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Abstract

The chiral anomaly is a phenomenon in which the conservation law for axial currents is

violated by quantum effects. In recent years, when a magnetic field is applied to a system

with chirality imbalance, the chiral anomaly generates vector current flow in the same di-

rection as the magnetic field. This phenomenon is known as chiral magnetic effect (CME).

Together with other similar effects, such anomaly induced transport processes are called

the chiral transport phenomena and have been actively studied in a wide range of fields.

In this thesis, in order to provide a theoretical basis for the chiral transport phenomena,

we investigate the response of a vacuum and a system with a finite number of fermions to a

spatial-homogeneous and static magnetic field and a parallel time-varying electric field as

external fields. In particular, we investigate the generation of chirality imbalance and chi-

ral transport phenomena and clarify the relationship with the chiral anomaly. We obtain

exact solutions of the Dirac equation under the electromagnetic field and quantize the field

using the canonical quantization method. In addition, we describe the particle production

from vacuum by the Schwinger mechanism, which helps a microscopic understanding the

chiral transport. By introducing Bogoliubov transformations, the expectation values of

physical quantities are linked to the particle pair production by the electric field. As a

result, we find that the chirality imbalance and CME current are generated by the elec-

tric field and strongly depend on the time dependence of the electric field. The role of

the fermion mass is also systematically investigated. These results are important for the

fundamental study of the chiral transport phenomena and provide a guideline for future

applications.
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I. INTRODUCTION

Conservation laws are the most fundamental laws in physics. In classical field theo-

ries, a symmetry of the action is associated with a conservation law, as known Noether’s

theorem. Considering the action of a charged fermion field in a electromagnetic field,

S =
∫
d4x[ψ̄(i∂µ − eAµ)γ

µψ −mψ̄ψ], the conservation of vector current(charge conserva-

tion), ∂µψ̄γ
µψ = 0, is derived by the invariance of action under the global phase transfor-

mation of the fermion field, ψ → eiαψ.

In the relativistic field theory of fermion, chirality and chiral symmetry are essen-

tial concepts. Chirality is related to the sign of the projection of the fermion’s spin

onto its momentum. If a fermion’s spin and momentum are (anti-)parallel, then the

fermion is (left)right-handed. In the case of antifermions, if the spin and momentum

are (anti-)parallel, then the fermion is (right)left-handed. The chiral transformation is

a continuous transformation defined by ψ → eiαγ5ψ. From the Noether’s theorem, the

chiral transformation is associated with the conservation law of the axial-vector cur-

rent, ∂µψ̄γ
µγ5ψ = 2mψ̄iγ5ψ. In particular, the 0th-component of axial-vector current,

ψ̄γ0γ5ψ = ψ†
RψR −ψ†

LψL ≡ n5, is called chirality imbalance, which means the number dif-

ference between right- and left-handed fermions. If the fermion is massless, then the action

of the fermion field has the chiral symmetry, and the axial-vector current is completely

conserved even in the presence of an electromagnetic field.

However, in quantum field theory, the conservation law of the axial-vector current is

violated. It is known as the chiral anomaly (Adler-Bell-Jackiw anomaly). The chiral

anomaly adds a quantum correction term proportional to the inner product of the elec-

tric and magnetic fields. The chiral anomaly implies that chirality imbalance n5 can be

dynamically produced by an external electromagnetic field. This is a phenomenon unique

to the quantum field theory.

In recent years, it has been suggested that the chiral anomaly may be observed

as macroscopic transport phenomena. The most intriguing one is chiral magnetic ef-

fect(CME), which is the appearance of an electric current along the external magnetic

field in the presence of chirality imbalance. The CME current is represented by CME

formula, jV = e2

2π2µ5B, where jV is the electric current, and µ5 is the chiral chemical
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potential. The chiral chemical potential µ5 represents an asymmetry of the chirality in

the system and is conjugate to the chirality imbalance, n5. It is expected that the CME

current can be observed in heavy-ion collisions and Dirac/Weyl semimetals.

Another interesting anomalous transport phenomenon is the chiral separation effect

(CSE), which is the generation of axial-vector current along the direction of the magnetic

field. The CSE formula is represented by jA = µ
2π2B, where µ is the fermion chemical

potential and jA is the space component of the axial-vector current interpreted as the

expectation value of spin. The chiral separation effect has been discussed in a dense

matter system under a strong magnetic field such as compact stars. The coupling between

CME and CSE causes a gapless collective mode in the presence of an external magnetic

field, referred to as chiral magnetic wave (CMW). So a comprehensive analysis that takes

into account not only CME but also CSE is important.

From a theoretical view, however, the CME current in equilibrium systems needs to

be handled with care since the introduction of the chiral chemical potential µ5 in the

equilibrium system is a subtle issue. It seems that the introduction of the chiral chemical

potential implicitly assumes a system out of equilibrium. Moreover, in most of the previous

works for the chiral transport, the introduction to chiral chemical potential µ5 (or almost

equivalently chirality imbalance n5) is a priori assumption. However, the production

process of the initial chirality imbalance is still in debate. In order to clarify this problem,

it is crucial to explicitly calculate the time evolution of chirality imbalance within a specific

model and compare their characteristic timescales.

In addition, the fermion mass dependence of the CME and CSE currents is also signifi-

cant because the chirality imbalance strongly depends on the fermion mass. In the case of

massless fermion, right- and left-handed fermions are separated in the equation of motions,

but if the fermion has nonzero mass, the chiral symmetry is explicitly broken, and right-

and left-handed fermions are mixed in their equations of motion. So it is important to

investigate the production of the chirality imbalance for the massive fermion by a parallel

electric and magnetic field.

In the strong parallel electric and magnetic field, it is known that the chiral anomaly

is related to the pair production from the vacuum by the strong electric field, known as
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Schwinger pair production. Schwinger computed the pair production rate per unit volume

and time in a spatial-homogeneous static electric field, w ∼ exp
(
−πm2

eE

)
, which m is the

mass of the fermion and eE is the strength of the electric field. This formula implies that

the vacuum becomes unstable above the critical electric field, eEc ∼ m2, and the mass of

fermions exponentially suppresses the production rate. Another point worth noting is that

the formula is non-analytic in the coupling constant e, which indicates the nonperturbative

nature of the Schwinger pair production.

In a parallel electric and magnetic field, the production rate of the chirality imbalance

can be related to the Schwinger pair production rate. In the view of productions of chirality

imbalance by an external electromagnetic field, it is expected that the asymmetry of

momentum and spin caused by a parallel electric and magnetic field play important roles to

understand the chiral anomaly. Since the Schwinger pair production is a nonperturbative

phenomenon of the field theory, we need to use a nonperturbative method to investigate

the chiral anomaly and the pair productions.

In this thesis, in order to provide a theoretical basis for chiral transport phenomena,

we investigate the response of a system with a zero/finite number of fermions to a spatial-

homogeneous and static magnetic field and a parallel time-varying electric field as external

fields. In particular, we investigate the time-dependence of chirality imbalance and clarify

the relationship with the chiral anomaly. We use the solution of the Dirac equation in

the parallel electric and magnetic field without the chiral chemical potential. The field

operator is expanded by the solution of the Dirac equation and the canonical quantization

is performed, then the vacuum state and the finite Fermi energy system are constructed.

Moreover, using the Bogoliubov transformation, we can obtain the time-dependent mo-

mentum distribution of pair produced particles described by Bogoliubov coefficients. The

Bogoliubov transformation is helpful to understand the nonperturbative nature of chiral

anomaly from microscopic views.

This thesis is based on our recent publications[1][2] and organized as follows. First, the

background of the study is explained in Chapters 2 to 4. In Chapter 2, we describe the

chiral anomaly and chirality imbalance, which are the theoretical basis of this study. In

Chapter 3, we explain the theoretical background and the present status of experimental
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observations of the chiral transport phenomenon and then present the problems of the

theoretical formulation. In Chapter 4, we introduce the historical background of the

Schwinger pair production and its connection with the chiral anomaly. In Chapters 5 to

7, we formulate methods used in this study. First, in Chapter 5, we derive the solution

of the Dirac equation under a parallel electric and magnetic field. Then, in Chapter 6,

the fermionic field operator expanded by the solution of the Dirac equation is quantized

using the canonical quantization method to obtain the expectation value of the physical

quantity. In Chapter 7, we introduce Bogoliubov transformations and describe the physical

quantities obtained in Chapter 6 in terms of Bogoliubov variables that contain information

on the Schwinger pair production. In Chapters 8 and 9, we present numerical results

based on the formulation. In Chapter 8, the time evolution of physical quantities when

the number of particles is zero is presented, focusing on the fermion mass. In Chapter 9,

the same analysis as in Chapter 8 is performed for the case of a finite number of particles.

Finally, in Chapter 10, the conclusion of this thesis is given.
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II. CHIRAL ANOMALY

Conservation laws are the most fundamental laws in physics. From Noether’s theorem,

conservation laws are associated with symmetries in the theory. The term symmetry

means the invariance of the action under the continuous transformation of a field. It is

known that translational(rotational) symmetry of spacetime leads to the conservation law

of energy-momentum (angular momentum). Considering the action of a charged fermion

field in a electromagnetic field,

S =

∫
d4x[ψ̄(i∂µ − eAµ)γ

µψ −mψ̄ψ], (1)

the invariance of the global phase transformation of the fermion field, ψ → eiαψ, is associ-

ated with the conservation law of the vector current, ∂µψ̄γ
µψ = 0. The gauge invariance is

one of the most important guiding principles in quantum field theories because the conser-

vation law of the vector current(or equivalently charge conservation) has been confirmed

experimentally up to the present.

Chiral symmetry is ne of the most fundamental symmetries in relativistic quantum field

theories, such as quantum electrodynamics(QED) and quantum chromodynamics(QCD),

which is the invariance of actions under the continuous transformation, ψ → eiαγ5ψ,

called chiral transformation. Here γ5 is the chirality operator defined by γ5 ≡ iγ0γ1γ2γ3.

Chirality is essential for massless fermions, which is related to the sign of the projection

of the fermion’s spin onto its momentum. If the eigenvalue of the chirality operator is

positive, then the fermion is right-handed (its spin and momentum are parallel), and if it is

negative, then the fermion is left-handed (its spin and momentum are anti-parallel). In the

case of antifermions, if the eigenvalue is positive (negative), the antifermion is left(right)-

handed. A Dirac spinor is projected onto the right(left)-handed spinor, ψR/L ≡ PR/Lψ,

by using the chirality projection operator, PR/L = 1±γ5

2 . In the case of massless fermions,

the theory has chiral symmetry, and ψR/L obeys independent equations of motion. If the

fermion has nonzero mass, the chiral symmetry is explicitly broken, and ψR/L are mixed

in their equations of motion.

From the Noether’s theorem, the chiral transformation is associated with the conser-
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vation law of the axial-vector current,

∂µψ̄γ
µγ5ψ = 2mψ̄iγ5ψ (2)

where m is the mass of fermions, and ψ̄iγ5ψ is called pseudoscalar condensation. The

conservation law is satisfied even if the fermion field is coupled to gauge fields. In the case

of massless fermion, the axial-vector current is conserved.

However, sometimes a conservation law satisfied in the classical theory is violated by

quantum effects. This phenomenon is called anomaly, and it is one of the essential topics

in high-energy physics and condensed matter physics. The most famous example is the

chiral anomaly. The chiral anomaly is found by Adler, Bell, and Jackiw[3][4], so often

called the Adler-Bell-Jackiw anomaly. The chiral anomaly violates the conservation law

for the vacuum expectation value of axial-vector current expressed as follows,∫
d3x∂µ⟨ψ̄γµγ5ψ⟩ = 2m

∫
d3x⟨ψ̄iγ5ψ⟩+ 2α

π

∫
d3xE ·B (3)

with α = e2/4π being the fine structure constant and the last term comes from quantum

corrections. The relation (3) is called anomaly relation or axial Ward identity. It can

be derived by some methods: calculating the axial-vector current operator equation in

a background gauge field, triangle diagrams (shown in Fig.1) in standard perturbation

theory, and functional integral for the fermion field. The anomaly relation is found not

only in abelian gauge theories(such as QED) but also in non-abelian ones(such as QCD)

and also valid at finite temperature and finite density[5].

The chiral anomaly causes the CP-violating measurable processes. It is widely known

that the chiral anomaly contributes to the matrix element for the decay of the neutral pion

into two photons, π0 → 2γ. The neutral pion decays through a one-loop triangle diagram

(as in Fig.1) into two photons, and the decay rate is tested experimentally to a high degree

of accuracy. More recently, macroscopic transport phenomena due to anomalies have been

studied, which will be discussed in detail in the next chapter.

It is well known that the conservation of the axial-vector current is incompatible with

gauge invariance. If the conservation of axial-vector current due to chiral symmetry is

respected, then the conservation of vector current due to gauge symmetry is violated, or

vice versa. The nature of chiral anomaly is caused by the regularization of contributions
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FIG. 1. A triangle diagram.

from the vacuum in which an infinite number of fermions(antifermions) are occupied. So

we have to treat carefully the momentum integral in the expectation value of axial-vector

current with noting the gauge-invariance.

