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Chapter 1

Introduction

This thesis is based on [AH] and [AHMW].

Tilting theory was introduced by Brenner–Butler [BB] to compare the structure of

two module categories, and was developed by Keller and Rickard to study the equiv-

alence of derived categories [K, Ric1]. In tilting theory, tilting objects play a cen-

tral role because tilting objects control the derived equivalence and the t-structure.

Hence, several authors have studied tilting mutation to obtain many tilting objects

[HU, O, Ric2, RS]. Tilting mutation is an operation to replace some direct summands

of a given tilting objects to get a new one, but unfortunately some assumptions are

required. Assumptions were taken away by extending tilting objects to silting objects,

that is, silting mutation is always possible [AI].

Silting objects were introduced for the study of t-structures [HKM, KV]. In fact,

Koenig and Yang [KY] constructed a bijection among (1) silting objects, (2) simple-

minded collections, (3) co-t-structures and (4) t-structures with length heart .

One of the most crucial purposes in my research is to clarify the whole picture of

silting objects. To realize the goal, we first discuss when a triangulated category is

silting-discrete. Silting-discreteness is a finiteness condition, namely, a silting-discrete

triangulated category admits only finitely many silting objects in any interval of silting

objects [Ai1]. Actually, the set of silting objects has a poset structure [AI]. In the

case, we can fully grasp the whole picture of silting objects, and such a triangulated

category has so nice structure [AMY, PMZ]. To check if a given triangulated cate-

gory is silting-discrete, an extremely powerful tool was introduced, and it is applied

to the perfect derived category of a finite dimensional algebra over a field; we know

several algebras with silting-discrete perfect derived categories, say silting-discrete al-

gebras [AAC, AK, Ai1, AM, AD, EJR]. Typical examples of silting-discrete algebras

are piecewise hereditary algebras of Dynkin type and representation-finite symmetric

algebras.

On the other hand, we focus on two-term silting objects to grasp the structure

of silting objects. Two-term silting objects correspond bijectively to support τ -tilting

modules by taking 0-th cohomology and they play an important role in representation
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theory of module categories. In particular, we can obtain all support τ -tilting modules

when the set of isomorphism classes of basic support τ -tilting modules is a finite set,

that is, an algebra is τ -tilting finite. So our aim is to understand the structure of

silting objects, we will classify silting-discrete triangulated categories and τ -tilting finite

algebras.

The thesis is organized as follows: In Chapter 2, we discuss two subjects on the

finiteness of silting objects. First, we discuss the most special case of silting-discrete

triangulated categories that is the number of silting objects is zero. For example,

the bounded derived category Db(modΛ) over a finite dimensional algebra Λ has no

non-zero silting object if and only if Λ has infinite global dimension. When Λ is non-

semisimple selfinjective, its stable module category modΛ admits no silting object (see

[AI]). Inspired by these two cases, we ask if the singularity category Dsg(Λ) of Λ has no

non-zero silting object. We give the following theorem as an answer to this question.

Theorem 1 (Theorem 2.1 and Corollary 2.3). Dsg(Λ) admits no non-zero silting object

if inj.dim ΛΛ < ∞. In particular, the stable category of the Cohen–Macaulay category

over an Iwanaga–Gorenstein algebra has no non-zero silting object.

Next we construct a new silting-discrete algebra from a given one. We denote

by siltΛ the set of isomorphism classes of basic silting objects of the perfect derived

category for Λ. The following is the second main theorem.

Theorem 2 (Theorem 2.4). Let R be a finite dimensional local K-algebra and put

Γ := R⊗K Λ. If Λ is silting-discrete, then we have a poset isomorphism siltΛ → siltΓ.

In particular, Γ is also silting-discrete.

As an example of Theorem 2, the n × n (upper) triangular matrix algebra Tn(R)

over a local algebra R is actually isomorphic to R ⊗K K
−→
An. So, we get a corollary of

this theorem (Proposition 3.6(1)).

In the context of triangular matrix algebras Tn(Λ) over an algebra Λ (not necessarily

local), it seems to be difficult to understand when Tn(Λ) is silting-discrete. In Chapter 3,

let us turn our attention to two-term silting objects, that is, support τ -tilting modules.

As an analogue of Auslander–Reiten’s results in [AR], we have the following theorem.

Theorem 3 (Theorem 3.1). Assume that Λ is representation-finite. Then we have:

(1) If the Auslander algebra of Λ is τ -tilting finite, then so is T2(Λ).

(2) If Λ is simply-connected, then the converse of (1) holds.

We give sufficient conditions for algebras to be τ -tilting infinite. In particular, the

converse of Theorem 3(1) is not necessarily true (see Example 3.4) . Moreover, we

classify algebras Λ with Tn(Λ) τ -tilting finite.
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Theorem 4 (Theorem 3.8 and Theorem 3.10). Let Λ be a finite dimensional nonlocal

algebra over an algebraically closed field whose Gabriel quiver has no loop and n ≥ 3.

Then the following are equivalent:

(1) Tn(Λ) is τ -tilting finite;

(2) One of the following cases holds:

(a) n = 4 and Λ is the path algebra of type A2;

(b) n = 3 and Λ is a Nakayama algebra with precisely 2 simple modules;

(c) n = 3 and Λ is a Nakayama algebra with radical square zero.

This theorem tells us the fact that for a simply-connected algebra Λ and n ≥ 3,

Tn(Λ) is τ -tilting finite if and only if it is representation-finite (Corollary 3.11).

In Chapter 4, we give two new classes of τ -tilting finite algebras. One is the class of

weakly symmetric algebras of tubular type with non-singular Cartan matrix [BS1, BHS].

The other is the class of non-standard selfinjective algebras which are socle equivalent to

selfinjective algebras of tubular type [BS2, BHS]. Here is the main theorem of Chapter

4. See Figures 4.1 and 4.2 for the notation of Ai’s and Λi’s.

Theorem 5 (Theorem 4.1, Corollary 4.2 and Theorem 4.3). (1) Any weakly sym-

metric algebra Ai of tubular type with non-singular Cartan matrix is τ -tilting

finite. In particular, we have the number of support τ -tilting modules:

A1(λ) A2(λ) A3 A4 A5 A6 A7 A8

24 6 192 132 8 8 108 100

A9 A10 A11 A12 A13 A14 A15 A16

108 116 100 32 28 32 30 30

(2) Non-standard selfinjective algebras Λ1, . . . ,Λ9 (without Λ10) which is socle equiv-

alent to a selfinjective algebra of tubular type are τ -tilting finite. In particular, we

have the number of support τ -tilting modules:

Λ1 Λ2 Λ3(λ) Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10

8 8 6 32 28 32 30 30 192 ≥ 500

(3) Every algebra as in (1) and (2) (without Λ10) is tilting-discrete.

In Chapter 5, we discuss when τ -tilting finiteness implies representation-finiteness.

This is a natural question because a representation-finite algebra is τ -tilting finite but
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the converse does not necessarily hold. A typical example is the hereditary case; that is,

τ -tilting finite hereditary algebras are representation-finite. For more examples, it was

proved that τ -tilting finite cycle-finite algebras are representation-finite [MS]. Recently,

the gentle case was verified; τ -tilting finite gentle algebras are representation-finite [P].

Now, we give new classes of algebras which satisfy this property.

Theorem 6 (Corollary 5.2, 5.3, Theorem 5.8 and 5.11). The following algebras are

representation-finite if they are τ -tilting finite:

(1) quasitilted algebras;

(2) algebras satisfying the separation condition;

(3) the trivial extensions of tree quiver algebras with radical square zero;

(4) locally hereditary algebras.

Throughout this paper, algebras are always assumed to be finite dimensional over

an algebraically closed field K. Modules are finite dimensional and right modules. For

an algebra Λ, we denote by modΛ (projΛ) the category of (projective) modules over Λ.

The perfect derived category of Λ is denoted by Kb(projΛ).



Chapter 2

The finiteness of silting objects

In this chapter, we consider the existence and the finiteness of silting objects. First,

we consider a triangulated category which has no non-zero silting object in Section 2.1.

And in Section 2.2, we construct a new silting-discrete algebra from a given silting-

discrete algebra.

Throughout this chapter, T denotes a Krull–Schmidt triangulated category which

is K-linear and Hom-finite. For example, it is the bounded derived category Db(modΛ)

or the perfect derived category Kb(projΛ) over an algebra Λ.

