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Chapter 1

Introduction

One-sample and two-sample testing problems are important topics in statistics. Samples are com-

pared using conventional tests based on the assumption that a single population or a population

of differences between pairs is normal. Researchers commonly assume a normal distribution when

they analyse the experimental data. However, the assumption of normality is often inappropriate

in practice. As Büning (1997) and Nanna and Sawilowsky (1998) pointed out, normality is the

exception rather than the rule. Micceri (1989) investigated 440 large research data sets in psy-

chology. Regarding symmetry and tails, less than 7% of these data sets were similar to a normal

distribution. As a matter of fact, every data set was non-normal at the 1% significance level. Hence,

the nonparametric procedure is required when normality cannot clearly be assumed for a specific

distribution. In the 1940s, the rank-based approach emerged. Initiated by Wilcoxon (1945), vari-

ous nonparametric tests were subsequently developed by Mann and Whitney (1947), Mood (1954),

Ansari and Bradley (1960), and many others. In the 1950s and 1960s, Pitman (1948), Hodges and

Lehmann (1956), and Chernoff and Savage (1958) showed that nonparametric tests have desirable

efficiency properties relative to their parametric counterparts. Their work has contributed to the

use of nonparametric methods in experimental design and regression analysis. Several statistical

resampling methods, such as the jackknife and the bootstrap introduced by Efron (1979), devel-

oped since the 1980s, make use of the computational power of computers to provide standard errors

and confidence intervals in many applications, including complicated ones where it is difficult, if

not impossible, to use a parametric approach. Nowadays, with enhanced computer performance,

nonparametric methods have become the mainstream analysis method.

When inferences are related only to the population of differences between paired observations,

the first step in the analysis is typically to consider the differences between the paired observations so

that only a single set of observations is left. Therefore, this type of data may be legitimately classified

as a one-sample problem. Conventional tests are derived based on the assumption that the single

population or the population of differences within pairs is normal. In nonparametric procedures,

the Wilcoxon signed-rank and the sign tests are commonly used for the location alternative, see,

e.g., Gibbons and Chakraborti (2011). These two tests consist of test statistics based on the ranks

of the data and associated estimates and confidence intervals for location parameters. The test
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statistics are distribution-free because the null distribution does not depend on the distribution of

errors. Furthermore, these procedures display both robustness of validity and power. In recent

years, these nonparametric methods have been extended to linear and nonlinear models by using

the pseudo-norm defined by the signed-rank scores. For more details, see Hettmansperger and

McKean (2010). In addition, the Wilcoxon signed-rank test has been extended and applied to

various data structures. For example, Rosner et al. (2006) extended the Wilcoxon signed-rank test

to clustered data. Clustered data are characterized as data that can be classified into a number of

distinct groups within a particular study. Examples of clustered data include electrophysiological

or optical recordings taken from synaptic terminals, repeated measurement of blood pressure from

a single individual, responses of litter mates in an experiment using rodents, or body mass index

of siblings. Recently, Rosenblatt and Benjamini (2018) compared the performance of the t-test

and the Wilcoxon signed-rank test under mixture alternatives, and results show that the Wilcoxon

signed-rank test is more useful than the t-test when normality cannot be assumed. The Bayesian

analysis for the Wilcoxon signed-rank test has also been considered by Benavoli et al. (2014) and

Chechile (2018).

Supposing assumptions can be made concerning the forms of the underlying populations and

assuming that the difference between the two populations is with respect to the means only, then, the

population can be treated as a two-sample location problem. If it is assumed that both populations

follow the normal distribution, the famous and the powerful test for equality of means is the two-

sample Student’s t-test. As in the case of one-sample problems, if there is not enough information

about the underlying distribution, the nonparametric procedure is desirable. There are many good

and simple nonparametric tests for the two-sample location problem based on ranks. Since the ranks

of the first sample relative to the ranks of the second sample provide information on the population

medians, many researchers have proposed various score functions to reflect the difference of samples

adequately. One of the most famous and powerful nonparametric two-sample tests is the Wilcoxon

rank-sum test (Wilcoxon, 1945). Note that the rank-sum test was first proposed by Deuchler (1914)

and discovered independently by Mann and Whitney (1947). Under the non-normal population

distribution, the Wilcoxon rank-sum test is more powerful than the t-test for the location alternative

as shown in Hodges and Lehmann (1956) and Neave and Granger (1968). The asymptotic relative

efficiency (ARE) of the Wilcoxon rank-sum test to the t-test is about 95.5% under the assumption

of normal populations differing in location. The ARE of the t-test may exceed one for non-normal

cases. In addition, Hodges and Lehmann (1956) show that the ARE of the Wilcoxon rank-sum test

relative to that of the t-test never falls below 0.864. For a linear rank test, Goria (1980) derived the

distribution for which the test is locally most powerful. They showed that the Wilcoxon rank-sum

score is the locally most powerful test when the logistic distribution is assumed. Therefore, the

Wilcoxon rank-sum test is useful when the underlying distribution cannot be assumed.

In the nonparametric method, an asymptotic theory is constructed for a large sample size and the

performance is compared with other nonparametric and parametric tests. Both Pitman efficiency

and the ARE, which are given by Pitman (1948) and Noether (1955), are often used to compare
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the performance of two or more tests. In addition, it is necessary to calculate the critical value of

the test statistic or the p-value when testing a problem. Therefore, deriving the asymptotic and the

limiting null distributions have historically played an important role in the field of statistics. With

nonparametric methods, obtaining the exact critical value is often difficult for large sample sizes

due to extensive calculations. Under the circumstances, the distribution of the statistic has to be

approximated. The use of the asymptotic distribution has been studied as an approximation for the

statistic, and many researchers have carried out simulations to determine whether the asymptotic

theory works well. Some have devised ways to improve the order of the approximation. Edgeworth

(1905) provided a similar expansion as an improvement to the central limit theorem. The Edgeworth

expansion can estimate the error between the exact distribution of the standardized statistic and

the standard normal distribution. Cornish and Fisher (1938) proposed an alternative expansion.

The Edgeworth expansion and the Cornish-Fisher expansion, which approximate the distribution

by a function depending on the number of samples, have been studied and applied to complex

statistics. When the first few moments are known, the Edgeworth expansion can be used and

this method is often satisfactory in practice. However, the Edgeworth expansion has the drawback

that the approximation can assume negative values in the tail regions of the distribution. Daniels

(1954) introduced an approximation method by using the inversion of the characteristic function,

so called the saddlepoint approximation. The error of the saddlepoint approximation is O(n−1)

compared to the more usual O(n−1/2) associated with the normal approximation. Note that Monti

(1993) shows the relationship between the Edgeworth expansion and saddlepoint approximations.

In the literature, the saddlepoint approximation has been used with great success and discussed

by many authors, e.g. Daniels (1987), Easton and Ronchetti (1986), Reid (1988), Jensen (1995),

Goutis and Casella (1999), Huzurbazar (1999), Kolassa (2006), Butler (2007), and Eisinga et al.

(2013). For the two-sample nonparametric statistics, Froda and van Eeden (2000) proposed a

uniform saddlepoint expansion to the null distribution of the Wilcoxon rank-sum test, and Bean

et al. (2004) compared the saddlepoint approximation of the Wilcoxon rank-sum test with that of

Edgeworth, and determined normal and uniform approximations. In addition, Murakami (2010) and

Murakami and Kamakura (2009) proposed a saddlepoint approximation to the distribution of the

Bagai statistic (Bagai et al., 1989) and Jonckheere-Terpstra statistic (Jonckheere, 1954; Tertpstra,

1952), respectively.

One of the most important properties of the nonparametric test is the unbiasedness. The

alternative hypothesis is typically more important to researchers than the null hypothesis as the

former describes their scientific conjecture. In addition, the power of the test should be sensitive to

the magnitude of the effect. Higher effects are needed if the power of the biased test reaches the same

power as the unbiased test. The biased test is not sensitive to the magnitude of the effect. Thus, if

the test rejects the null hypothesis with a probability of less than the significance level under the

alternative of interest, it is unlikely that the test can be recommended to researchers. As Jurečková

et al. (2019) indicated, the finite sample unbiasedness of some tests is still an open question. For the

one-sample problem, Lehmann and Romano (2005) showed that both the Wilcoxon signed-rank and
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sign tests are unbiased with regard to the one-sided alternative. Amrhein (1995) provided a counter

example of the Wilcoxon signed rank test, which is not unbiased with respect to the two-sided

alternative. However, Lehmann and Romano (2005) mentioned that it is not known whether these

results are admissible within the class of all rank tests. Therefore, the unbiasedness has to be proved

for each test. Many one-sample goodness-of-fit tests are not the unbiased test. For example, Massey

(1950), Thompson (1966), and Frey (2009) showed that the Kolmogorov-Smirnov test, the Cramér-

von Mises test, and the weighted Kolmogorov-Smirnov test are not the unbiased test, respectively.

Moreover, Ding et al. (2010) showed that neither the Berk-Jones test (Berk and Jones, 1979) nor the

reversed Berk-Jones test (Jager and Wellner, 2007) are unbiased test by focusing on the structure

of the confidence bands. Then, Hanyuda and Murakami (2021) composed the unbiased Berk-Jones

test and reversed Berk-Jones test by applying the algorithm of Frey (2009). Since the biased test

is considered undesirable, it is important to construct an unbiased test with a bias correction if the

test is not unbiased.

There are different kinds of nonparametric tests. The Wilcoxon rank-sum test is powerful for

symmetric distributions with medium or large tails. In particular, the Wilcoxon rank-sum test is the

locally most powerful test when the underlying distribution is the logistic distribution. However, in

a nonparametric model, it is not known whether the distributions are symmetric or not, whether

they have short or heavy tails. Hájek et al. (1999) specified the locally optical score function which

depends on the underlying distribution function and the corresponding density function. Hogg

(1974) and Büning (1991) introduced a method to choose between pre-selected score functions.

The statistics has to be selected before a test can be performed. Then, Büning (1996) proposed a

selector for the adaptive test for two-sample problems by using measures from the order statistics.

In addition, the researcher can use tests that are unbiased with respect to the two-sided alternative

described above by choosing the appropriate statistic.

Sums of random variables also arise naturally in many application areas: for example, analysis

of wireless communications; PERT networks; software reliability estimation; project management

processes; to mention but a few. Then, many researchers derive and approximate the distribution

of the sum of random variables for various distributions. For example, the sum of weighted χ2

random variables appears in many important problems in statistics. Various statistical inferences

lead to the problem of evaluating the probability of the sum of weighted χ2 random variables.

Computational methods including numerical inversion of the characteristic function of the sum of

weighted χ2 variables for various approximations were reviewed in Solomon and Stephens (1977).

Furthermore, the theoretical approach of an approximation was presented along with an easily

implementable algorithm in Gabler and Wolff (1987). A review of the current state for the sum

of weighted non-central χ2 random variables can be found in Duchesne and De Micheaux (2010),

and methods for computing the cumulative distribution function of a single non-central χ2 random

variable are described in Ding (1992); Farebrother (1987); Penev and Raykov (2000). Recently,

Miyazaki and Murakami (2020) considered the Fourier series approximation to the distribution of

the sum of weighted non-central χ2 random variables.
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The distributions of sum, minima and maxima of generalized geometric random variables are

considered when applying other distributions (Tank and Eryilmaz, 2015). The sum of indepen-

dent, albeit not necessarily identical uniformly distributed random variables, arises naturally in the

aggregation of scaled values with differing numbers of significant figures. The distribution of the

sum of uniform random variables was obtained by Olds (1952) using the mathematical induction

method. In addition, Bradley and Gupta (2002) derived the explicit formulae for the distribution

by inverting the characteristic function. In a different approach, Sadooghi-Alvandi et al. (2009)

determined this distribution by employing a Laplace transform, seemingly utilizing prior knowledge

of the result. Potuschak and Müller (2009) provided a simplified derivation of the distribution of

the sum of independent and non-identically distributed (inid) uniform random variables via an in-

verse Fourier transform. Mathai (1982) obtained the distribution of the sum of inid gamma random

variables, and Moschopoulos (1985) provided an expression for the single gamma series, computing

the coefficients using simple recursive relations. Since the square of a Nakagami random variable

(Nakagami, 1960) follows a gamma distribution, the sum of inid gamma random variables is required

in wireless communications. Alouini et al. (2001) considered applying Moschopoulos’s approach to

the distribution of the sum of correlated gamma random variables. In summary, determination of

the distribution of the sum of inid random variables is an important topic in many scientific fields,

see e.g., Nadarajah (2008).

The exponential distribution has been widely applied in many scientific fields. Kamps (1990)

characterized the exponential distribution as a distribution of a weighted sum of independent,

identically distributed random variables. Khuong and Kong (2006) obtained the probability density

function with distinct or equal parameters using the characteristic function. Amari and Misra

(1997) discussed the case of non-identically exponential random variables. Numerous authors have

examined several extensions to the exponential distribution. Gómez et al. (2014) proposed an

extended exponential distribution, which is useful in fitting real data. The extended exponential

distribution is also considered as the extension of the Lindley distribution. The Lindley distribution

was first introduced by Lindley (1958). Ghitany et al. (2008) suggested that many situations exist

for which the Lindley distribution is a better model than the exponential distribution. Researchers

have proposed extensions to the Lindley distribution. Zakerzadeh and Dolati (2009) introduced the

generalized Lindley distribution which contains the original Lindley, the exponential, the gamma,

and the extended exponential distributions. However, the exact distributions of the sum of inid

generalized Lindley random variables is not clarified.

In this study, following previous studies, the approximation, the asymptotic, and the limiting null

distributions of the one-sample and two-sample nonparametric statistics for location alternatives

based on Kitani and Murakami (2020a) and Kitani and Murakami (2022) are discussed. In Chapter

2, the extension of the sign and the Wilcoxon signed-rank (hereinafter referred to as ESWSR) tests

proposed by Policello and Hettmansperger (1976) is presented. Since the computational cost of

deriving the critical value of the test by exact permutation is enormous, the saddlepoint approxi-

mation and the normal approximation to the distribution of the ESWSR statistic are applied. In
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addition, the unbiasedness of the test is discussed and a selector for the ESWSR statistic is proposed

in terms of the asymptotic efficiency. In Chapter 3, the asymptotic and limiting null distributions

of the combining t and Wilcoxon rank-sum test proposed by Neuhäuser (2015) is derived. The

convergence of the maximum test to the limiting distribution is investigated for various cases via

Monte Carlo simulations. In addition, it is demonstrated that calculating the limiting distribution

for given data through estimators can be useful. In Chapter 4, the exact distribution of the sum

of inid extended exponential random variables and the sum of inid generalized Lindley random

variables are derived. These results are based on the work of Kitani and Murakami (2020b) and

Kitani et al. (2021). The exact distribution contains the infinite gamma series; thus, a finite number

of terms are truncated. However, since the computation of the iterations takes a lot of time, the

saddlepoint and the normal approximations are also considered and the accuracy is compared with

that of the numerical results. Furthermore, it is demonstrated that the distribution of the sum of

inid conventional random variables is a special case of the sum of inid generalized Lindley random

variables. Finally, in Chapter 5, the paper is concluded with a summary.
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Chapter 2

Properties of one-sample test statistic

In one-sample testing problems, both the sign test and the Wilcoxon signed-rank test are widely

used. To construct an adaptive robust procedure, Policello and Hettmansperger (1976) introduced a

statistic which contains these two traditional tests. Since the calculation of the exact distribution of

the statistic is not feasible, the null distribution is formulated by using a saddlepoint approximation.

In addition, the unbiasedness of the test is discussed as it is an important property in analysis. A

selector statistic based on the asymptotic efficiency is further proposed.

2.1 Revisiting one-sample nonparametric tests

Let |X1| ≤ |X2| ≤ · · · ≤ |Xn| be the ordered observations for a random sample from F (x − θ),

where F is a symmetric continuous distribution related to θ. Then, without loss of generality, the

following hypothesis is tested:

H10 : θ = 0 against H11 : θ > 0 (or H12 : θ ̸= 0) .

Then, the Wilcoxon signed-rank test statistic is defined by
∑n

i=1 iI(Xi > 0), while the sign test

statistic is defined by
∑n

i=1 I(Xi > 0), where I(·) is the indicator function. Subsequently, Policello

and Hettmansperger (1976) proposed the ESWSR test statistic, namely, Tν , as follows:

Tν =

n∑
i=1

aν(i)I(Xi > 0), 0 ≤ ν ≤ 1, (2.1)

where

aν(i) =

{
i, 1 ≤ i ≤ nν = ⌊(1− ν)n⌋
1 + nν , 1 + nν ≤ i ≤ n

= min[i, 1 + nν ].

