllers can perform 

better than PID controllers [34][35]. Cheng and Shu [36] used two Fuzzy controllers for 

attitude stabilization and consolidated them to one Fuzzy controller considering that both 

have similar rule bases and membership functions. Ismail [34] discussed the tuning of 
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PID gains for steam turbines using the Fuzzy theory. Because PID gains do not guarantee 

stability under all situations, he used the Fuzzy controller to improve the gain values of 

the conventional PID controller. Sari et al. [35] expressed his form of an adaptive Fuzzy 

PID controller for attitude control of a spacecraft. He used two separate Fuzzy inference 

engines to control each state variable and its priority and then used sliding mode based 

control to update the gains of the system.  Buijtenen [37] focused on the use of 

reinforcement learning to establish both the critic (evaluation unit) and the adaptive fuzzy 

controller. A direct adaptive Fuzzy controller is combined with a sliding surface to 

adequately control the desired orientation of a satellite in the study of Mostafa et al. [38]. 

  When dealing with extreme ambiguities in system parameters intelligent control 

systems provide more robustness compared to conventional controllers such as PID with 

improved handling of nonlinearities and adjustments to gains [39].  Neural networks are 

an efficient control scheme that can deal with the shortcomings of both PID and Fuzzy 

controllers. Because fuzzy controllers require heuristic information, when the expert 

knowledge is limited and rule bases are not sufficient, artificial intelligence (AI) based 

control algorithms such as neural networks have the upper hand because the optimum 

gain values can be adjusted to meet the expectations of each situation accordingly. Ponce 

et al. [40] used a neural network based on three layer perceptron, and the output error was 

considered to adjust the weights of the neural network using a modified backpropagation 

method. A criteria was given to initialize the parameters while adjusting the learning rate 

of the system. Yamamoto et al. [41] formulated an adaptive controller based on PID and 

neural networks. The controller gains for the modeled part were calculated using a self-

tuning PID based controller and the unmodelled part gains were derived using a 

backpropagation based neural network. Hernandez et al. [42] used the backpropagation 

method to calculate the gains of an auto tuning PID controller type neural network for an 
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underwater robot. In Ref. [43], Li and Espinosa structured their PID neural network to 

include both the plant model and the controller model. The first neural network generates 

the gains for the PID controller, while the second increases the effectiveness of the 

backpropagation method. Although AI-based control strategies could yield efficient 

results, they also have the drawback of requiring higher computational power and energy 

consumption in general. With the ongoing developments of graphical processing unit 

(GPU)-based onboard controllers for space activities, it will be easier to implement and 

deploy such controllers for space-related missions [44][45]. This can be further reduced 

by considering the use of these types of control schemes only for specific mission 

situations. 

The structure of this chapter is as follows. To cope with the complexities of 

designing such a system, this research concentrated on two areas: inertia estimation and 

controller design. The system was considered as two separate parts, the chaser and the 

target. The chaser (assumed to be a satellite) has known inertial properties, and the 

target’s inertial properties are partially known. When the two objects are combined after 

the capturing procedure, the new system is expected to have a known initial velocity and 

orientation. The initial process was to identify the system’s inertia matrix. Next, the 

controller system was designed using a conventional PD controller, fuzzy theory-based 

controller, inertia-based controller, and a neural based adaptive controller. The 

performance of these controllers was then compared through computer simulations and 

data analysis. 

3.2.  Methodology 

3.2.1.  Estimating the Inertia  

Satellites can have different shapes, parts, and physical characteristics, and as a result, 
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their movement in space can be complex. Let us consider a simple rigid body satellite 

moving freely in space without any disturbances. The dynamical equation of motion can 

be expressed in Euler’s form [31] with 𝐽, 𝜔, 𝑢 and 𝑦 being the satellite’s inertia matrix, 

angular velocity, applied torques, and system outputs, respectively. 

𝐽�̇� = −𝜔 ×  𝐽𝜔 + 𝑢. (46) 

It is rearranged in the following form to be used in the regression model. 

�̇� = −𝐽−1𝜔 × 𝐽𝜔 + 𝐽−1𝑢. (47) 

𝑦 = 𝜔. (48) 

Consider the following expanded matrices for Ω, JE, and cross product of ω. 

Ω = [

𝜔1 0 0
0 𝜔2 0

𝜔2 𝜔3 0
𝜔1 0 𝜔3

0 0 𝜔3 0 𝜔1 𝜔2

]. 

(49) 

  𝐽𝐸  =  [𝐽𝑥𝑥   𝐽𝑦𝑦   𝐽𝑧𝑧   𝐽𝑥𝑦   𝐽𝑥𝑧   𝐽𝑦𝑧]. (50) 

𝜔 × = [
0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
]. 

(51) 

  The regression model for the linear least squares method and its general 

solution can be written as follows: 

𝑧 = 𝐻𝑥. (52) 
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�̂� = (𝐻𝑇𝐻)−1𝐻𝑇𝑧. (53) 

 with 𝑧, 𝐻 and 𝑥 corresponding to the matrices of measurements, regression, and 

parameters to be estimated.  Substitute Eq. (52) with input torques and measurements  to 

solve for the inertia estimation [26][27]. Assume that a constant torque is supplied while 

inertia is being estimated. Therefore, the regression matrix H, which includes the angular 

velocity and angular acceleration, is assumed to be a non-zero matrix. Furthermore, 

because it is a square matrix, the direct inverse can be used to estimate the unknown 

inertia. 

   

[
𝑢

∫𝑢𝑑𝑡] =  [
Ω ̇ +  𝜔 ×  Ω

Ω + ∫𝜔 × Ω𝑑𝑡
] 𝐽𝐸. 

(54) 

  

Consider a situation in which the target body is captured by the chaser satellite. 

The total inertia goes through a sudden change. The inertia matrix of the chaser satellite 

is taken as follows: 

[
10000 0 0

0 9000 0
0 0 12000

] 𝑘𝑔𝑚2 
(55) 

For the target satellite, instead of considering a fixed object, an inertia varying 

system is considered for simulations. At the maximum variation, the target body is taken 

as a cube of 300 kg mass with 1 m sides. Then, a sudden change in inertia is assumed to 

vary between 0 and 5000 kgm2. Random values between these ranges are generated and 

added to the satellite inertia, and a constant torque is given to the system for a predefined 

time. After that, using the above-mentioned regression model, the total inertia is 

estimated. 
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3.2.2.  Attitude Representation 

Different models such as quaternions, Euler-angles, and Rodrigues parameters can be 

used to represent the orientation of an object in space. Quaternions are used in the 

calculations in this work because they do not get affected by singularities. Attitude 

Kinematics are given by the following equation: 

�̇� =  
1

2
Ξ(𝜔)q. (56) 

  With the skew symmetric matrix Ξ and quaternion matrix q being 

Ξ(𝜔) =  [

0      𝜔3 −𝜔2 𝜔1

−𝜔3

𝜔2

−𝜔1

0
−𝜔1

−𝜔2

𝜔1

0
−𝜔3

𝜔2

𝜔3

0

]. 

(57) 

q = [ 𝑞1 𝑞2 𝑞3 𝑞4]′. (58) 

3.2.3.  Proportional-Derivative Controller Design (PD) 

Several types of controllers are used for comparison in this research. The first controller 

is a conventional proportional-derivative (PD) controller in the form of Eq. (59). The 

control law that is used to drive the system to stability is given as follows: 

u = kPq1:3 + kDω ( q1:3 = [q1 q2 q3] ). (59) 

The selected proportional ( kP ) and derivative ( kD ) gains are [50,500]. 