The 0th-component of axial-vector current, ⟨ψ̄γ0γ5ψ⟩ = ⟨ψ†
RψR − ψ†

LψL⟩ ≡ n5, is

called chirality imbalance, which means the number difference between right- and left-

handed fermions. The anomaly relation (3) implies that an external electromagnetic field

can produce chirality imbalance. The 1+1 massless fermi system in the Dirac sea picture

helps intuitively understand the chirality imbalance production by the external field(Fig.2).

In the 1+1 dimensional system, electric fields can exist, and magnetic fields do not exist.

The dispersion relation of massless fermions is linear (Fig.2(a)), and gapless excitations

can occur by an electric field. A hole created by a particle in a negative energy state

being kicked out into a positive energy state behaves as an antiparticle(Fig.2(b)). In the

1+1 dimensional system, particles with positive energy and positive momentum are right-

handed, and the corresponding holes are also right-handed so that chirality imbalance is

produced after an electric field applied. In the later section, we will discuss the production

of chirality imbalance by a parallel electric and magnetic field in a 1+3 dimensional system.
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FIG. 2. Massless fermions in the 1+1 dimension in the Dirac sea picture are shown. (a): The

dispersion relation of massless fermions is linear. Before an electric field is applied, the total

chirality imbalance is zero. (b): After an electric field is applied, the spectrum of fermions is

shifted to the positive energy/plus momentum region, and the holes in the negative energy and

positive momentum region behave as antifermions. Total chirality imbalance is produced.
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III. CHIRAL TRANSPORT PHENOMENA: CHIRAL MAGNETIC EFFECT

AND CHIRAL SEPARATION EFFECT

For the past decade, there has been an increasing interest in studying transport phe-

nomena induced by anomalies, referred to as chiral transport phenomena. The most

intriguing one is the chiral magnetic effect, which is the phenomenon of electric charge

separation along the external magnetic field in the presence of chirality imbalance. The

chiral magnetic effect has been pioneered by Vilenkin[6] and is widely known due to the

work of Kharzeev et al. [7][8]. They presented the CME formula as below,

jV =
e2

2π2
µ5B (4)

where jV is the space components of the vector current(or equivalently electric current),

and µ5 is the chiral chemical potential. The chiral chemical potential µ5 is a pseudoscalar

quantity to represent an asymmetry of the chirality in the system and is conjugate to

the chirality imbalance, n5. The schematic picture of CME is shown in Fig.3. Consider

the system that more right-handed fermions exist than left-handed ones; a vector current

(electric current) is induced along the external magnetic field due to the spin alignment.

The chiral magnetic effect, which is the anomalous transport phenomenon as a macro-

scopic manifestation of the chiral anomaly, is investigated in the context of hydrodynamic

in systems with massless fermions, e.g., the quark-gluon plasma in heavy-ion collisions or

the Dirac/Weyl semimetals [9][10][11][12]. In noncentral heavy-ion collisions, it is believed

to induce an extremely strong magnetic field, eB ∼ m2
π ∼ 1018G, which is evaluated

using the Lienard–Wiechert potential [13][14]. In the strong magnetic field, the CME

current may induce a charge separation and an asymmetry of the charged particle distri-

butions, which is measurable experimentally [15]. In order to detect the signal of CME

currents in heavy-ion collisions, recently, isobaric 96
44Ru+

96
44Ru and 96

40Zr+
96
40Zr collisions at

√
sNN = 200GeV have been conducted with analysis now underway [16][17][18][19]. The

CME is a hot topic not only in high energy physics but also in the condensed matter sys-

tem [12], where the massless Dirac mode has been realized in the Dirac/Weyl semimetals

[20][21] and the detection of the CME current by using ultracold atoms trapped in three-

dimensional optical lattices presented[22]. The experimental result for observing CME in
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these systems is reported in Refs.[21], [23].

For applications of CME in the system of QCD/condensed matter, the chiral chemical

potential µ5 (or almost equivalently chirality imbalance n5) is a priori assumption to

investigate chiral transport phenomena. The production process of the initial chirality

imbalance is, however, still in debate. For example, in the quark-gluon plasma, metastable

local CP-violating domains may be produced by transitions of the non-perturbative gluonic

configurations, referred to as sphaleron transitions [8][24][25]. In Ref.[21], for the semimetal

system with the electromagnetic field, the chiral chemical potential is estimated as µ5 =

ℏvF (3e
2

4 E ·Bτ), where τ is the relaxation time of the chirality imbalance. In our opinion,

it is essential to calculate the appearance of chirality imbalance and chirality magnetic

effect with the field theoretical method without any assumptions of an initial chirality

imbalance.

Another interesting anomalous transport phenomenon is the chiral separation effect

(CSE), which is the generation of axial-vector current along the direction of the magnetic

field[26][27]. The CSE formula is represented by

jA =
µ

2π2
B (5)

where µ is the chemical potential and jA is the space component of the axial-vector

current interpreted as the expectation value of spin. It is thought that the CSE formula is

a chiral dual version of the CME formula, Eq.(4). The schematic piture of CSE is shown in

Fig.4. In a system with a finite number of fermions, axial-vector currents (spin currents)

are induced along the external magnetic field because plus(minus)-charged fermions have

parallel(antiparallel) spin to the external magnetic field.

The chiral separation effect has been discussed in the context of a dense QCD system

under a strong magnetic field such as compact stars. The role of CSE currents in the

quark-gluon plasmas produced in heavy-ion collisions also has been attracting attention

in recent years. This is because that chiral separation effect causes a gapless collective

mode in the presence of an external magnetic field by interacting chiral magnetic effect,

referred to as chiral magnetic wave (CMW) [28] [29]. The signal of CMW has been reported

in Ref.[30]. So a comprehensive analysis that takes into account not only CME but also

CSE is important.
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FIG. 3. The schematic picture of the chiral magnetic effect is shown. In this figure, there are more

right-handed fermions than left-handed ones. In the presence of chirality imbalance, vector current

(electric current) is induced along the external magnetic field due to the spin alignment.

The CME formula (4) is significant in that it suggests the occurrence of macroscopic

transport phenomena due to the chiral anomaly. From a theoretical view, however, the

CME current in equilibrium systems needs to be handled with care since the introduction

of chiral chemical potential µ5 in the equilibrium system is a subtle issue. It is pointed

out that a CME current is forbidden in the equilibrium system, but a CSE current is

allowed[31][32]. There are also some cautions from theorerical calculations according to

the CME current [33][34][35][36][37]. It seems that the introduction of the chiral chemical

potential implicitly assumes a system out of equilibrium [38]. In order to clarify this

problem, it is crucial to explicitly calculate the time evolution of chirality imbalance within

a specific model and compare their characteristic timescales[2].

The fermion mass dependence of the CME and CSE currents is also significant because

the chirality imbalance strongly depends on the fermion mass. The massless fermion can

be easily handled since right- and left-handed spinors are separated in the equation of

motions. The mass correction to the CSE formula is discussed in Ref.[39]. In the next

chapter, the mass effects of chiral anomaly and chiral transport phenomena are discussed

in the view of pair productions by external electric fields.
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FIG. 4. The schematic picture of the chiral separation effect is shown. In this figure, there are

more plus-charged fermons than minus-charged fermions. In the presence of the total fermion

number, axial-vector current (spin current) is induced along the external magnetic field because a

plus(minus)-charged fermion has parallel(antiparalle) spin to the external magnetic field.
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IV. SCHWINGER PAIR PRODUCTION

Shortly after the Dirac equation was first formulated, in 1929, Klein was the first to

imply the production of electron-positron pairs from a vacuum in the presence of a strong

classical electric field[40]. In the context of relativistic quantum mechanics, tunneling from

a positive frequency state to a negative frequency state can occur in a potential barrier.

Even if the potential is smoothed out, the tunneling can occur, shown by Sauter[41]. The

tunneling is a paradox in single-particle theory, which is later called Klein’s paradox. This

paradox is justified by the field theoretic interpretation.

In QED, the phenomenon is understood as particle-antiparticle pair production from

the vacuum, indicated by Heisenberg and Euler first[42]. They found the 1-loop effec-

tive action of QED by integrating out a massive fermion for a constant electromagnetic

field. The effective action of the background electromagnetic fields has an imaginary part,

which means a vacuum in an electric field is unstable against the production of particle-

antiparticle pairs from the Dirac sea.

In 1951, Schwinger gave a complete treatment of the effect using the proper time

method[43], and thus the particle production in a classical electric field is called Schwinger

pair production. He also computed the pair production rate per unit volume and time in

a spatial-homogeneous static electric field,

w ∼ exp

(
−πm

2

eE

)
(6)

The formula implies that the vacuum becomes unstable above the critical electric field,

eEc ∼ m2 . The production rate is exponentially suppressed by the mass of fermions (in

the case of QED, the fermions are electron and positron). Another point worth noting is

that the formula is non-analytic in the coupling e. The dependence of eE indicates the

nonperturbative nature of the Schwinger pair production.

Despite theoretical predictions from decades ago, the Schwinger pair production has

yet to be experimentally observed. This is because the strength of the critical electric

field for electron-positron pair productions is enormous, EC ∼ 1018 V/m. A number of

attempts have been made to detect the Schwinger pair productions. These include laser

physics, heavy-ion collision experiments, and condensed matter physics. In the strong
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intensity laser physics, the corresponding critical laser intensity for electron-positron pair

productions is IC ∼ 1029 W/cm2. However, the most powerful state-of-the-art lasers just

reachs about 1023 W/cm2. In order to realize more powerful ultra-intense lasers, several

facilities are under construct, such as the Extreme Light Infrastructure (ELI), the Exawatt

Center for Extreme Light Studies (XCELS), and the High Power Laser Energy Research

(HiPER), in which the intensity is expected to be 1026 W/cm2. In heavy-ion collisions,

it is thought that the strength of electric fields reachs to the same order of magnetic

fields, eE ∼ m2
π = 1023 V/m, but the detection is yet to be. For a review[44], particle

productions in heavy-ion collisions are discussed in detail. Schwinger pair production has

been investigated in the context of condensed matter physics such as Superconductor[45],

Mott insulator[46][47][48], and graphenes[49]. In condensed matter physics, the analogy

between the energy gap and the mass gap plays an important role. It is attracting attention

as experimentally achievable because the critical electric field strength for pair production

is relatively small. In a time-dependent electric field, the Schwinger pair production is

anolog to the Landau-Zener transition.

The connection between Schwinger pair production and chiral anomaly is of impor-

tance. In a parallel electric and magnetic field, the production rate of chirality imbalance

can be related to the Schwinger pair production rate. In the view of productions of chi-

rality imbalance by an external electromagnetic field, Landau quantization caused by an

external magnetic field and Schwinger pair production by an external electric field play

important roles to understand the chiral anomaly.

As is widely known, Landau quantization occurs under a magnetic field background.

The continuous transverse momentum of fermions is replaced by the discrete integer,

pT = p2x+ p2y → 2|eB|n, where n = 0, 1, 2 . . . is called Landau level. At the lowest Landau

level, n = 0, the spin-degeneracy is resolved, i.e., there are only fermions(antifermions)

with spins parallel(antiparallel) to the magnetic field. In contrast, the spin-degeneracy

remains in the higher Landau level, n ≥ 1, as like the free theory. The chirality imbalance

is characterized by fermions(antifermions) behavior at the lowest Landau level because the

presence of spin-degeneracy causes the cancellation of spins in the higher Landau level.

As mentioned above, in the view of chirality imbalance, we just focus on the motion

18



momentum

e
n
e
rg
y

R L

L R

FIG. 5. The dispersion relation and pair-production of massive fermions at the lowest Landau level

in the 1+3 dimensional system (or the 1+1 dimensional system) in the Dirac sea picture is shown.

In a strong electric field, pair productions and acceralations occur nonadiabatically. As like the

case of massless fermions, excited fermions with positive momentum and the corresponding holes

contribute to the net chirality imbalance.

of fermions(antifermions) at the lowest Landau level. An external electric field, which is

parallel to a magenetic field background, has two important roles; pair productions and

acceralations. In a strong electric field above the energy gap (in the case of QED, the

energy gap is the electron mass), the transitions from the negative energy region to the

positive energy one occur nonadiabatically. Even if fermions are massive, as like the case

of massless fermions, excited fermions with positive momentum and the corresponding

holes contribute to the net chirality imbalance. In Fig.[5], the schematic picture of pair

productions and acceralations by a strong electric field is shown.

There have been many theoretical approaches to Schwinger pair production: for a

review[50], the worldline instantons formalism, the S-matrix method, the kinetic method

such as the quantum Vlasov equation, the real-time Dirac-Heisenberg-Wigner (DHW)

formalism, the computational quantum field theory and so on.

In this study, we investigate the relation between Schwinger pair production and chiral
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anomalous transport phenomena for massive and massless fermions. We use the Bogoli-

ubov transformation method[51]. As mentioned above, a perturbative way does not suit

for the description of Schwinger pair productions and a nonperturbative way is needed.

Using this method, we can treat pair-productions under strong electric fields without re-

lying on perturbation theory. Moreover, we can obtain the time-dependent momentum

distribution of pair produced pariticles. The anomaly relation tells us the macroscopic

information of the system but gives us no microscopic behavior. The Bogoliubov method

is helpful to understand the nonperturbative nature of chiral anomaly from microscopic

views.