Let us recall the definition of silting objects of T . We say that an object T is silting

if it satisfies HomT (T, T [i]) = 0 for any i > 0 and T = thickT . Here, thickT stands

for the smallest thick subcategory of T containing T . It is known that the set silt T of

isomorphism classes of basic silting objects of T has a partial order ≥ and actions µ±

of silting mutation; see [AI] for details.

2.1. The existence of silting objects

In this section, we explore when a triangulated category has no silting object. A

typical example of silting objects is the stalk complex Λ (and its shifts) in Kb(projΛ). If

we can find even one silting object, silting mutation produces infinitely many ones [AI].

However, we know triangulated categories with no silting object [AI, Example 2.5].

Let Λ be an algebra. We denote by Dsg(Λ) the singularity category of Λ; that is,

it is the Verdier quotient of Db(modΛ) by Kb(projΛ). Here is the main result of this

section.

Theorem 2.1. Dsg(Λ) has no non-zero silting object if inj.dim ΛΛ < ∞.

To prove this theorem, silting reduction [AI, IY] plays a crucial role.

In the rest, fix a presilting object T of T and define a subset siltT T of silt T by

siltT T := {P ∈ silt T | T is a direct summand of P}.

Moreover, one puts S := thickT . The Verdier quotient of T by S is denoted by T /S.

Then, silting reduction [IY, Theorem 3.7] says:

5
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Theorem 2.2. [IY, Theorem 3.7] The canonical functor T → T /S induces a bijection

siltT T → silt T /S if any object X of T satisfies HomT (T,X[ℓ]) = 0 = HomT (X,T [ℓ])

for ℓ ≫ 0.

For example, this is the case where T has a silting object [AI, Proposition 2.4].

Now, we are ready to show our main theorem of this section.

Proof of Theorem 2.1. We will apply silting reduction to T = Db(modΛ) and T = Λ;

in this setting, S = thickΛ = Kb(projΛ) and T /S = Dsg(Λ). To do that, we check that

the conditions HomT (Λ, X[ℓ]) = 0 = HomT (X,Λ[ℓ]) are satisfied for any object X and

ℓ ≫ 0. The first equality holds evidently. Let us show that the second equality holds

true. Since Λ has finite right selfinjective dimension, it can be regarded as a complex in

Kb(injΛ), which is obtained by applying the Nakayama functor ν := −⊗L
Λ DΛ to some

complex P in Kb(projΛ). Then we get isomorphisms

HomT (X,Λ[ℓ]) ≃ HomKb(modΛ)(X, νP [ℓ]) ≃ D HomKb(modΛ)(P [ℓ], X).

As the complex X is bounded, the last above is zero for sufficiently large ℓ. Thus,

silting reduction brings us a bijection siltΛD
b(modΛ) → silt Dsg(Λ). It follows from [AI,

Example 2.5(1)] that the LHS of the bijection is {Λ} if Λ has finite global dimension,

and is otherwise empty. Hence, we conclude that Dsg(Λ) admits no non-zero silting

object.

An algebra Λ is said to be Iwanaga–Gorenstein if it has finite right and left selfinjec-

tive dimension. In that case, the singularity category Dsg(Λ) is triangle equivalent to the

stable category CMΛ of the full subcategory of modΛ consisting of Cohen–Macaulay

modules M ; i.e. ExtiΛ(M,Λ) = 0 for i > 0. So, we immediately obtain the following

corollary.

Corollary 2.3. CMΛ has no non-zero silting object if Λ is Iwanaga–Gorenstein.

2.2. A new example of silting-discrete algebras

In this section, we give a new construction of silting-discrete algebras.

A triangulated category T is said to be silting-discrete if it admits a silting object

T , and for any n > 0 there are only finitely many (basic) silting objects U satisfying

T ≥ U ≥ T [n]. We obtain from [Ai1, Corollary 3.9] that if T is silting-discrete, then

the Hasse quiver of the poset silt T is connected; namely, it is silting-connected.

When T = Kb(projΛ) for an algebra Λ, we write silt T by siltΛ and say that Λ is

silting-discrete if T is silting-discrete. The following theorem gives us a new way of

constructing the silting-discrete algebra.

Theorem 2.4. Let R be a local algebra and Λ a silting-discrete algebra. Put Γ :=

R ⊗K Λ. Then we have a poset isomorphism siltΛ → siltΓ. In particular, Γ is also

silting-discrete.
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Proof. Let us consider the triangle functor − ⊗K R : Kb(projΛ) → Kb(projΓ). Then

we have an isomorphism HomKb(projΓ)(X ⊗K R, Y ⊗K R) ≃ HomKb(projΛ)(X,Y ) ⊗K R;

see [Zim] for example. This leads to the fact that −⊗K R keeps the indecomposability

of objects; in fact, if E is a local algebra, then so is E ⊗K R since K is algebraically

closed. We also observe that −⊗K R induces an injection siltΛ → siltΓ preserving the

partial order.

We show that − ⊗K R preserves approximations. Let Y be a full subcategory of

Kb(projΛ) and f : X → Y be a left Y-approximation of X in Kb(projΛ). For an object

Z of Y , the above isomorphism makes a commutative diagram:

HomKb(projΓ)(Y ⊗K R,Z ⊗K R)
−◦(f⊗R) //

≃
��

HomKb(projΓ)(X ⊗K R,Z ⊗K R)

≃
��

HomKb(projΛ)(Y, Z) ⊗K R
(−◦f)⊗R

// HomKb(projΛ)(X,Z) ⊗K R

Since − ◦ f is surjective and − ⊗ R is (right) exact, we see that the two horizontal

arrows are surjections, whence f ⊗R is a left Y ⊗K R approximation of X ⊗K R.

Thus, it turns out that any arrow in siltΛ is also an arrow in siltΓ under the injection

− ⊗K R : siltΛ → siltΓ. Conversely, we obtain that all paths from/to Γ in siltΓ come

from those from/to Λ in siltΛ, because Kb(projΛ) and Kb(projΓ) have the same rank of

the Grothendieck group.

Assume that there is a silting object U of Kb(projΓ) with Γ ≥ U which is out of the

image of the functor −⊗KR. By [AI, Proposition 2.36], we have a path Γ =: U0 → U1 →
· · · → Uℓ → · · · in siltΓ with Ui ≥ U for any i, which admits an infinite length, contrary

to the assumption of Λ being silting-discrete. Therefore, all silting objects of Kb(projΓ)

smaller than Γ come from those of Λ. Then, we derive from [AM, Theorem 2.4] that

Γ is silting-discrete. Moreover, one obtains that the map − ⊗K R : siltΛ → siltΓ is a

bijection.

Finally, we see that the following are equivalent for any T, U ∈ siltΛ:

(i) T ≥ U ;

(ii) there exists a path of finite length from T to U ;

(iii) there is a path of finite length from T ⊗K R to U ⊗K R;

(iv) T ⊗K R ≥ U ⊗K R.

This implies that the map −⊗K R is a poset isomorphism.

We apply Theorem 2.4 to trivial extension algebras. The trivial extension of an

algebra Λ by a (Λ,Λ)-bimodule M is defined to be Λ⊕M as a (Λ,Λ)-bimodule in which

the composition of elements (a,m) and (b, n) is given by (a,m) · (b, n) := (ab, an+mb).

Since the trivial extension of Λ by itself is isomorphic to K[x]/(x2)⊗KΛ, we immediately

obtain the following corollary from Theorem 2.4.
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Corollary 2.5. The trivial extension of Λ by itself is silting-discrete if Λ is so.

Remark 2.6. The trivial extension of Λ by its K-dual is often called the trivial ex-

tension of Λ. Applying it frequently destroys the silting-discreteness of algebras. For

instance, the algebra given by the quiver • // •oo with radical square zero is silting-

discrete, but its trivial extension is neither silting-discrete nor even silting-connected

[AGI].

We give a slight generalization of [EJR, Theorem 15].

Corollary 2.7. Let p be the characteristic of K and suppose p ̸= 0. Then every p-group

is contained in the defect group of a nonlocal silting-discrete block of a group algebra.