It is worth mentioning that ν = 1 is equivalent to the sign test, which is asymptotically the

most powerful rank test when F is a Laplace distribution. Moreover, ν = 0 is equivalent to the

Wilcoxon signed-rank test, which is asymptotically the most powerful rank test when F is a logistic

distribution (Hájek, 1962). Therefore, Policello and Hettmansperger (1976) suggested the use of

the Tν statistic for distributions with tail weights, such as those of the Laplace and logistic families.
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Policello and Hettmansperger (1976) investigated the power and robustness properties of the

test through Monte Carlo simulations. It is important to calculate the critical value of the test

statistic in testing problems. However, obtaining the exact critical value is often difficult when

the sample size is large. Under these circumstances, the critical values have to be approximated.

A saddlepoint approximation is considered for the distribution of the Tν statistic. Furthermore,

the accuracy of the saddlepoint approximation is compared with the exact probability and normal

approximation. It is also important to determine the properties of the statistic under the alternative

hypothesis. Therefore, the asymptotic power of the statistic is obtained by calculating the first and

second moments under the alternative hypothesis H11. In addition, the unbiasedness of the ESWSR

test is discussed and a selector statistic, which is the rule of selecting ν, is proposed. In addition,

the use of the ESWSR test is demonstrated on real data.

2.2 Approximations to the test statistic

In this section, we consider the saddlepoint and normal approximations for the test statistic Tν .

Policello and Hettmansperger (1976) derived the probability generating function of Tν as

G(s) = 2−n(1 + s1+nν )n−nν

nν∏
k=1

(1 + sk) = 2−n
n∏

i=1

(1 + saν(i)). (2.2)

Then, the moment generating function and cumulant generating function of Tν are obtained by

substituting exp(s) into Equation (2.2) as follows:

M(s) = 2−n(1 + exp{s(1 + nν)})n−nν

nν∏
k=1

(1 + exp(sk)), (2.3)

κ(s) = logM(s) = −n log 2 + (n− nν) log (1 + exp{s(1 + nν)}) +
nν∑
k=1

log{1 + exp(sk)}, (2.4)

respectively.

From Equations (2.3) and (2.4) and the Lugannani and Rice formula (Lugannani and Rice,

1980),

Pr(Tν ≥ t) = 1− Φ(w̃) +

{
1

ũ1
− 1

w̃

}
ϕ(w̃). (2.5)

Here, ϕ(·) and Φ(·) are the standard normal probability density function and the corresponding

cumulative distribution function, respectively; w̃ =
√
2(s̃t− κ(s̃))sgn(s̃); ũ1 = s̃

√
κ′′(s̃); s̃ is a

root of the saddlepoint equation κ′(s̃) = t; and κ′ and κ′′ are the first and second derivatives of

κ, respectively. For continuity correction, we utilize ũ2 = (1 − e−s̃)
√
κ′′(s̃), rather than the ũ1 in

Equation (2.5).

In this study, we investigate the accuracy of the approximations. We calculate the upper prob-

ability Pr(Tν ≥ t) by using Mathematica version 11. In the tables, t and “Exact” represent the
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exact critical value and probability of Pr(Tν ≥ t), respectively. Additionally, NA (SA) and NAc

(SAc) are the normal (saddlepoint) approximations with and without continuity corrections. In this

study, the sample sizes are assumed to be n = 10, 15, 20, 25, 30 and ν = 0, 0.2, 0.4, 0.6, 0.8, 1.0. The

significance levels are 0.05 and 0.01.

Table 2.1: Pr(Tν ≥ t) for the 5% significance level.

ν 0 0.2 0.4 0.6 0.8 1.0

n = 10 t 45 44 40 32 22 9
Exact 0.0420 0.0430 0.0381 0.0430 0.0273 0.0107
NA 0.0372 0.0378 0.0336 0.0368 0.0264 0.0057
SA 0.0367 0.0374 0.0331 0.0366 0.0256 0.0045
NAc 0.0416 0.0423 0.0383 0.0432 0.0341 0.0134
SAc 0.0418 0.0427 0.0384 0.0438 0.0340 0.0116

n = 15 t 90 88 78 62 40 12
Exact 0.0473 0.0443 0.0466 0.0461 0.0394 0.0176
NA 0.0442 0.0414 0.0432 0.0414 0.0350 0.0101
SA 0.0443 0.0414 0.0434 0.0415 0.0348 0.0092
NAc 0.0469 0.0441 0.0464 0.0454 0.0408 0.0194
SAc 0.0473 0.0443 0.0468 0.0458 0.0408 0.0179

n = 20 t 150 145 129 101 63 15
Exact 0.0487 0.0498 0.0471 0.0484 0.0457 0.0207
NA 0.0465 0.0475 0.0447 0.0454 0.0413 0.0127
SA 0.0467 0.0477 0.0448 0.0455 0.0413 0.0120
NAc 0.0483 0.0494 0.0468 0.0482 0.0457 0.0221
SAc 0.0487 0.0498 0.0471 0.0485 0.0459 0.0209

n = 25 t 225 217 192 150 91 18
Exact 0.0479 0.0491 0.0476 0.0462 0.0491 0.0216
NA 0.0463 0.0474 0.0458 0.0440 0.0457 0.0139
SA 0.0465 0.0476 0.0459 0.0441 0.0458 0.0134
NAc 0.0476 0.0488 0.0474 0.0461 0.0492 0.0228
SAc 0.0479 0.0491 0.0476 0.0462 0.0494 0.0218

n = 30 t 314 303 267 207 125 20
Exact 0.0481 0.0480 0.0476 0.0484 0.0462 0.0494
NA 0.0468 0.0467 0.0463 0.0466 0.0433 0.0339
SA 0.0470 0.0469 0.0464 0.0467 0.0433 0.0338
NAc 0.0479 0.0478 0.0475 0.0482 0.0459 0.0502
SAc 0.0480 0.0480 0.0477 0.0484 0.0460 0.0496
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Table 2.2: Pr(Tν ≥ t) for the 1% significance level.

ν 0 0.2 0.4 0.6 0.8 1.0

n = 10 t 50 49 44 36 25 10
Exact 0.0098 0.0098 0.0098 0.0068 0.0029 0.0010
NA 0.0109 0.0107 0.0107 0.0085 0.0044 0.0008
SA 0.0082 0.0082 0.0086 0.0068 0.0030 -
NAc 0.0125 0.0123 0.0124 0.0104 0.0061 0.0022
SAc 0.0100 0.0100 0.0106 0.0088 0.0048 -

n = 15 t 101 98 87 69 44 13
Exact 0.0090 0.0094 0.0097 0.0099 0.0092 0.0037
NA 0.0099 0.0101 0.0102 0.0096 0.0089 0.0023
SA 0.0082 0.0085 0.0089 0.0085 0.0079 0.0017
NAc 0.0107 0.0109 0.0111 0.0108 0.0107 0.0049
SAc 0.0090 0.0094 0.0098 0.0097 0.0098 0.0038

n = 20 t 167 162 143 112 70 16
Exact 0.0096 0.0093 0.0097 0.0098 0.0086 0.0059
NA 0.0103 0.0099 0.0101 0.0098 0.0079 0.0036
SA 0.0091 0.0088 0.0091 0.0090 0.0072 0.0031
NAc 0.0108 0.0104 0.0107 0.0106 0.0091 0.0070
SAc 0.0096 0.0093 0.0097 0.0098 0.0083 0.0060

n = 25 t 249 240 212 165 100 19
Exact 0.0094 0.0098 0.0094 0.0094 0.0098 0.0073
NA 0.0100 0.0103 0.0097 0.0095 0.0098 0.0047
SA 0.0090 0.0094 0.0090 0.0088 0.0092 0.0042
NAc 0.0103 0.0107 0.0102 0.0101 0.0108 0.0082
SAc 0.0094 0.0098 0.0094 0.0094 0.0102 0.0074

n = 30 t 345 333 293 227 137 22
Exact 0.0098 0.0097 0.0096 0.0096 0.0087 0.0081
NA 0.0103 0.0101 0.0099 0.0097 0.0085 0.0053
SA 0.0095 0.0094 0.0093 0.0092 0.0080 0.0049
NAc 0.0106 0.0104 0.0102 0.0102 0.0091 0.0088
SAc 0.0098 0.0097 0.0096 0.0096 0.0087 0.0081
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Tables 2.1 to 2.2 show that the saddlepoint approximation with continuity correction is the clos-

est to the exact probability for n = 30. Although no significant differences are observed between the

saddlepoint approximation and the normal approximation, the results revealed that the saddlepoint

approximation of the statistic is useful when the sample size increases. Note that the exact method

requires extensive calculations to obtain the critical values, while the saddlepoint approximation

generates the critical values instantly. Therefore, the saddlepoint approximation is appropriate for

the ESWSR statistic.

2.3 Asymptotic power

In this section, we derive the asymptotic power of the statistic Tν by calculating the first and second

moments of Tν under H11. Herein, the statistic Tν in Equation (2.1) is rewritten as follows:

Tν =

n∑
i=1

min[i, 1 + nν ]I(Xi > 0). (2.6)

Defining EA[T ] as the expectation of Tν under H11, possible partitions of the indicator function in

Equation (2.6) are considered to express the first moment of Tν as,

EA[Tν ] =

n∑
i=1

n−1∑
k=0

(
n− 1

k

)
min[k + 1, 1 + nν ]

× EA[I(Xi > 0) I(|Xi| > |X ′
1|) · · · I(|Xi| > |X ′

k|)︸ ︷︷ ︸
k

I(|Xi| < |X ′
k+1|) · · · I(|Xi| < |X ′

n−1|)︸ ︷︷ ︸
n− k − 1

]

= n

n−1∑
k=0

(
n− 1

k

)
min[k + 1, 1 + nν ]

×
∫ ∞

0
{F (x)− F (−x)}k {1− F (x) + F (−x)}n−k−1 dF (x), (2.7)

where X ′ is an unordered sample of X. In addition, the second moment is

EA[T
2
ν ] =

n∑
i=1

EA

[
min[i, 1 + nν ]

2I(Xi > 0)
]

+ EA

∑∑
i ̸=j

min[i, 1 + nν ]min[j, 1 + nν ]I(Xi > 0)I(Xj > 0)

 . (2.8)

Now focusing on the second term of the right-hand side of Equation (2.8), the following is obtained:

EA

∑∑
i ̸=j

min[i, 1 + nν ]min[j, 1 + nν ]I(Xi > 0)I(Xj > 0)


= 2

∑∑
i ̸=j

n−2∑
a=0

n−2−a∑
b=0

(n− 2)!

a!b!(n− 2− a− b)!
min[a+ 1, 1 + nν ]min[a+ b+ 2, 1 + nν ]
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× EA[I(Xi > 0)I(Xj > 0)I(|Xi| < |Xj |)

× I(|X ′
1| < |Xi| < |Xj |) · · ·︸ ︷︷ ︸

a

I(|Xi| < |X ′
a+1| < |Xj |) · · ·︸ ︷︷ ︸
b

I(|Xi| < |Xj | < |X ′
a+b+1|) · · ·︸ ︷︷ ︸

n− 2− a− b

]

= 2n(n− 1)
n−2∑
a=0

n−2−a∑
b=0

(n− 2)!

a!b!(n− 2− a− b)!
min[a+ 1, 1 + nν ]min[a+ b+ 2, 1 + nν ]

×
∫ ∞

0

∫ x2

0
{F (x1)− F (−x1)}a {F (x2)− F (x1) + F (−x1)− F (−x2)}b

× {1− F (x2) + F (−x2)}n−2−a−b dF (x1)dF (x2). (2.9)

Thus, with the exact mean and variance of Tν under H11 from Equations (2.7) and (2.8), the

asymptotic power under H11 is obtained as,

1√
2π

∫ ∞

c
exp

(
−1

2
x2
)
dx, c =

zαVar0[Tν ] + E0[Tν ]− EA[Tν ]√
VarA[Tν ]

, (2.10)

where zα is α percentile for the standard normal distribution,

E0[Tν ] =
1

4
(nν + 1)(2n− nν), Var0[Tν ] =

1

24
(nν + 1)(−4n2

ν − 5nν + 6n+ 6nnν)

are the expectation and the variance of Tν under H10, and VarA[Tν ] is the variance of Tν under H11.

Table 2.3: Numerical comparisons for the normal distribution.

ν

∆ 0 0.2 0.35 0.4 0.55 0.6 0.75 0.8 1.0

0 Sim 0.054 0.050 0.054 0.054 0.055 0.055 0.053 0.053 0.059
AP 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

0.2 Sim 0.187 0.178 0.182 0.182 0.179 0.178 0.167 0.167 0.173
AP 0.173 0.172 0.169 0.169 0.163 0.161 0.157 0.157 0.148

0.4 Sim 0.434 0.418 0.418 0.418 0.403 0.403 0.375 0.376 0.368
AP 0.396 0.393 0.383 0.383 0.368 0.361 0.347 0.347 0.321

0.6 Sim 0.711 0.695 0.687 0.688 0.665 0.664 0.628 0.628 0.604
AP 0.675 0.670 0.654 0.654 0.628 0.617 0.592 0.592 0.546

0.8 Sim 0.898 0.888 0.882 0.882 0.862 0.863 0.831 0.831 0.804
AP 0.904 0.899 0.883 0.883 0.856 0.844 0.818 0.818 0.764

1.0 Sim 0.976 0.973 0.970 0.970 0.960 0.960 0.944 0.944 0.924
AP 0.992 0.991 0.986 0.986 0.975 0.969 0.953 0.953 0.914

1.2 Sim 0.997 0.996 0.995 0.995 0.992 0.992 0.986 0.986 0.978
AP 1.000 1.000 1.000 1.000 0.999 0.999 0.996 0.996 0.982
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Table 2.4: Numerical comparisons for the Laplace distribution.

ν

∆ 0 0.2 0.35 0.4 0.55 0.6 0.75 0.8 1.0

0 Sim 0.054 0.050 0.054 0.054 0.055 0.055 0.053 0.053 0.059
AP 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

0.2 Sim 0.170 0.163 0.175 0.175 0.183 0.184 0.181 0.181 0.196
AP 0.158 0.159 0.163 0.163 0.168 0.169 0.171 0.171 0.169

0.4 Sim 0.363 0.356 0.377 0.376 0.393 0.392 0.387 0.388 0.398
AP 0.334 0.338 0.349 0.349 0.359 0.362 0.363 0.363 0.348

0.6 Sim 0.581 0.574 0.599 0.599 0.616 0.617 0.606 0.607 0.605
AP 0.543 0.550 0.565 0.565 0.578 0.580 0.576 0.576 0.546

0.8 Sim 0.761 0.756 0.778 0.779 0.790 0.791 0.779 0.779 0.767
AP 0.739 0.746 0.761 0.761 0.770 0.769 0.760 0.760 0.720

1.0 Sim 0.880 0.878 0.893 0.893 0.900 0.900 0.889 0.890 0.874
AP 0.883 0.888 0.898 0.898 0.902 0.900 0.889 0.889 0.850

1.2 Sim 0.947 0.945 0.954 0.953 0.957 0.957 0.950 0.949 0.937
AP 0.963 0.965 0.970 0.970 0.970 0.970 0.960 0.960 0.931

Table 2.5: Numerical comparisons for the logistic distribution.

ν

∆ 0 0.2 0.35 0.4 0.55 0.6 0.75 0.8 1.0

0 Sim 0.053 0.050 0.054 0.054 0.055 0.055 0.053 0.052 0.059
AP 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

0.2 Sim 0.118 0.113 0.119 0.119 0.119 0.118 0.114 0.113 0.120
AP 0.111 0.111 0.111 0.111 0.109 0.109 0.107 0.107 0.103

0.4 Sim 0.226 0.216 0.224 0.224 0.222 0.222 0.210 0.210 0.214
AP 0.208 0.208 0.207 0.207 0.203 0.201 0.195 0.195 0.185

0.6 Sim 0.370 0.358 0.367 0.367 0.362 0.361 0.341 0.341 0.339
AP 0.338 0.338 0.337 0.337 0.330 0.326 0.316 0.316 0.295

0.8 Sim 0.532 0.520 0.529 0.528 0.520 0.519 0.493 0.493 0.481
AP 0.492 0.493 0.490 0.490 0.480 0.474 0.459 0.459 0.426

1.0 Sim 0.687 0.676 0.682 0.682 0.671 0.671 0.642 0.641 0.623
AP 0.652 0.653 0.650 0.650 0.635 0.628 0.608 0.608 0.565

1.2 Sim 0.811 0.802 0.808 0.807 0.797 0.797 0.769 0.769 0.746
AP 0.797 0.797 0.792 0.792 0.776 0.776 0.746 0.746 0.697
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Table 2.6: Numerical comparisons for the Student’s t-distribution with two degrees of freedom.

