
PhD Dissertation

Secure Multi-Party Computation Based on
(k,n) Threshold Secret Sharing with

n < 2k−1 and Application into Searchable
Encryption

n < 2k−1における(k,n)閾値秘密分散法を用いた

秘密計算法及び秘匿検索への応用

MARCH 2022

AHMAD AKMAL AMINUDDIN BIN MOHD KAMAL

Department of Electrical Engineering

Tokyo University of Science

Supervisor:

Professor Keiichi IWAMURA





iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Keiichi Iwamura, for his
continuous support, advice, and patience during my doctoral studies at Tokyo University
of Science. He has supported me patiently and extensively throughout the writing of this
dissertation. His immense knowledge and expertise in information security technologies
helped formulate the research questions, objectives, and methodology, and helped to bring
my work to a higher level. He has been an ideal teacher, mentor, and supervisor, and I am
very grateful for my time working with him.

I would also like to extend my sincere thanks to Associate Professor Masaki Inamura
(Hiroshima City University) and Associate Professor Hyunho Kang (National Institute of
Technology, Tokyo College) for their invaluable advice and support throughout my student
life at Iwamura Laboratory. I am also profoundly grateful to the previous Assistant Professor
of Iwamura Laboratory, Dr. Koya Sato, for all the advice and support. Their immense knowl-
edge and great experience encouraged me in my doctoral studies and helped in my daily life
in Japan.

Additionally, I would like to express my sincere gratitude to my dissertation committee
members, Professor Takayuki Hamamoto (Tokyo University of Science), Professor Mikio
Hasegawa (Tokyo University of Science), Professor Takahiro Yoshida (Tokyo University of
Science), Professor Yukinobu Taniguchi (Tokyo University of Science) and Dr. Yuji Suga
(Internet Initiative Japan, Inc.), not only for their precious time, but also for all the insightful
comments and suggestions given during the process of writing and revising my dissertation.

Furthermore, I would like to express my sincere gratitude to Sato Yo International Schol-
arship Foundation (SISF) for supporting me throughout my academic research life. I would
also like to offer my sincere thanks to the members of SISF for their continuous support and
for their time reading and commenting on my monthly report over the past three years. The
constant encouragement and belief in me given by SISF allowed me to concentrate on my
research and complete this dissertation.

I am also grateful to all the members of Iwamura Laboratory, especially members of
the Secure Computation Research Group, for their discussions and for their kindness to me,
despite the fact that I was the only foreigner in the research group. Their warnheartedness
allowed me to have a wonderful and memorable five years of research life in Iwamura Labo-
ratory. I would also like to extend my gratitude to my seniors, Shingu Takeshi and Ken Aoi,
for their part in completing this dissertation.



iv

Finally, I would like to thank all of my friends and family members for encouraging and
supporting me whenever I needed them. I am incredibly grateful, especially to my parents,
for their wise counsel and sympathetic ear and for their regular encouragement at every step
and decision in my life. Without their support, this dissertation would not have been possible.



v

Contents

Acknowledgements iii

1 Introduction 1
1.1 Background of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Concept of Multiparty Computation . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Introduction and Brief Timeline . . . . . . . . . . . . . . . . . . . . 4
1.2.2 MPC Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Techniques of Realizing MPC . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Problem of MPC using (k,n) Threshold Secret Sharing . . . . . . . . . . . . 10
1.5 Objective and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Basic Definitions and Building Blocks 21
2.1 Definitional Parameters in MPC . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Finite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Computation in the Finite Field . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Lagrange Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Additive Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 (k,n) Threshold Secret Sharing . . . . . . . . . . . . . . . . . . . . 28

3 A Conditionally Secure MPC using (k,n) Threshold Secret Sharing 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Related Work: SPDZ Method . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Proposed Method: TUS 1 Method . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Overview of TUS 1 Method . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Protocol of TUS 1 Method . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Security of TUS 1 Method . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Extension of TUS 1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Many-Inputs Multiplication . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Many-Inputs Addition/Subtraction . . . . . . . . . . . . . . . . . . . 44

3.5 Limitation of the TUS 1 Method . . . . . . . . . . . . . . . . . . . . . . . . 45



vi

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.1 Computational and Communication Costs of TUS 1 Method . . . . . 47
3.6.2 Qualitative Comparison with SPDZ Method . . . . . . . . . . . . . . 48
3.6.3 Quantitative Comparison with SPDZ Method . . . . . . . . . . . . . 49

3.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 An Improved Conditionally Secure MPC 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Proposed Method: TUS 2 Method . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Overview of TUS 2 Method . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Protocol of TUS 2 Method . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Security of TUS 2 method . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Extension of TUS 2 Method: Combination of Multiple Product-Sum Operation 62
4.3.1 Extended Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Security of Extended Method . . . . . . . . . . . . . . . . . . . . . 63

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 Qualitative Comparison with TUS 1 and SPDZ Methods . . . . . . . 66
4.4.2 Quantitative Comparison with TUS 1 and SPDZ Methods . . . . . . 67
4.4.3 Discussion about Conditions . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Application of MPC: Searchable Encryption of Documents 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Building Block: Overview of Secure MPC . . . . . . . . . . . . . . . . . . . 74
5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 SE Using Symmetric Key Encryption . . . . . . . . . . . . . . . . . 75
5.3.2 SE Using Public Key Encryption . . . . . . . . . . . . . . . . . . . . 76
5.3.3 SE Using Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Proposed Method: Conjunctive Search . . . . . . . . . . . . . . . . . . . . . 77
5.4.1 Overview of Conjunctive Search . . . . . . . . . . . . . . . . . . . . 77
5.4.2 Protocol of Conjunctive Search (when n = k) . . . . . . . . . . . . . 78
5.4.3 Security of Conjunctive Search . . . . . . . . . . . . . . . . . . . . . 84
5.4.4 Extension of Conjunctive Search (when n > k) . . . . . . . . . . . . 89

5.5 Proposed Method: Conjunctive and Disjunctive Searches . . . . . . . . . . . 90
5.5.1 Overview of Conjunctive and Disjunctive Searches . . . . . . . . . . 90
5.5.2 Protocol of Conjunctive and Disjunctive Searches (when n = k) . . . 90
5.5.3 Security of Conjunctive and Disjunctive Searches . . . . . . . . . . . 95

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6.1 Comparison with Conventional SEs . . . . . . . . . . . . . . . . . . 97



vii

5.6.2 Adaptation of the Proposed Methods . . . . . . . . . . . . . . . . . . 99
5.6.3 Acceptable Information Leakage of SE . . . . . . . . . . . . . . . . 102

5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Multiplication of Polynomials with N < 2k−1 Servers 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 System Model and Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Two-party Multiplication Using Shamir’s (k,n) Method . . . . . . . 108
6.3.2 Multiplication of Shares Using the Recombination Vector . . . . . . 108
6.3.3 Watanabe et el.’s Method . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Proposed Method: Multiplication of Two Polynomials (when N = k) . . . . . 110
6.4.1 Overview of Proposed Method . . . . . . . . . . . . . . . . . . . . . 110
6.4.2 Protocol of Proposed Method . . . . . . . . . . . . . . . . . . . . . 111
6.4.3 Security of Proposed Method . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Extension of Proposed Method (when N > k) . . . . . . . . . . . . . . . . . 115
6.5.1 Protocol of the Extended Method . . . . . . . . . . . . . . . . . . . 115
6.5.2 Security of the Extended Method . . . . . . . . . . . . . . . . . . . 118

6.6 Limitation of the Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 119
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7.1 Computational and Communication Costs . . . . . . . . . . . . . . . 122
6.7.2 Experimental Implementation of Proposed Method . . . . . . . . . . 124
6.7.3 Repetition of Multiplication . . . . . . . . . . . . . . . . . . . . . . 124
6.7.4 Comparison with Conventional Methods . . . . . . . . . . . . . . . 128

6.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Conclusion and Future Works 133
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A List of Publications 137
A.1 Refereed Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B Example of computation 139
B.1 Computation of protocols 6.2, 6.3 and 6.4 . . . . . . . . . . . . . . . . . . . 139

References 143





ix

List of Figures

1.1 Basic example of secure computation . . . . . . . . . . . . . . . . . . . . . 3
1.2 Example of secure computation based on additive secret sharing . . . . . . . 11
1.3 Our construction of client-server model MPC with using secret sharing . . . . 12
1.4 Problem of multiplication in MPC based on secret sharing . . . . . . . . . . 13
1.5 Scalar multiplication with an encrypted secret input αa . . . . . . . . . . . . 15
1.6 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Addition operation in a finite field . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 A secret map can be divided into smaller pieces to be distributed and stored . 27

4.1 Basic computation of TUS 1 method . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Basic computation of TUS 2 method . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Computation of a by combining multiple product-sum operations . . . . . . . 64
4.4 General computation of a . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65





xi

List of Tables

1.1 Methods for realizing secure computation . . . . . . . . . . . . . . . . . . . 9
1.2 Time taken to sort 20 bit 1,000,000 data as simulated in [44] . . . . . . . . . 10

3.1 Communication cost and rounds of the TUS 1 method . . . . . . . . . . . . . 48
3.2 Computational cost of the TUS 1 method . . . . . . . . . . . . . . . . . . . 48
3.3 Comparison with the SPDZ method . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Comparison with the SPDZ method (computational cost) . . . . . . . . . . . 52
3.5 Comparison with the SPDZ method (communication cost) . . . . . . . . . . 52
3.6 Comparison with the SPDZ method (round) . . . . . . . . . . . . . . . . . . 52

4.1 Comparison with previous works . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Comparison with previous works (computation cost) . . . . . . . . . . . . . 68
4.3 Comparison with previous works (communication cost) . . . . . . . . . . . . 69
4.4 Comparison with previous works (round) . . . . . . . . . . . . . . . . . . . 69

5.1 Example of ASCII code and corresponding characters . . . . . . . . . . . . . 75

6.1 Communication and number of rounds of the proposed method (when N = k) 122
6.2 Communication and number of rounds of the extended method (when N > k) 123
6.3 Computational cost of proposed method (when N = k) . . . . . . . . . . . . 123
6.4 Computational cost of the extended method (when N > k) . . . . . . . . . . . 123
6.5 Computational time of proposed method when N = k = 2 (for m multiplica-

tions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6 Comparison with conventional methods (Computational cost) . . . . . . . . . 130
6.7 Comparison with conventional methods (Communication cost) . . . . . . . . 131
6.8 Comparison with conventional methods (rounds) . . . . . . . . . . . . . . . 131





xiii

List of Abbreviations

MPC MultiParty Computation
FHE Fully Homomorphic Encryption
SHE Somewhat Homomprphic Encryption
MAC Message Authentication Code
SE Searchable Encryption
SSE Symmetric Searchable Encryption
PKE Public Key Encryption
ASCII American Standard Code (for) Information Interchange
IoT Internet of Things
TUS Tokyo University (of) Science
TTP Trusted Third Party
HE Homomorphic Encryption
RSA Rivest Shamir Adleman
NSS Nearest Neighbor Search





1

Chapter 1

Introduction

This dissertation describes comprehensive studies on the technology of secure computation,
particularly secure multi-party computation (MPC) using (k,n) threshold secret sharing,
which can realize all four arithmetic operations with n < 2k − 1 participating computing
servers while achieving information-theoretic security against a semi-honest adversary.

In addition, this dissertation also includes studies on utilizing the proposed secure compu-
tation to realize searchable encryption (SE) of documents, which allows users to outsource
the storage of their data (documents) to online cloud storage in a private manner while main-
taining the ability to selectively perform searches.

This chapter first introduces the research background, introduction, and use case of se-
cure MPC. In sequence, the challenges in conventional methods of secure MPC using (k,n)

threshold secret sharing are described. Finally, the research motivations, contributions, and
the organization of this dissertation are detailed.

1.1 Background of Research

In recent years, innovations in information and communication technology and the advance-
ment of technology for the collection of data such as big data and the Internet of Things (IoT)
have enabled us to collect and analyze large amounts of diverse data. Furthermore, technolo-
gies that can use an individual’s personal information embedded in the big data for value
creation have been anticipated. In particular, various efforts have been recently made to en-
able the use of personal data for solving various social problems (i.e., reducing the wage gap
between genders [1]) and continuously develop new values and services (i.e., better health-
care service [2]).

Google, Apple, Facebook, and Amazon (also known as “GAFA”), which are now the
four most valuable and dominant public tech companies in the world by market population,
have fully utilized personal data collected from their users to enhance the speed and preci-
sion of searches and improve recommendation and matching features such as personalized



2 Chapter 1. Introduction

advertisements for their users [3]. In 2020, with the worldwide outbreak of the COVID-
19 pandemic, researchers focused on developing applications (apps) for “contact tracing” to
identify individuals who had close contact with positive carriers, which required data such as
the location of an individual for the past 14–21 days. The introduction of these apps enabled
the automation of the contact tracing process and quick and reliable identification of contacts
with significant infection risk [4].

However, collecting a large amount of personal data also introduces a new concern, par-
ticularly on the management, security, and privacy of these data. Moreover, the concentration
of personal data in a centralized ecosystem also becomes an attractive target for cyberattacks,
raising the users’ risk and concern that their data might be leaked and misused. For exam-
ple, with the introduction of the “contact tracing” apps, there was also a considerable debate
about the privacy of users’ information, as the user’s location information or identity could
be revealed without the user permission, or the collected data could be used to track the users
even after the end of the pandemic [5] [6].

In the latest amended Act on the Protection of Personal Information [7], which aims to
protect an individual’s rights and interests while considering the utility of personal infor-
mation to the creation of new industries for a better quality of life for the people of Japan,
the term “personal information” refers to the information about a living individual in Japan
whose identity can be identified. This includes some of the most obvious information, such
as the name and date of birth. In this dissertation, we believe that the definition of “personal
information” is not limited to information about private or family life but extends to any in-
formation or opinion about the individual from which they can be identified. For example,
information such as the history of online purchases using a credit card or web browsing his-
tory can also be included as personal information as it can be used to infer or produce an
opinion about a person, such as their tastes and preferences.

Therefore, in the age where data collection is essential to improve the life quality, the
trade-off between the use of data and the increase in the risk of personal information leakage
should be reduced. In other words, there is a need for a technology that allows data to be
used without infringing users’ privacy. One of the available technologies that to address this
issue is called secure computation, wherein processes such as statistical processing and other
types of data processing can be performed on data that remains in a secure (or encrypted)
form.

For example, let us consider the situation in Figure 1.1, in which an institution (School
A) wants to store its records of academic results into a database. In this case, to protect the
students’ personal information, including the students’ names and IDs, all data are encrypted
before being sent to the database. However, conventional encryption methods prohibit any
form of data processing on encrypted data. Thus, if an analyst needs the average score of
Subject A from the data stored in the database, the database must first decrypt all the data,
compute the average result, and send it to the analyst, which creates a risk for data leakage



1.1. Background of Research 3

during the computation phase.
When using a secure computation, the analyst first sends its request to the database (in

this case, to find the average score of Subject A), as illustrated in Figure 1.1. In sequence,
the database will perform secure computation on the encrypted data and send the correct
result back to the analyst without decrypting the data. Thus, the concept of secure compu-
tation has attracted considerable attention as a technological solution for data analysis while
maintaining privacy.

Secure computation allows a group of parties who do not trust each other to jointly com-
pute an arbitrary function that depends on their private inputs without revealing these inputs
to each other [8]. In this dissertation, we performed a study on the secure computation tech-
nology that relies on the interworking of multiple computing servers (also called computing
parties) that communicate with each other. Nowadays, this is a common scenario with the
widespread of distributed computing, where a number of connected computing servers who
hold a distributed database system are required to conduct a joint computation of a type of
function on the database in a secure manner. Here, the computing servers perform the pro-
cessing while exchanging the anonymized data among themselves [9]. This type of secure
computation is also known as secure MPC. In this study, the notions of secure computation
and MPC are considered as synonyms as they significantly overlap.

FIGURE 1.1: Basic example of secure computation.



4 Chapter 1. Introduction

1.2 Concept of Multiparty Computation

1.2.1 Introduction and Brief Timeline

Andrew Yao first proposed the concept of MPC in 1982 to solve the following millionaire
problem [10]:

“Two millionaires wish to know who is richer; however, they do not want to find out any

additional information about each other’s wealth.”

Yao introduced the first general notion of MPC, where m parties wish to compute the
value of a function f (x1,x2, . . . ,xm), which is an integer-valued function of m integer vari-
ables xi of bounded range [10]. Here, the millionaires’ problem corresponds to the case of
m= 2 parties P1 and P2, each with inputs (wealth) x1 and x2, who wish to realize the following
secure computation of f (x1,x2):

f (x1,x2) =

{
0 i f x1 < x2

0 otherwise

In 1982, Yao described manners of solving the problem of secure computation by using
one-way functions (i.e., functions that are easy to evaluate but difficult to invert). In partic-
ular, one of the methods proposed by Yao uses the approach of “garbled circuit” to perform
secure computation between two parties (to solve the aforementioned millionaire problem).
A garbled circuit is a method to encrypt a computation by taking the desired computation
and expressing it as a circuit, where the computation will only reveal the output of the com-
putation and no information about the inputs or intermediate values [11]. The use of garbled
circuits enables the protocol to have a constant number of rounds of communication, but they
are large and costly in bandwidth compared to other techniques proposed afterward.

In 1988, Ben-Or et al. [12] proposed a method of secure MPC using Shamir’s (k,n)

threshold secret sharing [13], where a secret input was divided into n different values (known
as shares) and distributed to n computing servers. Here, the authors also introduced the lim-
itation and theorem for secure MPC using (k,n) threshold secret sharing, in which secure
MPC under the setting of n < 2k−1 is impossible due to the increase in the polynomial de-
gree of the multiplication result (explained in detail in Section 1.4). Here, k is the threshold
for the number of shares required to reconstruct the original secret input, and n is the number
of shares generated from the (k,n) threshold secret sharing. Because of this limitation, all
secure MPC that uses (k,n) threshold secret sharing must assume n ≥ 2k−1. For example,
if the threshold is k = 2, the minimum number of shares n must be n = 3, and as each com-
puting server holds one share, three will be required. In other words, the most significant
disadvantage of a secure MPC using (k,n) threshold secret sharing is that it must be com-
posed of at least three computing servers, which increases the overall initial cost of setting
up the system.



1.2. Concept of Multiparty Computation 5

In 2004, Malkhi et al. introduced Fairplay [14], the first reported full-fledged system that
implements Yao’s garbled circuit. This system was designed to present the first evaluation of
an overall secure computation in real-world settings, examine its components, and identify
potential bottlenecks. Since the introduction of the concept of secure computation, it had not
been applied in practice and was typically considered to have theoretical significance. This
motivated Malkhi et al. to develop a system that allowed two participants to implement a joint
computation without any trusted third party (TTP). However, this system only implemented
secure computation between two parties and could not handle MPC. Moreover, the execution
time for secure computation was very slow, mainly due to the invocations of the oblivious
transfer protocol.

In 2008, Bogdanov et al. introduced Sharemind [15], a virtual machine for privacy-
preserving data processing that relies on additive secret sharing (refer to Section 2.5 for fur-
ther details) technique using three computing servers. Sharemind framework uses an additive
secret sharing and supports addition, multiplication, and greater-than-or-equal comparison of
two shared values. The choice of using additive secret sharing in this implementation instead
of the garbled circuit made the Sharemind almost 1,000 times faster than the Fairplay intro-
duced by Malkhi et al. in 2004 [14]. Moreover, in the first implementation of Sharemind,
the most efficient setting was chosen, where only one of three computing servers could be
corrupted. However, as the multiplication operation used in this implementation requires a
sub-protocol of reduction method based on Du-Atallah protocol [16] where all three com-
puting servers are needed, if one of the computing servers fails, secure computation will no
longer be possible.

In 2009, Gentry introduced a secure computation method known as fully homomorphic
encryption (FHE) [17]. Since the first introduction of secure computation by Yao et al. [11],
most of the methods had utilized more than one computing server to realize secure com-
putation between multiple clients. In contrast, the FHE introduced by Gentry was the first
known method to use only one computing server to perform secure computation, being able
to compute all operations, including multiplication. This immediately solved the problem of
secure MPC using (k,n) threshold secret sharing where at least three computing servers are
required. However, FHE requires a considerable computational overhead to realize computa-
tion such as multiplication, particularly when compared with MPC based on (k,n) threshold
secret sharing. Therefore, FHE is not suitable for use in applications with large amounts of
data, such as the statistical analysis of the genome [18].

In 2012, Damgård et al. introduced the first SPDZ (pronounced as “speedz”) method
[19], a secure MPC using additive secret sharing that realizes multiplication with the param-
eter n = k, where the protocol is secure against up to n−1 corrupted computing servers. In
1988, Ben-Or et al. [12] had proposed a theorem stating that an unconditionally secure MPC
using secret sharing is impossible when n < 2k−1 (where more than half of the computing
servers are corrupted). The SPDZ method bypassed this by using computational assumptions



6 Chapter 1. Introduction

to construct a secure MPC against a dishonest majority adversary (where all but one of the
servers are corrupted by the adversary). This method works by introducing a preprocessing
phase to supply the required raw material for the actual computation without knowing the
function to be computed or the inputs. The preprocessing phase is based on the circuit ran-
domization technique of Beaver [20] to produce shares of a, b, and c, where c = ab, using
a somewhat homomorphic encryption (SHE), which is an encryption technique that can per-
form only a limited number of addition and multiplication operations [21]. This method only
achieves computational security due to the use of SHE, and the computational overheads for
computing shares of a, b, and c are very large.

In 2013, Hamada et al. introduced a secure MPC system MEVAL (multi-party evaluator)
for statistical analysis [22]. This system was built using Shamir’s (2,3) threshold secret
sharing with three computing servers and can tolerate one corrupted server. Moreover, this
method is secure against a semi-honest adversary. However, as the multiplication is based
on Gennaro et al.’s method of multiplication [23], the same limitation of n ≥ 2k−1 remains.
Therefore, this system requires a minimum of three computing servers to securely perform
multiplication operation. In addition, as MEVAL was set up with parameters n = 3, k = 2, it
cannot be used for other settings of n,k.

In 2016, Araki et al. introduced a new secure MPC using Shamir’s (2,3) threshold secret
sharing with n = 3, k = 2 [24]. This protocol could realize a fast computation with mini-
mal communication required. In particular, the multiplication protocol in this method only
requires one time of communication between the computing servers. During multiplication,
the protocol assumes that the three computing servers are given correlated randomness α , β ,
γ where α +β + γ = 0. This correlated randomness can be prepared beforehand by the three
computing servers. However, as the protocol was specifically designed for only three com-
puting servers with at most one corrupted server, the protocol does not work for any number
of computing servers.

1.2.2 MPC Use Cases

Since the introduction of the MPC concept in 1982 [11], there have been many theoretical ex-
amples of the possible uses of MPC. The potential applications of MPC in privacy-preserving
computations are enormous. For instance, MPC can be used to perform a double auction in a
privacy-preserving manner, perform statistic computation revealing only the aggregate result,
realize secure machine learning, etc.

Until very recently, most of these examples were only in theory. However, since the
introduction of Sharemind in 2008, MPC has transitioned from a theoretical study in the
1990s to be used in multiple real-world use cases. In this section, some examples of MPC
applications that have been deployed are detailed.

• The Danish Sugar Beet Auctions [25]



1.2. Concept of Multiparty Computation 7

This is the first real-world, large-scale application of secure MPC using secret sharing.
In Denmark, around 5,000 Danish farmers produce sugar beets, which are sold to Danisco,
the only Danish sugar beets processor. Farmers have their own contracts that give them
the production rights, allowing for a certain amount of beets production. However, as the
European Union (EU) significantly reduced subsidies and Danisco closed one of its factories,
there was an immediate need for a nationwide market for trading production rights. The
auction’s goal was to find the market clearing price (MCP), which is the price per unit of
the commodity being traded [25][26]. However, as the MCP is computed based on sealed
bids, there was a need to decide who would be the “trusted” auctioneer. As the bids by the
farmer reveal information such as the farmer’s economic position, selecting Danisco as the
auctioneer would cause concerns of might of information.

In contrast, trusting the auction to a consultancy house would cost a considerable amount
of money. In the end, it was decided that three-party computation would be used, where
the role of the auctioneer would be changed to a virtual auctioneer and played by all three
parties: the company Danisco, the association of sugar beet growers, and the researcher from
the Secure Information Management and Processing (SIMAP) project. The use of MPC was
crucial in this case because there were multiple parties with conflicting interests, and MPC
could ensure that no single party would have access to the sensitive information of the bids.
This project in 2008 had led to the formation of a new company named Partisia [27], which
uses MPC to support auctions for industries.

• Boston Gender/Racial Wage Gap Study

The Boston Women’s Workforce Council (BWWC) started to use MPC in 2016 to mea-
sure the gender/racial wage gap for the Greater Boston area [28]. BWWC believes that in a
city where women represent more than half the workforce, equity is crucial, and the first step
to realize this is to measure it. However, many companies could not provide their raw data
to the BWWC due to privacy concerns. Therefore, to ensure the privacy and security of data
of over 250 Boston-area employers that had signed the 100% Talent Compact, BWWC part-
nered with Hariri Institute for Computing of Boston University to implement secure MPC in
the wage gap analysis process [29].

Employers submitted their wage data through a web-based software program that em-
ployed encryption using secure MPC during the submission process. Using MPC, individual
compensation data did not leave the server of each organization, allowing the BWWC to
receive the aggregate data unconnected to any firm. In the 2019 Boston Wage Gap Report,
BWWC analyzed data from 125 companies and 140,000 employees, representing 12.2 bil-
lion dollars in annual earnings, and found that, in 2018, the women workforce in Boston, on
average, only earned 70 cents to a man’s dollar [28]. This is an example of the use of MPC
to solve social problems.



8 Chapter 1. Introduction

• Cryptographic Key Management

Another use-case of MPC is in the protection and management of cryptographic keys.
Typically, a cryptographic key is handled by a single individual or organization. This poses a
risk to the security of the cryptographic key, as it may be leaked if the individual is attacked.
Therefore, rather than trusting a single individual, secure MPC allows the cryptographic key
to be split into multiple pieces and placed on different servers and devices, such that an
attacker would have to breach them all to steal the key, therefore enhancing the security [9].
Moreover, secure MPC also enables the use of cryptographic keys for any operations without
the need to reconstruct them in a single place.

One of the companies that provide this service is Unbound, which offers solutions for
cryptographic key management by using secure MPC [30]. In this application, a single orga-
nization uses MPC to generate split keys, and the key shares are placed in separate locations
such as on-premises and cloud servers. Moreover, through the use of threshold cryptogra-
phy [31], all cryptographic computations, including decryption, authentication, and digital
signing, can be performed between multiple servers without revealing their respective shares
of the cryptographic key. Thus, cryptographic keys are never united or exposed in a single
place, even when the key is in use.

• Privacy-preserving Analysis in Medical Research – Genome Information Analysis

Another important application of secure MPC is in medical research, particularly genome
information analysis. Genome information analysis includes identifying, measuring, or com-
paring genome features such as DNA sequence, structural variation, gene expression, or
regulatory and functional element annotation. This analysis is essential to elucidate the rela-
tionship between genomes and diseases to develop effective medicines based on a person’s
genome information [32]. However, genome data involves the personal information of an
individual. Unlike information such as passwords or email, genome information cannot be
changed and will remain the same for the entire life. Leaking of such genome information
will reveal information such as the susceptibility to a certain disease, which can be misused
against the individual. Therefore, a method for securely sharing and analyzing genome data
is required.

In 2019, NEC corporation collaborated with the research group of Professor Akihiro
Nakaya from the Graduate School of Medicine at Osaka University to demonstrate the prac-
ticality of using secure MPC in genome analysis of genome data from multiple medical insti-
tutes without revealing the actual content of genome information. The results indicated that
the genome information of approximately 8,000 individuals could be analyzed in approxi-
mately 1 s [18], proving the practical use of MPC in applications involving a huge amount
of data. In the future, this MPC application will enable researchers to collect and analyze



1.3. Techniques of Realizing MPC 9

TABLE 1.1: Methods for realizing secure computation

Approach FHE Secret Sharing

Confidentiality Confidentiality is ensured by Confidentiality is ensured by
of information encrypting with an encryption key dividing the data and physically

dividing the computational space

Advantage
Requires one computing server,

Low computational overhead
no communication is required

Disadvantage Large computational overhead
Requires multiple computing
servers, communication
between servers is required

large volumes of genome information that was previously limited to their respective medical
institutions.

1.3 Techniques of Realizing MPC

In Section 1.2, we introduced the concept of MPC and showed its transition from a theoret-
ical idea to real-world applications. In this section, we will explain several techniques for
constructing MPC. Generally, there are several methods to realize MPC, such as using a gar-
bled circuit, homomorphic encryption, oblivious transfer, and secret sharing. Each of these
techniques will produce MPC with different properties for different settings and applications.

Two of the most commonly used approaches are homomorphic encryption (HE) [33] [34]
[19] [35] [17] [36] and secret sharing [12] [15] [37] [38] [39] [16] [23] [40] [41] [42] [43].
However, HE often relies on complex processes and is very expensive in terms of compu-
tational cost, requiring a considerably longer computation time. For example, as shown in
Table 1.2, in a simulation performed by NTT researchers comparing the efficiency of FHE,
secret sharing, and other techniques, it was demonstrated that MPC using FHE was almost
50,000 times slower than using secret sharing to compute the same process [44]. There-
fore, approaches with lower computational costs are preferable to FHE when considering the
utilization of MPC into cloud computing to process a large amount of data such as big data.

However, as conventional MPC using secret sharing requires multiple computing servers
to perform secure computation, multiple communications between multiple computing servers
are needed during the computation process. In contrast, FHE does not require communication
because it can perform secure computation using a single computing server. This comparison
is summarized in Table 1.1.

In this dissertation, to realize a secure MPC with a faster processing speed, we focused on
using secret sharing instead of FHE. Let us consider the previous situation of Figure 1.1, in
which data are encrypted using the simplest form of secret sharing known as additive secret



10 Chapter 1. Introduction

TABLE 1.2: Time taken to sort 20 bit 1,000,000 data as simulated in [44]

Method used for secure computation Processing time [s]

Secret sharing 1.1
Garbled circuit 243
Homomorphic encryption 3.564
FHE 48,877

sharing (where the secret input is broken into fragments that add up to the original secret
input).

For example, the analyst wants to obtain the average score for Subject A from the en-
crypted database. First, School A will distribute the test score to the database by using ad-
ditive secret sharing. Specifically, as shown in Figure 1.2, when there are N = 2 computing
servers, each score is split into n = 2 different shares, whose sums are equal to the original
score (for example, score ‘88’ is divided into ‘40’ and ‘48’), and sent to each computing
server (e.g., Database 1 and 2). In sequence, each database computes the average score from
the received values and send to the analyst. To obtain the final result of the average score of
Subject A, the analyst only needs to add the two values, which result in the score ‘84’ (which
is equal to the average score of Subject A). By using secret sharing to divide the original
scores, the values seen by each database are entirely unrelated to the actual scores of each
student, and the analyst only learns about the final result. Therefore, the privacy and security
of information of each student is preserved.

The implementation depicted in Figure 1.2 is an example of the most basic use of secure
MPC using secret sharing. In this scenario, MPC can be translated as a cryptographic proto-
col that distributes computation across multiple computing servers (in this case, Databases 1
and 2), where no individual server will be able to see the actual data, enabling the analysis of
data without compromising privacy.

In this dissertation, we utilized a secure MPC using secret sharing. However, instead of
the simplest form of additive secret sharing previously mentioned, we opted for the (k,n)

threshold secret sharing, which allows us to realize a more flexible computation method and
provides resistance toward server loss. The exact definitional parameters of MPC, variations
of secret sharing, and its security requirements will be discussed in detail in Chapter 2.

1.4 Problem of MPC using (k,n) Threshold Secret Sharing

MPC is a method that enables sensitive data to be brought together securely and helps achiev-
ing the dual goal of putting data to beneficial use while also avoiding misuse. As described in
Section 1.3, many different techniques have been developed for realizing MPC with different



1.4. Problem of MPC using (k,n) Threshold Secret Sharing 11

FIGURE 1.2: Example of secure computation based on additive secret shar-
ing.

properties and settings, such as FHE and secret sharing. However, FHE requires more compu-
tational overhead, whereas secret sharing has a relatively low computational cost. Therefore,
secret sharing is preferable in a cloud system environment with multiple users.

In this study, we focused on the client-server model of MPC using (k,n) threshold secret
sharing as shown in Figure 1.3. In this model, we assumed a situation where the clients (other
than computing servers, such as the owner of secret inputs) generate and distribute shares of
their secret inputs to multiple computing servers using (k,n) threshold secret sharing. The
computing servers jointly compute the desired function using MPC and return the results
without learning the secret inputs. This model has been widely used in many cloud computing
environments and is the business model used in Cybernetica [15][45].

An example of (k,n) threshold secret sharing is that of Shamir. To share a secret input
s, the dealer chooses a random polynomial f (x) of degree (k− 1) under the constraint that
f (0) = s as follows:

f (x) = s+α1x+α2x2 + . . .+αk−1xk−1

For every i = 0,1, . . . ,n−1 computing servers, the dealer provides the ith server with the
share f (i+1). As the polynomial has a degree (k−1), reconstruction is possible with a subset
of any threshold k or more shares. Reconstruction works by interpolating the polynomial to
compute f (x) and deriving the secret input s = f (0). However, any subset of k−1 or fewer
shares reveal no information about the secret input as they have k−1 or fewer points on the
polynomial. We will discuss the formal definitions and protocol for secret sharing in Chapter



12 Chapter 1. Introduction

FIGURE 1.3: Our construction of client-server model MPC with using secret
sharing.

2.
The classical result of secure MPC using (k,n) threshold secret sharing is that n com-

puting servers can compute any arbitrary function such that any subset of up to k−1 < n/2
computing servers obtains no information about the inputs of other servers, except for what
can be derived from public information [12]. Conventional methods of secure MPC using
Shamir’s (k,n) threshold secret sharing perform addition by locally adding shares together.
However, this is not the case for multiplication.

For example, let secret inputs a and b be encoded by f (x) and g(x), two polynomials of
degrees (k−1). As shown in Figure 1.4, multiplying f (x) and g(x) will result in polynomial
h(x), whose free coefficient is ab.

However, by using h(x) to encode the product of a×b, the degree of h(x) increases from
(k− 1) to (2k− 2). In most conventional methods, this poses no problem for interpolating
h(x) from its n shares because it is assumed that n ≥ 2k−1. Each server holds only one share
for each secret; hence, for each multiplication performed, the number of required servers
increases from k to 2k−1.

Therefore, the construction of information-theoretically secure multiplication under the
dishonest majority setting (k− 1 ≥ n/2s) is considered impossible. Some possible manners
to avoid this impossibility result are: (1) giving up information-theoretic security [19] [35]
(typically, generating a Beaver triple [20] between computing parties via computationally
secure primitives such as SHE or oblivious transfer); and (2) assuming a trusted setup by
other than computing parties.

1.5 Objective and Contributions

In a secure MPC using (k,n) threshold secret sharing, the result of the multiplication of two
polynomials of degree (k−1) is a polynomial of degree (2k−2). Therefore, unconditionally



1.5. Objective and Contributions 13

FIGURE 1.4: Problem of multiplication in MPC based on secret sharing.

secure MPC using (k,n) threshold secret sharing with fairness and guaranteed output delivery
can be achieved for any function only when n ≥ 2k− 1 (i.e., an honest majority). Thus, for
each multiplication performed, the number of shares n required will increase, and as each
server only holds one share, the total cost for setting up the required servers N will also
increase from N ≥ k to N ≥ 2k− 1. One of the most utilized approaches to overcome this
impossibility result is to give up information-theoretic security by implementing Beaver triple
[20] during multiplication, such as in the SPDZ method [19]. However, this will result in a
weaker security guarantee achieved by the protocol.

As previously mentioned, unconditionally secure MPC is only possible when n ≥ 2k−
1 is assumed. As each server typically holds one share, the number of servers N needed
for realizing unconditionally secure MPC will also be N ≥ 2k− 1. In contrast, the phrase
“unconditionally secure MPC is only possible when n ≥ 2k− 1” also means a secure MPC
when n < 2k−1 is possible with certain conditions.

Therefore, the main objective of this dissertation was to determine the conditions required
to overcome the impossibility result and realize a conditionally secure MPC using Shamir’s
(k,n) threshold secret sharing with n < 2k− 1, while maintaining the information-theoretic
security nature of (k,n) threshold secret sharing.

There are several approaches to realize multiplication in MPC using (k,n) threshold se-
cret sharing with n < 2k−1 such as (1) scalar multiplication and (2) introduction of degree
reduction. In this study, we first explored the use of scalar multiplication to realize secure
MPC using (k,n) threshold secret sharing with n< 2k−1. In particular, we multiplied a poly-
nomial with a scalar value to prevent the increase of polynomial degrees of the multiplication
result. Moreover, as unconditionally secure computation is impossible when n < 2k−1, we
also studied the conditions required to realize MPC with n < 2k− 1, showing that it can be
used in real-world use cases such as in SE of encrypted documents even with certain con-
ditions required. Finally, in the latter half of this dissertation, we explored the approach of
introducing the degree reduction sub-protocol to the resulting polynomial to realize multi-
plication with n < 2k − 1. Real-world use case and applications of this approach will be
addressed in future studies.

This dissertation is divided into three parts as follows:
Part I: Chapters 3 and 4



14 Chapter 1. Introduction

In the first part of this dissertation, we focused on realizing a conditionally secure MPC
using (k,n) threshold secret sharing when n< 2k−1, while keeping the information-theoretic
security nature of (k,n) threshold secret sharing. The contribution of this part is as follows:

• First conditionally secure MPC when n < 2k−1 with information-theoretic secu-
rity.

The easiest method of realizing the multiplication of shares represented by polynomials
without increasing the polynomial degree of the multiplication result is by using the scalar

multiplication approach. That is, instead of the typical process of (polynomial × polyno-
mial) as shown in Figure 1.4, multiplication is performed by computing (polynomial × scalar
value), where one of the secret input is reconstructed momentarily and multiplied with the
other polynomial. Conventional methods such as the SPDZ method proposed by Damgård et
al. [19] also use this approach to compute multiplication without increasing the polynomial
degree of the multiplication result. However, most conventional methods only achieve com-
putational security instead of information-theoretical security and are only secure in specific
limited parameters of k and n.

In this dissertation, we propose the first solution for multiplication that can achieve
information-theoretic security even when n < 2k − 1. As previously mentioned, to realize
multiplication operation through scalar multiplication, one of the secret inputs must be recon-
structed as a scalar value. However, if the original secret input (e.g., input a) is reconstructed
by the computing servers, the value of the secret input a will be leaked. Therefore, in the pro-
posed method, instead of the “normal share” of (k,n) threshold secret sharing, we introduce
a new functionality of “encrypted share” where the share is generated from the secret input
that had been encrypted with a random number. For example, the secret input (e.g., input a)
is first encrypted with a random number (e.g., α) to produce an encrypted secret (e.g., αa)
and distributed to N = n computing servers. During multiplication, the encrypted secret is
momentarily restored as a scalar value (e.g., αa) and multiplied with the polynomial of secret
input b (as shown in Figure 1.5). As secret input a is encrypted with a random number α ,
information of secret input a will not be leaked even if αa is known or made public.

Moreover, as stated in [12], unconditionally secure MPC is considered impossible under
the setting of n < 2k− 1. Therefore, in this dissertation, we also considered the conditions

needed to achieve information-theoretically secure MPC using (k,n) threshold secret shar-
ing with n < 2k− 1, even when computation involving a combination of different types of
operations such as f (a,b,c) = ab+ c is performed.

Advantages of secure MPC with n < 2k−1
There are two significant advantages of realizing multiplication with parameter n < 2k−

1. The first advantage is that it is unnecessary to increase the number of computing servers
for MPC each time a multiplication operation is performed, and the parameters n and k can



1.5. Objective and Contributions 15

FIGURE 1.5: Scalar multiplication with an encrypted secret input αa.

be selected to achieve the optimum performance. In general, parameter k is determined as
the threshold value where the system is resistant toward a subset of k−1 or fewer corrupted
servers. Based on this, the optimum parameter n is set such that n ≥ k (n > k to realize
resistance toward server loss/failure). Here, resistance toward server loss refers to the ability
of the system to function even when a number of computing servers are lost (or broken).
However, in conventional MPC using (k,n) threshold secret sharing, n must be set such
that n ≥ 2k − 1. Moreover, as one server is usually assumed to hold only one share each,
the number of servers required (represented by parameter N) will also increase for each
multiplication operation.