Proof. Let P be a p-group and G a finite group. Let Λ be a block of the group algebra

KG with defect group D. As is well-known, KP is a local algebra and KP ⊗K Λ is

a block of the group algebra K[P × G] whose defect group is P ×D. Thus, we apply

Theorem 2.4 to get the desired block; for example, if D is cyclic, dihedral, semidihedral

or quaternion, then Λ is silting-discrete, whence so is KP ⊗K Λ.



Chapter 3

τ-tilting finite triangular matrix

algebras

In this chapter, we discuss the τ -tilting finiteness of triangular matrix algebras. First,

we modify the representation-finiteness of second triangular matrix algebras in [AR] to

the τ -tilting finiteness in Section 3.1. Next, we classify τ -tilting finite triangular matrix

algebras Tn(Λ) (n ≥ 3) in Section 3.2.

We start with recalling important facts on τ -tilting finite algebras. We call a module

M over Λ a support τ -tilting module provided it is the 0th cohomology of a silting object

T in Kb(projΛ) with T i = 0 unless i = 0,−1 (see [AIR] for more details). Our interest

in this paper is when an algebra Λ has only finitely many support τ -tilting modules;

so-called, Λ is τ -tilting finite. Evidently, if Λ is silting-discrete, then it is τ -tilting finite.

We also know that any factor algebra of a τ -tilting finite algebra is also τ -tilting finite

[DIRRT, Theorem 5.12(d)]. A module M is said to be brick if EndΛ(M) is isomorphic

to K. It was shown that Λ is τ -tilting finite iff there are only finitely many bricks of Λ

[DIJ, Theorem 4.2].

3.1. Second triangular matrix algebras

The first aim of this section is to develop the Auslander–Reiten’s results in [AR] to

the τ -tilting finiteness.

A main algebra we study here is the n× n upper triangular matrix algebra Tn(Λ),

which is isomorphic to Λ ⊗K K
−→
An. Here,

−→
An denotes the linearly oriented An-quiver

1 // 2 // · · · // n . As is well-known, we can identify the category modT2(Λ)

with the category of homomorphisms in modΛ; that is, the objects are triples (M,N, f)

of Λ-modules M,N and a Λ-homomorphism f : M → N . A morphism (M1, N1, f1) →
(M2, N2, f2) is a pair (α, β) of Λ-homomorphisms α : M1 → M2 and β : N1 → N2

satisfying f2 ◦ α = β ◦ f1.
For an additive category C, we denote by mod C the full subcategory of the functor

category of C consisting of finitely generated functors.

9
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Inspired by [AR, Theorem 1.1], we have the second main result of this paper.

Theorem 3.1. Assume that Λ is representation-finite. Then the following hold:

(1) If the Auslander algebra of Λ is τ -tilting finite, then so is T2(Λ).

(2) If Λ is simply-connected, then T2(Λ) is τ -tilting finite if and only if it is

representation-finite. In particular, the converse of (1) holds.

Proof. Let us first recall an argument in [AR, Theorem 1.1]. It was shown that the func-

tor Φ : modT2(Λ) → mod(modΛ) sending (M,N, f) to Coker HomΛ(−, f) is full and

dense. Denote by D the full subcategory of modT2(Λ) consisting of modules without

indecomposable summands of the forms (M,M, id) and (M, 0, 0), where M is an inde-

composable module over Λ. Then the restriction of Φ is full and dense (not faithful!),

and a morphism σ in D with Φ(σ) isomorphic is an isomorphism.

We show the assertion (1) holds true. As above, any brick over T2(Λ) lying in D is

sent to some brick in mod(modΛ) by the functor Φ and the correspondence is objectively

injective. Therefore, T2(Λ) inherits the finiteness of bricks from the Auslander algebra

of Λ, whence the assertion follows from [DIJ, Theorem 4.2].

To prove the assertion (2), we assume that Λ is simply-connected and T2(Λ) is

τ -tilting finite. Then, T2(Λ) does not contain a finite convex subcategory which is

concealed of extended Dynkin type. The simple-connectedness of Λ (i.e. Λ̃ = Λ in

the sense of [LS1]) implies that T2(Λ) is representation-finite by [LS1, Theorem 4].

Moreover, we deduce from [AR, Theorem 1.1] that the Auslander algebra of Λ is also

representation-finite, and so it is τ -tilting finite.

Let Λ be an algebra whose Gabriel quiver is Q. The separated quiver Qsp of Λ is

defined as follows: The set of vertices consists of the vertices i1, · · · , in of Q and their

copies i′1, · · · , i′n; we say that i and i′ are the same character. We draw an arrow i → k

if i is a vertex of Q, k = j′ for some vertex j of Q and if there is an arrow i → j in Q

(see [ARS]). Observing the separated quiver, we can infer the representation-finiteness

and τ -tilting finiteness of a radical-square-zero algebra [ARS, A1]; we use their results

freely.

We know from [AR, Proposition 3.1] that if the separated quiver of an algebra Λ has

a connected component which is not of type An, then T2(Λ) is representation-infinite.

Here is a modification to τ -tilting finiteness.

Theorem 3.2. Let Λ be an algebra given by a quiver without loop. If the separated

quiver of Λ has a connected component which is not of type An, then T2(Λ) is τ -tilting

infinite.

Proof. Let C be a connected component of the separated quiver of Λ.

Suppose that C is of type Ãn. If all vertices of C have distinct characters from each

other, then Λ is τ -tilting infinite by Adachi’s theorem [A1, Theorem 3.1]. If C admits



11

the same character i and i′, then the vertex i of the (Gabriel) quiver Q of Λ is a source

of precisely two arrows and a sink of exactly two arrows, which leads to the fact that

the separated quiver of T2(Λ) contains a subquiver of type D̃5 with distinct characters.

Hence, it turns out that T2(Λ)/ radT2(Λ), and so T2(Λ), are not τ -tilting finite.

Thus, we can assume that C is neither of type An nor of type Ãn. This means that

C has a vertex v of degree at least 3; it does not matter if v is the original or the copy

of a vertex of Q. We may suppose that Q possesses no multiple arrow. As Q admits

no loop, it is seen that the 4 points around v (including also v) are distinct characters

in C. Therefore, we obtain that the separated quiver of T2(Λ) contains the diagram of

type Ẽ6 whose vertices are distinct characters, whence T2(Λ) is not τ -tilting finite.

The converse of Theorem 3.2 does not necessarily hold.

Example 3.3 (See also Theorem 3.1(2)). Let Λ := K
−→
An. Observe that T2(Λ) is

the commutative ladder of degree n; see [AHMW, EH, LS1]. Then the following are

equivalent: (i) n ≤ 4; (ii) T2(Λ) is representation-finite; (iii) it is τ -tilting finite.

Combining this observation and Theorem 3.1(1), we recover [IX, Corollary 4.8];

that is, the following are equivalent: (i) n ≤ 4; (ii) the Auslander algebra of Λ is

representation-finite; (iii) it is τ -tilting finite.

We give an example which says that the converse of Theorem 3.1(1) does not neces-

sarily hold and that the assumption of Λ having no loop as in Theorem 3.2 is required.

Example 3.4. Let Λ be the radical-square-zero algebra presented by the quiver:

2 1
��

//oo 3

(i) The separated quiver of Λ consists of three connected components; one Dynkin

quiver of type D4 and two isolated points. So, Λ is representation-finite.

(ii) Let us show that T2(Λ) is τ -tilting finite. We consider the algebra A presented by

the quiver 2 1 //oo 3 . Since T2(A) is derived equivalent to the path algebra

of Dynkin type E6 [La], it is seen that T2(A) is silting-discrete. By Theorem 2.4,

we obtain that T2(A) ⊗K K[x]/(x2) is silting-discrete; in particular, it is τ -tilting

finite. As there is an algebra epimorphism T2(A) ⊗K K[x]/(x2) → T2(Λ), we

deduce that the target T2(Λ) is τ -tilting finite.

(iii) However, the Auslander algebra Γ of Λ is not τ -tilting finite. This is deduced by

observing the Auslander–Reiten quiver of Λ (it gives a quiver presentation of Γ):

•

��?
??

??
??

•

��?
??

??
??

•

��?
??

??
??

?'&%$ !"#• // •

? ?������� //

��?
??

??
??

• // •

??������� //

��?
??

??
??