ν

∆ 0 0.2 0.35 0.4 0.55 0.6 0.75 0.8 1.0

0 Sim 0.053 0.050 0.053 0.054 0.055 0.055 0.053 0.053 0.059
AP 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

0.2 Sim 0.144 0.138 0.148 0.149 0.153 0.152 0.146 0.146 0.155
AP 0.134 0.135 0.138 0.138 0.139 0.139 0.138 0.138 0.133

0.4 Sim 0.293 0.288 0.308 0.308 0.316 0.316 0.305 0.306 0.311
AP 0.270 0.275 0.284 0.284 0.288 0.288 0.284 0.284 0.270

0.6 Sim 0.477 0.473 0.502 0.502 0.514 0.516 0.501 0.501 0.499
AP 0.396 0.414 0.442 0.442 0.450 0.450 0.412 0.412 0.381

0.8 Sim 0.647 0.649 0.679 0.679 0.695 0.696 0.683 0.683 0.674
AP 0.614 0.627 0.650 0.650 0.662 0.662 0.654 0.654 0.618

1.0 Sim 0.779 0.782 0.811 0.810 0.827 0.827 0.817 0.817 0.806
AP 0.761 0.775 0.800 0.800 0.812 0.812 0.804 0.804 0.765

1.2 Sim 0.868 0.872 0.895 0.895 0.908 0.908 0.901 0.902 0.891
AP 0.868 0.880 0.901 0.901 0.911 0.911 0.904 0.904 0.871

Table 2.7: Numerical comparisons for the Cauchy distribution.

ν

∆ 0 0.2 0.35 0.4 0.55 0.6 0.75 0.8 1.0

0 Sim 0.054 0.050 0.054 0.054 0.055 0.055 0.053 0.053 0.059
AP 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

0.2 Sim 0.119 0.114 0.126 0.126 0.133 0.132 0.131 0.130 0.142
AP 0.110 0.112 0.117 0.117 0.122 0.123 0.124 0.124 0.121

0.4 Sim 0.216 0.214 0.237 0.238 0.255 0.256 0.256 0.255 0.270
AP 0.200 0.206 0.220 0.220 0.234 0.237 0.240 0.240 0.233

0.6 Sim 0.336 0.335 0.371 0.372 0.405 0.404 0.404 0.406 0.421
AP 0.309 0.319 0.345 0.345 0.370 0.376 0.382 0.382 0.370

0.8 Sim 0.455 0.459 0.504 0.504 0.549 0.549 0.552 0.553 0.566
AP 0.422 0.436 0.473 0.473 0.509 0.517 0.525 0.525 0.508

1.0 Sim 0.563 0.569 0.617 0.618 0.669 0.669 0.674 0.674 0.687
AP 0.526 0.545 0.590 0.590 0.632 0.642 0.652 0.652 0.632

1.2 Sim 0.650 0.660 0.708 0.707 0.762 0.762 0.766 0.768 0.777
AP 0.617 0.638 0.689 0.689 0.734 0.734 0.754 0.754 0.733
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Figure 2.1: Simulated powers and asymptotic powers for various distributions for ∆ = 0.4, 0.8, 1.2.
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Herein, Tables 2.3 to 2.7 illustrate the numerical comparison between the asymptotic and sim-

ulated power using Mathematica and R software. Mathematica was used for both the saddlepoint

and normal approximation. In addition, Mathematica was used to calculate the asymptotic power

as it contains multiple integrals. Meanwhile, R software was used for the Monte Carlo simulations

of the power. The distributions considered were: the normal distributions N(0, 1) and N(θ, 1) in

Table 2.3, the Laplace distributions Laplace(0, 1) and Laplace(θ, 1) in Table 2.4, the logistic distri-

butions Logis(0, 1) and Logis(θ, 1) in Table 2.5, the Student’s t-distributions with two degrees of

freedom t(2) and t(2)+ θ in Table 2.6, and the Cauchy distributions Cauchy(0, 1) and Cauchy(θ, 1)

in Table 2.7, where θ = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2. In addition, it was assumed that n = 15,

ν = 0, 0.2, 0.35, 0.4, 0.55, 0.6, 0.75, 0.8, 1.0, while the significance level was 0.05. In the tables, Sim.

represents the simulated power based on 1,000,000 Monte Carlo simulations, and AP represents the

asymptotic power when Equation (2.10) is used.

Tables 2.3 to 2.7 and Figure 2.1 show that the asymptotic power is roughly the same as the

simulated power. Although the asymptotic power is discussed for a large sample size, even a

small sample size of n = 10 and 15 yielded values close to those of the simulation. Therefore,

it is guaranteed that the calculation of the asymptotic power is correct. Note that calculating

the asymptotic power is time consuming; therefore, to overcome the computational complexity,

the algorithm of the numerical calculation has to be improved. For n = 20, the calculations

for the summations in Equation (2.9) are extensive, and hence, performing the calculation becomes

impossible. However, the derivation of the exact mean and variance under the alternative hypothesis

is meaningful. Although the asymptotic power can be calculated as an application, exact calculation

is impossible when the sample size is large. Addressing this problem would enable the accurate

calculation of the asymptotic power.

2.4 Unbiasedness and selector

In this section, the focus is on the unbiasedness of the ESWSR test. Let Ω be a parameter space

and let ΩH ,ΩK ⊂ Ω, ΩK = Ω \ ΩH . The test Ψ of the null hypothesis H : θ ∈ ΩH against the

alternative K : θ ∈ ΩK is said to be unbiased if

sup
θ∈ΩH

βΨ(θ) ≤ α and inf
θ∈ΩK

βΨ(θ) ≥ α,

where βΨ(θ) is the power function and α the chosen significance level. By applying results from

Lehmann and Romano (2005, p.324), it is proved that the ESWSR test is unbiased for the one-sided

location alternative H11. Thus, we obtain Theorem 2.1.

Theorem 2.1. The ESWSR test is unbiased against the one-sided location alternative H11.

Proof. Let Ri, i = 1, 2, . . . , n∗, denote the ranks of the absolute values of observation X1, X2, . . . , Xn

whose signs are positive. The adaptive Wilcoxon singed rank test is given by

Tν = a(R1) + a(R2) + · · ·+ a(Rn∗),
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and the alternative hypothesis H11 is rejected when Tν is sufficiently large, say Tν ≥ c. We now

consider the power function β(θ) = Pr(Tν ≥ c) of the test against the location sift alternative.

Let θ0 < θ1, and X1, . . . , Xn be independently distributed with distribution F (x − θ0). If Ui =

Xi + (θ1 − θ0), the distribution of the random variables U1, . . . , Un is given by

Pr(Ui ≤ x) = Pr(Xi + θ1 − θ0 ≤ x) = Pr(Xi ≤ x− (θ1 − θ0)) = F (x− θ1).

Hence, β(θ0) = Pr(TX ≥ c), β(θ1) = Pr(TU ≥ c), where TX (TU ) is the statistic calculated from X

(Y ). From the fact that Xi < Ui for all i, it is seen that TX ≤ TU and β(µ0) ≤ β(θ1). Therefore,

since the power function β(θ) is a nondecreasing function of θ, we have the result.

Furthermore, the biasedness of the ESWSR test for the two-sided alternative is demonstrated.

A similar process as that of Amrhein (1995) is followed to provide a counterexample. Suppose F (x)

has a density function,

f(x) =

{
1
2 ,

1
2 < |x| < 3

2 ,

0, otherwise,
(2.11)

and let n = 3. Then we consider the distribution of S = (S1, S2, S3) for θ = 0 and θ = 1
2 , where

Si = I(Xi > 0). For θ = 0, it is generally known that each observation s = (s1, s2, s3) ∈ {0, 1}3

appears with the same probability

Prθ=0{S = s} =
1

8
.

When θ = 1
2 , the density function (2.11) is replaced with f(x − 1

2). Figure 2.2 displays the

density function f(x− 1
2).

x

y

1
2

0−1 1 2

Figure 2.2: Density function under the alternative.

Subsequently, based on the assumption that |X1| ≤ |X2| ≤ |X3|, the distribution of S is provided

in Table 2.8.
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Table 2.8: Distributions of S = (s1, s2, s3) for some ν.

s1 s2 s3 Prθ=0 Prθ=1/2 T0 T1/3 T2/3 T1

0 0 0 1/8 1/8 0 0 0 0
1 0 0 1/8 0 1 1 1 1
0 1 0 1/8 0 2 2 2 1
0 0 1 1/8 3/8 3 3 2 1
1 1 0 1/8 0 3 3 3 2
1 0 1 1/8 0 4 4 3 2
0 1 1 1/8 3/8 5 5 4 2
1 1 1 1/8 1/8 6 6 5 3

Therefore, for ν = 0 and ν = 1/3, which correspond to the Wilcoxon signed rank test, the test

is not unbiased in this example. Hence, the ESWSR test is not unbiased against the two-sided

location alternative H12. However, when ν = 2/3 or ν = 1 is selected, the ESWSR test is unbiased.

Therefore, the appropriate ν in terms of bias correction should be selected.

We are also interested in determining ν for the specific distribution. To perform the ESWSR

test, ν has to be determined in advance. However, a statistician cannot assume the underlying

distribution in practice; therefore, a selector is required to determine the appropriate ν for the

given dataset. Thus, we propose utilizing a selector to maximize the asymptotic efficiency of the

test. The asymptotic efficiency was obtained in Policello and Hettmansperger (1976). Thereafter,

the type of the underlying unknown distribution function is classified with respect to two measures of

kurtosis, as discussed in Hogg (1974), Randles and Hogg (1973), and Büning (2001). We implement

the following measures:

M̂1 =
ẑ0.975 − ẑ0.025
ẑ0.875 − ẑ0.125

, M̂2 =
ẑ0.65 − ẑ0.35
ẑ0.55 − ẑ0.45

with the empirical p-quantile ẑp given by

ẑp =


Z(1), p ≤ 0.5/n

(1− λ)Z(j) + λZ(j+1), 0.5/n < p ≤ 1− 0.5/n

Z(n), p > 1− 0.5/n

,

where Z(1), . . . , Z(n) are the order of the samples and j = ⌊np + 0.5⌋, λ = np + 0.5 − j. Table 2.9

presents the theoretical values of M̂1 and M̂2 for various distributions.

As the asymptotic efficiency of the ESWSR test depends on the weight of the tail of the distri-

bution, the value of ν is selected to obtain a higher power. For heavy-tailed distributions, a large

value of M1 and a value of M2 around 3.3 are appropriate. For light-tailed distributions, a small

value of M1 and a value of M2 around 3.0 are appropriate. Through this rule of selecting ν, a test,

that can easily reject the null hypothesis for the given data, is adopted. Let M = (M̂1, M̂2), which

is called a selector. Hence, four categories can be defined based on the measures M̂1 and M̂2:

D1 = {M ; 0 ≤ M̂1 ≤ 1, 0 ≤ M̂2 ≤ 3.3},
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Table 2.9: Theoretical M̂1 and M̂2 values for some distributions.

Distribution M̂1 M̂2

Uniform 1.267 3.000
Normal 1.704 3.066
Logistic 1.883 3.085
Laplace 2.161 3.385

Student’s t (df = 2) 2.683 3.129
Cauchy 5.263 3.217

Hyperbolic sec 2.004 3.105

D2 = {M ; 1 < M̂1 ≤ 2.5, 0 ≤ M̂2 ≤ 3.3},

D3 = {M ; 2.5 < M̂1 ≤ 5.0, 0 ≤ M̂2 ≤ 3.3},

D4 = {M ; 5.0 < M̂1, 0 ≤ M̂2 ≤ 3.3},

D5 = {M ; 3.3 < M̂2}.

Hence, we propose the following rule for selecting ν based on asymptotic efficiency:

ν =



0, M ∈ D1

0.35, M ∈ D2

0.55, M ∈ D3

0.75, M ∈ D4

1, M ∈ D5,

(2.12)

and Figure 2.3 illustrates the rule of selecting ν.

M̂1

M̂2

O 1 2.5 5

3.3

ν = 0 ν = 0.35 ν = 0.55 ν = 0.75

ν = 1

Figure 2.3: Illustration of the adaptive scheme.

Tables 2.3 to 2.7 and Figure 2.1 indicate that the selector proposed in this section is advan-

tageous, in general. For example, when the underlying distribution is normal, ν = 0 is selected.
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In contrast, the case ν = 0.55 is relatively powerful when a Student’s t-distribution with two de-

grees of freedom is assumed. Meanwhile, the case for ν = 0.75 is more powerful when the Cauchy

distribution is presumed.

2.5 Real data analysis

For clinical testing, the method is applied to cosmetics data. The dataset was obtained from

Gibbons and Chakraborti (2011, p.224). A manufacturer of suntan lotion is testing a new formula

(Y ) to determine whether it provides more protection against sunburn than the old formula (X).

Specifically, the higher numbers represent more severe sunburn. Then, the null hypothesis is to

verify the difference (X − Y ) of the degree of sunburn, which has median zero against the positive

one-sided alternative.

Old Formula (X) 41 42 48 38 38 45 21 28 29 14
New Formula (Y ) 37 39 31 39 34 47 19 30 25 8

Initially, we obtain M̂1 = 1.76 and M̂2 = 2.00, and then ν = 0.35 is selected using Equation

(2.12). Therefore, for the ESWSR test, T0.35 = 43, the exact p-value is 0.0098. For the Wilcoxon

singed-rank and sign tests, T0 = 48 and T1 = 7, and the exact p-values are 0.0137 and 0.0547,

respectively. These results show that the null hypothesis can be rejected at the 1% significance

level, only with the ESWSR test.
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Chapter 3

Distribution of two-sample test
statistic

In two-sample testing problems, Student’s t-test is widely used under the assumption of normality.

Alternatively, the Wilcoxon rank-sum test is used in nonparametric two-sample testing problems.

Neuhäuser (2015) proposed a maximum test combining the t-test and the Wilcoxon rank-sum test

and showed that the power of the maximum test is similar to the more powerful of the two tests.

However, the limiting distribution of the test has not been derived. Therefore, we derive the limiting

distribution and investigate the convergence of the null distribution of the maximum test to the

limiting null distribution, via Monte Carlo simulations, for various cases. The usefulness of the

maximum test is also demonstrated by applying the test to reaction time data.

3.1 Review of two-sample tests

Let X = (X1, . . . , Xn1) and Y = (Y1, . . . , Yn2) be two independent samples of size n1 and n2

(N = n1 + n2) with a common variance σ2, from a continuous cumulative distribution function F

and G, respectively. In addition, let f and g be the probability density function corresponding to

F and G, respectively. In the location-shift model, F (x) = G(x− θ) for every x. Note that we the

focus on the maximum test for one-sided alternatives because the two-sided Wilcoxon rank-sum test

is not unbiased with respect to location parameters (Sugiura, 1965; Sugiura et al., 2006). Because

of the unbiasedness, testing the following hypothesis is of interest:

H20 : θ = 0 against H21 : θ > 0.

Student’s t-test is defined by

t =

√
n1n2

N

X̄ − Ȳ

St
, where S2

t =
(n1 − 1)S2

X + (n2 − 1)S2
Y

N − 2
,

and X̄ (Ȳ ) is the sample mean and S2
X (S2

Y ) is the unbiased sample variance of X (Y ) as follows:

S2
X =

1

n1 − 1

n1∑
i=1

(
Xi − X̄

)2
, S2

Y =
1

n2 − 1

n2∑
j=1

(
Yj − Ȳ

)2
.
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Furthermore, Ri denotes the rank of Xi with combined samples (X,Y ) and W =
∑

Ri is the

sum of the ranks of X’s, where i = 1, . . . , n1. In Conover and Iman (1981), a rank transformation

procedure for computing the t-test is introduced based on the ranks Ri as follows:

tR =

[
1

n1
W − 1

n2

(
N(N + 1)

2
−W

)]

÷

[(
N(N + 1)(2N + 1)

6
− 1

n1
W 2 − 1

n2

(
N(N + 1)

2
−W

)2
)

N

n1n2(N − 2)

]1/2
.

This studentized test is widely applied in many fields. For example, Chung and Romano (2016)

discuss the two-sample Wilcoxon rank-sum test using this statistic. Recently, Neuhäuser (2015)

proposed a maximum test combining the t-test and the Wilcoxon rank-sum test max(|t|, |tR|). In

Neuhäuser (2015), it is shown that the power of the maximum test is close to that of the better

of the t-test or the Wilcoxon rank-sum test. They conclude that the maximum test is useful when

there is no special reason to use either the t-test or the Wilcoxon rank-sum test. In Welz et al.

(2018), the nonparametric maximum test is suggested for the Behrens-Fisher problem. Here, we

focus on the maximum test without the absolute value max(t, tR) because the test is one-sided.