3.2.4.  Fuzzy Logic based Controller Design (FBC) 

Fuzzy control uses human expertise to develop an intuitive idea regarding how the 

controller system should work in complex situations. It is then applied to design the 
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control algorithm in the form of rules. Compared with conventional control, which is 

based on differential equations, this can yield better results when the dynamical equations 

are inaccurate and too complex to implement. A general fuzzy model has four 

components, as mentioned in Fig. 16. Fuzzification aligns inputs to the corresponding 

rules. The inference mechanism helps in selecting the active rule for each instant. Rule-

base is the set of governing rules of the concerned system. Defuzzification deals with 

converting the decision of the collective model into a control signal. It is then sent to the 

process or the dynamic model of the system which is to be controlled. The output of the 

process is then fed back to the fuzzy controller for the next iteration of the control loop. 

 

Figure 3.1  Components of a general fuzzy model. 

 

The variations in quaternions and angular velocities are different. As a result, two 

different fuzzy models are used to minimize each error signal. Each model has two 

membership functions to map the corresponding error and derivative of error signals. 

Tables (3.1) and (3.2) denote the rule tables for the two fuzzy models. The ranges of these 

values are kept similar to those of the PD controller gains used earlier. 
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Table 3.1  Rule table denoting fuzzy model 1. 

Required torque Rate of change of attitude error 

n z p 
Attitude error n -50 -25 0 

z -25 0 25 
p 0 25 50 

 

Table 3.2  Rule table denoting fuzzy model 2. 

Required torque Rate of change of angular velocity 

nn n z p pp 
Angular velocity nn -500 -500 -500 -250 0 

n -500 -500 -250 0 250 
z -500 -250 0 250 500 
p -250 0 250 500 500 
pp 0 250 500 500 500 

   

Membership functions referring to the above mentioned fuzzy models are given 

in Figs. 3.2 to 3.5 Various types of linear and nonlinear functions can be used for 

membership functions. These can be combined with input and output scaling to obtain 

varying results. Here, triangular and trapezoidal functions are used for the membership 

functions with no scaling. For the horizontal plane values, a combination of uniformly 

and nonuniformly distributed values have been used after some trials for adequate system 

performance. 

 

Figure 3.2  Membership function: attitude error. 
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Figure 3.3  Membership function: rate of change of attitude error 

 

Figure 3.4  Membership function: angular velocity. 

 

Figure 3.5  Membership function: rate of change of angular velocity. 

3.2.5.  Inertia based Controller Design (IBC) 

A control law based on the estimated inertia [46], along with proportional and derivative 

gains in the form of Eq. (60), is used as an adaptive controller that utilizes both the 

estimated inertia matrix and PD equivalent gains to stabilize the system.  
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𝑢 = ½𝑝1 + 𝜓𝐽𝑇 + 𝑘𝑝2. (60) 

  With constants 𝜆 and k and the unknown parameter matrices being 

𝑝1 = 𝑞1:3. (61) 

𝑝2 = 𝜆𝑝1 + 𝜔. (62) 

𝜓′ =

[
 
 
 
 
 
 
 
 
 
−𝑎𝑞1̇ −𝜔1𝜔3 𝜔1𝜔2

−𝑎𝑞2̇ −𝜔2𝜔3 𝜔2
2

𝑎𝑞3̇ −𝜔3
2 𝜔2𝜔3

𝜔1𝜔3 −𝑎𝑞1̇ −𝜔1
2

𝜔2𝜔3 −𝑎𝑞2̇ −𝜔1𝜔2

𝜔3
2 −𝑎𝑞3̇ −𝜔1𝜔3

−𝜔1𝜔2 𝜔1
2 −𝑎𝑞1̇

−𝜔2
2 𝜔1𝜔2 −𝑎𝑞2̇

−𝜔2𝜔3 𝜔1𝜔3 −𝑎𝑞3̇]
 
 
 
 
 
 
 
 
 

. 

(63) 

 𝐽𝑇 = [𝐽𝑥𝑥 𝐽𝑥𝑦 𝐽𝑥𝑧  𝐽𝑦𝑥 𝐽𝑦𝑦 𝐽𝑦𝑧 𝐽𝑧𝑥 𝐽𝑧𝑦 𝐽𝑧𝑧]. (64) 

3.2.6. Neural based Adaptive Controller Design (NBAC) 

 

Figure 3.6  Neural based adaptive controller architecture. 
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Figure 3.7  3-layer neuron perceptron. 

The neural network-based adaptive controller is described in Fig. 3.6 Two 

identical neural networks are used with the quaternion errors and angular velocity errors 

to adaptively change the parameter gains of the proposed control algorithm. The neural 

network comprises a three layer neuron perceptron, as shown in Fig. 3.7 It includes an 

input layer, a hidden layer, and a output layer. Three inputs considered here are the three 

quaternion error signals and three angular velocity vectors. wij and vj correspond to the 

weights of the hidden layers and the output layers, respectively. The gradient descent 

method with the backpropagation algorithm was used to minimize the error function and 

update the weights at each iteration. As the system propagates through the layers, the 

outputs from the hidden layers are used in the plant to tune each of the proportional and 

derivative gains separately and the plant output error is fed back to the neural network for 

calculating the next iteration.  

Elaborating the inner workings of the neural controller, the activation function of 

the output is represented by Eq. 18. Here, a sigmoid function is used. In general, the 

calculated weighted sum can have a large disparity. With the sigmoid function, it is 

compressed within the range of 0 to 1. 
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𝑢(𝑡) =
1

1 + 𝑒−𝑚
. 

(65) 

with m being the summation of the multiplications of hidden layer outputs and 

their weighting coefficients. 

𝑚 = ∑𝑣𝑗ℎ𝑗

3

𝑗=1

. 
(66) 

  The hidden layer output hj is calculated using another Sigmoid function through 

ℎ𝑗 =
1

1 + 𝑒𝑗
−𝑛. 

(67) 

  Furthermore, the corresponding value of nj is the summation of multiplications 

between inputs and their related weight coefficients. 

𝑛𝑗 =  ∑ 𝑤𝑗𝑖𝑢𝑖

3

𝑖=1

. (68) 

  Let us consider a cost function in the form of output error. The objective is to 

minimize the accumulation of the square of the error given by ey. Let us consider the 

following function: 

𝐸𝑟𝑟(𝑡) =
1

2
∑𝑒𝑦(𝑖)2

𝑡

𝑖=1

. 
(69) 

 The most general method to minimize the cost function is to start at any given 

output value and identify which way the input should move to decrease the output. By 

considering the slope of that function at that given time, we can identify whether to move 

the input to a negative or positive direction to minimize the function. From the concept 

of gradient descent, the error can be minimized when the gradient of this function moves 
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in the negative direction with reference to weights’ coefficients. The gradient of the error 

function is given by 

𝛻𝐸𝑟𝑟(𝑡) = ⌊

𝜕𝐸𝑟𝑟(𝑡)
𝜕𝑣𝑗

𝜕𝐸𝑟𝑟(𝑡)
𝜕𝑤𝑗𝑖

⌋. 

(70) 

  The partial derivatives can be expanded as follows 

𝜕𝐸𝑟𝑟(𝑡)

𝜕𝑣𝑗
= 

𝜕𝐸𝑟𝑟(𝑡)

𝜕𝑒𝑦
∗
𝜕𝑒𝑦

𝜕𝑒𝑢
∗

𝜕𝑒𝑢

𝜕𝑢(𝑡)
∗
𝜕𝑢(𝑡)

𝜕𝑚
∗

𝜕𝑚

𝜕𝑣𝑗
. 