Therefore, the initial cost for setting up the system will increase. Nowadays, there are
methods of MPC that focus on reducing the communication cost by fixing the parameters n=

3, k = 2, etc. However, in this example, even if one of the three servers fails, the consecutive
computation cannot be performed because the information required is lost along with the
broken server. Therefore, these methods do not provide resistance toward server loss. In
addition, some conventional methods may introduce computational security as a trade-off for
realizing computation in n < 2k− 1. As far as we know, the proposed method is the only
method of MPC that can realize information-theoretic security even when n < 2k−1.

The second advantage is that n can be set such that n = k. In this scenario, if the owner of
the secret input participates in the MPC as a computing server and manages its share securely,
the secret input will not be leaked even if all other computing servers other than the owner
collude. In contrast, in the case of n ≥ 2k−1, even if the owner manages its share safely, all
secret inputs will be leaked if a subset of k or more participants other than the owner collude.

Part II: Chapter 5
In Part I, we propose the generic conditionally secure MPC using (k,n) threshold secret

sharing for computing all four arithmetic operations when n < 2k− 1. However, it is also
essential that a secure MPC can be utilized in various applications. Therefore, in Part II, we
focus on applications of secure MPC to realize SE of documents. The contribution of Part II
is as follows:

• Application of secure MPC into SE of document



16 Chapter 1. Introduction

One of the natural applications of secure MPC is secure searching over encrypted data
(SE). For example, suppose a scenario where Alice stores her data on a cloud server such
that she can conveniently access it from anywhere. As there is a risk of leakage of her private
data, information must be encrypted before storage to protect the privacy and confidentiality
of data. However, searching encrypted data on a server is not possible without first decrypting
the encrypted data. To solve this, we propose a method of SE using (k,n) threshold secret
sharing that allows for searching over encrypted data. Several methods with this principle
have been proposed, such as public key and symmetric key encryption. However, these
methods often come with sizeable computational overhead, colossal storage requirements,
etc.

As far as we know, the method in this dissertation is the first example of SE using (k,n)

threshold secret sharing. In this method, searching is performed per character. The difference
between the characters of the registered document and the search query is computed using the
MPC method described in Part I. In addition, we also introduce manners of easing the con-
ditions required in the MPC described in Part I. Moreover, as (k,n) threshold secret sharing
requires a very low computational overhead, we realized SE of documents very efficiently
with high flexibility.

Part III: Chapter 6
In Part I, we study the solutions for a secure MPC with n < 2k−1 using the approach of

(polynomial × scalar value). However, as previously mentioned, there are other approaches
to realize multiplication with n < 2k− 1. Thus, in Part III, we study an alternative method
of introducing degree reduction to the polynomial of the multiplication result. Here, we
also present a new method of distribution of secret input to allow for multiplication between
polynomials with only N ≥ k computing servers. Therefore, the final contribution of this
dissertation is as follows:

• MPC with the multiplication of polynomials is possible with only N ≥ k servers

First, we realized a two-input-one-output multiplication using the typical approach of
(polynomial × polynomial) with only N ≥ k computing servers. In this method, we imple-
mented the process of degree reduction to reduce the degree of the polynomial of the mul-
tiplication result. As mentioned in Section 1.4, multiplication of two polynomials of degree
(k− 1) will result in a polynomial of degree (2k− 2). However, by reducing the degree of
polynomial from (2k−2) back to (k−1), the number of shares n required to reconstruct the
multiplication result will also return to n ≥ k. Conventional methods such as those by Ben-Or
et al. [12] and Chaum et al. [37] also use this approach to prevent the further increase of the
polynomial degree. However, as the initial stage of multiplication will produce a polynomial
with a (2k− 1) degree, the number of shares required will remain at n ≥ 2k− 1; therefore,



1.6. Dissertation Outline 17

the number of servers N initially required will also be N ≥ 2k−1, because each server only
hold one share.

In this part, we overcome this limitation by using the new functionality of distributing
multiple encrypted shares of the same secret input to each computing server. This was im-
plemented by encrypting each share with a different random number before sending it to the
computing servers. For example, instead of sending one encrypted share of secret input a to
one server, we send two encrypted shares to one server. Typically, this will violate the se-
curity definition of (k,n) threshold secret sharing because more than k shares will be leaked
from k − 1 computing servers. However, no information will be revealed as each share is
encrypted with a different random number. Moreover, we also realized a new multiplica-
tion and degree reduction method for multiplying (k−1) sharing of encrypted shares of two
inputs a, b and reducing the degree of resulting shares from (2k − 2) to (k − 1) using the
recombination vector with only N ≥ k servers. In addition, we also compared this method
with those in Part I to evaluate the differences between the approaches.

1.6 Dissertation Outline

Figure 1.6 shows the focus of each chapter of the dissertation. First, we describe the build-
ing block for all of our methods in Chapter 2. Next, Chapters 3 and 4 discuss the method
to overcome the impossibility result of multiplication when n < 2k − 1 by using the poly-
nomial × scalar value approach. These chapters also introduce the necessary conditions to
realize information-theoretic security when n < 2k− 1. Chapter 5 explains the application
of our proposed method of MPC into SE of documents. Chapter 6 describes the approach of
computing multiplication using the polynomial × polynomial approach without increasing
the number of computing servers required. Finally, Chapter 7 provides the conclusions. The
detailed organization of this dissertation is summarized below.

Chapter 2: Basic definitions and building blocks
In this chapter, we introduce the necessary notation, definitions, and some fundamental

mathematical theories required to understand the research in this dissertation. Furthermore,
we also include a formal definitional parameter of secure MPC, notably MPC that uses secret
sharing. We also show the definition of secret sharing and protocols for (k,n) threshold secret
sharing that formed the research base.

Chapter 3: First conditionally secure MPC using (k,n) threshold secret sharing with n <

2k−1
In this chapter, first, we briefly reiterate the problem of the conventional method of MPC

using (k,n) threshold secret sharing and explain the reason for the unconditional impossibility
of multiplication when n < 2k−1. In sequence, we propose a new method of multiplication
using the approach of scalar value × polynomial to realize multiplication when n < 2k− 1.



18 Chapter 1. Introduction

We also evaluate the security of the proposed method against three semi-honest adversaries
and explain the condition required to securely compute multiplication operation when n <

2k− 1. Finally, in the discussion of the proposed method, we show that the method is not
secure against computation with a combination of different types of operation, such as the
product-sum operation of ab+ c, when assuming a semi-honest adversary that knows one of
the inputs (e.g., input b) and output (e.g., output ab+c), in addition to information from k−1
corrupted servers.

Chapter 4: MPC that is secure against the combination of different operations
In Chapter 3, it was shown that a conditionally secure MPC using (k,n) threshold secret

sharing when n < 2k− 1 is possible when using the approach of scalar value × multiplica-
tion, but also not secure against computation involving a combination of different types of
operations. This chapter proposes an improved method of conditionally secure MPC using
(k,n) threshold secret sharing capable of computing a product-sum operation of ab+ c. We
also show that the proposed method is secure against a semi-honest adversary. Moreover,
we introduce three additional conditions required to realize computation involving different
types of operations and extend the protocol for a single operation of product-sum ab+ c to
combine multiple product-sum operations and realize a more complex computation. Finally,
we perform a detailed analysis of the proposed method and discuss the realizability of each
condition.

Chapter 5: Searchable encryption of documents
This chapter implements the MPC method in Chapter 4 to realize SE, where encrypted

information can be searched without decrypting the encrypted data. In the MPC method
in Chapter 4, three conditions are required to achieve information-theoretic security against
semi-honest adversaries. Therefore, in this chapter, we also propose manners of easing the
conditions and show that although certain conditions are required, they can be easily solved
depending on the application assumed. Next, we show the detailed algorithm for realizing
conjunctive search of a keyword with multiple characters and describe the algorithm for
the disjunctive search of multiple search queries. Finally, we compare our method with
conventional SE methods using public and symmetric key encryption.

Chapter 6: Multiplication of polynomials with N ≥ k servers
In Chapter 4, we study the approach of scalar multiplication to realize multiplication

in MPC. In this chapter, we propose a new method of MPC using (k,n) threshold secret
sharing that uses a different approach to realize multiplication with only N ≥ k computing.
First, we show the new method of distributing multiple shares of the same secret input to
a single computing server. In sequence, we show the multiplication operation using the
typical polynomial × polynomial approach with only N ≥ k computing servers. An improved
method to reduce the degree of the resulting polynomial to enable the reconstruction of the



1.6. Dissertation Outline 19

multiplication result with only n < 2k− 1 shares is also introduced. Finally, we discuss the
limitation of this method compared to conventional methods.

Chapter 7: Conclusion and Future Works
We conclude the research contribution of the dissertation and discuss future works.

FIGURE 1.6: Dissertation outline.





21

Chapter 2

Basic Definitions and Building Blocks

This chapter discusses the definitional parameters and terms commonly used in the study of
MPC and describes the protocol and mathematical theory of the building blocks used in this
dissertation.

2.1 Definitional Parameters in MPC

In a secure MPC, a protocol may be attacked by an adversarial entity controlling some subsets
of the computing parties. The computing parties under the adversary’s control are called
corrupted and follow the adversary’s instructions. In the case of MPC using (k,n) threshold
secret sharing, the adversary is assumed to be able to corrupt a subset of k − 1 or fewer
computing servers.

To claim that an MPC is secure against any adversarial attack (the adversary’s capabil-
ity will be explained later), many different definitions and requirements have been proposed.
This section will only focus on two of the most essential requirements on any MPC protocols:
privacy and correctness. MPC protocol is considered secure if it fulfills these two require-
ments. For more information on other requirements of MPC, we highly suggest reading the
survey work by Lindell [9] for a highly comprehensive clarification of all properties.

• Privacy: No computing parties should be able to learn more than their prescribed in-
formation. In the case of MPC using multiple computing servers, each server should
not be able to learn about the actual secret input from the share prescribed to it. More-
over, when the adversary controls the player who reconstructed the output, the MPC
protocol must also ensure that the adversary does not learn more than its prescribed
output. However, there are extreme cases where MPC protocol might reveal some sen-
sitive information from the output. For example, suppose a scenario where two people
wish to compute the average of their ages in a private manner. The MPC protocol will
ensure that this process is secure. However, if one of the participants is corrupted, given
the output average of both ages and the person’s own age, the exact age of the other



22 Chapter 2. Basic Definitions and Building Blocks

honest participant can be easily derived. Therefore, although MPC ensures privacy, in
some cases, where information might be revealed from the output itself.

• Correctness: Each participant is guaranteed to receive a correct output. In the case
of computation using MPC with multiple computing servers, the MPC protocol must
ensure that the computing servers will correctly perform the computation, and the par-
ticipant is guaranteed to receive the correct result or shares. Therefore, even if the
adversary corrupted a subset of computing servers, the MPC protocol must ensure that
the adversary cannot influence the computation to produce a false result.

Next, we will explain the power of the adversary that may attack a protocol execution.
In particular, we will define the actions that the adversary is allowed to perform. In gen-
eral, there are two most common types of adversaries (recently, there is also another type of
adversary known as covert adversary [9]):

• Semi-honest adversaries: In this model, the adversary correctly follows the specifi-
cation of the MPC protocol but may try to learn more than what is allowed from the
information received throughout the computation. In the case of MPC using multiple
computing servers, the adversary may corrupt a subset of computing servers, obtain
their internal state, and use this information to learn about the participant’s secret in-
put. MPC protocol with security against this type of adversarial behavior guarantees no
accidental data leakage through the execution of the protocol. Semi-honest adversaries
are also called “honest-but-curious” and “passive”.

• Malicious adversaries: In this model, the adversary can instruct the corrupted com-
puting servers to arbitrarily deviate from the prescribed protocol specification. For
example, in MPC using secret sharing where each computing server is specified with a
share of the secret input, the adversary may instruct the corrupted servers to change the
shares given, resulting in failure or incorrectness of the computation of reconstruction
of secret input. Malicious adversaries are also called “active”.

In this dissertation, we based our method on the semi-honest adversarial model. This
model is weaker than the malicious adversarial model, but guarantees no accidental data
leakage in the protocol, which is sufficient in most current applications.

2.2 Finite Field

Finite fields (also known as Galois fields) are a very important aspect of modern cryptogra-
phy. A finite field refers to a field in which there are many elements finitely. The number of
elements of a finite field is called order or size. The element of finite field GF is defined as
follows, where p is a prime number, and m is a positive integer:



2.3. Computation in the Finite Field 23

GF(pm) =(0,1,2, . . . , p−1)∪ (p, p+1, p+2, . . . , p+ p−1)

∪ (p2, p2 +1, p2 +2, . . . , p2 + p−1)∪ . . .

∪ (pn−1, pn−1 +1, pn−1 +2, . . . , pn−1 + p−1)

In this dissertation, we only focused on finite fields with prime order (m = 1). The ele-
ments of the prime field of order p can be represented by integers in the range (0, . . . , p−1).

2.3 Computation in the Finite Field

As previously mentioned, the notation of finite field GF(p) indicates that numbers within
(0, . . . , p− 1) will be addressed. For example, when a finite field of GF(11) is chosen, the
integers will be within (0,1,2,3,4,5,6,7,8,9,10). Therefore, based on the property of finite
field mentioned before, any computation performed within the finite field GF(11) will also
return values between (0,1,2,3,4,5,6,7,8,9,10).

The easiest manner to understand this is to imagine a spinning wheel with numbers be-
tween 0 and 10. Suppose that the initial number is at 9 as shown in Figure 2.1, and that the
number 5 is added. As the wheel only shows values between 0–10, the resulting value will
be 3 and not 14. This is a basic example of an addition operation in a finite field. Next, we
will explain in detail the operation of all computations in the finite field.

FIGURE 2.1: Addition operation in a finite field.

Addition/Subtraction operation in the finite field GF(p)

Addition and subtraction in the finite field can be computed very easily. Suppose that we
have inputs a and b, with finite field GF(p). The addition and subtraction between a and b

can be computed as follows.

• Addition operation of a and b

(a+b) mod p = ((a mod p)+(b mod p)) mod p



24 Chapter 2. Basic Definitions and Building Blocks

• Subtraction operation of a and b

(a−b) mod p = ((a mod p)− (b mod p)) mod p

(Example) Suppose that a = 5, b = 6, and prime number p = 7.
The addition operation between a and b in GF(7) will be as follows:

(5+6) mod 7 = 11 mod 7 = 4

And the subtraction is as follows:

(1−6) mod 7 = (−5) mod 7 = 2

Multiplication operation in the finite field GF(p)

Multiplication can also be easily computed in the finite field GF(p).

• Multiplication operation of a and b

(a×b) mod p = ((a mod p)× (b mod p)) mod p

(Example) Suppose that a = 5, b = 6, and prime number p = 7.
The multiplication operation between a and b in GF(7) will be as follows:

(5×6) mod 7 = 30 mod 7 = 2

Division operation in the finite field GF(p)

A division in a finite field will require more tedious work. It can be performed by finding
the inverse of a number mod n. For example, suppose that we want to compute the value
1/a= a−1 in finite field GF(p). Thus, we need to find the solution for the following problem:

a−1(Inverse o f a)⇒ Find b such that (a×b) mod p = 1.

Here, b is known as the multiplicative inverse of a mod p, and can be computed by using
the extended Euclidean algorithm [46]. Let us suppose that we want to find the inverse of 5
in finite field GF(7). Thus, we only need to compute the value of multiplicative inverse b

such that (5×b) = 1 mod 7:

(5×b) = 1 mod 7

b = 5−1 mod 7



2.3. Computation in the Finite Field 25

To find the solution using the extended Euclidean algorithm, first, we need to verify the
GCD(5,7) = 1 (the numbers are relatively prime) by using the Euclidean algorithm. This
algorithm is a continual repetition of the division algorithm until the remainder is equal to
0, and the GCD will be the last non-zero remainder of the computation. The example below
shows the computation to find the GCD between a = 5 and b = 7.

Find GCD(5,7)

Step 1:
7 = 5×1+2 (Remainder = 2) (2.1)

Step 2:
5 = 2×2+1 (Remainder = 1) (2.2)

Step 3:
2 = 1×2+0 (Remainder = 0) (2.3)

As the last nonzero remainder is 1, GCD(5,7) = 1

Thus, we verified that the GCD(5,7) = 1. To find the multiplicative inverse b, where
(5×b) = 1 mod 7, the previous process needs to be reversed.

From equations (2.1) and (2.2) , we learn the following:

2 = 7−5 (2.4)

1 = 5− (2×2) (2.5)

By substituting equation (2.4) into (2.5), we obtain the following:

1 = 5− (2× (7−5)) mod 7

1 = 5− (2×7)+(2×5) mod 7 (2.6)

Since (2×7) mod 7 = 0, therefore

1 = 5× (1+2) mod 7 (2.7)

By substituting equation (2.4) into (2.7), we obtain the following:

1 =5× (1+(7−5)) mod 7 (2.8)

1 =5×3 mod 7 (2.9)

As (5×b) = (5×3) = 1 mod 7, the multiplicative inverse for a = 5 in finite field GF(7)
can be written as follows:



26 Chapter 2. Basic Definitions and Building Blocks

5−1 mod 7 = 3 (2.10)

In the computation for division or to find the multiplicative inverse, a problem will arise
with the value of 0 (division by 0). Therefore, during computation for division operation, this
value needs to be eliminated. However, to differentiate from the standard finite field, we use
GF∗(p) to represent the field without 0 rather than GF(p). In this study, GF∗(p) refers to a
finite field that does not include the value 0.

2.4 Lagrange Interpolation

The Lagrange interpolation method is a manner to find a polynomial that takes certain values
at arbitrary points [46]. For example, suppose a set of n+1 points (x0,y0),(x1,y1),. . .,(xn,yn),
where no two xl are the same. The interpolation polynomial in the Lagrange form is a linear
combination of Lagrange basis polynomials as shown below:

f (xl) =
n

∑
l=0

λl(xl)yl = λ0(x0)y0 + · · ·+λn(xn)yn (2.11)

Here, λ j(xl) is given as follows (λ j is also known as the recombination vector, and will
be very important in Chapter 6):

λ j (x) =
n+1

∏
l=1,l ̸= j

(x− xl)

(x j − xl)
(2.12)

2.5 Secret Sharing

Let us imagine the following situation:

"Alice has a treasure map with the exact location of a precious treasure that she wants to

keep hidden from other people. If anyone looks at the map, the exact coordinate of the

treasure will be known, and the treasure will be found. Therefore, to keep the treasure safe,

the map can be divided into smaller pieces and stored such that the location of the treasure

will not be known unless all pieces are gathered.”

The aforementioned problem can be easily solved by using secret sharing. Secret sharing
works by splitting a secret into multiple smaller pieces to be stored. In this case, as shown
in Figure 2.2, Alice can divide her treasure map into multiple smaller pieces and distribute
the pieces amongst her family and friends. Thus, the treasure map will only be complete
when all the pieces are gathered together; however, no information can be learned from each
individual piece.



2.5. Secret Sharing 27

FIGURE 2.2: A secret map can be divided into smaller pieces to be dis-
tributed and stored.

In cryptography, secret sharing consists of splitting a private information into multiple
small fragments (also known as shares) and distributing amongst a distributed network of
untrusted users. One of the earliest methods in theory was proposed by Shamir [13] and
Blakley [47] in 1979. In a conventional method of keeping a secret secure using an encryption
key (e.g., public key encryption and symmetric key encryption), an encryption key is used
to encrypt a secret, and any single user with the correct decryption key can decrypt and
reconstruct the secret. In contrast, with secret sharing, as no encryption/decryption keys are
used, anyone (even users without an encryption key) can distribute (=encrypt) a secret input,
but it can only be reconstructed if a sufficient number of shares are collected.

There are multiple methods of secret sharing to distribute and reconstruct a secret, such
as (k,n) threshold secret sharing, additive secret sharing, and XOR-based secret sharing [48].
Two of the most frequently used are additive secret sharing and (k,n) threshold secret sharing,
which are briefly explained in the following sections.

2.5.1 Additive Secret Sharing

One of the simplest secret sharing methods is known as additive secret sharing. In this
method, a secret input s is divided into n number of different shares, such that the origi-
nal secret input s can only be reconstructed when all shares are gathered, that is, when all
participating servers agree to contribute with their shares of the secret.

However, if one or more servers decides not to contribute with their shares or goes miss-
ing, the original secret input s cannot be recovered. To solve this problem, (k,n) threshold
secret sharing is often used, as it only requires a certain threshold k number of shares for the
reconstruction of the secret. We will discuss this in the following section.



28 Chapter 2. Basic Definitions and Building Blocks

Additive secret sharing uses the following protocols for distributing and reconstructing
the secret input s. Note that all computations are performed in the finite field GF(p). More-
over, the shares of secret input s are denoted by JsKi.
Protocol 2.1: Distribution of secret input s

1. Let the secret input be s. The dealer first selects n − 1 random numbers r j ( j =

0, . . . ,n−2) and computes the following:

JsK j = r j ( j = 0, . . . ,n−2) (2.13)

JsKn−1 = s−
n−2

∑
j=0

r j mod p (2.14)

2. In sequence, the dealer distributes JsKi (i = 0, . . . ,n−1) to n computing servers Si.

Protocol 2.2: Reconstruction of secret input s

1. The player who wants to reconstruct the secret input s collects n shares JsKi (i =

0, . . . ,n−1) from all servers Si and reconstructs the secret input s as follows:

s =
n−1

∑
i=0

JsKi mod p (2.15)

2.5.2 (k,n) Threshold Secret Sharing

A secret sharing is known as (k,n) threshold secret sharing when it satisfies the following
conditions.

• Any k−1 or fewer shares reveal no information about the original secret input s;

• Any k or more shares enables the reconstruction of the original secret input s.

The classic method for (k,n) threshold secret sharing is Shamir’s (k,n) threshold secret
sharing (referred to as Shamir’s (k,n) method) [13]. In this method, all computations are
performed in the finite field GF(p). Moreover, the shares of secret input s are denoted by
JsKi.

Shamir’s (k,n) method uses the following protocols for the distribution and reconstruc-
tion of secret input s.
Protocol 2.3: Distribution of secret input s

1. The dealer selects k−1 random numbers α1, . . . ,αk−1 and generates a random polyno-
mial f (xi) as follows:

f (xi) = s+α1xi +α2x2
i + · · ·+αk−1xk−1

i mod p (2.16)



2.5. Secret Sharing 29

2. In sequence, the dealer inserts the ID (i+ 1) of server Si (i = 0, . . . ,n− 1) into f (xi),
calculates the shares JsKi = f (i+1) corresponding to each ID, and distributes them to
all servers.

(Example) Let k = 2, n = 3, p = 19, and secret input s = 3

1. The dealer selects a random number α1 = 2 and generates the following polynomial:

f (x) = 3+2x mod 19

2. The dealer computes the n = 3 shares for each server by substituting their ID into x as
follows:

ID o f server S0 = 1 : Share JsK0 = f (x0 = 1) = 3+2(1) = 5

ID o f server S1 = 2 : Share JsK1 = f (x1 = 2) = 3+2(2) = 7

ID o f server S2 = 3 : Share JsK2 = f (x2 = 3) = 3+2(3) = 9

Protocol 2.4: Reconstruction of secret input s

1. The player who wants to restore the secret input s collects any k shares JsK j ( j =

0, . . . ,k−1) and their pair of IDs;

2. The player restores the original secret input s by using Lagrange’s interpolation as
follows:

s =
n−1

∑
i=0

n−1

∏
j=0, j ̸=i

x j

x j − xi
JsKi mod p (2.17)

(Example) Let k = 2, p = 19, and the shares held by each server are as shown in the
example of Protocol 2.3.

1. The player collects k = 2 shares JsK1 = (1,5),JsK2 = (2,7) from servers S0 and S1, and
solves k = 2 simultaneous equation to obtain secret input s using Lagrange Interpola-
tion as follows:

s =
k−1

∑
i=0

k−1

∏
j=0, j ̸=i

x j

x j − xi

=
2

2−1
5+

1
1−2

7 = 3 mod p





31

Chapter 3

A Conditionally Secure MPC using
(k,n) Threshold Secret Sharing

In this chapter, we study the problem of the increase in the degree of the polynomial when
performing multiplication between polynomials. In particular, we focus on finding a method
of multiplication that does not increase the polynomial degree. In this chapter, instead of
polynomial × polynomial, we introduce the approach of multiplication using scalar value ×
polynomial. We also evaluate the security of the proposed method and perform a comparison
with the conventional SPDZ method by Damgård et al [19].

3.1 Introduction

In recent years, with the advancement of big data and the IoT ecosystem, technologies to uti-
lize personal information to obtain valuable statistical data have been anticipated. However,
this utilization could affect the individuals’ privacy if their personal information is leaked.
Therefore, a large amount of research has been conducted on utilizing big data while en-
suring the protection of sensitive material, such as individuals’ personal information. As
mentioned in Chapter 1, one of the technologies that could realize this is known as secure
computation. In this dissertation, we focus on the version of secure computation using mul-
tiple computing servers, also known as MPC. MPC can utilize big data while preserving
privacy, which enables various statistical computations and processing of data with personal
information.

In this chapter, we propose a conditionally secure MPC using Shamir’s (k,n) method to
preserve these data while performing various arithmetic computations, such as to utilize big
data while the individuals’ personal information is still protected. In Shamir’s (k,n) method,
even if part of the shares is lost due to a server or network failure, the original secret input
can be restored if it is n− k or less, realizing a resistance toward up to n− k server losses.
However, as discussed in Section 1.4, in conventional MPC methods that use Shamir’s (k,n)
method, the number of shares required to reconstruct the multiplication result will increase



32 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

from k to 2k−1 for each multiplication performed due to the increase of polynomial degree
from k−1 to 2k−2.

In this chapter, we propose a different functionality for sharing secret input. Instead of the
“normal share” generated directly from the secret inputs as shown in Section 2.5.2, we realize
an “encrypted share” functionality. Here, the secret input is multiplied by a random number
to produce an encrypted secret input. In sequence, the encrypted secret input is distributed
by the polynomial to n computing servers as shares.

During multiplication, the shares of the encrypted secret input are collected and tem-
porarily restored as a scalar value. The multiplication operation between polynomials is
transformed in the form of scalar value × polynomial. Our proposed multiplication method
does not change the degree of the resulting polynomial or the number of shares required to
reconstruct the result. In addition, we also propose the protocol for addition operation using
the encrypted secret inputs and construct a method that does not change the resulting degree
of the polynomial for all four arithmetic operations while keeping the information-theoretic
security nature of Shamir’s (k,n) method. This enables us to build a system that does not limit
the minimum number of computing servers, even if the computation includes multiplication.

3.2 Related Work: SPDZ Method

For comparison with our proposed method, we will explain the conventional work of MPC
using secret sharing proposed by Damgård et al. [19], known as the SPDZ method. Damgård
et al. proposed a secure MPC called the SPDZ method that can be used even when the
number of adversaries is more than half of the participants (dishonest majority) in the setting
of n = k. The SPDZ method assumes an MPC model in which the owner of the secret input
is also one of the computing players (or servers, when comparing with our method); even if
all players (n−1) other than the owner collude, leakage of the secret input does not occur. In
addition, the confidentiality of secret input in the SPDZ method is realized by using additive
secret sharing.

Multiplication using the SPDZ method is also realized using the approach of multipli-
cation with a scalar value to prevent changes in the degree of polynomials. Specifically, to
multiply the shares JxKi, JyKi of the secret inputs x,y, respectively, shares JaKi, JbKi, JcKi of
random numbers a,b,c, respectively, that satisfy ab= c, proposed in Beaver’s circuit random-
ization method [20], are used. First, the values of d = open(JxKi−JaKi),e = open(JyKi−JbKi)
are reconstructed, and the multiplication is computed using the following equation:

JxyKi = de+ eJaKi +dJbKi + JcKi (3.1)



3.3. Proposed Method: TUS 1 Method 33

However, in the preprocessing phase of the SPDZ method, SHE is used to generate the
shares of JaKi, JbKi, JcKi. As shown in Table 1.2, SHE requires considerably more compu-
tational overhead than secret sharing. Therefore, although the operation for multiplication
can be easily realized, the amount of computation required to perform SHE is very large in
the SPDZ method. In other words, the SPDZ method can avoid the limitation of n ≥ 2k−1
related to multiplication using secret sharing at the expense of an increase of computation
overhead for SHE. Moreover, the implementation of SHE also means that the SPDZ method
only realizes weaker computational security instead of information-theoretic security.

3.3 Proposed Method: TUS 1 Method

3.3.1 Overview of TUS 1 Method

In this chapter, we describe our proposed method to conditionally secure MPC when n <

2k − 1. For simplicity, this method is known as the Tokyo University of Science 1 (TUS
1) method. In our proposed method, a secret input, encrypted by being multiplied by a ran-
dom number, is called an encrypted secret input, and distributed to n computing servers as
encrypted shares. During the process of multiplication, the encrypted secret input is recon-
structed momentarily as a scalar value and multiplied with the other polynomial to realize
multiplication without increasing the degree of the resulting polynomial. Note that the pro-
posed method can be applied to any secret sharing method that is secure for addition and
scalar multiplication operations. Here, Shamir’s (k,n) method was assumed.

3.3.2 Protocol of TUS 1 Method

This section describes the proposed protocol of TUS 1 method. Here, the secret inputs
a,b ∈ GF(p), random numbers generated throughout the protocol, are also elements of
GF∗(p) uniformly distributed (exclude 0). However, during multiplication, if the secret in-
put is equal to 0 (for example, input a = 0), its scalar value (we assume αa) reconstructed
in the multiplication protocol will be 0 (in this case, αa = 0); therefore, the value of the
secret input as 0 will be leaked because random number α is generated from random num-
bers α0, . . . ,αk−1 that do not include 0. To prevent this, we included a condition that the
value of the secret input must not include 0 for the multiplication operation. Moreover, all
computations, including distribution, are performed in finite field GF(p).
Notations:

• JαaKi: Share of encrypted secret input αa held by server Si.

Protocol 3.1: Distribution of secret input a



34 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

1. The dealer generates k random numbers α0, . . . ,αk−1 and computes random number α

as follows:

α =
k−1

∏
j=0

α j

2. The dealer computes the encrypted secret input αa = α ×a, and distributes the follow-
ing using Shamir’s (k,n) method to n computing servers Si (i = 0, . . . ,n−1):

αa,α0, ...,αk−1

3. Each server Si (i = 0, . . . ,n−1) holds the following shares of secret input a:

JαaKi,Jα0Ki, ...,Jαak−1Ki

Protocol 3.2: Reconstruction of secret input a

1. The player collects the following shares from k servers S j ( j = 0, . . . ,k− 1), and re-
constructs αa,α0, . . . ,αk−1 using Shamir’s (k,n) method:

JαaK j,Jα0K j, . . . ,Jαk−1K j ( j = 0, . . . ,k−1)

2. The player computes random number α and reconstructs input a as follows:

α =
k−1

∏
j=0

α j

a = αa×α
(−1)

Protocol 3.3: Multiplication of a and b

In sequence, we show the protocol to compute encrypted shares of multiplication result
ab from encrypted shares of inputs a,b. The reconstruction of multiplication result ab from
the encrypted shares can be performed through Protocol 3.2. Here, k servers S j ( j = 0, . . . ,k−
1) that reconstruct random numbers α j,β j are specified in advance out of n servers Si (i =

0, . . . ,n−1). In addition, in the multiplication protocol, the input does not include the value
0.
Input:

• Shares of secret input a from Protocol 3.1: JαaK j,Jα0K j, . . . ,Jαk−1K j ( j = 0, . . . ,k−1)

• Shares of secret input b from Protocol 3.1: JβbK j,Jβ0K j, . . . ,Jβk−1K j ( j = 0, . . . ,k−1)

Output: JαβabKi,Jα0β0Ki, . . . ,Jαk−1βk−1Ki (i = 0, . . . ,n−1)



3.3. Proposed Method: TUS 1 Method 35

1. One of the servers (here, we assume server S0) collects JαaK j from k servers, recon-
structs αa and sends it to all servers Si.

2. Each server Si (i = 0, . . . ,n−1) computes the following:

JαβabKi = αa× JβbKi

3. Each server S j (k = 0, . . . ,k−1) collects k shares of the following from k servers and
reconstructs random numbers α j,β j:

Jα jK0, . . . ,Jα jKk−1,

Jβ jK0, . . . ,Jβ jKk−1

4. Each server S j (k = 0, . . . ,k−1) computes the following and distributes to all servers
using Shamir’s (k,n) method:

α jβ j = α j ×β j

5. Each server Si (i = 0, . . . ,n−1) holds the following shares for ab:

JαβabKi,Jα0β0Ki, . . . ,Jαk−1βk−1Ki

Protocol 3.4: Division of a and b

For the division operation, the computation in Steps 2 and 4 of Protocol 3.3 is replaced
with the following:
Step 2: Each server Si (i = 0, . . . ,n−1) computes the following:

r
βb
αa

z

i
=

JβbKi

αa

Step 4: Each server S j ( j = 0, . . . ,k−1) computes the following and distributes to all servers.

β j

α j
= β j ÷α j

The result of the division protocol will produce the following shares for the result b/a:

r
βb
αa

z

i
,
r

β0

α0

z

i
, . . . ,

r
βk−1

αk−1

z

i
(i = 0, . . . ,n−1)

Typically, during the division operation, the solution cannot be defined when the divisor is
0. Therefore, we need to exclude the computation when the divisor equals 0. In the proposed
method, the result of αa in Step 1 will be αa = 0 if the divisor is 0; thus, we can stop the
process here.



36 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

Protocol 3.5: Addition/Subtraction of a and b

Input:

• Shares of secret input a from Protocol 3.1: JαaK j,Jα0K j, . . . ,Jαk−1K j ( j = 0, . . .k−1)

• Shares of secret input b from Protocol 3.1: JβbK j,Jβ0K j, . . . ,Jβk−1K j ( j = 0, . . . ,k−1)

Output: Jγ(a±b)Ki,Jγ0Ki, . . . ,Jγk−1Ki (i = 0, . . . ,n−1)

1. Each server S j ( j = 0, . . . ,k − 1) collects k shares of the following and reconstructs
random numbers α j,β j:

Jα jK0, . . . ,Jα jKk−1,

Jβ jK0, . . . ,Jβ jKk−1

2. Each server S j ( j = 0, . . . ,k−1) generates random number γ j, computes the following
and sends to one of the servers (here, we assume server S0):

γ j

α j
,

γ j

β j

3. Server S0 computes γ/α,γ/β as follows and sends to all servers:

γ

α
=

k−1

∏
j=0

γ j

α j
,

γ

β
=

k−1

∏
j=0

γ j

β j

4. Each server Si (i = 0, . . . ,n−1) computes the following:

Jγ(a±b)Ki =
(

γ

α
× JαaKi

)
±
(

γ

β
× JβaKi

)

5. Each server S j ( j = 0, . . . ,k − 1) distributes random number γ j to all servers using
Shamir’s (k,n) method.

6. Each server Si (i = 0, . . . ,n−1) holds the following for a±b:

Jγ(a±b)Ki,Jγ0Ki, . . . ,Jγk−1Ki (i = 0, . . . ,n−1)

3.3.3 Security of TUS 1 Method

Our proposed method assumes a semi-honest adversary that honestly follows the protocol,
secure communication between all players and servers, and that one server always handles



3.3. Proposed Method: TUS 1 Method 37

the same random number. For example, server S2 will always reconstruct, combine, distribute
random numbers α2 and β2. Moreover, the following four types of adversaries are assumed:

Adversary 1: The adversary corrupts a subset of k− 1 computing servers, knows the infor-
mation from a subset of k−1 servers, and attempts to learn about the inputs or output of the
computation.

Adversary 2: When one of the players who inputted the secret input is the adversary, it will
be able to know one of the secret inputs and the random numbers used to encrypt the input.
Moreover, the adversary has information from k− 1 servers and attempts to learn about the
input of the other player or the output of the computation.

Adversary 3: When the player who reconstructs the computation result is the adversary, it
will be able to learn about the information sent by k servers required to reconstruct the result.
Moreover, the adversary has information from k− 1 servers and attempts to learn about the
secret inputs.

Adversary 4: When the player who inputted one of the inputs and the player who recon-
structed the result is the adversary, it will be able to know about one of the inputs and the
random numbers used to encrypt the input, in addition to the information sent by k servers for
the reconstruction of the computation result. Moreover, the adversary has information from
k−1 servers and attempts to learn about the remaining input.

However, in a two-input-one-output computation such as a+ b = c, regardless of the
types of secure computation used, Adversary 4, who knows one of the inputs (e.g., a) and the
output (e.g., c), will be able to learn about the remaining input (e.g., b = c−a). Therefore, in
the case of two-input-one-output computation, we only consider security against Adversaries
1–3. If Adversaries 1–3 manage to learn the information that they attempt to learn, the
attack is considered a success. In other words, suppose two inputs a,b, and output c, and
the information that each adversary knows to be Y . The attack is considered a success if
Adversaries 1–3 manage to learn all the inputs a,b and output c from Y . However, if no
information is learned about a,b, and c from Y , the attack is considered unsuccessful and the
following equations will hold:

H(a) = H(a|Y )

H(b) = H(b|Y )

H(c) = H(c|Y )

Security of Protocol 3.3: Multiplication of a and b

Evaluation of security against Adversary 1

Adversary 1 knows the value of αa from the protocol and learns random numbers αl,βl

(l = 0, . . . ,k− 2) from k− 1 servers. Therefore, it knows the information of αa,αl,βl (l =



38 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

0, . . . ,k − 2) and attempts to learn about secret inputs a,b, and output ab. First, random
numbers α,β will not be leaked from k−1 values of αl,βl . Therefore:

H(α) = H(α|α0, . . . ,αk−2)

H(β ) = H(β |β0, . . . ,βk−2)

In addition, as long as the secret input a or the computed random number α are not equal
to 0, α,a will not be leaked from αa. Therefore, the following is also true:

H(α) = H(α|αa,α0, . . . ,αk−2)

H(a) = H(a|αa,α0, . . . ,αk−2)

Moreover, as random numbers βl (l = 0, . . . ,k− 2) are independent of αa and αl (l =

0, . . . ,k−2), secret inputs a,b will not be leaked. Therefore, the following statements hold:

H(a) = H(a|αa,α0, . . . ,αk−2,β0, . . . ,βk−2)

H(b) = H(b|αa,α0, . . . ,αk−2,β0, . . . ,βk−2)

In other words, even if Adversary 1 manages to learn about information from k−1 servers
and information obtained through the execution of Protocol 3.3, secret inputs a,b will not be
leaked.

Next, we discuss whether the result of multiplication ab will be leaked or not. In the mul-
tiplication protocol, the value of αa is multiplied with shares of JβbKi and stored. However,
αβab cannot be reconstructed even if information from k− 1 servers is leaked. Therefore,
the following is true:

H(αβab) = H(αβab|αa,α0, . . . ,αk−2,β0, . . . ,βk−2)

In addition, as the value of αβ is not leaked to Adversary 1, the multiplication result ab

will also not be leaked. Therefore, the following statement is also true:

H(αβ ) = H(αβ |αa,α0, . . . ,αk−2,β0, . . . ,βk−2)

Thus, even if Adversary 1 learns about information from k − 1 servers in addition to
public information leaked through the execution of Protocol 3.3, it will not be able to learn
about the multiplication result ab, and:

H(ab) = H(ab|αa,α0, . . . ,αk−2,β0, . . . ,βk−2)

Evaluation of security against Adversary 2



3.3. Proposed Method: TUS 1 Method 39

For ease of understanding, suppose that Adversary 2 controls the player who inputted
secret b. In this case, Adversary 2 will learn about random number β (and β0, . . . ,βk−1 that
compose it) and secret input b, in addition to information of Adversary 1 shown previously.
However, as α,a and β ,b are completely independent to each other, even with information
of β ,b, Adversary 2 will not be able to learn any information about random number α and
secret input a. Moreover, it will not be able to learn the multiplication result ab from k− 1
servers. Therefore, the following statements are true:

H(a) = H(a|αa,β ,b,α0, . . . ,αk−2,β0, . . . ,βk−1)

H(ab) = H(ab|αa,β ,b,α0, . . . ,αk−2,β0, . . . ,βk−1)

In addition, even if Adversary 2 controls the player who inputted secret input a instead of
the player who inputted b, the same can be said, as it will not be able to learn about random
number β and secret input b because α,a, and β ,b are completely independent to each other.