• // '&%$ !"#•
•

??�������
•

??�������
•

??��������
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Here, the vertex '&%$ !"#• coincides. Factoring by an ideal, we find the factor algebra Γ1

of Γ presented by the quiver

•

��@
@@

@@
@@

•

??~~~~~~~

��@
@@

@@
@@

// • // •

•

??~~~~~~~

with a zero relation; the sum of the three paths of length 2 is zero. Truncating Γ1

by idempotents, we get the Kronecker algebra, which implies that Γ1, and so Γ,

are τ -tilting infinite.

3.2. Higher triangulated matrix algebras

In this section, we focus on the τ -tilting finiteness of T2
3(Λ) and Tn(Λ) (n > 2).

In the paper [AR], it was also discussed that the third triangular matrix algebra

T2
3(Λ) over an algebra Λ is not representation-finite [AR, Theorem 3.4]. To see this,

we consider the triangular matrix algebra T2
3(Λ/ rad Λ). It is because this is a fac-

tor algebra of T2
3(Λ), since T2(Λ)/I ≃ T2(Λ/ rad Λ). Here, I stands for the ideal(

rad Λ rad Λ

0 rad Λ

)
. As T2

3(Λ/ rad Λ) is the direct product of some copies of T2
3(K), the

next step is to observe T2
3(K). We see that T2

3(K) is presented by the quiver

1 //

����
��
��
�

��

2

����
��
��
�

��

3 //

��

4

��

5 //

��

6

����
��
��
�

7 // 8

whose separated quiver contains the connected component:

2

wwooo
ooo

ooo
ooo

oo

''OO
OOO

OOO
OOO

OOO

4′ 3oo // 7′ 5oo // 6′

This implies that T2
3(K)/ rad2 T2

3(K) is representation-infinite. Consequently, it turns

out that T2
3(Λ) is of infinite representation type.

We can apply this argument to obtain the following result.
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Proposition 3.5. (1) The triangular matrix algebra T2
3(Λ) is τ -tilting infinite.

(2) For nonlocal algebras Λ,Γ and Σ, Λ ⊗K Γ ⊗K Σ is τ -tilting infinite.

Proof. (1) Combine the argument above and Adachi’s theorem [A1, Theorem 3.1].

(2) By assumption, there is an algebra epimorphism from Λ⊗K Γ⊗K Σ to K
−→
A2 ⊗K

K
−→
A2 ⊗K K

−→
A2 ≃ T2

3(K). Then apply (1).

We expect that there is an upper bound of n such that the n× n triangular matrix

algebra over a nonsemisimple algebra is τ -tilting finite; cf. [LS1, Theorem 6.1].

Proposition 3.6. (1) Let n > 0. If Λ is local, then Tn(Λ) is silting-discrete. Hence,

it is τ -tilting finite.

(2) Assume that Λ is nonlocal. If Tn(Λ) is τ -tilting finite, then we have n ≤ 4.

Proof. (1) The algebra Tn(Λ) is isomorphic to Λ⊗KK
−→
An, and then apply Theorem 2.4.

(2) Let n ≥ 5. As Λ is nonlocal, we obtain algebra epimorphisms Tn(Λ) →
T5(K

−→
A2) ≃ T2(K

−→
A5). The target is not τ -tilting finite by Example 3.3, whence neither

is Tn(Λ).

In the rest of this section, we explore when Tn(Λ) is τ -tilting finite for n ≥ 3.

First, we treat radical-square-zero Nakayama algebras, which play a role in our goal.

Lemma 3.7. Let Λ be a nonlocal Nakayama algebra with radical square zero. If Λ ̸=
K
−→
A2, then T4(Λ) is τ -tilting infinite.

Proof. Assume that Λ is linear Nakayama with at least 3 simple modules. Since T4(Λ) is

strongly simply-connected and representation-infinite by [LS1, Theorem 6.2], we obtain

from [W, Theorem 2.6] that it is τ -tilting infinite.

If Λ is cyclic Nakayama with at least 3 simple modules, then there is an algebra

epimorphism Λ → Γ, which induces T4(Λ) → T4(Γ). Here, Γ := K
−→
A3/ rad2K

−→
A3. As

above, this implies that T4(Λ) is τ -tilting infinite.

We show that T4(Λ) is not τ -tilting finite if Λ is a radical-square-zero cyclic

Nakayama algebra with precisely 2 simple modules. Then one sees from the Happel–

Vossieck List [HV] that it has a tame concealed factor algebra of type Ẽ7 as follows:

• • //

��

• //

��

•

• //

OO

• // • •

OO

Hence, it turns out that T4(Λ) is not τ -tilting finite.

We solve the problem for the case that given algebras have at least 3 simple modules.
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Theorem 3.8. Let Λ be an algebra given by a quiver Q which has no loops and at least

3 vertices. Let n ≥ 3. Then the following are equivalent:

(1) Tn(Λ) is τ -tilting finite;

(2) It is representation-finite;

(3) n = 3 and Λ is a Nakayama algebra with radical square zero.

Proof. It is trivial that (2) implies (1). It follows from [LS1, Theorem 6.1] that the

implications (2)⇔(3) hold true.

We show that (1) implies (3). One may suppose that Q admits no multiple arrow.

Assume that Q has • • //oo • or • // • •oo as a subquiver. Then, we see

that there is an algebra epimorphism Tn(Λ) → T3(A), where A is the path algebra of

• • //oo • or • // • •oo . By the Happel–Vossieck List [HV], we observe

that a tame concealed algebra of type Ẽ7 appears as a factor algebra of T3(A), which

is τ -tilting infinite, and hence, so is Tn(Λ). Thus, we find out that Λ is a Nakayama

algebra. As a similar argument above, we deduce the fact that Q does not admit

• // • // • without zero relation, which implies that Λ has radical square zero.

Finally, apply Proposition 3.6(2) and Lemma 3.7 to get n = 3.

Let us turn to the case where a given algebra has precisely 2 simple modules. We

prepare a lemma to reduce the length.

Lemma 3.9. Let Λ be a cyclic Nakayama algebra with precisely 2 simple modules. Then

we have a poset isomorphism sτ -tiltTn(Λ) ≃ sτ -tiltTn(Λ/ rad2 Λ).

Proof. By assumption, Λ is given by the quiver 1
x // 2
y

oo . Then it is seen that z :=

xy + yx belongs to the center and the radical of Λ, whence zI is in those of Tn(Λ).

Here, I is the identity matrix. We observe that the factor algebra of Tn(Λ) by the ideal

generated by zI is isomorphic to Tn(Λ/ rad2 Λ), which completes the proof by [EJR,

Theorem 11].

Now, we totally realize our goal.

Theorem 3.10. Let Λ be an algebra whose quiver has precisely 2 vertices and no loops.

Let n ≥ 3. Then the following are equivalent:

(1) Tn(Λ) is τ -tilting finite;

(2) n = 3 and Λ is a Nakayama algebra, or n = 4 and Λ = K
−→
A2.

Proof. If Tn(Λ) is τ -tilting finite, then we observe that n ≤ 4 by Proposition 3.6(2), and

Λ is also τ -tilting finite. This implies that Λ has no multiple arrow, so it is a Nakayama

algebra.
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Let n = 4 and Λ ̸= K
−→
A2; so Λ is cyclic Nakayama. By Lemma 3.9, we can suppose

that Λ has radical square zero, but we then obtain from Lemma 3.7 that T2(Λ) is not

τ -tilting finite, contrary. Thus, if n = 4, then we have Λ = K
−→
A2.

Let us show that the implication (2)⇒(1) holds true. By Example 3.3, we have

only to check the case where n = 3 and Λ is cyclic Nakayama. From Lemma 3.9, one

obtains sτ -tiltT3(Λ) ≃ sτ -tiltT3(Λ/ rad2 Λ), which is a finite set because T3(Λ/ rad2 Λ)

is representation-finite by [LS1, Theorem 6.1]. Thus, we have done.

As a corollary of Theorems 3.8 and 3.10, we get the following.

Corollary 3.11. Let Λ be a simply-connected algebra and n ≥ 3. Then Tn(Λ) is τ -

tilting finite if and only if it is representation-finite.

Finally, we give a complete list of positive integers n and r such that Tn(Λ) is

silting-discrete for Λ := K
−→
Ar/ rad2K

−→
Ar.

Theorem 3.12. Let Λ be a radical-square-zero linear Nakayama algebra with r simple

modules. Then Tn(Λ) is silting-discrete if and only if one of the following cases occurs:

(i) n = 1; (ii) r = 1; (iii) n = 2 and 1 < r ≤ 4; (iv) 1 < n ≤ 4 and r = 2.