(71) 

𝜕𝐸𝑟𝑟(𝑡)

𝜕𝑤𝑗𝑖
= 

𝜕𝐸𝑟𝑟(𝑡)

𝜕𝑒𝑦
∗

𝜕𝑒𝑦

𝜕𝑒𝑢
∗

𝜕𝑒𝑢

𝜕𝑢(𝑡)
∗

𝜕𝑢(𝑡)

𝜕𝑟
∗

𝜕𝑟

𝜕ℎ𝑖
∗

𝜕ℎ𝑖

𝜕𝑛𝑗
∗

𝜕𝑛𝑗

𝜕𝑤𝑗𝑖
. 

(72) 

  Substituting the below notations, 

𝛿1 = 𝑒𝑦 ∗ 𝑢(𝑡) ∗ (1 − 𝑢(𝑡)). (73) 

𝛿𝑗
2 = 𝛿1 ∗ 𝑣𝑗 ∗ ℎ𝑗 ∗ (1 − ℎ𝑗). (74) 

The partial derivatives can be expressed in the following form:  

𝜕𝐸𝑟𝑟(𝑡)

𝜕𝑣𝑗
= (

𝜕𝑒𝑦

𝜕𝑒𝑢
)𝛿1ℎ𝑗 . 

(75) 

𝜕𝐸𝑟𝑟(𝑡)

𝜕𝑤𝑗𝑖
= −(

𝜕𝑒𝑦

𝜕𝑒𝑢
)𝛿𝑗

2𝑢𝑖 . 
(76) 

  This is the basis of the backpropagation, where the sensitivity of said coefficients 

is calculated to reduce the cost function values at each layer of the neural network. Using 

this, the weighting coefficients can be updated with the following formula: 
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𝑣𝑗(𝑖 + 1) = 𝑣𝑗(𝑖) + (𝑛
𝜕𝑒𝑦

𝜕𝑒𝑢
)𝛿1ℎ𝑗 . 

   (77)  

𝑤𝑗𝑖(𝑖 + 1) = 𝑤𝑗𝑖(𝑖) + (𝑛
𝜕𝑒𝑦

𝜕𝑒𝑢
)𝛿𝑗

2𝑢𝑖. 
(78)  

  Here, n is the learning rate. ∂ey/∂eu denotes the equivalent gain. ∂ey is the 

difference between desired plant output and the actual plant output. Similarly, ∂eu is the 

subtraction between the desired neural network output and the actual neural network 

output. The initial values of the weights are zero, and a learning rate of 0.2 is used in the 

simulations. 

3.3.  Simulation Results 

To compare performance, two sets of situations are analyzed using computer simulations 

based on MATLAB/SIMULINK. In the first set, each controller is simulated 

corresponding to the instant when the inertia variation is assumed to be at the maximum 

attainable value with the given initial angular velocities and attitude angles denoted in 

Table (3.3). 

Table 3.3  Initial conditions for simulation set 1 

Initial Condition Value 

 

Inertia ⌈
15000 5000 5000
5000 14000 5000
5000 5000 17000

⌉kgm2 

Angular velocity [-0.6771, 1.1498, -0.0681]  
Quaternion angle [-0.4794, -0.1298, 0.3722, -0.7213] 

 

The simulation time chosen is 500 s, and a saturation limit of ±500 Nm is used for 

the generated torques. Figs. (3.8)–(3.19) illustrate the change in the quaternion error 

angles, angular velocities, and the preferred torques for each controller. Tables (3.4)–(3.7) 
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show the settling duration and root mean square errors (RMSE) of the quaternions, 

velocities, and the preferred torques. Fig. (3.20) illustrates the variation of adaptive gains 

with the NBAC controller corresponding to each quaternion and angular velocity errors. 

 

Figure 3.8  PD controller: variation in quaternions. 

 

Figure 3.9  PD controller: variation in angular velocities. 
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Figure 3.10  PD controller: variation in required torques. 

 

Figure 3.11  FBC: variation in quaternions. 
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Figure 3.12  FBC: variation in angular velocities. 

 

Figure 3.13  FBC: variation in required torques. 
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Figure 3.14  IBC: variation in quaternions. 

 

Figure 3.15  IBC: variation in angular velocities. 
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Figure 3.16  IBC: variation in required torques. 

 

Figure 3.17  NBAC: variation in quaternions. 
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Figure 3.18  NBAC: variation in angular velocities. 

 

Figure 3.19  NBAC: variation in required torques. 

 

Table 3.4  Settling times with each controller. 

Controller Settling time (s) 

 Quaternion Angular velocity Torque 

PD  426 223 489 

FBC 346 138 259 

IBC 454 220 406 

NBAC 269 159 263 
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Table 3.5  RMSE of quaternions. 

Controller Q1 Q2 Q3 Q4 

PD  0.1286 0.2418 0.3492 0.5872 

FBC 0.2182 0.1552 0.1677 0.3186 

IBC 0.1336 0.2790 0.2793 0.4114 

NBAC 0.1171 0.1387 0.1941 0.3016 

 

 

Table 3.6  RMSE of angular velocities. 

Controller Angular 

velocity 1 

Angular 

velocity 2 

Angular 

velocity 3 

PD  0.0953 0.1350 0.0927 

FBC 0.0722 0.1344 0.0841 

IBC 0.1089 0.1359 0.0873 

NBAC 0.0914 0.1344 0.0878 

 

 

Table 3.7  RMSE of required torques. 

Controller Torque 1 Torque 2 Torque 3 

PD  49.6358 65.1253 47.5293 

FBC 52.1243 70.2336 55.8923 

IBC 106.5149 94.7039 91.6553 

NBAC 52.1654 84.5855 36.9084 

 

Figure 1.  Variation in adaptive gains in NBAC. 

  The simulation results pertaining to the second situation are illustrated in Figs. 

(3.21)–(3.32). They demonstrate the fluctuations of quaternion error angles, angular 

velocity errors, and the required torques with the aforementioned controllers when the 
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unknown inertia is varied within its bounds. The initial values used in the simulations are 

given in Table (3.8). An unknown inertia is then added to the system. With the linear 

squares method, the inertia of the combined system is estimated by applying small 

constant torques for each axis for a total of 500 s. The estimated inertia is then sent to the 

dynamical equation of the satellite plant along with the updated angular velocities and 

attitude angles. The output behaviour is then simulated with each controller for 500 s. 

This is conducted for 50 different occasions while varying the unknown inertia added to 

the system. 

Table 3.8  Initial conditions for simulation set 2 

Condition Value 

 

Initial inertia ⌈
10000 0 0

0 9000 0
0 0 12000

⌉kgm2 

Inertia variation of 

(Ixx, Iyy, Izz, Ixy, Ixz, Iyz) 

[0 – 5000] kgm2 

Initial angular velocity [-0.6771, 1.1498, -0.0681] 

Initial quaternion angle [-0.4794, -0.1298, 0.3722, -0.7213] 

Constant torque applied [20 ; 20 ; 10] Nm 

Simulation time 500 s 

Number of simulations 50 

 

Figure 3.21  PD control: variation in quaternions. 
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Figure 3.22  PD control: variation in angular velocities. 

 

Figure 3.23  PD control: variation in required torques. 
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Figure 3.24  FBC: variation in quaternions. 

 

Figure 3.25  FBC: variation in angular velocities. 
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Figure 3.26  FBC: variation in required torques. 