Another merit of the Bogoliubov method is that it suits to describe out-of-equilibrium

processes. In a strong electric field, the vacuum state of fermion is unstable against pair

production. This means that a certain state before the application of an electric field

will change significantly after the field applied. Recent studies show that the Schwinger-

Keldysh formalism gives the same results as the Bogoliubov method[38][52].
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V. DIRAC EQUATION IN PARALLEL ELECTRIC AND MAGNETIC FIELDS

A. Gauge field and Dirac operator

We start from the Dirac equation in the electromagnetic field,

i∂tψ = ĤDψ, (7)

ĤD = Π̂ ·α+mβ + eϕ (8)

where Π̂ = −i∇− eA and (ϕ,A) is four-potential and m is the fermion mass.

In this work, we assume external parallel electromagnetic fields along the z-direction

as E = (0, 0, E(t)),B = (0, 0, B), to produce the chirality imbalance dynamically [53][54].

The magnetic field is assumed to be spatially uniform and time-independent. On the other

hand, we assume spatially uniform but time-dependent electric field E(t). We choose

the corresponding gauge field as, Aµ = (0, 0, Bx,A(t)), where A(t) is an arbitrary time-

dependent real function. We only impose a constraint for an initial condition,

lim
t→−∞

A(t) = 0. (9)

Correnponding initial condition for the electric field E(t) = −Ȧ(t) is written by,

lim
t→−∞

E(t) = 0. (10)

This condition is usuful to define the one-particle state of the fermion at t → −∞. On

the other hand, we assume the following boundary condition at t→ ∞,

lim
t→∞

A(t) = constant. (11)

For a given time-dependent function of A(t) with these boundary conditions, we can solve

the Dirac equation numerically without approximations as shown later. In the previous

work[2], we adopt the Sauter-type time-dependence A(t) = Eτ(tanh(t/τ) + 1), which is

non-zero at t → ∞, A(t → ∞) ̸= 0. Here, we will develop a generalized treatment with

these condtions, in which the Dirac equation reduces to the 2-component equations.

In the chiral representation of gamma matrices, the Dirac operator, HD, is explcitly
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given by

ĤD =


−Π̂z −(Π̂x − iΠ̂y) m 0

−(Π̂x + iΠ̂y) Π̂z 0 m

m 0 Π̂z Π̂x − iΠ̂y

0 m Π̂x + iΠ̂y −Π̂z

 . (12)

In this paper, we assume eB > 0 for simplicity. The transverse mechanical momentum

operators, Π̂x ± iΠ̂y, are explcitly written by

Π̂x + iΠ̂y = −i
√

2|eB| 1√
2
(
√

|eB|x− p̂y√
|eB|

+ i
p̂x√
|eB|

),

Π̂x − iΠ̂y = i
√
2|eB| 1√

2
(
√

|eB|x− p̂y√
|eB|

− i
p̂x√
|eB|

).

(13)

We emphasize here that the operators, Π̂x ± iΠ̂y, play roles of the lowering and raising

operators for the harmonic oscillator, which are defined by

â =
1√
2
(
√
|eB|x− p̂y√

|eB|
+ i

p̂x√
|eB|

),

â† =
1√
2
(
√
|eB|x− p̂y√

|eB|
− i

p̂x√
|eB|

),

(14)

which satisfy the commutation relation, [â, â†] = 1. By using the bosonic lowering/raising

operators, â, â†, the Dirac operator, ĤD, can be rewritten as follows,

ĤD =


−Π̂z −i

√
2|eB|â† m 0

i
√
2|eB|â Π̂z 0 m

m 0 Π̂z i
√
2|eB|â†

0 m −i
√

2|eB|â −Π̂z

 . (15)

This implies that solutions of the Dirac Hamiltonian are just eigenfunctions of the bosonic

number operators, which will be desicussed in the next section.

B. Solutions of Dirac equation

We consider solutions in a finite volume system, V = LxLyLz, for later convenience.

Infinite volume limit, V → ∞, is taken after calculating observables.
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In previous works[2][54], the Dirac equation in parallel electric and magnetic fields was

solved via the squared Dirac equation. In this paper, we use the form of the solution

known from previous works for the space-dependent part and consider solving the first-

order equation for the time-dependent part. The solution of Eq.(7), called mode-function,

is expanded as follows,

ψn,nz ,ny(t,x) = Neikyy+ikzzGn,ny(x)ψn,nz(t) (16)

where ky = 2πny/Ly, kz = 2πnz/Lz with ny and nz. We introduce the diagonalized

matrix, Gn,ny(x), as follows,

Gn,ny(x) = diag(gn,ny(x), gn−1,ny(x), gn,ny(x), gn−1,ny(x)) (17)

Here, gn,ny(x) is the non-dimensional eigenfunction of the bosonic number operator, â†â,

referred to as Landau levels,

gn,ny(x) =
1√
2nn!

(
1

π

)1/4

Hn(
√

|eB|x− ky√
|eB|

) exp

(
−(
√

|eB|x− ky√
|eB|

)2/2

)
(18)

where n = 0, 1, 2 . . . andN =
eBLxLy

2π is the degeneracy of Landau level. The normalization

factor, N , is determined later. We set the time-dependent part, ψn,nz(t), as dimensionless

four-spinor, in other words, the normalization factor, N , has mass dimension 3/2.

This eigenfunction satisfies the orthonormal relation and the completeness relation,,∫
dxgn,ny(x)gn′,ny(x) =

1√
|eB|

δnn′ , (19)

∞∑
n=0

gn,ny(x)gn,ny(x
′) =

√
|eB|δ(x− x′). (20)

Note that the orthonormality should be justified when |x| → ∞.

The lowest Landau level

We next solve the time-dependent part of the Dirac equation for ψ obtained from (12)

and (16). For the lowest Landau level(LLL), n = 0, we merely consider only the 1st and

3rd component of the time-dependent part, ψ
(1)
n,nz(t), ψ

(3)
n,nz(t) because of g−1,ny(x) = 0,

i∂t

ψ(1)
0,nz

(t)

ψ
(3)
0,nz

(t)

 =

−kz + eA(t) m

m kz − eA(t)

ψ(1)
0,nz

(t)

ψ
(3)
0,nz

(t)

 (21)
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We then obtain the mode-function for the lowest Landau level,

ψ0,nz ,ny(t,x) = exp(ikyy + ikzz)


g0,ny(x)ψ

(1)
0,nz

(t)

0

g0,ny(x)ψ
(3)
0,nz

(t)

0

 (22)

As expected, this solution is eigenstate of Σ3 = γ3γ5, that is ,

Σ3ψ0,nz ,ny(t,x) = +ψ0,nz ,ny(t,x) (23)

which imlies that the spin-up (spin-down) state is allowed for the positive (negative) energy

particle in the lowest Landau level.

The higher Landau level

For the higher Landau level, n ≥ 1, the mode-function ψn,nz(t), follows the equation,

i∂tψn,nz(t) = HD(n, nz)ψn,nz(t) (24)

where

HD(n, nz) =


−kz + eA(t) i

√
2eBn m 0

−i
√
2eBn kz − eA(t) 0 m

m 0 kz − eA(t) −i
√
2eBn

0 m i
√
2eBn −kz + eA(t)

 . (25)

This Hamiltonian can be block-diagonalized by an unitary matrix, U , as follows

H
′
D(n, nz) = UHD(n, nz)U

† =

hn,nz · σ 0

0 hn,nz · σ

 (26)

where

hn,nz = (
√
m2 + 2|eB|n, 0, − kz + eA(t)), (27)

and

U =
1√
2

 σy σx

−iσz σ0

 diag(e−iλ/2, eiλ/2, eiλ/2, e−iλ/2), (28)

λ = arctan

(√
2|eB|n
m

)
. (29)
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Now the equaion to be solved comes down to the following two-component equation,

i∂tϕn,nz = hn,nz · σϕn,nz . (30)

Such two-component equations are widely found in the physics of two-level systems such

as magnetic moments in the magnetic fields, the solutions of Eq.(24) can be written simply

with the two-component spinor,

ψn,nz(t) = U

ξ1ϕn,nz
(t)

ξ2ϕn,nz
(t)

 = Uξ ⊗ ϕ, (31)

where ξ1, ξ2 are arbitrary constants, and ξ = (ξ1, ξ2)
t. Apparently, the solution for higher

Landau levels processes four independant degrees of freedom contrary to the LLL solutions

in Eq.(22).

C. Positive and negative energy solutions and spin degree of freedom

To determine the positive and negative energy solutions of Eq.(30), we consider the

asymptotic limit, t→ −∞. By virtue of the condtion Eq.(9), positive and negative energy

solutions of Eq.(30), ϕ(+) and ϕ(−) should coincide with the orthonormal plane wave

solutions

ϕ(+)
n,nz

−−−−→
t→−∞

e−iωn,nz t

 cos(ρ/2)

− sin(ρ/2)

 , (32)

ϕ(−)
n,nz

−−−−→
t→−∞

e+iωn,nz t

sin(ρ/2)

cos(ρ/2)

 . (33)

where the energy at t → −∞ is given by ωn,nz =
√
m2 + k2z + 2eBn and the phase is

ρ = arctan
(
kz/

√
m2 + 2eBn

)
. It is important to note that relations between positive and

negative energy solutions are given by ϕ
(−)
n,nz = Θϕ

(+)
n,nz , ϕ

(+)
n,nz = −Θϕ

(−)
n,nz , where Θ = iσyK

is time-reversal conjugation operator and K is complex conjugation operator. They imply

that a negative charged state can be interpreted as the corresponding time-reversal positive

charged one. Hense, we can express solutions of the two component spinor by single
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function ϕn,nz using relations,

ϕ(+)
n,nz

(t) = ϕn,nz
(t),

ϕ(−)
n,nz

(t) = Θϕn,nz
(t).

(34)

The positive and negative solution satisfy the orthonormal condition,

|ϕ(±)
n,nz

|2 = |ϕn,nz |2 = 1, (35)

ϕ†(±)
n,nz

ϕ(∓)
n,nz

= (Θϕn,nz)
†ϕn,nz = ϕ†n,nz

Θϕn,nz = 0. (36)

Next, we determine the spin structure of the solutions. In the heavy mass limit,

m ≫
√
2eBn and λ → π

2 , ψ may reduce to the non-relativestic spinor, if we choose

ξ properly. This can be done by choosing ξ = (eiλ/2/
√
2,−ie−iλ/2/

√
2) and Θξ =

(−ieiλ/2/
√
2, e−iλ/2/

√
2). In fact, time-dependent parts of the solutions become

ψ(±)
n,nz

(t) =


ϕ
(±)
1

i sin(λ)ϕ
(±)
2

cos(λ)ϕ
(±)
2

0

 −−−−→
m→∞


ϕ
(±)
1

0

ϕ
(±)
2

0

 (37)

ψ(±)
n,nz

(t) =


0

cos(λ)ϕ
(±)
2

i sin(λ)ϕ
(±)
2

ϕ
(±)
1

 −−−−→
m→∞


0

ϕ
(±)
2

0

ϕ
(±)
1

 (38)

We finally arrive at expressions for the solutions, ψ
(u,σ)
n,nz ,ny , where u = +/− denotes the
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positive/negative energy and σ =↑ / ↓ represents spin up/down state, respectively.

ψ(+,↑)
n,nz ,ny

(t,x) = N exp(ikyy + ikzz)


gn,ny(x)ϕ

(+)
1

i sin(λ)gn−1,ny(x)ϕ
(+)
2

cos(λ)gn,ny(x)ϕ
(+)
2

0

 , (39)

ψ(+,↓)
n,nz ,ny

(t,x) = N exp(ikyy + ikzz)


0

cos(λ)gn−1,ny(x)ϕ
(+)
2

i sin(λ)gn,ny(x)ϕ
(+)
2

gn−1,ny(x)ϕ
(+)
1

 , (40)

ψ(−,↓)
n,nz ,ny

(t,x) = N exp(ikyy + ikzz)


gn,ny(x)ϕ

(−)
1

i sin(λ)gn−1,ny(x)ϕ
(−)
2

cos(λ)gn,ny(x)ϕ
(−)
2

0

 , (41)

ψ(−,↑)
n,nz ,ny

(t,x) = N exp(ikyy + ikzz)


0

cos(λ)gn−1,ny(x)ϕ
(−)
2

i sin(λ)gn,ny(x)ϕ
(−)
2

gn−1,ny(x)ϕ
(−)
1

 (42)

If we take n = 0, eqs.(39)-(42) reduce to the LLL solutions Eq.(22). As expected, we

find

ψ
(+,↓)
0,nz ,ny

(t,x) = ψ
(−,↑)
0,nz ,ny

(t,x) = 0. (43)

since gn−1 = 0 and λ = 0 for n = 0.