Proof. It is well-known that Λ is derived equivalent to K
−→
Ar, and so Tn(Λ) is derived

equivalent to Tn(K
−→
Ar), which is τ -tilting infinite if n ≥ 3 and r ≥ 3 by Theorem 3.8.

In the case, it is not silting-discrete.

We already know that Tn(K
−→
A2) ≃ T2(K

−→
An) is not silting-discrete for n ≥ 5; see

Example 3.3. For n = 1, 2, 3 and 4, we have the ADE-chain A2, D4, E6 and E8, respec-

tively. This means that Tn(K
−→
A2) is derived equivalent to the path algebra of each type

[La], which is silting-discrete. This completes the proof.



Chapter 4

The τ-tilting finiteness of

nondomestic polynomial growth

selfinjective algebras

In this chapter, we discuss τ -tilting finiteness of weakly symmetric algebras of tubular

type with non-singular Cartan matrix. First, we explore the τ -tilting finiteness of

these algebras in Section 4.1. Moreover, we determine the number of support τ -tilting

modules in Section 4.2.

4.1. The τ-tilting finiteness and the tilting-discreteness

Weakly symmetric algebras Ai of tubular type with non-singular Cartan matrix were

completely classified up to Morita equivalence by [BS1] as the next page (Figure 4.1).

The main theorem of this section is the following.

Theorem 4.1. Any weakly symmetric algebra of tubular type with non-singular Cartan

matrix is τ -tilting finite. In particular, we have the number of support τ -tilting modules:

A1(λ) A2(λ) A3 A4 A5 A6 A7 A8

24 6 192 132 8 8 108 100

A9 A10 A11 A12 A13 A14 A15 A16

108 116 100 32 28 32 30 30

Proof. We will proove the τ -tilting finiteness. Note that Ai is symmetric for all i but

i = 3 [BS1, Theorem 2]. Observe that the Cartan matrix of Ai has positive definite.

We then apply [EJR, Theorem 13] to deduce the conclusion that Ai is τ -tilting finite

for all i but i = 3. The algebra A3 is just the preprojective algebra of Dynkin type D4,

and so it is τ -tilting finite by [Mi, Theorem 2.21]. In Section 4.2, we will calculate the

numbers of support τ -tilting modules of Ai’s where Ai is in Figure 4.1.

16
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A1(λ) :

(λ ∈ K \ {0, 1})

1 2 3
α //
γ

oo
σ //
β

oo

αγα = ασβ
βγα = λβσβ
γαγ = σβγ
γασ = λσβσ

A2(λ) :

(λ ∈ K \ {0, 1})

1 2α
%%

β
yyσ //

γ
oo

α2 = σγ

λβ2 = γσ
γα = βγ
σβ = ασ

A3 :

1
2

3

4

α 88qqqq
β

xxqqq
q

δ
OO
γ��

ϵ
&&MM

MM

ξ

ffMMMM

βα + δγ + ϵξ = 0
αβ = 0
γδ = 0
ξϵ = 0

A4 :

1
2

3

4

α 88qqqq
β

xxqqq
q

δ
OO
γ��

ϵ
&&MM

MM

ξ

ffMMMM

βα + δγ + ϵξ = 0
αβ = 0
γϵ = 0
ξδ = 0

A5 :

1 2α
%% γ //

β
oo

α2 = γβ
βαγ = 0

A6 :

1 2α
%% γ //

β
oo

α3 = γβ
βγ = 0

βα2 = 0

α2γ = 0

A7 :

1 2 3 4
α //
β

oo
δ //
γ

oo
ϵ //
ξ

oo

βα = δγ
γδ = ϵξ
αδϵ = 0
ζγβ = 0

A8 :

1

2 3

4
σ
��

ξ
//

γ
OO

δoo
α

��?
??

??
?

β

__??????

αβα = σξ
βαβ = γδ

ξβα = δαβ = 0
βαγ = αβσ = 0
ξγ = δσ = 0

A9 :

1

2 3

4
α
��

σ
//

βoo
γ
OO

ϵ
��

δoo

δα = ϵβ
γϵ = βσ
ασβ = 0
ϵγδ = 0
σγϵγ = 0

A10 :

1

2

34

β��α
OO

δ
##GG

GG

γ
oo
ξ ;;wwww

ξαβ = ξδγξ
αβδ = δγξδ

βα = 0

(γξδ)2γ = 0

A11 :

1 2 3 4
β //
α

oo
ξ //
γ

oo
ζ //
δ

oo

γαβ = γξγ
αβξ = ξγξ
βα = 0
δγ = 0
ξζ = 0

(γξ)2 = ζδ

A12 :

1

2

3

α

DD







γ

��4
44

44
4

β
oo

δ //

δβδ = αγ
γβα = 0

β(δβ)3 = 0

A13 :

1 2 3

α

��β //
γ

oo
δ //
σ

oo

α2 = γβ
βδ = βγ = 0
σγ = σα = 0

αδ = 0

α3 = δσ

A14 :

1 2 3
α //
β

oo
δ //
γ

oo

βα = (δγ)2

αδγδ = 0
γδγβ = 0
αβ = 0

A15 :

1

2

3α 99

σ

DD







γ

��4
44

44
4

β
oo

δ //

γβα = 0

α2 = δβ
βδ = ασ = 0

αδ = σγ

A16 :

1

2

3α 99

σ

��







 γ

ZZ444444

β
//

δoo

αβγ = 0

α2 = βδ
δβ = σα = 0

δα = γσ

Figure 4.1: List of weakly symmetric algebras of tubular type
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A selfinjective algebra is said to be tilting-discrete if for any n > 0, there are only

finitely many tilting objects of length n. Here is a corollary of Theorem 4.1.

Corollary 4.2. Any weakly symmetric algebra of tubular type with non-singular Cartan

matrix is tilting-discrete.

Proof. A weakly symmetric algebra of tubular type with non-singular Cartan matrix

is derived equivalent to one of Ai’s [BHS], which is τ -tilting finite by Theorem 4.1. It

follows from [AM, Corollary 2.11] that the algebra is tilting-discrete.

Thanks to Bia lkowski–Skowroński [BS2], we also have a complete list of Morita

equivalence classes of selfinjective algebras which are socle equivalent to selfinjective

algebras of tubular type. We focus on such algebras which are not of tubular type. The

following classes of algebras coincide [S1]:

(i) selfinjective algebras which are socle equivalent to selfinjective algebras of tubular

type but not of tubular type;

(ii) non-standard selfinjective algebras which are socle equivalent to selfinjective alge-

bras of tubular type;

(iii) non-standard non-domestic selfinjective algebras of polynomial growth;

(iv) algebras Λi presented by the quivers and relations as in Figure 4.2.

Then we have a similar result as Theorem 4.1 for the algebras in (iv).

Theorem 4.3. The algebras Λ1, . . . ,Λ9 (without Λ10) are τ -tilting finite. In particular,

we have the number of support τ -tilting modules:

Λ1 Λ2 Λ3(λ) Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10

8 8 6 32 28 32 30 30 192 ≥ 500

Moreover, the algebras Λ1, . . . ,Λ9 are tilting-discrete.

The proof of this theorem is by direct calculation, and we will give the numbers of

support τ -tilting modules of Λi in Section 4.2.

4.2. The numbers of support τ-tilting modules over weakly sym-

metric algebras of tubular type

In this section, we give the numbers of support τ -tilting modules of Ai and Λi as in

Section 4.1. (see the Theorem 4.1 and Theorem 4.3 for the tables of the numbers.)