 

Figure 3.27  IBC: variation in quaternions. 
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Figure 3.28  IBC: variation in angular velocities. 

 

Figure 3.29  IBC: variation in required torques. 
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Figure 3.30  NBAC: variation in quaternions. 

 

Figure 3.31  NBAC: variation in angular velocities. 
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Figure 3.32  NBAC: variation in required torques. 

Tables (3.9)–(3.11) present the RMSE of the quaternion angle errors, the angular 

velocity errors, and the preferred torques pertaining to the second set of simulations 

illustrated in Figs. (3.21)–(3.32). Table (3.12) presents the standard deviation of the 

mean squared errors of the six components of the estimated inertias, as calculated in the 

above simulations. 

 

Table 3.9  RMSE of quaternions. 

Controller Q1 Q2 Q3 Q4 

PD  0.2127 0.2553 0.1889 0.3653 

FBC 0.2289 0.2720 0.1851 0.4229 

IBC 0.2298 0.2489 0.1946 0.4174 

NBAC 0.1496 0.1813 0.1678 0.2908 

 

Table 3.10  RMSE of angular velocities. 

Controller Angular 

velocity 1 

Angular 

velocity 2 

Angular 

velocity 3 

PD  0.0576 0.0927 0.0856 

FBC 0.0418 0.0832 0.0714 

IBC 0.0453 0.0748 0.0927 

NBAC 0.0599 0.0846 0.0778 
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Table 3.11  RMSE of required torques. 

Controller Torque 1 Torque 2 Torque 3 

PD  29.4499 47.0033 42.1701 

FBC 34.0388 48.2003 45.9032 

IBC 52.2904 60.8533 60.4307 

NBAC 34.8662 60.0285 51.5018 

 

Table 3.12  RMSE of estimated inertia components. 

Inertia 

estimate 

Controller 

 PD FBC IBC NBAC 

Ixx 260.23 205.11 177.86 196.90 

Iyy 317.22 162.61 144.04 186.86 

Izz 332.48 327.68 270.01 254.83 

Ixy 168.42 80.94 119.08 104.99 

Ixz 157.52 75.22 131.53 103.01 

Iyz 112.89 77.34 141.65 112.82 

 

Considering both single event and multiple event situations observed above in the 

RMSE of quaternions, angular velocities, and required torques, NBAC controllers 

demonstrated the best overall performance with their adaptive abilities. As the attitude of 

the satellite is the most important factor considering this type of system, NBAC showed 

that it requires the least amount of time to stabilize quaternion errors under both 

situations. The second place is taken by FBC controller with its abilities to use the 

intuition of the expertise knowledge of the design criteria. The third place is taken by the 

PD controller with its easy design and implementation processes. The fourth place is 

awarded to the IBC controller as it also incorporates some of the estimated inertia values 

into its calculations which can have some disparity from the true inertia values. 

Although the overall performance of the NBAC is convincing, the amount of 

control torque used by the NBAC controller is higher and could be reduced. This could 

be done by changing the learning rate of the NBAC controller. A performance comparison 

of different learning rates is given in Table (3.13). The data suggest that with increased 
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learning rates, the RMSE values of quaternion errors and angular velocity errors show 

reducing trends. However, the amount of torque required is increased. 

Table 3.13 Performance with different learning rates 

Learning 

rate 
RMSE values pertaining to quaternions, angular velocities and torques 

 Q1 Q2 Q3 Q4 V1 V2 V3 T1 T2 T3 

0.01 0.2498 0.2711 0.2182 0.5090 0.1549 0.2000 0.1258 32.8026 65.9142 23.7563 

0.05 0.2815 0.1536 0.1974 0.4968 0.1145 0.1433 0.1050 40.9284 78.3369 44.8007 

0.1 0.1332 0.1209 0.2714 0.3256 0.0994 0.1379 0.0949 45.1283 82.9581 42.8693 

0.2 0.1171 0.1387 0.1941 0.3016 0.0915 0.1345 0.0878 52.1655 84.5855 36.9084 

0.3 0.1033 0.1388 0.1744 0.3075 0.0872 0.1330 0.0853 56.1088 85.6184 33.8936 

0.4 0.0949 0.1359 0.1707 0.3155 0.0843 0.1322 0.0839 58.7242 86.3572 32.2636 

0.5 0.0917 0.1332 0.1716 0.3232 0.0822 0.1315 0.0832 60.7162 86.9008 31.3316 

1 0.1055 0.1249 0.1793 0.3536 0.0759 0.1298 0.0816 66.8594 88.3371 30.4164 

 

To compensate for this, an adaptive learning rate is added to the system in the 

following form of:  

𝑢𝑙𝑟 = 𝑢0 +  𝛼𝑘 ;  𝑘 =  ∑|𝑒𝑟𝑟𝑜𝑟|. 
(79) 

The change in the learning rate with the conditions in simulation set 1 is given 

below.  

 

Figure 3.33 Change in learning rate with quaternions 
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Figure 3.34 Change in learning rate with angular velocities 

The modified learning rate method with the simulation set 2 yields the following 

results in the 50 simulation criterion with quaternions, angular velocities, and generated 

torques as shown in Figs. (3.35)–(3.37). 

 

Figure 3.35 Change in quaternion errors with modified learning rate 
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Figure 3.36 Change in angular velocities with modified learning rate 

 

Figure 3.37 Change in required torques with modified learning rate 

A qualitative comparison between the NBAC and NBAC with modified learning 

rate is given in Table (3.14). With an adaptive learning rate, the controller showed more 

improvements in simulation set 2 compared with simulation set 1. Although in set 1, the 

adaptive version is slightly behind the original version, it is still better than other 

controllers that have been used here. The advantage is that this adaptive version requires 

less control torques in comparison with the original NBAC controller in both sets of 

simulations. 
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Table 3.14 Comparison of data of  NBAC with  modified learning rate 

Parameter Comparison with NBAC 

single event scenario 

Comparison with NBAC 

multiple events scenario 

 
Value Better Worse Overall rank  Value 

  
Overall rank 

Quaternion 1 0.1195 
 

B 2 0.1590 
 

B 2 

Quaternion 2 0.1452 
 

B 2 0.1783 G 
 

1 

Quaternion 3 0.2154 
 

B 3 0.1399 G 
 

1 

Quaternion 4 0.3107 
 

B 2 0.2603 G 
 

1 

Ang. Vel. 1 0.0903 G 
 

2 0.0454 G 
 

2 

Ang. Vel. 2 0.1341 G 
 

1 0.0674 G 
 

1 

Ang. Vel. 3 0.0886 
 

B 4 0.0533 G 
 

1 

Torque 1 51.6816 G 
 

2 38.183 
 

B 4 

Torque 2 85.8925 
 

B 4 51.311 G 
 

3 

Torque 3 36.221 G 
 

1 35.425 G 
 

1 

G= Good, B = Bad 

3.4.  Summary 

In this chapter, an approach to solve the issue of controlling the attitude of a satellite with 

partially known inertial properties is introduced by combining both inertia estimation and 

controller implementation. The method considers an object with partially known inertial 

properties. Initially, the inertia of an unknown object is estimated using the linear least 

squares method, and an intelligent controller based on neural networks is implemented to 

drive the system to stability. From the results obtained from the simulations, it can be 

concluded that the neural network-based adaptive controller outperforms all the other 

controllers considered in this study for comparison. It demonstrates an appropriate 

performance in both the single- and multi-event situations analyzed in the simulations. 
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CHAPTER 4 

NOVEL SLIDING MODE CONTROL-BASED CONTROLLER DESIGN 

FOR A SATELLITE WITH LIQUID FUEL SLOSH DISTURBANCES 

4.1. Background and Literature Review 

With the involvement of the private sector in space development, competition to build 

advanced and cost-effective rockets has seen major improvements. Thus, space has 

become more crowded in the recent times with satellites conducting evasive manoeuvres 

becoming a common sighting in the space related news. Therefore, they  need to be on 

alert for possible collision situations and manoeuvre themselves safely in such scenarios.  