Since the critical value of the maximum test proposed by Neuhäuser (2015) depends on the per-

mutation method, the calculation is extensive when sample sizes increase. Moreover, the asymptotic

and the limiting distributions have historically played an important role in all statistical fields. Here,

the limiting distribution of the maximum test is discussed under the hypotheses of this chapter.

3.2 Limiting distribution of the maximum test statistic

In this section, the null and non-null limiting distributions of the maximum test are derived. Let

Hj be the rank of Yj with combined samples (X,Y ) and V =
∑

Hj be the sum of the ranks of Y ’s,

where j = 1, 2, . . . , n2. Moreover, define R̄ = W/n1 and H̄ = V/n2. Then, the following proposition

is proved to obtain the theorem of the limiting distribution.

Proposition 3.1. Let

S2
R =

1

N − 2


n1∑
i=1

(Ri − R̄)2 +

n2∑
j=1

(Hj − H̄)2

 , σ2
R =

1

12
N(N + 1).

Then, the expectation of S2
R is equal to σ2

R.

Proof. By simple calculation,

E[S2
R] =

1

N − 2
E

 n1∑
i=1

R2
i +

n2∑
j=1

H2
j − 1

n1
W 2 − 1

n2
V 2


=

1

N − 2

{
1

6
N(N + 1)(2N + 1)− 1

n1
E[W 2]− 1

n2
E[V 2]

}
.
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Now focusing on the term E[W 2], we obtain

E[W 2] = E

( n1∑
i=1

Ri

)2


= E

 n1∑
i=1

R2
i +

∑
i ̸=k

RiRk


=

1

12
n1(n1 + n2 + 1)(3n2

1 + 3n1n2 + 3n1 + n2).

Similarly,

E[V 2] =
1

12
n2(n1 + n2 + 1)(3n2

2 + 3n1n2 + 3n2 + n1).

Hence,

E[S2
R] =

1

12
N(N + 1) = σ2

R.

Then, the result holds.

Nádas (1971) derived the exact distribution of the maximum of two normal random variables.

By applying Nádas (1971)’s result, the limiting distribution of max(t, tR) is stated in Theorem 3.2.

Theorem 3.2. Let X and Y be independent random variables with distribution functions F and

G, respectively. Then, the limiting distribution of max(t, tR) is

L1(x) =

∫ x

−∞
{ℓ11(−s) + ℓ21(−s)} ds,

where

ℓ11(−s) = ϕ (E[t]− s)Φ

(
ρ(E[t]− s)√

1− ρ2
− E[tR]− s√

1− ρ2

)
,

ℓ21(−s) = ϕ (E[tR]− s)Φ

(
ρ(E[tR]− s)√

1− ρ2
− E[t]− s√

1− ρ2

)
,

ϕ(·) and Φ(·) are the standard normal probability density function and the corresponding cumulative

distribution function, respectively, and

E[t] =
θ

σ

√
n1n2

N
,

E[tR] =

(∫ ∞

−∞
G(x)f(x)dx− 1

2

)√
12n1n2

N2(N + 1)
,

ρ = E[t · tR]−
n1n2θ

Nσ

√
12

N(N + 1)

(∫ ∞

−∞
G(x)f(x)dx− 1

2

)
,
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E[t · tR] =
1

σ

√
12

N(N + 1)

[
n1(n1 + 1)

2
E[X] + n2 E[XG(X)] + n2(n1 − 1)E[X] E[G(X)]

+
n2(n2 + 1)

2
E[Y ] + n1 E[Y F (Y )] + n1(n2 − 1)E[Y ] E[F (Y )]

−n1n2(N + 1)

2

(
1

n2
E[X] +

1

n1
E[Y ]

)]
.

Proof. At first, E[t] and E[tR] are introduced under H21. It is well known that the t-statistic for

populations with a common variance σ2 is

t =

√
n1n2

N

(
X̄ − Ȳ

St

)
=

√
n1n2

N

(
X̄ − Ȳ − θ

σ
+

θ

σ

)
σ

St
,

where

S2
t =

1

N − 2


n1∑
i=1

(Xi − X̄)2 +

n2∑
j=1

(Yj − Ȳ )2

 .

Since St/σ → 1 as N → ∞, n1/N ∈ (0, 1), then,

E[t] =
θ

σ

√
n1n2

N
, Var[t] =

n1n2

N

σ2/n1 + σ2/n2

σ2
= 1.

Following a similar procedure for Student’s t-statistic, by using Proposition 3.1, the statistic tR can

be expressed as

tR =

√
n1n2

N

(
R̄− H̄

SR

)
=

√
n1n2

N

(
R̄− H̄ − θR

σR
+

θR
σR

)
σR
SR

,

SR/σR → 1 as N → ∞, n1/N ∈ (0, 1). Then,

E[tR] =
θR
σR

√
n1n2

n1 + n2
, Var[tR] =

n1n2

n1 + n2

σ2
R/n1 + σ2

R/n2

σ2
R

= 1.

Herein, θR is determined. Define

U(i, j) =

{
1, Xi < Yj ,

0, Xi > Yj , i = 1, . . . , n1, j = 1, . . . , n2.

If F ≤ G, then

θR = E[R̄− H̄]

= E

[
1

n1

n1∑
i=1

Ri

]
− E

 1

n2

n2∑
j=1

Hj


=

(
1

n1
+

1

n2

)
E

[
n1∑
i=1

Ri

]
− N(N + 1)

2n2
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=

(
1

n1
+

1

n2

)
E

 n1∑
i=1

n2∑
j=1

U(i, j) +
n1(n1 + 1)

2

− N(N + 1)

2n2

=

(
1

n1
+

1

n2

) n1∑
i=1

n2∑
j=1

E [U(i, j)] +

(
1

n1
+

1

n2

)
n1(n1 + 1)

2
− N(N + 1)

2n2

=
n1 + n2

n1n2
n1n2

∫ ∞

−∞
F (x)g(x)dx+

(n1 + n2)(n1 + 1)

2n2
− N(N + 1)

2n2

= N

∫ ∞

−∞
F (x)g(x)dx− N

2
.

Next, the correlation of t and tR, that is ρ, is given by

ρ =
Cov(t, tR)

StSR
=

E[t · tR]− E[t] · E[tR]
StSR

.

First, consider the term E[t · tR]. Since St/σ → 1 and SR/σR → 1 as N → ∞, then

E[t · tR] =
n1n2

N
E

[
X̄ − Ȳ

St
· R̄− H̄

SR

]
=

n1n2

N
E

[
X̄ − Ȳ

σ
· σ

St
· R̄− H̄

σR
· σR
SR

]
=

n1n2

N

1

σσR
E

[
(X̄ − Ȳ )

(
1

n1
W − 1

n2
V

)]
=

n1n2

N

1

σσR
E

[
1

n1
X̄W +

1

n2
Ȳ V − 1

n2
X̄

(
N(N + 1)

2
−W

)
− 1

n1
Ȳ

(
N(N + 1)

2
− V

)]
=

1

σσR
E

[
X̄W + Ȳ V − n1(N + 1)

2
X̄ − n2(N + 1)

2
Ȳ

]
.

Second, consider the term E[X̄W ]. Then,

E[X̄W ] = E

 1

n1

n1∑
k=1

Xk


n1∑
i=1

i+

n2∑
j=1

I(Yj < X(i))




=
1

n1

n1∑
k=1

E

[
Xk

n1∑
i=1

i

]
+

1

n1
E

 n1∑
k=1

Xk

n1∑
i=1

n2∑
j=1

I(Yj < X(i))


=

n1(n1 + 1)

2
E[X] +

n2

n1

∑∑
k=i

E[XkI(Y < Xi)] +
n2

n1

∑∑
k ̸=i

E[XkI(Y < Xi)]

=
n1(n1 + 1)

2
E[X] + n2 E[XG(X)]] + n2(n1 − 1)E[X] E[G(X)]].

Similarly,

E[Ȳ V ] =
n2(n2 + 1)

2
E[Y ] + n1 E[Y F (Y )]] + n1(n2 − 1)E[Y ] E[F (Y )]].

When E[X̄W ] and E[Ȳ V ] are substituted into E[t · tR], the results hold.
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Corollary 3.3. Under H20, the null distribution is obtained by substituting θ = 0 into Theorem

3.2. In this case, E[t] = E[tR] = 0, E[F (X)] = 1/2, and the correlation coefficient is given by

ρ0 =
1

σ

√
12N

N + 1

(
E[XF (X)]− 1

2
E[X]

)
. (3.1)

Corollary 3.4. For the limiting null distribution n1, n2 → ∞, the correlation coefficient is given

by

ρ∗ =

√
3

σ
(2E[XF (X)]− E[X]) . (3.2)

Note that the one-sided hypothesis H22 : θ < 0 considers the statistic min(t, tR), and the

corresponding limiting distribution is obtained as follows:

L2(x) =

∫ x

−∞
{ℓ12(−s) + ℓ22(−s)} ds,

where

ℓ12(−s) = ϕ (−s− E[t]) Φ

(
s+ E[tR]√

1− ρ2
− ρ(s+ E[t])√

1− ρ2

)
,

ℓ22(−s) = ϕ (−s− E[tR]) Φ

(
s+ E[t]√
1− ρ2

− ρ(s+ E[tR])√
1− ρ2

)
,

ϕ(·) and Φ(·) are the standard normal probability density function and the corresponding cumulative

distribution function, respectively. The limiting null distribution of max(|t|, |tR|) is further obtained
for the two-sided hypothesis H23 : θ ̸= 0 by applying Philonenko et al. (2016)’s result. The

cumulative distribution function is given by

L3(x) =

∫ x

0
4ϕ(s)

{
Φ0

(
s

√
1− ρ

1 + ρ

)
+Φ0

(
s

√
1 + ρ

1− ρ

)}
ds,

where

Φ0(x) =

∫ x

0
ϕ(s)ds.

3.3 Numerical results

In the previous section, the limiting distribution of the max(t, tR) test was derived under the null

and the alternative hypotheses. In this section, we verify the convergence to each of the critical

points of the asymptotic and limiting distributions for various cases. Mathematica version 11 was

employed to investigate the behavior of the max(t, tR) test as it approached the limiting distribution

through simulation studies. Here, the null distribution was estimated with 1, 000, 000 iterations of

the Monte Carlo simulations. In this study, equal sample sizes n1 = n2 as well as unequal sample

sizes 2n1 = n2, n1 = 2n2 were considered. Because of the focus on convergence of the max(t, tR),
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set N = 40, 100, 200, 1, 000 and 2, 000 for equal cases, and N = 60, 120, 300, 1, 200 and 3, 000

for unequal cases. The results for the standard normal distribution are presented in Table 3.1, the

standard exponential distribution in Table 3.2, and the standard logistic distribution in Table 3.3.

In the tables, Sim. and Perm. represent the critical point, based on Monte Carlo simulations and

permutations, respectively. Note that 1, 000 permutations and 1, 000 iterations are run to obtain

the permutation critical values. In addition, CVA and CVL represent the asymptotic critical points

which are calculated by correlation (3.1) and (3.2), respectively. In our study, it is assumed that

populations have the same variance. In practice, however, it is necessary to estimate the population

variance. Hence, the population variance σ was estimated by the sample variance and the sample

mean E[X]. In addition,

1

n1(n1 − 1)

n1∑
i=1

(i− 1)x(i)

was utilized as an unbiased estimator of E[XF (X)]], where x(i) is the i-th order statistic of the

sample (Landwehr et al., 1979). In the tables, CVE represents the mean of the estimated critical

points based on 1,000,000 iterations. Furthermore, RMSE represents the root mean squared error

between the estimated critical points CVE and the asymptotic critical point CVA.
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Table 3.1: Critical value of max(t, tR) for the standard normal distribution.

0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990
CVL 1.362 1.724 2.038 2.403 1.362 1.724 2.038 2.403 1.362 1.724 2.038 2.403

(n1, n2) = (20, 20) (20, 40) (40, 20)
Sim. 1.396 1.779 2.117 2.527 1.375 1.755 2.088 2.486 1.384 1.755 2.091 2.480
Perm. 1.395 1.779 2.117 2.520 1.377 1.755 2.084 2.485 1.382 1.755 2.092 2.486
CVA 1.380 1.741 2.055 2.419 1.374 1.736 2.050 2.414 1.374 1.736 2.050 2.414
CVE 1.349 1.711 2.026 2.391 1.341 1.703 2.017 2.383 1.360 1.722 2.036 2.401
RMSE 0.050 0.048 0.047 0.046 0.053 0.052 0.051 0.050 0.030 0.029 0.028 0.027

(50, 50) (40, 80) (80, 40)
Sim. 1.378 1.748 2.067 2.452 1.369 1.739 2.059 2.437 1.371 1.744 2.065 2.439
Perm. 1.371 1.741 2.067 2.452 1.371 1.740 2.059 2.437 1.370 1.737 2.059 2.437
CVA 1.370 1.732 2.045 2.410 1.369 1.730 2.044 2.409 1.369 1.730 2.044 2.409
CVE 1.357 1.719 2.033 2.398 1.351 1.713 2.028 2.393 1.361 1.723 2.037 2.402
RMSE 0.028 0.027 0.026 0.026 0.035 0.034 0.033 0.032 0.020 0.019 0.019 0.018

(100, 100) (100, 200) (200, 100)
Sim. 1.369 1.734 2.050 2.424 1.366 1.730 2.048 2.417 1.362 1.731 2.048 2.420
Perm. 1.366 1.731 2.052 2.422 1.366 1.727 2.047 2.420 1.368 1.732 2.050 2.421
CVA 1.366 1.728 2.042 2.407 1.365 1.727 2.041 2.406 1.365 1.727 2.041 2.406
CVE 1.360 1.722 2.036 2.401 1.358 1.720 2.034 2.400 1.362 1.724 2.038 2.403
RMSE 0.018 0.018 0.017 0.017 0.019 0.018 0.018 0.017 0.013 0.012 0.012 0.011

(500, 500) (400, 800) (800, 400)
Sim. 1.359 1.723 2.041 2.409 1.362 1.725 2.038 2.406 1.363 1.723 2.034 2.400
Perm. 1.363 1.727 2.043 2.408 1.362 1.722 2.035 2.401 1.363 1.729 2.042 2.407
CVA 1.363 1.725 2.039 2.404 1.363 1.725 2.039 2.404 1.363 1.725 2.039 2.404
CVE 1.362 1.724 2.038 2.403 1.361 1.723 2.037 2.402 1.362 1.724 2.038 2.403
RMSE 0.008 0.008 0.007 0.007 0.009 0.009 0.008 0.008 0.006 0.006 0.006 0.006

(1000, 1000) (1000, 2000) (2000, 1000)
Sim. 1.360 1.723 2.039 2.402 1.362 1.724 2.037 2.408 1.365 1.726 2.040 2.408
Perm. 1.362 1.726 2.040 2.409 1.364 1.724 2.040 2.401 1.362 1.725 2.040 2.403
CVA 1.363 1.725 2.039 2.404 1.362 1.724 2.038 2.404 1.362 1.724 2.038 2.404
CVE 1.362 1.724 2.038 2.403 1.362 1.724 2.038 2.403 1.362 1.724 2.038 2.403
RMSE 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004
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Table 3.2: Critical value of max(t, tR) for the standard exponential distribution.