By using the orthonormal and completeness realtion of the Hermite polynomials and

plane-wave and taking the normalization factor N = (eB)1/4/
√
LyLz, we obtain the

orthonormal relation,∫
d3xψ†(u,σ)

n,ny ,nz
(t,x)ψ

(u′,σ′)
n′,n′

y ,n
′
z
(t,x) = δuu′δσσ′δnn′δnyn′

y
δnzn′

z
(44)

and completeness relation,

∑
u=±

∑
σ=↑,↓

∞∑
n=0

N/2∑
ny=−N/2

∞∑
nz=−∞

[ψ(u,σ)
n,ny ,nz

(t,x)]α[ψ
†(u,σ)
n,ny ,nz

(t,x′)]β = δαβδ
(3)(x− x′). (45)
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where α, β are spinor indices. Strictly speaking, the orthonormal and completeness relation

are satisfied only if taking infinite volume limit, V → ∞.
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VI. QUANTIZATION AND EXPECTATION VALUES

A. Canonical quantization and finite Fermi energy system

In the previous section, we obtained the solutions of the Dirac equation which satisfy

the complete-orthonormal relation. Using these solutions, we expand the fermionic field

operator as,

ψ̂(x) =

∞∑
n=0

N/2∑
ny=−N/2

∞∑
nz=−∞

∑
σ=↑,↓

(b̂σ,nψ
(+,σ)
n (t,x) + d̂†−σ,−nψ

(−,−σ)
n (t,x)) (46)

where the coefficients, b̂σ,n,ny ,nz
, d̂†−σ,n,−ny ,−nz

, are dimensionless constants. Note that

b̂↓,0,ny ,nz
, d̂†↑,0,−ny ,−nz

do not exist because of Eq.(43).

The field operator is quantized by requiring the canonical anti-commutation relation,

{ψ̂α(t,x), ψ̂
†
β(t,x

′)} = δαβδ(x− x′),

{ψ̂α(t,x), ψ̂β(t,x
′)} = {ψ̂†

α(t,x), ψ̂
†
β(t,x

′)} = 0,
(47)

Eq.(47) is equavalent to anti-commutation relations for expansion coefficients,

{b̂σ,n, b̂
†
σ′,n′} = {d̂σ,n, d̂

†
σ′,n′} = δσσ′δnn′δnyn′

y
δnzn′

z
, otherwise zero (48)

where b̂σ,n, d̂σ,n are interpreted as annihilation operators of fermions/antifermions respec-

tively. The vacuum state is defined by,

b̂σ,n |0⟩ = 0, d̂σ,n |0⟩ = 0 (for all σ,n) (49)

with the normalization ⟨0|0⟩ = 1. We define the vacuum state |0⟩ at t → −∞ in the

Heisenberg picture, that is, |0⟩ is time-independent state. The finite Fermi energy system,

in which the positive energy states are filled up to a certain maximum of the single particle

energy (Fermi energy, EF ) is constructed by multiplying the creation operators to the

vacuum state,

|F ⟩ =
∏

ωn,nz≤EF ,
σ=↑,↓

b̂†σ,n |0⟩ (50)
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B. Vacuum expectation values

The Hamiltonian density operator, Ĥ(t), is given by

Ĥ(t) ≡ 1

V

∫
V
d3x

1

2

[
ψ̂†(x), ĤDψ̂(x)

]
(51)

The fermionic field operator satisfies the Heisenberg equation, i ddt ψ̂(t) = [ψ(t), Ĥ(t)]. The

Hamiltonian is explcitly written with the creation/annihilation operators,

Ĥ(t) =
1

V

∑
σ=↑,↓

∞∑
n=0

N/2∑
ny=−N/2

∞∑
nz=−∞

[ϵn,nz(t)(b̂
†
σ,nb̂σ,n + d̂†−σ,−nd̂−σ,−n − 1)

+ γn,nz(t)b̂σ,nd̂−σ,−n + γ∗n,nz
(t)d̂†−σ,−nb̂

†
σ,n] (52)

=
1

V

∑
σ=↑,↓

∞∑
n=0

N/2∑
ny=−N/2

∞∑
nz=−∞

an,nz · τ̂ σ,n (53)

where the coefficients are given by

ϵn,nz(t) = ϕ†n,nz
(t)hn,nz(t) · σϕn,nz

(t) (54)

γn,nz(t) = −(Θϕn,nz(t))
†hn,nz(t) · σϕn,nz(t) (55)

The last equality (53) is the pseudospin representation [55][56][57][58][45] where is a vector

with three components, an,nz = (Re[γn,nz ], Im[γn,nz ], ϵn,nz), and τ̂ σ,n are the spin-matrix-

like operators defined by

τ̂1σ,n = b̂σ,nd̂−σ,−n + d̂†−σ,−nb̂
†
σ,n

τ̂2σ,n = (−i)(b̂σ,nd̂−σ,−n − d̂†−σ,−nb̂
†
σ,n)

τ̂3σ,n = b̂†σ,nb̂σ,n + d̂†−σ,−nd̂−σ,−n − 1

(56)

which satisfy [τ̂ in, τ̂
j
n] = iϵijkτ̂kn. As we will discuss later, this representation is helpful to

diagonalize the Hamiltonian. At t→ −∞, the asymptotic Hamiltonian is

Ĥ(t) −−−−→
t→−∞

1

V

∑
σ=↑,↓

∞∑
n=0

N/2∑
ny=−N/2

∞∑
nz=−∞

[ωn,nz(b̂
†
σ,nb̂σ,n + d̂†−σ,−nd̂−σ,−n − 1). (57)

Summing up over degenerate states, one can obtain the expectation values of Hamil-
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tonian as,

⟨F | Ĥ |F ⟩ = |eB|
2π

1

Lz

∞∑
nz=−∞

ϵ0,nz(t)[−1 + θ(|kz| − p
(0)
F )]

+
|eB|
2π

∑
σ=↑,↓

∞∑
n=1

1

Lz

∞∑
nz=−∞

ϵn,nz(t)[−1 + θ(|kz| − p
(n)
F )] (58)

where θ(|pz|−p(n)F ) is the step-function and p
(n)
F =

√
EF −m2 − 2eBn is the Fermi momen-

tum at each Landau level. Taking infinite volume limit, V → ∞, and 1
Lz

∑∞
nz=−∞ →

∫ dpz
2π ,

Eq.(58) becomes

⟨F | Ĥ |F ⟩ = |eB|
2π

∞∑
n=0

∫
dpz
2π

αnϵn,nz(t)[(θ(|pz| − p
(n)
F )− 1) (59)

where αn = 1(n = 0) or 2(n ≥ 1).

In the same way, the expectation values of currents are also given by

〈
ψ̄Γψ

〉
=

1

V

∫
V
d3x ⟨F | 1

2

[
ˆ̄ψ(x),Γψ̂(x)

]
|F ⟩ (60)

where Γ is an arbitrary product of gamma matrices. Taking the infinite volume limit,

Eq.(60) are simply written by

N =
〈
ψ̄γ0ψ

〉
=

|eB|
2π

∞∑
n=0

∫
dpz
2π

αnθ(|pz| − p
(n)
F ) (61)

s3 =
〈
ψ̄γ3γ5ψ

〉
=
p
(0)
F

2π2
eB (62)

j3(t) =
〈
ψ̄γ3ψ

〉
=

|eB|
2π

∞∑
n=0

∫
dpz
2π

αnϕ
†
n,pzσzϕn,pzθ(|pz| − p

(n)
F ) (63)

n5(t) =
〈
ψ̄γ0γ5ψ

〉
=
eB

2π

∫
dpz
2π

ϕ†0,pzσzϕ0,pzθ(|pz| − p
(0)
F ) (64)

η(t) =
〈
ψ̄iγ5ψ

〉
=
eB

2π

∫
dpz
2π

ϕ†0,pzσyϕ0,pzθ(|pz| − p
(0)
F ) (65)

χ(t) =
〈
ψ̄ψ
〉
=

|eB|
2π

∞∑
n=0

∫
dpz
2π

αn
m√

m2 + 2|eB|n
ϕ†n,pzσxϕn,pzθ(|pz| − p

(n)
F ) (66)

P3(t) =
〈
ψ̄iγ0γ3ψ

〉
=

|eB|
2π

∞∑
n=0

∫
dpz
2π

αn
m√

m2 + 2|eB|n
ϕ†n,pzσyϕn,pzθ(|pz| − p

(n)
F ) (67)

M3(t) =
〈
ψ̄iγ1γ2ψ

〉
=
eB

2π

∫
dpz
2π

ϕ†0,pzσxϕ0,pzθ(|pz| − p
(0)
F ) (68)
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Other components of bilinear forms such as Γ = {γ1, γ2, γ1γ5, γ2γ5, iγ0γ1, iγ0γ2, iγ2γ3, iγ3γ1}

are always equal to zero due to the absence of electric and magnetic fields according to

x, y-axis.

Due to the cancellation of up and down spin at the higher Landau levels, chirality

imbalance n5, spin expectation value s3, pseudoscalar condensation η and magnetic dipole

moment M3 have the contribution of the lowest Landau level only. In contrast, total

number density N , electric current j3, scalar condensation χ and electric dipole moment

P3 have the contribution from all possible Landau levels.

If the Fermi energy is smaller than the magnetic field, EF <
√

2|eB|, particles are

occupied in only the lowest Landau level. So the total number density is equal to the total

spin, except for the sign, N = sgn(eB)s3. If the Fermi energy is larger than the magnetic

field, EF >
√
2|eB|, particles are occupied in not only the lowest Landau level but also

the higher Landau levels. The schematic illustration of the dispersion relation at a Fermi

sphere and spin degrees of freedom in the system is shown by Fig.6.

The spin expectation value is proportional to the Fermi momentum at the lowest Lan-

dau level, p
(0)
F , and the strength of the magnetic field. Clearly, in the limit of zero Fermi

energy, EF → 0, total number density and spin expectation value vanish. In contrast,

the magenetic dipole moment has non-zero values even in the limit of zero Fermi energy.

This difference may come from roles of antifermions for these matrix elements, the spin〈
ψ̄γ3γ5ψ

〉
express a sum of fermion and antifermion contributions, while the magenetic

dipole moments
〈
ψ̄iγ1γ2ψ

〉
describes their differences.

The formula of spin expectation value (62) is consistent with the previous work[26]. In

massless limit, the Fermi momentum at the lowest Landau level, p
(0)
F , is equal to Fermi

energy and chemical potential, p
(0)
F = EF = µ, so the spin expectation value becomes

s3 =
µ

2π2
eB (69)

This is the chiral separation effect in this framework.

Total number density and spin are time-independent. These are conserved quantities

even applying an electric field. On the other hand, chirality imbalance, electric current,

and pseudoscalar condensation are time-dependent. An applied electric field can produce

these. To evaluate the evolutions properly, we need to regularize the infinite momentum
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FIG. 6. The dispersion relation and schematic illustration of spin degree of freedom in the Fermi

sphere, where n is the index of Landau level and EF is the Fermi energy. In the lowest Landau

level, spin degree of freedom is one, that is, only the spin aligned the magnetic field is occupied.

In contrast, spin degree of freedom is two in the higher Landau level, that is, both up and down

spin are occupied.

integration, discussed in the next section.

C. Regularization and anomaly relation

The contribution from the vacuum appears in the vacuum expectation values of chi-

rality imbalance, n5, electric current, j3, and pseudoscalar condensation, η, so we have to

evaluate the integration of momentum over an infinite interval properly. We use point-split

regularization for the evaluation of vacuum expectation values in a gauge-invariant way.

We consider the replacement of a local bi-linear form to a non-local one as below,

ψ̄(z)Γψ(z) → lim
ϵ→0

∫
dz′ψ̄(z)Γhϵ(z − z′)U(z, z′)ψ(z′), (70)
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where hϵ(z − z′) is a delta-sequence function and U(z, z′) is the Wilson line defined as

lim
ϵ→0

hϵ(z − z′) = δ(z − z′), (71)

U(z, z′) = exp

[
ie

∫ z

z′
dz̃µAµ(z̃)

]
, (72)

The Wilson line is needed for invariance of the local phase transformation ψ → ψ′ =

eiα(x)ψ. We consider the replacement of mode-functions for z-component only and choose

the straight line as the path of the Wilson line. So one can integrate the non-local bi-linear

form as below,∫
dz′ψ̄(z)Γhϵ(z − z′)U(z, z′)ψ(z′) = ψ̄n,pzΓh̃ϵ(pz − eA(t))ψn,pz , (73)

where h̃ϵ(pz − eA(t)) is the Fourier coefficient of the delta-sequence function. If one

chooses the sinc function, hϵ(z−z′) = sin(π(z−z′)/ϵ)
π(z−z′) , as delta-sequence function, the Fourier

coefficient is given by box function h̃ϵ(pz − eA(t)) = θ(|1/ϵ| − pz − eA(t)). The parameter,

1/ϵ = Λ, is interpreted as the cut-off parameter according to the canonical momentum

aligned z-axis, pz. So we can obtain the regularized vacuum expectation values,

j3(t) =
|eB|
2π

∞∑
n=0

∫ Λ−eA(t)

−Λ+eA(t)

dpz
2π

αnϕ
†
n,pz(t)σzϕn,pz(t)θ(|pz| − p

(n)
F ), (74)

n5(t) =
eB

2π

∫ Λ−eA(t)

−Λ+eA(t)

dpz
2π

ϕ†0,pz(t)σzϕ0,pz(t)θ(|pz| − p
(0)
F ), (75)

η(t) =
eB

2π

∫ Λ−eA(t)

−Λ+eA(t)

dpz
2π

ϕ†0,pz(t)σyϕ0,pz(t)θ(|pz| − p
(0)
F ). (76)

With the point-split regularization, chirality imbalance n5 satisfies the anomaly rela-

tion,

∂tn5 = 2mη +
e2

2π2
BE(t), (77)

when taking the large cut-off limit, Λ → ∞. The anomalous term, e2

2π2BE(t), comes from

the time-dependence of the edge of ultraviolet momentum cut-off, [−Λ+eA(t),Λ−eA(t)],

which is the nature of the chiral anomaly. The anomaly relation is satisfied even in system

with non-zero Fermi energy, which is consistent with the previous work[5].