Various control algorithms are being used to control satellites in space, ranging 

from simple feedback controllers to complex AI-based adaptive controllers. The 

development of such control algorithms occurred due to different challenges they had 

encountered over the years. In general, a satellite is a collection of rigid and flexible 

bodies moving in space. However, these parts must be changed sometimes to realign the 

solar panels and antennas to improve the conditions of the satellites. These could change 

the internal dynamics of the system to some extent. Similarly, the change in fuel mass 

can also alter satellite dynamics. This is due to the percentage of fuel a satellite carries 

onboard. Because the lifespan of a satellite depends on the onboard fuel, close to 40% of 

the satellite mass could be filled with fuel mass. As the fuel is in liquid state, it can move 

freely in space inside its container. Furthermore, this motion can cause issues in the 

control system itself when attempting to align the satellite to a particular orientation. 

Considerable research has been conducted to implement different types of 

controllers to suppress the fuel slosh [47]. Yu [48] used a conventional sliding mode 

controller with direct physical meaning to the control inputs to stabilize rotational motion. 

Reyhanoglu [49] proposed a LQR and a Lyapunov-based control scheme to suppress fuel 
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slosh and transverse motion of the satellite considering a fixed axis motion. Souza [50] 

used LQG control for flexible spacecraft control considering the fuel slosh while 

estimating the slosh and flexible parameters in the system using the Kalman filter for 

practical situations. Thompson [51] proposed a wave-based controller in the form of a 

spring-mass system to suppress the fuel slosh in a satellite and compare it with a bang-

bang controller for superior controllability. Hussein [52] further expanded sloshing 

suppression by incorporating vibrations of flexible appendages into a dynamical model. 

In most of these cases, SMC is used to suppress and control the attitude and slosh 

angles. However, the settling time and control input values could be higher in many cases. 

In this research, we attempt to implement a novel sliding mode controller to mitigate 

chattering effects as well as the attitude and slosh angles originating from the satellite 

motion. To optimize the control parameters, a particle swarm optimization-based 

algorithm is used, considering error minimization to improve the controller parameters. 

The optimization calculations are performed offline, and only the acquired parameter 

values are used in the implementation of the algorithm in an online scenario. As such, the 

bulk of the computationally heavy work is performed not on the onboard control system 

of a satellite. This is to ensure that these types of controllers do not require excessive 

amount of energy and memory usage while being used in space under limited resources. 

 The rest of the chapter is arranged as follows. The methodology explains the 

mathematical model of the system and controller design. The results section summarizes 

the performance with simulations and data analysis of several controllers. This is 

followed by the conclusions drawn from this research. 
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4.2. Methodology 

For simplicity, let us consider only the motion of a satellite in a fixed frame, and the 

gravity is assumed to be negligible. The goal is to stabilize the satellite model given in 

Fig. 1 about its Y axis. Two translational forces are applied to the satellite in the X and Z 

directions. This can also be represented as a gimbal stabilized system with a small 

deflection angle. The dynamical equations are derived considering the rigid satellite and 

the free-floating fuel mass inside the container. This fuel mass can be represented by both 

a spring-mass system or a pendulum system. 

4.2.1.  Mathematical Model 

The equations of motion for the satellite with sloshing dynamics can be derived 

using Lagrange’s equations [53]. Let us first consider the following satellite model with 

a fuel container for simplicity. Here, [x, z] denotes the coordinate system in the satellite 

body frame. [X, Y] denotes the coordinate system in the global frame of reference with 

its origin at O. The attitude angle of the satellite is given by 𝜃 , while the slosh angle is 

given by 𝜓. The fuel mass is 𝑚𝑓, and the satellite mass without fuel is given by 𝑚. The 

fuel mass is assumed to be moving in a pendulum motion with a pendulum length of a. 

The length between the fixed end of the pendulum and the centre of mass of the satellite 

without fuel mass is b. F and f  correspond to the transverse forces applied in the X and Z 

directions. Finally, the pitch moment is given by M. 



85 

 

 

Figure 4.1 Satellite model with fuel container 

Using Kirchhoff’s and Lagrange equations, the equations of motion for this model 

can be derived. Here, 𝐿, �̅�, �̅�, and 𝑅 denote the Lagrangian of the system, translational 

velocity vector, angular velocity vector, and Rayleigh dissipation function, respectively. 

𝜏�̅� and 𝜏�̅� are the external and internal torque vectors acting on the system, respectively. 

�̂�  and �̂� correspond to the skew symmetric matrices of the translational and angular 

velocities, respectively. 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̅�
 + �̂� ×

𝜕𝐿

𝜕�̅�
  = 𝜏�̅�. 

(80) 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̅�
 +  �̂� ×

𝜕𝐿

𝜕�̅�
+ �̂� ×

𝜕𝐿

𝜕�̅�
  =  𝜏�̅� . 

(81) 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
 −  

𝜕𝐿

𝜕𝜓
 +  

𝜕𝑅

𝜕�̇�
= 0. 

(82) 

Because we are only considering the motion in a fixed plane, the following 

conditions are applied when solving the above equations. 
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𝑅 =  
1

2
𝜀�̇�2 , �̅�  =  [

𝑣𝑥

0
𝑣𝑧

] , Ω̅   =  [
0
�̇�
0
] , 𝜏�̅�  =  [

𝐹
0
𝑓
] , 𝜏�̅�  =  [

0
𝑀 + 𝑏𝑓

0
].    

With the calculation of the total kinetic energy considering both the translational 

and rotational motion, we can arrive at the following nonlinear equations. The additional 

parameters 𝜀, 𝐼 and 𝐼𝑓 denote the dissipation coefficient and inertias of the satellite mass 

and fuel mass, respectively.  

(𝑚 + 𝑚𝑓)(�̇�𝑥 + 𝑣𝑧�̇�) + 𝑚𝑏�̇�2  + 𝑚𝑓𝑎(�̈� + �̈�) sin(𝜓) 

+𝑚𝑓𝑎(�̇� + 𝜓)̇ 2𝑐𝑜𝑠(𝜓)  =  𝐹. 

(83) 

(𝑚 + 𝑚𝑓)(�̇�𝑧  −  𝑣𝑥�̇�) + 𝑚𝑓𝑎(�̈� + �̈�)𝑐𝑜𝑠(𝜓)  −𝑚𝑓𝑎(�̇� +

𝜓)̇ 2𝑠𝑖𝑛(𝜓) + 𝑚𝑏�̈� = 𝑓. 

(84) 

(𝐼 + 𝑚𝑏2)�̈�  +  𝑚𝑏(�̇�𝑧  −  𝑣𝑥�̇�) −  𝜀�̇�  =  𝑀 + 𝑏𝑓. (85) 

(𝑚𝑓𝑎
2 + 𝐼𝑓)(�̈� + �̈�)  + 𝑚𝑓𝑎((�̇�𝑥 + 𝑣𝑧�̇�)sin (𝜓) 

+ (�̇�𝑧  −  𝑣𝑥�̇�)𝑐𝑜𝑠(𝜓))  + 𝜀�̇�  =  0. 