Evaluation of security against Adversary 3

In addition to information from k− 1 servers (Adversary 1), Adversary 3, who controls
the player that reconstructs the multiplication result, has information of random number αβ

(and α0β0, . . . ,αk−1βk−1 that compose it), encrypted output αβab, and the multiplication re-
sult ab. Therefore, the information known by Adversary 3 (which is equal to the ciphertext)
are αa,αl,βl (l = 0, . . . ,k−2), αβ ,αβab. Here, the multiplication result ab can be obtained
from αβ and αβab. However, secret inputs a,b and random numbers α,β cannot be sepa-
rated from ab and αβ , respectively. In addition, as discussed before, random numbers α,β

cannot be obtained from αa and αl,βl (l = 0, . . . ,k−2). Therefore, the following statements
hold:

H(a) = H(a|ab,αβ ,α0, . . . ,αk−2,β0, . . . ,βk−2)

H(b) = H(b|ab,αβ ,α0, . . . ,αk−2,β0, . . . ,βk−2)

From the argument above, even with information from k − 1 servers and information
received during the reconstruction process in Protocol 3.2, Adversary 3 will not be able to
learn about the secret inputs a,b.

However, when a = b, the player who reconstructs the multiplication result ab = a2 will
also learn about the value of input a., which occurs for any secure computation method
including MPC using secret sharing; therefore, we did not consider this situation (the same
is also true for the addition/subtraction protocol).

As the evaluations discussed above also hold for the division protocol (Protocol 3.4), we
can state that our proposed protocol is information-theoretical secure against Adversaries 1–3
for a single multiplication or division operation.



40 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

Security of Protocol 3.5: Addition/Subtraction of a and b

Evaluation of security against Adversary 1

Adversary 1 knows the public values of γ/α and γ/β from executing Protocol 3.5. In
addition, it also knows information γl,αl,βl (l = 0, . . . ,k−2) from k−1 servers. Therefore,
the information that Adversary 1 knows (that are equal to the ciphertext) are γ/α,γ/β and
γl,αl,βl (l = 0, . . . ,k− 2), and the adversary will attempt to learn about secret inputs a,b,
and output a±b.

Here, random numbers γl,αl,βl are chosen individually, and random numbers γ,α,β will
not be leaked from k− 1 number of γl,αl,βl . In addition, each individual random number
γ,α,β cannot be separated from γ/α and γ/β . Therefore, the following statements are true:

H(γ) = H
(

γ

∣∣∣∣ γ

α
,

γ

β
,α0, . . . ,αk−2,β0, . . . ,βk−2,γ0, . . . ,γk−2

)
H(α) = H

(
α

∣∣∣∣ γ

α
,

γ

β
,α0, . . . ,αk−2,β0, . . . ,βk−2,γ0, . . . ,γk−2

)
H(β ) = H

(
β

∣∣∣∣ γ

α
,

γ

β
,α0, . . . ,αk−2,β0, . . . ,βk−2,γ0, . . . ,γk−2

)
Moreover, from the information of γ/α and γ/β , which was sent to all servers, the ad-

versary will be able to learn about the ratio of random numbers α,β used to encrypt secret
inputs a,b (for example, α/β ). However, unlike in Protocols 3.3 and 3.4, Protocol 3.5 does
not require the reconstruction of scalar values of αa or βb. Therefore, even if Adversary 1
learns about information from k− 1 servers in addition to the information obtained during
the execution of Protocol 3.5, it will not be able to learn about secret inputs a,b.

Next, we discuss whether the computation result a±b will leak or not. The computation
result is not reconstructed in the middle of the computation process; for example, even when
information from k − 1 servers are leaked, Adversary 1 will not be able to reconstruct the
computation result. Therefore, the following statements are true:

H(a+b) = H
(

a+b
∣∣∣∣ γ

α
,

γ

β
,α0, . . . ,αk−2,β0, . . . ,βk−2,γ0, . . . ,γk−2

)
From the arguments above, even with the information from k−1 servers and information

learned during the execution of the protocol, Adversary 1 will not be able to learn about the
result of a±b.

Evaluation of security against Adversary 2

Suppose that Adversary 2 controls the player who inputted secret input a. Because Ad-
versary 2 knows the information of random number α , it will learn about random numbers
γ and β from γ/α and γ/β , respectively. The same occurs when Adversary 2 controls the
player who inputted b; Adversary 2 will be able to learn random numbers γ and α from
random number β .



3.4. Extension of TUS 1 Method 41

Moreover, Adversary 2 will be able to learn all random numbers α j,β j ( j = 0, . . . ,k−1)
from k− 1 number of αl,βl (l = 0, . . . ,k− 2) and the values of α,β . However, encrypted
secret inputs αa,βb will not be leaked from k − 1 shares of JαaKl and JβbKl . Moreover,
in Protocol 3.5, the values of encrypted secret inputs αa or βb are not reconstructed during
the computation. Therefore, although Adversary 2 will learn about the random numbers
γ,α,β , it will not be able to learn about the secret inputs a or b. This can be said to be the
same situation as in the computation of addition/subtraction using the original Shamir’s (k,n)
method when random numbers α = β = α j = β j = 1 are known values.

Similarly, the secret inputs a,b will not be leaked from k−1 shares. Therefore, the attack
will not be possible even if the random numbers used to encrypt the secret inputs are leaked,
ensuring security of the secret inputs and computation results.

Evaluation of security against Adversary 3

Adversary 3 knows the information of random number γ and the encrypted result γ(a±b)

from the player who reconstructed the result of the computation, in addition to information
from k−1 servers. Moreover, it also learns about γ/α,γ/β during the execution of Protocol
3.5. Therefore, Adversary 3 knows γ,γ(a± b) and γ/α,γ/β ,αl,βl (l = 0, . . . ,k − 2). By
using this information, Adversary 3 will attempt to learn about the secret inputs a,b (which
are equal to the plaintext). First, from the random number γ , the adversary will be able to
learn about random numbers α,β from γ/α,γ/β , respectively. However, in Protocol 3.5, as
the encrypted secret inputs αa and βb are not reconstructed, Adversary 3 will not be able to
learn secret inputs a,b. Therefore, the following statements are true:

H(a) = H
(

a
∣∣∣∣a+b,γ,

γ

α
,

γ

β
,α0, . . . ,αk−2,β0, . . . ,βk−2

)
H(b) = H

(
b
∣∣∣∣a+b,γ,

γ

α
,

γ

β
,α0, . . . ,αk−2,β0, . . . ,βk−2

)
Even with the information known, Adversary 3 will not be able to learn about secret

inputs a,b. Therefore, we can state that Adversary 3 learns about random numbers γ,α,β ,
but is not be able to learn about the secret inputs a,b. This is the same as in the computation
using Shamir’s (k,n) method, where all random numbers are known by the adversary.

As a conclusion, the arguments above indicate that our proposed protocol for addi-
tion/subtraction is information-theoretical secure against Adversaries 1–3.

3.4 Extension of TUS 1 Method

In Sections 3.2 and 3.3, we showed the protocol and explained the security for a single two-
inputs computation. However, there are also times when a secure MPC needs to address



42 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

computation with many inputs. Thus, we will show the extension and security of our method
when performing computation with many inputs such as ∏a and ∑a.

In case the adversary corrupted and learned one of the players who inputted the secret
input, if the individual inputs that compose the remaining input cannot be identified indi-
vidually, the secret input is still secure. Therefore, here, we also assume the existence of
Adversary 4 and evaluate the security against it.

3.4.1 Many-Inputs Multiplication

Multiplication of multiple inputs can be realized through the continuous execution of two-
inputs-one-output Protocol 3.3 explained in Section 3.3. However, it would be very ineffec-
tive. Here, we show a more effective manner of realizing multiplication with many inputs by
extending Protocol 3.3 as follows. The reconstruction process performed by the server S0 in
Steps 1 and 2 of the following protocol can also be shared between multiple servers.

For example, multiple servers can execute the process in Steps 1 and 2 in parallel to re-
alize a faster computation. As the reconstructed products are shared with all servers, sharing
the process in Steps 1 and 2 will not result in any problem regarding the security of the secret
input and output.
Protocol 3.6: Many Inputs Multiplication Protocol
Input:

• Shares of secret input a from Protocol 3.1: JαaK j,Jα0K j, . . . ,Jαk−1K j ( j = 0, . . . ,k−1)

• Shares of secret input b from Protocol 3.1: JβbK j,Jβ0K j, . . . ,Jβk−1K j ( j = 0, . . . ,k−1)
...

• Shares of secret input z from Protocol 3.1: Jζ zK j,Jζ0K j, . . . ,Jζk−1K j ( j = 0, . . . ,k−1)

Output: Jα · · ·ζ a · · ·zKi,Jα0 · · ·ζ0Ki, . . . ,Jαk−1 · · ·ζk−1Ki (i = 0, . . . ,n−1)

1. Server S0 collects k shares JβbK j, . . . ,Jζ zK j from k servers.

2. Server S0 reconstructs encrypted secret inputs βb, . . . ,ζ z and sends them to all servers.

3. Each server Si computes the following:

Jα · · ·ζ a · · ·zKi = βb×·· ·×ζ z× JαaKi

4. Each server S j collects k shares of the following and reconstructs random numbers
α j, . . . ,ζ j.

Jα jK0, . . . ,Jα jKk−1, . . . ,Jζ jK0, . . . ,Jζ jKk−1



3.4. Extension of TUS 1 Method 43

5. Each server S j computes the following and distributes to all servers using Shamir’s
(k,n) method.

α j · · ·ζ j = α j ×·· ·×ζ j

6. Each server Si holds the following for the result a · · ·z:

Jα · · ·ζ a · · ·zKi,Jα0 · · ·ζ0Ki, . . . ,Jαk−1 · · ·ζk−1Ki

Evaluation of security against Adversaries 1–4

Adversary 1 knows all the reconstructed encrypted secret inputs of βb, . . . ,ζ z (except αa)
and k− 1 random numbers αl, . . . ,ζl (l = 0, . . . ,k− 2). As the same arguments in Section
3.3.3 hold regarding the information that is leaked through the encrypted secret inputs and its
partial random numbers, we can say that each random number α, . . . ,ζ will not be leaked. In
addition, considering the arguments in Section 3.3.3, we can say that the secret input and the
result of the computation will also not be leaked from the combination of the known values.
Moreover, even in the case of Adversaries 2 and 3, the same arguments still hold, and we
can state that the secret inputs will not be leaked. Therefore, Protocol 3.6 is secure against
Adversaries 1–3.

Next, we will explain the evaluation of security against Adversary 4, where the adversary
knows the computation result and one of the inputs. First, let us assume that Adversary 4
controls the player who inputted the secret input a, and the player who reconstructed the
output a · · ·z.

Here, Adversary 4 will learn a,α,βb, . . . ,ζ z,α · · ·ζ ,α · · ·ζ a · · ·z. In this case, Adversary
4 will be able to learn about the remaining random number β · · ·ζ from random numbers α

and α · · ·ζ . Moreover, Adversary 4 will also be able to learn the partial result b · · ·z from
input a and the result a · · ·z. However, as each secret input and random number cannot be
individually separated, the individual secret inputs b, · · · ,z will not be leaked. In addition,
the same arguments also hold even when Adversary 4 controls a player other than the player
who inputted a.

Therefore, we can state that even for Protocol 3.6 that realizes many-inputs multiplica-
tion, information-theoretic security can be achieved against Adversary 4.

In contrast, in conventional methods such as the SPDZ method, an additional process
for generating shares of multiplication triple using SHE will be required for each multipli-
cation performed. Therefore, conventional methods cannot efficiently perform exponential
computation.



44 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

3.4.2 Many-Inputs Addition/Subtraction

Computation for addition/subtraction with many inputs can also be computed using Protocol
3.5 shown in Section 3.3; however, this will also be very inefficient. In this section, we will
show a more efficient method of realizing addition/subtraction with many inputs by extending
Protocol 3.5 as follows:
Protocol 3.7: Many Inputs Addition / Subtraction Protocol
Input:

• Shares of secret input a from Protocol 3.1: JαaK j,Jα0K j, . . . ,Jαk−1K j ( j = 0, . . . ,k−1)

• Shares of secret input b from Protocol 3.1: JβbK j,Jβ0K j, . . . ,Jβk−1K j ( j = 0, . . . ,k−1)
...

• Shares of secret input z from Protocol 3.1: Jζ zK j,Jζ0K j, . . . ,Jζk−1K j ( j = 0, . . . ,k−1)

Output: Jγ(a±·· ·± z),Jγ0Ki, . . . ,Jγk−1Ki (i = 0, . . . ,n−1)

1. Each server S j collects k shares of the following and reconstructs random numbers
α j, . . . ,ζ j:

Jα jK0, . . . ,Jα jKk−1, . . . ,Jζ jK0, . . . ,Jζ jKk−1

2. Each server S j generates random number γ j, computes the following, and sends to one
of the servers (here, we assume server S0):

γ j

α j
, . . . ,

γ j

ζ j

3. Server S0 computes the following and sends to all severs:

γ

α
=

k−1

∏
j=0

γ j

α j
, . . . ,

γ

ζ
=

k−1

∏
j=0

γ j

ζ j

4. Each server Si computes the following:

Jγ(a±·· ·± z)Ki =
(

γ

α
× JαaKi

)
±·· ·±

(
γ

ζ
× Jζ zKi

)

5. Each server S j distributes random number γ j to all servers using Shamir’s (k,n) method.

6. Each server Si holds the following:

Jγ(a±·· ·± z)Ki,Jγ0Ki, . . . ,Jγk−1Ki



3.5. Limitation of the TUS 1 Method 45

Evaluation of security against Adversary 1-4

Adversary 1 knows about γ/α, . . . ,γ/ζ from Step 3 of Protocol 3.7. From this informa-
tion, it will also learn about the ratio of each random number α, . . . ,ζ . In addition, Adversary
1 will learn random numbers γl,αl, . . . ,ζl (l = 0, . . . ,k− 2) from k− 1 servers. Therefore,
this adversary will learn about the ratio of the remaining partial random numbers from the
ratio of each random number α, . . . ,ζ and γl,αl, . . . ,ζl (l = 0, . . . ,k−2).

However, as the information of each encrypted secret and the computation result cannot
be learned from k−1 servers, as discussed in Section 3.3.3, Adversary 1 will not be able to
learn about each individual secret input and output. In the case of Adversaries 2 and 3, the
adversaries will learn about random numbers γ,α, . . . ,ζ ; however, as the encrypted secrets
and the computation result are not reconstructed during the computation, as discussed in
Section 3.3.3, the secret inputs will not be leaked.

Finally, Adversary 4 knows each random number γ,α, . . . ,ζ , encrypted result γ (a±·· ·± z)

and the result of the computation (a±·· ·± z); however, because each secret input cannot be
individually separated from this information, Adversary 4 will only be able to learn its own
input and the result of the addition/subtraction. In other words, we can also state that Pro-
tocol 3.7 for many-inputs addition/subtraction is also information-theoretical secure against
Adversaries 1–4.

3.5 Limitation of the TUS 1 Method

In this section, we discuss the limitation of the TUS 1 Method. Section 3.3.3 showed that the
individual protocol for computing multiplication and addition is secure against Adversaries
1–3. Moreover, in Sections 3.4.1 and 3.4.2, we showed that multiplication and addition
with multiple inputs are also secure against Adversaries 1–4 as long as only a single type of
operation is performed at any time. However, a question remains regarding the computation
that involves the combination of two types of different operations, such as multiplication and
addition, to realize a more complex computation (e.g., the product-sum operation of ab+ c).
Here, we will discuss computation that involves the combination of two protocols in Section
3.3.2 and corresponding security using the proposed method.

As follows, we show the protocol for computing the product-sum operation of ab+ c by
combining the protocols in Section 3.3.2. In this protocol, steps 1–5 perform multiplication
of ab, whereas steps 6–10 perform the addition of ab and c. Note that all secret inputs are ele-
ments of finite filed GF(p), all random numbers used and generated are uniformly distributed
from GF(p), and 0 is excluded. In addition, all computations including the distribution of
secret inputs are performed in a finite field with prime p.
Protocol 3.8: Product-sum operation ab+ c

Input:



46 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

• Shares of secret input a from Protocol 3.1: JαaK j,Jα0K j, . . . ,Jαk−1K j ( j = 0, . . . ,k−1)

• Shares of secret input b from Protocol 3.1: JβbK j,Jβ0K j, . . . ,Jβk−1K j ( j = 0, . . . ,k−1)

• Shares of secret input c from Protocol 3.1: JλcK j,Jλ0K j, . . . ,Jλk−1K j ( j = 0, . . . ,k−1)

Output: Jγ(ab+ c)Ki,Jγ0Ki, . . . ,Jγk−1Ki (i = 0, . . . ,n−1)

1. Server S0 collects k shares JαaK j from k servers, restores αa, and sends it to all servers.

2. Each server Si computes the following:

JαβabKi = αa× JβbKi

3. Each server S j collects k shares of the following, restores random numbers α j,β j, and
computes α jβ j:

Jα jK0, . . . ,Jα jKk−1,

Jβ jK0, . . . ,Jβ jKk−1

4. Servers S j distribute α jβ j to all servers Si using Shamir’s (k,n) method.

5. Each server Si now holds the following as shares for the result ab:

JαβabKi,Jα0β0Ki. . . . ,Jαk−1βk−1Ki

6. Each server S j collects k shares of the following and restores α jβ j,λ j. Server S j then
generates a random number γ j, compute γ j/α jβ j,γ j/λ j, and send them to server S0.

Jα jβ jK0, . . . ,Jα jβ jKk−1,

Jγ jK0, . . . ,Jγ jKk−1

7. Server S0 computes the values of γ/αβ ,γ/λ as follows and sends them to all servers:

γ

αβ
=

k−1

∏
j=0

γ j

α jβ j

γ

λ
=

k−1

∏
j=0

γ j

λ j

8. Each server Si computes the following:

Jγ(ab+ c)Ki =
γ

αβ
× JαβabKi +

γ

λ
× JλcKi



3.6. Discussion 47

9. Server S j distributes random number γ j to all servers Si using Shamir’s (k,n) method.

10. Each server Si holds the following as shares of ab+ c:

Jγ(ab+ c)Ki,Jγ0Ki, . . . ,Jγk−1Ki

Evaluation of security against Adversary 4

As Protocol 3.8 for the product-sum operation is a three-input-one-output operation, in
which three players inputted secret inputs a,b,c and one player reconstructed the result ab+

c, we also need to assume the existence of Adversary 4, where the adversary controls one of
the players who inputted a secret and the player who reconstructed the output.

Let us assume that Adversary 4 controls the player who inputted secret b (and random
number β ) and the player who reconstructed output ab+ c (and random number γ). In addi-
tion, Adversary 4 also has information of αa,γ/αβ ,γ/λ obtained from executing Protocol
3.8. By using the information of β ,γ,γ/αβ , Adversary 4 can gain information of random
number α used to encrypt secret input a. With the information of encrypted secret input αa

and random number α , Adversary 4 will be able to decrypt secret input a. Furthermore, with
information of secret inputs a,b, and output ab+ c, information of secret input c will also be
leaked to Adversary 4.

Thus, we can conclude that, when Adversary 4 has information about secret input b,
output ab+c, and additional information from k−1 servers, the remaining two secret inputs
a,c will be eventually leaked. Therefore, the proposed method in Section 3.3.2 is not secure
against Adversary 4 when combined to perform a more complex computation such as the
product-sum operation of ab+ c. However, Protocol 3.8 shown above remains information-
theoretic secure against Adversaries 1–3.

3.6 Discussion

3.6.1 Computational and Communication Costs of TUS 1 Method

The quantitative evaluation regarding communication cost, round number, and computational
cost of the TUS 1 method is shown in Tables 3.1 and 3.2. The number of communications
was evaluated in terms of the round according to the direction of the communication. First,
we define the parameters used in our evaluation.
Definition of Parameters:

• d1: Size of a share from Shamir’s (k,n) method.

• C1: Computational cost of Shamir’s (k,n) method.

• M: Computational cost of multiplication.



48 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

TABLE 3.1: Communication cost and rounds of the TUS 1 method

Process Communication Cost Total Round

Distribution of a,b Step 2 2nd1(k+1) 2nd1(k+1) 1

Multiplication of ab
Step 1 kd1,nd1

(k+n+2k2 +nk)d1 4Step 3 2k2d1
Step 4 nkd1

Addition of a+b

Step 1 2k2d1

(2k2 +2k+2n+nk)d1 4
Step 2 2kd1
Step 3 2nd1
Step 5 nkd1

Reconstruction Step 1 k (k+1)d1 k (k+1)d1 1

TABLE 3.2: Computational cost of the TUS 1 method

Process Computation Cost Total

Distribution of a,b
Step 1 2(k−1)M

2kM+2(k+1)C1Step 2 2M, 2(k+1)C1

Multiplication of ab

Step 1 C1

(n+ k)M+(3k+1)C1
Step 2 nM
Step 3 2kC1
Step 4 kM, kC1

Addition of a+b

Step 1 2kC1

2(k−1+n)M+2kD+nA+3kC1

Step 2 2kD
Step 3 2(k−1)M
Step 4 2nM+nA
Step 5 kC1

Reconstruction Step 2 (k+1)C1, kM kM+(k+1)C1

• D: Computational cost of division.

• A: Computational cost of addition.

Note that in Shamir’s (k,n) method, share d1 usually has almost the same size as the
original secret, and the computational costs are different for the distribution and the recon-
struction processes. However, we considered these computational costs as the same for ease
of understanding.

3.6.2 Qualitative Comparison with SPDZ Method

Conventional methods for realizing computation in the setting of n = k are proposed by
Damgård et al. in 2012 and 2013 in the SPDZ [19] and SPDZ 2 [35] methods, respectively.
The SPDZ 2 method is the improved version of the SPDZ method with the same process



3.6. Discussion 49

performing multiplication ab. Therefore, we performed a comparison only with the SPDZ
method.

The SPDZ method is only limited to the setting of n= k, where the owner of the secret in-
puts is also one of the computing players (or servers), and the protocol is secure even if n−1
out of n participating players collude together. In particular, the SPDZ method realizes secu-
rity against a malicious adversary with dishonest majority. The SPDZ method is composed
of an offline phase that performs a preprocessing process using SHE and an online phase.
Therefore, the security of this method is computational security and requires a considerable
amount of computation in the offline phase. In addition, the SPDZ method is secure against
the combination of operations such as the combination of multiplication and addition to real-
ize the product-sum operation of ab+ c. When performing division from shares of secrets a

and b, shares of 1/a and b are required; however, to find the shares of 1/a from shares of a,
an additional computation will be required in addition to the preprocessing process (for ex-
ample, distribute the secret random number r, multiply with shares of a, broadcast the value
of ar, multiply 1/ar with shares of random number r to obtain shares of 1/a).

In contrast, in our proposed method in Section 3.3, the parameters n,k are not limited to
when n = k, but they also effective when n ≥ k (we demonstrated the effectiveness of our
method for n < 2k−1, but it is still applicable when n ≥ 2k−1). The adversary will attempt
to analyze the information obtained to learn about the secret inputs, but we only assume a
semi-honest adversary and realize information-theoretic security against it. In addition, in our
method, as long as the combination of computation only involves a single type of operation
(such as addition or multiplication), the computation can be repeated without any limit to
the number of inputs. Our proposed method has a limitation related to the security against
computations that include a combination of different operations such as ab+ c. However, as
shown in Section 3.3, our method could realize division directly from the shares of a,b.

Furthermore, MPC of multiplication with the setting of n < 2k−1 can be performed with
the condition that the secret input does not include the value of 0. Information that does not
include the value 0 exists in several fields. For instance, in medical data, the pulse and blood
pressure are positive values, and the value 0 means that the individual is no longer alive and
is not used for medical statistical computation; moreover, the blood glucose level is also a
positive value. Therefore, in general, not including the value 0 is not a problem in the case
of secure computation of information such as patients in a hospital or under treatment. The
comparison explained above is included in Table 3.3.

3.6.3 Quantitative Comparison with SPDZ Method

The comparison of communication and computational costs between the TUS 1 method and
the SPDZ method is shown in Tables 3.4, 3.5 and 3.6. We defined the parameters used in the
comparison as follows.



50 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

TABLE 3.3: Comparison with the SPDZ method

Proposed Method SPDZ Method

Parameters n and k n ≥ k n = k
Type of adversray Semi-honest Malicious
Security Information-theoretic Computational
Combination of operation? Yes (same type only) Yes

Division? Directly
Additional processes
are required

Condition(s) required Exclude 0 for multiplication No

Definition of Parameters

• d1: Size of share from secret sharing

• d2: Size of share from SHE

• C1: Computational cost of secret sharing

• C2: Computational cost of SHE

Here, the share size of Shamir’s (k,n) method is d1. In our proposed method, for each
secret input, k+1 times of distribution are performed, and the total share size for the distribu-
tion process is d1 (k+1). Moreover, the data size of a SHE is d2, the computational cost for
secret sharing is C1, and the computational cost for SHE is C2. In addition, the computational
cost for a typical multiplication/division is M, and that for addition is represented by A. The
shares size d1 of Shamir’s (k,n) method can be made to be almost the same as the size of the
secret input; however, the data size d2 of SHE is typically considerably larger than the secret
input. Therefore, d2 > d1. However, because the total share size of our proposed method is
k+1 times larger than that of conventional methods of computation that use Shamir’s (k,n)
method, it is larger than the data size d2 of SHE.

In the SPDZ method, in addition to the shares d1 generated from additive secret sharing,
additional information of multiplication triple needed during the multiplication process also
need to be considered. Therefore, when comparing the total share size, we can state that our
proposed method still requires less share size than the SPDZ method. In addition, C1 and C2

typically have the relation of C1 ≪C2, and C2 is considerably larger than C1. In secret sharing,
the computational costs required for distribution and reconstruction are different; as both
costs are considerably lower than C2, we represented both using C1 for ease of understanding.

In addition, M and A are both considerably lower than C1,C2; therefore, we included
them in Tables 3.1 and 3.2. When comparing the total cost, the costs for M and A are omitted
when either C1 or C2 is present. In addition, because our proposed method does not include



3.6. Discussion 51

any verification process, we omitted all costs for verification such as zero-knowledge proof
and message authentication code (MAC) during the comparison.

From Table 3.4, because our proposed method requires the distribution and reconstruction
of k random numbers during the distribution protocol and computation process, the computa-
tion cost during addition is inferior to the SPDZ method. However, during multiplication, as
our method does not require any preprocessing of SHE with the cost C2, we can state that our
computation cost is far lower than that of the SPDZ method. In addition, when comparing
the total costs of addition and multiplication between our method and the SPDZ method, our
method could realize a faster computation than the SPDZ method because it does not include
the cost of C2 overall.

In addition, regarding the communication cost, the merits and demerits of each method
depend on the parameters n,k,d1,d2. However, regarding the round number, the total round
number of our method was higher than that of the SPDZ method because it includes the
reconstruction and distribution of k random numbers.

From the described above, when comparing our proposed method and the SPDZ method,
our proposed could realize a lighter process. In contrast, when considering the operation
model, in the SPDZ method, the player who inputted the secret input is also one of the
computing players. However, in modern data analysis, it is not practical for the player who
inputted the secret input to directly participate in the computation. In addition, when per-
forming computation using a huge number of inputs, as the owner of the information also
participates in the computation as a computing player, there is a need to set for a huge param-
eter of n = k. Generally, in big data analysis, a large amount of information is encrypted and
stored in cloud servers, and their statistical values such as their average value and variance
need to be calculated without reconstructing them. In this case, as shown in Section 3.5, ev-
ery owner of inputs a−z can distribute them to the cloud servers using our proposed method,
and only k out of the n computing servers will perform computation. This scenario can be
operated more efficiently in big data analysis and is more realistic.

Moreover, in the proposed method, to minimize the size of the computing servers needed,
the parameters can be set to n = k = 2. In the conventional method of computation that uses
Shamir’s (k,n) method, as n≥ 2k−1 servers are required, multiplication is not possible when
n = k = 2.

In contrast, the SPDZ method requires a huge computation cost in the offline phase. In
addition, in our proposed method, when considering the resistance toward server loss in the
cloud servers, the parameters can also be set to k = 3,n = 4 or k = 4,n = 5 (in conventional
methods where n ≥ 2k− 1: if k = 3, n ≥ 5; if k = 4, n ≥ 7). In addition, the SPDZ method
cannot address cases other than n = k. From the above, the proposed method can set the
number of computing servers at the minimum value of two regardless of the multiplication
operation and execute the secure computation with a small amount of computation cost.
Therefore, our proposed method can enable a more flexible process than the SPDZ method.



52 Chapter 3. A Conditionally Secure MPC using (k,n) Threshold Secret Sharing

TABLE 3.4: Comparison with the SPDZ method (computational cost)

Process Proposed Method SPDZ Method

Multiplication of ab (6k+4)C1 6C1 +2C2
Addition of a+b (6k+3)C1 3C1

TABLE 3.5: Comparison with the SPDZ method (communication cost)

Process Proposed Method SPDZ Method

Multiplication of ab (3n(k+1)+ k (3k+2))d1 10nd1 +2nd2
Addition of a+b (n(3k+4)+3k (k+1))d1 3nd1

3.7 Chapter Summary

In this chapter, we propose a new method of conditionally secure MPC by using the (k,n)

threshold secret sharing, which is valid even for n < 2k − 1 under the condition that the
secret inputs of the computation do not include the value of 0 during multiplication. This
method can execute secure computation even when n < 2k−1, and can realize information-
theoretic security. As a result, the number of servers does not need to be changed even if
multiplication is included, allowing for a more flexible operation. However, our next task is
to study a method that can safely realize a combination of different types of operations (for
example, product-sum operation of ab+ c) and evaluate its security.

TABLE 3.6: Comparison with the SPDZ method (round)

Process Proposed Method SPDZ Method

Multiplication of ab 6 5
Addition of a+b 6 2



53

Chapter 4

An Improved Conditionally Secure
MPC

In Chapter 3, we proposed a method of secure MPC when n < 2k − 1 with the condition
that the secret input for multiplication does not include 0. Moreover, it was shown that the
proposed method is secure against Adversaries 1–3, and that computation with many inputs
such as many-inputs addition is also secure against Adversaries 1–4. However, the following
question may arise here:

“We also need to realize a secure MPC that is capable of computing computations that

involve a combination of different operations, such as the computation of product-sum

ab+ c. This is particularly important when considering use in big data analysis where

computations such as variance and average often include combinations of different

operations.”

In this chapter, we consider the aforementioned problem. This chapter mainly discusses an
approach to securely compute computations involving different operations and introduces
two more conditions required to realize information-theoretic security against semi-honest
adversaries.

4.1 Introduction

Conventional methods of MPC using secret sharing can easily perform addition (and sub-
traction). However, this is not the case of multiplication, where the degree of polynomial
changes from k−1 to 2k−2 for each multiplication performed. To restore the multiplication
result, the number of shares required increases from k to 2k−1. As one server usually holds
only one share, the number of computing servers required will increase.

In Chapter 3, we showed an MPC method using (k,n) threshold secret sharing. However,
in the method described, when computation involving a combination of operations, such as
that of product-sum ab+ c, is performed, if the adversary has information about one of the
inputs and output, the values of the remaining two inputs can be specified.



54 Chapter 4. An Improved Conditionally Secure MPC

This chapter proposes an improved MPC using (k,n) threshold secret sharing that is
secure even when computation involving a combination of multiple different operations is
performed. We also considered the conditions needed to achieve an information-theoretic
secure MPC using secret sharing scheme in the setting of n < 2k−1. If the conditions can be
realized, we can state that the proposed MPC method is practical for real-world applications.
However, we only assumed a semi-honest adversary. In addition, we verified the effectiveness
of our proposed method by comparing it with the SPDZ method and the method in Chapter
3.

4.2 Proposed Method: TUS 2 Method

4.2.1 Overview of TUS 2 Method

In this chapter, we describe our improved proposed method of secure MPC when n < 2k−
1 that enables combinations of different operations. For simplicity, this method is known
as TUS 2 method, considered to overcome the problem of the method in Chapter 3. As
explained in Section 3.5, when multiplication and addition are combined to compute product-
sum operation ab+ c, the remaining input can be leaked when the adversary knows one of
the inputs and outputs of the computation.

To prevent the remaining information from being leaked we propose an approach in
which random numbers that are not known to the adversary are implemented. Therefore, we
need to define a new condition in which sets of shares of random numbers that are unknown
to the adversary are prepared and stored in the computing servers beforehand. To facilitate
this, we assume that sets of shares derived from random numbers δ j,η j ( j = 0,1, . . . ,k−1)
are not known to the adversary, as shown below. These shares are called set of conversion

random numbers, where δ and η are random numbers unknown to the adversary.

• Set of conversion random number δ : [δ ]i = (Jδ Ki,Jδ0Ki, . . . ,Jδk−1Ki)

• Set of conversion random number η : [η ]i = (JηKi,Jη0Ki, . . . ,Jηk−1Ki)

For example, this set of shares can be easily prepared by using the protocol below:
Protocol 4.1: Generation of a set of conversion random number δ

1. Generate k random numbers δ0,δ1, . . . ,δk−1.

2. Calculate random number δ as follows:

δ =
k−1

∏
j=0

δ j

3. Distribute random numbers δ ,δ0, . . . ,δk−1 to servers Si (i= 0, . . . ,n−1) using Shamir’s
(k,n) method.



4.2. Proposed Method: TUS 2 Method 55

4. Each server Si holds the following as a set of conversion random number δ .

[δ ]i = (Jδ Ki,Jδ0Ki, . . . ,Jδk−1Ki)

Hence, we define condition (2) as follows.

2. There are sets of conversion random numbers derived from random numbers that are
unknown to the adversary.

4.2.2 Protocol of TUS 2 Method

In this section, we explain the protocol for our MPC method. Instead of separating the
protocol for addition and multiplication, we propose the protocol for computing product-
sum operation ab+ c. Thus, when the input a is replaced with a = 1, we can realize the
computation of addition b+ c; when the input c is replaced with c = 0, we can realize the
computation for multiplication ab. Therefore, the protocol for ab+ c is more flexible as it
can be used to compute all four arithmetic operations.

In sequence, we describe the protocol for the computation of ab+ c. However, we as-
sume that every server holds shares of secret inputs that were distributed by the player using
Protocol 3.1 shown in Section 3.3. Moreover, all computations, including the distribution
protocol, are performed in finite field GF(p).

Notation:

• JαaKi: Share of αa held by server Si.

Conditions:

1. Inputs in the multiplication protocol do not include the value 0.

2. There are sets of conversion random numbers derived from random numbers (ex-
cluding the value 0) unknown to the adversary. Here, we assume that each server
Si (i = 0, . . . ,n−1) holds the following:

Set of conversion random number δ : [δ ]i = (Jδ Ki,Jδ0Ki, . . . ,Jδk−1Ki) (i = 0, . . . ,n−1)

Set of conversion random number η : [η ]i = (JηKi,Jη0Ki, . . . ,Jηk−1Ki) (i = 0, . . . ,n−1)

Protocol 4.2: Product-sum operation ab+ c

Input:

• Shares of secret input a from Protocol 3.1: JαaK j,Jα0K j, . . . ,Jαk−1K j ( j = 0, . . . ,k−1)

• Shares of secret input b from Protocol 3.1: JβbK j,Jβ0K j, . . . ,Jβk−1K j ( j = 0, . . . ,k−1)

• Shares of secret input c from Protocol 3.1: JλcK j,Jλ0K j, . . . ,Jλk−1K j ( j = 0, . . . ,k−1)



56 Chapter 4. An Improved Conditionally Secure MPC

Output: Jγ(ab+ c)Ki,Jγ0Ki, . . . ,Jγk−1Ki (i = 0, . . . ,n−1)

1. Server S0 collects k shares of JαaK j ( j = 0, . . . ,k−1) from k servers, restores αa, and
sends αa to all servers Si.

2. Each server Si (i = 0, . . . ,n−1) computes the following:

JαβabKi = αa× JβbKi

3. Server S0 collects the following from k servers, restores αβab,λc, and sends to all
servers Si:

JαβabK j,JλcK j

4. Each server Si (i = 0, . . . ,n−1) computes the following:

JαβδabKi = αβab× Jδ Ki

JληcKi = λc× JηKi

5. Each server S j (i = 0, . . . ,k−1) collects k shares of the following and restores α j, β j,
λ j, δ j, η j:

Jα jK0, . . . ,Jα jKk−1,

Jβ jK0, . . . ,Jβ jKk−1,

Jλ jK0, . . . ,Jλ jKk−1,

Jδ jK0, . . . ,Jδ jKk−1,

Jη jK0, . . . ,Jη jKk−1

6. Each server S j (i = 0, . . . ,k−1) generates a random number γ j, computes the follow-
ing, and sends to one of the servers (here, we assume server S0):

γ j

α jβ jδ j
,

γ j

λ jη j

7. Server S0 computes the following and sends it to all servers Si (i = 0, . . . ,n−1):

γ

αβδ
=

k−1

∏
j=0

γ j

α jβ jδ j

γ

λη
=

k−1

∏
j=0

γ j

λ jη j



4.2. Proposed Method: TUS 2 Method 57

8. Each server Si (i = 0, . . . ,n−1) computes the following:

Jλ (ab+ c)Ki =

(
γ

αβδ
× JαβδabKi

)
+

(
γ

λη
× JληcKi

)

9. Server S j (i = 0, . . . ,k−1) distributes random number γ j (if the computation involves
only multiplication of ab, γ j = α jβ j; if the computation involves addition, γ j = γ j) to
all servers Si (i = 0, . . . ,n−1) by using Shamir’s (k,n) method.

10. Each server Si (i = 0, . . . ,n−1) holds the following as shares of the result ab+ c.

Jγ(ab+ c)Ki,Jγ0Ki, . . . ,Jγk−1Ki

Based on Protocol 4.2 for the product-sum ab+c shown above, Steps 1–2 are the same as
those of Protocol 3.3 of multiplication, and Steps 6–9 are based on Protocol 3.5 for addition.
Therefore, Steps 3–5 are new steps that require shares of random numbers unknown to the
adversary, as stated in Condition (2).

As previously mentioned, in a product-sum operation of ab+c, if c = 0, multiplication of
ab can be realized, and if a = 1, addition of b+ c can be realized. Therefore, in the product-
sum operation protocol previously mentioned, if c = 0, multiplication is achieved, and Steps
3, 4 and 6–8 can be skipped. However, in Step 5, only α j,β j is reconstructed without the need
to generate γ j. Moreover, if multiplication in Step 3 is replaced with division by αa,γ j =α jβ j

in Step 9 is replaced with γ j = β j/α j , and division is realizable.
If a = 1 (random number α is also equal to 1), addition is achieved, and Steps 1, 2 can

be skipped. However, because multiplication in Step 2 is skipped, computation after Step 3,
which involves JαβabK j and αβab, becomes JβbKi and βb, JαβδabKi in Step 4 becomes
JβδbKi, reconstruction of α j in Step 5 is skipped, and α j in Step 6 and onwards is set as
α j = α = 1.

In addition, subtraction is also realizable by changing the symbol of addition to sub-
traction. In conclusion, we can achieve all four basic arithmetic computations based on the
aforementioned product-sum operation protocol, including division and subtraction. How-
ever, the evaluation of the effectiveness of our proposed method through the introduction of
Steps 3–5 is discussed in a later section.

4.2.3 Security of TUS 2 method

The method proposed in Chapter 3 is a two-input-one-output operation and can be repre-
sented by Figure 4.1, where two inputs JaK j,JbK j are inputted in the secure computation box,
which contains the protocols shown in Section 3.3, to produce output JcKi. This method was
proven to be secure against Adversary 1, which has access to information from k−1 servers,
Adversary 2, which has information on secret input a or b in addition to information from



58 Chapter 4. An Improved Conditionally Secure MPC

k−1 servers, and Adversary 3, who has information on the output c in addition to information
from k−1 servers.

FIGURE 4.1: Basic computation of TUS 1 method.