The anomaly relation for massless fermion is also satisfied,

∂tn5 =
e2

2π2
BE(t). (78)
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By integrating of time, we can obtain a simple form

n5 = − e2

2π2
BA(t). (79)

The rhs of Eq.(79) is proportional to the magenetic helicity density

h(t) =
1

V

∫
d3xA ·B. (80)

which relates to the winding number of a magnetic field.

The proof of the anomaly relation for massive and massless fermion are given in the

Appendix.A.

VII. BOGOLIUBOV TRANSFORMATION AND SCHWINGER PAIR PRODUC-

TION

In order to view the relation of vacuum expectation values and Schwinger pair-

productions, we introduce the instantaneous mode[51]. The expansion coefficients of

the instantaneous mode are equivalent to Bogoliubov coefficients which diagonalize the

Hamiltonian operator Ĥ(t) at an arbitrary time t. The time-Bogoliubov coefficients are

interpreted as the momentum distribution of pair-created particles at an arbitrary time.

Due to a time-dependent electric field, the momentum and energy of the particles

change with time. The original spinor ϕn,nz(t) is not suitable to describe pair-productions

by an applied electric field since they are expanded by the initial energy eigenvectors.

Expanding the original spinor ϕn,nz(t) by the basis that moves with the time-dependent

electric field (instantaneous mode), it is possible to describe vacuum expectation values

by using the momentum distribution of pair-created particles.

First, we consider a linear transformation for the two-component spinors. The eigen-

values of the time-dependent Hamiltonian for the two-component spinors hn,nz(t) · σ are

given by ±ωn,nz(t) = ±
√
m2 + 2eBn+ (kz − eA(t))2, called the instantaneous energy.
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The corresponding eigenvectors are given by

χ(+)
n,nz

(t) = e−i
∫
dt′ωn,nz (t

′)

 cos(ρ(t)/2)

− sin(ρ(t)/2)

 , (81)

χ(−)
n,nz

(t) = e+i
∫
dt′ωn,nz (t

′)

sin(ρ(t)/2)

cos(ρ(t)/2)

 , (82)

where satisfy the eigenvalue equation, hn,nz(t) · σχ
(±)
n,nz(t) = ±ωn,nz(t)χ

(±)
n,nz(t), and the

angle is given by ρ(t) = arctan
(

kz−eA(t)√
m2+2eBn

)
, and the global phase factor is called dynamical

phase. The eigenvectors coincide with the orthonormal plane wave solutions in t → −∞,

Eqs.(32) and (33).

Note that the instantaneous modes themselves do not satisfy the two-component equa-

tion (30). These instantaneous modes satisfy χ
(−)
n,nz = Θχ

(+)
n,nz , χ

(+)
n,nz = −Θχ

(−)
n,nz and the

orthonormal relation χ
†(±)
n,nzχ

(±)
n,nz = 1, χ

†(∓)
n,nzχ

(±)
n,nz = 0.

The time-dependent two-spinor ϕ
(±)
n,nz(t) can be expanded by the instantaneous modes

as below,

ϕ(+)
n,nz

(t) = αn,nz(t)χ
(+)
n,nz

(t) + βn,nz(t)χ
(−)
n,nz

(t),

ϕ(−)
n,nz

(t) = −β∗n,nz
(t)χ(+)

n,nz
(t) + α∗

n,nz
(t)χ(−)

n,nz
(t).

(83)

The time-dependent expansion coefficients αn,nz(t) and βn,nz(t) have information about

the non-trivial motion of the spinor ϕn,nz(t) by an external electric field. Using the or-

thonormal relation of χ
(±)
n,nz(t) and the normalization condition for ϕ

(±)
n,nz(t), (35), one can

prove that the time-dependent coefficients αn,nz(t), βn,nz(t) satisfy the orthonormal condi-

tion, |αn,nz(t)|2+ |βn,nz(t)|2 = 1, for an arbitrary time t, which is the property of fermionic

Bogoliubov coefficients. In the infinite past limit, t→ −∞, the Bogoliubov coefficients be-

come αn,nz = 1, βn,nz = 0 because the initial conditions for two-spinor, Eqs.(32) and (33).

In the context of two-level systems, the coefficients, αn,nz(t), βn,nz(t), mean the ground

state population rate and the excited state population rate at each time, respectively.

The relation (83) are equivalent to the realation of mode-functions (four-spinors),

ψ
(+,σ)
n (t,x) = αn,nz(t)Ψ

(+,σ)
n (t,x) + βn,nz(t)Ψ

(−,−σ)
n (t,x)

ψ
(−,−σ)
n (t,x) = −β∗n,nz

(t)Ψ
(+,σ)
n (t,x) + α∗

n,nz
(t)Ψ

(−,−σ)
n (t,x)

(84)
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where Ψ
(±,σ)
n (t,x) are the instantaneous mode-functions, which can be obtained by the

replacement ϕ
(±)
n,nz → χ

(±)
n,nz for mode-functions (39)-(42) and satisfy the eigenvalue equation

ĤDΨ
(±,σ)
n (t,x) = ±ωn,nz(t)Ψ

(±,σ)
n (t,x). The fermionic field operator is expanded by the

instantaneous mode-functions,

ψ̂(x) =
∞∑
n=0

N/2∑
ny=−N/2

∞∑
nz=−∞

∑
σ=↑,↓

(B̂σ,n(t)Ψ
(+,σ)
n (t,x) + D̂†

−σ,−n(t)Ψ
(−,−σ)
n (t,x)) (85)

The time-dependent coefficients, B̂σ,n(t), D̂
†
−σ,−n(t), satisfy,

B̂σ,n(t) = αn,nz(t)b̂σ,n − β∗n,nz
(t)d̂†−σ,−n = U †

σ,n(t)b̂σ,nUσ,n(t)

D̂†
−σ,−n(t) = βn,nz(t)b̂σ,n + α∗

n,nz
(t)d̂†−σ,−n = U †

σ,n(t)d̂
†
σ,nUσ,n(t)

(86)

where Uσ,n(t) is the time-dependent unitary operator for each mode defined by the spin-

matrix-like operator (56),

Uσ,n(t) = exp

(
− i

2
(− arg(αn,nz) + arg(βn,nz))τ

3
σ,n

)
× exp

(
−i arctan

(
|βn,nz |
|αn,nz |

)
τ2σ,n

)
× exp

(
− i

2
(− arg(αn,nz)− arg(βn,nz))τ

3
σ,n

)
. (87)

The relation (86) is a canonical transformation; the anti-commutation relation (48) also

holds for the time-dependent annihilation operators, B̂σ,n(t), D̂
†
−σ,−n(t).

Using the field operator expanded by the instantaneous mode-functions (85), the Hamil-

tonian can be easily rewritten,

Ĥ(t) =
1

V

∑
σ=↑,↓

∞∑
n=0

N/2∑
ny=−N/2

∞∑
nz=−∞

ωn,nz(t)(B̂
†
σ,nB̂σ,n + D̂†

−σ,−nD̂−σ,−n − 1) (88)

=
1

V

∑
σ=↑,↓

∞∑
n=0

N/2∑
ny=−N/2

∞∑
nz=−∞

ωn,nz(t)U
†
σ,n(t)(b̂

†
σ,nb̂σ,n + d̂†−σ,−nd̂−σ,−n − 1)Uσ,n(t)

(89)

So the expectation value of Hamiltonian becomes ⟨F | Ĥ(t) |F ⟩ = ⟨F ′(t)| Ĥ′(t) |F ′(t)⟩,
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where

Ĥ′(t) = U(t)Ĥ(t)U †(t)

=
1

V

∑
σ=↑,↓

∞∑
n=0

N/2∑
ny=−N/2

∞∑
nz=−∞

ωn,nz(t)(b̂
†
σ,nb̂σ,n + d̂†−σ,−nd̂−σ,−n − 1) (90)

∣∣F ′(t)
〉
= U(t) |F ⟩ =

∏
ωn,nz>EF ,

σ=↑,↓

(α∗
n,nz

(t) + β∗n,nz
(t)d̂†−σ,−nb̂

†
σ,n)

∏
ωn,nz≤EF ,

σ=↑,↓

b̂†σ,n |0⟩ (91)

U(t) =
∏
σ,n

U †
σ,n(t) (92)

The new Hamiltonian Ĥ′(t) is diagonalized, and the new state |F ′(t)⟩ describes pair-

productions of fermion/antifermion outside the Fermi sphere. It implies that pair-

productions do not occur inside the Fermi sphere due to Pauli blocking, and the factor

βn,nz(t) has information of pair-created fermion/antifermion for each mode.

The expectation values of Hamiltonian ⟨F | Ĥ |F ⟩ is described by Bogoliubov coefficients

as below,

⟨F | Ĥ |F ⟩ = Hvac +Hf.s. +Hp.p., (93)

where

Hvac = −|eB|
2π

∞∑
n=0

∫
dpz
2π

αnωn,pz(t), (94)

Hf.s. =
|eB|
2π

∞∑
n=0

∫
dpz
2π

αnωn,pz(t)θ(p
(n)
F − |pz|), (95)

Hp.p. = 2
|eB|
2π

∞∑
n=0

∫
dpz
2π

αn|βn,pz(t)|2ωn,pz(t)θ(|pz| − p
(n)
F ). (96)

When we apply the point-split regularization, the first term Hvac becomes constant, which

means the contribution from the vacuum. The second term Hf.s. comes from the Fermi

sphere, considering the shift due to an applied electric field. The third term Hp.p. is

the contribution from pair-productions outside the Fermi sphere. The factor |βn,pz |2 is

interpreted as the momentum distribution of pair-created fermions(antifermions) for the

Landau level n. The absence of pair-productions inside the Fermi sphere means the pro-

hibition of pair-productions by Pauli blocking. In the infinite past limit, t → −∞, the
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Bogoliubov coefficients become αn,pz = 1, βn,pz = 0, meaning that no pair-productions

occur, so the total energy is

⟨F | Ĥ |F ⟩ −−−−→
t→−∞

−|eB|
2π

∞∑
n=0

∫
dpz
2π

αnωn,pz +
|eB|
2π

∞∑
n=0

∫
dpz
2π

αnωn,pzθ(p
(n)
F − |pz|), (97)

which the first term comes from the vacuum and the second term comes from the Fermi

sphere.

In the same way, the expectation value of chirality imbalance with the point-split

regularization, n5, is described by Bogoliubov coefficients,

n5 ≡ ntotal5 = nf.s5 + np.p5 (98)

where

nf.s5 = − eB

4π2
[
√
m2 + (pF − eA(t))2 −

√
m2 + (−pF − eA(t))2] (99)

np.p5 =
eB

2π

∫
dpz
2π

2[−|β0,pz(t)|2
pz − eA(t)

ω0,nz(t)

+
m

ω0,nz(t)
Re[α0,pz(t)β

∗
0,pz(t)e

−2i
∫
dt′ω0,pz (t

′)]]θ(|pz| − pF ) (100)

The first term, nf.s5 , comes from the shift of the Fermi sphere. This framework does

not consider any scatterings of shifted fermions by an applied electric field, so momen-

tum relaxations do not occur. The second term np.p5 is interpreted as the contribution

from the Schwinger pair production with considering Pauli blocking. The first term of

np.p5 is proportional to the momentum distribution |β0,pz |2 and the relativistic velocity

according to z-axis of pair-created fermions, pz−eA(t)
ω0,nz (t)

. The representation means that chi-

rality imbalance is merely characterized by the momentum(or velocity) distribution of cre-

ated fermion/antifermion at the lowest Landau level since the spinup-fermions/spindown-

antifermions only exist at the lowest Landau level. The second term of np.p5 , which is

proportional to Re[α0,pz(t)β
∗
0,pz(t)e

−2i
∫
dt′ω0,pz (t

′)], can be interpreted as the interference

between the non-pair-created and pair-created state for each mode. The term is referred

to as polarization current in Ref.[51].

If EF = 0, then nf.s5 = 0, that is, the production of chirality imbalance comes from pair-

productions by an electric field only. One can find that sufficiently large pair productions

are needed to produce chirality imbalance (or electric current). However, sufficiently large
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pair productions do not necessarily mean much chirality imbalance (or electric current)

because cancellations occur between plus and minus momentum modes. Non-zero chirality

imbalance (or electric current) can be obtained if only the momentum distribution is

asymmetric, which is discussed in the later section with some specific electric fields.
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VIII. AN EVOLUTION OF CHIRALITY IMBALANCE IN ZERO FERMI EN-

ERGY SYSTEM

In this section, we discuss the evolution of chirality imbalance in zero Fermi energy

system in a specific electric field by solving equation (30) analytically and numerically.