0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990
CVL 1.461 1.817 2.126 2.486 1.461 1.817 2.126 2.486 1.461 1.817 2.126 2.486

(n1, n2) = (20, 20) (20, 40) (40, 20)
Sim. 1.469 1.839 2.149 2.542 1.439 1.776 2.079 2.448 1.502 1.879 2.217 2.614
Perm. 1.478 1.839 2.149 2.542 1.435 1.772 2.079 2.450 1.500 1.881 2.219 2.609
CVA 1.467 1.822 2.131 2.490 1.465 1.821 2.129 2.489 1.465 1.821 2.129 2.489
CVE 1.425 1.783 2.094 2.456 1.421 1.780 2.091 2.452 1.443 1.800 2.110 2.471
RMSE 0.065 0.061 0.057 0.054 0.068 0.064 0.060 0.057 0.043 0.039 0.037 0.034

(50, 50) (40, 80) (80, 40)
Sim. 1.467 1.822 2.138 2.505 1.443 1.787 2.083 2.437 1.485 1.858 2.183 2.568
Perm. 1.465 1.821 2.136 2.508 1.443 1.787 2.086 2.431 1.477 1.843 2.164 2.534
CVA 1.463 1.819 2.128 2.488 1.463 1.819 2.128 2.487 1.463 1.819 2.128 2.487
CVE 1.445 1.802 2.112 2.472 1.440 1.797 2.108 2.468 1.451 1.808 2.117 2.478
RMSE 0.038 0.035 0.033 0.031 0.044 0.041 0.038 0.035 0.030 0.028 0.026 0.023

(100, 100) (100, 200) (200, 100)
Sim. 1.465 1.824 2.134 2.498 1.453 1.800 2.104 2.447 1.475 1.842 2.163 2.539
Perm. 1.463 1.819 2.131 2.490 1.450 1.798 2.101 2.450 1.477 1.843 2.164 2.534
CVA 1.462 1.818 2.127 2.487 1.462 1.818 2.127 2.486 1.462 1.818 2.127 2.486
CVE 1.452 1.809 2.119 2.479 1.452 1.809 2.118 2.478 1.457 1.813 2.122 2.482
RMSE 0.027 0.025 0.023 0.021 0.027 0.025 0.023 0.021 0.019 0.018 0.016 0.015

(500, 500) (400, 800) (800, 400)
Sim. 1.459 1.819 2.127 2.492 1.454 1.806 2.111 2.462 1.469 1.827 2.140 2.501
Perm. 1.464 1.821 2.128 2.492 1.456 1.806 2.109 2.465 1.466 1.828 2.144 2.507
CVA 1.461 1.817 2.126 2.486 1.461 1.817 2.126 2.486 1.461 1.817 2.126 2.486
CVE 1.459 1.815 2.124 2.484 1.458 1.815 2.124 2.484 1.460 1.816 2.125 2.485
RMSE 0.012 0.011 0.010 0.009 0.014 0.013 0.012 0.011 0.010 0.076 0.072 0.069

(1000, 1000) (1000, 2000) (2000, 1000)
Sim. 1.458 1.815 2.126 2.483 1.458 1.814 2.121 2.478 1.464 1.821 2.131 2.490
Perm. 1.463 1.819 2.132 2.490 1.458 1.809 2.116 2.472 1.464 1.825 2.138 2.502
CVA 1.461 1.817 2.126 2.486 1.461 1.817 2.126 2.486 1.461 1.817 2.126 2.486
CVE 1.460 1.816 2.125 2.485 1.460 1.816 2.125 2.485 1.460 1.817 2.126 2.485
RMSE 0.009 0.008 0.007 0.007 0.009 0.008 0.007 0.007 0.006 0.006 0.005 0.005
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Table 3.3: Critical value of max(t, tR) for the standard logistic distribution.

0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990 0.900 0.950 0.975 0.990
CVL 1.392 1.753 2.066 2.430 1.392 1.753 2.066 2.430 1.392 1.753 2.066 2.430

(n1, n2) = (20, 20) (20, 40) (40, 20)
Sim. 1.416 1.792 2.120 2.539 1.407 1.781 2.111 2.503 1.407 1.775 2.107 2.489
Perm. 1.407 1.781 2.117 2.516 1.407 1.779 2.105 2.493 1.407 1.779 2.107 2.497
CVA 1.404 1.765 2.077 2.440 1.401 1.761 2.074 2.437 1.401 1.761 2.074 2.437
CVE 1.369 1.731 2.044 2.408 1.362 1.724 2.037 2.402 1.383 1.744 2.057 2.421
RMSE 0.056 0.055 0.053 0.051 0.061 0.059 0.057 0.055 0.036 0.034 0.033 0.031

(50, 50) (40, 80) (80, 40)
Sim. 1.401 1.770 2.096 2.474 1.403 1.768 2.089 2.460 1.397 1.763 2.081 2.455
Perm. 1.399 1.767 2.082 2.456 1.397 1.763 2.080 2.461 1.399 1.763 2.083 2.455
CVA 1.397 1.758 2.071 2.434 1.397 1.757 2.070 2.434 1.397 1.757 2.070 2.434
CVE 1.382 1.743 2.057 2.421 1.377 1.738 2.051 2.416 1.387 1.748 2.061 2.425
RMSE 0.033 0.032 0.031 0.029 0.040 0.038 0.037 0.035 0.026 0.024 0.023 0.022

(100, 100) (100, 200) (200, 100)
Sim. 1.398 1.762 2.074 2.446 1.395 1.757 2.071 2.445 1.396 1.758 2.077 2.446
Perm. 1.396 1.763 2.079 2.449 1.394 1.757 2.074 2.440 1.396 1.757 2.069 2.438
CVA 1.395 1.756 2.068 2.432 1.394 1.755 2.068 2.431 1.394 1.755 2.068 2.431
CVE 1.387 1.748 2.061 2.425 1.386 1.747 2.060 2.424 1.390 1.751 2.064 2.428
RMSE 0.023 0.022 0.021 0.020 0.023 0.023 0.022 0.020 0.016 0.016 0.015 0.014

(500, 500) (400, 800) (800, 400)
Sim. 1.392 1.756 2.067 2.433 1.393 1.754 2.068 2.431 1.394 1.754 2.069 2.435
Perm. 1.394 1.755 2.069 2.435 1.394 1.755 2.067 2.431 1.392 1.753 2.066 2.428
CVA 1.393 1.754 2.066 2.430 1.393 1.753 2.066 2.430 1.393 1.753 2.066 2.430
CVE 1.391 1.752 2.065 2.429 1.391 1.751 2.064 2.428 1.392 1.752 2.065 2.429
RMSE 0.011 0.010 0.010 0.009 0.012 0.011 0.011 0.010 0.008 0.008 0.008 0.007

(1000, 1000) (1000, 2000) (2000, 1000)
Sim. 1.391 1.752 2.066 2.425 1.391 1.753 2.064 2.423 1.393 1.752 2.068 2.426
Perm. 1.391 1.755 2.067 2.436 1.393 1.755 2.068 2.434 1.393 1.754 2.069 2.435
CVA 1.392 1.753 2.066 2.430 1.392 1.753 2.066 2.430 1.392 1.753 2.066 2.430
CVE 1.392 1.752 2.065 2.429 1.392 1.752 2.065 2.429 1.392 1.753 2.066 2.430
RMSE 0.007 0.007 0.007 0.006 0.007 0.007 0.007 0.006 0.005 0.005 0.005 0.005
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Tables 3.1 to 3.3 show that the convergence of the maximum test max(t, tR) with equal sample

sizes is faster than that of unequal sample sizes. In addition, convergence to the nominal significance

level is slow for the tail probability. The simulations reveal that the limiting distribution is necessary

when the sample size is larger than 200 for equal sample sizes and 300 for unequal sample sizes.

Moreover, the asymptotic power is compared with the simulated power. The results are shown

in Tables 3.4 to 3.6. The simulated powers are obtained by 1, 000, 000 iterations of Monte Carlo

simulations. In this study, a significance level of 0.05 is assumed and (n1, n2) = (20, 20), (50, 50),

(40, 80), (80, 40). Now consider the normal distribution N(0, 1) and N(θ, 1) in Table 3.4, the

exponential distribution Exp(1) and Exp(1)+θ in Table 3.5, and the logistic distribution Logis(0, 1)

and Logis(θ, 1) in Table 3.6, where θ = 0, 0.2, 0.4, 0.6, 0.8, 1.0. In addition, use the 0.95 percentile of

the asymptotic null distribution as the critical value. In the tables, Sim.(ρ0) and Sim.(ρ̂) represent

the simulated power and the mean of the estimated p-value based on 1, 000, 000 iterations of Monte

Carlo simulations. In addition, AP is the asymptotic power calculated by L1(x).

Table 3.4: Asymptotic power of max(t, tR) under N(0, 1) and N(θ, 1).

θ

(n1, n2) 0 0.2 0.4 0.6 0.8 1.0

(20, 20) Sim.(ρ0) 0.053 0.159 0.352 0.593 0.803 0.929
Sim.(ρ̂) 0.056 0.165 0.361 0.604 0.810 0.932
AP 0.050 0.157 0.361 0.618 0.832 0.948

(50, 50) Sim.(ρ0) 0.051 0.259 0.632 0.908 0.990 1.000
Sim.(ρ̂) 0.052 0.262 0.637 0.909 0.990 0.999
AP 0.050 0.261 0.648 0.921 0.993 1.000

(40, 80) Sim.(ρ0) 0.051 0.268 0.657 0.923 0.993 1.000
Sim.(ρ̂) 0.052 0.274 0.662 0.925 0.993 1.000
AP 0.050 0.272 0.672 0.934 0.995 1.000

(80, 40) Sim.(ρ0) 0.051 0.269 0.656 0.923 0.993 1.000
Sim.(ρ̂) 0.052 0.271 0.659 0.924 0.993 1.000
AP 0.050 0.272 0.672 0.934 0.995 1.000
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Table 3.5: Asymptotic power of max(t, tR) under Exp(1) and Exp(1) + θ.

θ

(n1, n2) 0 0.2 0.4 0.6 0.8 1.0

(20, 20) Sim.(ρ0) 0.051 0.229 0.530 0.785 0.922 0.976
Sim.(ρ̂) 0.057 0.242 0.544 0.794 0.926 0.978
AP 0.050 0.222 0.513 0.767 0.912 0.974

(50, 50) Sim.(ρ0) 0.050 0.422 0.867 0.987 0.999 1.000
Sim.(ρ̂) 0.053 0.427 0.869 0.988 0.999 1.000
AP 0.050 0.414 0.855 0.984 0.999 1.000

(40, 80) Sim.(ρ0) 0.064 0.474 0.919 0.997 1.000 1.000
Sim.(ρ̂) 0.057 0.448 0.907 0.996 1.000 1.000
AP 0.050 0.427 0.870 0.987 0.999 1.000

(80, 40) Sim.(ρ0) 0.046 0.441 0.868 0.985 0.999 1.000
Sim.(ρ̂) 0.049 0.445 0.869 0.985 0.999 1.000
AP 0.050 0.441 0.882 0.990 1.000 1.000

Table 3.6: Asymptotic power of max(t, tR) under Logis(0, 1) and Logis(θ, 1).

θ

(n1, n2) 0 0.2 0.4 0.6 0.8 1.0

(20, 20) Sim.(ρ0) 0.052 0.103 0.182 0.290 0.421 0.559
Sim.(ρ̂) 0.056 0.109 0.190 0.301 0.433 0.572
AP 0.050 0.100 0.179 0.291 0.428 0.574

(50, 50) Sim.(ρ0) 0.051 0.143 0.306 0.525 0.733 0.881
Sim.(ρ̂) 0.053 0.146 0.312 0.530 0.739 0.885
AP 0.050 0.141 0.309 0.532 0.745 0.892

(40, 80) Sim.(ρ0) 0.051 0.147 0.321 0.547 0.758 0.900
Sim.(ρ̂) 0.053 0.150 0.327 0.554 0.764 0.903
AP 0.050 0.146 0.323 0.554 0.768 0.908

(80, 40) Sim.(ρ0) 0.051 0.146 0.321 0.548 0.759 0.899
Sim.(ρ̂) 0.052 0.149 0.323 0.551 0.761 0.901
AP 0.050 0.146 0.323 0.554 0.768 0.908
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Tables 3.4 to 3.6 show that the asymptotic power is roughly the same as the simulated power.

In addition, the results demonstrate the consistency of the maximum test. Furthermore, Sim.(ρ̂) is

close to AP and Sim(ρ0). Thus, the simulations reveal that the maximum statistic can be utilized

when the underlying distribution cannot be assumed.

3.4 Real data analysis

We apply our method to reaction time data Sedlmeier and Renkewitz (2008) in a clinical trial similar

to Neuhäuser (2015).

Active drug (X): 171 172 178 179 184 185 186 194 196 223
Placebo (Y ): 154 155 158 159 161 163 177 183 192 219

At first, the Mood test is used (see, e.g., Gibbons and Chakraborti (2011)) by adjusting the

median of each sample, then the p-value of 0.906 is obtained for the homogeneity of variance. It is

assumed that the two samples are from two distributions with the same variance. Next, t = 1.800

is obtained and the one-sided p-value is 0.045. For the Wilcoxon rank-sum test, tR = 2.356, and the

p-value is 0.014, as determined by the exact permutation test. Furthermore, X̄ = 186.8, σ̂ = 15.15,
̂E[XF (X)] = 97.5, and ρ̂ = 0.915. The estimated p-value is 0.013 for the maximum test. Thus, the

decision is to reject the null hypothesis. Therefore, the p-value can be estimated by using unbiased

estimators even when the underlying distribution cannot be assumed. This result is close to the

Wilcoxon rank-sum test. The limiting distribution is sometimes not suitable, as in the case of small

sample sizes. Then, the exact permutation test is used to compare with the asymptotic result and

the p-value of 0.018 is obtained for the data discussed. Although the sample sizes are small, the

p-value of the limiting distribution is close to that of the exact permutation.
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Chapter 4

Sum of random variables

Determination of the distribution of the sum of independent random variables is one of the most

important topics in real data analysis. Gómez et al. (2014) introduced the extended exponential

distribution which is useful in fitting real data. In this work, the distribution of the sum of n inid

extended exponential random variables are derived. In addition, the extended exponential distri-

bution is interpreted as a special case of the generalized Lindley distribution, which was introduced

by Zakerzadeh and Dolati (2009). Therefore, the exact probability density function and cumulative

distribution function of the sum of inid generalized Lindley random variables is also derived, and

the sum of some inid conventional random variables is shown to be a special case of the generalized

Lindley distribution.

4.1 Extended exponential random variables

The exponential distribution is widely used and is the most significant distribution in statistical

analysis. For instance, the exponential distribution is used to model waiting times of services, the

time interval between phone calls, and the lifetime of a machine. Many researchers have discussed

extensions of the exponential distribution. For example, Gupta and Kundu (2001) introduced an

extended exponential distribution, such as

fGK(x;α, λ) = αλ(1− e−λx)α−1e−λx, x > 0,

for α > 0, λ > 0. In addition, Nadarajah and Haghighi (2011) introduced another extension of the

exponential distribution with a density function given by,

fNH(x;α, λ) = αλ(1 + λx)α−1 exp{1− (1 + λx)α}, x > 0,

where α > 0 and λ > 0. Recently, Lemonte and Moreno-Arenas (2016) proposed a three parameter

extension of the exponential distribution. More recently, Almarashi et al. (2019) extended the

exponential distribution by using the type I half-logistic family of distributions.

An extension of the exponential distribution based on mixtures of positive distributions is in-

troduced by Gómez et al. (2014). A random variable X is distributed according to the extended
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exponential distribution with parameters α and β with the probability density function and cumu-

lative distribution function given by

fEE(x;α, β) =
α2(1 + βx)e−αx

α+ β
,

FEE(x;α, β) =
α+ β − (β + α+ αβx)e−αx

α+ β
,

respectively, where x > 0, α > 0, and β ≥ 0. Then, the moment generating function is given by

MEE(t) =
α2(α+ β − t)

(α+ β)(t− α)2
, t < α. (4.1)

Gómez et al. (2014) showed that the extended exponential distribution is more useful in fitting real

data than other extensions for the life of the fatigue fracture of Kevlar 49/epoxy. In this study,

the exact probability density function and cumulative distribution function of the sum of inid

extended exponential random variables are derived. However, the probability density function and

cumulative distribution function contain an infinite sum of gamma series. Then, the saddlepoint and

the normal approximations are applied to overcome the computational complexity. The accuracy of

the saddlepoint approximation to the sum of inid extended exponential random variables is further

compared with the exact distribution function through numerical studies. In addition, parameter

estimation by the maximum likelihood method is discussed for the case of n = 2 and real data

analysis.

4.2 Sum of inid extended exponential random variables

In this section, the exact distribution of the sum of the inid extended exponential random variables is

derived. Let X1, . . . , Xn be independent, extended exponential random variables with parameters

αi > 0, βi ≥ 0 for i = 1, . . . , n. By Equation (4.1), the moment generating function of S =

X1 +X2 + · · ·+Xn is

MSEE(t) =
n∏

i=1

α2
i (αi + βi − t)

(αi + βi)(t− αi)2

=

(
n∏

i=1

α2
i

αi + βi

) ∑
τ∈Bn

n∏
i=1

β
(τ )i
i

(αi − t)(τ )i+1

=

(
n∏

i=1

α2
i

αi + βi

) ∑
τ∈Bn

(
n∏

i=1

β
(τ )i
i

α
(τ )i+1
i

)
n∏

i=1

(
1− t

αi

)−(τ )i−1

, (4.2)

where B = {0, 1}, and (τ )i is the ith component of τ .

Herein, let

h(t) =

n∏
i=1

(
1− t

αi

)−(τ )i−1

.
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The inverse transformation of the moment generating function is applicable to h(t). Then we obtain

Theorem 4.1.