(86) 

 

Eq. (82) can be simplified due to negligible perturbations from slosh and attitude 

angular accelerations as well as angular velocities toward forward translational motion. 

(�̇�𝑥 + 𝑣𝑧�̇�)   =  
𝐹

(𝑚 + 𝑚𝑓)
 . 

(87) 
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Equations (82) to (85) can be simplified by removing (�̇�𝑥 + 𝑣𝑧�̇�) and  (�̇�𝑧  −

 𝑣𝑥�̇�). The transverse force acting perpendicular to the fixed motion can also be replaced 

by considering a gimbal stabilized system where force f is replaced with gimbal angle 𝛿 

and transverse force F. 

 

[𝐼 +  𝑚∗(𝑏2 −  𝑎𝑏𝑐𝑜𝑠(𝜓)]�̈�  −  𝑚∗𝑎𝑏�̈�𝑐𝑜𝑠(𝜓) +𝑚∗𝑎𝑏(�̇� +

𝜓)̇ 2𝑠𝑖𝑛(𝜓) −  𝜀�̇�  =  𝑀 + 𝑏∗𝐹𝛿. 

(88) 

[𝐼𝑓  +  𝑚∗(𝑎2 −  𝑎𝑏𝑐𝑜𝑠(𝜓)]�̈�  −  (𝐼𝑓 + 𝑚∗𝑎2)�̈�2  +(𝑎∗𝐹 −

𝑚∗𝑎𝑏�̇�2)𝑠𝑖𝑛(𝜓) + 𝜀�̇�  =  −𝑎∗𝐹𝛿𝑐𝑜𝑠(𝜓). 

(89) 

 

With the substitutions being 

𝑚∗  =  
𝑚𝑚𝑓

(𝑚 + 𝑚𝑓)
. (90.1) 

𝑎∗ =
𝑎𝑚𝑓

(𝑚 + 𝑚𝑓)
. (90.2) 

𝑏∗ =
𝑏𝑚𝑓

(𝑚 + 𝑚𝑓)
+ 𝑑. 

(90.3) 

𝑑 =
𝐹𝑐

(𝑚 + 𝑚𝑓)
. 

(90.4) 

𝑐 =
𝑚𝑓𝑎

(𝑚𝑓𝑎2 + 𝐼𝑓)
. (90.5) 
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The nonlinear equations are linearized considering small angle approximation as 

follows for further simplicity. 

 

𝐼1�̈�  −  𝐼2�̈�  −  𝜀�̇�  =  𝑀 + 𝑏∗𝐹𝛿. (91) 

𝐼3�̈�  −  𝐼4�̈�
2  + 𝑎∗𝐹𝜓 +  𝜀�̇�  =  −𝑎∗𝐹𝛿. (92) 

 

with the notations being 

𝐼1  = 𝐼 + 𝑚∗(𝑏2 − 𝑎𝑏). (93.1) 

𝐼2 = 𝑚∗𝑎𝑏. (93.2) 

𝐼3 = 𝐼𝑓 + 𝑚∗(𝑎2 − 𝑎𝑏). (93.3) 

𝐼4 = 𝐼𝑓 + 𝑚∗𝑎2. (93.4) 

4.2.2. Sliding Mode Controller Design (SMC) 

The conventional sliding mode controller (SMC) is designed with a combination of 

equivalent control and switching control components in the following form [54] [55] 

𝑢 =  𝑢𝑒𝑞 + 𝑢𝑠𝑤. (94) 

 It is derived by considering sliding surfaces in the following form: 

𝑠1 = �̇� + 𝑧1𝜃 + 𝑧2
2 ∫𝜃𝑒𝑟𝑟 𝑑𝑡. 

(95) 
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𝑠2 = �̇� + 𝑧1𝜓 + 𝑧2
2 ∫𝜓𝑒𝑟𝑟 𝑑𝑡. 

(96) 

The derivatives of the sliding surfaces are expressed as follows: 

�̇�1 = �̈� + 𝑧1�̇� +  𝑧2
2𝜃. (97) 

�̇�1 = �̈� + 𝑧1�̇� + 𝑧2
2𝜓. (98) 

The equality control 𝑢𝑒𝑞 can be calculated by equaling the derivative of the sliding 

surface to 0 after substituting angle accelerations to the equations from Eqns. (97) and 

(98). Switching control 𝑢𝑠𝑤 is derived from the sliding surface. 

Therefore, the total control input 𝑢 is given as follows:  

𝑢 =  𝐺−1 [
𝑤1

𝑤2
]  −  𝑘 𝑠𝑖𝑔𝑛 [

𝑠1

𝑠2
]. (99) 

where 

𝐺 =  [
𝑔21 𝑔22

𝑔31 𝑔32
]. 

(100.1) 

𝑔21  =  (𝐼4𝑏
∗𝐹 − 𝑎∗𝐼2𝐹)/𝑑𝑒𝑙𝑡𝑎. 

(100.2) 

𝑔22 = 𝐼4/𝑑𝑒𝑙𝑡𝑎. 
(100.3) 

𝑔31 = −(𝐼1𝑎
∗𝐹 + 𝐼3𝑏

∗𝐹)/𝑑𝑒𝑙𝑡𝑎. 
(100.4) 

𝑔32 = −𝐼3/𝑑𝑒𝑙𝑡𝑎. 
(100.5) 
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𝑑𝑒𝑙𝑡𝑎 =  𝐼1𝐼4 + 𝐼2𝐼3. 
(100.6) 

𝑤1 =  𝑧1�̇� +  𝑧2
2𝜃 + 𝑓1. 

(100.7) 

𝑤1 = 𝑧1�̇� + 𝑧2
2𝜓 + 𝑓2. 

(100.8) 

𝑓1 = −(𝐼2𝑎
∗𝐹𝜓 + (𝐼2𝜀 − 𝐼4𝜀)�̇�)/𝑑𝑒𝑙𝑡𝑎. 

(100.9) 

𝑓2 = −(𝐼1𝑎
∗𝐹𝜓 + 𝜀(𝐼1 + 𝐼3)�̇�)/𝑑𝑒𝑙𝑡𝑎. 

(100.10) 

 

One of the drawbacks of the conventional SMC is the chattering phenomena; to 

reduce this effect, the control law is slightly modified in the form of  

𝑘 𝑠𝑖𝑔𝑛 [
𝑠1

𝑠2
] = 𝑘𝑆1,2. (101) 

where 

𝑆 =  {
𝑠𝑖𝑔𝑛(𝑠), 𝑠 > 1

𝑠 = 𝑠
𝑠𝑖𝑔𝑛(𝑠), 𝑠 < −1

 

(102) 

4.2.3. Novel Sliding Mode Controller Design (NSMC) 

To design the sliding mode controller (NSMC), let us use the sliding surfaces as 

follows: 

𝑝1  =  𝜃. (103) 
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𝑝2 = 𝜓. (104) 

The first derivatives of the sliding surfaces are 

𝑝11 = �̇�. (105) 

𝑝21 = �̇�. (106) 

The second derivative is then taken as 

𝑝12 = 𝑓1 + 𝑔21𝑢1 + 𝑔22𝑢2. (107) 

𝑝22 = 𝑓2 + 𝑔31𝑢1 + 𝑔32𝑢2. (108) 

The third derivative is 

𝑝13 = 𝑓1̇ + 𝑔21𝑣1  + 𝑔22𝑣2. (109) 

𝑝23 = 𝑓2̇ + 𝑔31𝑣1  + 𝑔32𝑣2. (110) 

 

with 𝑣 being 

𝑣 = 𝐺−1 [
−𝑓1̇ − 𝑟11𝑝1 − 𝑟12𝑝12 − 𝑟13𝑝13 − 𝑟14𝑠𝑖𝑔𝑛(𝑝13)

−𝑓2̇ − 𝑟21𝑝2 − 𝑟22𝑝22 − 𝑟23𝑝23 − 𝑟24𝑠𝑖𝑔𝑛(𝑝23)
]. 