The following theorem by Eisele–Janssens–Raedschelders plays an important role.
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Λ1 :

1 2α
%% γ //

β
oo

α2 = γβ

βαγ = βα2γ
βαγβ = 0
γβαγ = 0

Λ2 :

1 2α
%% γ //

β
oo

α2γ = βα2 = 0
γβγ = βγβ = 0

βαγ = βγ

α3 = βγ

Λ3(λ) :

(λ ∈ K \ {0, 1})

1 2α
%% σ //

γ
oo βee

α4 = γα2 = α2σ = 0

α2 = σγ + α3, λβ2 = γσ
γα = βγ, σβ = ασ

Λ4 :

1

2

3

α

DD







γ

��4
44

44
4

β
oo

δ //

δβδ = αγ, (βδ)3β = 0
γβαγ = αγβα = 0

γβα = γβδβα

Λ5 :

1 2 3

α

��β //
γ

oo
δ //
σ

oo

α2 = γβ, α3 = δσ,
σγ = αδ = σα = 0
βδ = σγ = σα = 0
γβγ = βγβ = 0

βγ = βαγ

Λ6 :

1 2 3
α //
β

oo
δ //
γ

oo

αδγδ = γδγβ = 0
αβα = βαβ = 0

αβ = αδγβ
βα = δγδγ

Λ7 :

1

2

3α 99

σ

DD







γ

��4
44

44
4

β
oo

δ //

βδ = βαδ, ασ = 0, αδ = σγ

γβα = 0, α2 = δβ, γβδ = 0
βδβ = δβδ = 0

Λ8 :

1

2

3α 99

σ

��







 γ

ZZ444444

β
//

δoo

δβ = δαβ, σα = 0, δα = γσ

αβγ = 0, α2 = βδ, δβγ = 0
βδβ = δβδ = 0

Λ9 :

1
2

3

4

α 88qqqq
β

xxqqq
q

δ
OO
γ��

ϵ
&&MM

MM

ξ

ffMMMM

βα + δγ + ϵξ = 0
γδ = ξϵ = αβα = 0
βαβ = 0, αβ = αδγβ

Λ10 :

1

2

3

4

5

η
99rrrrrrrr

µ

%%LL
LLL

LLL

ξ
//

γoo
σ

//
δoo

βyyrrr
rrr

rr

α

eeLLLLLLLL

µβ = 0, αη = 0, βα = δγ
ξσ = ηµ, σδ = γξ + σδσδ

δσδσ = ξγξγ = 0

Figure 4.2: List of non-standard selfinjective algebras which are socle equivalent to

selfinjective algebras of tubular type

Theorem 4.4. [EJR, Theorem 11] Let I be a two-sided ideal of Λ which is contained

in the center and the radical of Λ. Then we have an isomorphism of posets sτ -tiltΛ and

sτ -tiltΛ/I.

For our algebra Λ, the strategy is the following.

(i) Find central elements which are in the radical.

(ii) Construct an ideal I generated by the elements as in (i).

(iii) Consider the factor algebra Λ/I. By Theorem 4.4, we have an isomorphism of

posets sτ -tiltΛ and sτ -tiltΛ/I. Then, one counts the number or draws the Hasse

quiver of sτ -tiltΛ/I. If possible, we may find a nice algebra whose factor algebra

is isomorphic to Λ/I and which admits a well-known Hasse quiver of support

τ -tilting modules.
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4.2.1. The number of sτ -tiltAi

First, let us discuss for Ai’s. In any case, we can easily check that the following elements

belong to the center.

i = 1: αγ + γα and βσ + σβ; i = 2: α + β;

i = 3: –; i = 4: βα− γδ − ξε and αδγβ;

i = 5: αβ + βα; i = 6: α2 and βαγ;

i = 7: αβ + βα + γδ + ξε; i = 8: αβ + βα;

i = 9: βσ + εγ + σβ; i = 10: αβ + γξδ + ξδγ;

i = 11: αβ + γξ; i = 12: αγβ + βαγ and γβδβα;

i = 13: α2, σδ and βαγ; i = 14: αδγβ, δγβα, γβαδ and βα + γδγδ;

i = 15: α2, βαδ and γβσ; i = 16: α2, δαβ and σαβ.

Let Ii be the ideal of Ai generated by the elements above and the socle, and Ai := Ai/Ii.

In the following, we feel free to utilize Theorem 4.4 and refer to [Mi] for support

τ -tilting modules over preprojective algebras of Dynkin type.

i = 1

It is seen that A1 is isomorphic to the factor algebra of the preprojective algebra of

Dynkin type A3 by the intersection of the center and the radical. This implies that A1

has 24 support τ -tilting modules.

i = 2

Observe that A2 is the Nakayama algebra presented by the quiver • x // •
y

oo with rela-

tions xy = 0 = yx, whence there are 6 support τ -tilting modules of A2.

i = 3

A3 is the preprojective algebra of type D4, which has 192 support τ -tilting modules.

i = 5, 6

It is obvious that A5 and A6 are isomorphic, which are furthermore isomorphic to

R(2AB) in Table 2 of [EJR]. Hence, A5 and A6 have 8 support τ -tilting modules.

i = 7

By Theorem 4.4, we have an isomorphism of posets sτ -tiltA7 ≃ sτ -tiltA7. Moreover,

one observes that A7 is isomorphic to the factor algebra of the preprojective algebra Γ

of type A4 by the central elements in the radical, and the socle. However, the socle of
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Γ is not contained in the center, and so we can not apply Theorem 4.4 to obtain the

Hasse quiver of support τ -tilting modules.

Now, let us apply Adachi’s method [A2]. We fix the numbering of the vertices of A4

by 1 2 3 4 and let Γ be the factor algebra of Γ by the central elements in

the radical. We can still apply Theorem 4.4 to get an isomorphism sτ -tiltΓ ≃ sτ -tiltΓ.

Let P be the indecomposable projective module of Γ corresponding to the vertex 1 and

define a subset N of sτ -tiltΓ by

N := {N ∈ sτ -tilt
(
Γ/ socP

)
| P/ socP ∈ addN and HomΓ(N,P ) = 0}.

Here, socP stands for the socle of P . We see that N has 6 elements; see [Mi] for

example. It follows from [A2, Theorem 3.3(1)] that the Hasse quiver of sτ -tiltΓ can

be constructed by sτ -tilt
(
Γ/ socP

)
and the copy of N . A similar argument works for

the indecomposable projective module P ′ of Γ at the vertex 4 instead of P . As A7 is

isomorphic to the factor algebra of Γ by the socle of P and P ′, it turns out that A7

has precisely 12 support τ -tilting modules fewer than Γ, so than Γ. Consequently, we

obtain that A7 has 108 supoort τ -tilting modules.

i = 8, 9, 11

We can use ‘String Applet’ (https://www.math.uni.-bielefeld.de/~jgeuenich/

string-applet/); apply it to Ai.

Remark 4.5. The applet can be also run for A7.

i = 4, 10

We count the number of τ -tilting modules over the factor algebra by each idempotent.

Let {e1, · · · , en} be a complete set of primitive orthogonal idempotents of an algebra

Λ and I be a subset of {1, · · · , n} (possibly, I = ∅). We denote by tI the number of

τ -tilting modules of Λ/(e), where e =
∑

i∈I ei. Here, t∅ means the number of τ -tilting

modules of Λ. Note that the number of support τ -tilting modules over Λ is equal to∑
I tI .

We demonstrate the way of counting for i = 4; it similarly works for i = 10. Putting

Λ := A4, ei denotes the primitive idempotent corresponding to the vertex i.

(i) We observe that Λ/(e1) is the factor algebra of the Brauer tree algebra of the

Brauer tree ◦ ◦ ◦ ◦ by some socles, and so one easily obtains

t{1} = 9.

(ii) When I has the vertex 2, Λ/(e) is semisimple, so tI = 1; there are 8 cases.

(iii) In the cases that I = {3} and {4}, Λ/(e) is the preprojective algebra of type A3,

so tI = 13; see [Mi] for example.
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(iv) For I = {1, 3}, {1, 4}, {3, 4}, see the case of i = 2; tI = 3.

(v) We easily get t{1,3,4} = 1.

There remains to count the number of τ -tilting modules of Λ. To do that, we use

the GAP-package QPA; Λ is representation-finite, and so all indecomposable τ -rigid

modules can be got on QPA. Then, we obtain t∅ = 79. Consequently, one sees that

there are 132 support τ -tilting modules of Λ, so of A4.

We only put the table for A10.

I 4 points
3 points

{1,2}
{1,3}
{1,4}
{2}

{2,3}
{2,4} {3, 4} {1} {3}

{4} ∅ total

tI 1 (5 cases) 2 1 3 10 8 72 116

Remark 4.6. It is not difficult to draw the Hasse quivers directly, but they are too

large.

i = 12, 13, 14, 15

We directly construct the Hasse quiver of sτ -tiltAi as follows.