As our proposed method in Protocol 4.2 is a three-input-one-output computation, it can be
represented by Figure 4.2, where three inputs JaK j,JbK j,JcK j are inputted into the MPC box to
produce an output JdKi. However, if one of the outputs is known (for example, a= 1 or c= 0),
we can realize a two-input-one-output computation of addition, subtraction, multiplication,
and division, as in Figure 4.1. Here, when evaluating the security of ab+ c, in addition to
Adversaries 1–4 defined in Chapter 3, we include a new Adversary 4 and Adversary 5 as
follows. The attack is considered a success if the adversary can learn the target information.

FIGURE 4.2: Basic computation of TUS 2 method.

Adversary 4: In the product-sum operation, one of the players who inputted the secret input
and the player who reconstructed the output constitute the adversary. Adversary 4 has infor-
mation of one of the inputs (and the random number used to encrypt it) and the information



4.2. Proposed Method: TUS 2 Method 59

needed to reconstruct the output. In addition, it also knows information from k− 1 servers.
The adversary attempts to learn the remaining two inputs according to this information.

Adversary 5: In the product-sum operation, two players who inputted secret inputs constitute
the adversary. Adversary 5 has information on two secret inputs (and the random numbers
used to encrypt them). In addition, it also knows information from k−1 servers. According
to this information, the adversary attempts to learn the remaining input or the output of the
computation.

Here, suppose that in the case of Adversary 4, but with the one known input treated as a
constant number that does not contribute to the process of decoding other secret inputs, this
type of adversary can be treated the same as Adversary 3, where the adversary knows only
the output. In contrast, in the case of Adversary 5, if one of the known inputs is assumed
to be constant and does not contribute to decoding other secret inputs, Adversary 5 can be
treated the same as Adversary 2 that knows only one of the inputs.

Furthermore, Adversaries 4 and 5 have the information obtained by Adversary 1, which
is information from k − 1 servers. Moreover, in a three-input-one-output computation, re-
gardless of the security level of the method used, if two out of the three inputs and the output
are leaked to the adversary, the remaining one input can also be leaked. Similarly, when all
three inputs are known to the adversary, the output can also be leaked. Therefore, we do not
consider these two types of adversaries. We can state that our proposed method is secure if it
is also secure against Adversaries 4 and 5.

In the following, we evaluate the security of our proposed method against Adversaries 4
and 5.

Evaluation of security against Adversary 4

Assume that Adversary 4 controls the player who inputted secret input b. Adversary 4
also has information from k − 1 servers. Therefore, in the process of inputting secret in-
put b through Protocol 3.1, Adversary 4 has information about b,β ,β j ( j = 0, . . . ,k − 1),
and in Steps 1–2, he/she learns about αa, in Steps 3–4 about αβab,λc, in Steps 5–6 about
αl,βl,λl,δl,ηl,γl (l = 0, . . . ,k−2), in Step 7 about γ/αβδ ,γ/λη , and finally in the recon-
struction process using Protocol 3.2, about γ,γ j,ab+ c ( j = 0, . . . ,k−1).

Therefore, the evaluation of security against Adversary 4 can be translated to the prob-
lem of determining whether he/she can learn about the remaining secret inputs a,c from the
following information:

b,β ,αβab,λc,
γ

αβδ
,

γ

λη
,γ,ab+ c,β j,γ j ( j = 0, . . . ,k−1)

αl,βl,λl,δl,ηl,γl (l = 0, . . . ,k−2)

First, to simplify the problem, we redefined the parameters above to avoid any duplication



60 Chapter 4. An Improved Conditionally Secure MPC

of a parameter. As a result, we can transform the problem into determining whether the
adversary can learn about the remaining secret inputs a,c from the following information:

b,β ,αa,λc,γ,αδ ,λη ,ab+ c,αl,λl,δl,ηl (l = 0, . . . ,k−2)

To obtain information about secret input a from αa, the adversary must first obtain in-
formation of random number α . The information that is related to random number α is
αa,αδ ,αl,δl (l = 0, . . . ,k− 2) (b,β ,c,λ ,η are independent of α,a). However, even from
this information, random number α and secret input a are not leaked. Therefore,

H(α) = H (α|α0, . . . ,αk−2)

H(δ ) = H (δ |δ0, . . . ,δk−2)

H(a) = H (a|αa,αδ ,α0, . . . ,αk−2,δ0, . . . ,δk−2)

In the method proposed in Chapter 3, because there was no implementation of shares of
random number δ unknown to the adversary, the value of αδ becomes α and secret input a

can be leaked. In contrast, in Protocol 4.2, through the implementation of shares of random
number δ , we were able to prevent the leakage of secret input a to the adversary.

In addition, to obtain secret input c from λc, the adversary needs first to learn about
random number λ ; therefore, the same can also be asserted about secret input c.

H(λ ) = H (λ |λ0, . . . ,λk−2)

H(η) = H (η |η0, . . . ,ηk−2)

H(c) = H (c|λc,λη ,λ0, . . . ,λk−2,η0, . . . ,ηk−2)

By implementing the shares of random number η , in contrast to the method in Chapter
3, Protocol 4.2 can prevent random number λ from being leaked, allowing our method to
prevent secret input c from being known to the adversary.

Finally, because Adversary 4 also has information about output ab+c, it has information
about ab+ c and b; however, with no information about secret inputs a or c, it is not able to
obtain any information about the remaining inputs. Therefore, the following can be stated:

H(a) = H (a|ab+ c,β ,b,αa,αδ ,λc,λη ,αl,δl,λl,ηl) (l = 0, . . . ,k−2)

H(c) = H (c|ab+ c,β ,b,αa,αδ ,λc,λη ,αl,δl,λl,ηl) (l = 0, . . . ,k−2)

In addition, the evaluation above remains valid even if Adversary 4 controls the player
who inputted secret inputs a or c. Therefore, our proposed method is secure against Adver-
sary 4.

Evaluation of security against Adversary 5



4.2. Proposed Method: TUS 2 Method 61

Assume that Adversary 5 controls the player who inputted secret inputs b,c. It also
has information from k− 1 servers. Therefore, in the process of inputting the secret inputs,
Adversary 5 has information of b,β ,c,λ ,β j,λ j ( j = 0, . . . ,k− 1), and in Steps 1–2 learns
about αa, in Steps 3–4 about αβab,λc, in Steps 5–6 about αl,βl,λl,δl,ηl,γl (l = 0, . . . ,k−
2), and finally, in Step 7, about γ/αβδ ,γ/λη .

Therefore, the evaluation of security against Adversary 5 can be translated into the prob-
lem of determining whether the adversary can learn about the remaining secret input a or
output ab+ c from the following information:

b,β ,c,λ ,αa,αβab,λc,
γ

αβδ
,

γ

λη
,β j,λ j ( j = 0, . . . ,k−1)

αl,βl,λl,δl,ηl,γl (l = 0, . . . ,k−2)

First, to simplify the problem, we redefine the parameters above to avoid any duplica-
tion of a parameter. As a result, we can change the problem into determining whether the
adversary can learn about the remaining secret input a or output ab+ c from the following
information:

b,β ,c,λ ,αa,
γ

αδ
,

γ

η
,αl,δl,ηl,γl,Jγ(ab+ c)Kl (l = 0, . . . ,k−2)

To obtain information of secret input a from αa, the adversary must first obtain informa-
tion of random number α . The information related to random number α is αa,γ/αδ ,αl,δl,γl

(l = 0, . . . ,k− 2). Even from this information, random number α and secret input a cannot
be leaked. Therefore, the following statements are true:

H(α) = H(α|α0, . . . ,αk−2)

H(γ) = H(γ|γ0, . . . ,γk−2)

H(δ ) = H(δ |δ0, . . . ,δk−2)

H(a) = H
(

a
∣∣∣ γ

αδ
,α0, . . . ,αk−2,γ0, . . . ,γk−2,δ0, . . . ,δk−2

)
In the method in Chapter 3, because there was no implementation of shares of random

numbers δ ,η that are unknown to the adversary, γ/λη becomes γ/λ and γ/αδ becomes
γ/α . From information of γ/λ and λ , random number γ is leaked to the adversary. With in-
formation on γ/α and γ , the adversary can learn the value of random number α . Information
of α and αa allows information of secret input a to be leaked. With the leaked information
of secret input a and initial information of b,c, the adversary can learn about output ab+ c.
In contrast, our proposed method utilizes shares of random numbers δ ,η , which are derived
from random numbers that are not known to the adversary; thus, we can prevent secret input
a from being leaked to the adversary.



62 Chapter 4. An Improved Conditionally Secure MPC

In addition, the adversary has information about Jγ(ab+ c)Kl (l = 0, . . . ,k − 2), but it
cannot learn about γ(ab+ c) from this. Therefore, the following can be stated:

H (γ(ab+ c)) = H(γ(ab+ c)|Jγ(ab+ c)K0, . . . ,Jγ(ab+ c)Kk−2)

Next, we consider whether the output of the computation and random number γ can be
leaked to the adversary. First, information related to random number γ are γ/αδ , γ/η , αl ,
δl , γl , ηl (l = 0, . . . ,k−2). However, even with this information, the adversary cannot learn
about random number γ . Therefore:

H(γ) = H (γ|γ0, . . . ,γk−2)

H(α) = H (α|α0, . . . ,αk−2)

H(δ ) = H (δ |δ0, . . . ,δk−2)

H(η) = H (η |η0, . . . ,ηk−2)

H(γ) = H
(

γ

∣∣∣∣ γ

αδ
,

γ

η
,αl,δl,γl,ηl

)
(l = 0, . . . ,k−2)

In the method in Chapter 3, because there was no implementation of shares of random
number η ,γ/λη becomes γ/λ . With information of γ/λ ,λ , the adversary can learn about
random number γ . In contrast, Protocol 4.2 utilizes shares of random number η , which is
not known to the adversary; thus, we can prevent the adversary from learning about random
number γ .

Finally, Adversary 5 may know about secret inputs b,c by controlling the players, but
with no information of output ab+ c, it cannot learn about the remaining input. Therefore:

H(a) = H
(

a
∣∣∣∣b,β ,c,λ ,αa,

γ

αδ
,

γ

η
,αl,δl,ηl,γl

)
(l = 0, . . . ,k−2)

H(ab+ c) = H
(

ab+ c
∣∣∣∣b,β ,c,λ ,αa,

γ

αδ
,

γ

η
,αl,δl,γl,ηl

)
(l = 0, . . . ,k−2)

In addition, the aforementioned evaluation remains valid, even if Adversary 5 controls
the player who inputted secret inputs a,c or a,b. Therefore, we can state that our proposed
method is secure against Adversary 5.

4.3 Extension of TUS 2 Method: Combination of Multiple Product-
Sum Operation

4.3.1 Extended Method

In general, any computation that comprises the four basic operations (addition, subtraction,
multiplication, and division) can be decomposed into a combination of multiple product-sum



4.3. Extension of TUS 2 Method: Combination of Multiple Product-Sum Operation 63

operations.
For example, the computation of a = f (a1,a2, . . . ,a2m,a2m+1) = a2m+1(a1a2 + a3a4 +

· · ·+a2m−1a2m) can be divided into multiple combinations of product-sum operations:

Product-sum operation 1: f1 = f (a1,a2,0) = a1a2

Product-sum operation 2: f2 = f (a3,a4, f1) = a3a4 +a1a2

...

Product-sum operation m: fm = f (a2m−1,a2m, fm−1) = a1a2 +a3a4 + · · ·+a2m−1a2m

Product-sum operation m + 1: fm+1 = f (a2m+1, fm,0) = a2m+1(a1a2 + a3a4 + · · ·+
a2m−1a2m) = a

By combining the basic product-sum operation boxes shown in Figure 4.2, the above
computation can be represented in Figure 4.3. However, because all the outputs of the boxes,
except the last box, are not restored, in every connection between boxes, the output of each
box is inputted into the next box in its encrypted state. Moreover, each computation for
each box is performed by the same set of servers. In contrast, the computation of a can be
generally represented as in Figure 4.4; however, if to decompose it into a basic product-sum
operation, we could state that the secure computation box in Figure 4.4 is composed of the
operations in Figure 4.3.

4.3.2 Security of Extended Method

Here, we consider the combination of product-sum operations shown in Section 4.2. For
example, regardless of the security level of the computation method used in the box shown
in Figure 4.4, if all the inputs except a1 are known, the input a1 is eventually leaked from
a1 = f−1(a,a2, . . . ,a2m,a2m+1).

In contrast, in the computation of a, if two of the inputs (for example, a1,a2) are not
leaked; we can state that these two inputs cannot be leaked. This is because a1 = f−1(a,a2,
. . ., a2m, a2m+1), and if the value of a2 is not known, a1 cannot be specified. The same applies
to the opposite situation. Therefore, we define Adversary 6 as follows.

Adversary 6: In a t-input-1-output computation, t −1 and below players are the adversary.
Only the remaining two inputs or one input and one output are not known. According to the
information known, the adversary attempts to learn about the remaining two unknown.

The evaluation of security against Adversary 6 is shown in the following section. How-
ever, because the same set of servers must execute the consecutive computation of multiple
product-sum operations, we include the following Condition (3).



64 Chapter 4. An Improved Conditionally Secure MPC

FIGURE 4.3: Computation of a by combining multiple product-sum opera-
tions.

3. In secure computation involving consecutive computation, the position of a share in a
set of shares handled by each server is fixed.

In Shamir’s (k,n) method, the computation of the product-sum operation is already de-
fined and can be represented as in Figure 4.2, whereas the combination of multiple computa-
tions is as shown in Figure 4.3, where all computation boxes are independent of each other.
In other words, a group of servers that performs a secure computation does not have to be the
same group of servers that conducted the previous computation, and a combination of servers
can be freely used to perform a computation.

In contrast, if servers have participated in computation in our proposed method, they
retain fragments of information from that computation. Assuming the case where multiple
computations are performed consecutively, if the same server handles random numbers that
are different from those in the previous computation, the server has information of two dif-
ferent random numbers. This poses the risk of a situation where the adversary can obtain
more than a k number of information from k−1 computing servers, as one server may have
more than one fragment of information of the random number.

Therefore, from Condition (3), when multiple computations are performed repeatedly,
the random numbers handled by a server are limited to the same random numbers handled
in a previous computation. In other words, for example, in multiplication, the server that



4.3. Extension of TUS 2 Method: Combination of Multiple Product-Sum Operation 65

FIGURE 4.4: General computation of a.

reconstructs random numbers α j and β j and distributes the value of the random number α jβ j

also reconstructs the same random number α jβ j even in the subsequent computation.
However, suppose a situation where n > k and server S j that handled random numbers

α j,β j broke down and were replaced with a new server S j, which did not previously partic-
ipate in any computation. Here, there is a premise in (k,n) threshold secret sharing that the
number of servers that the adversary can control among n servers is k − 1 or less. There-
fore, suppose that k− 1 servers participating in the computation for a certain operation are
dishonest servers that leak information to the adversary. It can be said that the new server
that participates in the computation on behalf of the broken server is not a dishonest server.
Therefore, adding condition (3) does not cause any new problems. Moreover, each server
knows a fragment of the secret inputs, but it is safe because k pieces are not collected.

In the following, under the conditions previously mentioned, we explain the evaluation
of our proposed method against Adversary 6 when multiple product-sum operations are per-
formed consecutively, as shown in Figure 4.3.

Evaluation of security against Adversary 6

We consider three different situations in the security evaluation of our proposed method
against Adversary 6.

1. Two out of three inputs in a product-sum operation box are unknown, whereas all the
remaining inputs and final outputs are known.

Two inputs in a product-sum operation box are unknown. In other words, one input and
one output of a product-sum operation box are known to the adversary (which is the same
as Adversary 4). As our proposed method is secure against Adversary 4, the remaining two
inputs will continue to be unknown to the adversary.



66 Chapter 4. An Improved Conditionally Secure MPC

Next, as an example, the product-sum operation box mentioned previously is Box 2
shown in Figure 4.3, where all the inputs for the remaining boxes and the final output are
leaked to the adversary. In this case, all information except for Box 2 are leaked; however,
as computation in Box 2 is secure against Adversary 4, the remaining two inputs will not be
leaked. This does not change, regardless of the position of the product-sum operation box in
the computation.

2. Two of the unknown inputs are inputted in different boxes each, whereas the remaining
inputs and the output for the last box are leaked.

If two of the unknown inputs are each inputted in different product-sum operation boxes, the
remaining two out of three inputs of that box can be leaked to the adversary. For example,
two unknown inputs are each inputted in Box 1 and Box 2, respectively in Figure 4.3. The
remaining inputs for Box 1 and Box 2 are leaked to the adversary. In Box 1, even if two inputs
are known to the adversary, it cannot learn information of the output without the remaining
input, thus adding another unknown input to Box 2. Therefore, in Box 2, because two inputs
are not leaked, and based on the previous case of evaluation against Adversary 4, we can
state that the two inputs in Box 2 will not be leaked. This does not depend on how the boxes
are combined.

3. The output for the last box and one input are not known, whereas all the remaining
inputs are leaked.

The output will not be leaked in a box into which the unknown input is inputted (as previously
shown). Therefore, inputs related to that output will also be unknown. Because of this, we
can state that in the last box, one input and one output will be unknown. In this case, we can
state that two inputs of the last box are known to the adversary. However, from the evaluation
of security against Adversary 5, we can state that, even if two inputs of the last box are known
to the adversary, the remaining input and output will not be leaked.

4.4 Discussion

4.4.1 Qualitative Comparison with TUS 1 and SPDZ Methods

As mentioned in Chapter 3, the SPDZ method uses SHE for the generation of multiplication
triple. However, SHE, known to be computationally very expensive, is used in the offline
phase of the SPDZ method, making it computationally secure against a dishonest majority.
In addition, we also include the method in Chapter 3 in the comparison.

The SPDZ is limited to the setting n = k, where the owner of the secret input is one of the
players involved in the secure computation. Provided that the owner protects his/her share,
even if n− 1 players, excluding the owner, form a coalition, the protocol is secure and the



4.4. Discussion 67

TABLE 4.1: Comparison with previous works

Proposed Method TUS Method SPDZ Method

Parameters of n and k n ≥ k n ≥ k n = k
Type of adversary Semi-honest Semi-honest Active
Type of security Information-theoretic Information-theoretic Computational
Combination

Unlimited
Limited to same type

Unlimited
of operation of operation

secret input cannot be leaked, because insufficient shares are collected to restore the secret
input. In particular, the SPDZ supposes an active adversary and is secure against a dishonest
majority. Moreover, the SPDZ uses a SHE in the offline phase, making it computationally
secure but exceptionally computationally expensive. Moreover, the SPDZ method is secure
against computation that involves a combination of different types of operation, such as the
combination of addition and multiplication. However, it cannot perform division directly
from shares a and b inputted by the player (it is possible to compute the secrecy division
using a method of secure multiplication if shares on 1/a and b are distributed by the player.).

In contrast, our proposed method and the method in Chapter 3 are not limited only to sit-
uations where n = k. Both methods can perform MPC even under the setting n ≥ k; although
our proposed method shows effectiveness under the setting n < 2k−1, it is also usable in the
setting n ≥ 2k− 1. However, they both suppose a semi-honest adversary and include MPC
protocols that are information-theoretic secure against a semi-honest adversary. In addition,
the method in Chapter 3 faces issues when different types of operation are combined to per-
form a more complicated computation, whereas the method proposed in this chapter is secure
even when different types of computations are combined. However, the method in Chapter 3
requires only one condition, whereas the improved method requires three conditions. More-
over, both methods can perform division directly from shares of a and b. These aspects are
summarized in Table 4.1.

4.4.2 Quantitative Comparison with TUS 1 and SPDZ Methods

A comparison of the computational and communication costs of our proposed methods and
the SPDZ method is shown in Tables 4.2, 4.3 and 4.4. The number of communications is
evaluated as the number of rounds in proportion to the direction of the communication. We
define the parameters used in the comparison as follows.
Definition of Parameters:

• d1: Size of share from secret sharing

• d2: Size of share from SHE



68 Chapter 4. An Improved Conditionally Secure MPC

TABLE 4.2: Comparison with previous works (computation cost)

Process Proposed Method TUS 1 Method SPDZ Method

Multiplication of ab 2(3k+2)C1 2(3k+2)C1 8C1 +2C2
Addition of a+b (10k+7)C1 3(2k+1)C1 3C1
Product-sum of ab+ c 3(4k+3)C1 Not executable 9C1 +2C2

• C1: Computational cost of secret sharing

• C2: Computational cost of SHE

Parameter d1 is usually almost the same size as the original secret input, whereas d2 is
typically larger. Therefore, d2 > d1. Moreover, C1 is considerably smaller than C2. There-
fore, C1 ≪C2. In a secret sharing, the computational costs of the distribution and the recon-
struction processes differs; however, as both are considerably smaller than C2, we consider
that the computation costs of these processes are C1. As authentication processes, such as
zero-knowledge proof and MAC, were not included in our proposed methods, corresponding
processing costs are omitted.

In addition, the values in Table 4.2 include the costs of preprocessing, distribution, and
reconstruction. Both methods proposed do not include the computational cost C2 for SHE.
Therefore, we can state that our methods are better in terms of this cost than the SPDZ
method. In terms of communication cost, the merits and demerits of each method depend
on n,k,d1,d2. Our proposed method includes the processes of generating, restoring, and dis-
tributing random numbers in secret distribution and secure computation. Thus, a comparison
of the number of rounds of each method shows that the total number of rounds of our method
in this chapter is considerably higher than that of the method in Chapter 3 and the SPDZ
method.

However, our proposed method is lighter than the SPDZ method in terms of overall pro-
cessing cost because it does not contain the computational cost of SHE. The method in this
chapter also enables the combination of different types of operation while remaining secure,
unlike the method in Chapter 3.

4.4.3 Discussion about Conditions

This section discusses the realizability of our three proposed conditions.

Condition 1: Inputs and output in multiplication do not include value 0.
In multiplication, if the secret input inputted is 0,αa, which is restored in the protocol of

multiplication, is αa = 0. Thus, the adversary can know that secret input a is 0, as a random
number does not contain the value 0. However, information that does not contain value 0
is abundant, such as medical data, such as pulse, blood pressure, and blood glucose level.



4.4. Discussion 69

TABLE 4.3: Comparison with previous works (communication cost)

Process Proposed Method TUS 1 Method SPDZ Method

Multiplication (3(k+n)(k+1) (3n(k+1)
10nd1 +2nd2of ab −k)d1 +k (3k+2))d1

Addition (5(k+n)(k+1) (n(3k+4)
3nd2of a+b +3n +3k (k+1))d1

Product-sum (6(k+n)(k+1)+
Not executable 11nd1 +2nd2of ab+ c +4n)d1

TABLE 4.4: Comparison with previous works (round)

Process Proposed Method TUS 1 Method SPDZ Method

Multiplication of ab 6 6 5
Addition of a+b 9 6 2
Product-sum of ab+ c 11 Not executable 5

Therefore, when performing secure computation from data collected from patients admitted
to or being treated at a hospital, excluding the value 0 in inputs does not raise a serious prob-
lem. In addition, the condition of exclusion of input 0 applies only to multiplication, because
input 0 does not cause a problem when used in addition, subtraction, and division. Thus, a
considerable amount of information does not require value 0 and our proposed method is an
effective MPC protocol for this information.

Condition 2: There are shares of random numbers unknown to the adversary.
The simplest method to fulfill this condition is to obtain a set of shares from a TTP that

is not involved in the MPC. This technique was included in methods such as those proposed
in [49], where the assumption of a trustable server contributes to realizing a more effective
process. Therefore, the establishment of a trustable server is effective in practical use. How-
ever, as shown in Section 4.2.1, the generation of shares of random numbers does not depend
on the secret inputs and is easily realizable by producing k random numbers, multiplying all
the random numbers, and distributing them using a secret sharing.

In addition, in this study, we assumed a semi-honest adversary. Therefore, if we add
the process of producing shares of a random number from different random numbers into all
servers and execute the “shuffle process”, the connection between the server that produced
the set of shares is removed. Moreover, in a server set containing multiple servers, if they
share no interest between each other, we can achieve a structure close to a TTP by utilizing
these servers to exchange, mix, and remove while they shuffle the set of shares on conversion
random numbers between each other. Therefore, this condition can be realized in several



70 Chapter 4. An Improved Conditionally Secure MPC

manners it in practice.

Condition 3: In secure computation involving consecutive computation, the position of
shares in a set of shares that are handled by each server is fixed.

Because our proposed method assumes a semi-honest adversary, we can realize this con-
dition by setting regulations for servers that hold shares required for secure computation and
servers involved in secure computation.

4.5 Chapter Summary

In this chapter, with three proposed conditions, we realized a secure MPC when n < 2k− 1
even when different types of computation are performed consecutively.

1. The value of secret inputs and output in multiplication does not include 0;

2. There are shares of random numbers that are constructed from random numbers un-
known to the adversary.;

3. In secure computation involving consecutive computation, the position of shares in a
set of shares handled by each server is fixed.



71

Chapter 5

Application of MPC: Searchable
Encryption of Documents

In this chapter, we consider the applications of secure MPC into the SE of documents. This
chapter mainly discusses how the MPC method proposed in Chapter 4 can be used to realize
SE of documents.

Both methods proposed in Part I of this dissertation required the following three condi-
tions to achieve security against semi-honest adversaries.

1. Inputs and output in multiplication do not include 0;

2. There are shares of random numbers that are constructed from random numbers un-
known to the adversary;

3. The position of shares in a set of shares that are handled by each server is fixed.

In this chapter, when focusing on application into SE of documents, we also introduce
methods of easing these three conditions. Moreover, we also perform a comparison with
conventional methods of SE that use encryption-based approaches such as symmetric key
encryption.

5.1 Introduction

In recent years, the computational capacity of computing machines and technology for com-
munication has improved, and the spread of cloud computing has rapidly advanced. In cloud
computing, data storage is outsourced to multiple servers, and the processing of information
must be performed by the server. In addition, to protect the privacy and confidentiality of
data, information must be encrypted before it is stored. However, searching encrypted data
on a server is not possible without first decrypting the data. Therefore, several methods of SE
have been proposed, where only a legitimate user or a user who was authorized can access
information without decrypting the encrypted data [50] [51] [52] [53] [54] [55] [56] [57] [58]
[59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69].



72 Chapter 5. Application of MPC: Searchable Encryption of Documents

With the conventional method of SE, two of the main search functions realized are sought
using one and using multiple search queries. Search methods that use one search query can
be further divided into total matching search, partial matching search, range search, and
similarity search. In addition, search methods that use multiple search queries can be further
divided into conjunctive search, disjunctive search, and both combined. In a conjunctive
search, only when registered information that corresponds to all the search queries is found,
the encrypted file with that information is extracted. In a disjunctive search, if at least one
of the defined search queries matches with the registered document, the encrypted document
will be extracted.

SE using a single search query has been widely studied and researched [50] [51] [54]
[55] [70] [60]. In contrast, few methods of SE using multiple search queries are available.
In recent years, SE that can manage multiple search queries has been required. For example,
instead of performing a search process on every single keyword when the searcher assigns
multiple keywords in the system, a function that allows multiple keywords to be combined
for a one-time search is more effective for obtaining an accurate search result from a large
collection of files.

A conventional method of SE is SE using symmetric key encryption. Multiple-keyword
search based on this was first proposed by Golle et al. [52]. However, it only performed a
conjunctive search, and could not perform a disjunctive search. Hence, numerous methods
have been proposed, such as those by Cash et al. [61] that allow for both conjunctive and
disjunctive searches. Most of the SE methods proposed thus far utilize the concept of the
search index, where an index is encrypted and the search function is performed by using the
extracted index. Here, a search index is a body of structured data to which a search engine
refers when looking for results that are relevant to a specific query. Index data is related to the
keywords in a document, which are encrypted and registered in the search index. Therefore,
because direct search over an encrypted sentence is not possible, information that is not
registered in the index is not searchable. Additionally, when a document is added or removed
from the system, the index that corresponds to the document must be added or removed.
Consequently, the overall computational cost increases.

In this chapter, we realize direct search of a keyword in a document through conjunctive
search and the search of multiple keywords by a single computation through the introduction
of disjunctive search. In addition, to realize a faster search process, we use an approach to
SE that applies a secret sharing. In particular, we utilize the method of secure MPC proposed
in Chapter 4 to realize SE. Hitherto, no method of SE using the secret sharing has been
proposed, and the method proposed by us in [66] can be regarded as the first method of its
type that was implemented for image search. However, this method performs secure MPC
only for searches using one pixel at a time. This implies that it only allows for one character
of a keyword to be searched at a time and does not realize either conjunctive or disjunctive
searches.



5.1. Introduction 73

Hence, in this chapter, we propose a method for realizing conjunctive search of a query
with multiple characters and disjunctive search that allows for multiple keywords or queries
to be simultaneously searched.

New Protocols
We describe two new protocols as follows.

New Protocol 1

The conventional method for SE using a secret sharing , proposed by Kamal et al. [66],
consisted of searching per pixel (implying that the search result was reconstructed for every
pixel). However, when adapting this method to the search of documents (by changing the
search target from the pixel of an image to the character of a document), it is not secure
against brute force search attacks (refer to Section 5.3 for further details). Furthermore, most
conventional methods that use symmetric key encryption or public-key encryption only re-
alize index search, and cannot perform a direct search over an encrypted document. In New
Protocol 1, we realize the direct search function over an encrypted document with the ability
to perform a total matching search on a query with multiple characters simultaneously (con-
junctive search). In this method, the search computation is performed per character; however,
the search result for multiple characters is reconstructed simultaneously instead of per char-
acter, thereby achieving stronger security against brute force search attacks. Moreover, New
Protocol 1 realizes the direct search over an encrypted document, solving the problems of
conventional methods that rely on index search.
New Protocol 2

In New Protocol 2, aiming for implementation in a broader area of practical applications,
we introduce the concept of SE with support for any Boolean functions by combining con-
junctive search (New Protocol 1) and disjunctive search (New Protocol 2). For example,
suppose that there are multiple search queries for performing a disjunctive search. Disjunc-
tive search using multiple search queries only returns documents that contain a subset of the
search queries that are to be searched. In New Protocol 2, conjunctive search (New Protocol
1) is first used to perform a total matching search on each search query. The results are used
in a consecutive disjunctive search of multiple search queries. In other words, if at least one
of the inputted search queries matches, the system returns the document to the searcher. Ad-
ditionally, in our New Protocol 2, the search result is constructed once instead of for every
search query, which was difficult to achieve using conventional methods.
System Model

Our proposed model of secure computation is based on a client/server model, where any
number of clients (owners of the secret information) sends shares of their inputs to multi-
ple servers (n number of servers). However, clients who wish to search for any information
(searcher) send shares of their trapdoors to n number of servers, which perform the compu-
tation for the clients and return the results to them without learning any information. This



74 Chapter 5. Application of MPC: Searchable Encryption of Documents

model is widely used and is the business model used in Sharemind [45]. In our protocol, the
searcher can produce a valid trapdoor multiple times to perform searching. However, this can
be changed according to the intended applications, as shown in Section 5.6. In addition, our
proposed methods assume a semi-honest adversary, where the adversary follows the protocol
specification but may attempt to learn more than the allowed by the protocol, with at most
k− 1 corrupted servers. In addition, we also consider the following attacks: the adversary
has information of the searcher in addition to information from k−1 servers and attempts to
learn the registered document. We also presume that secure communication exists between
the owner of the secret input, the searcher, and the servers.

5.2 Building Block: Overview of Secure MPC

In Chapters 3 and 4, we proposed methods for secure MPC using secret sharing that are
information-theoretic secure against semi-honest adversaries under certain conditions. In
particular, the method proposed in Chapter 4 requires the following three conditions:

1. Inputs and output in multiplication do not include 0;

2. There are shares of random numbers that are constructed from random numbers un-
known to the adversary;

3. The position of shares in a set of shares that are handled by each server is fixed.

In this chapter, we will use the MPC in Chapter 4 to perform secure computation in SE.
However, here, we introduce a method of easing the aforementioned first condition into the
following:
Condition 1’: Output in multiplication does not include value 0.

As explained in Chapter 4, in multiplication, if the secret inputted is 0, αa restored in the
protocol of multiplication is αa = 0. From this, the adversary can know that secret input a is
0, as a random number does not contain the value 0.

However, in this chapter, our focus is to realize SE in documents. To represent text (or
numbers, punctuation, etc.) in a computer system, each character is given its own special
number. This number is called code, and this code is stored in the computer using binary
ones and zeros. One of the methods to represent data in a computer system is the American
Standard Code for Information Interchange (ASCII) code. ASCII code allows computers to
represent text and normally uses 8 bits (1 byte) to store each character. However, the 8th bit
is used as a check digit, meaning that only 7 bits are available to store each character. This
gives ASCII the ability to store a total of 27 = 128 different values from 0–127. Table 5.1
shows some examples of ASCII code and the character it represents.

This means that for text/documents, only inputs between 0–127 need to be considered.
However, the secure MPC method in Chapter 4 does not allow for input 0. Therefore, when



5.3. Related Work 75

TABLE 5.1: Example of ASCII code and corresponding characters

Code Character

0 Null
1 Start of header
...

...
65 A
66 B
67 C
...

...
127 DEL

implementing SE, we also introduce a solution for easing Condition 1 by adding value “1” to
the input. In other words, assume that the secret input s is 0 ≤ s < p−1; by adding the value
“1” to the input, even if the secret input s is equal to 0, s+1 ̸= 0, allowing the secret input of
0 even in multiplication.

Furthermore, by setting the module p to be a very large number, as the secret input is less
than p−2, adding “1” will not result in “0”. Therefore, the improved method of secure MPC
used in this chapter is secure even if the input of multiplication is 0. However, the condition
that the output does not include 0 remains. To differentiate this from the original method in
Chapter 4, we call this improved version of MPC the TUS 2’ method.

5.3 Related Work

5.3.1 SE Using Symmetric Key Encryption

In symmetric key encryption, only the user with the correct secret key can perform both en-
cryption and decryption of data. Therefore, SE that is based on symmetric key encryption can
only be used when the owner of the secret input and the searcher are the same person. If the
owner and the searcher are not the same person, an additional process of key sharing between
the owner and the searcher is required, which induces additional costs in both computation
and communication.

In 2000, Song et al. [50] proposed a method for the SE of a single keyword by using
symmetric encryption. In addition, an improved version was introduced by Curtmola et
al. [55]. Golle et al. proposed in 2004 a symmetric SE (SSE) that allowed for multiple
keywords to be searched [52]. In this method, a searcher can specify at most one keyword
for each keyword field. For example, the keyword fields in emails consist of “to,” “from,”
and “subject.” Therefore, to overcome this limitation, Wang et al. [57] proposed an improved
version. However, both methods could only perform a conjunctive search and not disjunctive



76 Chapter 5. Application of MPC: Searchable Encryption of Documents

search. Cash et al. [61] and Kurosawa et al. [60] proposed a method of multiple-keyword
SSE that allowed for both disjunctive and conjunctive searches.

Moreover, Liu et al. [71] also proposed a method of SE using symmetric encryption
that allows search over encrypted data that are shared among multiple users. There are also
methods proposed by Li et al. [69] and Sun et al. [67] that provide forward and backward
search privacy in SE to prevent information leakage during the update operation of the index.
However, most of the methods proposed thus far utilize the concept of search index. Con-
sequently, when adding or removing any registered information, an additional computation
cost is required for updating the index. Moreover, because a direct search over an encrypted
document is not possible, searching over information other than the registered index is not
possible.

5.3.2 SE Using Public Key Encryption

In public key encryption, anyone can perform the encryption of data using a public key; how-
ever, only users with the correct secret key can perform the decryption of data. Therefore, SE
using public key encryption is suitable for cases where there are multiple registered owners
and only one searcher.

In 2004, Boneh et al. [51] proposed a method for SE with single keywords using public-
key encryption, wherein the owner encrypts data using a public key, and stores the encrypted
data in the cloud, whereas a user with the correct secret key produces a search tag for the
cloud to perform a matching search. Many attempts have been made to propose a better
method for SE using public key encryption.

For example, Park et al. [53] and Byun et al. [56] proposed an improved method of
SE using public key encryption that allowed for the conjunctive search of multiple keywords
through the use of keyword fields. However, only documents that matched the preset pattern
of the keyword field could be searched. Zhang et al. [58] proposed another method for
conjunctive search that did not depend on keyword fields. However, in this method, when
the search process was performed, the server had to perform n∗m bilinear pairings, where n

is the number of documents stored in the database and m is the largest number of keywords.
This is very costly, making this method quite ineffective.

Xu et al. [68] proposed a method that supported both conjunctive and disjunctive searches.
In this method, the server first finds documents that match with the first keyword and sets
them to Set A. In sequence, the server confirms whether the remaining documents match the
requirement of the keywords. By using this method, the range of documents to search can be
minimized, reducing the search time. However, the amount of data stored on the server and
the cost of encryption are quite large. In addition, the method developed by Xu et al. also
uses the concept of index search, where searching for keywords that are not registered in the
index is impossible.



5.4. Proposed Method: Conjunctive Search 77

5.3.3 SE Using Secret Sharing

One of the first methods for SE using secret sharing was presented by us in [66] for use in
image searching. However, in this method, only a search that used a single pixel at a time
was realized, where simultaneous conjunctive and disjunctive searches over multiple pixels
could not be performed. Therefore, when changing the search target from pixel search to
character search, the following problem will arise.

For example, suppose that each character is encoded using ASCII code. The number of
possible ASCII codes for each character is 0–127. Because the adversary has information
from at most k − 1 number of servers, if the adversary performs a search with a different
character each time, a brute force search attack is possible after 128 searches. In contrast,
if we add a restriction such as that the search must be performed with at least 18 characters
each time, assuming that the adversary uses all values between 0–127, the number of possible
candidates will be (27)18 = 2126, meaning that the adversary must perform 2126 searches for
a brute force search attack to be possible, thus solving this problem. However, in a normal
search of a document, 18 characters may not be sufficient to achieve the 2126 security as a
normal search query will only be composed of chars, numbers, and symbols. Therefore, a
search with a longer query is needed. This can be counter-measured with the implementa-
tion of conjunctive search with a password [72] or secret keys (depending on the intended
applications as shown in Section 5.6).

However, by using the method in [66], because the search is performed by shifting the
characters one by one, each server needs to store 18×n number of shares for each character.
In addition, if the searcher wishes to perform a search with 10 or 20 characters instead of 18,
the previously registered shares would not be usable. Therefore, there is a need for a method
that allows for search on a query of any length to be performed per character, but with the
result reconstructed once instead of per character.

5.4 Proposed Method: Conjunctive Search

5.4.1 Overview of Conjunctive Search

In conjunctive search, searching is performed per character; however, the search results of
multiple characters are reconstructed once instead of per character, realizing a total matching
search on a search query with multiple characters. Suppose a document a with m number of
characters, where the registered character string is represented by (a1, . . . ,am).

In addition, suppose a search query b with g number of characters, where the registered
character string is written as (b1, . . . ,bg). The difference between the characters of the reg-
istered document and the search query (a1 −b1), . . . ,(ag −bg) is written as c1, . . . ,cg, where
cy = ay −by (y = 1, . . . ,g). Here, the computation of function f , such that f (c1, . . . ,cg) ̸= 0
when any c1, . . . ,cg are not equal to 0, is the computation of the logical conjunctive (AND)



78 Chapter 5. Application of MPC: Searchable Encryption of Documents

and can be computed as c1 · · ·cg. Therefore, the computation of function f , such that f (c1,
. . ., cg) = 0 when all differences c1, . . . ,cg are equal to 0, can be written as c1 · · ·cg. This
can be further simplified in c1 · · ·cg = c1 + . . .+ cg using the De Morgan’s Law. Therefore,
the total matching search of a search query with g number of characters can be computed as
follows:

(a1 −b1)
2 + · · ·+(ag −bg)

2 = c1 + · · ·+ cg

Here, we square the difference for each character to avoid any negative numbers. In ad-
dition, we can realize the direct search of a document by shifting the search query b character
by character and searching through document a until the end.