Theorem 4.1. The probability density function of S is expressed as

fSEE(x) = C
∑
τ∈Bn

Dτ

∞∑
k=0

δkα
ρτ+k
1

Γ(ρτ + k)
xρτ+k−1e−α1x, x > 0, (4.3)

where

C =
n∏

i=1

α2
i

αi + βi
, Dτ =

n∏
i=1

β
(τ )i
i

α
(τ )i+1
i

, ρτ =
n∑

i=1

{(τ )i + 1} ,

δk+1 =
1

k + 1

k+1∑
j=1

jηjδk+1−j , k = 0, 1, 2, . . . , δ0 = 1,

ηj =
n∑

s=1

{(τ )s + 1}
(
1− αs

α1

)j

/j, α1 = max
i

(αi).

Proof. A procedure similar to Moschopoulos (1985) is followed to prove the theorem. Without loss

of generality, assume α1 = max
i

(αi). Then apply the identity

1− t

αi
=

(
1− t

α1

)
α1

αi

[
1−

1− αi
α1

1− t
α1

]
to h(t), and then

log h(t) = log
n∏

i=1

(
1− t

αi

)−(τ )i−1

= log
n∏

i=1

(
1− t

α1

)−(τ )i−1(α1

αi

)−(τ )i−1
[
1−

1− αi
α1

1− t
α1

]−(τ )i−1

= log
n∏

i=1

(
1− t

α1

)−(τ )i−1(α1

αi

)−(τ )i−1

+
n∑

i=1

log

[
1−

1− αi
α1

1− t
α1

]−(τ )i−1

.

By using the Maclaurin expansion log(1− x) = −
∞∑
j=1

xj

j
, we have

log h(t) = log

n∏
i=1

(
1− t

α1

)−(τ )i−1(α1

αi

)−(τ )i−1

+

n∑
i=1

(−(τ )i − 1)

− ∞∑
j=1

1

j

(
1− αi

α1

1− t
α1

)j


= log
n∏

i=1

(
1− t

α1

)−(τ )i−1(α1

αi

)−(τ )i−1

+
∞∑
j=1

{
1

j

n∑
i=1

((τ )i + 1)

(
1− αi

α1

)j
}(

1− t

α1

)−j

= log

[
n∏

i=1

(
αi

α1

)(τ )i+1(
1− t

α1

)−ρτ
]
+

∞∑
j=1

ηj

(
1− t

α1

)−j

,
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where

ρτ =

n∑
i=1

{(τ )i + 1} , ηj =
1

j

n∑
i=1

{(τ )i + 1}
(
1− αi

α1

)j

.

This expression is defined by t such that max
i

|(1− αi/α1)/(1− t/α1)| < 1. Therefore,

h(t) =

n∏
i=1

(
αi

α1

)(τ )i+1(
1− t

α1

)−ρτ

exp

 ∞∑
j=1

ηj

(
1− t

α1

)−j
 .

Herein, the terms of the same order in the Taylor series are calculated together to obtain,

exp

 ∞∑
j=1

ηj

(
1− t

α1

)−j
 =

∞∑
k=0

δk

(
1− t

α1

)−k

.

The coefficient δk is obtained by the recursive formula,

δk+1 =
1

k + 1

k+1∑
j=1

jηjδk+1−j , k = 0, 1, 2, . . . ,

with δ0 = 1. Thus, the moment generating function of Y is

MSEE(t) =

(
n∏

i=1

α2
i

αi + βi

) ∑
τ∈Bn

n∏
i=1

β
(τ )i
i

α
(τ )i+1
1

∞∑
k=0

δk

(
1− t

α1

)−(ρτ+k)

.

Remark that
(
1− t

α1

)−(ρτ+k)
is the same as the moment generating function of the gamma

distribution. Then, we apply the inverse transformation of the moment generating function term-

by-term. Therefore, the theorem is completely proved.

Theorem 4.2. The exact cumulative distribution function FSEE(y) = P (S ≤ y) is derived by

term-by-term integration of (4.3), that is,

FSEE(x) = C
∑
τ∈Bn

Dτ

∞∑
k=0

δk

∫ x

0

αρτ+k
1

Γ(ρτ + k)
wρτ+k−1e−α1wdw (4.4)

= C
∑
τ∈Bn

Dτ

∞∑
k=0

δk(α1x)
ρτ+k

Γ(ρτ + k + 1)
e−α1x

1F1(1; ρτ + k + 1;α1x), (4.5)

where 1F1(a; b; z) is the confluent hypergeometric function with the integral formula of

1F1(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
ezwwa−1(1− w)b−a−1dw, 0 < a < b.

In addition, the truncation error is obtained by

Em(x) = C
∑
τ∈Bn

Dτ
αρτ
1

Γ(ρτ )

∫ x

0
wρτ−1 exp {−(1− a)α1w} dw − Fm(x),

where Fm(x) is the sum of the first m+ 1 terms of (4.5) for k = 0, 1, . . . ,m.
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Proof. The interchange of the integration and summation in FSEE(y) can be justified from the

uniform convergence. For i = 1, 2, . . . and a = max2≤ℓ≤n(1− αℓ/α1), to obain,

|ηj | =
n∑

s=1

((τ )s + 1)(1− αs/α1)
j

j
≤ ρτa

j

j
, j = 1, 2, . . . , k + 1.

From the definition of δ,

|δk+1| ≤
ρτ

k + 1

k+1∑
j=1

aj |δk+1−j |, k = 0, 1, 2, . . . ,

from the recursive equation,

|δk+1| ≤
ρτ (ρτ + 1) · · · (ρτ + k)

(k + 1)!
ak+1.

Therefore,

fSEE(x) = C
∑
τ∈Bn

Dτ
αρτ
1

Γ(ρτ )
xρτ−1 exp(−α1x)

∞∑
k=0

δk
ρτ (ρτ + 1) · · · (ρτ + k − 1)

(α1x)
k

≤ C
∑
τ∈Bn

Dτ
αρτ
1

Γ(ρτ )
xρτ−1 exp(−α1x)

∞∑
k=0

(α1ax)
k

k!

= C
∑
τ∈Bn

Dτ
αρτ
1

Γ(ρτ )
xρτ−1 exp {−(1− a)α1x} . (4.6)

Here, (4.6) shows the uniform convergence of (4.3), and then we have (4.5).

4.3 Numerical results

In the previous section, we derived the exact distribution of the sum of inid extended exponential

random variables. However, it is difficult to calculate the exact probability when the number of

random variables increases. Hence, a more accurate approximation of the distribution is needed.

Under these circumstances, the saddlepoint approximation is commonly used. In literature, many

researchers have considered applying the saddlepoint approximation to the distribution of the sum

of inid random variables. For example, Eisinga et al. (2013) discussed the use of the saddlepoint

approximation for the sum of the inid binomial random variables; Murakami (2014) and Nadarajah

et al. (2015) applied the saddlepoint approximation to the sum of the inid uniform and beta random

variables, respectively, while Murakami (2015) gave the approximation for the sum of the inid

gamma random variables. In this study, the evaluation of the tail probability is discussed using the

saddlepoint approximation. Furthermore, the parameters are estimated by the maximum likelihood

method and applied to real data analysis.
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4.3.1 Saddlepoint approximation

Herein, we consider an approximation for the distribution of S. The cumulant generating function

of S is given by

k(t) =
n∑

i=1

log

(
α2
i (αi + βi − t)

(αi + βi)(t− αi)2

)
.

Lugannani and Rice (1980) provided the formula for approximating the distribution function as

follows:

FSA(x) = Φ(ŵ) + ϕ(ŵ)

(
1

ŵ
− 1

û

)
+O(n− 3

2 ), (4.7)

where ϕ(·) and Φ(·) are the standard normal probability density function and the corresponding

cumulative distribution function, respectively. In addition, we denote

ŵ = sgn(ŝ)
√
2{ŝx− k(ŝ)}, û = ŝ

√
k′′(ŝ),

where ŝ is the root of k′(s) = x, which is solved numerically by the Newton-Raphson algorithm;

sgn(ŝ) = ±1, 0 if ŝ is positive, negative, or zero; and

k′(t) =
n∑

i=1

t− αi − 2β1
(t− αi)(αi + βi − t)

,

k′′(t) =

n∑
i=1

(
2

(t− αi)2
− 1

(αi + βi − t)2

)
.

Herein, the accuracy of approximation is compared with the following distributions by calculat-

ing the probability. ŝ is a percentile derived from 100, 000, 000 random numbers generated by S,

and p is the exact probability. Note that X is generated as a mixture distribution of two random

variables (Gómez et al., 2014). More precisely, they are the exponential and gamma distributions.

Then, a random number S is obtained by the sum of n random numbers X.

• Fm: The approximate cumulative distribution function, which is truncated in the infinite

series in (4.5) after m+ 1 terms.

• FNA: The normal approximation.

• FSA: The saddlepoint cumulative distribution function from (4.7).

In the tables, Conv. represents the exact probability calculated by convolution, r.e. is the relative

error between the approximation and p, and MCT is the mean calculating time. In our study, Math-

ematica version 11 (CPU 2.80 GHz and 32.0 GB RAM) is used. The parameters α = (α1, . . . , αn),

and β = (β1, . . . , βn) are generated from the uniform distribution Unif(0, 3), as in Murakami (2014)

and Nadarajah et al. (2015):

Case 1: n = 2
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Case 1-A: α = (2.307, 1.438), β = (2.138, 2.694).

Case 1-B: α = (2.767, 0.301), β = (0.659, 1.709).

Case 2: n = 5

Case 2-A: α = (1.792, 1.522, 0.828, 1.690, 1.189),

β = (0.628, 2.730, 0.796, 1.556, 1.226).

Case 2-B: α = (0.628, 2.730, 07.96, 1.556, 1.226),

β = (0.942, 0.867, 1.438, 0.631, 2.014).

Case 3: n = 10

Case 3-A: α = (1.820, 1.537, 0.887, 1.707, 0.867, 1.857, 1.308, 0.165, 1.405, 1.120),

β = (1.172, 0.331, 0.812, 1.107, 0.575, 1.634, 0.412, 0.151, 1.834, 1.377).

Case 3-B: α = (1.366, 2.631, 2.944, 0.106, 1.769, 2.205, 2.227, 2.347, 1.911, 1.761),

β = (2.620, 0.210, 1.000, 0.473, 2.635, 1.267, 1.255, 0.7433, 0.103, 1.609).

Table 4.1: Numerical results for n = 2.

ŝ Conv. p Fm FSA FNA r.e. FSA r.e. FNA

Case 1-A
1.8547 0.6000 0.6000 0.6000 0.6004 0.5229 0.0007 0.1286
2.1821 0.7000 0.7000 0.7000 0.7005 0.6377 0.0007 0.0891
2.6082 0.8000 0.8000 0.8000 0.8005 0.7691 0.0006 0.0386
3.2795 0.9000 0.9000 0.9000 0.9003 0.9099 0.0003 0.0110
3.9072 0.9500 0.9500 0.9500 0.9502 0.9716 0.0002 0.0228
4.5079 0.9750 0.9750 0.9750 0.9751 0.9928 0.0001 0.0182
5.2739 0.9900 0.9900 0.9900 0.9900 0.9991 0.0000 0.0092

MCT(sec.) 64.1 30.9 0.11 0.0

Case 1-B
6.6464 0.6000 0.6000 0.6000 0.6000 0.5058 0.0001 0.1570
8.0298 0.7000 0.7000 0.7000 0.6999 0.6215 0.0002 0.1121
9.8729 0.8000 0.8000 0.8000 0.7998 0.7588 0.0002 0.0515
12.8465 0.9000 0.9000 0.9000 0.8998 0.9093 0.0002 0.0103
15.6850 0.9500 0.9500 0.9500 0.9499 0.9739 0.0001 0.0252
18.4362 0.9750 0.9750 0.9750 0.9749 0.9943 0.0001 0.0198
21.9809 0.9900 0.9900 0.9900 0.9900 0.9995 0.0000 0.0096

MCT(sec.) 63.0 28.6 0.11 0.00

Determining the appropriate value of m is difficult. Therefore, percentiles of Fm were compared

for various m with the exact probability calculated by convolution. Then, it was determined that
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Table 4.2: Numerical results for n = 5.

ŝ p Fm FSA FNA r.e. FSA r.e. FNA

Case 2-A
6.0019 0.6000 0.6000 0.6007 0.5464 0.0011 0.0893
6.6914 0.7000 0.7000 0.7007 0.6579 0.0010 0.0601
7.5633 0.8000 0.8000 0.8007 0.7804 0.0008 0.0245
8.8929 0.9000 0.9000 0.9005 0.9088 0.0005 0.0097
10.1016 0.9500 0.9500 0.9503 0.9673 0.0003 0.0182
11.2365 0.9750 0.9750 0.9752 0.9898 0.0002 0.0152
12.6623 0.9900 0.9900 0.9901 0.9982 0.0001 0.0083

MCT(sec.) 106 511 0.16 0.00

Case 2-B
5.4987 0.6000 0.6001 0.6014 0.5308 0.0023 0.1153
6.2522 0.7000 0.7000 0.7012 0.6435 0.0017 0.0807
7.2267 0.8000 0.8000 0.8010 0.7714 0.0012 0.0357
8.7527 0.9000 0.9000 0.9005 0.9085 0.0005 0.0095
10.1783 0.9500 0.9500 0.9502 0.9700 0.0002 0.0211
11.5417 0.9750 0.9750 0.9751 0.9920 0.0001 0.0174
13.2824 0.9900 0.9900 0.9900 0.9990 0.0000 0.0090

MCT(sec.) 102 506 0.17 0.00

m = 1000 for simulating Fm. There is no difference between the Conv. and p, as shown in Table 4.1.

Hence, the simulated p is used as the exact probability for Case 2 (n = 5) and Case 3 (n = 10).

Tables 4.1 to 4.3 show that Fm is closer to p than any other approximation. In Kitani and

Murakami (2020b) it took more than 100 hours to calculate Fm using Equation (4.4) for Case

3. However, the value of Fm can be obtained using Equation (4.5) in numerical calculations.

Nonetheless, it is difficult to apply real data analysis because it takes a long time to calculate the

probability and Fm does not work well in Case 3-B. On the other hand, FNA and Fsa overcome the

problem of calculation time; in particular, FS gives better accuracy than FN .

4.3.2 Parameter estimation

In this section, parameter estimation for the sum of extended exponential distribution for the case

of n = 2 is discussed. After generating r random numbers which follow the extended exponential

distribution, the parameters were estimated using the maximum likelihood estimator. In Table 4.4,

the mean and the variance of estimated parameters are shown, along with the first four moments

of S = X1 +X2 based on 1,000 simulations.
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Table 4.3: Numerical results for n = 10.

ŝ p Fm FSA FNA r.e. FSA r.e. FNA

Case 3-A
19.0493 0.6000 0.6001 0.6004 0.5106 0.0006 0.1489
21.5079 0.7000 0.7001 0.6996 0.6233 0.0005 0.1095
24.7999 0.8000 0.8001 0.7994 0.7578 0.0008 0.0528
30.1437 0.9000 0.9000 0.8995 0.9073 0.0006 0.0081
35.2711 0.9500 0.9500 0.9497 0.9728 0.0003 0.0240
40.2577 0.9750 0.9750 0.9749 0.9939 0.0001 0.0194
46.6919 0.9900 0.9900 0.9899 0.9994 0.0001 0.0095

MCT(sec.) 177 29446 0.25 0.02

Case 3-B
23.4716 0.6000 0.6000 0.5999 0.5069 0.0001 0.1551
27.4031 0.7000 0.7000 0.6998 0.6223 0.0003 0.1110
32.6411 0.8000 0.8000 0.7998 0.7591 0.0002 0.0512
41.0841 0.9000 0.9000 0.8998 0.9090 0.0002 0.0100
49.1511 0.9500 0.9471 0.9499 0.9737 0.0001 0.0250
56.9604 0.9750 0.9517 0.9749 0.9942 0.0001 0.0197
67.0207 0.9900 0.9425 0.9900 0.9995 0.0000 0.0096

MCT(sec.) 171 28280 0.25 0.02

Table 4.4: The mean (the variance) of numerical simulation based on 1000 iterations and the first
four moments.

r r

True 100 500 2000 True 100 500 2000

α̂1 2.2 1.99 2.07 2.12 E[S] 1.67 1.74 1.70 1.68
(2.21) (0.76) (0.64)

α̂2 1.4 1.45 1.39 1.38 E[S2] 3.99 4.21 4.06 4.01
(0.07) (0.04) (0.03)

β̂1 2.6 4.28 4.28 3.60 E[S3] 12.27 13.04 12.48 12.34
(18.4) (13.9) (5.34)

β̂2 0.8 0.60 0.43 0.49 E[S4] 46.26 49.08 46.98 46.57
(3.07) (1.62) (0.89)

In Table 4.4, the estimated parameters get closer to the true parameters as sample size r in-

creases. Parameters β̂1 and β̂2 are different from true parameters β1 and β2; however, there is

almost no difference in the moments. The simulation results show that parameter estimation works

well. Nevertheless, since the variance is large when the sample size is small, the initial value prob-
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lem of parameter estimation is considered. It will be necessary to discuss the identifiability of the

parameters in the future.