• The Hasse quiver of sτ -tiltA12:

• //

,,YYYYYY
YYYYYY

YYYYY • //

��<
<<

<<
<<

<<
<<

• //

))SSS
SSSS

SSSS
SSSS

SSS • //

))SSS
SSSS

S • // • // •

��<
<<

<<
<<

<<
<<

•
))SSS

SSSS
S • //

55kkkkkkkk •

##G
GG

GG
GG

GG

• //

##G
GG

GG
GG

GG •

))SSS
SSSS

SSSS
SSSS

SSS

##G
GG

GG
GG

GG • //

))SSS
SSSS

SSSS
SSSS

SSS •
55kkkkkkkk

• //

AA�����������

��<
<<

<<
<<

<<
<<

• //

55kkkkkkkk •

88qqqqqqqqqqqqqqqqqqq • // •
• // •

##G
GG

GG
GG

GG •

;;wwwwwwwwwwwwwwwwwwwww

##G
GG

GG
GG

GG •
55kkkkkkkk

• //

DD														
• // •

55kkkkkkkk

,,YYYYYY
YYYYYY

YYYYY

• //

55kkkkkkkk • //

;;wwwwwwwww •
55kkkkkkkk // • // • // •

AA�����������

• The Hasse quiver of sτ -tiltA13:

• //

��8
88

88
88

88
88

88
• //

,,XXXXX
XXXXXX

XXXXXX • //

,,XXXXX
XXXXXX

XXXXXX • // •

��8
88

88
88

88
88

88

• //

��8
88

88
88

88
88

88
•

22fffffffffffffffff

!!C
CC

CC
CC

CC
C •

��
•

!!C
CC

CC
CC

CC
C

•
66mmmmmmmm

��8
88

88
88

88
88

88

• //

CC�������������

��8
88

88
88

88
88

88
•

=={{{{{{{{{{

!!C
CC

CC
CC

CC
C • // •

=={{{{{{{{{{

!!C
CC

CC
CC

CC
C • // •

CC�������������

��8
88

88
88

88
88

88
• // •

•
��

•
66mmmmmmmm

,,XXXXX
XXXXXX

XXXXXX •

=={{{{{{{{{{

,,XXXXX
XXXXXX

XXXXXX • // •

=={{{{{{{{{{

• //

CC�������������
• //

22fffffffffffffffff • // • // •

CC�������������

• The Hasse quiver of sτ -tiltA14:
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• //

��3
33

33
33

33
33

3 • //

''NN
NNN

N • // • // •

��3
33

33
33

33
33

3

• //

++WWWW
WWWWW

WWWWW •
77pppppp

''NN
NNN

N

• //

@@��������
•

,,YYYYYY
YYYYYYY

YYYYYYY
Y • // • // •

''NN
NNN

N

•

EE������������ //

��3
33

33
33

33
33

3 •
77pppppp

''NN
NNN

N • // •

33gggggggggggggg

,,YYYYYY
YYYYYYY

YYYYYYY
Y • // •

EE������������

��3
33

33
33

33
33

3 • // •
• //

''NN
NNN

N • //

@@��������
•

33gggggggggggggg

++WWWW
WWWWW

WWWWW •

@@�������� // •
77pppppp

• // •
''NN

NNN
N

• //

EE������������
•

77pppppp // • //

@@��������
• // •

EE������������

• The Hasse quiver of sτ -tiltA15:

• //

��8
88

88
88

88
88

88
• //

((QQ
QQQ

QQQ • //

((QQ
QQQ

QQQ • //

,,XXXXX
XXXXXX

XXXXXX • // •

��8
88

88
88

88
88

88

• //

,,XXXXX
XXXXXX

XXXXXX •

11dddddddddddddddddddddddddd • // • // •

!!C
CC

CC
CC

CC
C

•
((QQ

QQQ
QQQ

• //

CC�������������

��8
88

88
88

88
88

88
•

=={{{{{{{{{{

!!C
CC

CC
CC

CC
C • // •

=={{{{{{{{{{

((QQ
QQQ

QQQ • // •

CC�������������

��8
88

88
88

88
88

88
• // •

•

CC�������������

,,XXXXX
XXXXXX

XXXXXX

• //

,,XXXXX
XXXXXX

XXXXXX • //

CC�������������
•

=={{{{{{{{{{

((QQ
QQQ

QQQ • //

((QQ
QQQ

QQQ •

=={{{{{{{{{{

• //

CC�������������
• //

11dddddddddddddddddddddddddd • // • // • // •

CC�������������

Remark 4.7. Note that A16 is the opposite algebra of A15. So, it follows from [AIR,

Theorem 2.14] that there is a bijection between sτ -tiltA15 and sτ -tiltA16. We also

remark that A15 is not representation-finite.

4.2.2. The number of sτ -tiltΛi

Next, we discuss for Λi’s. One gets central elements.

i = 1: α2 + βγ and βαγ; i = 2: α2, βγ and γβ;

i = 3: α + β, σγ and γσ; i = 4: γβα and βαγ + αγβ;

i = 5: βγ, γβ, δσ and σδ; i = 6: αβ and βα + γδγδ;

i = 7: βδ, δβ and γβσ; i = 8: –;

i = 9: αβ, γβαδ, δγβα and ξδγϵ; i = 10: γξ − σδ.

Let Ii be the ideal of Λi generated by the elements above and the socle. Putting

Λi := Λi/Ii, we observe isomorphisms as follows.

Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9

≃ A5 A5 A2 A12 A13 A14 A15 Λop
7 A3

Here, Λop stands for the opposite algebra of an algebra Λ. Thus it turns out that Λi for

every i except i = 10 is τ -tilting finite by Theorem 4.1. Moreover, we have the number

of support τ -tilting modules of Λi as in Theorem 4.3.



Chapter 5

Representation-finiteness vs.

τ-tilting finiteness

The aim of this chapter is to provide several classes of algebras whose τ -tilting finiteness

implies representation-finiteness.

5.1. When does the τ-tilting finiteness imply the representation-

finiteness

Let C be a connected component of the Auslander–Reiten quiver of an algebra. We

say that C is preprojective if it has no oriented cycle, and any module in C is of the form

τ−nP for some non-negative integer n and some indecomposable projective module P .

Dually, define preinjective components.

We start with the following proposition, which was given in [Mo] as a remark; see

also [A1].

Proposition 5.1. A τ -tilting finite algebra with preprojective or preinjective component

is representation-finite.

We give several classes of algebras as in Proposition 5.1.

A quasitilted algebra is defined to be the endomorphism algebra of a tilting object

T over a hereditary abelian K-category H. When H = modK∆ for some acyclic quiver

∆, the algebra is called tilted of type ∆. If in addition, T is preprojective, then the

algebra is said to be concealed. We know from [CH] that every quasitilted algebra

admits a preprojective component. This leads to the following corollary, which is a

slight generalization of Zito’s result [Zit, Theorem 3.1].

Corollary 5.2. A τ -tilting finite quasitilted algebra is representation-finite.

Let Λ be an algebra associated to an acyclic quiver Q and i a vertex of Q. We write

the full subquiver of Q generated by the non-predecessors of i by Q(i). An algebra Λ

24
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is said to satisfy the separation condition if for any vertex i of Q, all distinct indecom-

posable summands of radPi have supports lying in different connected components of

Q(i). Here, Pi denotes the indecomposable projective module corresponding to i. In

the case, Λ admits a preprojective component [ASS, IX, Theorem 4.5 ]. So, we get the

following corollary.

Corollary 5.3. A τ -tilting-fintie algebra satisfying the separation condition is

representation-finite.

Since every tree quiver algebra satisfies the separation condition [ASS, IX, Lemma

4.3], the following is also obtained.

Corollary 5.4. A τ -tilting finite tree quiver algebra is representation-finite.

We study the nice (isomorphism) class C of algebras which are representation-finite

or have a tame concealed algebra as a factor. Such a class contains the classes of

algebras with a preprojective component [SS, XIV, Theorem 3.1], cycle-finite algebras

[MS] and loop-finite algebras [S2, Theorem 4.5]. Here is a generalization of Proposition

5.1.

Proposition 5.5. A τ -tilting finite algebra in C is representation-finite.

Proof. Combine Corollary 5.2 and [DIRRT, Theorem 5.12(d)].