Suppose that x = 1, . . . ,m, y = 1, . . . ,g, the character string of registered document a can
be represented as ax (x = 1, . . . ,m), and the character string of search query b can be repre-
sented as by (y = 1, . . . ,g). In other words, to perform a total matching search of search query
by with g number of characters, suppose that the first search position is h = 0. Considering
the character string av (v = h+ 1, . . . ,h+ g) where av consists of g continuous characters
from document a, we need to perform only the computation shown below. In addition, if the
reconstructed result is not equal to 0 (meaning that search query by and character string av do
not match), h is set such that h = h+1, and the search target ah+y is shifted to the right. This
process is repeated until h = m−g.

g

∑
y=1

(ah+y −by)
2 =

g

∑
y=1

cy (h = 0, . . . ,m−g)

5.4.2 Protocol of Conjunctive Search (when n = k)

The detailed protocol of the conjunctive search is presented as follows. The size of the
registered character string ax of the document, and the search query by is q; however, both ax

and by are elements of finite field GF(p), where the field p is set such that gq2 < p . Here,
the value g can be set to any number as long as it is in the range that can prevent a brute force
search attack.

In addition, random numbers αx, j,γx, j,cx,βy, j,δy, j,dy,ρh, j,ϕh, j,κh, j generated in our pro-
tocol are elements of GF(p) (do not include the value 0). All computations shown below,
including the process of secret sharing, are performed with field p. Furthermore, cv,dy in
Protocols 5.2 and 5.3 are random numbers such that cv + dy = 0 does not occur. However,
for ease of explanation, all explanations are written under the assumption that n = k, and let
x = 1, . . . ,m, y = 1, . . . ,g, i = 0, . . . ,n−1, and j = 0, . . . ,k−1.

Notation:

• a: Document with m number of characters ax (x = 1, . . . ,m)



5.4. Proposed Method: Conjunctive Search 79

• [ax]
′
i: Set of encrypted values regarding character ax held by each server Si (i= 0, . . . ,n−

1)

• [ax]i: Set of encrypted values regarding character ax and random number cx held by
each server Si

• [a]i: Set of encrypted values regarding document a held by each server Si. For example,
[a]i = [a1]i , . . . , [am]i

• b: Search query with g number of characters by (y = 1, . . . ,g)

• [by]
′
i: Set of encrypted values regarding character by held by each server Si

• [by]i: Set of encrypted values regarding character by and random number dv held by
each server Si

• [b]i: Set of encrypted values regarding search query b held by each server Si. For
example, [b]i = [b1]i, . . . , [bg]i

In addition, each server is assumed to holds sets of conversion random numbers Jε
(u)
x Ki,ε

(u)
x,i ,

which can be generated through Protocol 5.1, shown below. However, random numbers
ε
(u)
x,0 , . . . ,ε

(u)
x,k−1 generated in the algorithm below are elements of GF(p) (do not include the

value 0). Here, the subjects for executing Protocol 5.1 for generating the set of conversion
random numbers are stated in Step 1 of Protocols 5.2 and 5.3.
Protocol 5.1: Generation of the set of conversion random numbers

1. Generate k random numbers ε
(u)
x,0 , . . . ,ε

(u)
x,k−1 (x = 1, . . . ,m,u = 1, . . . ,required number),

and compute random number ε
(u)
x as follows:

ε
(u)
x =

k−1

∏
j=0

ε
(u)
x, j

2. Distribute random numbers ε
(u)
x to n number of servers Si (i = 0, . . . ,n− 1) by using

Shamir’s (k,n) method, and send ε
(u)
x, j to server S j. (if n > k, ε

(u)
x, j are distributed to n

servers using Shamir’s (k,n) method as shown in Protocol 3.1)

3. Each server S j hold the following as the set of conversion random numbers.

[ε
(u)
x ] j =

(
Jε

(u)
x K j,ε

(u)
x, j

)
Protocol 5.2: Encryption of document

• Input: ax (x = 1, . . . ,m)



80 Chapter 5. Application of MPC: Searchable Encryption of Documents

• Output: [a] j = [a1] j, . . . , [am] j ( j = 0, . . . ,k−1)

1. The owner performs Protocol 5.1 beforehand, producing the following sets of conver-
sion random numbers, and sends the set to k computing servers S j. Each server S j

( j = 0, . . . ,k−1) holds the following information:

[ε
(2)
x ] j =

(
Jε

(2)
x K j,ε

(2)
x, j

)
,

[ε
(4)
x ] j =

(
Jε

(4)
x K j,ε

(4)
x, j

)
,

[ε
(5)
x ] j =

(
Jε

(5)
x K j,ε

(5)
x, j

)
,

[ε
(6)
x ] j =

(
Jε

(6)
x K j,ε

(6)
x, j

)
,

[ε
(7)
x ] j =

(
Jε

(7)
x K j,ε

(7)
x, j

)
,

[ε
(8)
x ] j =

(
Jε

(8)
x K j,ε

(8)
x, j

)
2. Regarding the secret information ax (x = 1, . . . ,m), the owner generates random num-

bers αx, j,γx, j,cx ( j = 0, . . . ,k−1), and computes the following.

αx =
k−1

∏
j=0

αx, j,

γx =
k−1

∏
j=0

γx, j

3. The owner multiplies the secret information (ax +1) and random numbers cx with the
previously calculated random numbers αx,γx, producing αx(ax +1),γxcx, respectively.
The owner sends [ax]

′

j , [cx]
′

j shown below to k number of servers S j ( j = 0, . . . ,k−1)
that participate in the computation.

[ax]
′

j = (αx(ax +1),αx, j) ,

[cx]
′

j = (γxcx,γx, j)

4. Suppose that [ax] j :=
(
[ax]

′

j , [cx]
′

j

)
. Each server S j ( j = 0, . . . ,k−1) hold the following

information:

[a] j = [a1] j, . . . , [am] j

Protocol 5.3: Generation of search query

• Input: by (y = 1, . . . ,g)



5.4. Proposed Method: Conjunctive Search 81

• Output: [b] j = [b1] j, . . . , [bg] j ( j = 0, . . . ,k−1)

1. The searcher performs Protocol 5.1 beforehand, producing the following sets of con-
version random numbers and sends the set to k computing servers S j. Each server S j

( j = 0, . . . ,k−1) holds the following information:

[ε
(1)
x ] j =

(
Jε

(1)
x K j,ε

(1)
x, j

)
,

[ε
(3)
x ] j =

(
Jε

(3)
x K j,ε

(3)
x, j

)
2. Regarding the character string by (y = 1, . . . ,g) of the search query, the searcher gen-

erates random numbers βy, j,δy, j,dy ( j = 0, . . . ,k−1), and computes the following:

βy =
k−1

∏
j=0

βy, j,

δy =
k−1

∏
j=0

δy, j

3. The searcher multiplies the search query (by + 1) and random numbers dy with the
previously calculated random numbers βy,δy, producing βy(by +1),δydy, respectively.
The searcher sends [by]

′

j , [dy]
′

j shown below to k number of servers S j ( j = 0, . . . ,k−1)
that participate in the computation:

[by]
′

j = (βy(by +1),βy, j) ,

[dy]
′

j = (δydy,δy, j)

4. Suppose that [by] j :=
(
[by]

′

j , [dy]
′

j

)
. Each server S j ( j = 0, . . . ,k−1) holds the follow-

ing information:

[b] j = [b1] j, . . . , [bg] j

Protocol 5.4: Search process

• Input: [a] j, [b] j ( j = 0, . . . ,k−1)

• Output: a,or ⊥

1. First, let h = 0, and let k number of servers S j ( j = 0, . . . ,k−1) perform the following
between a character string of the search query b and g number of consecutive characters
from character string a. Suppose that y = 1, . . . ,g,v = h+ y.



82 Chapter 5. Application of MPC: Searchable Encryption of Documents

(a) Each server S j ( j = 0, . . . ,k−1) generates random numbers ρh. j,ϕh, j, computes
the following, and sends it to any one of the k servers (here, we assume server
S0):

ρh, j

γv, jε
(1)
v, j

,
ρh, j

δy, jε
(2)
v, j

,

ϕh, j

αv, jε
(3)
v, j

,
ϕh, j

βy, jε
(4)
v, j

,
ϕh, j

ρh, jε
(5)
v, j

(b) Server S0 computes the following and sends it to all servers S j ( j = 0, . . . ,k−1):

ρh

γvε
(1)
v

=
k−1

∏
j=0

ρh, j

γv, jε
(1)
v, j

,

ρh

δyε
(2)
v

=
k−1

∏
j=0

ρh, j

δy, jε
(2)
v, j

,

ϕh

αvε
(3)
v

=
k−1

∏
j=0

ϕh, j

αv, jε
(3)
v, j

,

ϕh

βyε
(4)
v

=
k−1

∏
j=0

ϕh, j

βy, jε
(4)
v, j

,

ϕh

ρhε
(5)
v

=
k−1

∏
j=0

ϕh, j

ρh, jε
(5)
v, j

(c) Each server S j ( j = 0, . . . ,k− 1) computes the following and sends it to server
S0:

Jρh(cv +dy)K j =

(
γvcv ×

ρh

γvε
(1)
v

× Jε
(1)
v K j

)
+

(
δydy ×

ρh

δyε
(2)
v

× Jε
(2)
v K j

)

(d) Server S0 reconstructs ρh(cv + dy) using Shamir’s (k,n) method and sends it to
all servers S j (if the reconstructed value ρh(cv + dy) = 0, both the owner and
the searcher will perform Steps 2 and 3 of Protocols 5.2 and 5.3 until cv + dv ̸=
0; otherwise, in Step 2, the owner and searcher produce two different numbers
for cv,dv in advance; by changing the combination in Step (c) of Protocol 5.4,
cv +dv ̸= 0 can be calculated).



5.4. Proposed Method: Conjunctive Search 83

(e) Each server S j ( j = 0, . . . ,k− 1) computes the following and sends it to server
S0:

Jϕh(av −by + cv +dy)K j =

(
αv(av +1)× ϕh

αvε
(3)
v

× Jε
(3)
v K j

)

−

(
βy(by +1)× ϕh

βyε
(4)
v

× Jε
(4)
v K j

)

+

(
ρh(cv +dy)×

ϕh

ρhε
(5)
v

× Jε
(5)
v K j

)

(f) Server S0 reconstructs ϕh(av − by + cv + dy) using Shamir’s (k,n) method and
sends it to all servers S j ( j = 0, . . . ,k−1).

(g) Each server S j ( j = 0, . . . ,k − 1) generate random number κh, j, computes the
following, and sends it to server S0.

κh, j

(ϕh, j)2ε
(6)
v, j

,
κh, j

ϕh, jρh, jε
(7)
v, j

,
κh, j

(ρh, j)2ε
(8)
v, j

(h) Server S0 computes the following and sends it to all servers S j ( j = 0, . . . ,k−1):

κh

(ϕh)2ε
(6)
v

=
k−1

∏
j=0

κh, j

(ϕh, j)2ε
(6)
v, j

,

κh

ϕhρhε
(7)
v

=
k−1

∏
j=0

κh, j

ϕh, jρh, jε
(7)
v, j

,

κh

(ρh)2ε
(8)
v

=
k−1

∏
j=0

κh, j

(ρh, j)2ε
(8)
v, j

(i) Each server S j ( j = 0, . . . ,k−1) computes the following:

g

∑
y=1

Jκh(av −by)
2K j =

g

∑
y=1

{[
(ϕh)

2 (av −by + cv +dy)
2 × κh

(ϕh)2ε
(6)
v

× Jε
(6)
v K j

]

−

[
2×ϕh(av −by + cv +dy)×ρh(cv +dy)×

κh

ϕhρhε
(7)
v

× Jε
(7)
v K j)

]

+

[
(ρh)

2 (cv +dy)
2 × κh

(ρh)2ε
(8)
v

× Jε
(8)
v K j

]}

(j) k number of servers S j ( j = 0, . . . ,k−1) cooperate to reconstruct ∑
g
y=1 κh (av −by)

2

using Shamir’s (k,n) method. If the reconstructed result is equal to 0, proceed to
Step 2.



84 Chapter 5. Application of MPC: Searchable Encryption of Documents

(k) If the reconstructed result is not equal to 0, k servers S j set h = h+1 and repeat
Steps (a)–(k) until h = m−g.

2. If search query b1, . . . ,bg matches with ah, . . . ,ah+g−1, servers S j ( j = 0, . . . ,k−1) send
k number of [a]

′

j of document a to the searcher. If no matching document is found, the
search process is stopped.

3. Using the received k number of [a]
′

j, the searcher reconstructs document a.

5.4.3 Security of Conjunctive Search

In our conjunctive search, the final process of searching is performed in Step 1(j) of Protocol
5.4; however, ∑

g
y=1 κh(av − by)

2 is equal to the sum of differences between g number of
characters that had been multiplied with a random number. Here, because the prime number
p is set such that gq2 < p, even if one of av −by ̸= 0, the reconstructed result is ∑

g
y=1 κh(av −

by)
2 ̸= 0 (mod p) because the random number κh does not include the value 0. In other words,

if ∑
g
y=1 κh(av − by)

2 = 0, we can state that all av − by = 0. This is equal to a simultaneous
retrieval process of a string of g number of characters. This means that a total matching
search is realized. As follows, we show the security analysis of our proposed conjunctive
search. However, we assume the adversary to be a semi-honest adversary (implying that
the adversary that pretended to be the authorized user or the corrupted servers follows the
protocol specification).

Security of Protocols 5.2 and 5.3
The adversary has no information about the registered document a or search query b;

however, it has information from at most t = k− 1 number of servers. When the adversary
can identify the unknown information of a,b, the attack is considered a success.

In Protocol 5.2, k number of servers S j ( j = 0, . . . ,k − 1) each holds the information
[ax] j :=

(
[ax] j

′
, [cx]

′

j

)
(x= 1, . . . ,m, j = 0, . . . ,k−1). In [ax]

′

j and [cx]
′

j, encrypted information
αx (ax +1) of original document ax and encrypted information γxcx of random numbers cx

are not distributed using a secret sharing scheme; however, both ax and cx are encrypted by
random numbers αx and γx, respectively. In addition, all random numbers αx,0, . . . ,αx,k−1 and
γx,0, . . . ,γx,k−1 compose αx and γx, respectively, cannot be retrieved from the k− 1 number
of servers. Therefore, even if t number of servers collude, the values of αx and γx cannot be
reconstructed, and the following statements are true. In addition, the same also remains true
for random numbers cx,γx.

H(ax) = H (ax|[ax]0, . . . , [ax]t−1)

H(αx) = H (αx|[ax]0, . . . , [ax]t−1)



5.4. Proposed Method: Conjunctive Search 85

Similarly, in Protocol 5.3, k number of servers S j ( j = 0, . . . ,k−1) each holds the infor-
mation [by] j :=

(
[by]

′

j , [dy]
′

j

)
. However, search query by and random number dy are encrypted

with random numbers βy,δy, respectively. In addition, random numbers βy,0, . . . ,βy,k−1 and
δy,0, . . . ,δy,k−1 that compose βy,δy, respectively, would not be leaked even if t number of
servers collude. Therefore, the following statements are true. In addition, the same remains
true for dy,δy.

H(by) = H
(
by
∣∣[by]0 , . . . , [by]t−1

)
H(βy) = H

(
βy
∣∣[by]0 , . . . , [by]t−1

)
Moreover, if there are k number of shares collected, the values of ax,cx (x = 1, . . . ,m)

inputted in Protocol 5.2 and by,dy (y= 1, . . . ,g) in Protocol 5.3 can be reconstructed correctly.
Therefore, we can state that both Protocols 5.2 and 5.3 are secure.

Security of Protocol 5.4
Here, we study the security of our proposed Protocol 5.4 in detail. In an SE using sym-

metric key encryption, because the owner of the secret information (input) and the searcher
are typically the same person, the evaluation of security is performed under the assumption
that the adversary only controls the system, without considering the situation where either
the owner or the searcher is the adversary.

In contrast to that, in SE using secret sharing, there is no such assumption. Therefore, it
is necessary to consider the situation where the searcher is the adversary. Under the above
presumption, we consider two types of adversaries. If the adversary can learn the target
information, the attack is considered to be successful.

Adversary 1: The system constitutes the adversary. Adversary 1 has information from k−
1 number of servers. According to this information, the adversary attempts to learn the
character string ax (x = 1, . . . ,m) of the registered document a, or the character string by

(y = 1, . . . ,g) of the search query b.

Adversary 2: The searcher constitutes the adversary. Adversary 2 has all the information
from Protocol 5.3 in addition to the information from k−1 number of servers. According to
this information, the adversary attempts to learn the character string ax (x = 1, . . . ,m) of the
registered document a.

Proof of security against Adversary 1

Assume that Adversary 1 has information from t = k − 1 number of servers. In Step
1(b) of Protocol 5.4, Adversary 1 has information about ρh/γvε

(1)
v , ρh/δyε

(2)
v ,ϕh/αvε

(3)
v ,

ϕh/βyε
(4)
v , ϕh/ρhε

(5)
v ; in Step 1(d), about ρh (cv +dy), γvcv, δydy; and in Step 1(f), about

ϕh (av −by + cv +dy), αv (av +1), βy (by +1). To simplify the problem, we redefined the pa-
rameters above to avoid duplication. As a result, we know that Adversary 1 has the following



86 Chapter 5. Application of MPC: Searchable Encryption of Documents

information:

ρh

γvε
(1)
v

,
ρh

δyε
(2)
v

,
ϕh

αvε
(3)
v

,
ϕh

βyε
(4)
v

,
ϕh

ρhε
(5)
v

,

ρh(cv +dy),ϕh(av −by + cv +dy),αv(av +1),βy(by +1),γvcv,δydy

First, from the reconstructed result of ρh(cv+dy) ̸= 0, Adversary 1 learns that cv+dy ̸= 0;
however, it has no information about cv + dy. In addition, when ϕh (av −by + cv +dy) = 0,
Adversary 1 learns about the relationship by − av = cv + dy. However, because Adversary 1
has no information about cv +dy, we can state that secret information av and search query by

will not be leaked. Therefore, the following statements are true:

H(av) = H (av|ρh(cv +dy),ϕh(av −by + cv +dy))

H(by) = H (by|ρh(cv +dy),ϕh(av −by + cv +dy))

Moreover, in Step 1(d), server S0 reconstructs ρh(cv + dy) by collecting shares Jρh(cv +

dy)K j of servers S j ( j = 0, . . . ,k−1). However, server S0 will not be able to learn any infor-
mation regarding cv + dy as it is encrypted with the random number ρh. Therefore, there is
no problem even if server S0 can learn ρh(cv +dy), and the following is true:

H(cv +dy) = H (cv +dy|ρh(cv +dy))

In addition, to learn random numbers cv and secret information av of the owner, and ran-
dom numbers dy and search query by of the searcher from αv (av +1) ,βy (by +1) ,γvcv,δydy,
Adversary 1 first has to learn random numbers αv,βy,γv,δy, which requires random numbers
ρh,ϕh and ε

(1)
v ,ε

(2)
v ,ε

(3)
v ,ε

(4)
v , ε

(5)
v that cannot be decomposed from the following information

A:

A =

(
ρh

γvε
(1)
v

,
ρh

δyε
(2)
v

,
ϕh

αvε
(3)
v

,
ϕh

βyε
(4)
v

,
ϕh

ρhε
(5)
v

)

Thus, Adversary 1 cannot learn about random numbers ρh,ϕh,ε
(1)
v ,ε

(2)
v ,ε

(3)
v ,ε

(4)
v ,ε

(5)
v ,

and the following statements are true:

H(av) = H (av|αv(av +1),A)

H(cv) = H (cv|γvcv,A)

H(by) = H (by|βy(by +1),A)

H(dy) = H (dy|δydy,A)

In addition, in Step 1(h), Adversary 1 has information about κh/(ϕh)
2

ε
(6)
v , κh/ϕhρhε

(7)
v ,

and κh/(ρh)
2

ε
(8)
v ; in Step 1(j), about ∑

g
y=1 κh (av −by)

2. However, because κh/(ϕh)
2

ε
(6)
v ,



5.4. Proposed Method: Conjunctive Search 87

κh/ϕhρhε
(7)
v , and κh/(ρh)

2
ε
(8)
v cannot be decomposed, random number κh will not be leaked.

Therefore, even if Adversary 1 has information about ∑
g
y=1 κh (av −by)

2, it cannot learn about
av and by. Thus, the following statements are true:

H(κh) = H

(
κh

∣∣∣∣∣ κh

(ϕh)2ε
(6)
v

,
κh

ϕhρhε
(7)
v

,
κh

(ρh)2ε
(8)
v

)

H(av) = H

(
av

∣∣∣∣∣ g

∑
y=1

κh(av −by)
2,

κh

(ϕh)2ε
(6)
v

,
κh

ϕhρhε
(7)
v

,
κh

(ρh)2ε
(8)
v

)

H(by) = H

(
by

∣∣∣∣∣ g

∑
y=1

κh(av −by)
2,

κh

(ϕh)2ε
(6)
v

,
κh

ϕhρhε
(7)
v

,
κh

(ρh)2ε
(8)
v

)

From the arguments above, we can state that Adversary 1 cannot learn ax (x = 1, . . . ,m)

and by (y = 1, . . . ,g).

Proof of security against Adversary 2

From Protocol 5.3, Adversary 2 has information on the set of conversion random num-
bers [ε

(1)
x ] j, [ε

(3)
x ] j ( j = 0, . . . ,k − 1) in addition to the search query by (y = 1, . . . ,g) and

random numbers dy (y = 1, . . . ,g) inputted by the searcher. Therefore, Adversary 2 has the
information known by Adversary 1 and also about ε

(1)
x , ε

(3)
x , βy, by, δy, dy from Protocol 5.3.

To simplify the problem, we redefined the parameters above to avoid any duplication. As a
result, we know that Adversary 2 has the following information from Protocols 5.3 and 5.4:

ρh

γv
,

ρh

ε
(2)
v

,
ϕh

αv
,

ϕh

ε
(4)
v

ϕh

ρhε
(5)
v

,
κh

(ϕh)
2

ε
(6)
v

,
κh

ϕhρhε
(7)
v

,
κh

(ρh)
2

ε
(8)
v

,

ε
(1)
v ,ε

(3)
v ,ρh(cv +dy),ϕh(av −by + cv +dy),

g

∑
y=1

κh(av −by)
2,αv(av +1),γvcv,βy,by,δy,dy

Here, to learn the random numbers cv and secret information av of the owner from
ρh(cv+dy), ϕh (av −by + cv +dy), Adversary 2 needs to learn random numbers ρh, ϕh. How-
ever, from ρh/γv, ρh/ε

(2)
v , ϕh/αv, ϕh/ε

(4)
v , and ϕh/ρhε

(5)
v known to the adversary, random

numbers ρh,ϕh will not be leaked. In addition, even if Adversary 2 has information about
random numbers ε

(1)
v ,ε

(3)
v , because it has no information about γv,αv or ε

(2)
v ,ε

(4)
v ,ε

(5)
v , ran-

dom numbers ρh,ϕh will not be leaked. Therefore, Adversary 2 cannot learn random num-
bers cv and secret information av from ρh(cv +dy), ϕh (av −by + cv +dy), and the following



88 Chapter 5. Application of MPC: Searchable Encryption of Documents

statements are true:

H(ρh) = H

(
ρh

∣∣∣∣∣ρh(cv +dy),
ρh

γv
,

ρh

ε
(2)
v

,
ϕh

ρhε
(5)
v

,ε
(1)
v ,ε

(3)
v

)

H(ϕh) = H

(
ϕh

∣∣∣∣∣ϕh(av −by + cv +dy),
ϕh

αv
,

ϕh

ε
(4)
v

,
ϕh

ρhε
(5)
v

,ε
(1)
v ,ε

(3)
v

)

H(cv) = H

(
cv

∣∣∣∣∣ρh(cv +dy),
ρh

γv
,

ρh

ε
(2)
v

,
ϕh

ρhε
(5)
v

,ε
(1)
v ,ε

(3)
v

)

H(av) = H

(
av

∣∣∣∣∣ϕh(av −by + cv +dy),
ϕh

αv
,

ϕh

ε
(4)
v

,
ϕh

ρhε
(5)
v

,ε
(1)
v ,ε

(3)
v

)

In addition, in Step 1(h), Adversary 2 has information about κh/(ϕh)
2

ε
(6)
v , κh/ϕhρhε

(7)
v ,

and κh/(ρh)
2

ε
(8)
v ; in Step 1(j), about ∑

g
y=1 κh (av −by)

2. However, from the arguments

above, because it cannot learn random numbers ρh,ϕh in addition to random numbers ε
(6)
v ,

ε
(7)
v , ε

(8)
v , random number κh will not be leaked from κh/(ϕh)

2
ε
(6)
v , κh/ϕhρhε

(7)
v , and κh/

(ρh)
2

ε
(8)
v . Therefore, even if Adversary 2 learns about ∑

g
y=1 κh (av −by)

2, it cannot learn
secret information av, and the following statements are true:

H(κh) = H

(
κh

∣∣∣∣∣ κh

(ϕh)
2

ε
(6)
v

,
κh

ϕhρhε
(7)
v

,
κh

(ρh)
2

ε
(8)
v

)

H(av) = H

(
av

∣∣∣∣∣ g

∑
y=1

κh(av −by)
2,βy,δy,dy,

κh

(ϕh)
2

ε
(6)
v

,
κh

ϕhρhε
(7)
v

,
κh

(ρh)
2

ε
(8)
v

)

From the above, we can state that Adversary 2 cannot learn ax (x = 1, . . . ,m).
However, because our proposed conjunctive search cannot count the length of character

string g of the search query, the adversary could input a short character string, being able to
perform a brute force search attack. This can be overcome by implementing a process that
allows the system to count the length of a character string before the actual search process;
this attack can also be counteracted by using a password to perform a conjunctive search on
multiple character strings, as shown below.

Countermeasure: Set a password. Only a user with the correct password and correct search
query can successfully perform a search.

For example, in addition to the encryption of document a, the owner encrypts character
string p1, . . . , ps of the password in Protocol 5.2 (encryption of document); in addition to the
encryption of search query b, the searcher encrypts character string q1, . . . ,qs of the password



5.4. Proposed Method: Conjunctive Search 89

in Protocol 5.3 (generation of search query). The search process of Protocol 5.4 (searching
process) is first performed on the password. If the password does not match, the search for
a keyword is not performed. To perform searches simultaneously, without separating the
search processes for the password and the query, a conjunctive search with two character
strings (the character strings of the password and search query) can be performed. In other
words, instead of computing the following:

g

∑
y=1

Jκh (av −by)
2K j

Each server S j ( j = 0, . . . ,k−1) compute the following:

g

∑
y=1

Jκh (av −by)
2K j +

s

∑
u=1

Jκh (pu −qu)
2K j

By introducing the use of a password, even if the length of the character string of the
search query is short, if the total combined length g+ s of the password and search query is
sufficiently long, a brute force search attack by the adversary can be avoided. In addition,
if the adversary changes the inputted password each time, the entropy of the password will
decrease; because the password can be easily changed/renewed, by renewing the password
regularly, the entropy can be maintained at a constant secure size, enabling the protocol to be
resistant to this type of attack.

5.4.4 Extension of Conjunctive Search (when n > k)

In our proposed conjunctive search (parameter n = k), the random numbers used in Protocol
5.4 are sent directly to all servers participating in the computation. However, if one of the
servers is broken and cannot be used, the search computation can no longer continue because
random numbers that are handled by that server will be lost. However, if parameter n is set
such that n > k, we can counteract this problem as follows.

Random numbers used in the computation are not sent directly to all participating servers;
instead, they are distributed by using the XOR method of secret sharing [48]. Thus, even if
one of the servers is no longer functional, if the substitute server can reconstruct the random
numbers used by that particular server, the process of computation can continue.

For example, in Protocol 5.2, if αx (ax +1) ,γxcx are broadcast to all servers, and random
numbers αx, j,γx, j are distributed using the XOR method to all servers, even if one of the
servers is broken, the replacement server can reconstruct the values of αx, j,γx, j that corre-
spond to the broken server, and continue to participate in the computation. In other words,
by extending the protocol in section 5.4.2, the server loss-resistant characteristic of (k,n)

threshold secret sharing can be maintained.



90 Chapter 5. Application of MPC: Searchable Encryption of Documents

5.5 Proposed Method: Conjunctive and Disjunctive Searches

5.5.1 Overview of Conjunctive and Disjunctive Searches

In this section, we propose an algorithm for performing a disjunctive search; however, when
we consider the most typically used case scenario in practical applications, we present a more
functional method of SE that combines conjunctive and disjunctive functions (later referred
to as functional SE). For example, suppose that there are w different types of search queries
for performing a disjunctive search, each with gl (l = 1, . . . ,w) number of characters for the
conjunctive search.

In addition, suppose ax (x = 1, . . . ,m) to be the character string of the registered docu-
ment, and each b(l)y (l = 1, . . . ,w, y = 1, . . . ,gl) to be the character string of w number of
search queries. Here, to perform a total matching search on a search query, we only need to

compute ∑

(
av −b(l)y

)2
= ∑c(l)y , as shown in Section 5.4.

Therefore, we first compute ∑c(l)y regarding w number of search queries, and if at least
one of the inputted numbers matches, we need to output the value 0. In other words, we
need to realize disjunctive search as follows. Out of all c(1)y , . . . ,c(w)y , if at least one does not
equal 0, the computation of f such that f

(
c(1)y , . . . ,c(w)y

)
̸= 0 becomes the computation of

logical disjunction (OR) and can be represented by c(1)y + · · ·+ c(w)y . Therefore, out of all
c(1)y , . . . ,c(w)y , if one is equal to 0, the computation of f such that f

(
c(1)y , . . . ,c(w)y

)
= 0 is as

follows:
c(1)y + · · ·+ c(w)y = c(1)y · · ·c(w)y

Here, to perform a disjunctive search over multiple search queries, we only need to per-

form the computation of ∏∑

(
ah+y −b(l)y

)2
= ∏(∑c(l)y ). (However, if only a disjunctive

search is performed, we only need to complete the operation of ∏

(
ah+y −b(l)y

)
). Here, let h

(h = 0, . . . ,m−g) be the position of the first character for the search process.
In the proposed method, if ax,b

(l)
y < q, field GF(p) is set similarly as in our conjunctive

search, where gq2 < p. Because the disjunctive search is realized through the computation of
multiplication, as long as the elements of multiplication do not include 0, the value of 0 will
not appear simply from computing the disjunctive search.

5.5.2 Protocol of Conjunctive and Disjunctive Searches (when n = k)

We present our protocol for functional SE below; the process of encryption of a document
and the generation of a search query were omitted because they are the same as in Protocols
5.2 and 5.3 of conjuntive search, respectively (however, when generating search queries,
Protocol 5.3 is performed w times).

We only show the protocol for the disjunctive search process. For ease of understanding,
we explain our protocol under the assumption that there are w = 2 number of search queries



5.5. Proposed Method: Conjunctive and Disjunctive Searches 91

(the first search query is b(1)y (y= 1, . . . ,g1) and the second search query is b(2)y (y= 1, . . . ,g2).
Therefore, Steps 1–4 of Protocol 5.5 correspond to the total matching search (conjunctive
search) for the first search query b(1)y , whereas Steps 5–8 correspond to the total matching
search (conjunctive search) for the second search query b(2)y . Step 9 onward shows the dis-
junctive search of these two search queries b(1)y ,b(2)y . However, if the reconstructed result of
either of the following statements is 0, the random numbers cv,d

(1)
y or cv,d

(2)
y are changed

and the processes are repeated; otherwise, multiple cv,d
(1)
y ,d(2)

y can be sent beforehand, and
the computation is repeated by changing the combination.

g1

∑
y=1

(
κ
(1)
h

((
av −b(1)y

)2
+ cv +d(1)

y

))
or

g2

∑
y=1

(
κ
(2)
h

((
av −b(2)y

)2
+ cv +d(2)

y

))

In addition, the proposed method of functional SE is explained under the assumption that
n = k; however, it can also be made to realize resistance toward server loss by changing such
that n > k, as shown in section 5.4.4. Note that v = h+ y.

In addition, random numbers κ
(1)
h, j ,κ

(2)
h, j ,φh, j generated below are elements of GF(p) (do

not include 0). All computations including the secret sharing process are performed with
finite field p. Sets of conversion random numbers [ε

(1)
x ] j, [ε

(3)
x ] j for the conjunctive search

of each query is generated by the searcher, and the remainder are generated by the owner
in advance. Furthermore, in the protocol shown below, let x = 1, . . . ,m, y = 1, . . . ,gl , l =

1, . . . ,w, i = 0, . . . ,n−1, and j = 0, . . . ,k−1.
Protocol 5.5: Search Process

• Input: [a] j, [b1] j, [b2] j ( j = 0, . . . ,k−1)

• Output: a,or ⊥

1. Let h = 0. Each server S j ( j = 0, . . . ,k − 1) performs Steps 1(a)–1(f) of Protocol
5.4 (conjunctive search) for the search query b(1)y (y = 1, . . . ,g1), generates a random
number κ

(1)
h, j , and computes the following. Then, server S j ( j = 0, . . . ,k−1) sends the

following to server S0:

κ
(1)
h, j(

ϕ
(1)
h, j

)2
ε
(6)
v, j

,
κ
(1)
h, j

ϕ
(1)
h, j ρ

(1)
h, j ε

(7)
v, j

,
κ
(1)
h, j(

ρ
(1)
h, j

)2
ε
(8)
v, j

,
κ
(1)
h, j

ρ
(1)
h, j ε

(9)
v, j



92 Chapter 5. Application of MPC: Searchable Encryption of Documents

2. Server S0 computes the following and sends it to all servers S j ( j = 0, . . . ,k−1):

κ
(1)
h(

ϕ
(1)
h

)2
ε
(6)
v

=
k−1

∏
j=0

κ
(1)
h, j(

ϕ
(1)
h, j

)2
ε
(6)
v, j

,

κ
(1)
h

ϕ
(1)
h ρ

(1)
h ε

(7)
v

=
k−1

∏
j=0

κ
(1)
h, j

ϕ
(1)
h, j ρ

(1)
h, j ε

(7)
v, j

κ
(1)
h(

ρ
(1)
h

)2
ε
(8)
v

=
k−1

∏
j=0

κ
(1)
h, j(

ρ
(1)
h, j

)2
ε
(8)
v, j

κ
(1)
h

ρ
(1)
h ε

(9)
v

=
k−1

∏
j=0

κ
(1)
h, j

ρ
(1)
h, j ε

(9)
v, j

3. Each server S j ( j = 0, . . . ,k−1) computes the following and sends it to server S0:

g1

∑
y=1

r
κ
(1)
h

((
av −b(1)y

)2
+ cv +d(1)

y

)z

j
=

g

∑
y=1

{(ϕ
(1)
h

)2(
av −b(1)y + cv +d(1)

y

)2
×

κ
(1)
h(

ϕ
(1)
h

)2
ε
(6)
v

× Jε
(6)
v K j


−

[
2×ϕ

(1)
h

(
av −b(1)y + cv +d(1)

y

)
×ρ

(1)
h

(
cv +d(1)

y

)
×

κ
(1)
h

ϕ
(1)
h ρ

(1)
h ε

(7)
v

× Jε
(7)
v K j

]

+

(ρ
(1)
h

)2(
cv +d(1)

y

)2
×

κ
(1)
h(

ρ
(1)
h

)2
ε
(8)
v

× Jε
(8)
v K j


+

[
ρ
(1)
h

(
cv +d(1)

y

)
×

κ
(1)
h

ρ
(1)
h ε

(9)
v

× Jε
(9)
v K j

]}

4. Server S0 reconstructs the following using Shamir’s (k,n) method and sends it to all
servers S j ( j = 0, . . . ,k−1):

g1

∑
y=1

(
κ
(1)
h

((
av −b(1)y

)2
+ cv +d(1)

y

))
=κ

(1)
h

[
g1

∑
y=1

((
av −b(1)y

)2
+ cv +d(1)

y

)]
=κ

(1)
h f (1)h

5. Each server S j ( j = 0, . . . ,k−1) performs Steps 1(a)–1(f) of Protocol 5.4 (conjunctive
search) for the search query b(2)y (y = 1, . . . ,g2), generates a random number κ

(2)
h, j , and

computes the following. Then, server S j ( j = 0, . . . ,k−1) sends the following to server



5.5. Proposed Method: Conjunctive and Disjunctive Searches 93

S0:
κ
(2)
h, j(

ϕ
(2)
h, j

)2
ε
(10)
v, j

,
κ
(2)
h, j

ϕ
(2)
h, j ρ

(2)
h, j ε

(11)
v, j

,
κ
(2)
h, j(

ρ
(2)
h, j

)2
ε
(12)
v, j

,
κ
(2)
h, j

ρ
(2)
h, j ε

(13)
v, j

6. Server S0 computes the following and sends it to all servers S j ( j = 0, . . . ,k−1):

κ
(2)
h(

ϕ
(2)
h

)2
ε
(10)
v

=
k−1

∏
j=0

κ
(2)
h, j(

ϕ
(2)
h, j

)2
ε
(10)
v, j

,

κ
(2)
h

ϕ
(2)
h ρ

(2)
h ε

(11)
v

=
k−1

∏
j=0

κ
(2)
h, j

ϕ
(2)
h, j ρ

(2)
h, j ε

(11)
v, j

κ
(2)
h(

ρ
(2)
h

)2
ε
(12)
v

=
k−1

∏
j=0

κ
(2)
h, j(

ρ
(2)
h, j

)2
ε
(12)
v, j

κ
(2)
h

ρ
(2)
h ε

(13)
v

=
k−1

∏
j=0

κ
(2)
h, j

ρ
(2)
h, j ε

(13)
v, j

7. Each server S j ( j = 0, . . . ,k−1) computes the following and sends it to server S0:

g2

∑
y=1

r
κ
(2)
h

((
av −b(2)y

)2
+ cv +d(2)

y

)z

j
=

g2

∑
y=1

{(ϕ
(2)
h

)2(
av −b(2)y + cv +d(2)

y

)2
×

κ
(2)
h(

ϕ
(2)
h

)2
ε
(10)
v

× Jε
(10)
v K j


−

[
2×ϕ

(2)
h

(
(av −b(2)y + cv +d(2)

y

)
×ρ

(2)
h

(
cv +d(2)

y

)
×

κ
(2)
h

ϕ
(2)
h ρ

(2)
h ε

(11)
v

× Jε
(11)
v K j

]

+

(ρ
(2)
h

)2(
cv +d(2)

y

)2
×

κ
(2)
h(

ρ
(2)
h

)2
ε
(12)
v

× Jε
(12)
v K j


+

[
ρ
(2)
h

(
cv +d(2)

y

)
×

κ
(2)
h

ρ
(2)
h ε

(13)
v

× Jε
(13)
v K j

]}

8. Server S0 reconstructs the following using Shamir’s (k,n) method and sends it to all
servers S j ( j = 0, . . . ,k−1):

g2

∑
y=1

(
κ
(2)
h

((
av −b(2)y

)2
+ cv +d(2)

y

))
=κ

(2)
h

[
g2

∑
y=1

((
av −b(2)y

)2
+ cv +d(2)

y

)]
=κ

(2)
h f (2)h



94 Chapter 5. Application of MPC: Searchable Encryption of Documents

9. Each server S j ( j = 0, . . . ,k−1) generates random number φh, j, computes the follow-
ing and sends it to server S0:

φh, j

κ
(1)
h, j κ

(2)
h, j ε

(14)
h, j

,
φh, j

ρ
(1)
h, j κ

(2)
h, j ε

(15)
h, j

,
φh, j

ρ
(2)
h, j κ

(1)
h, j ε

(16)
h, j

,
φh, j

ρ
(1)
h, j ρ

(2)
h, j ε

(17)
h, j

,

10. Server S0 computes the following and sends it to all servers S j ( j = 0, . . . ,k−1):

φh

κ
(1)
h κ

(2)
h ε

(14)
h

=
k−1

∏
j=0

φh, j

κ
(1)
h, j κ

(2)
h, j ε

(14)
h, j

,

φh

ρ
(1)
h κ

(2)
h ε

(15)
h

=
k−1

∏
j=0

φh, j

ρ
(1)
h, j κ

(2)
h, j ε

(15)
h, j

,

φh

ρ
(2)
h κ

(1)
h ε

(16)
h

=
k−1

∏
j=0

φh, j

ρ
(2)
h, j κ

(1)
h, j ε

(16)
h, j

,

φh

ρ
(1)
h ρ

(2)
h ε

(17)
h

=
k−1

∏
j=0

φh, j

ρ
(1)
h, j ρ

(2)
h, j ε

(17)
h, j

11. Each server S j ( j = 0, . . . ,k−1) computes the following:

2

∏
l=1

t

φh

(
gl

∑
y=1

(
av −b(l)y

)2
)|

j

=[
κ
(1)
h f (1)h ×κ

(2)
h f (2)h × φh

κ
(1)
h κ

(2)
h ε

(14)
h

× Jε
(14)
h K j

]

−

[
κ
(2)
h f (2)h ×

g1

∑
y=1

ρ
(1)
h

(
cv +d(1)

y

)
× φh

ρ
(1)
h κ

(2)
h ε

(15)
h

× Jε
(15)
h K j

]

−

[
κ
(1)
h f (1)h ×

g2

∑
y=1

ρ
(2)
h

(
cv +d(2)

y

)
× φh

ρ
(2)
h κ

(1)
h ε

(16)
h

× Jε
(16)
h K j

]

+

[
g1

∑
y=1

ρ
(1)
h

(
cv +d(1)

y

)
×

g2

∑
y=1

ρ
(2)
h

(
cv +d(2)

y

)
× φh

ρ
(1)
h ρ

(2)
h ε

(17)
h

× Jε
(17)
h K j

]

12. Servers S j ( j = 0, . . . ,k − 1) cooperate and reconstruct ∏
2
l=1 φh

(
∑

gl
y=1

(
av −b(l)y

)2
)

using Shamir’s (k,n) method. If the reconstructed result is equal to 0, it is considered
to be matched.