4.3.3 Real data analysis

The Akaike information criterion (AIC) is compared with the extended exponential distribution of

Gómez et al. (2014) (i.e., the case of n = 1, EE1) and fY with n = 2, 3 (EE2, EE3), Gamma distri-

bution Gamma(α1, α2), and Weibull distribution Weibull(α1, α2) based on the maximum likelihood

approach.

Two data sets are considered for the life of the fatigue fracture of Kevlar 49/epoxy, which is a

widely used synthetic fiber, given in Glaser (1983) as follows:

Dataset 1:

0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753,

0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733,

1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460,

1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903,

2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678,

3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, and 9.0960.

Dataset 2:

0.7367, 1.1627, 1.8945, 1.9340, 2.3180, 2.6483, 2.8573, 2.9918, 3.0797, 3.1152, 3.1335, 3.2647, 3.4873,

3.5390, 3.6335, 3.6541, 3.7645, 3.8196, 3.8520, 3.9653, 4.2488, 4.3017, 4.3942, 4.6416, 4.7070, 4.8885,

5.1746, 5.4962, 5.5310, 5.5588, 5.6333, 5.7006, 5.8730, 5.8737, 5.9378, 6.1960, 6.2217, 6.2630, 6.3163,

6.4513, 6.8320, 6.9447, 7.2595, 7.3183, 7.3313, 7.7587, 8.0393, 8.0693, 8.1928, 8.4166, 8.7558, 8.8398,

9.2497, 9.2563, 9.5418, 9.6472, 9.6902, 9.9316, 10.018, 10.4028 , 10.4188, 10.7250, 10.9411, 11.7962,

12.075, 12.6933, 13.5307, 13.8105, 14.5067, 15.3013, 16.2742, 18.2682, and 19.2033.

In addition, we consider another type of data set consisting of the waiting times between 65 con-

secutive eruptions of the Kiama Blowhole. These data are available at http://www.statsci.org/

data/oz/kiama.html.

Dataset 3:

83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 91, 8, 17, 55, 10, 35,47, 77, 36, 17, 21, 36, 18, 40,

10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26,

11, 83, 11, 42, 17, 14, 9 and 12.

Results of the parameter estimation of various models are shown in Table 4.5.
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Table 4.5: Parameter estimates for various models.

Distribution α̂1 β̂1 α̂2 β̂2 α̂3 β̂3 AIC

Dataset 1
EE1 0.954 6.365 - - - - 247.3
EE2 0.709 0.000 2.296 0.817 - - 253.2
EE3 156.3 1.320 99.54 118.6 1.007 15.91 256.8

Gamma 1.641 0.838 - - - - 248.5
Weibull 1.326 2.133 - - - - 249.0

Dataset 2
EE1 0.281 835.7 - - - - 405.1
EE2 0.474 10.77 0.476 0.348 - - 402.5
EE3 1.898 0.498 0.462 1.064 0.465 0.201 406.5

Gamma 3.071 0.432 - - - - 398.5
Weibull 1.877 8.039 - - - - 400.0

Dataset 3
EE1 0.050 7.038 - - - - 597.6
EE2 0.335 2.5× 106 0.032 0.003 - - 594.8
EE3 0.715 4.125 0.030 0.001 0.519 4.823 596.9

Gamma 1.621 0.041 - - - - 595.8
Weibull 1.274 43.21 - - - - 597.8

Figures 4.1 to 4.3 display the data fitting for various models.
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Figure 4.1: Fitted probability density functions of the distribution for Dataset 1.
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Figure 4.2: Fitted probability density functions of the distribution for Dataset 2.
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Figure 4.3: Fitted probability density functions of the distribution for Dataset 3.
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In Dataset 1, as in Gómez et al. (2014), AIC indicates that EE1 is the most suitable model. In

another example, EE2 is more suitable than EE1 while the gamma model is a better fit in Dataset2.

However, EE2 is the best model for Dataset3. As a whole, the sum of the extended exponential

models have versatility for these data sets.

4.4 Generalized Lindley random variables

The extended exponential distribution can be expressed as a mixture of exponential and gamma

distributions as follows:

fEE(x;α, β) =
α

α+ β
fE(x;α) +

β

α+ β
fG(x; 2, α), x > 0,

where α > 0, β ≥ 0, and fE(x;α) and fG(x; 2, α) are the probability density function of the

exponential distribution Exp(α) and gamma distribution Gamma(2, α), respectively. Then, the

extended exponential distribution is also the extension of the Lindley distribution, which is proposed

by Lindley (1958). The probability density function of the Lindley distribution is given by

fL(x;α) =
α

1 + α
fE(x;α) +

1

1 + α
fG(x; 2, α)

=
α2

1 + α
(x+ 1)e−αx, x > 0,

where α > 0. Ghitany et al. (2008) discussed various properties of this distribution and demon-

strated its importance for modeling various sets of lifetime data and reliability modeling. Ghitany

et al. (2008) also suggested that many situations exist in which the Lindley distribution is a better

model than the exponential distribution. In the literature, many authors have extended the Lindley

distribution. For example, Shanker and Mishra (2013) proposed a quasi-Lindley distribution with

probability density function

fQL(x;α, λ) =
α(λ+ αx)

1 + λ
e−αx, x > 0,

where α > 0, λ > −1. The quasi-Lindley distribution is defined by a mixture of Exp(α) and

Gamma(2, α), where the mixing probabilities are λ/(1 + λ) and 1/(1 + λ), respectively. Another

two-parameter Lindley distribution was introduced by Shanker et al. (2013), which is the same as

the extended exponential distribution proposed by Gómez et al. (2014). Note that the extended

exponential distribution is reduced to the original Lindley distribution when β = 1.

For three-parameter extension, Abd El-Monsef (2016) proposed the three-parameter Lindley

distribution by adding the location parameter with probability density function

f3L(x;α, β, θ) =
α2

α+ β
{1 + β(x− θ)}e−α(x−θ), x > θ ≥ 0,
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where α > 0, β ≥ 0. Moreover, Zakerzadeh and Dolati (2009) introduced a further generalization,

which is the generalized Lindley distribution, with probability density function

fGL(x;α, β, γ) =
α2(αx)γ−1(γ + βx)e−αx

(α+ β)Γ(γ + 1)
, x > 0,

where α, γ > 0, and β ≥ 0. Zakerzadeh and Dolati (2009) showed that the generalized Lindley

distribution is flexible and a better fitting model than the gamma or Weibull distributions for

the failure time of electronic components and the number of cycles until the specimen breaks. The

generalized Lindley distribution is a mixture of Gamma(γ, α) and Gamma(γ+1, α) with probabilities

α/(α+ β) and β/(α+ β). Note that the generalized Lindley distribution is reduced to the gamma

distribution with parameter (γ, α) and the exponential distribution with parameter α when β = 0

and β = 0, γ = 1, respectively. Also note that this distribution is reduced to the extended

exponential distribution when γ = 1 and the original Lindley distribution when β = 1 and γ = 1.

Furthermore, when β = 1/α and γ = 1, the distribution is reduced to the Shanker distributuon

introduced by Shanker (2015). Thus, the generalized Lindley distribution is an extension of the

exponential and gamma distributions. Zakerzadeh and Dolati (2009) derived the distribution of

the sum of independent random variables. Let X1, . . . , Xn denote the independent variables for the

generalized Lindley distribution with parameters (α, β, γi), where α, γi > 0, β ≥ 0 for i = 1, . . . , n.

Then, the probability density function of S = X1 + · · ·+Xn is given by

fS(x) =

n∑
k=0

pkfG(x; γ
∗ + k, β),

where

γ∗ =

n∑
i=1

γi, pk =

(
n

k

)
βn−kαk

(α+ β)n
, k = 0, 1, . . . , n.

However, they considered the sum of generalized Lindley random variables only in the case α1 =

α2 = · · · = αn = α, β1 = β2 = · · · = βn = β, and γi are not equal. Therefore, in this study, a more

general case is discussed to obtain the distribution of the sum of n independent generalized Lindley

random variables with parameters (αi, βi, γi) using a simple gamma series and recurrence relation

similar to Section 4.2.

4.5 Sum of inid generalized Lindley random variables

In this section, the probability density function and cumulative distribution function of the sum

of inid random variables is considered. In addition, the distributions of the sum of inid extended

exponential are derived: Lindley, three-parameter Lindley, and gamma random variables as special

cases.
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4.5.1 The exact probability density function

Let Xi be independent generalized Lindley random variables with parameters αi, γi > 0, βi ≥ 0 for

i = 1, . . . , n. Then, using the direct product of B = {0, 1}, we obtain the exact probability density

function of S = X1 + · · ·+Xn as follows:

Theorem 4.3. The exact probability density function of S is expressed as

fSGL(x) = C
∑
τ∈Bn

Dτ

∞∑
k=0

δkα
ρτ+k
1

Γ(ρτ + k)
xρτ+k−1e−α1x, x > 0, (4.8)

where

C =

n∏
i=1

αγi+1
i

αi + βi
, Dτ =

n∏
i=1

β
(τ )i
i

α
γi+(τ )i
1

, ρτ =

n∑
i=1

{γi + (τ )i} ,

δk+1 =
1

k + 1

k+1∑
j=1

jηjδk+1−j , k = 0, 1, 2, . . . , δ0 = 1,

ηj =

n∑
s=1

γs + (τ )s
j

(
1− αs

α1

)j

, α1 = max
i

(αi),

and (τ )i is i-th element of τ ∈ Bn. If βi = 0 and (τ )i = 0, define β
(τ )i
i = 1.

Proof. Following a similar procedure to that of (4.2). The moment generating function of the

generalized Lindley distribution is given by

MGL(t) =

(
α

α− t

)γ+1 α+ β − t

α+ β
, t < α.

Therefore, the moment generating function of S = X1 + · · ·+Xn is

MSGL(t) =

(
n∏

i=1

αγi+1
i

αi + βi

) ∑
τ∈Bn

n∏
i=1

β
(τ )i
i

(αi − t)γi+(τ )i

=

(
n∏

i=1

αγi+1
i

αi + βi

) ∑
τ∈Bn

n∏
i=1

β
(τ )i
i

α
γi+(τ )i
i

n∏
i=1

(
1− t

αi

)−γi−(τ )i

.

Let α1 = max
i

(αi). Herein, denote

h(t) =
n∏

i=1

(
1− t

αi

)−γi−(τ )i

.

Using the identity

1− t

αi
=

(
1− t

α1

)
α1

αi

[
1−

1− αi
α1

1− t
α1

]
,
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then,

log h(t) = log

[
n∏

i=1

{(
1− t

α1

)(
α1

αi

)}−γi−(τ )i
]
+

n∑
i=1

log

[
1−

1− αi
α1

1− t
α1

]−γi−(τ )i

.

By applying the Maclaurin expansion of log(1− x),

log h(t) = log

[
n∏

i=1

(
αi

α1

)γi+(τ )i (
1− t

α1

)−ρτ
]
+

∞∑
j=1

ηj

(
1− t

α1

)−j

,

where

ρτ =

n∑
i=1

{γi + (τ )i} , ηj =
1

j

n∑
i=1

{γi + (τ )i}
(
1− αi

α1

)j

.

Therefore,

h(t) =
n∏

i=1

(
αi

α1

)γi+(τ )i (
1− t

α1

)−ρτ

exp

 ∞∑
j=1

ηj

(
1− t

α1

)−j
 .

The terms of the same order in the Taylor series are calculated together to obtain,

exp

 ∞∑
j=1

ηj

(
1− t

α1

)−j
 =

∞∑
k=0

δk

(
1− t

α1

)−k

.

The coefficient δk is obtained by the following recursive formula:

δk+1 =
1

k + 1

k+1∑
i=1

iηiδk+1−i, k = 0, 1, 2, . . . ,

where δ0 = 1. Hence, the moment generating function of S is

MSGL(t) =

(
n∏

i=1

αγi+1
i

αi + βi

) ∑
τ∈Bn

n∏
i=1

β
(τ )i
i

α
γi+(τ )i
i

n∏
i=1

(
1− t

αi

)−γi−(τ )i

=

(
n∏

i=1

αγi+1
i

αi + βi

) ∑
τ∈Bn

n∏
i=1

β
(τ )i
i

α
γi+(τ )i
1

∞∑
k=0

δk

(
1− t

α1

)−(ρτ+k)

.

Note that
∞∑
k=0

δk

(
1− t

α1

)−(ρτ+k)

is the same as the moment generating function of the mixture of

gamma distributions. Then, we apply the inverse transformation of the moment generating function

term-by-term. Therefore, the theorem is completely proved.
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4.5.2 The exact cumulative distribution function

We derive the cumulative distribution function by the term-by-term integration of fS(x) in (4.8).

Theorem 4.4. The exact cumulative distribution function FSGL(x) = P (S ≤ x) is

FSGL(x) = C
∑
τ∈Bn

Dτ

∞∑
k=0

δk(α1x)
ρτ+k

Γ(ρτ + k + 1)
e−α1x

1F1(1; ρτ + k + 1;α1x), (4.9)

where 1F1(a; b; z) is the confluent hypergeometric function with the integral formula of

1F1(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
ezwwa−1(1− w)b−a−1dw, 0 < a < b.

Proof. Let a = max
2≤ℓ≤n

(1− αℓ/α1), then

|ηj | =
n∑

s=1

(γs + (τ )s)(1− αj/α1)
j

j
≤ ρτa

j

j
, j = 1, 2, . . . , k + 1.

From the definition of δ, we obtain

|δk+1| ≤
ρτ

k + 1

k+1∑
j=1

aj |δk+1−j |, k = 0, 1, 2, . . .

from the recursive equation as

|δk+1| ≤
ρτ (ρτ + 1) · · · (ρτ + k)

(k + 1)!
ak+1.

Therefore,

fSGL(x) = C
∑
τ∈Bn

Dτ
αρτ
1

Γ(ρτ )
xρτ−1e−α1x

∞∑
k=0

δk
ρτ · · · (ρτ + k − 1)

(α1x)
k

≤ C
∑
τ∈Bn

Dτ
αρτ
1

Γ(ρτ )
xρτ−1e−α1x

∞∑
k=0

(α1ax)
k

k!

= C
∑
τ∈Bn

Dτ
αρτ
1

Γ(ρτ )
xρτ−1e−(1−a)α1x. (4.10)

Here, (4.10) shows that the uniform convergence of (4.8). Then,

FSGL(x) = C
∑
τ∈Bn

Dτ

∞∑
k=0

δk

Γ(ρτ + k)α
−(ρτ+k)
1

∫ x

0
wρτ+k−1e−α1wdw

= C
∑
τ∈Bn

Dτ

∞∑
k=0

δk

Γ(ρτ + k)α
−(ρτ+k)
1

1

αρτ+k
1

∫ α1x

0
e−ttρτ+k−1dt
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= C
∑
τ∈Bn

Dτ

∞∑
k=0

δk(α1x)
ρτ+k

Γ(ρτ + k + 1)
1F1(ρτ + k; ρτ + k + 1;−α1x)

= C
∑
τ∈Bn

Dτ

∞∑
k=0

δk(α1x)
ρτ+k

Γ(ρτ + k + 1)
e−α1x

1F1(1; ρτ + k + 1;α1x).

The truncation of Equation (4.9) up to k ≤ m is defined by

Fm(x) = C
∑
τ∈Bn

Dτ

m∑
k=0

δk(α1x)
ρτ+k

Γ(ρτ + k + 1)
e−α1x

1F1(1; ρτ + k + 1;α1x), (4.11)

and the truncation error bound is obtained, using Equation (4.10), by

C
∑
τ∈Bn

Dτ
(α1x)

ρτ

Γ(ρτ + 1)
e−(1−a)α1x

1F1(1; ρτ + 1; (1− a)α1x)− Fm.

4.5.3 Special cases

Here, we derive the exact distributions of the sum of conventional random variables by substituting

specific parameters into Theorems 4.3 and 4.4. First, it is shown that the sum of inid extended

exponential random variables is the special case of the sum of inid generalized Lindley random

variables in Corollary 4.5.

Corollary 4.5. The exact probability density function and the exact cumulative distribution func-

tion of the sum of inid extended exponential random variables are expressed as fSEE and FSEE in

Theorems 4.1 and 4.2, respectively, by substituting γi = 1 into Theorems 4.3 and 4.4

In the location shift case, Abd El-Monsef (2016) proposed the three-parameter Lindley distri-

bution. When location parameters θi are equal to zero, the three-parameter Lindley distribution

is reduced to the extended exponential distribution. Thus, the sum of the three-parameter Lindley

random variables is expressed as Corollary 4.6.