A. Chirality imbalance in Sauter type electric fields

In this section, we asuume the external electric field as Sauter type one. Assuming this

type of electric field, we can obtain the analytical solutions of the Dirac equation, originally

proved by Sauter[41]. First, we investigate the evolution of chirality imbalance, electric

current and pseudoscalar condensation. Then the vacuum expectation values of chirality

imbalance and electric current are relate to the momentum distribution of pair-created

particles.

The Sauter type electric field and the corresponding vector potential are given by

E(t) =
E

cosh2(t/τ)
, (101)

A(t) = −Eτ(tanh(t/τ) + 1), (102)

where E is the peak of electric field strength and τ is the time-width of electric field. The

shape of Sauter type electric field and the corresponding vector potential are shown in

Fig.7.

FIG. 7. Time dependence of Sauter type electric field eE(t) and the corresponding vector potential

eA(t).
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In the Sauter type electric field, the solution of the Dirac equation (30) with the initial

condition (32) is given by

ϕn,kz(t) =

 √
ω(0)+kz
2ω(0) u−

iτω(0)
2 (1− u)

iτω(1)
2 F

(
a,b
c ;u(t)

)
√

ω(0)−kz
2ω(0) u

iτω(0)
2 (1− u)−

iτω(1)
2 F

(
1−a,1−b

2−c ;u(t)
)
 (103)

where F
(
a,b
c ;u

)
are Gauss’s hypergeometric function. The parameters are given by

a = 1−
iτωn,kz(0)

2
+
iτωn,kz(1)

2
+ ieEτ2 (104)

b = −
iτωn,kz(0)

2
+
iτωn,kz(1)

2
− ieEτ2 (105)

c = 1− iτωn,kz(0) (106)

where

ω2
n,kz(u(t)) = (kz + 2eEτu(t))2 + 2|eB|n+m2 (107)

u(t) =
1

2
(tanh(t/τ) + 1) (108)

Using the analytical solutions of the Dirac equation, we can evaluate the evolution of

vacuum expectation values and momentum distribution of pair-created particles by the

electric field.

1. An evolution of vacuum expectation values in Sauter type electric fields

We investigate the evolutions of chirality imbalance, electric current and pseudoscalar

condensation in Sauter type electric fields. By integrating the integrand at each time

according to momentum numerically, we can evaluate the evolution of vacuum expectation

values. Here, we have three independent parameters of the model, strength of the electric

and magnetic fields, and the fermion mass, which are expressed in units of the electron

mass me = 0.5MeV. We set the cut-off parameter as Λ = 30me, which is much larger

than the fermion mass scale.

In our study, we calculate the vacuum expectation values under parallel constant mag-

netic and the time-dependent Sauter type electric fields, whose strengths can be fixed

independently. However, as far as we understand, the chirality imbalance is well studied
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by considering the magnetic helicity density h defined in Eq.(80). As we have discussed

in the previous section, our calculation is fully consistent to the chiral anomaly relation.

In the massless limit, it is simplified as Eq.(79) since we consider the time-independent

magnetic field. The integrand of the rhs is just magnetic helicity h(t). Hence, with our

electromagnetic field, the chirality imbalance becomes

lim
t→∞

n5(t) = −2α

π
lim
t→∞

h(t) =
e2BEτ

π2
(109)

Nevertheless, it is convenient to express the chirality imbalance (and CME current) in the

unit of the magnetic helicity, e2BEτ/π2.

In Fig.8, we first show the chirality imbalance n5 as a function t with a shape of

the Sauter electric field by the dash-dotted curve. In the massless case (solid curve), n5

increases by the electric field, and approaches a finite value, e2BEτ/π2, at t → ∞, even

after the electric field diminished. On the other hand, in the case of the finite fermion

mass, the chirality imbalance consists of both a constant part and an oscillating part at

t→ ∞. When the mass is comparable with the magnitude of the electric field, m2 ∼ eE,

the chirality imbalance is largely suppressed as depicted by the dotted curve. Thus, we

find that the average chirality imbalance is almost zero, if m2 > eE. We will relate

these results with the fermion pair production from the vacuum in view of the Schwinger

mechanism [].
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FIG. 8. The time evolution of chirality imbalance n5. eE/m
2
e = 4.0, τme = 0.5, eB/m2

e = 8.0

We also examine effects of the magnetic field on the chirality imbalance. If we increase

the strength of the magnetic field, the magnitude of the chirality imbalance is also increased
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which is just proportional to the magnetic helicity. However, the time dependence of n5

is never changed as expected.

We then show the vector current along the z-direction in Fig.9 which could be under-

stood as the chiral magnetic effect. Again, the vector current is shown in units of the

magnetic helicity density. In the case of the massless limit, the vector current depicted

by the solid curve consists of a dominant constant part and a tiny oscillating part, which

is somewhat different from the behavior of the chirality imbalance n5. This is because

n5 is solely determined by the lowest Landau level contribution, while the vector current

gets contributions from higher Landau levels in Eq.(74) with taking EF → 0 limit. The

average CME current almost vanishes for the small electric field m2 > eE, which is similar

with the chirality imbalance.
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FIG. 9. The time evolution of vector current density jz. eE/m
2
e = 4.0, τme = 0.5, eB/m2

e = 8.0

From Fig. 9, for t/τ ≫ 1 where there is no electric field, the CME current for the

massless fermion is expressed as

jz ∼
e2BEτ

π2
=

α

2π
B(8Eτ) (110)

The form of Eq.(110) is the same as Eq.(4) if we substitute 8Eτ for µ5. This crude

identification is justified only if t is large enough compared with the timescale τ of the

electric field in Eq.(101).

For completeness, we also show the pseudoscalar density in Fig.10 calculated by Eq.(76)

with taking EF → 0 limit. As expected from the chiral anomaly relation Eq.(77), the

pseudoscalar density is significant only at t ∼ 0.

44



-4 -2 0 2 4 6 8 10

-0.03

-0.02

-0.01

0.00

0.01

FIG. 10. The time evolution of psuedo-scalar condensate. eE/m2
e = 4.0, τme = 0.5, eB/m2

e = 8.0

2. Schwinger pair productions in Sauter type electric fields

In order to understand appearance of the chirality imbalance from the vacuum, we

relate it with the fermion pair production [51][59][60]. To do so, we try to find a relation

between the “in-state” vacuum at t → −∞ and the “out-state” vacuum at t → +∞.

As discussed in Eqs. (32), (33) and (49), our original in-state vacuum at t → −∞, |0⟩,

coincides with the free particle vacuum (although B ̸= 0). However, due to the Sauter

type electric field, the vacuum at t→ ∞, |0⟩out is not the same as the original vacuum |0⟩.

To proceed calculations, we need asymptotic forms of the mode-function at t → −∞

and at t → ∞. As mentioned the previous section, the solutions in Sauter type electric

fields satisfy the initial conditions for the two-spinor, Eqs. (32) and (33). On the other

hand, with the help of the connection formula for the Gauss hypergeometric function,

out-state mode-functions are rewritten as

ϕ(+)
n,nz

(t) = αn,nzχ
(+;out)
n,nz

(t) + βn,nzχ
(−;out)
n,nz

(t),

ϕ(−)
n,nz

(t) = −β∗n,nz
χ(+;out)
n,nz

(t) + α∗
n,nz

χ(−;out)
n,nz

(t).
(111)

where out-state two-spinor are given by

χ(+;out)
n,nz

(t) = e−iωn,kz (1)t

 cos
(
ρout/2

)
− sin

(
ρout/2

)
 (112)

which are the free fermion wave functions with the energy ω(1). Here the angle is given

by ρout = arctan
(

kz+2eEτ√
m2+2eBn

)
. In the Sauter type electric field, the Bogoliubov coefficients

45



are analytically obtained by

αn,kz =

√
ω(0) + kz
ω(0)

√
ω(1)

ω(1) + [kz + 2eEτ ]

2i

τ [ω(0) + ω(1)− 2eEτ ]

× Γ(1− iτω(0))Γ(−iτω(1))
Γ(− iτω(0)

2 − iτω(1)
2 − ieEτ2)Γ(− iτω(0)

2 − iτω(1)
2 + ieEτ2)

(113)

βn,kz =

√
ω(0) + kz
ω(0)

√
ω(1)

ω(1)− [kz + 2eEτ ]

2i

τ [ω(0)− ω(1)− 2eEτ ]

× Γ(1 + iτω(0))Γ(−iτω(1))
Γ( iτω(0)2 − iτω(1)

2 + ieEτ2)Γ( iτω(0)2 − iτω(1)
2 − ieEτ2)

(114)

From these functions, we can construct the Bogoliubov transformation between in-state

and out-state[51][59][60]. We already introduced the annihilation operators and the vac-

uum for the in-state as in Eq.(49): Similarly, we define the out-state vacuum with operators

b̂outσ,n, d̂
out
σ,n,

b̂outσ,n |0⟩ = 0, d̂outσ,n |0⟩ = 0 (for all σ,n) (115)

where operators b̂outσ,n, d̂
out
σ,n are introduced as coefficients of χ

(+;out)
n,nz (t), χ

(−;out)
n,nz (t) in the

same way as time-dependent Bogoliubov coefficients discussed in the section VII. Thus,

these operators are subject to the transformation,

b̂outσ,n = αn,nz b̂σ,n − β∗n,nz
d̂†−σ,−n

d̂†out−σ,−n = βn,nz b̂σ,n + α∗
n,nz

d̂†−σ,−n

(116)

where the Bogoliubov coefficients satisfy the unitary condition |αn,nz |2 + |βn,nz |2 = 1 as

like the time-dependent ones. The expectation value of the number operator at t = ∞

between the original vacuum becomes

⟨0| b̂†outσ,n b̂
out
σ,n |0⟩ = |βn,nz |2 (117)

which is understood as the probability to find a fermion produced by the electric field

with the momentum n, kz at t = ∞ [51][59][60]. It is well known that |βn,kz |2 is significant

only if the electric field is larger than the fermion mass square, eE > m2, which means

spontaneous creation of fermion pairs from the vacuum under the strong electric field.

Thus, we naively expect the chirality imbalance may emerge for eE ≫ m2.
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Using these results, one can express the vacuum expectation values at t = ∞ in terms of

the Bogoliubov coefficients. For example, the chirality imbalance n5 at t = ∞ is calculated

as

n5|t=∞ =
eB

2π

∫ Λ+2eEτ

−Λ−2eEτ

dpz
2π

2[−|β0,pz |2
pz + 2eEτ

ω0,nz(1)

+
m

ω0,nz(1)
Re[α0,pzβ

∗
0,pze

−2iω0,pz (1)t]] (118)

The first term is independent of time, and simply proportional to |β0,pz |2 which is the

probability to find a produced particle in the lowest Landau level with kz. On the other

hand, the second term is proportional to the mass and time-dependent, which is interpreted

as the “interference” term .

At first sight, n5 is simply determined by the magnitude of |β0,kz |2. However, existence

of the chirality imbalance strongly depends on details of the integration over kz in Eq.

(118), which is sensitive to a parameter τ , the timescale of the electric field in Eq.(101).

We will discuss how the nonzero n5 appears in some detail. In the massless limit, the first

term of Eq. (118), which we call n
(0)
5 , becomes

n
(0)
5 = −2

eB

2π

∫ Λ+2eEτ

−Λ−2eEτ

dpz
2π

|β0,pz |2
pz + 2eEτ

ω0,nz(1)
(119)

−−−→
m→0

−2

∫ Λ+2eEτ

−Λ−2eEτ

dpz
2π

sgn[pz + 2eEτ ]|β0,pz |2. (120)

In the presence of the uniform magnetic field, all the fermions move along the z-direction,

and the spin of the fermions in the lowest Landau level, which can contribute to |β0,kz |,

is parallel to the z-direction. Hence, the fermions with positive mechanical momenta,

pz + 2eEτ > 0, carry the right-handed chirality, while those with pz + 2eEτ < 0 are

left handed. If the electric field were zero, the imbalance n
(0)
5 would vanish, because of

a cancellation between contributions from kz > 0 and kz < 0 fermions by virtue of the

symmetrical kz distribution of the pair-production probability β0,kz . However, the nonzero

electric field induces an asymmetry between momentum distributions of right- and left-

handed fermions in both the sign function sgn[kz + 2eEτ ] and the regularization factor

±(Λ + 2eEτ), which indeed generates the chirality imbalance in this model.

To study n
(0)
5 in the case of the finite mass, we show |β0,kz |2 and (kz + 2eEτ)/ω(1) in

Fig.11, where (kz+2eEτ)/ω(1) is no longer the sign function. The pair-creation probability
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|β0,kz |2 peaked at kz = −eEτ , whereas (kz +2eEτ)/ω(1) changes its sign at kz = −2eEτ .

Hence, if τ is very small ( ∼ 0), the integration over kz is negligible due to a cancellation,

and thus the resulting chirality imbalance almost vanishes.

-6 -4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

FIG. 11. The plot of the integrand of ñ5. The chirality of fermions are determined by the sign of

(kz +2eEτ)/ω(1). If fermions are massless, the function become step function. The factor |β0,kz
|2

is the momentum distribution of pair producted particles in the lowest Landau level.