13. If the queries do not match, servers S j ( j = 0, . . . ,k−1) set h = h+1 and repeat Steps
1–12.



5.5. Proposed Method: Conjunctive and Disjunctive Searches 95

14. If either of the search queries b(1)y or b(2)y are matched with ah, . . . ,ah+g−1 of the reg-
istered document a, k number of servers S j ( j = 0, . . . ,k−1) send [a]

′

j containing the
matched document to the searcher. If no matching document is found, the search pro-
cess is stopped.

15. Using the received k number of [a]
′

j, the searcher reconstructs document a.

5.5.3 Security of Conjunctive and Disjunctive Searches

In our proposed method of functional SE, the final process of searching is performed in Step

12 of Protocol 5.5; however, ∏
2
l=1 φh

(
∑

gl
y=1

(
av −b(l)y

)2
)

is equal to the multiplication of the

sum of the difference between w = 2 number of search queries and the registered document.

If the result of ∏
2
l=1 φh

(
∑

gl
y=1

(
av −b(l)y

)2
)
= 0, out of the inputted w = 2 number of search

queries, one or more queries matched with the registered document.
However, the encryption of a document and the generation of a search query are is the

same as in Protocols 5.2 and 5.3 of our conjunctive search, where both protocols were proven
to be secure in Section 5.4.3. Therefore, we omit the security analysis of these two protocols
here. In addition, Steps 1–8 of Protocol 5.5 are equal to the total matching search (conjunctive
search) of search queries 1 and 2, and the security of these steps is the same as in Section
5.4.3; therefore, we omit their security analysis here. In this section, we only show the
security analysis for Protocol 5.5 from Step 9 onward.

Proof of security against Adversary 1

Adversary 1 has information from t ≤ k−1 number of servers. Therefore, when perform-
ing a conjunctive search on the first search query, in Steps 1–4, Adversary 1 has the following
information:

κ
(1)
h(

ϕ
(1)
h

)2
ε
(6)
v

,
κ
(1)
h

ϕ
(1)
h ρ

(1)
h ε

(7)
v

,
κ
(1)
h(

ρ
(1)
h

)2
ε
(8)
v

,
κ
(1)
h

ρ
(1)
h ε

(9)
v

g1

∑
y=1

(
κ
(1)
h

((
av −b(1)y

)2
+ cv +d(1)

y

))

However, Adversary 1 cannot learn the random number κ
(1)
h from this information. In

addition, as explained in Sections 5.3 and 5.4, because cv +d(1)
y ̸= 0, the reconstructed value

of ∑
g1
y=1

(
κ
(1)
h

((
av −b(1)y

)2
+ cv +d(1)

y

))
will not be 0. Therefore, κ

(1)
h will not be leaked

from Steps 1–8, and we can state that it is secure against Adversary 1. The same can also be
said regarding the second search query.



96 Chapter 5. Application of MPC: Searchable Encryption of Documents

In addition, in Steps 9 and 10, Adversary 1 has the following information:

A =

(
φh

κ
(1)
h κ

(2)
h ε

(14)
h

,
φh

ρ
(1)
h κ

(2)
h ε

(15)
h

,
φh

ρ
(2)
h κ

(1)
h ε

(16)
h

,
φh

ρ
(1)
h ρ

(2)
h ε

(17)
h

)

However, because Adversary 1 has no information about random numbers ε
(14)
h , ε

(15)
h ,

ε
(16)
h , ε

(17)
h , it cannot learn random number φh. Therefore, the following is true:

H (φh) = H (φh|A)

Furthermore, in Steps 11 and 12, Adversary 1 learns ∏
2
l=1 φh

(
∑

gl
y=1

(
av −b(l)y

)2
)

. Here,

if the reconstructed result is not equal to 0, to learn the result of ∏
2
l=1

(
∑

gl
y=1

(
av −b(l)y

)2
)

,

random number φh is required. However, as mentioned before, because Adversary 1 cannot

learn random number φh, we can state that ∏
2
l=1

(
∑

gl
y=1

(
av −b(l)y

)2
)

will not be leaked. In

addition, even if ∏
2
l=1 φh

(
∑

gl
y=1

(
av −b(l)y

)2
)
= 0, because random number φh does not in-

clude value 0, Adversary 1 learns that ∏
2
l=1

(
∑

gl
y=1

(
av −b(l)y

)2
)
= 0. From this information,

the adversary cannot learn each individual b(l)y and av. Therefore, the following statements
are true.

H
(

b(l)y

)
= H

(
b(l)y

∣∣∣∣∣ 2

∏
l=1

φh

(
gl

∑
y=1

(
av −b(l)y

)2
))

H (av) = H

(
av

∣∣∣∣∣ 2

∏
l=1

φh

(
gl

∑
y=1

(
av −b(l)y

)2
))

From the arguments above, we can state that our proposed method of functional SE is
secure against Adversary 1.

Proof of security against Adversary 2

Adversary 2 has information about search queries b(1)y ,b(2)y and random numbers d(1)
y ,d(2)

y

inputted by the searcher. However, as argued previously, from Steps 1–8, Adversary 2 will
not be able to learn random numbers κ

(1)
h ,κ

(2)
h and secret information av. In addition, in Step

4, because cv +d(1)
y ̸= 0, even if av = b(1)y , the reconstructed result of the following will not

be 0:
g1

∑
y=1

(
κ
(1)
h

((
av −b(1)y

)2
+ cv +d(1)

y

))
̸= 0

Therefore, information regarding av will not be leaked. The same remains true for Step
8. Therefore, we can state that Steps 1–8 are secure against Adversary 2.



5.6. Discussion 97

In addition, as Adversary 2 has no information about random numbers ε
(14)
h , ε

(15)
h , ε

(16)
h ,

ε
(17)
h , from the following information obtained in steps 9 and 10, the adversary will not be

able to learn random number φh.

A =

(
φh

κ
(1)
h κ

(2)
h ε

(14)
h

,
φh

ρ
(1)
h κ

(2)
h ε

(15)
h

,
φh

ρ
(2)
h κ

(1)
h ε

(16)
h

,
φh

ρ
(1)
h ρ

(2)
h ε

(17)
h

)

Therefore, the following is true:

H (φh) = H(φh|A)

Moreover, Adversary 2 has information regarding ∏
2
l=1 φh

(
∑

gl
y=1

(
av −b(l)y

)2
)

from

Steps 11 and 12. However, as mentioned above, because Adversary 2 cannot learn random

number φh, we can state that ∏
2
l=1

(
∑

gl
y=1

(
av −b(l)y

)2
)

will not be leaked.

If the owner and the searcher are not the same person, an adversary without the correct
character string av can input any search queries b(1)y , b(2)y into the system. If the adversary per-
forms a multiple search and reconstruction process, as in the conjunctive search, the number
of possible candidates for the character string will decrease one by one. Therefore, consider-
ing the security against a multiple search process, the attack and countermeasures explained
in Section 5.4.3 can conceivably be used.

5.6 Discussion

5.6.1 Comparison with Conventional SEs

In our proposed method, we realized SE using secret sharing instead of the conventional ap-
proach using encryption-based techniques such as SE using symmetric key encryption and
public key encryption. Secret sharing is considered a more efficient approach because it re-
quires less computation cost compared to conventional encryption-based approaches [73].
This is because most encryption-based approaches such as public key encryption are based
on computationally difficult problems, requiring more costly operations (such as modular
exponential of large numbers). In contrast, secret sharing, such as Shamir’s (k,n) method,
requires very low computation cost. In Shamir’s (k,n) method, the user only needs to choose
a random polynomial and evaluate it in n different points. By implementing secret sharing
in SE, we could realize a method with lower computation cost than conventional SE that
uses a symmetric key or public key encryption. However, the implementation of secret shar-
ing also means that information needs to be exchanged between at least two servers, which
increases the number of communication rounds required compared to conventional SE that
uses a symmetric key or public key encryption.



98 Chapter 5. Application of MPC: Searchable Encryption of Documents

Furthermore, in our proposed methods of SE using secret sharing, we realized direct
search over encrypted documents, which is difficult to achieve with the conventional SE.
Most of the SEs that use a symmetric key or public key encryption proposed thus far utilize
the concept of search index. Because direct search over an encrypted document is not possi-
ble, information that is not registered in the index is not searchable. In contrast, to achieve
the same function of direct search as our method by using SE based on search index, the
owner must first list all possible character string patterns in the sentence to be registered, and
must register each of the possible character strings in the index. For example, suppose that
an owner wants to register a document. The owner must list all possible character strings
(for example, g number of characters starting from the first character, g number of characters
starting from the second character, g number of characters starting from the third character,
. . ., final g number of characters), and register them as keywords in the index. To enable
searches on any g number of character strings, the aforementioned process can be performed
on g = 1,2, . . . ,G (G is the largest number of characters to be searched) in parallel, but this
process is extremely inefficient.

Direct searching over each document will cause the search time to increase linearly to the
number of documents stored in the system. This is because every document will need to be
queried even when there are only a few documents that matched the query. Here, we could
also adapt our proposed method to realize the search index used in conventional methods of
SE. To realize this, only the keyword of a document is secretly shared to the servers, and the
search is performed directly on the index. In this case, the original document does not need
to be secretly shared to multiple servers; instead, we only need to encrypt and store it. In
addition, our method can also easily realize both conjunctive and disjunctive searches over
an index. The computation cost will also be lower than that of conventional SE that uses a
symmetric key or public key encryption.

Next, the differences between SE that uses a symmetric key or public key encryption and
that using a secret sharing are the entity of the searcher and the owner of the document. In
other words, in SE using secret sharing, anyone can register a document/data, and anyone
can produce a valid search query and perform a search on the document/data. In the setting
of searching on document/data encrypted with symmetric key encryption, the owner encrypts
the document/data, such that only the owner or searcher with the correct secret key can access
it. In the setting of searching on document/data encrypted with public key encryption, an
owner publishes a public key and anyone with access to the public key can add keywords to
the index, but only the owner or searcher with the correct secret key can generate valid search
queries to test for the occurrence of a keyword. In other words, in a typical construction of SE
that uses a symmetric key or public key encryption, to retrieve the documents that contain the
keyword w, an authorized searcher computes a regular search query Q(sk,w) using a secret
key sk before sending it to the server. Note that the secret key sk currently used is only known
by the owner and by the set of currently authorized searchers. This means that unauthorized



5.6. Discussion 99

searchers cannot recover the correct secret key sk and, with overwhelming probability, their
queries will not yield a valid search query.

5.6.2 Adaptation of the Proposed Methods

Based on the intended applications, our proposed methods could also be converted to realize
the same limitation or functionality as in SE that uses a symmetric key or public key en-
cryption, where only authorized searchers can produce a valid search query. In this section,
we focus on the following two applications, which also support direct search over encrypted
document/data:

1. Converted Method 1: Realizing the functionality of SE using symmetric key encryp-
tion

The MAJOR difference between SE using symmetric key encryption and our proposed
method is the entity of the searcher and the owner of the document. In our proposed Protocols
5.2 and 5.3, anyone can register a document/data, and anyone can perform a search on the reg-
istered document/data. In contrast, in SE using symmetric key encryption, the owner of the
registered document/data and the searcher are typically the same person and only the searcher
with the correct secret key can produce a valid search query to perform the searching process.
This is because symmetric key encryption generally uses one secret key that is kept secret
and used for both encryption and searching of the document. To realize the same functional-
ity as in SE using symmetric key encryption, in addition to searching on the character string,
we need to perform an additional search on the secret key. However, when realizing this
functionality using our proposed method, we also need to consider the case where the owner
of the registered document/data and the searcher are not the same people. This can present
a new problem of sharing the secret key between the owner and all the authorized searchers.
Here, we eliminate this problem by assuming a secure key sharing protocol using public key
encryption such as Diffie–Hellman key exchange method, Rivest–Shamir–Adleman (RSA),
or Ephemeral Diffie–Hellman with RSA [74] [75] to securely exchange secret keys between
all owners and authorized searchers. Therefore, in this section, we only concentrate on real-
izing the functionality of SE using symmetric key encryption with supports for direct search
over encrypted document/data. In other words, conversion of our proposed method can be
summarized as follows:

Protocol 5.6(a): Encryption of document and secret key

1. In addition to document a, the owner encrypts a secret key sk using Protocol 5.2 (en-
cryption of document).

Protocol 5.6(b): Generation of search query and secret key



100 Chapter 5. Application of MPC: Searchable Encryption of Documents

1. In addition to the search query b, the searcher also encrypts a secret key sk′ using
Protocol 5.3 (generation of search query).

Protocol 5.6(c): Search process

1. Servers S j ( j = 0, . . . , k−1) first perform Protocol 5.4 (conjunctive searching process)
between the registered secret keys sk and the secret key sk′ of the searcher.

2. If the result of Step 1 is equal to 0 (meaning that the owner’s secret key sk and the
searcher’s secret key sk′ matched), servers S j ( j = 0, . . . ,k− 1) perform Protocol 5.4
between the search query b and all registered documents. Moreover, a search with mul-
tiple queries is also possible by performing Protocol 5.5 (conjunctive and disjunctive
searches) for the search queries. However, if the result of Step 1 is not equal to 0, the
servers return the value of ⊥, and stop the searching process.

Security of Protocols 5.6(a) and 5.6(b)

Here, we assume that the adversary has no information about the registered document
a, registered secret key sk, search query b, and secret key sk′; the adversary has information
from at most t = k − 1 number of servers. When the adversary can identify the unknown
information of a and sk of the owner or b and sk′ of the searcher, the attack is considered a
success.

As Protocols 5.6(a) and 5.6(b) make use of our proposed Protocols 5.2 and 5.3, which
were proven to be secure in Section 5.4.3, we can state that the converted Protocol 5.6(a)
and Protocol 5.6(b) are also secure. In other words, document a and secret key sk registered
by the owner during Protocol 5.6(a) will not be leaked even if t number of servers collude.
The same is true for the query b and secret key sk′ inputted by the searcher. Therefore, we
can state that Protocols 5.6(a) and 5.6(b) are secure against a semi-honest adversary with
information from at most t = k−1 number of servers.

Security of Protocol 5.6(c)

Here, we study the security of Protocol 5.6(c) in detail. In most conventional SE using
symmetric key encryption, because the owner of the document and the searcher are typically
the same person, the evaluation of security is performed under the assumption that the ad-
versary only controls the system (Adversary 1), without considering the situation where the
searcher is the adversary (Adversary 2). However, as Protocol 5.6(c) make use of our pro-
posed Protocol 5.4 (and Protocol 5.5 for multiple queries searching) which was proven to
be secure against Adversaries 1 and 2, we can state that Protocol 5.6(c) is secure even if the
owner of the document and the searcher are not the same person.

As shown in the security analysis against Adversary 2 in Sections 5.4.3 and 5.5.3, both
our proposed Protocols 5.4 and 5.5 are not secure against brute force search attacks if search
query/queries with short character string is/are used by Adversary 2 for searching. However,



5.6. Discussion 101

in this application, as Step 1 of searching is performed on the secret key: if the length of the
secret key used is made to be almost the same as the length of the secret key used in SE using
symmetric key encryption, we can achieve the same level of security as in typical SE using
symmetric key encryption, allowing the converted proposed method to be also secure against
brute force attacks by Adversary 2. Therefore, we can state that the converted proposed
method is secure against both Adversaries 1 and 2.

2. Converted Method 2: Realizing the functionality of SE using public key encryption

To achieve the same restriction as in SE methods using public key encryption where
there are multiple registered owners and only one searcher, no limitation is set or required
for owners who want to register their document. However, we need to implement an extra
process of pre-registration of the secret key to the servers, where searchers that had been
authorized by the system can register his/her secret key to the system in advance and use that
secret key to perform the searching process. Conversion of our proposed method to realize
the functionality of SE using public key encryption can be summarized as follows:
Protocol 5.7(a): Pre-registration of secret key

1. The searcher first registers a secret key sk using Protocol 5.2 (encryption of document)
to the servers.

Protocol 5.7(b): Encryption of document

1. The owner encrypts a document a using Protocol 5.2 (encryption of document).

Protocol 5.7(c): Generation of search query and secret key

1. In addition to the search query b, the searcher also encrypts a secret key sk’ using
Protocol 5.3 (Generation of search query).

Protocol 5.7(d): Search process

1. Servers S j ( j = 0, . . . ,k−1) first perform Protocol 5.4 (conjunctive searching process)
between the pre-registered secret keys sk and the secret key sk′ inputted by the searcher.

2. If the result of Step 1 is equal to 0 (meaning that the owner’s secret key sk and the
searcher’s secret key sk′ matched), servers S j ( j = 0, . . . ,k− 1) perform Protocol 5.4
between the search query b and all registered documents. Moreover, a search with mul-
tiple queries is also possible by performing Protocol 5.5 (conjunctive and disjunctive
searches) for the search queries. However, if the result of Step 1 is not equal to 0, the
servers return the value of ⊥, and stop the searching process.

Security of Protocols 5.7(a), 5.7(b), and 5.7(c)



102 Chapter 5. Application of MPC: Searchable Encryption of Documents

In the Converted Method 2, Protocols 5.7(b) and 5.7(c) are the same as Protocol 5.2 of
our conjunctive search and Protocol 5.6(b) of the Converted Method 1, respectively, where
both protocols were proven to be secure against Adversaries 1 and 2. Therefore, we omit the
security analysis of Protocols 5.7(b) and 5.7(c) here.

In the Converted Method 2, Protocol 5.7(a) is required to allow for all authorized searchers
to pre-register their secret keys to the servers. However, as Protocol 5.7(a) also makes use of
Protocol 5.2 (which was proven to be secure) to secret share the secret keys to the servers, we
can state that Protocol 5.7(a) of the Converted Method 2 is also secure. Therefore, secret key
sk registered by the searcher will not be leaked even if t = k− 1 number of servers collude
together.

Security of Protocol 5.7(d)

Here, Protocol 5.7(d) of the Converted Method 2 is the same as Protocol 5.6(c) of the
Converted Method 1, which was proven to be secure against both Adversaries 1 and 2. There-
fore, we omit the security analysis here. Moreover, in the Converted Method 2, if the length
of the secret key used is set to be the same as in SE using public key encryption, we can
realize the same level of security as in conventional SE using public key encryption. In con-
clusion, we can state that by implementing the use of a pre-registered secret key, we can
realize a secure many-to-one search, where multiple owners can register their documents
freely and the search process can only be performed by searchers that had secret-shared their
secret keys into the system in advance.

5.6.3 Acceptable Information Leakage of SE

When considering the security of SE using symmetric key encryption, there is some prede-
fined information that will definitely be leaked, particularly when a document is added or a
search is performed, and there are many cases where a method is considered to be secure as
long as no more than the allowed information is leaked (meaning that the information leak is
acceptable).

In this section, to perform a comparison between the leaked information of our proposed
methods and conventional methods that use symmetric key encryption, we consider the in-
formation shown below, which was defined by Curtmola et al. [55] and Hori et al. [76].

Information 1: Length |Dm| of Document Dm

When registering Ciphertext Cm of a Document Dm using symmetric key encryption on
a server, because the server can predict the length of Document Dm from its Ciphertext Cm,
the information of |Dm| will definitely be leaked. In our proposed method, when performing
Protocol 5.2 (Encryption of document), after [ax]

′

j, which corresponds to the character string
ax (x = 1, . . . ,m) of document a (equal to Document Dm), is registered on the server, the
server can estimate the length of the registered document from [ax]

′

j. Therefore, the length



5.6. Discussion 103

of the document will be leaked. However, because the server cannot determine the character
string ax of a document from only k − 1 number of [ax]

′

j registered, we can state that the
actual document will not be leaked. In addition, the length of the search query will also be
leaked, but the search query itself will not be leaked. However, because the aforementioned
information will definitely be leaked for any SE method that registers the encrypted document
and search query on the server, it is not a problem.

Information 2: The outputted result of searching Did(K′) when performing keyword match-
ing process with a search query Q(K′)

In conventional SE, when performing a search using search query Q(K′) generated from
keyword K′, because the server can learn the result of the search for search query Q(K′),
information regarding the identifier Did(K′) of documents that include keyword K′ will be
leaked. In our proposed method, when performing a matching or a search process regarding a
search query, if the result matches, a value of 0 will be output; however, if the result does not
match, random values will be output. In addition, when value 0 is output, k number of servers
will send documents that correspond to that search query back to the searcher. Therefore, in
our proposed method, when performing a matching process on a search query, information
about the search result will be leaked; however, this is the same for most conventional meth-
ods for SE.

Information 3: If keyword K′ used in i number of searches and keyword K′′ used in j

number of searches by the searcher is the same.
When the search queries used are definite, the value for K′ = K′′ can be learned by con-

firming T (K′) = T (K′′). In our proposed method, even if the same search queries are used,
when performing Protocol 5.3 (generation of search query), if different random numbers are
used to distribute the search queries, we can state that the aforementioned Information 3 will
not be leaked because the generated shares will also be different.

Information 4: Number of keywords correspond to document Dm

When using an index, because the index (equal to keywords) is set for each document,
the number of keywords per document will be leaked. In our proposed methods, because
any character string can be used as a keyword without the need for an index, we can say that
any number of keywords that correspond to a document can exist, but this number cannot be
known.

Information 5: Fulfillment of forward privacy
In SE, there is a concept of forward privacy, which is an important property of SE

schemes that ensures that newly updated entries cannot be related to previous search results.
For example, consider that the server performed a search for keyword u. When a document
containing the keyword u is added, the question is whether the server can determine that the
newly added document consists of keyword u by using the previous search query. When the



104 Chapter 5. Application of MPC: Searchable Encryption of Documents

server cannot distinguish whether the document consists of keyword u, the method is said to
fulfill the property of forward privacy. In our proposed method, even if a document with the
same keyword is added, if the encryption is performed with different random numbers for
each character, the result will take a different form even for the same keyword. In addition,
as for the search query, even if the same search query is used, if different random numbers
are used, the resulting search query will also be different. Therefore, we can state that our
proposed method also fulfills the property of forward privacy.

From the above, we can conclude that our proposed methods do not leak any information
other than the length of the document/search query and the identifier of the matching docu-
ment. In particular, because our methods do not leak Information 3–Information 5, we can
state that they realize a high level of security for a keyword/search query.

5.7 Chapter Summary

In this chapter, we proposed two SE methods using the secure MPC proposed in Chapter 4.
In the first proposed method, we realized a total matching search function (or conjunctive
search) with multiple characters by using the inverse computation of the logical conjunctive.
Additionally, in the second method, we realized the disjunctive search function using the
inverse computation of the logical disjunctive. By combining it with the previous conjunctive
search function, we also realized the direct search of a document using multiple keywords.

In future studies, to perform a more detailed comparison with methods of SE using index
search, we need to adapt our method to the index search concept, implement it, and compare
the performance with that of conventional methods. Additionally, we also need to perform a
detailed implementation and compare it with conventional methods of SE to evaluate whether
our proposed SE is also fast in real-world use.



105

Chapter 6

Multiplication of Polynomials with
N < 2k−1 Servers

In Chapters 3 and 4, we proposed methods of secure MPC that realize secure computation
including multiplication with n < 2k−1 by using the approach of scalar value × polynomial
to perform multiplication ab. However, both methods require a certain condition, particularly
on the input/output to achieve security against semi-honest adversaries (including Adversary
1 that only controls t ≤ k − 1 of n computing servers). Therefore, the following question
arises:

“Is there another manner to perform MPC with fewer conditions?”
In this chapter, aiming to find a method for easing the conditions required in the MPC

when assuming n < 2k− 1, we study another approach of realizing multiplication in MPC.
Instead of the scalar value × polynomial approach shown in Chapters 3 and 4, we use the
approach of multiplication by polynomial × polynomial. We also implement the method of
reducing the polynomial degree of the resulting polynomial back to (k − 1). This enables
the result of multiplication to be recovered from n < 2k− 1 shares, as in Sections 3 and 4.
Moreover, as the encrypted secret input is not reconstructed as a scalar value, Condition (1),
where the inputs do not include 0, is not required when assuming only Adversary 1. However,
some conditions are still required when assuming other semi-honest adversaries.

6.1 Introduction

Secure MPC allows a set of servers to jointly compute an arbitrary function of their inputs
without revealing these inputs to each other. Typically, two main techniques have been pro-
posed to implement secure MPC: homomorphic encryption [33] [34] [19] [35] [17] [36] and
threshold secret sharing [12] [15] [37][39] [77] [16] [23] [40][41] [42] [43]. Homomorphic
encryption requires more computational resources, whereas threshold secret sharing has a
relatively low computational cost. Therefore, threshold secret sharing is preferable in a cloud
system.



106 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

The classical result of secure MPC using the (k,n) threshold secret sharing is that n

servers can compute any function such that any subset of up to k− 1 < n/2 servers obtains
no information about the inputs of other servers, except for what can be derived from public
information [12] [78] [79] [80]. Conventional methods of secure MPC using Shamir’s (k,n)
threshold secret sharing perform addition by locally adding shares together. However, this is
not the case for multiplication. For example, let secrets a and b be encoded by f (x) and g(x),
two polynomials with degrees (k−1). The free coefficient of polynomial h(x) = f (x)g(x) is
ab.

However, when using h(x) to encode the product of a × b, the degree of h(x) increases
from (k− 1) to (2k− 2). In most conventional methods, this poses no problem for interpo-
lating h(x) from its n shares because it is assumed that n ≥ 2k− 1. Each server holds only
one share for each secret; hence, for each multiplication performed, the number of required
servers increases from k to 2k− 1. Therefore, the construction of information-theoretically
secure multiplication under the dishonest majority setting is considered impossible, and ap-
proaches to avoid this impossibility result are as follows: (1) giving up information-theoretic
security [19] [35] [36] (typically, generating a Beaver triple between computing parties via
computationally secure primitives such as homomorphic encryption or oblivious transfer);
and (2) assuming a trusted setup by other than computing parties [42].

To overcome this impossibility, we apply a different functionality of multiplication using
encrypted shares instead of “normal” shares. This is different from most standard MPCs,
where multiplication is performed on shares of secret inputs a,b to produce shares of ab.
Instead, our functionality performs multiplication by using shares encrypted with random
numbers (encrypted shares) and outputs encrypted shares of multiplication result ab. This
is the same method as in Chapters 3 and 4, where the secret input is first encrypted with a
random number. During multiplication, the encrypted secret is momentarily restored as a
scalar value, and multiplication uses the scalar value × polynomial approach to prevent an
increase in the degree of the polynomial. However, these methods require some conditions,
particularly regarding the reconstructed scalar value.

Watanabe et al.[43] also proposed a solution with a different approach by differentiating
the relationship between the number of required servers N and parameter n of (k,n) threshold
secret sharing. Thus, the authors used N ≤ 2k−1 servers to implement n ≥ 2k−1 multipli-
cation. However, their method did not solve the problem of decreasing the degree of the
polynomial from (2k− 2) to (k− 1). Therefore, although the multiplication was performed
using only N ≤ 2k−1 servers, their method required 2k−1 instead of k shares to restore the
multiplication result.

In this chapter, unlike the approach used in Chapters 3 and 4, we focus on solving
the problem of multiplication through the conventional polynomial × polynomial approach.
Moreover, we apply the idea of Watanabe et al. of differentiating the parameters N and n,
and introduce a new method of reducing the polynomial degree from (2k − 2) to (k − 1)



6.2. System Model and Adversary 107

such that the result of multiplication ab can be recovered from only n < 2k− 1 shares. The
contributions of this chapter can be summarized as follows.

• We propose a new distribution protocol in which multiple encrypted shares of the same
secret input can be sent to each computing server. This is implemented by encrypting
each share with a different random number before sending it to the computing servers;

• We propose a new multiplication protocol and degree reduction method for multiply-
ing (k− 1) sharing of encrypted shares of two inputs a,b and reducing the degree of
resulting shares from (2k − 2) to (k − 1) using the recombination vector to produce
(k−1) sharing of encrypted shares of ab using only N < 2k−1 servers;

• We present a clear evaluation of our method in terms of computation, communication,
and round number. We also include the results of the implementation of our method in
MATLAB. Finally, we compare the proposed method with the conventional methods
of two-party multiplication of encrypted shares and show that our method can reduce
the number of required servers (reduction of the total operating cost) and minimize the
required communication between the client and N computing servers.

6.2 System Model and Adversary

In this chapter, we also assume a client-server model[15] [40] [41] [81] [82] for multiplica-
tion c = ab of two inputs a,b. In addition, we assume a semi-honest adversary, where the
adversary follows the protocol specification but may try to learn more than what is allowed
by the protocol, with at most k− 1 corrupted servers. We also assume secure communica-
tion between clients and servers. However, we follow the definition of MPC security in [40]
[41], where we only assume that there are at most k− 1 corrupted computing servers in the
client-server computing model.

This is the same as the definition of Adversary 1 defined in Chapter 3. The main dif-
ference with the standard definitions of MPC is that in this setting, we do not assume that
the adversary can simultaneously corrupt k− 1 servers and a client (non-server). This pro-
vides a weaker security guarantee than the standard security of MPC but is sufficient in many
real-life cases, particularly in cloud computing (where the service provider or operator has
no benefit to gain for colluding with any of the other clients). Furthermore, this scenario can
be implemented by other means, such as physical means or the use of the law (we also show
in Section 6.7 that the method is secure against the remaining Adversaries 2 and 3 with some
conditions).

In this chapter, we state and prove all security guarantees by expressing entropy in the
presence of a semi-honest adversary, as in Chapters 3 and 4, and we show that the computing



108 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

servers cannot learn the clients’ inputs. In a future study, we also plan to evaluate security
using the standard ideal/real-world definition of MPC proposed by Canetti et al.[83].

6.3 Related Work

Here, we introduce related work on two-party multiplication. Moreover, we also include the
work by Watanabe et al. [43] that realizes two-party multiplication by multiplying encrypted
shares based on (k,n) threshold secret sharing.

6.3.1 Two-party Multiplication Using Shamir’s (k,n) Method

Let a and b be two secret inputs. Shares of each secret are produced by Shamir’s (k,n)

method, as shown below, and are distributed to n servers. Note that i = 0, . . . ,n−1.

JaKi = a+α1xi +α2x2
i + · · ·+αk−1xk−1

i

JbKi = b+β1xi +β2x2
i + · · ·+βk−1xk−1

i

Next, each server computes the multiplication between shares of a and b, obtaining JabKi

as follows:
JabKi = ab+ · · ·+(αk−1βk−1)x2k−2

i

Although secret inputs a and b are shared using polynomials of (k−1) degree, the result
of multiplication ab is a polynomial of (2k−2) degree. Therefore, the problem with the
conventional method of multiplication in Shamir’s (k,n) method is that the number of shares
required to reconstruct ab increases from k to 2k− 1. Thus, the following Theorem 1 was
proposed for the passive model.
Theorem 1. In the passive model, a set S = {S0, . . . ,Sn−1} of n servers can compute every
specification securely if and only if the adversary corrupts at most k−1 < n/2 of the servers.

6.3.2 Multiplication of Shares Using the Recombination Vector

As mentioned in the previous section, the result of the multiplication of two polynomials of
degree (k−1) is a polynomial of degree (2k−2). Note that n ≥ 2k−1 implies that n product
shares are sufficient for recovering ab. However, any further multiplication raises the degree,
and once the degree passes n, there will not be sufficient points for interpolation. Hence,
(k−1) sharing of ab can be achieved by using a recombination vector, as shown by Chaum
et al [37].

To better understand this, let us assume that k = 2,n = 2k − 1 = 3, and the resulting
multiplication is a quadratic polynomial y(xi) = α0 +α1xi +α2xi

2, where α0 is the result of



6.3. Related Work 109

the multiplication. As n = 3, the shares for each xi are as follows:

y(1) = α0 +α1 +α2

y(2) = α0 +2α1 +4α2

y(3) = α0 +3α1 +9α2

By solving the equations above, we can state that the multiplication result α0 can always
be computed from shares y(1),y(2), and y(3): α0 = 3y(1)−3y(2)+ y(3). This formula was
found using simple Gaussian elimination, but it is also given by the Lagrange interpolation
formula, where r = (3,−3,1) is known as the recombination vector.

More precisely, each player first shares his computed value of the multiplication result
JabKi using polynomials of (k−1) degrees to all players. Next, the player locally combines
their shares by an inner product with the recombination vector. Thus, each player holds
(k− 1) sharing of ab. However, the problem with this method is that it requires n > 2k− 1
servers, thereby increasing the total operation cost of the system.

6.3.3 Watanabe et el.’s Method

Typically, in a (k,n) threshold secret sharing, a server only has one share. For multiplication
of shares, the number of required servers increases from k to 2k−1.

Watanabe et al.[43] solved this problem by allowing a server to hold two shares. How-
ever, the problem of an increase in the polynomial’s degree from (k−1) to (2k−2) remains.
The number of shares required to reconstruct the result remains 2k− 1 instead of k. There-
fore, the communication cost between the client and the servers remains the same as in all
conventional methods. Our method solves this problem by proposing a method of computing
(k−1) sharing (instead of typical (2k−2) sharing) of ab using only N ≥ k servers.

We included the distribution, multiplication, and reconstruction protocols of Watanabe
et al.’s method under the settings of N ≥ k and n ≥ 2k− 1. Variables a,b and all generated
random numbers are derived from finite field GF(p), and all computations are performed
under GF(p).

Protocol 6.1(a): Distribution of a,b

1. Each player A and B generates 2n shares from secrets a and b and distributes the first
n shares JaKi,JbKi (i = 0, . . . ,n−1) to n servers Si.

2. Player A generates a random number rA and distributes JrAaKn, . . . ,JrAaK2n−1 to n

servers Si. Then, distributes shares JrAKi of rA to n servers Si.

3. Player B generates a random number rB and distributes JrBbKn, . . . ,JrBbK2n−1 to n

servers Si. Then, distributes shares JrBKi of rB to n servers Si.



110 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

Protocol 6.1(b): Multiplication of ab

1. Each server Si (i = 0, . . . ,n−1) calculates the following:

JabKi = JaKi × JbKi (i = 0, . . . ,n−1)

JaArBabKi+k = JrAaKi+k × JrBbKi+k (i = 0, . . . ,n−1)

Protocol 6.1(c): Reconstruction of ab

1. The player collects JrAK j,JrBK j ( j = 0, . . . ,k− 1) from k servers S j and reconstructs
values rA,rB.

2. The player collects JabK j,JrArBabK j+k from k servers S j ( j = 0, . . . ,k− 1) and com-
putes the following:

JabK j+k =
JrArBabK j+k

rArB

3. The player reconstructs multiplication result ab from 2k number of shares JabK j, JabK j+k.

6.4 Proposed Method: Multiplication of Two Polynomials (when
N = k)

6.4.1 Overview of Proposed Method

In this section, we describe our first protocol that differentiates between parameter N, which
is the number of servers that are actually needed, and parameter n of Shamir’s (k,n) method.
This protocol performs multiplication under the settings of N = k,n ≥ 2k−1.

To perform multiplication using only N = k servers, we based our distribution protocol
on the method by Watanabe et al. [43] by sending multiple shares of the same secret input
to each server. However, instead of encrypting only one of the shares, our method encrypts
both shares using different random numbers before sending the encrypted shares to each
server. Moreover, to solve the problem of Watanabe et al.’s method, where the result of
multiplication can only be reconstructed by collecting 2k shares from k servers, we propose a
new method of reducing the degree of the polynomial of ab from (2k−2) to (k−1) by using
a recombination vector with only N = k servers.

In addition, because our method distributes encrypted shares, our multiplication protocol
also produces an encrypted share (where shares of ab are encrypted with a random number).
In contrast, most two-party multiplications using MPC take shares of a,b as the input and
output shares of ab. However, this functionality requires an extra process of decrypting the
output in addition to the reconstruction of the result using Shamir’s (k,n) method.



6.4. Proposed Method: Multiplication of Two Polynomials (when N = k) 111

6.4.2 Protocol of Proposed Method

In this section, we demonstrate our multiplication method for N = k servers S j ( j = 0, . . . ,k−
1) and with n ≥ 2k−1 as the number of required shares. For ease of understanding, we also
include an example of multiplication of a = 3,b = 5 in Appendix B.

Notation:

• JaK j: Share of secret input a for server S j ( j = 0, . . . ,k−1), where the number of shares
n required for reconstructing a is k.

• Jα1β1abK∗j : Share of α1β1ab for server S j ( j = 0, . . . ,k − 1), where the number of
shares n required for reconstructing α1β1ab is 2k−1.

Protocol 6.2: Distribution of secret inputs a,b

1. Player A generates 2k random numbers α1,0, . . . ,α1,k−1,α2,0, . . . ,α2,k−1 and computes
the following:

α1 =
k−1

∏
j=0

α1, j

α2 =
k−1

∏
j=0

α2, j

2. Player A generates n = 2k shares of secret input a using Shamir’s (k,2k) method and
computes the following:

Jα1aK0 = α1 × JaK0, . . . ,Jα1aKk−1 = α1 × JaKk−1

Jα2aKk = α2 × JaKk, . . . ,Jα2aK2k−1 = α2 × JaK2k−1

3. Player A sends Jα1aK j,Jα2aK j+k,α1, j,α2, j to server S j ( j = 0, . . . ,k−1).

4. Player B generates 2k random numbers β1,0, . . . ,β1,k−1,β2,0, . . . ,β2,k−1 and computes
the following:

β1 =
k−1

∏
j=0

β1, j

β2 =
k−1

∏
j=0

β2, j



112 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

5. Player B generates n = 2k shares of secret input b using Shamir’s (k,2k) method and
computes the following:

Jβ1bK0 = β1 × JbK0, . . . ,Jβ1bKk−1 = β1 × JbKk−1

Jβ2bKk = β2 × JbKk, . . . ,Jβ2bK2k−1 = β2 × JbK2k−1

6. Player B sends Jβ1bK j,Jβ2bK j+k,β1, j,β2, j to server S j ( j = 0, . . . ,k−1).

Protocol 6.3: Multiplication of secret inputs a,b

1. Each server S j ( j = 0, . . . ,k−1) computes the following:

Jα1β1abK∗j = Jα1aK j × Jβ1bK j

Jα2β2abK∗j+k = Jα2aK j+k × Jβ2bK j+k

α1, jβ1, j = α1, j ×β1, j

α2, jβ2, j = α2, j ×β2, j

2. Each server S j ( j = 0, . . . ,k−1) generates a random number γ j, computes the following
values, and sends them to one of the servers (here, we assume server S0):

γ j

α1, jβ1, j
,

γ j

α2, jβ2, j

3. Server S0 computes the following values and sends them to all servers S j ( j = 0, . . . ,k−
1):

γ

α1β1
=

k−1

∏
j=0

γ j

α1, jβ1, j

γ

α2β2
=

k−1

∏
j=0

γ j

α2, jβ2, j



6.4. Proposed Method: Multiplication of Two Polynomials (when N = k) 113

4. Each server S j ( j = 0, . . . ,k−1) computes JγabK∗j ,JγabK∗j+k as follows and distributes
the results using Shamir’s (k,N) method to all servers Si ( j = 0, . . . ,k−1):

JγabK∗j =
γ

α1β1
× Jα1β1abK∗j

JγabK∗j+k =
γ

α2β2
× Jα2β2abK∗j+k

JγabK∗j =

{ JγabK j,0 → send to S0
...