A commutative ladder of degree n is an algebra presented by the quiver

1 //

��

2 //

��

· · · // n

��
1′ // 2′ // · · · // n′

with all possible commutative relations, which is isomorphic to K
−→
A2 ⊗K

−→
An. Here,

−→
An

stands for the linearly oriented quiver of type An. By [EH, Theorem 3], a commutative

ladder of degree n is representation-finite if and only if n ≤ 4. We derive a corollary

from Proposition 5.5.

Corollary 5.6. A τ -tilting finite commutative ladder is representation-finite.

Proof. Let Λ be a commutative ladder of degree 5. As the Happel–Vossieck list [HV]

(see also [Rin]), the factor algebra of Λ by the idempotents corresponding to the vertices

1 and 5′ is a tame concealed algebra of type Ẽ7. Observe that a commutative ladder

of degree ≥ 5 has Λ as a factor. Thus the class of commutative ladders is contained in

C.

We can also deduce Corollary 5.6 from Corollary 5.3; this is because a commuta-

tive ladder satisfies the separation condition, since all indecomposable projectives have

indecomposable radicals.
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Remark 5.7. Inspired by this work, the fourth named author of this paper showed

that any τ -tilting finite strongly simply-connected algebra is representation-finite [W,

Theorem 2.6], which generalizes Corollary 5.4 and 5.6.

Let us discuss algebras with radical square zero. To do that, we first recall the

definition of separated quivers.

For a quiver Q, we construct a new quiver Qs as follows:

• the vertices of Qs are those of Q and their copies; we donote by i′ the copy of a

vertex i of Q.

• an arrow a → b of Qs are drawn whenever a is a vertex i of Q, b is the copy of a

vertex j of Q, and Q has an arrow i → j.

We call the acyclic quiver Qs the separated quiver of Q. As is well-known, a radical

square zero algebra presented by a quiver Q is stable equivalent to the hereditary algebra

KQs [ARS, X, Theorem 2.4]. A full subquiver of a separated quiver Qs is said to be

single if it has at most one of vertices i and i′ for each vertex i of Q. Then an algebra

given by a quiver Q with radical square zero is τ -tilting finite if and only if every single

subquiver of Qs is a disjoint union of Dynkin quivers [A1, Theorem 3.1].

Thanks to these results, we show the following result.

Theorem 5.8. Let Λ be an algebra presented by a tree quiver with radical square zero.

(1) If Λ is τ -tilting finite, then it is representation-finite.

(2) If the trivial extension of Λ is τ -tilting finite, then it is representation-finite.

Proof. (1) This is due to Corollary 5.4, but we give another proof here, in which we use

combinatorial discussion.

As the quiver of Λ is tree, we observe that every connected component R of the

separated quiver has no same latter i and i′. Then we can apply [A1, Theorem 3.1]

for R to deduce the fact that R is of Dynkin type, since Λ is τ -tilting finite. Hence, it

follows from [ARS, X, Theorem 2.6] that Λ is representation-finite.

(2) If the trivial extension T (Λ) of Λ is τ -tilting finite, then so is Λ by [DIRRT,

Theorem 5.12(d)], and hence Λ is representation-finite by (1). We observe that Λ is

simply-connected and has the quadratic form of positive definite, which implies that

it is an iterated tilted algebra of Dynkin type [AS, Proposition 5.1]. (see also [H].) It

follows from [AHR, Theorem 3.1] that T (Λ) is representation-finite.

Theorem 5.8 does not necessarily hold if Λ is given by a non-tree acyclic quiver.

Example 5.9. (1) Let Λ be an algebra presented by the quiver

1 //

��=
==

==
==

��

2

��
3 // 4
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with radical square zero. Then the separated quiver is the following:

1

����
��
��
��

�� ��?
??

??
??

? 2

��

3

����
��
��
�

4

1′ 2′ 3′ 4′

Observe that it contains the extended Dynkin diagram D̃5 as an underlying graph,

whence Λ is τ -tilting finite by [A1] but not representation-finite by [ARS].

(2) Let us consider the algebra presented by the quiver

2

��=
==

==
==

1 //

@@�������
3

with radical square zero. Then the trivial extension is the Brauer graph algebra

given by the Brauer graph

◦

@@
@@

@@
@

◦

~~~~~~~
◦

This is τ -tilting finite by [AAC, Theorem 6.7] but not representation-finite.

Let Q be a quiver. The double quiver of Q, denoted by Qd, is constructed from Q

by adding the inverse arrow of every arrow in Q. Here is an easy observation.

Proposition 5.10. Let Q be a tree quiver and I an admissible ideal of KQd. Put

Λ := KQd/I. If Λ is τ -tilting finite, then Q is of Dynkin type.

Proof. By assumtion, it follows from [DIRRT] that Λ/ rad2 Λ is τ -tilting finite. We

observe that the separated quiver of Qd is the disjoint union of two quivers R1 and R2

which satisfy i ∈ Rj ⇔ i′ ̸∈ Rj (j = 1, 2) and whose underlying graphs coincide with

that of Q. We apply [A1] to deduce the fact that R1, R2, and hence Q, are of Dynkin

type.

Let us discuss the locally hereditary case. An algebra is said to be locally hered-

itary provided every homomorphism between indecomposable projective modules is a

monomorphism or zero; see [B, LS1, MV]. We know that such an algebra is presented

by an acyclic quiver and the relations contain no monomials. We show the following

theorem.

Theorem 5.11. A τ -tilting finite locally hereditary algebra is representation-finite.
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Proof. Let Λ be a τ -tilting finite locally hereditary algebra. As is easy to see, the local

hereditariness yields that Λ has no monomial relation and the quiver Q is acyclic. The

τ -tilting finiteness implies that Q does not contain a subquiver of extended Dynkin

type, whence Λ admits all possible commutative relations. Then, we figure out that

Λ is strongly simply-connected; see [Le] for example. The assertion follows from [W,

Theorem 2.6].

5.2. Inclusion relationships of classes

We close this chapter by giving an interesting observation. Denote by A the class

of algebras in which τ -tilting finiteness implies representation-finiteness; we put a hier-

archy of classes contained in A:

local. hered. gentle
alg. which are rep.-fin.
or have tame conceal.

as a factor

KKK
KKK

KKK
KKK

KKK

ttt
ttt

ttt
ttt

tt

triv. ext. of
tree quiver

with rad2 = 0

strongly
simply-conn.

cycle-finite
with a preprojective/

preinjective component

rrr
rrr

rrr
rrr

rr

loop-finite

quasitilted

vv
vv
vv
vv
vv
vv

satisfying the
separation cond.

OOO
OOO

OOO
OOO

OO

VVVV
VVVV

VVVV
VVVV

VVVV
VVV

hereditary comm. ladd.

����������������������������������
tree quiver

Proposition 5.12. The class A is closed under taking factors by ideals contained in

the center and the radical.

Proof. Let Λ be in A and put Γ := Λ/I, where I is an ideal of Λ contained in the center

and the radical. By [EJR, Theorem 11] , these algebras have the same poset of support

τ -tilting modules. Therefore, if Γ is τ -tilting finite, then so is Λ. By assumption, it

turns out that Λ is representation-finite, so is Γ.
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[AS] I. Assem and A. Skowroński, Quadratic forms and iterated tilted algebras. J.

Algebra 128 (1990), no. 1, 55–85.

[AD] J. August and A. Dugas, Silting and tilting for weakly symmetric algebras.

Preprint (2021), arXiv: 2101.03097.

[AR] M. Auslander and I. Reiten, On the representation type of triangular matrix

rings. J. London Math. Soc. (2) 12 (1975/76), no. 3, 371–382

[ARS] M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin

algebras. Cambridge Studies in Advanced Mathematics, 36. Cambridge University

Press, Cambridge, 1995.

[B] R. Bautista, Classification of certain algebras of finite representation type. An.

Int. Mat. Univ. Nac. Autónoma México 22 (1982), 1–82.
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[S2] A. Skowroński, Minimal representation-infinite Artin algebras. Math. Proc.

Cambridge Philos. Soc. 116 (1994), no. 2, 229–243.

[W] Q. Wang, τ -tilting finite simply connected algebras. Preprint (2019), arXiv:

1910.01937.

[Zim] A. Zimmermann, A Noether–Deuring theorem for derived categories. Glasg.

Math. J. 54 (2012), no. 3, 647–654.

[Zit] S. Zito, τ -tilting finite tilted and cluster-tilted algebras. Preprint (2019), arXiv:

1902.05866.