(111) 

and  

[
𝑢1

𝑢2
] = ∫ [

𝑣1

𝑣2
] 𝑑𝑡. 

(112) 
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Particle swarm optimization (PSO), which is a simple, yet effective optimization 

algorithm, uses a population of particles resembling candidate solutions to solve any 

optimization problem [56]. Here, we take the objective function as an error minimization 

in the form of 

𝑚𝑖𝑛 ∫ (𝜃𝑒𝑟𝑟 + �̇�𝑒𝑟𝑟 + 𝜓𝑒𝑟𝑟 + �̇�𝑒𝑟𝑟)
𝑇

0

𝑑𝑡. 
(113) 

PSO works in a given workspace to find the best solution to a given problem as 

shown in Fig. (4.2) 

 

Figure 4.2 Particle swarm optimization overview 

Considering a single particle from a swarm of particles, the position and velocity 

can be described by 𝑛𝑖(𝑡) and 𝑣𝑖(𝑡) in a given search space. The personal best of the 

performance criteria of the particle 𝑖 is given by 𝑝𝑖(𝑡) and the best performance among 

the concerned swarm of particles is given by 𝑔(𝑡). Using this knowledge, updating the 

next position and velocity of the particle 𝑖 is given by [57]  

𝑣𝑖(𝑡 + 1)  =  λ𝑣𝑖(𝑡) + μ1𝑐1(𝑝𝑖(𝑡)  −  𝑥𝑖(𝑡)) + μ2𝑐2(𝑔𝑗(𝑡)  −  𝑥𝑖(𝑡)). (114) 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1). (115) 
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 For the simulation, a swarm size of 50 particles is used with an iteration 

count of 30. λ is selected as 1, and 𝑐1 and 𝑐2 are 2.   

4.2.4. Proportional-Integral-Derivative Controller design (PID) 

A PID-based controller was also implemented to compare the performance in the 

form of [58], 𝑢 = [𝑢1: 𝑢1 + 𝑢2] 

𝑢1 = 𝑘𝑝1𝜃 + 𝑘𝑑1�̇� + 𝑘𝑖1 ∫𝜃 𝑑𝑡. 
(116) 

𝑢2 = 𝑘𝑝2𝜓 + 𝑘𝑑2�̇� + 𝑘𝑖2 ∫𝜓 𝑑𝑡. 
(117) 

4.3. Simulation Results 

To conduct the simulations, the following parameter values were used for dynamical 

equations. 

Table 4.1 Parameter values used for the dynamical model 

Parameter Value 

m 600 kg 

𝑚𝑓 100 kg 

I 720 kg𝑚2 

𝐼𝑓 90 kg𝑚2 

a 0.32 m 

b 0.25 m  

𝜀 0.19 

F 2300 N 

𝑣𝑧 at t=0 120 m𝑠−1 

𝑣𝑥 at t=0 1500 m𝑠−1 

𝜃 at t=0 0.0349 rad 

�̇� at t=0 0.0099 rad 

𝜓 at t=0 0.0873 rad 

�̇� at t=0 0.0087 rad 
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Simulation results pertaining to the change in the attitude angle, rate change of 

attitude angle, slosh angle, rate change of slosh angle, and control inputs are given from 

Figs. (4.3) to (4.20) for each of the NSMC, SMC and, PID controllers. The following 

values were used for the gain parameters with each of the control algorithm, as given in 

Table (4.2). 

Table 4.2 Parameter gains used in simulations 

Controller Gains 

NSMC 𝑟11 = 700 ,  𝑟21 = 700 

𝑟12 = 346.284 , 𝑟22 = 353.533 

𝑟13 = 5.361, 𝑟23 = 11.365 

𝑟14 = 0.0001, 𝑟23 = 0.0001 

SMC 𝑧1 = 16, 𝑧2 = 64, 𝑘1= 18, 𝑘2= 6.0244e4 

PID 𝑘𝑝1 = 50, 𝑘𝑑1=50, 𝑘𝑖1 = 0 

𝑘𝑝2=104, 𝑘𝑑2=104, 𝑘𝑖2 = 0 

 

 

Figure 4.3 Change in attitude angle with time (NSMC) 
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Figure 4.4 Rate of change of attitude angle with time (NSMC) 

 

Figure 4.5 Change in slosh angle with time (NSMC) 

 

Figure 4.6 Rate of change of slosh angle with time (NSMC) 
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Figure 4.7 Change in control input 1 with time (NSMC) 

 

Figure 4.8 Change in control input 2 with time (NSMC) 

 

Figure 4.9 Change in attitude angle with time (SMC) 
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Figure 4.10 Rate of change of attitude angle with time (SMC) 

 

Figure 4.11 Change in slosh angle with time (SMC) 

 

Figure 4.12 Rate of change of slosh angle with time (SMC) 
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Figure 4.13 Change in control input 1 with time (SMC) 

 

Figure 4.14 Change in control input 2 with time (SMC) 

 

Figure 4.15 Change in attitude angle with time (PID) 
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Figure 4.16 Rate of change of attitude angle with time (PID) 

 

Figure 4.17 Change in slosh angle with time (PID) 
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Figure 4.18 Rate of change of slosh angle with time (PID) 

 

Figure 4.19 Change in control input 1 with time (PID) 
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Figure 4.20 Change in control input 2 with time (PID) 

To numerically compare the performances, we compared the RMSE values along 

with settling times when the fuel mass and its inertia were varied for the considered 

controllers. As the fuel mass can change significantly over the span of the satellite’s 

lifetime, these three cases could mimic the satellite’s condition in different stages of its 

lifespan. Tables (4.3)–(4.5) describes these conditions. The acquired data show that the 

PID controller has a consistent RMSE output across the three scenarios analysed. 

However, it takes a longer settling time in comparison. The SMC controller has much 

better settling times and demonstrates even better RMSE values on few occasions; 

however, it requires a significant control input compared to both the PID and NSMC. The 

proposed NSMC had the shortest settling time and overall better RMSE values in the 

simulations. 