For completeness, we show explicit τ dependence of the results. We first show the

chirality imbalance as a function of τme in Fig.12 for several values of eE. If eE < m2,

the chirality imbalance is almost zero, because the production of the fermion pairs is

forbidden. The large electric field simply gives the larger chirality imbalance. However,

if the timescale τ is quite small, τ ≪ 1/me, the situation becomes different. In Fig.13,

we show n
(0)
5 for several values of τme. We find that, even if the strength of the electric

field is large enough, n
(0)
5 is very small for τme < 0.01. This is because the small τ cannot

provide enough asymmetry in the integrand of Eq. (120).

A similar argument holds for the chiral magnetic effect, the z-component of vector
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FIG. 12. τ dependence of n
(0)
5 for several values of eE.
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FIG. 13. eE dependence of n
(0)
5 .

current at t = ∞. We can write the CME current in terms of Bogoliubov coefficients

j3|t=∞ =
|eB|
2π

∫ Λ+2eEτ

−Λ−2eEτ

dpz
2π

∞∑
n=0

αn2[−|βn,pz |2
pz + 2eEτ

ωn,nz(1)

+
m

ωn,nz(1)
Re[αn,pzβ

∗
n,pze

−2iωn,pz (1)t]] (121)

which is similar with one of the chirality imbalance. The first term is independent of time

and essentially given by a product of |β0,kz |2 and (kz + 2eEτ)/ω(1), which is interpreted

as the z-component of relativistic velocity of particles. Hence, this term is understood

as a classical analog of the electric current of the z-component carried by the produced

fermions. Note that the second oscillating term is nonzero even in the massless limit.
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B. Chirality imbalance in a smooth box type electric field

The evolutions of vacuum expectation values can be evaluated even in an electric field

with arbitrary time-dependence by numerically solving the Dirac equation (30). For sim-

plicity of the physical discussion and numerical handling, we assume the time-dependence

of electric field, E(t) as smooth-box type. Smooth box type electric field and the corren-

ponding vector potential satisfied the initial condition (9) are given by

E(t) = E(tanh((t+ T/2)/τ)− tanh((t− T/2)/τ))/2 (122)

A(t) = −Eτ [log(cosh((t+ T/2)/τ))− log(cosh((t− T/2)/τ)) + T/τ ]/2 (123)

where E is the strength of electric field, T is the time range over which the electric field

and τ is the time interval until the electric field reaches steady state. The time-dependence

of the electric field and vector potential are shown by Fig.14. If the solutions of (30) are

obtained numerically, then the Bogoliubov coefficients can be easily obtained by using the

relation (83), so one can calculate evolutions of chirality imbalance in the finite Fermi

energy system and the momentum distribution of pair-created particles at each time.

In this study, we focus on chirality imbalance for massless/massive fermions in the

vacuum and massless/massive fermions in finite Fermi energy system. In each case, we

calculate the evolution of chirality imbalance and the anomaly relation, and the momentum

distribution of pair-producted particles at specific times.

For convenience, the all physical parameters are non-dimensionalized by electron mass,

me, but the following discussion holds for any energy scale. In the following discussion,

we set m/me = 0, 1 as fermion mass, pF /me = 0, 20 as Fermi momentum and E/m2
e =

2.0, τme = 0.5, Tme = 20.0 as the parameters of smooth-box type electric field. The

strength, E, and time-range, T , are choosen to occur sufficient shift of Fermi sphere and

pair-production for massive fermions. The time-interval, τ , is chosen to become closely

box-type electric field.
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FIG. 14. Time dependence of smooth box type electric field eE(t) and the corresponding vector

potential eA(t).

1. massless fermion in zero Fermi energy system

First of all, we investigate the evolution of chirality imbalance of massless fermions

(m/me = 0) in the system which the Fermi energy is eqaul to zero, EF /me = 0. In

massless case, however, the evolution of chirality imbalance is almost trivial since the

time-integrated anomaly relation of massless fermion,

n5 = −(e2/2π2)BA(t). (124)

should be satisfied. This simplest case will help in the discussion of the case of massive

fermions or/and finite Fermi energy system.

In Fig.15, the evolution of chirality imbalance of massless fermions in the smooth-box

type electric field (E/m2
e = 2.0, τme = 0.5, Tme = 20.0) is shown. The evolution of

chirality imbalance is completely equal to the applied vector potential. After the electric

field vanished (or equivalently the vector potential becomes constant), the production of

chirality imbalance stops and the chirality imbalance is kept at a non-zero value, which is

equal to −(e2/2π2)BA(t)|t=∞.

In Fig.16, the evolution of chirality imbalance, n5, time-integrated pseudoscalar con-

densation,
∫
dt′η(t′), and vector potential, eA(t), are shown. Clearly, the time-integrated

anomaly relation of massless fermion (124) is satisfied. The time-integrated pseudoscalar

condensation (or pseudoscalar condensation itself) is always zero. In the analogy of pre-

cession of magnetic moments in a magnetic field, it corresponds to the fact that precession
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does not occur when there is no transverse magnetic field but only a longitudinal magnetic

field that changes with time.

Then, in Fig.17, we show the schematic illustration of dispersion relation in Dirac sea

picture and the momentum distribution of pair-created massless fermions in the vacuum

in the smooth-box type electric field at some specific times, t = −15,−5, 5, 20. Before

applying an electric field (t = −15), as a matter of course, no pair-production occurs and

static massless Dirac vacuum is realized (Fig.17-a). Immediately after the electric field is

applied (t = −5), the spectral shift is caused by the motion of all the fermions occupying

the vacuum as they are accelerated by the electric field(Fig.17-b). Fermions with negative

initial momentum(or negative canonical momentum) transition to the state of positive mo-

mentum and energy, and the holes after they left behave as antifermions. The momentum

distribution of pair-producted fermions is always equal to 1, |β0,kz |2 = 1, since the exci-

tation is gapless. While the electric field is applying (t = 5), the momentum distribution

spreads in the direction of higher mechanical momentum since the pair-producted fermions

and antifermions is accelerated by the electric field simultaneously with pair-productions

(Fig.17-c). After the electric field turned off (t = 15), the spreading momentum distribu-

tion (or equivalently spectral shift) stops, that is, the transition and acceleration by the

electric field no longer occur (Fig.20-d).

2. massive fermion in zero Fermi energy system

We also investigate the evolution of chirality imbalance of massive fermions (m/me = 1)

in the vacuum (pF = 0) as the same parameters in the massless case. It is expected that

under the sufficiently strong electric field, the production of chirality imbalance occurs but

the value is suppressed compared to the massless case due to the mass gap.

The evolution of chirality imbalance of massive fermions in the smooth-box type electric

field (E/m2
e = 2.0, τme = 0.5, Tme = 20.0) is shown by Fig.18. Immediately after the

application of electric field, the production of chirality imbalance occurs as like the massless

case. While the electric field is applying, the production of chirality imbalance continues

and its rate of change is proportional to the vector potential, or the impulse felt by the

charged fermions due to the electric field, −eA(t) =
∫ t
−∞ dt′eE(t′), but the rate is smaller
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FIG. 15. Time evolution of chirality imbalance for massless fermions in the vacuum (pF /me = 0.0)

when E/m2
e = 2.0, Tme = 20, τme = 0.5. The chirality imbalance (dash-dot line) and vector

potential (dotted line) are shown. Chirality imbalance are normalized by eB/4π2.
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FIG. 16. Time-integrated anomaly relation for massless fermion in the vacuum. Vector poten-

tial(dotted line), time-integrated pseudoscalar condensation(dashed line), the sum of these(dash-

dot line), and chirality imbalance(solid line) are shown. Chirality imbalance and time-integrated

pseudoscalar condensation are normalized by eB/4π2. It is shown that time-integrated anomaly

relation, n5 = 2m
∫
dt′η − (e2/2π2)BA(t), is satisfied.
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(d) t = 20 (after turning off the electric field)

FIG. 17. Schematic illustration of dispersion relation (Dirac sea picuture) and the momentum

distribution of pair-created massless fermions in the vacuum at t = −15,−5, 5, 20.
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than the massless case. After the electric field vanished, the chirality imbalance is kept at

non-zero values, but the value is suppressed than the massless one. Unlike the massless

case, the oscillation originated from the interference between non-pair-created state and

pair-created state is observed.

Then, we investigate how the anomaly relation for massive fermions is satisfied in the

smooth-box type electric field. In Fig.19, as like the massless case, chirality imbalance,

time-integrated pseudoscalar condensation and vector potential are shown. It is shown

that the time-integrated anomaly relation,

n5 = 2m

∫ t

−∞
dt′η(t′)− e2

2π2
BA(t), (125)

is satisfied. The time-integrated pseudoscalar condensation is significantly contributed to

the anomaly relation as the fermion mass effect. If the fermions are massless, momentum

distribution of pair-producted particles is always equal to 1, |β0,kz |2 = 1, in the range of

mechanical momentum, Πz = [0,−eA(t)], because the pair-production is gapless excita-

tion. In the massive case, however, when the strength of electric field is comparable to

the fermion mass, the production rate becomes smaller than 1, |β0,kz |2 < 1, since fermions

need to cross the mass gap. The time-integrated pseudoscalar condensation compensates

for its loss of pair-production, and the anomaly relation holds as a whole.

To see the microscopic behavior of the production of chirality imbalance, the schematic

illustration of pair-production and the momentum distribution of pair-created particles

at t = −15,−5, 5, 20 are shown by Fig.20. As like the massless case, before applying

an electric field (t = −15), a static vacuum state without pair-productions is realized

(Fig.17-a). Immediately after the electric field is applied(t = −5, Fig.20-b), the pair-

production dominantly occur at Dirac point, which is mechanical momentum becomes zero,

Πz(t) = kz − eA(t) = 0, or instantaneous energy gap becomes minimum. In the region far

from the Dirac point, pair production is strongly suppressed, which is a nature of Schwinger

pair-production. While the electric field is applying (t = 5, Fig.20-c), pair-production at

the Dirac point and acceleration of pair-producted fermions by the electric field occurs, so

the momentum distribution spreads in the direction of higher mechanical momentum. The

non-zero momentum distribution, |β0,kz |2, exists in the range of mechanical momentum

near by Πz = [0,−eA(t)]. After the electric field turned off (t = 15, Fig.20-d), the
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FIG. 18. Evolution of chirality imbalance for massive fermions in the vacuum (pF /me = 0) when

E/m2
e = 2.0, Tme = 20, τme = 0.5. The chirality imbalance (dash-dot line) and vector potential

(dotted line) are shown.

spreading of the momentum distribution stops as pair production and acceleration by the

electric field ceases. Finally, the non-zero pair-production rate dominantly exists in the

range of mechanical momentum near by Πz = [0,−eA(t)|t=∞], and the asymmetry of

momentum distribution contributes to the net chirality imbalance.

IX. AN EVOLUTION OF CHIRALITY IMBALANCE IN FINITE FERMI EN-

ERGY SYSTEM

A. massless fermion in finite Fermi energy system

From here on , we consider the case of finite Fermi energy system. We set the Fermi

momentum as pF = 20.0 to see both shift of Fermi sphere and pair-production by the

applied electric field.

First, the evolution of chirality imbalance of massless fermion (m/me = 0) is inves-

tigated. As like the case of Dirac vaccum, the evolution of chirality imbalance in the

smooth-box type electric field (E/m2
e = 2.0, τme = 0.5, Tme = 20.0) is shown by Fig.21

, which the contribution from shift of Fermi sphere, nf.s.5 , and pair-production, np.p.5 , are
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FIG. 19. Time-integrated anomaly relation for massive fermion in the vacuum (pF /me = 0).

Vector potential (dotted line), time-integrated pseudoscalar condensation (dashed line), the sum

of these (dash-dot line), and chirality imbalance (solid line) are shown. Chirality imbalance and

time-integrated pseudoscalar condensation are normalized by eB/4π2. It is shown that time-

integrated anomaly relation, n5 = 2m
∫
dt′η − (e2/2π2)BA(t), is satisfied.

shown separately. In fact, the evolution of total chirality imbalance is completely same

as the case of the zero Fermi energy system, but the mechanism of evolution of chirality

imbalance is different as follows. Immediately after electric field is applied, the production

of chirality imbalance occurs as like the vacuum, but the origin is the shift of Fermi sphere,

nf.s.5 , not pair-production, np.p.5 . At near t = 0, which is the time when the vector potential

equals the Fermi momentum, the contribution from the shift of Fermi sphere becomes con-

stant, and instead, the contribution from pair-production, np.p.5 , begins to increase. After

the electric field vanished, as like the case of the zero Fermi energy system, the production

of chirality imbalance stops and the chirality imbalance is kept at a non-zero value, which

is equal to −(e2/2π2)BA(t)|t=∞.,

As the same way, the evolution of chirality imbalance, n5, time-integrated pseudoscalar

condensation,
∫
dt′η(t′), and vector potential, eA(t), are shown in Fig.22. The time-

integrated anomaly relation of massless fermion (124) is satisfied even in Fermi vaccum.

The schematic illustration of the shift of Fermi sphere and pair-production, and the
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(d) t = 20 (after turned off the electric field)

FIG. 20. Schematic illustration of dispersion relation (Dirac sea picuture) and the momentum

distribution of pair-created massive fermions in the vacuum at t = −20,−5, 5, 20.
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momentum distribution of Fermi sphere and pair-producted particles at specific time t =

−15,−5, 5, 20 are shown by Fig.23. Before the application of the electric field (t = −15),

the Fermi sphere on the vacuum of massless fermions is realized (Fig.23-a). Chirality

imbalance does not exist because the Fermi sphere is symmetric according to momentum.