JγabK j,k−1 → send to Sk−1

JγabK∗j+k =

{ JγabK j+k,0 → send to S0
...

JγabK j+k,k−1 → send to Sk−1

5. Each server S j ( j = 0, . . . ,k−1) computes the following value (λi are the recombina-
tion vectors):

JγabK j = γ0 × JγabK0, j + · · ·+ γ2k−1 × JγabK2k−1, j

Protocol 6.4: Reconstruction of output ab

1. The player collects JγabK j,γ j from k servers S j ( j = 0, . . . ,k − 1), reconstructs γab,
and computes γ as follows:

γ =
k−1

∏
j=0

γi

2. Finally, the player reconstructs the multiplication result ab as follows:

ab =
γab
γ

6.4.3 Security of Proposed Method

In a two-party multiplication, when the adversary knows an input (e.g., input a) and output
(e.g., output ab), the second input (e.g., input b) will be leaked. Furthermore, if all parties
are corrupted, the adversary also knows all secret inputs in the system. Therefore, we only
consider the following non-colluding semi-honest adversary, as described in Chapters 3 and
4. The attack is considered a success if the adversary can learn the information that he/she
wants to know. Therefore, we can state that our proposed method is secure if it is secure
against the following adversary:

Adversary 1: The adversary has information from k−1 servers. According to this informa-
tion, the adversary attempts to learn inputs a,b, and output ab.



114 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

Next, we evaluate the security of our proposed method.

Evaluation of security of Protocol 6.2 (Distribution of secret inputs a,b)
In our proposed distribution protocol, two encrypted shares for each secret input are sent

to each server. In the typical Shamir’s (k,n) method, if multiple shares are distributed to one
server, k shares are leaked from k−1 servers (this immediately violates the security of (k,n)
threshold secret sharing). For example, if the secret input a is distributed using Shamir’s
(k,2n) sharing (2n shares of input a are computed using a (k− 1) degree polynomial), and
two shares are sent to each server, 2(k − 1) shares are leaked from k − 1 servers, and the
adversary can reconstruct the secret input from these shares. Therefore, this approach violates
the security requirement of (k,n) threshold secret sharing, where information from any k−1
or fewer servers reveals no information about the original secret input.

To overcome this restriction, we send encrypted shares instead of “normal shares”. Each
share is encrypted with a different random number. In our proposed Protocol 6.2, Adversary
1 has the following information: DA from Player A and DB from Player B.

DA = Jα1aKl,Jα2aKl+k,α1,l,α2,l (l = 0, . . . ,k−2)

DB = Jβ1bKl,Jβ2bKl+k,β1,l,β2,l (l = 0, . . . ,k−2)

However, encrypted secrets α1a,α2a,β1b,β2b do not leak from k− 1 encrypted shares
Jα1aKl , Jα2aKl+k,Jβ1bKl , Jβ2bKl+k. Moreover, Adversary 1 cannot learn random numbers
α1,α2,β1,β2 from k− 1 servers. Therefore, even with this information, secrets a and b are
not leaked. Thus, the following expressions are true:

H (a) = H(a|DA)

H (b) = H(b|DB)

We can state that our proposed Protocol 6.2 is secure even if multiple encrypted shares
are sent to each server, and Protocol 6.2 is secure against Adversary 1.

Evaluation of security of Protocol 6.3 (Multiplication of secret inputs a,b)
From Protocol 6.2, Adversary 1 has the following information DA from Player A and DB

from Player B:

DA = Jα1aKl,Jα2aKl+k,α1,l,α2,l (l = 0, . . . ,k−2)

DB = Jβ1bKl,Jβ2bKl+k,β1,l,β2,l (l = 0, . . . ,k−2)

Moreover, in Step 1 of Protocol 6.3, Adversary 1 learns α1,lβ1,l , α2,lβ2,l (l = 0, . . . ,k−
2). In Step 2, it learns γl ,γl/α1,lβ1,l , γl/α2,lβ2,l . In Step 3, γ/α1β1, γ/α2β2. In Step 4,
JγabK∗l ,JγabK∗l+k. In Step 5, JγabKl . As a result, we can transform security evaluation into



6.5. Extension of Proposed Method (when N > k) 115

the problem of determining whether Adversary 1 can learn inputs a,b or output ab from the
following information:

α1,l,α2,l,β1,l,β2,l,γl,
γ

α1β1
,

γ

α2β2

JγabK∗l ,JγabK∗l+k,JγabKl (l = 0, . . . ,k−2)

Because JγabK∗i is represented by a polynomial of (2k − 2) degree, 2k − 1 shares are
required to reconstruct γab. However, Adversary 1 only has information about 2k−2 shares;
therefore, γab is not leaked, and the following statement is true:

H (γab) = H
(
γab|JγabK∗l ,JγabK∗l+k

)
(l = 0, . . . ,k−2)

The same is true when Adversary 1 only has information about k − 2 shares JγabKl .
Therefore, γab is not leaked, and the following statement is true:

H (γab) = H(γab|JγabKl) (l = 0, . . . ,k−2)

Moreover, because Adversary 1 has no information about α1,α2,β1,β2, the random num-
ber γ used to encrypt output ab is not leaked. Thus, the following statements are true:

H (α1) = H
(

α1|α1,l,β1,l,γl,
γ

α1β1

)
(l = 0, . . . ,k−2)

H (α2) = H
(

α2|α2,l,β2,l,γl,
γ

α2β2

)
(l = 0, . . . ,k−2)

H (β1) = H
(

β1|α1,l,β1,l,γl,
γ

α1β1

)
(l = 0, . . . ,k−2)

H (β2) = H
(

β2|α2,l,β2,l,γl,
γ

α2β2

)
(l = 0, . . . ,k−2)

H (γ) = H
(

γ|α1,l,α2,l,β1,l,β2,l,γl,
γ

α1β1
,

γ

α2β2

)
(l = 0, . . . ,k−2)

From the arguments above, we can state that our proposed method is secure against Ad-
versary 1.

6.5 Extension of Proposed Method (when N > k)

6.5.1 Protocol of the Extended Method

In the previous protocol, parameter N is limited to N = k. Therefore, if a server breaks down,
the multiplication process is no longer possible. To solve this problem, we can set N > k. For



116 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

example, if N = 3 and k = 2, and one server breaks down, the MPC remains possible with
the remaining two servers.

Here, we show the protocol for multiplication of secret inputs a and b for N > k. Secret
inputs a,b, all random numbers, and all computations are in finite field GF(p).

Protocol 6.5: Distribution of secret inputs a,b

1. Player A generates 2k random numbers α1,0, . . . ,α1,k−1, α2,0, . . . ,α2,k−1 and computes
the following:

α1 =
k−1

∏
j=0

α1, j

α2 =
k−1

∏
j=0

α2, j

2. Player A generates n = 2N shares of secret input a using Shamir’s (k,2N) method
and computes the following. Next, Player A generates n = N shares for each random
number α1, j,α2, j ( j = 0, . . . ,k−1) using Shamir’s (k,N) method.

Jα1aK0 = α1 × JaK0, . . . ,Jα1aKN−1 = α1 × JaKN−1

Jα2aKN = α2 × JaKN , . . . ,Jα2aK2N−1 = α2 × JaK2N−1

3. Player A sends the following information to server Si (i = 0, . . . ,N −1):

Jα1aKi,Jα2aKi+N ,

Jα1, jKi,Jα2, jKi

4. Player B generates 2k random numbers β1,0, . . . ,β1,k−1, β2,0, . . . ,β2,k−1 and computes
the following:

β1 =
k−1

∏
j=0

β1, j

β2 =
k−1

∏
j=0

β2, j

5. Player B generates n = 2N shares of secret input b using Shamir’s (k,2N) method
and computes the following. Next, Player B generates n = N shares for each random



6.5. Extension of Proposed Method (when N > k) 117

number β1, j,β2, j ( j = 0, . . . ,k−1) using Shamir’s (k,N) method.

Jβ1bK0 = β1 × JbK0, . . . ,Jβ1bKN−1 = β1 × JbKN−1

Jβ2bKN = β2 × JbKN , . . . ,Jβ2bK2N−1 = β2 × JbK2N−1

6. Player B sends the following information to server Si (i = 0, . . . ,N −1):

Jβ1bKi,Jβ2bKi+N ,

Jβ1, jKi,Jβ2, jKi

Protocol 6.6: Multiplication of secret inputs a,b

1. Each server S j ( j = 0, . . . ,k− 1) reconstructs random numbers α1, j,α2, j,β1, j,β1, j by
collecting the following shares from k servers S j:

Jα1, jK0, . . . ,Jα1, jKk−1

Jα2, jK0, . . . ,Jα2, jKk−1

Jβ1, jK0, . . . ,Jβ1, jKk−1

Jβ2, jK0, . . . ,Jβ2, jKk−1

2. Each server S j ( j = 0, . . . ,k−1) performs Steps 1–4 of Protocol 6.3.

3. Each server Si (i = 0, . . . ,N −1) computes the following values (λi are the recombina-
tion vectors):

JγabKi = λ0 × JγabK0,i + · · ·+λ2k−1 × JγabK2k−1,i

4. Each server S j ( j = 0, . . . ,k−1) distributes a random number γ j generated in Step 2 to
all servers Si using Shamir’s (k,N) method.

5. Each server Si (i = 0, . . . ,N −1) holds the following shares:

JγabKi,Jγ0Ki, . . . ,Jγk−1Ki

Protocol 6.7: Reconstruction of ab



118 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

1. The player collects JγabK j,Jγ0K j, . . . ,Jγk−1K j from k servers S j ( j = 0, . . . ,k− 1), re-
constructs γab, γ0, . . . ,γk−1, and computes γ and multiplication result ab as follows:

γ =
k−1

∏
j=0

γ j

ab =
γab

γ

6.5.2 Security of the Extended Method

The difference between this extended protocol and the protocol shown in Section 6.4.2 is that
the following random numbers are secret-shared using Shamir’s (k,n) method to all servers
instead of sending them directly to each server S j ( j = 0, . . . ,k−1):

α1, j,α2, j,β1, j,β2, j,γ j ( j = 0, . . . ,k−1)

Thus, even if N − k servers break down, the remaining k servers can still reconstruct the
random numbers needed in Step 1 of Protocol 6.6, which provides resistance against loss of
servers.

Furthermore, in Protocol 6.5, Players A and B distribute random numbers α1, j,α2, j,
β1, j,β2, j to all servers Si (i = 0, . . . ,N−1). Because there are at most k−1 corrupted servers,
the adversary can learn the following k−1 shares:

Jα1, jKl,Jα2, jKl,Jβ1, jKl,Jβ2, jKl (l = 0, . . . ,k−2)

However, random numbers α1, j,α2, j,β1, j,β2, j will not be leaked from the aforementioned
k−1 shares. Therefore:

H (α1, j) = H (α1, j
∣∣Jα1, jK0, . . . ,Jα1, jKk−2)

H (α2, j) = H (α2, j
∣∣Jα2, jK0, . . . ,Jα2, jKk−2)

H (β1, j) = H (β1, j
∣∣Jβ1, jK0, . . . ,Jβ1, jKk−2)

H (β2, j) = H (β2, j
∣∣Jβ2, jK0, . . . ,Jβ2, jKk−2)

In addition, in Step 4 of Protocol 6.6, each server S j ( j = 0, . . . ,k−1) distributes a random
number γ j to all servers Si (i = 0, . . . ,N−1). The adversary can learn k−1 shares of random
numbers γ j. However, random numbers γ j will not be leaked. Therefore:

H (γ j) = H (γ j
∣∣Jγ jK0, . . . ,Jγ jKk−2)

Finally, the remaining steps of the extended protocol are identical to those described in
Section 6.4.2. Therefore, we can state that the protocol for N > k is also secure against



6.6. Limitation of the Proposed Method 119

Adversary 1 as long as no more than k − 1 servers collude (we omit the detailed analysis
here).

6.6 Limitation of the Proposed Method

This section discusses the limitation of the method proposed in Section 6.4. First, as men-
tioned in Section 6.2 regarding the adversary assumed in this chapter, we only assumed a
semi-honest adversary that can corrupt up to k−1 of the N computing servers in the client-
server model setting. This means that the adversary will only have access to k−1 servers and
is equal to Adversary 1 defined in Chapter 3. In Section 6.4.2, we proved that the proposed
method is secure against Adversary 1.

However, security against the remaining Adversaries 2 and 3 defined in Chapter 3 should
be assessed. Here, we will discuss the security of the proposed method against these adver-
saries. For simplicity, we will only discuss the security of Protocol 6.3 against the following
adversaries:

Adversary 2: When one of the players who inputted the secret input is the adversary, the
adversary will be able to know one of the secret inputs. Moreover, the adversary also has
information from k−1 servers, and attempt to learn about the other input of the other player
or the output of the computation.

Adversary 3: When the player who reconstructs the computation result is the adversary, the
adversary will be able to learn about the information sent by k servers required to reconstruct
the result. Moreover, the adversary also has information from k−1 servers, and attempts to
learn about the secret inputs.

Evaluation of security of Protocol 6.3 against Adversary 2

For ease of understanding, suppose that Adversary 2 controls the player who inputted se-
cret b. In this case, this adversary will learn about random numbers β1,β2 (and β1,0, . . . ,β1,k−1,
β2,0, . . . ,β2,k−1 that compose it) and secret input b, in addition to the following information
regarding secret input a from Protocol 6.2:

DA = Jα1aKl,Jα2aKl+k,α1,l,α2,l (l = 0, . . . ,k−2)

Moreover, in Step 1 of Protocol 6.3, Adversary 1 learns α1,lβ1,l , α2,lβ2,l (l = 0, . . . ,k−
2). In Step 2, it learns γl,γl/α1,lβ1,l , γl/α2,lβ2,l . In Step 3, γ/α1β1,γ/α2β2. In Step 4,
JγabK∗l ,JγabK∗l+k. In Step 5, JγabKl . As a result, we can transform security evaluation into
the problem of determining whether Adversary 2 can learn inputs a or output ab from the



120 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

following information:

α1,l,α2,l,β1,β2,β1, j,β2, j,b,γl,
γ

α1
,

γ

α2
,

Jα1aKl,Jα2aKl+k,JγabK∗l ,JγabK∗l+k,JγabKl

( j = 0, . . . ,k−1, l = 0, . . . ,k−2)

From γ/α1 and γ/α2, Adversary 2 will learn the ratio α1/α2. Moreover, from α1/α2

and Jα2aKl+k, Adversary 2 will also learn Jα1aKl+k. As α1a is represented by a polynomial
of (k− 1) degree, encrypted secret input α1a will be leaked from 2k− 2 shares of Jα1aKl ,
Jα1aKl+k. The same is true for encrypted secret input α2a.

However, as the random numbers α1, α2 used to encrypt secret input a is not leaked, we
can state that the proposed method is secure assuming the following Condition (1). This is the
same as in the method in Chapters 3 and 4, where if the secret input a = 0, the reconstructed
encrypted secret inputs α1a = α2a = 0, revealing that the secret input a = 0 to Adversary 2.

Condition 1. Secret inputs do not include 0.
Therefore, the following statements are true for random numbers α1,α2 and secret input

a:

H(α1) = H
(

α1|α1,l,γl,
γ

α1
,
α1

α2

)
(l = 0, . . . ,k−2)

H (α2) = H
(

α2|α2,l,γl,
γ

α2
,
α1

α2

)
(l = 0, . . . ,k−2)

H (a) = H (a|b,α1a,α2a)

Next, we discuss the output ab. As Adversary 2 knows the values of α1a and α2a in
addition to γ/α1 and γ/α2, it will also be able to learn γa. With the information of secret input
b, Adversary 2 will eventually be able to learn about the encrypted output γab. However,
because this adversary cannot separate each random number α1,α2 from α1/α2, the random
number γ used to encrypt output ab is not leaked from γ/α1 and γ/α2. Thus, the following
statements are true assuming that Condition (1) is fulfilled:

H (γ) = H
(

γ|α1,l,α2,l,γl,
γ

α1
,

γ

α2

)
(l = 0, . . . ,k−2)

H (ab) = H (ab|γab,b)

Therefore, from the arguments above, we can state that our proposed method is secure
against Adversary 2 as long as the aforementioned condition (1) is followed.

Evaluation of security of Protocol 6.3 against Adversary 3

Here, suppose that Adversary 3 controls the player who reconstructed the multiplication



6.6. Limitation of the Proposed Method 121

result ab. In this case, Adversary 3 will learn about random number γ (and γ0, . . . ,γk−1

that compose it), encrypted output γab and the multiplication result ab, in addition to the
following information regarding secret inputs a and b from Protocol 6.2:

DA = Jα1aKl,Jα2aKl+k,α1,l,α2,l (l = 0, . . . ,k−2)

DB = Jβ1bKl,Jβ2bKl+k,β1,l,β2,l (l = 0, . . . ,k−2)

Moreover, in Step 1 of Protocol 6.3, Adversary 1 learns α1,lβ1,l , α2,lβ2,l (l = 0, . . . ,k−2).
In Step 2, it learns γl,γl/α1,lβ1,l ,γl/α2,lβ2,l . In Step 3, γ/α1β1,γ/α2β2. In Step 4, JγabK∗l ,
JγabK∗l+k. In Step 5, JγabKl . As a result, we can transform security evaluation into a prob-
lem of determining whether Adversary 3 can learn secret inputs a and b from the following
information:

α1,l,α2,l,β1,l,β2,l,γl,
γ

α1β1
,

γ

α2β2
,γ,γab,ab

Jα1aKl,Jα2aKl+k,Jβ1bKl,Jβ2bKl+k,JγabK∗l ,JγabK∗l+k,JγabKl (l = 0, . . . ,k−2)

From γ/α1β1,γ/α2β2 and γ , Adversary 3 will learn α1β1 and α2β2. However, it will not
be able to separate each random number α1,α2,β1,β2 from α1β1 and α2β2. Therefore, the
following statements are true for random numbers α1,α2,β1,β2:

H (α1) = H (α1|α1,l,β1,l,α1β1) (l = 0, . . . ,k−2)

H (α2) = H (α2|α2,l,β2,l,α2β2) (l = 0, . . . ,k−2)

H (β1) = H (β1|α1,l,β1,l,α1β1) (l = 0, . . . ,k−2)

H (β2) = H (β2|α2,l,β2,l,α2β2) (l = 0, . . . ,k−2)

Moreover, all encrypted secret inputs α1a,α2a,β2b and β2b will not be leaked from only
k− 1 shares. Therefore, we can state that Adversary 3 will not be able to learn each secret
input a,b from the aforementioned information. In addition, even if the Adversary 3 learns
the multiplication result ab, the information of each secret input a and b will not be leaked.
Therefore, the following statements are true:

H (a) = H(a|γ,α1β1,α2β2,ab,Jα1aKl,Jα2aKl+k) (l = 0, . . . ,k−2)

H (b) = H(b|γ,α1β1,α2β2,ab,Jβ1bKl,Jβ2bKl+k) (l = 0, . . . ,k−2)

However, when one or both of the secret inputs are equal to 0, Adversary 3 will learn that
ab = 0; as this is the same for any methods of secure computation and Adversary 3 cannot
differentiate whether both a = b = 0 or only one is equal to 0, there is no problem.

Therefore, from the arguments above, we can state that our proposed method is secure
against Adversary 3 without any conditions required.



122 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

TABLE 6.1: Communication and number of rounds of the proposed method
(when N = k)

Process Communication Rounds

Distribution of a 4kd1 1
Distribution of b 4kd1

Multiplication ab
Step 2 2kd1

3Step 3 2kd1
Step 4 2k2d1

Reconstruction of ab 2kd1 1

6.7 Discussion

6.7.1 Computational and Communication Costs

In this section, we evaluate our method proposed in Sections 6.7 and 6.8 in terms of compu-
tational and communication costs. First, we define the parameters used in our evaluation.

Definition of Parameters:

• d1: Size of a share from (k,n) threshold secret sharing.

• C1: Computational cost of Shamir’s (k,2N) method.

• C2: Computational cost of Shamir’s (k,N) method.

• M: Computational cost of multiplication.

• D: Computational cost of division.

• A: Computational cost of addition.

Note that in (k,n) threshold secret sharing, share d1 usually has almost the same size
as the original secret, and the computational costs are different for the distribution and the
reconstruction processes. However, for ease of understanding, we consider that these com-
putational costs are the same.

Tables 6.1 and 6.2 show the communication costs and the number of rounds for our
proposed method. Tables 6.3 and 6.4 show the corresponding computational costs. From
Tables 6.1 and 6.2, we learn that to extend our method to N > k, extra communications for
the distribution and reconstruction of random numbers are required during the multiplication
and reconstruction processes. The same is true for our extended protocol for N > k, and Table
6.4 shows that an extra computational cost is required compared with the case when N = k.



6.7. Discussion 123

TABLE 6.2: Communication and number of rounds of the extended method
(when N > k)

Process Communication Rounds

Distribution of a 2Nd1(k+1)
1

Distribution of b 2Nd1(k+1)

Multiplication ab
Step 1 4k2d1

5Step 2 2kd1(N +2)
Step 4 kNd1

Reconstruction of ab kd1(k+1) 1

TABLE 6.3: Computational cost of proposed method (when N = k)

Process Computation Cost

Distribution of a,b

Step 1 2(k−1)M
Step 2 C1 +2kM
Step 4 2(k−1)M
Step 5 C1 +2kM

Multiplication of ab

Step 1 4kM
Step 2 2k(M+D)
Step 3 2(k−1)M
Step 4 2k(M+C2)
Step 5 k(2kM+(2k−1)A)

Reconstruction of ab C2 +(k−1)M+D

TABLE 6.4: Computational cost of the extended method (when N > k)

Process Computation Cost

Distribution of a,b

Step 1 2(k−1)M
Step 2 C1 +2kC2 +2NM
Step 4 2(k−1)M
Step 5 C1 +2kC2 +2NM

Multiplication of ab

Step 1 4kC2
Step 2 10kM+2kD−2M+2kC2
Step 3 N(2kM+(2k−1)A)
Step 4 kC2

Reconstruction of ab (k+1)C2 +(k−1)M+D



124 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

TABLE 6.5: Computational time of proposed method when N = k = 2 (for
m multiplications)

Process Computation time [s]

m = 1,000 m = 10,000 m = 100,000 m = 1,000,000

Distribution
Player A 0.000115 0.000871 0.008235 0.047846
Player B 0.000106 0.000515 0.005008 0.079328

Multiplication 0.000718 0.006587 0.068876 0.653845
Reconstruction 0.000115 0.000815 0.008255 0.076631

6.7.2 Experimental Implementation of Proposed Method

In this section, we present the results of our implementation and simulation using MATLAB.
Details of the implementation environment are presented below. However, this implementa-
tion was performed without any optimizations, such as parallel computation. In our imple-
mentation, we assume the minimum number of servers N = 2 and parameter k = 2 using our
proposed method for N = k. In addition, the time shown in Table 6.5 is the time taken to
complete each process m times.

Implementation Environment

• OS: Windows 10 Home 64 bit

• CPU: AMD Ryzen 5 3600 6-Core @ 3.6 GHz

• Memory: 16.00 GB

• Program: MATLAB R2019b

The results of our proposed method are presented in Table 6.5. However, for ease of im-
plementation, a single computer played the role of both servers (S0,S1) and players. There-
fore, the computational time for multiplication shown in Table 6.5 can be said to be approx-
imately twice the time required for a single server (without considering the time of commu-
nication).

Specifically, Table 6.5 shows that each player requires less than 0.006 s to distribute
100,000 secrets to servers S0 and S1. According to Table 6.5, the time taken to compute
1,000,000 multiplications was less than 1 s. Therefore, we can state that our proposed multi-
plication method is very efficient in terms of computational time.

6.7.3 Repetition of Multiplication

In Sections 6.4 and 6.5 of this chapter, we showed that the protocol for a single operation
of two-party is secure against a non-colluding adversary that controls up to k−1 computing



6.7. Discussion 125

servers. We also showed that the proposed method is conditionally secure against colluding
Adversaries 2 and 3. Our proposed method can also perform repetition of multiplication,
where the result of the multiplication is used for consecutive multiplication. For example,
the result of multiplication ab can be used to perform multiplication with a new input c to
produce the result of abc without increasing the number of computing servers N needed.

To achieve this, the first multiplication protocol must also output n= 2k number of shares
of the multiplication result, instead of only n = k shares as shown in Sections 6.4 and 6.5. In
sequence, we show the multiplication protocol for computing n = 2k shares of multiplication
result ab. Here, we assume the scenario for N = k.

Protocol 6.8: Multiplication with n = 2k shares of the multiplication result

1. Each server S j ( j = 0, . . . ,k−1) computes the following:

Jα1β1abK∗j = Jα1aK j × Jβ1bK j

Jα2β2abK∗j+k = Jα2aK j+k × Jβ2bK j+k

α1, jβ1, j = α1, j ×β1, j

α2, jβ2, j = α2, j ×β2, j

2. Each server S j ( j = 0, . . . ,k − 1) generates random numbers γ1, j, γ2, j, computes the
following, and sends to one of the servers (here, we assume server S0):

γ1, j

α1, jβ1, j
,

γ1, j

α2, jβ2, j
,

γ2, j

α1, jβ1, j
,

γ2, j

α2, jβ2, j

3. Server S0 computes the following and sends to all servers S j:

γ1

α1β1
=

k−1

∏
j=0

γ1, j

α1, jβ1, j
,

γ1

α2β2
=

k−1

∏
j=0

γ1, j

α2, jβ2, j
,

γ2

α1β1
=

k−1

∏
j=0

γ2, j

α1, jβ1, j
,

γ2

α2β2
=

k−1

∏
j=0

γ2, j

α2, jβ2, j



126 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

4. Each server S j ( j = 0, . . . ,k−1) computes n= 2k shares using Shamir’s (k,2k) method:

Jα1β1abK∗j =

{ Jα1β1abK j,0
...

Jα1β1abK j,2k−1

Jα2β2abK∗j+k =

{ Jα2β2abK j+k,0
...

Jα2β2abK j+k,2k−1

5. Each server S j ( j = 0, . . . ,k−1) computes the following:

Jγ1abK j,0 =
γ1

α1β1
× Jα1β1abK j,0, . . . ,Jγ1abK j,k−1 =

γ1

α1β1
× Jα1β1abK j,k−1

Jγ2abK j,k =
γ2

α1β1
× Jα1β1abK j,k, . . . ,Jγ2abK j,2k−1 =

γ2

α1β1
× Jα1β1abK j,2k−1

Jγ1abK j+k,0 =
γ1

α2β2
× Jα2β2abK j+k,0, . . . ,Jγ1abK j+k,k−1 =

γ1

α2β2
× Jα2β2abK j+k,k−1

Jγ2abK j+k,k =
γ2

α2β2
× Jα2β2abK j+k,k, . . . ,Jγ2abK j+k,2k−1 =

γ2

α2β2
× Jα2β2abK j+k,2k−1

For example, suppose N = k = 3, server S0 computes the following:

Jγ1abK0,0 =
γ1

α1β1
× Jα1β1abK0,0,Jγ1abK0,1 =

γ1

α1β1
× Jα1β1abK0,1,

Jγ1abK0,2 =
γ1

α1β1
× Jα1β1abK0,2,Jγ2abK0,3 =

γ2

α1β1
× Jα1β1abK0,3,

Jγ2abK0,4 =
γ2

α1β1
× Jα1β1abK0,4,Jγ2abK0,5 =

γ2

α1β1
× Jα1β1abK0,5

Jγ1abK3,0 =
γ1

α2β2
× Jα2β2abK3,0,Jγ1abK3,1 =

γ1

α2β2
× Jα2β2abK3,1,

Jγ1abK3,2 =
γ1

α2β2
× Jα2β2abK3,2,Jγ2abK3,3 =

γ2

α2β2
× Jα2β2abK3,3,

Jγ2abK3,4 =
γ2

α2β2
× Jα2β2abK3,4,Jγ2abK3,5 =

γ2

α2β2
× Jα2β2abK3,5

6. Each server S j ( j = 0, . . . ,k−1) sends Jγ1abK j, j′ , Jγ1abK j+k, j′ , Jγ2abK j, j′+k, Jγ2abK j+k, j′+k

to server S j′ ( j
′
= 0, . . . ,k−1).

For example, suppose N = k = 3, server S0 sends the following to server S1:

Jγ1abK0,1,Jγ1abK3,1,Jγ2abK0,4,Jγ2abK3,4



6.7. Discussion 127

7. Each S j ( j = 0, . . . ,k−1) computes the following using the recombination vector r:

Jγ1abK j = λ0 × Jγ1abK0, j + · · ·+λ2k−1 × Jγ1abK2k−1, j

Jγ2abK j+k = λ0 × Jγ2abK0, j+k + · · ·+λ2k−1 × Jγ2abK2k−1, j+k

8. Steps 1–5 are repeated for multiplication with secret input c. However, if no more
consecutive computation is required, the multiplication protocol in Protocol 6.3 is used
instead to produce only n = k shares of the multiplication result.

Evaluation of security against Adversary 1

The difference between the protocol shown above and the protocol shown in Section 6.7
is that each computing server computes an extra k shares of the result in steps 2–7. Therefore,
in Steps 1–7, Adversary 3 learns the following. Note that, l = 0, . . . ,k−2.

α1,lβ1,l,α2,lβ2,l,γ1,l,γ2,l,
γ1,l

α1,lβ1,l
,

γ1,l

α2,lβ2,l
,

γ2,l

α1,lβ1,l
,

γ2,l

α2,lβ2,l
,

γ1

α1β1
,

γ1

α2β2
,

γ2

α1β1
,

γ2

α2β2

Jα1β1abK∗l ,Jα2β2abK∗l+k,Jγ1abKl,Jγ2abKl+k

Moreover, Adversary 1 learns the following from the distribution protocol 6.2 of secret
inputs a and b:

DA = Jα1aKl,Jα2aKl+k,α1,l,α2,l (l = 0, . . . ,k−2)

DB = Jβ1bKl,Jβ2bKl+k,β1,l,β2,l (l = 0, . . . ,k−2)

As a result, we can transform the security evaluation into the problem of determining
whether Adversary 1 can learn secret inputs a,b and the output ab from the following infor-
mation:

α1,l,β1,l,α2,l,β2,l,γ1,l,γ2,l,
γ1

α1β1
,

γ1

α2β2
,

γ2

α1β1
,

γ2

α2β2

Jα1aKl,Jα2aKl+k,Jβ1bKl,Jβ2bKl+k,Jα1β1abK∗l ,Jα2β2abK∗l+k,Jγ1abKl,Jγ2abKl+k

As the encrypted secret inputs α1a,α2a,β1b and β2b cannot be reconstructed from k−2
shares, Adversary 1 will not be able to learn about each encrypted secret input. Moreover,
Adversary 1 will not be able to separate each random number α1,α2,β1,β2 from α2β2/α1β1;
therefore, random numbers γ1,γ2 will not be leaked. Thus, we can state that secret inputs a,b

will not be leaked and the following statements are true:

H (a) = H
(

a|α1,l,β1,l,α2,l,β2,l,
α2β2

α1β1
,Jα1aKl,Jα2aKl+k

)
H (b) = H

(
b|α1,l,β1,l,α2,l,β2,l,

α2β2

α1β1
,Jβ1bKl,Jβ2bKl+k

)



128 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

Next, we will discuss the result ab. As Adversary 1 learns γ1/α1β1,γ2/α1β1 and Jγ1abKl ,
Jγ2abKl+k, it will also learn Jα1β1abK∗l ,Jα1β1abK∗l+k, being able to recover the values of
α1β1ab. With γ1/α1β1,γ2/α1β1, α1β1ab, Adversary 1 will also learn γ1ab,γ2ab. As the
random numbers α1,α2,β1,β2,γ1,γ2 are not leaked, Adversary 1 will not be able to learn the
output ab. If the recovered values γ1ab = γ2ab = 0, the adversary 1 will know that the input
for the consecutive computation is equal to 0, but it will not be able to differentiate the value
of each secret input a,b. To prevent this, we assume the following condition whose result is
used for the consecutive computation.
Condition (1): Inputs and output do not include value 0.

The same is true when assuming the colluding Adversaries 2 and 3. However, we omit
the detailed analysis here.

6.7.4 Comparison with Conventional Methods

Advantages and Disadvantages
This section compares our proposed method with the TUS 1 and TUS 2 methods in

Chapters 3 and 4, and Watanabe et al.’s method that also realizes two-party multiplication of
(k,n) threshold secret sharing. We explain in detail the advantages and disadvantages of our
method compared to the solutions in Chapters 3, 4, and Watanabe et al.’s method.

• Comparison with the TUS 1, TUS 2 methods in Chapters 3, 4, respectively.

Advantage: Multiplication of shares can be performed without any preconditions/limitations
on the input/output when assuming a non-colluding adversary (Adversary 1).

Disadvantage: n ≥ 2k encrypted shares are distributed for each input in the distribution
process.

In the TUS 1, TUS 2 methods, n ≥ k encrypted shares are generated for each input.
Moreover, multiplication under the setting of n ≥ k is performed by multiplying scalar values
with a share. However, each method requires a certain condition on the input/output even
when assuming only Adversary 1. In particular, the TUS 1 and TUS 2 methods require that
the inputs and output in multiplication do not include 0. This limitation means that each
method has limited applications.

In contrast, in the method proposed in this chapter, multiplication is realized under the
setting of n≥ 2k−1. The disadvantage of this approach is that n≥ 2k shares are generated for
each input. Hence, our protocol requires twice the amount of computational and communica-
tion costs for the distribution of the encrypted input. However, in our protocol, the shares of
encrypted inputs are multiplied without the need to reconstruct any of the encrypted inputs as
a scalar value. Therefore, no information about the input will be leaked even if one (e.g., a or
b) or both inputs are equal to 0 when assuming Adversary 1. When considering Adversaries
2 and 3, the proposed method also requires a certain limitation on the input/output.



6.7. Discussion 129

• Comparison with Watanabe et al.’s method.

Advantage: (k− 1) sharing of multiplication result ab can be computed using only N ≥ k

servers with n ≥ 2k− 1. Moreover, the proposed method allows for the repetition of multi-
plication.

Disadvantage: Communication is required in the multiplication protocol to redistribute
shares.

For all previously proposed multiplication methods with n ≥ 2k−1, at least 2k−1 shares
must be collected to reconstruct the multiplication result. This condition holds even for the
Watanabe et al.’s method, in which encrypted shares are multiplied with N ≥ k. This problem
means that the number of shares required to reconstruct the encrypted result remains 2k−1
instead of k.

In contrast, our proposed method is the only method that enables multiplication under the
setting of n ≥ 2k−1, N ≥ k and produces (k−1) instead of (2k−2) shares of ab. Thus, the
client only needs to collect k instead of 2k−1 shares to reconstruct the encrypted result ab.
This significantly reduces the communication cost, minimizing long-distance communication
between a client and computing servers.

Our method requires communication between the computing servers during multiplica-
tion to compute (k − 1) shares of ab, whereas Watanabe et al.’s method requires no com-
munication because all computations are performed locally. However, this is not a problem
because the redistribution of shares occurs only once, and cloud servers are usually config-
ured with a fast connection.

Computational Cost, Communication Cost, and Rounds
In this section, we compare computational cost, communication cost, and the number of

rounds in our proposed method with the TUS 1 solutions in Chapter 3 and Watanabe et al.’s
method (we omitted the comparison with TUS 2 method because this method focus on three-
input computation, whereas the method in this chapter focuses on two-input computation).
The parameters in Section 6.7.1 are used.

The computational cost of secret sharing C1,C2 are typically larger than the local compu-
tational costs of M,D, and A. Therefore, we omitted the costs of M,D, and A when either C1

or C2 was present in the computational cost.
Table 6.6 shows that when N = k, the computational cost for the distribution of a,b and

the reconstruction of ab of our method are significantly lower than those of the method of
Watanabe et al. and that of Chapter 3. This is because when N = k, all random numbers
used are sent/collected directly from each computing server without the need for reconstruc-
tion using Shamir’s (k,n) method as in the other two methods. However, when N > k, the
computation costs for distribution and reconstruction of the proposed method are larger than



130 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

TABLE 6.6: Comparison with conventional methods (Computational cost)

Process Proposed method
Watanabe et al’s

TUS 1 method
method

Distribution of 2C1 2(C1 +C2) 2(k+1)C2a,b ⟨2(C1 +2kC2)⟩
Multplication of 2kC2 2nM (3k+1)C2ab ⟨7kC2⟩
Reconstruction of C2 C1 +2C2 (k+1)C2ab ⟨(k+1)C2⟩

*⟨⟩ shows the computation cost required for the extension to N > k

those of Watanabe et al.’s method. Moreover, when N > k, the computational cost of multi-
plying a,b in our method is higher than that in the other two methods. This is because our
method requires the redistribution of the result of the local computation of multiplication to
all servers, whereas Watanabe et al.’s method requires only local multiplication and TUS 1
method only needs to reconstruct the random numbers and encrypted secret input of a.

Table 6.7 compares communication costs with conventional methods. The performance
of each method depends on d1,n,k. However, because our proposed method includes the
process of redistributing local shares to all servers during the multiplication process, it has
a higher communication cost than that of Watanabe et al.’s method that only requires local
computation without any communication. During the reconstruction of ab, when N = k, the
communication cost for the reconstruction of ab on our proposed method is significantly
lower than that of Watanabe et al.’s method as the polynomial degree of ab is (k−1) instead
of (2k−2). In particular, the communication cost is exactly half that required by Watanabe
et al.’s method. When extended to N > k, the communication cost required in our proposed
method to reconstruct the multiplication result ab from the encrypted shares of ab increases
and is the same as that of the method in Chapter 3. However, this trade-off means that our
method can also provide tolerance for the loss of up to N − k servers.

Finally, Table 6.8 compares the number of rounds required for each method. Because
our method includes the process of redistributing and computing random numbers, Table 6.8
shows that the number of rounds in our method is higher compared to that of Watanabe et
al.’s method but still lower than that of the method in Chapter 3 when N = k.

6.8 Chapter Summary

In this chapter, we proposed a method of multiplication of encrypted shares using only N ≥ k

servers. Furthermore, using the recombination vector, we proposed a method of computing
(k−1) shares of the encrypted multiplication result ab by using only k servers instead of



6.8. Chapter Summary 131

TABLE 6.7: Comparison with conventional methods (Communication cost)

Process Proposed method
Watanabe et al’s

TUS 1 method
method

Distribution of 8kd1 6nd1 2nd1(k+1)
a,b ⟨4Nd1(k+1)⟩
Multplication of 4kd1 +2k2d1 0 (k+n+2k2 +nk)d1ab ⟨(4k+4+3N)kd1⟩
Reconstruction of 2kd1 4kd1 (k2 + k)d1ab ⟨kd1(k+1)⟩

*⟨⟩ shows the computation cost required for the extension to N > k

TABLE 6.8: Comparison with conventional methods (rounds)

Process Proposed method
Watanabe et al’s

TUS 1 method
method

Distribution of 1
1 1

a,b ⟨1⟩
Multplication of 3

0 4
ab ⟨5⟩
Reconstruction of 1

1 1
ab ⟨1⟩

*⟨⟩ shows the computation cost required for the extension to N > k



132 Chapter 6. Multiplication of Polynomials with N < 2k−1 Servers

previously used 2k−1 servers. We also implemented our method in MATLAB and showed
that it can perform multiplications very quickly. In fact, our method performed 1,000,000
multiplications in less than 1 s.

By differentiating N (number of servers) and n (parameter of Shamir’s (k,n) method),
we showed that secure two-party computation of multiplication using Shamir’s (k,n) method
under the setting of n≥ 2k−1 is possible with only N < 2k−1 servers. The proposed method
was proven to be unconditionally secure against Adversary 1; however, it still requires some
conditions when assuming Adversary 2.



133

Chapter 7

Conclusion and Future Works

This chapter concludes our study on a secure MPC using (k,n) threshold secret sharing with
n < 2k−1 and its application into SE. First, we summarize the conclusion and contribution
of each chapter. In sequence, potential future research directions are discussed.