 

Table 4.3 Case 1 when fuel mass 100 kg and inertia 90 kgm2 

 Attitude 

angle 

Rate change  

of attitude 

angle 

Slosh angle  Rate change of 

slosh angle 

NSMC 4.1582e-05 8.8477e-05 1.1011e-04 1.9456e-04 

SMC 4.8753e-05 1.4493e-04 9.0887e-05 2.7529e-04 

PID 4.8859e-05 5.0948e-05 1.3863e-04 1.5402e-04 
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Table 4.4 Case 2 when fuel mass mf =200 kg, inertia If= 180 kgm2 

 Attitude angle Rate change  

of attitude 

angle 

Slosh angle  Rate change of 

slosh angle 

NSMC 4.4397e-05 1.6089e-04 9.6246e-05 1.8310e-04 

SMC 5.9135e-05 2.3973e-04 6.2464e-05 3.1238e-04 

PID 4.8656e-05 5.1350e-05 1.4021e-04 1.5351e-04 

 

 

Table 4.5 Case 3 when fuel mass mf =50 kg, inertia If= 45 kgm2 

 Attitude angle Rate change  

of attitude 

angle 

Slosh angle Rate change of 

slosh angle 

NSMC 3.9797e-05 7.6495e-05 1.3524e-04 2.1607e-04 

SMC 3.7387e-05 9.9721e-05 1.3907e-04 2.9892e-04 

PID 4.8957e-05 5.0760e-05 1.3777e-04 1.5439e-04 

 

 

Table 4.6 Settling times for each case considered 

 Error angle Slosh angle 

 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

NSMC 1.0 1.0 1.4 1.6 2.0 3.1 

SMC 3.5 2.0 4.1 3.4 1.2 6.1 

PID 3.7 3.7 3.7 3.2 2.6 3.0 
 

 

Table 4.7 Accumulation of control input over the simulation time 

Controller Case 1 Case 2 Case 3 

 Control 

input 1 

Control 

input 2 

Control 

input 1 

Control 

input 2 

Control 

input 1 

Control 

input 2 

NSMC 0.4047 1114 0.7405 2048 0.3133 908.4 

SMC 0.725 2028 0.9594 2476 0.5473 1556 

PID 0.2487 591.4 0.2767 594.8 0.2343 590.5 

 

The changes in transverse velocities in the z and x directions are described in Figs. 

(4.21) and (4.22). In both occasions, the accelerations in the transverse directions have 

been reduced to zero. However, the transverse velocity in the X direction has not been 

reduced to zero due to the inherent design of the controller and could be further studied 
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and improved. The rather high value of the controller input requirement is due to the fact 

that all three controllers work aggressively to stabilize the angle and fuel slosh errors 

within a small span of time. However, in a practical scenario, not only the time required 

to stabilize the system but also the controller input limitations need to be considered. 

 

Figure 4.21 Transverse velocity vs time in the Z direction 

 

Figure 4.22 Transverse velocity vs time in the X direction 

4.4. Summary 

Space-related activities have considerably increased in the past several decades. With the 

total number of spacecrafts orbiting the earth increasing every year, the onboard control 
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algorithms also need to be improved to compensate for the potential risks involved in 

these complex systems. In this chapter, the irregularities due to fuel slosh are studied for 

a satellite in a fixed frame movement. A novel sliding mode controller was implemented 

to reduce the sloshing and attitude angle errors that arise in such situations. Through 

simulation data, we showed that this controller has a better performance compared with 

the other conventional controllers used in the comparison.  
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CHAPTER 5 

DISCUSSIONS AND CONCLUSIONS 

 5.1. Discussion 

The discussion is span over three points pertaining to the three chapters discussed above. 

It also includes the possible expansions on further research using these research topics as 

a guideline. 

5.1.1. Discussion on MPC  

One major focus for this research was to identify the implementation of MPC with region-

free control to minimize the memory usage while realizing the required control 

objectives. Hence, we considered 2-dimensional movement. However, in practice, this is 

insufficient and both attitude and orbital control should be combined for precise 

manoeuvring in a 3-dimensional plane. This can increase the number of state variables 

and complexities of calculations. This must be considered in future work for system 

design and implementation. 

Another hurdle in the implementation is the higher prediction horizon and the 

control horizon requirements for much smoother tracking control. In this research, these 

parameters were chosen as small values to limit calculation complexities. Among the 

three controllers considered, the MPC-based controller showed the best results against 

position tracking errors. However, the error in velocity tracking was compromised 

because of former considerations. Nevertheless, it is within a respectable margin of error, 

and given the fuel usage, it has shown much better results in the total simulation time. To 

further investigate the fuel minimization, different performance criterions can be 

analyzed while changing the coefficient matrices related to control inputs and considering 

different initial positions. This result could also be analyzed in future work to improve 

tracking performance while maintaining a small control horizon to suppress memory 
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requirements. It can be further extended with the usage of different solver algorithms to 

compare the processing times and memory usage since onboards microprocessor systems 

have hardware limitations. 

5.1.2. Discussion on Neural based Adaptive Controller Design 

A large amount of waste exists in space, some of which is still intact such as old 

difunctional satellites, rockets upper stages, and inactive payloads. These parts may have 

gone through corrosion, mechanical failures, and fuel loss, but the dynamics of the total 

systems can be approximated to a certain range. As a result, this type of control approach 

can be applicable to maneuvering such systems. As the attitude stability is more important 

than the time taken for the actual maneuver, a longer settling time is not a concern in this 

approach. Due to the high computational cost, a neural network-based controller can be 

problematic to implement. However, this type of algorithm can primarily be used for the 

stabilization part when capturing objects due to its adaptive qualities. In a similar manner, 

this can be utilized when releasing the captured object from a combined system in a 

controlled deorbiting situation. 

  This research theme can be further improved in few other areas as well. One such 

area is the consideration of the estimated inertia as a supplement to the neural controller 

itself as inputs. Another area could be the constraints and delays which arise when 

activating the propulsion systems similar to the case study in the orbit control scenario 

that can distort the control behavior. With different classes of satellite constellations  

active in space, considering such an object could considering improve this type of system 

for practical purposes. The calculation cost should also be considered since neural 

network-based controllers are inherently complex in design. With the development of 



107 

 

GPUs based on board computing units for space activities, such systems can be utilized 

and tested for performance cost analysis. 

5.1.3. Discussion on Sliding Mode Controller Design 

Another hindrance to designing control algorithms in general for spacecrafts is the fuel 

slosh situation. As satellites are made of several components, fuel itself is stored in a 

separate enclosure inside the satellite body. However, due to the inherent microgravity 

conditions in space, the liquid fuel can move freely inside the container, creating 

disturbances to the motion of the satellite. Here, in this research, disturbances in a fixed 

frame were explored; however, in a practical scenario, the satellite could be moving in 3-

dimensional space and the motion in all directions, including the transverse and rotational 

directions, will have to be analysed for adequate controller design.  

This could be further complicated if we consider the motion of flexible parts of 

the satellite such as the robotic arms and solar panels, and a general framework for such 

a system would help for both learning perspectives as well as for implementing different 

control algorithms to see how they perform. 

Another area of improvement could be the use of higher order sliding mode 

control to achieve finite time control for this type of a system considering theoretical 

stabilization analysis, which can be extended to both fixed plane and multi plane 

situations. 
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5.2. Conclusion 

As increasingly more debris clogs the valuable orbital space areas, it is a timely 

requirement to seek methods to actively remove space debris for the safety of future space 

missions. This process requires extensive research into many different fields. Analyzing 

such processes is both rigorous and time consuming. This dissertation is a small attempt 

to explore some of the issues space debris mitigation satellites face in space while 

performing orbital and attitude maneuvers. In the first chapter, an introduction is given 

regarding the bases this dissertation is going to cover. In the second chapter, an MPC 

based control algorithm is developed for a fly-around orbit control situation between a 

target and a chaser satellite to realize fuel optimization while considering limitations in 

the storage capabilities of satellites. In the next chapter, the development of an adaptive 

neural network-based control algorithm for an attitude control system while capturing 

objects with partially known inertial properties is detailed. In the final chapter, the 

sloshing situation is analysed while controlling a satellite in space and a SMC based 

control algorithm is developed to compensate for such situations. For all these situations, 

computer-based simulations have been conducted to compare the performance with those 

of several other conventional controllers to validate the developed control algorithms.  
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