Immediately after the application of the electric field (t = −5), all fermions occupied in

the vacuum and the Fermi sphere are moved by the applied electric field (Fig.23-b). In

this time region, the transition from negative to positive energy does not occur until the

Fermi surface reachs the Dirac point (t = 0) because fermions are already occupied in

positive energy levels. As soon as the Fermi surface go over the Dirac point (t = 5), the

transition from negative to positive energy start to occur (Fig.23-c). After the electric

field turned off (t = 20), just like the case of the zero Fermi energy system, the transition

and acceleration by the electric field stop, so the shift of Fermi sphere and spreading the

momentum distribution also stop(Fig.23-d).

In the massless case, there is no distinction between the vacuum and the finite Fermi

energy system in terms of the production of net chirality imbalance. In the case of massive

fermions, however, the zero Fermi energy system and the finite Fermi energy one can be

distinguished, as will be shown in the next section.

B. massive fermion in finite Fermi energy system

Finally, we investigate the case of massive fermions in finite Fermi energy system. As

in previous discussions, we set the Fermi momentum as pF /me = 20.0 and the parameter

of smooth-box type electric field as E/m2
e = 2.0, τme = 0.5, Tme = 20.0 .

The evolution of chirality imbalance of massive fermions in the smooth-box type electric

field is shown by Fig.24, which the contribution from shift of Fermi sphere, nf.s.5 , and pair-

production, np.p.5 , are shown separately. Immediately after electric field is applied, the

production of chirality imbalance occurs, which comes from the shift of Fermi sphere,

nf.s.5 , not pair-production, np.p.5 , as like the case of massless fermions in finite Fermi energy

system. At near t = 0, which is the time when the Fermi surface reachs the Dirac

point, the contribution from the shift of Fermi sphere becomes constant, and instead, the

contribution from pair-production, np.p.5 , begins to increase. Unlike the case of massless
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FIG. 21. Evolution of chirality imbalance for massless fermions in the finite Fermi energy system

(pF = 20.0). The chirality imbalance produced by the shift of Fermi sphere (dashed line), by pair-

production (dash-dot line), the total chirality imbalance (solid line) and vector potential (dotted

line) are shown.
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FIG. 22. Time-integrated anomaly relation for massless fermion in the finite Fermi energy system

(pF /me = 20.0). Vector potential(dotted line), time-integrated pseudoscalar condensation(dashed

line), the sum of these(dash-dot line), and chirality imbalance(solid line) are shown. Chirality im-

balance and pseudoscalar condensation are normalized by eB/4π2. It is shown that time-integrated

anomaly relation, n5 = −(e2/2π2)BA(t), is satisfied even in finite Fermi energy system.
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FIG. 23. Schematic illustration of dispersion relation (Dirac sea picuture), and the momentum

distribution of Fermi sphere and pair-created massless fermions at t = −15,−5, 5, 20
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fermions in finite Fermi energy system, the time variation of chirality imbalance becomes

more gradual. After the electric field vanished, the production of chirality imbalance

stops and the chirality imbalance is kept at a non-zero value and the oscillation came

from interference is observed as like the case of massive fermions in the zero Fermi energy

system.

The anomaly relation for massive fermoins is satisfied even in finite Fermi energy sys-

tem, it is shown by Fig.25. The production of time-integrated pseudoscalar condensation

occurs after the Fermi surface went over the Dirac point as like the increase of np.p.5 . This

implies that the mass effect in the anomaly relation comes only the contribution from

pair-productions.

To investigate the microscopic behavior of the evolution of chirality imbalance, we

show the schematic illustration of the shift of Fermi sphere and pair-production, and the

momentum distribution of Fermi sphere and pair-producted particles in Fig.26. Before the

application of the electric field (t = −15), the Fermi sphere of massless fermions is realized

(Fig.26-a). Chirality imbalance does not exist because the momentum distribution of

Fermi sphere is symmetric. Immediately after the application of the electric field (t = −5),

the shift of Fermi sphere occurs as like finite Fermi energy system. Until t = 0, which

is the time when Fermi surface reachs the Dirac point (or equivalently vector potential

equals the Fermi momentum), pair-productions by the electric field does not occur because

of Pauli blocking (Fig.26-b). After the Fermi surface go over the Dirac point (t = 5),

pair-productions by the electric field start to occur and the pair-producted fermions is

accelerated (Fig.26-c). After the electric field turned off, just like the case of the zero

Fermi energy system, pair-productions and acceleration by the electric field cease (Fig.26-

d).

In massless case, the slope of the time variation of nf.s.5 and np.p.5 is equal, that is, the

total chirality imbalance, ntotal5 , is completely equal to the vector potential. In the massive

case, however, the production of chirality imbalance from the shift of Fermi sphere and

pair-production is distinguishable by the slope of the time variation.
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FIG. 24. Evolution of chirality imbalance for massive fermions in finite Fermi energy system

(pF = 20.0). The chirality imbalance by the shift of Fermi sphere (dashed line), chirality imbalance

by pair-production(dash-dot line), the total chirality imbalance (solid line) and vector potential

(dotted line) are shown.
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FIG. 25. Time-integrated anomaly relation for massive fermion in the finite Fermi energy system

(pF /me = 20.0). Vector potential(dotted line), time-integrated pseudoscalar condensation(dashed

line), the sum of these(dash-dot line), and chirality imbalance(solid line) are shown. Chirality im-

balance and pseudoscalar condensation are normalized by eB/4π2. It is shown that time-integrated

anomaly relation, n5 = 2m
∫
dt′η− (e2/2π2)BA(t), is satisfied even in finite Fermi energy system.
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FIG. 26. Schematic illustration of dispersion relation ((Dirac sea picuture)), and the momentum

distribution of Fermi sphere and pair-created massive fermions at t = −15,−5, 5, 20
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X. CONCLUSIONS

Recently, anomalous transport phenomena, such as chiral magnetic effct or chiral sepa-

ration effect, are investigated by using various theoretical approachs. The relation between

chiral anomaly and Schwinger pair-production is also interested. So we investigate vector

current and axial-vector current in a parallel electric field and magnetic field with non-zero

total particle number by solving the Dirac equation in homogeneous time-dependent elec-

tric field and time-independent magnetic field. The fermionic field operator is expanded

by the solutions of Dirac equation and the vacuum state and finite Fermi energy system

are constructed. The expectation values of vector and axial-vector current are calculated

in gauge invariant way by using the point-split regularization. Under a strong magnetic

field, chirality imbalance is equal to electric current except the sign, since the production

of electric current contributed from higher Landau levels are strongly suppressed. This is

the chiral magnetic effect in this framework.

To see the relation between chiral imbalance and Schwinger pair-production, we in-

troduce the instantaneous modes and Bogoliubov coefficients to describe the expectation

values by the momentum distribution of pair-created particles. The expectation values

of the Hamiltonian can be described separately by Dirac vaccum, Fermi sphere and pair-

production contributions taking into accout the acceleration by an applied electric field.

It is shown that pair-productions does not occur inside the Fermi sphere due to Pauli

blocking.

Chirality imbalance and electric current can be evolved by an applied electric field in

the strong electric field. The production of chirality imbalance (or electric current) can be

separated into the contribution by the shift of Fermi sphere and pair-production taking

into acccount Pauli blocking. We set smooth-box type as the applied electric field and

calculate the evolution of chirality imbalance and the momentum distribution of pair-

producted fermions by solving the time-dependent part of Dirac equation numerically. In

a smooth-box type electric field, immediately after applying the electric field, the shift of

Fermi sphere occur and contribute to the net chirality imbalance. The pair-production

can occur dominantly only after the Fermi surface went over the Dirac point. Chirality

imbalance is kept at non-zero values even after the electric field turned off. If fermions
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are massive, the oscillation originated the interference between non-pair-created state and

pair-created state is observed. In the massless case, the production of chirality imbalance

from the shift of Fermi sphere and pair-production are completely same. In the massive

case, however, these are distinguishable by the slope of the time variation.

Chirality imbalance is evolved with satisfying anomaly relation but the evolution of

mass term is non-trivial. So we investigate the time-integrated pseudoscalar condensation

as fermion mass effect. If the strength of electric field is comparable to the fermion

mass, the time-integrated pseudoscalar condensation significantly contribute to the time-

integrared anomaly relation since fermions need to cross the mass gap and the production

rate is always smaller than the massless case.

In contrary to chirality imbalance and electric current, total number density and spin

are time-independent even if any electric fields exist, in other words, these are conserved

quantity. If the magnetic field is greater than Fermi momentum, spin expectation value

is equal to total number density except the sign. It seems that this is the chiral magnetic

effect in this framework but the spin expectation value, s3, does not appear to be generated

by the anomaly effect because the spin expectation value exists even before a electric field

applied.

This study is significant in that it clarifies the microscopic and nonequilibrium nature

of chiral transport phenomena.
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Appendix A: Anomaly relation

In this section, we will proof the anomaly relation (77). Before discussed the time-

derivative of chirality imbalance, we prepare the transformation from the two-component

equation to Bloch equation. The two-component equation (30) can be transformed to

Bloch equation without relaxation terms as below,

∂tsn,kz = 2hn,kz × sn,kz (A1)

where sn,kz is the Bloch’s vector and its i-th component is defined by s
(i)
n,kz

= ϕ†n,kzσ
iϕn,kz .

Note that the continuum limit kz = 2πnz/Lz → kz has been taken. The equation (A1) is

explicitly written by

∂t


s
(1)
n,kz

s
(2)
n,kz

s
(3)
n,kz

 =


0 −(kz − eA(t)) 0

kz − eA(t) 0 −
√
m2 + 2|eB|n

0
√
m2 + 2|eB|n 0



s
(1)
n,kz

s
(2)
n,kz

s
(3)
n,kz

 (A2)

By using the Bloch’s vector, the regularized chirality imbalance and pseudoscalar conden-

sation become

n5 =
eB

2π

∫ Λ−eA(t)

−Λ+eA(t)

dkz
2π

s
(3)
0,kz

(t)θ(|kz| − pF ), (A3)

η =
eB

2π

∫ Λ−eA(t)

−Λ+eA(t)

dkz
2π

s
(2)
0,kz

(t)θ(|kz| − pF ). (A4)

Next, we consider the time-derivative of regularized chirality imbalance (A3),

n5(t+∆t) =
eB

2π

∫ Λ−eA(t+∆t)

−Λ+eA(t+∆t)

dkz
2π

s
(3)
n,kz

(t+∆t)θ(|kz| − pF ) (A5)

=
eB

2π

∫ Λ−eA(t)−eȦ(t)∆t

−Λ+eA(t)+eȦ(t)∆t

dkz
2π

[s
(3)
n,kz

(t) + ṡ
(3)
n,kz

(t)∆t]θ(|kz| − pF ) (A6)

where we use Taylor expansion for eA(t +∆t) and s
(3)
n,kz

(t +∆t) in the last equality. By
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using (A1) and dividing the integral interval,

n5(t+∆t) =
eB

2π

∫ Λ−eA(t)

−Λ+eA(t)

dkz
2π

[s
(3)
n,kz

(t) + 2ms
(2)
n,kz

(t)∆t]θ(|kz| − pF )

+
eB

2π

∫ Λ−eA(t)−eȦ(t)∆t

Λ−eA(t)

dkz
2π

[s
(3)
n,kz

(t) + 2ms
(2)
n,kz

(t)∆t]θ(|kz| − pF )

+
eB

2π

∫ −Λ+eA(t)

−Λ+eA(t)+eȦ(t)∆t

dkz
2π

[s
(3)
n,kz

(t) + 2ms
(2)
n,kz

(t)∆t]θ(|kz| − pF )

(A7)

The first term becomes n5(t) + 2mη(t)∆t, which is corresponding to the classical term.

The second and third term are the contribution from the edge of large momentum integral.

So we need to know the behavior of the integrand in the ultraviolet region. The initial

values of s
(3)
0,kz

(t), s
(2)
0,kz

(t) is easily obtained by (32) and (33),

lim
t→−∞

s
(3)
0,kz

(t) =
kz

m2 + k2z
(A8)

lim
t→−∞

s
(2)
0,kz

(t) = 0 (A9)

This is the relativestic velocity of fermions in the lowest Landau level. This implies that

the integrand in the ultraviolet region becomes

lim
kz→±∞

s
(3)
0,kz

(t) → ±1, lim
kz→±∞

s
(2)
0,kz

(t) → 0 (A10)

for an arbitrary time since the modes in the ultraviolet region are hardly affected by an

applied electric field. By taking the momentum cut-off, which is sufficiently larger than

the Fermi momentum and the parameters of electric field such as typical time-scale and

strength, the contribution from the edge of large momentum integral becomes

n5(t+∆t) = n5(t) + 2mη(t)∆t

+
eB

4π2
(−eȦ(t)∆t)(+1) +

eB

4π
eȦ(t)∆t)(−1) (A11)

So we can obtain

n5(t+∆t)− n5(t)

∆t
= +2mη(t) +

eB

2π2
eE(t) (A12)
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By taking limit ∆t → 0, the anomaly relaion is obtained. The anomaly relation for

massless fermion can be proved in the same way.
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