7.1 Conclusions

Motivated by the need for a technology that could perform computation in an encrypted state
to enable the analysis of personal information without infringing the individuals’ privacy, we
comprehensively investigated methods of secure MPC using a (k,n) threshold secret sharing
with n < 2k−1 that can realize minimal computational and operation costs. The conclusions
and contributions of this dissertation are summarized below.

Chapter 1 provided the introduction and motivation of this dissertation. After the brief
introduction of secure MPC and examples of its use, the main objective and list of contri-
butions of this dissertation were summarized. Finally, the outline of this dissertation was
presented.

Chapter 2 introduced the basic knowledge and building blocks required to understand
this dissertation. We start by explaining in detail the formal definitions for MPC. In sequence,
we showed in detail the definitions and examples for the concept of computation in a finite
field. Finally, we introduced the technology of the secret sharing and its variants, including
the detailed protocol for each variant.

Chapter 3 introduced our first approach to realizing a MPC using (k,n) threshold secret
sharing with parameter n < 2k−1 through the approach of scalar value × polynomial. After
describing the protocol, security evaluation was performed against three types of semi-honest
adversaries. We also showed that repetition of the same types of computation, such as many-
inputs multiplication and addition, is possible and secure against semi-honest adversaries.
We also showed that computation involving the combination of different types of operations



134 Chapter 7. Conclusion and Future Works

is not secure against a semi-honest adversary with knowledge of one of the inputs, output,
and information from k−1 computing servers.

Chapter 4 introduced a method to solve the problem of the MPC method in Chapter 3
and also two new conditions. After describing the protocol, we evaluated and confirmed the
security of a combination of multiple operations against semi-honest adversaries. Finally, we
also performed an analysis of the proposed method and discussed each condition.

Chapter 5 proposed a method of SE using the MPC method proposed in Chapter 4.
We proved that although the MPC method in Chapter 4 requires three conditions, it can
still be used and the conditions can be easily fulfilled depending on the types of application
assumed. We also introduced methods of conjunctive and disjunctive searches of multiple
search queries. Finally, we compared our proposed methods with conventional methods of
SE.

Chapter 6 proposed another method of MPC when n < 2k− 1 using the conventional
approach of polynomial × polynomial and introduced a new degree reduction method using
only k computing servers. We proved that the proposed method could realize secure MPC
when n < 2k−1 without any conditions when assuming Adversary 1 that controls up to k−1
computing servers. Moreover, we also showed that the proposed method is secure against the
remaining semi-honest adversaries 2 and 3 when certain conditions are assumed.

The method of MPC discussed in this dissertation could realize the computation of sen-
sitive information without the risk of information leakage. This is particularly important in
our current and future society, where data involving an individual’s personal information is
critical to improving our life quality. For example, the aim of realizing the concept of So-
ciety 5.0 in Japan has created new opportunities, such as using the computational power of
cloud computing to extract valuable statistics from big data. Society 5.0 is the concept of
a super-smart society where various social challenges can be resolved by incorporating the
innovations of the fourth industrial revolution (for example, big data, artificial intelligence,
etc.) into every industry and social life.

According to Keidanren (Japan Business Federation), the most important key to realizing
Society 5.0 is data utilization, where data such as medical information (e.g., health care
information, data from medical checkups), business systems data (e.g., customer buying data,
accounting data) and any other types of data can be utilized to improve competitiveness
between businesses, improve quality of individual life, and resolve various social issues. As
data collected may also include private information of individuals, the security of these data
must be ensured to further encourage the sharing and utilization of data.

Therefore, this dissertation can change how data can be used in a secure manner in the
future. We believe that the results obtained will be the cornerstone to secure data utilization
in the future.



7.2. Future Works 135

7.2 Future Works

This dissertation mainly aimed to realize a secure MPC using (k,n) threshold secret sharing
when n < 2k−1. However, there are several research directions for future works. We briefly
discuss the remaining and potential future works as follows.

Computation of shares of random numbers unknown to the adversary for each com-
puting server

In the proposed method shown in Chapter 4, conditions where each server holds shares
of random numbers unknown to the adversary are required to realize a secure MPC when
n < 2k − 1. The easiest manner of realizing this is to assume a TTP, which is difficult to
realize. Therefore, in a future work, we need to also consider the method of realizing this
condition with a different approach other than using a TTP.

Realizing security against a malicious adversary
When considering the application to big data, the existence of a malicious adversary

must be considered. A malicious adversary can execute any computation for corrupting and
modifying the data when executing the protocol. The secure MPC protocols proposed in this
dissertation were proven to be secure against semi-honest adversaries. In a future work, we
also need to study a mechanism to enable verification of data computed by the computing
servers to ensure that all data transmitted and computed are correct and not altered.

Realizing nearest neighbor search (NSS)
In this dissertation, we proposed an SE method that enables encrypted information to be

searched without decrypting the original information. In the future, we also need to study
the nearest neighbor search method. As a method of proximity search, the nearest neighbor
search is the optimization problem of finding the point in a given set that is closest (or most
similar) to a given point. This is particularly important when considering implementation
into areas such as machine learning.





137

Appendix A

List of Publications

A.1 Refereed Publication

Journal Papers

1. Shingu Takeshi, Ken Aoi, Ahmad Akmal Aminuddin Mohd Kamal and Keiichi Iwa-
mura. “Secure computation without changing polynomial degree in (k,n) secret shar-
ing scheme.” Journal of Information Processing (JIP), vol. 59, no. 3, pp. 1038-1049,
March 2018.

2. Ahmad Akmal Aminuddin Mohd Kamal and Keiichi Iwamura. “Conditionally se-
cure multiparty computation when n < 2k − 1.” Journal of Information Processing

(JIP), vol. 59, no. 9, pp. 1581-1595, September 2018.

3. Ahmad Akmal Aminuddin Mohd Kamal and Keiichi Iwamura. “Searchable en-
cryption using secret sharing that realizes direct search of encrypted documents and
disjunctive search of multiple keywords.” Journal of Information Security and Appli-

cations, vol. 59, pp. 102828, June 2021.

4. Ahmad Akmal Aminuddin Mohd Kamal and Keiichi Iwamura. “(Server-aided) two-
party multiplication of encrypted shares using (k,n) threshold secret sharing with N ≥
k servers.” IEEE Access, August 2021.

5. Keiichi Iwamura and Ahmad Akmal Aminuddin Mohd Kamal. “Efficient partial
matching search using error correction code.” Journal of Information Processing (JIP),
vol. 63, no. 2. (accepted for publication)

International Proceedings

1. Ahmad Akmal Aminuddin Mohd Kamal and Keiichi Iwamura. “Conditionally se-
cure multiparty computation using secret sharing scheme for n < 2k−1 (short paper).”
In Proceedings of 15th Annual Conference on Privacy, Security and Trust (PST 2017),
August 2017.



138 Appendix A. List of Publications

2. Ahmad Akmal Aminuddin Mohd Kamal and Keiichi Iwamura. “Searchable en-
cryption of image based on secret sharing scheme.” In Proceedings of Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference (AP-
SIPA ASC 2017), December 2017.

3. Ahmad Akmal Aminuddin Mohd Kamal and Keiichi Iwamura. “Searchable en-
cryption using secret sharing scheme for multiple keyword search using conjunctive
and disjunctive searching.” In Proceedings of 2019 IEEE International Conference on
Cyber Science and Technology Congress (CyberSciTech 2019), August 2019.

4. Shogo Ochiai, Keiichi Iwamura and Ahmad Akmal Aminuddin Mohd Kamal. “Se-
cure pairwise key sharing using geometric group key sharing method.” In Proceedings
of IEEE 17th Annual Consumer Communications & Networking Conference (CCNC
2020), January 2020.

5. Ahmad Akmal Aminuddin Mohd Kamal and Keiichi Iwamura. “Improvement of
secure multi-party multiplication of (k,n) threshold secret sharing using only N = k

servers.” In Proceedings of 7th International Conference on Information Systems Se-
curity and Privacy (ICISSP 2021), February 2021.

6. Keiichi Iwamura and Ahmad Akmal Aminuddin Mohd Kamal. “Secure computa-
tion by secret sharing using input encrypted with random number.” In Proceedings of
18th International Conference on Security and Cryptography (SECRYPT 2021), July
2021.

7. Keiichi Iwamura and Ahmad Akmal Aminuddin Mohd Kamal. “Efficient secret
sharing based partial matching search using error correction code.” In Proceedings of
Future Technologies Conference 2021 (FTC 2021), October 2021.



139

Appendix B

Example of computation

B.1 Computation of protocols 6.2, 6.3 and 6.4

We demonstrate the computation of multiplication between secrets a = 3 and b = 5 of Play-
ers A and B, respectively, under the setting of N = k = 2 and n = 2k = 4. Since k = 2,
multiplication of shares of a and b will produce a (2k−2) = 2 degrees (quadratic) polyno-
mials. The process of reducing the degree of polynomial from (2k−2) = 2 to (k−1) = 1
can be achieved by using the recombination vector r = (3,−3,1). All random numbers and
all computations are performed with p = 2971.

Distribution of secret inputs a,b

1. Player A generates 2k = 4 random numbers α1,0 = 2,α1,1 = 6,α2,0 = 3,α2,1 = 3 and
computes the following:

α1 = α1,0 ×α1,1 = 2×6 = 12

α2 = α2,0 ×α2,1 = 3×3 = 9

2. Player A generates n= 2k = 4 shares of secret input a= 3 using Shamir’s (2,4) method
and computes the following (here, let JaK j = 3+ x):

Jα1aK0 = α1 × JaK0 = 12×4 = 48

Jα1aK1 = α1 × JaK1 = 12×5 = 60

Jα2aK2 = α2 × JaK2 = 9×6 = 54

Jα2aK3 = α2 × JaK3 = 9×7 = 63

3. Player A sends Jα1aK0, Jα2aK2, α1,0, α2,0 to server S0 and Jα1aK1, Jα2aK3, α1,1, α2,1 to
server S1.



140 Appendix B. Example of computation

4. Player B generates 2k = 4 random numbers β1,0 = 1,β1,1 = 5,β2,0 = 8,β2,1 = 2 and
computes the following:

β1 = β1,0 ×β1,1 = 1×5 = 5

β2 = β2,0 ×β2,1 = 8×2 = 16

5. Player B generates n= 2k = 4 shares of secret input b= 5 using Shamir’s (2,4) method
and computes the following (here,let JbK j = 5+2x):

Jβ1bK0 = β1 × JbK0 = 5×7 = 35

Jβ1bK1 = β1 × JbK1 = 5×9 = 45

Jβ2bK2 = β2 × JbK2 = 16×11 = 176

Jβ2bK3 = β2 × JbK3 = 16×13 = 208

6. Player B sends Jβ1bK0, Jβ2bK2, β1,0, β2,0 to server S0 and Jβ1bK1, Jβ2bK3, β1,1, β2,1 to
server S1.

Multiplication of secret inputs a,b

1. Each server S j ( j = 0,1) computes the following:

• Server S0 computes the following:

Jα1β1abK∗0 = Jα1aK0 × Jβ1bK0 = 48×35 = 1680

Jα2β2abK∗2 = Jα2aK2 × Jβ2bK2 = 54×176 = 591

α1,0β1,0 = α1,0 ×β1,0 = 2×1 = 2

α2,0β2,0 = α2,0 ×β2,0 = 3×8 = 24

• Server S1 computes the following:

Jα1β1abK∗1 = Jα1aK1 × Jβ1bK1 = 60×45 = 2700

Jα2β2abK∗3 = Jα2aK3 × Jβ2bK3 = 63×208 = 1220

α1,1β1,1 = α1,1 ×β1,1 = 6×5 = 30

α2,1β2,1 = α2,1 ×β2,1 = 3×2 = 6

2. Each server S j ( j = 0,1) generates a random number γ j, computes the following values,
and sends them to one of the servers (here, we assume server S0):



B.1. Computation of protocols 6.2, 6.3 and 6.4 141

• Server S0 generates γ0 = 3, computes the following and sends to server S0:

γ0

α1,0β1,0
=

3
2
= 1487,

γ0

α2,0β2,0
=

3
24

= 1857

• Server S1 generates γ1 = 5, computes the following and sends to server S0:

γ1

α1,1β1,1
=

5
30

= 2476,

γ1

α2,1β2,1
=

5
6
= 496

3. Server S0 computes the following values and sends them to all servers S j ( j = 0,1):

γ

α1β1
=

γ0

α1,0β1,0
× γ1

α1,1β1,1
= 1487×2476 = 743

γ

α2β2
=

γ0

α2,0β2,0
× γ1

α2,1β2,1
= 1857×496 = 62

4. Each server S j ( j = 0,1) computes JγabK∗j ,JγabK∗j+k as follows and distributes the re-
sults using Shamir’s (2,2) method to all servers Si ( j = 0,1):

• Server S0 performs the following:

JγabK∗0 =
γ

α1β1
× Jα1β1abK∗0 = 743×1680 = 420

JγabK∗2 =
γ

α2β2
× Jα2β2abK∗2 = 62×591 = 990

Let the polynomial be JγabK∗0 = 420+2x{
JγabK0,0 = 422 → send to server S0

JγabK0,1 = 424 → send to server S1

Let the polynomial be JγabK∗2 = 990+3x{
JγabK2,0 = 993 → send to server S0

JγabK2,1 = 996 → send to server S1



142 Appendix B. Example of computation

• Server S1 performs the following:

JγabK∗1 =
γ

α1β1
× Jα1β1abK∗1 = 743×2700 = 675

JγabK∗3 =
γ

α2β2
× Jα2β2abK∗3 = 62×1220 = 1365

Let the polynomial be JγabK∗1 = 675+ x{
JγabK1,0 = 676 → send to server S0

JγabK1,1 = 677 → send to server S1

Let the polynomial be JγabK∗3 = 1365+3x{
JγabK3,0 = 1368 → send to server S0

JγabK3,1 = 1371 → send to server S1

5. Each server S j ( j = 0,1) computes the following value using recombination vector
r = (3,−3,1,0):

• Server S0 computes the following:

JγabK0 =3× JγabK0,0 +(−3)× JγabK1,0 +1× JγabK2,0 +0× JγabK3,0

=(3×422)− (3×676)+(1×993)+(0×1368)

=231

• Server S1 computes the following:

JγabK1 =3× JγabK0,1 +(−3)× JγabK1,1 +1× JγabK2,1 +0× JγabK3,1

=(3×424)− (3×677)+(1×996)+(0×1371)

=237

Reconstruction of ab

1. The player collects JγabK0, JγabK1,γ0, γ1 from k = 2 servers S0 and S1, reconstructs
γab using Shamir’s (2,2) method, and computes random number γ as follows:

γab = 225

γ = γ0 × γ1 = 3×5 = 15

2. The player reconstructs the multiplication result ab as follows:

ab =
γab
γ

=
225
15

= 15



143

References

[1] Andrei Lapets et al. Web-based multi-party computation with application to anony-

mous aggregate compensation analytics. Tech. rep. Computer Science Department,
Boston University, 2015.

[2] Prasan Kumar Sahoo, Suvendu Kumar Mohapatra, and Shih-Lin Wu. “Analyzing health-
care big data with prediction for future health condition”. In: IEEE Access 4 (2016),
pp. 9786–9799. DOI: 10.1109/ACCESS.2016.2647619.

[3] Martin Moore and Damian Tambini. Digital dominance: the power of Google, Ama-

zon, Facebook, and Apple. Oxford University Press, 2018.

[4] Nadeem Ahmed et al. “A survey of COVID-19 contact tracing apps”. In: IEEE Access

8 (2020), pp. 134577–134601. DOI: 10.1109/ACCESS.2020.3010226.

[5] Serge Vaudenay. Centralized or decentralized? The contact tracing dilemma. Cryptol-
ogy ePrint Archive, Report 2020/531. https://ia.cr/2020/531. 2020.

[6] Cristina Criddle and Leo Kelion. Coronavirus contact-tracing: world split between

two types of app. URL: https://www.bbc.com/news/technology-52355028.
(accessed: 01.01.2022).

[7] Japan Personal Information Protection Commission. Amended act on the protection

of personal information. URL: https://www.ppc.go.jp/files/pdf/APPI_
english.pdf. (accessed: 01.01.2022).

[8] David Evans, Vladimir Kolesnikov, and Mike Rosulek. “A pragmatic introduction to
secure multi-party computation”. In: Foundations and Trends® in Privacy and Secu-

rity 2.2–3 (2018), 70–246. ISSN: 2474-1558. DOI: 10.1561/3300000019.

[9] Yehuda Lindell. Secure multiparty computation (MPC). Cryptology ePrint Archive,
Report 2020/300. https://ia.cr/2020/300. 2020.

[10] Andrew C. Yao. “Protocols for secure computations”. In: 23rd Annual Symposium on

Foundations of Computer Science (SFCS 1982). 1982, pp. 160–164. DOI: 10.1109/
SFCS.1982.38.

[11] Sophia Yakoubov. “A gentle introduction to Yao’s Garbled circuits”. In: preprint on

webpage at https://web. mit. edu/sonka89/www/papers/2017ygc. pdf (2017).

https://doi.org/10.1109/ACCESS.2016.2647619
https://doi.org/10.1109/ACCESS.2020.3010226
https://ia.cr/2020/531
https://www.bbc.com/news/technology-52355028
https://www.ppc.go.jp/files/pdf/APPI_english.pdf
https://www.ppc.go.jp/files/pdf/APPI_english.pdf
https://doi.org/10.1561/3300000019
https://ia.cr/2020/300
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38


144 References

[12] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness theorems for
non-cryptographic fault-tolerant distributed computation”. In: STOC ’88. Chicago,
Illinois, USA: Association for Computing Machinery, 1988, 1–10. ISBN: 0897912640.
DOI: 10.1145/62212.62213.

[13] Adi Shamir. “How to share a secret”. In: Communication of the ACM 22.11 (1979),
612–613. ISSN: 0001-0782. DOI: 10.1145/359168.359176.

[14] Dahlia Malkhi et al. “Fairplay—A secure two-party computation system”. In: 13th

USENIX Security Symposium (USENIX Security 04). San Diego, CA: USENIX Asso-
ciation, 2004.

[15] Dan Bogdanov, Sven Laur, and Jan Willemson. “Sharemind: A framework for fast
privacy-preserving computations”. In: Computer Security - ESORICS 2008. Ed. by
Sushil Jajodia and Javier Lopez. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 192–206. ISBN: 978-3-540-88313-5.

[16] Wenliang Du and Mikhail J. Atallah. “Protocols for secure remote database access
with approximate matching”. In: E-Commerce Security and Privacy. Ed. by Anup K.
Ghosh. Boston, MA: Springer US, 2001, pp. 87–111. ISBN: 978-1-4615-1467-1. DOI:
10.1007/978-1-4615-1467-1_6.

[17] Craig Gentry. “A fully homomorphic encryption scheme”. AAI3382729. PhD thesis.
Stanford, CA, USA, 2009. ISBN: 9781109444506.

[18] NEC Corporation. NEC and Osaka University demonstrate possibility of analyzing

genome information from multiple institutions with reduced risk of privacy infringe-

ment using secure computation of encrypted data. URL: https://www.nec.com/en/
press/201907/global_20190723_03.html. (accessed: 01.01.2022).

[19] Ivan Damgård et al. “Multiparty computation from somewhat homomorphic encryp-
tion”. In: Advances in Cryptology – CRYPTO 2012. Ed. by Reihaneh Safavi-Naini
and Ran Canetti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 643–662.
ISBN: 978-3-642-32009-5.

[20] Donald Beaver. “Efficient multiparty protocols using circuit randomization”. In: Ad-

vances in Cryptology — CRYPTO ’91. Ed. by Joan Feigenbaum. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1992, pp. 420–432. ISBN: 978-3-540-46766-3.

[21] Monique Ogburn, Claude Turner, and Pushkar Dahal. “Homomorphic encryption”.
In: Procedia Computer Science 20 (2013). Complex Adaptive Systems, pp. 502–509.
ISSN: 1877-0509. DOI: 10.1016/j.procs.2013.09.310.

[22] Koki Hamada et al. “MEVAL: A practically efficient system for secure multi-party
statistical analysis”. In: Workshop on Applied Multi-Party Computation. 2014.

https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-1-4615-1467-1_6
https://www.nec.com/en/press/201907/global_20190723_03.html
https://www.nec.com/en/press/201907/global_20190723_03.html
https://doi.org/10.1016/j.procs.2013.09.310


References 145

[23] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. “Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography”. In: Proceed-

ings of the Seventeenth Annual ACM Symposium on Principles of Distributed Com-

puting. PODC ’98. Puerto Vallarta, Mexico: Association for Computing Machinery,
1998, 101–111. ISBN: 0897919777. DOI: 10.1145/277697.277716.

[24] Toshinori Araki et al. “High-throughput semi-honest secure three-party computation
with an honest majority”. In: Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security. CCS ’16. Vienna, Austria: Association
for Computing Machinery, 2016, 805–817. ISBN: 9781450341394. DOI: 10.1145/
2976749.2978331.

[25] Peter Bogetoft et al. “Secure multiparty computation goes live”. In: Financial Cryp-

tography and Data Security. Ed. by Roger Dingledine and Philippe Golle. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2009, pp. 325–343. ISBN: 978-3-642-03549-4.

[26] Will Kenton. Clearing price. URL: https://www.investopedia.com/terms/c/
clearingprice.asp. (accessed: 01.01.2022).

[27] Partisia. URL: https://partisia.com. (accessed: 01.01.2022).

[28] Boston women’s workforce council (BWWC). Wage gap studies. URL: https://
thebwwc.org/wage-gap-studies. (accessed: 01.01.2022).

[29] Andrei Lapets et al. “Secure MPC for analytics as a web application”. In: 2016 IEEE

Cybersecurity Development (SecDev). 2016, pp. 73–74. DOI: 10 . 1109 / SecDev .
2016.027.

[30] Unbound Security. CORE key management. URL: https://www.unboundsecurity.
com/solutions/key-management/. (accessed: 01.01.2022).

[31] Victor Shoup. “Practical threshold signatures”. In: Proceedings of the 19th Interna-

tional Conference on Theory and Application of Cryptographic Techniques. EURO-
CRYPT’00. Bruges, Belgium: Springer-Verlag, 2000, 207–220. ISBN: 3540675175.

[32] Cinnamon S Bloss, Dilip V Jeste, and Nicholas J Schork. “Genomics for disease treat-
ment and prevention”. In: Psychiatric Clinics 34.1 (2011), pp. 147–166.

[33] Rikke Bendlin et al. “Semi-homomorphic encryption and multiparty computation”. In:
Advances in Cryptology – EUROCRYPT 2011. Ed. by Kenneth G. Paterson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 169–188. ISBN: 978-3-642-20465-
4.

[34] Zvika Brakerski and Vinod Vaikuntanathan. “Fully homomorphic encryption from
ring-LWE and security for key dependent messages”. In: Advances in Cryptology –

CRYPTO 2011. Ed. by Phillip Rogaway. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 505–524. ISBN: 978-3-642-22792-9.

https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331
https://www.investopedia.com/terms/c/clearingprice.asp
https://www.investopedia.com/terms/c/clearingprice.asp
https://partisia.com
https://thebwwc.org/wage-gap-studies
https://thebwwc.org/wage-gap-studies
https://doi.org/10.1109/SecDev.2016.027
https://doi.org/10.1109/SecDev.2016.027
https://www.unboundsecurity.com/solutions/key-management/
https://www.unboundsecurity.com/solutions/key-management/


146 References

[35] Ivan Damgård et al. “Practical covertly secure MPC for dishonest majority – or: break-
ing the SPDZ limits”. In: Computer Security – ESORICS 2013. Ed. by Jason Cramp-
ton, Sushil Jajodia, and Keith Mayes. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–18. ISBN: 978-3-642-40203-6.

[36] Marcel Keller, Valerio Pastro, and Dragos Rotaru. “Overdrive: making SPDZ great
again”. In: Advances in Cryptology – EUROCRYPT 2018. Ed. by Jesper Buus Nielsen
and Vincent Rijmen. Cham: Springer International Publishing, 2018, pp. 158–189.
ISBN: 978-3-319-78372-7.

[37] David Chaum, Claude Crépeau, and Ivan Damgard. “Multiparty unconditionally se-
cure protocols”. In: Proceedings of the Twentieth Annual ACM Symposium on Theory

of Computing. STOC ’88. Chicago, Illinois, USA: Association for Computing Ma-
chinery, 1988, 11–19. ISBN: 0897912640. DOI: 10.1145/62212.62214.

[38] Koji Chida et al. “Fast large-scale honest-majority MPC for malicious adversaries”.
In: Advances in Cryptology – CRYPTO 2018. Ed. by Hovav Shacham and Alexandra
Boldyreva. Cham: Springer International Publishing, 2018, pp. 34–64. ISBN: 978-3-
319-96878-0.

[39] Ronald Cramer, Ivan Damgård, and Ueli Maurer. “General secure multi-party com-
putation from any linear secret-sharing scheme”. In: Advances in Cryptology — EU-

ROCRYPT 2000. Ed. by Bart Preneel. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 316–334. ISBN: 978-3-540-45539-4.

[40] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party com-

putation. Cryptology ePrint Archive, Report 2011/272. https://ia.cr/2011/272.
2011.

[41] Payman Mohassel, Ostap Orobets, and Ben Riva. “Efficient server-aided 2PC for mo-
bile phones”. In: Proceedings on Privacy Enhancing Technologies 2016.2 (2016),
pp. 82–99.

[42] Satsuya Ohata and Koji Nuida. “Communication-efficient (client-aided) secure two-
party protocols and its application”. In: Financial Cryptography and Data Security.
Ed. by Joseph Bonneau and Nadia Heninger. Cham: Springer International Publishing,
2020, pp. 369–385. ISBN: 978-3-030-51280-4.

[43] Taihei Watanabe, Keiichi Iwamura, and Kitahiro Kaneda. “Secrecy multiplication based
on a (k, n)-threshold secret-sharing scheme using only k servers”. In: Computer Sci-

ence and its Applications. Ed. by James J. (Jong Hyuk) Park et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 107–112. ISBN: 978-3-662-45402-2.

[44] Ryo Kikuchi and Dai Ikarashi. “Progress of secure computation: basic constructions
and dedicated algorithms”. In: IEICE ESS Fundamentals Review 12.1 (2018), pp. 12–
20.

https://doi.org/10.1145/62212.62214
https://ia.cr/2011/272


References 147

[45] Cybernetica. Sharemind. URL: https://sharemind.cyber.ee/. (accessed: 01.01.2022).

[46] Brilliant.org. Lagrange interpolation. URL: https://brilliant.org/wiki/extended-
euclidean-algorithm. (accessed: 01.01.2022).

[47] G. R. Blakley. “Safeguarding cryptographic keys”. In: 1979 International Workshop

on Managing Requirements Knowledge (MARK). 1979, pp. 313–318. DOI: 10.1109/
MARK.1979.8817296.

[48] Jun Kurihara et al. “A new (k,n)-threshold secret sharing scheme and its extension”.
In: Information Security. Ed. by Tzong-Chen Wu et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 455–470. ISBN: 978-3-540-85886-7.

[49] Donald Beaver. “Commodity-based cryptography”. In: Proceedings of the twenty-

ninth annual ACM symposium on Theory of computing. 1997, pp. 446–455.

[50] Dawn Xiaoding Song, D. Wagner, and A. Perrig. “Practical techniques for searches on
encrypted data”. In: Proceeding 2000 IEEE Symposium on Security and Privacy. S&P

2000. 2000, pp. 44–55. DOI: 10.1109/SECPRI.2000.848445.

[51] Dan Boneh et al. “Public key encryption with keyword search”. In: Advances in Cryp-

tology - EUROCRYPT 2004. Ed. by Christian Cachin and Jan L. Camenisch. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 506–522. ISBN: 978-3-540-24676-
3.

[52] Philippe Golle, Jessica Staddon, and Brent Waters. “Secure conjunctive keyword search
over encrypted data”. In: Applied Cryptography and Network Security. Ed. by Markus
Jakobsson, Moti Yung, and Jianying Zhou. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2004, pp. 31–45. ISBN: 978-3-540-24852-1.

[53] Dong Jin Park, Kihyun Kim, and Pil Joong Lee. “Public key encryption with conjunc-
tive field keyword search”. In: Information Security Applications. Ed. by Chae Hoon
Lim and Moti Yung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 73–86.
ISBN: 978-3-540-31815-6.

[54] Yan-Cheng Chang and Michael Mitzenmacher. “Privacy preserving keyword searches
on remote encrypted data”. In: Applied Cryptography and Network Security. Ed. by
John Ioannidis, Angelos Keromytis, and Moti Yung. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 442–455. ISBN: 978-3-540-31542-1.

[55] Reza Curtmola et al. “Searchable symmetric encryption: improved definitions and ef-
ficient constructions”. In: Journal of Computer Security 19.5 (2011), pp. 895–934.

[56] Jin Wook Byun, Dong Hoon Lee, and Jongin Lim. “Efficient conjunctive keyword
search on encrypted data storage system”. In: Public Key Infrastructure. Ed. by Andrea
S. Atzeni and Antonio Lioy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 184–196. ISBN: 978-3-540-35152-8.

https://sharemind.cyber.ee/
https://brilliant.org/wiki/extended-euclidean-algorithm
https://brilliant.org/wiki/extended-euclidean-algorithm
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1109/SECPRI.2000.848445


148 References

[57] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. “Keyword field-free conjunctive
keyword searches on encrypted data and extension for dynamic groups”. In: Cryptol-

ogy and Network Security. Ed. by Matthew K. Franklin, Lucas Chi Kwong Hui, and
Duncan S. Wong. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 178–195.
ISBN: 978-3-540-89641-8.

[58] Bo Zhang and Fangguo Zhang. “An efficient public key encryption with conjunctive-
subset keywords search”. In: Journal of Network and Computer Applications 34.1
(2011), pp. 262–267. ISSN: 1084-8045. DOI: 10.1016/j.jnca.2010.07.007.

[59] Koji Nuida. “Privacy-preserving datase search protocol for chemical compounds with
additive-homomorphic encryption”. In: Proceedings Computer Security Symposium

2012, Oct. 2012.

[60] Kaoru Kurosawa and Yasuhiro Ohtaki. “UC-secure searchable symmetric encryption”.
In: Financial Cryptography and Data Security. Ed. by Angelos D. Keromytis. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 285–298. ISBN: 978-3-642-32946-
3.

[61] David Cash et al. “Highly-scalable searchable symmetric encryption with support for
Boolean queries”. In: Advances in Cryptology – CRYPTO 2013. Ed. by Ran Canetti
and Juan A. Garay. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 353–
373. ISBN: 978-3-642-40041-4.

[62] Kaoru Kurosawa. “Garbled searchable symmetric encryption”. In: Financial Cryptog-

raphy and Data Security. Ed. by Nicolas Christin and Reihaneh Safavi-Naini. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 234–251. ISBN: 978-3-662-45472-
5.

[63] Chenggen Song, Xin Liu, and Yalong Yan. “Efficient public key encryption with field-
free conjunctive keywords search”. In: Trusted Systems. Ed. by Moti Yung, Liehuang
Zhu, and Yanjiang Yang. Cham: Springer International Publishing, 2015, pp. 394–406.
ISBN: 978-3-319-27998-5.

[64] Yi Yang et al. “Secure dynamic searchable symmetric encryption with constant docu-
ment update cost”. In: 2014 IEEE Global Communications Conference. 2014, pp. 775–
780. DOI: 10.1109/GLOCOM.2014.7036902.

[65] Yang Yang and Maode Ma. “Conjunctive keyword search with designated tester and
timing enabled proxy re-encryption function for e-health clouds”. In: IEEE Transac-

tions on Information Forensics and Security 11.4 (2016), pp. 746–759. DOI: 10.1109/
TIFS.2015.2509912.

https://doi.org/10.1016/j.jnca.2010.07.007
https://doi.org/10.1109/GLOCOM.2014.7036902
https://doi.org/10.1109/TIFS.2015.2509912
https://doi.org/10.1109/TIFS.2015.2509912


References 149

[66] Ahmad Akmal Aminuddin Mohd Kamal, Keiichi Iwamura, and Hyunho Kang. “Search-
able encryption of image based on secret sharing scheme”. In: 2017 Asia-Pacific Sig-

nal and Information Processing Association Annual Summit and Conference (APSIPA

ASC). 2017, pp. 1495–1503. DOI: 10.1109/APSIPA.2017.8282269.

[67] Shi-Feng Sun et al. “Practical backward-secure searchable encryption from symmet-
ric puncturable encryption”. In: Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security. CCS ’18. Toronto, Canada: Association
for Computing Machinery, 2018, 763–780. ISBN: 9781450356930. DOI: 10.1145/
3243734.3243782.

[68] Peiming Xu et al. “Practical multi-keyword and Boolean search over encrypted e-mail
in cloud server”. In: IEEE Transactions on Services Computing 14.6 (2021), pp. 1877–
1889. DOI: 10.1109/TSC.2019.2903502.

[69] Jin Li et al. “Searchable symmetric encryption with forward search privacy”. In: IEEE

Transactions on Dependable and Secure Computing 18.1 (2021), pp. 460–474. DOI:
10.1109/TDSC.2019.2894411.

[70] A Waseda and R Nojima. “Consideration for IT secure password protected secret shar-
ing”. In: IEICE Technical report, Information theory 111.454 (2012), pp. 41–43.

[71] Xueqiao Liu et al. “Multi-user verifiable searchable symmetric encryption for cloud
storage”. In: IEEE Transactions on Dependable and Secure Computing 17.6 (2020),
pp. 1322–1332. DOI: 10.1109/TDSC.2018.2876831.

[72] Kentaro Tsujishita and Keiichi Iwamurra. “Password-protected secret sharing scheme
with the same threshold in distribution and restoration”. In: 2018 Fourth International

Conference on Mobile and Secure Services (MobiSecServ). 2018, pp. 1–5. DOI: 10.
1109/MOBISECSERV.2018.8311441.

[73] Amos Beimel. “Secret-sharing schemes: a survey”. In: Coding and Cryptology. Ed. by
Yeow Meng Chee et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 11–
46. ISBN: 978-3-642-20901-7.

[74] Whitfield Diffie and Martin Hellman. “New directions in cryptography”. In: IEEE

transactions on Information Theory 22.6 (1976), pp. 644–654.

[75] Hans Delfs and Helmut Knebl. “Symmetric-key encryption”. In: Introduction to Cryp-

tography. Springer, 2007, pp. 11–31.

[76] F Hori and W Kishimoto. “Public key encryption with delegated search expanded to
a multi-user system”. In: 2016 Symposium on Cryptography and Information Security

(SCIS 2016).(In Japanese). 2016.

[77] Ronald Cramer, Ivan Bjerre Damgård, et al. Secure multiparty computation. Cam-
bridge University Press, 2015.

https://doi.org/10.1109/APSIPA.2017.8282269
https://doi.org/10.1145/3243734.3243782
https://doi.org/10.1145/3243734.3243782
https://doi.org/10.1109/TSC.2019.2903502
https://doi.org/10.1109/TDSC.2019.2894411
https://doi.org/10.1109/TDSC.2018.2876831
https://doi.org/10.1109/MOBISECSERV.2018.8311441
https://doi.org/10.1109/MOBISECSERV.2018.8311441


150 References

[78] Benny Chor and Eyal Kushilevitz. “A zero-one law for Boolean privacy”. In: SIAM

Journal on Discrete Mathematics 4.1 (1991), pp. 36–47. DOI: 10.1137/0404004.

[79] Gilad Asharov and Yehuda Lindell. “A full proof of the BGW protocol for perfectly
secure multiparty computation”. In: Journal of Cryptology 30.1 (2017), pp. 58–151.

[80] Martin Hirt. “Multi-Party Computation: Efficient Protocols, General Adversaries, and
Voting”. Reprint as vol. 3 of ETH Series in Information Security and Cryptogra-
phy, ISBN 3-89649-747-2, Hartung-Gorre Verlag, Konstanz, 2001. PhD thesis. ETH
Zurich, Sept. 2001.

[81] Seny Kamara, Payman Mohassel, and Ben Riva. “Salus: a system for server-aided se-
cure function evaluation”. In: Proceedings of the 2012 ACM Conference on Computer

and Communications Security. CCS ’12. Raleigh, North Carolina, USA: Association
for Computing Machinery, 2012, 797–808. ISBN: 9781450316514. DOI: 10.1145/
2382196.2382280.

[82] Pille Pullonen, Dan Bogdanov, and Thomas Schneider. “The design and implementa-
tion of a two-party protocol suite for Sharemind 3”. In: CYBERNETICA Institute of

Information Security, Tech. Rep 4 (2012), p. 17.

[83] R. Canetti. “Universally composable security: a new paradigm for cryptographic pro-
tocols”. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science.
2001, pp. 136–145. DOI: 10.1109/SFCS.2001.959888.

https://doi.org/10.1137/0404004
https://doi.org/10.1145/2382196.2382280
https://doi.org/10.1145/2382196.2382280
https://doi.org/10.1109/SFCS.2001.959888

	Acknowledgements
	Introduction
	Background of Research
	Concept of Multiparty Computation
	Introduction and Brief Timeline
	MPC Use Cases

	Techniques of Realizing MPC
	Problem of MPC using (k, n) Threshold Secret Sharing
	Objective and Contributions
	Dissertation Outline

	Basic Definitions and Building Blocks
	Definitional Parameters in MPC
	Finite Field
	Computation in the Finite Field
	Lagrange Interpolation
	Secret Sharing
	Additive Secret Sharing
	(k,n) Threshold Secret Sharing


	A Conditionally Secure MPC using (k, n) Threshold Secret Sharing
	Introduction
	Related Work: SPDZ Method
	Proposed Method: TUS 1 Method
	Overview of TUS 1 Method
	Protocol of TUS 1 Method
	Security of TUS 1 Method

	Extension of TUS 1 Method
	Many-Inputs Multiplication
	Many-Inputs Addition/Subtraction

	Limitation of the TUS 1 Method
	Discussion
	Computational and Communication Costs of TUS 1 Method
	Qualitative Comparison with SPDZ Method
	Quantitative Comparison with SPDZ Method

	Chapter Summary

	An Improved Conditionally Secure MPC
	Introduction
	Proposed Method: TUS 2 Method
	Overview of TUS 2 Method
	Protocol of TUS 2 Method
	Security of TUS 2 method

	Extension of TUS 2 Method: Combination of Multiple Product-Sum Operation
	Extended Method
	Security of Extended Method

	Discussion
	Qualitative Comparison with TUS 1 and SPDZ Methods
	Quantitative Comparison with TUS 1 and SPDZ Methods
	Discussion about Conditions

	Chapter Summary

	Application of MPC: Searchable Encryption of Documents
	Introduction
	Building Block: Overview of Secure MPC
	Related Work
	SE Using Symmetric Key Encryption
	SE Using Public Key Encryption
	SE Using Secret Sharing

	Proposed Method: Conjunctive Search
	Overview of Conjunctive Search
	Protocol of Conjunctive Search (when n=k)
	Security of Conjunctive Search
	Extension of Conjunctive Search (when n>k)

	Proposed Method: Conjunctive and Disjunctive Searches
	Overview of Conjunctive and Disjunctive Searches
	Protocol of Conjunctive and Disjunctive Searches (when n=k)
	Security of Conjunctive and Disjunctive Searches

	Discussion
	Comparison with Conventional SEs
	Adaptation of the Proposed Methods
	Acceptable Information Leakage of SE

	Chapter Summary

	Multiplication of Polynomials with N<2k-1 Servers
	Introduction
	System Model and Adversary
	Related Work
	Two-party Multiplication Using Shamir’s (k, n) Method
	Multiplication of Shares Using the Recombination Vector
	Watanabe et el.'s Method

	Proposed Method: Multiplication of Two Polynomials (when N=k)
	Overview of Proposed Method
	Protocol of Proposed Method
	Security of Proposed Method

	Extension of Proposed Method (when N>k)
	Protocol of the Extended Method
	Security of the Extended Method

	Limitation of the Proposed Method
	Discussion
	Computational and Communication Costs
	Experimental Implementation of Proposed Method
	Repetition of Multiplication
	Comparison with Conventional Methods

	Chapter Summary

	Conclusion and Future Works
	Conclusions
	Future Works

	List of Publications
	Refereed Publication

	Example of computation
	Computation of protocols 6.2, 6.3 and 6.4

	References