Corollary 4.6. Let Xi be the three-parameter Lindley distribution and Yi = Xi − θi. Then, Yi is

distributed as the extended exponential distribution with parameters (αi, βi). Therefore, the sum of

inid three-parameter Lindley random variables is obtained as
∑n

i=1 Yi +
∑n

i=1 θi.

Additionally, the distribution of the sum of inid Lindley random variables fSL and FSL are

obtained by substituting βi = 1 and γi = 1 as shown in Corollary 4.7.

Corollary 4.7. The exact probability density function and the exact cumulative distribution function

of the sum of inid Lindley random variables are respectively expressed as

fSL(x) = C†
∑
τ∈Bn

D†
τ

∞∑
k=0

δkα
ρ†τ+k
1

Γ(ρ†τ + k)
xρ

†
τ+k−1e−α1x, x > 0,
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FSL(x) = C†
∑
τ∈Bn

D†
τ

∞∑
k=0

δk(α1x)
ρ†τ+k

Γ(ρ†τ + k + 1)
e−α1x

1F1(1; ρ
†
τ + k + 1;α1x),

where

C† =
n∏

i=1

α2
i

αi + 1
, D†

τ =
n∏

i=1

1

α
1+(τ )i
1

, ρ†τ =
n∑

i=1

{1 + (τ )i} ,

δk+1 =
1

k + 1

k+1∑
j=1

jη†jδk+1−j , k = 0, 1, 2, . . . , δ0 = 1,

η†j =
n∑

s=1

1 + (τ )s
j

(
1− αs

α1

)j

, α1 = max
i

(αi), B = {0, 1},

and (τ )i is i-th element of τ ∈ Bn.

Similarly, the distribution of the sum of inid Shanker random variables fSS and FSS are obtained

by substituting βi = 1/αi and γi = 1 as shown in Corollary 4.8.

Corollary 4.8. The exact probability density function and the exact cumulative distribution function

of the sum of inid Shanker random variables are respectively expressed as

fSS(x) = C⋆
∑
τ∈Bn

D⋆
τ

∞∑
k=0

δkα
ρ⋆τ+k
1

Γ(ρ⋆τ + k)
xρ

⋆
τ+k−1e−α1x, x > 0,

FSS(x) = C⋆
∑
τ∈Bn

D⋆
τ

∞∑
k=0

δk(α1x)
ρ⋆τ+k

Γ(ρ⋆τ + k + 1)
e−α1x

1F1(1; ρ
⋆
τ + k + 1;α1x)

where

C⋆ =
n∏

i=1

α3
i

α2
i + 1

, D⋆
τ =

n∏
i=1

1

α
γi+(τ )i
1 α

(τ )i
i

, ρ⋆τ =
n∑

i=1

{1 + (τ )i} ,

δk+1 =
1

k + 1

k+1∑
j=1

jη⋆j δk+1−j , k = 0, 1, 2, . . . , δ0 = 1,

η⋆j =

n∑
s=1

γs + (τ )s
j

(
1− αs

α1

)j

, α1 = max
i

(αi), B = {0, 1},

and (τ )i is i-th element of τ ∈ Bn.

Moreover, when βi = 0, the probability density function (4.8) is reduced to the distribution of the

sum of inid gamma random variables with parameters (γi, αi), which is equivalent to Moschopoulos

(1985) as shown in Corollary 4.9.

Corollary 4.9. The exact probability density function and the exact cumulative distribution function

of the sum of inid gamma random variables are respectively expressed as:

fSG(x) = C‡
∞∑
k=0

δkα
ρ‡+k
1

Γ(ρ‡ + k)
xρ

‡+k−1e−α1x, x > 0,
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FSG(x) = C‡
∞∑
k=0

δk(α1x)
ρ‡+k

Γ(ρ‡ + k + 1)
e−α1x

1F1(1; ρ
‡ + k + 1;α1x),

where

C‡ =

n∏
i=1

(
αi

α1

)γi

, ρ‡ =

n∑
i=1

γi,

δk+1 =
1

k + 1

k+1∑
j=1

jη‡jδk+1−j , k = 0, 1, 2, . . . , δ0 = 1,

η‡j =
n∑

s=1

γs
j

(
1− αs

α1

)j

, α1 = max
i

(αi).

Furthermore, when βi = 0 and γi = 1, the probability density function (4.8) is reduced to

the distribution of the sum of inid exponential random variables with parameters αi as shown in

Corollary 4.10.

Corollary 4.10.

fSE(x) =
n∏

i=1

(
αi

α1

) ∞∑
k=0

δkα
n+k
1

Γ(n+ k)
xn+k−1e−α1x, x > 0,

FSE(x) =

n∏
i=1

(
αi

α1

) ∞∑
k=0

δk(α1x)
n+k

Γ(n+ k + 1)
e−α1x

1F1(1;n+ k + 1;α1x),

where

δk+1 =
1

k + 1

k+1∑
j=1

jη∗δk+1−j , k = 0, 1, 2, . . . , δ0 = 1,

η∗ =

n∑
s=1

1

j

(
1− αs

α1

)j

, α1 = max
i

(αi).

4.5.4 Comparison of approximations

In the previous section, the exact cumulative distribution function of S was obtained. However, it

is difficult to calculate the exact probability when the number of random variables increases. Since

the summation of overall elements τ in Bn increases, it takes a long time to obtain the probability

using Fm for n = 10. For example, when n = 10, 210 = 1024 summations have to be calculated.

Hence, we need to approximate the distribution function. The accuracy of the approximation is

compared by calculating the percentile.

We consider the use of the saddlepoint approximation for the distribution of the sum of inid

generalized Lindley random variables. The saddlepoint approximation is given by (4.7), where the
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cumulant generating function and its derivatives of the sum of inid generalized Lindley random

variables are given by

k(t) =

n∑
i=1

log

{(
αi

αi − t

)γi+1 βi + αi − t

αi + βi

}
,

k′(t) =
n∑

i=1

(
γi + 1

αi − t
− 1

αi + βi − t

)
,

k′′(t) =
n∑

i=1

(
γi + 1

(αi − t)2
− 1

(αi + βi − t)2

)
.

Here, the following parameters that are generated from the uniform distribution Unif(0, 3) in a

similar way to Murakami (2014); Nadarajah et al. (2015) are considered for Case 1:

• n = 2:

α = (2.680, 1.640),

β = (0.208, 2.852),

γ = (1.903, 0.552).

• n = 5:

α = (2.984, 0.510, 2.241, 1.286, 1.641),

β = (1.705, 2.727, 1.569, 1.419, 2.292),

γ = (1.548, 0.735, 2.754, 0.975, 2.651).

• n = 10:

α = (0.171, 1.765, 0.595, 0.504, 0.481, 1.564, 1.527, 1.821, 1.678, 1.276),

β = (2.373, 2.037, 0.190, 1.052, 2.938, 0.656, 1.647, 1.221, 2.511, 2.752),

γ = (2.198, 2.728, 2.991, 1.985, 0.503, 2.778, 1.123, 0.265, 1.851, 2.154).

In addition, the following parameters that are generated from the log-normal distribution LogNorm(0, 1)

are considered for Case 2:

• n = 2:

α = (1.322, 1.042),

β = (0.406, 0.310),

γ = (1.185, 0.994).
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• n = 5:

α = (0.655, 1.608, 0.322, 0.798, 1.507),

β = (1.359, 0.273, 1.873, 0.870, 0.291),

γ = (0.448, 3.524, 0.605, 1.564, 0.925).

• n = 10:

α = (1.398, 4.367, 1.030, 0.916, 1.347, 2.019, 0.596, 0.279, 1.602, 0.569),

β = (0.331, 0.418, 0.885, 1.088, 1.767, 1.675, 0.722, 0.550, 1.938, 0.668),

γ = (2.758, 0.215, 1.252, 0.505, 2.212, 4.133, 0.370, 1.022, 2.270, 1.243).

Tables 4.6 and 4.7 present the approximations to the distribution function (4.9). In the tables, s̃

is a percentile derived from 100, 000, 000 random numbers generated by S, and p is the corresponding

probability. Here, the generalized Lindley distribution is a mixture of gamma distributions. Then,

S is obtained by generating two gamma random numbers with parameter (γi, βi) and (γi + 1, βi).

In addition, F−1
m represents the p-th percentile derived by solving Fm(s) = p numerically, where

Fm is defined in Equation (4.11). In numerical experiments, the accuracy and calculation time

are compared for different values of m, namely, m = 50, 150, 500, 1000. Moreover, SA and NA

are the percentile for the saddlepoint approximation and the normal approximation, respectively.

Additionally, CT denotes the calculation time in seconds. We use Mathematica version 11 (CPU

2.80 GHz and 32.0 GB RAM).

Tables 4.6 and 4.7 reveal that F−1
1000 is enough to obtain the percentiles, except for p = 0.9900,

n = 10 in Case 2. To obtain the value of s̃ more accurately, larger m have to be selected. However,

SA and NA overcome such computational difficulty and SA is more accurate than NA.
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Table 4.6: Approximations to the distribution for Case 1.

p s̃ F−1
50 F−1

150 F−1
500 F−1

1000 SA NA

n = 2
0.6000 1.505 1.505 1.505 1.505 1.505 1.503 1.689
0.7000 1.770 1.770 1.770 1.770 1.770 1.768 1.933
0.8000 2.117 2.117 2.117 2.117 2.117 2.113 2.219
0.9000 2.666 2.665 2.665 2.665 2.665 2.661 2.615
0.9500 3.183 3.182 3.182 3.182 3.182 3.177 2.943
0.9750 3.679 3.678 3.678 3.678 3.678 3.674 3.227
0.9900 4.316 4.315 4.315 4.315 4.315 4.311 3.557
CT 0.1 0.9 8.2 35.4 15.6 0.0

n = 5
0.6000 8.583 8.583 8.583 8.583 8.583 8.561 9.078
0.7000 9.478 9.478 9.478 9.478 9.478 9.455 9.928
0.8000 10.628 10.628 10.628 10.628 10.628 10.605 10.924
0.9000 12.426 12.425 12.425 12.425 12.425 12.406 12.304
0.9500 14.106 14.104 14.104 14.104 14.104 14.090 13.444
0.9750 15.717 15.716 15.715 15.715 15.715 15.706 14.432
0.9900 17.784 17.794 17.781 17.781 17.781 17.778 15.582
CT 1.7 14.0 145.5 637.8 41.1 0.0

n = 10
0.6000 42.228 * 42.228 42.228 42.228 42.199 43.824
0.7000 45.658 * 45.658 45.658 45.658 45.630 47.065
0.8000 50.001 * 50.000 50.000 50.000 49.975 50.858
0.9000 56.648 * 56.648 56.648 56.648 56.629 56.119
0.9500 62.728 * 62.724 62.724 62.724 62.712 60.463
0.9750 68.451 * 68.448 68.448 68.448 68.442 64.231
0.9900 75.658 * 75.657 75.657 75.657 75.656 68.613
CT 106.2 894.5 8314.9 37371.5 64.8 0.0

*There does not exist a root of Fm(s) = p.
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Table 4.7: Approximations to the distribution for Case 2.

p s̃ F−1
50 F−1

150 F−1
500 F−1

1000 SA NA

n = 2
0.6000 2.303 2.303 2.303 2.303 2.303 2.304 2.624
0.7000 2.743 2.742 2.742 2.742 2.742 2.744 3.027
0.8000 3.321 3.321 3.321 3.321 3.321 3.322 3.498
0.9000 4.241 4.240 4.240 4.240 4.240 4.242 4.151
0.9500 5.108 5.107 5.107 5.107 5.107 5.108 4.690
0.9750 5.940 5.939 5.939 5.939 5.939 5.940 5.158
0.9900 7.006 7.003 7.003 7.003 7.003 7.004 5.702
CT 0.2 1.0 10.0 44.3 18.1 0.0

n = 5
0.6000 12.310 12.309 12.309 12.309 12.309 12.278 13.103
0.7000 13.719 13.718 13.718 13.718 13.718 13.683 14.433
0.8000 15.529 15.528 15.528 15.528 15.528 38.334 15.989
0.9000 18.357 18.355 18.355 18.355 18.355 38.334 18.147
0.9500 20.995 20.992 20.992 20.992 20.992 38.334 19.930
0.9750 23.523 23.520 23.520 23.520 23.520 23.494 21.476
0.9900 26.757 26.757 26.757 26.757 26.757 26.741 23.274
CT 2.0 13.3 134.3 678.1 41.2 0.0

n = 10
0.6000 22.585 * 22.584 22.584 22.584 22.554 23.459
0.7000 24.460 * 24.460 24.460 24.460 24.426 25.239
0.8000 26.835 * 26.834 26.834 26.834 26.799 27.323
0.9000 30.479 * 30.477 30.477 30.477 30.441 30.212
0.9500 33.822 * 33.827 33.821 33.821 33.786 32.598
0.9750 36.984 * 37.143 37.032 37.032 36.954 34.667
0.9900 40.987 * * 42.739 42.739 40.968 37.073
CT 93.8 884.1 9078.9 29247.3 83.6 0.0

*There does not exist a root of Fm(s) = p.
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Chapter 5

Conclusions and Discussions

This paper discusses the approximate, asymptotic, and limiting distribution of the one-sample

and two-sample nonparametric statistics. The approximate distribution overcomes the problem of

computation time to derive a null distribution by the exact permutation when the sample size is

large. The asymptotic and the limiting distributions make it easier to obtain the critical values for a

discussion of the asymptotic power of the test. In Chapter 2, the saddlepoint approximation and the

normal approximation for the distribution of the ESWSR test were considered, and the accuracy

of the approximations was investigated. Numerical calculations indicated that the saddlepoint

approximation with a continuity correction is the most suitable. Furthermore, we obtained the

asymptotic power and discussed the unbiasedness and biasedness of the test. Notably, the exact

mean and variance were derived under the alternative hypothesis. However, calculating the second

moment of Tν underH11 can be challenging because of computational complexity. Once this problem

is addressed, the accurate asymptotic power can be calculated and sample size determination can

be discussed. Utilizing the selector based on the asymptotic efficiency of the test was also suggested

and the use of the ESWSR test was demonstrated with real data. In Chapter 3, we derived the

asymptotic non-null and limiting null distribution of the maximum test max(t, tR) to overcome the

disadvantage of computation time. A simulation study demonstrated the convergence of the test to

the limiting distribution. In addition, indicators, such as, sample size, the data size ratio of samples,

were presented for the rejection point of the limiting distribution. Although the limiting distribution

of the maximum test requires probability weighted moments of the underlying distribution, the

simulation results revealed that the limiting distribution computed from the sample with unbiased

estimators could also be used. In practice, there are many cases where homoscedasticity cannot be

assumed. Thus, for future work, it is worth considering the test for the location parameter with

different variances such as in Welz et al. (2018) for a maximum test based on the Brunner-Munzel

test (Brunner and Munzel, 2000).

In addition, this paper discusses the distribution of the sum of inid extended exponential random

variables and the sum of inid generalized Lindley random variables. In chapter 4, we obtained the

exact distribution of the sum of the inid extended exponential n random variables using the simple

gamma series and recursive formulas. Numerical simulation showed that the saddlepoint approxi-
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mation is the most appropriate for the cumulative distribution function in terms of calculation time.

The distribution of the sum of the extended exponential random variables was a suitable model for

real data based on AIC. Since the generalized Lindley distribution contains the extended exponential

distribution as a special case, we also obtained the exact distribution of the sum of inid generalized

Lindley n random variables. It was demonstrated that the sum of inid generalized Lindley random

variables includes the sum of inid exponential, gamma, Lindley, Shanker, and extended exponential

random variables as special cases. Numerical simulations revealed that the saddlepoint approxi-

mation is suitable for the cumulative distribution function in terms of calculation time. However,

the calculation of the exact cumulative distribution function took much longer when the number of

variables and m increased. Therefore, an algorithm to reduce the calculation time for Fm, would

benefit from the exact distribution of the sum of inid random variables in modelling real data.
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Gómez, Y. M., Bolfarine, H., and Gómez, H. W. (2014). A new extension of the exponential

distribution. Revista Colombiana de Estadistica, 37:25–34.

Goria, M. N. (1980). Some locally most powerful generalized rank tests. Biometrika, 67:497–500.

63



Goutis, C. and Casella, G. (1999). Explaining the saddlepoint approximation. The American

Statistician, 53:216–224.

Gupta, R. D. and Kundu, D. (2001). Exponentiated exponential family: An alternative to gamma

and Weibull distributions. Biometrical Journal, 43:117–130.
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