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Chapter 1

Introduction

This thesis is based on [31], [44] and [45].

Throughout this thesis, let k denote a field. By an algebra A, we mean a finite

dimensional associative and unital k-algebra, and all modules are assumed to be finitely

generated left modules.

The singularity category Dsg(A) of an algebra A, introduced by Buchweitz [12],

is defined by the Verdier quotient of the bounded derived category of A-modules by

the full subcategory of perfect complexes. The category Dsg(A) measures homological

singularity of A in the following sense: the global dimension of A is finite if and only

if Dsg(A) = 0. Therefore, singularity categories can be considered as homological

invariants for algebras of infinite global dimension.

The notion of Tate cohomology groups was also introduced by Buchweitz [12]. For

each integer i, the i-th Tate cohomology group of an A-module M with coefficients in

an A-module N is defined to be

Êxt
i

A(M,N) := HomDsg(A)(M,N [i]).

He observed in [12] that there is an isomorphism Êxt
∗
ZG(Z, N) ∼= Ĥ

∗
(G,N), where

Ĥ
∗
(G,N) stands for the original Tate cohomology group of a finite group G with coeffi-

cients in a ZG-module N . This justifies the terminology “Tate cohomology”. Recently,

Wang [47] defined the i-th Tate-Hochschild cohomology group of the algebra A as

ĤH
i
(A) := Êxt

i

Ae(A,A) = HomDsg(Ae)(A,A[i])

for any integer i. Then the Tate-Hochschild cohomology ĤH
•
(A) :=

⊕
i∈Z ĤH

i
(A)

naturally carries a structure of a graded ring, where the multiplication is given by

the Yoneda product. We call such a graded ring the Tate-Hochschild cohomology ring

of A. It was proved by Wang [47] that the Tate-Hochschild cohomology ring of any

algebra is graded commutative. Furthermore, Dotsenko, Gélinas and Tamaroff [17]

showed that, for a monomial Gorenstein algebra A, its Tate-Hochschild cohomology
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ring ĤH
•
(A) is isomorphic to ĤH

≥0
(A)[χ−1], where ĤH

≥0
(Λ) :=

⊕
i≥0 ĤH

i
(A), and χ

is an invertible homogeneous element of positive degree. We point out that such an

invertible element was obtained from the fact that any minimal projective resolution of

a monomial Gorenstein algebra becomes periodic from some step. On the other hand,

Wang [47] showed that ĤH
•
(A) carries a Gerstenhaber structure. Roughly speaking, it

is a structure of a Lie algebra on the Tate-Hochschild cohomology ring of A. Recently,

there are studies on a Batalin-Vilkovisky (BV) structure on ĤH
•
(A), because if a BV

structure exists, then it generates a Gerstenhaber structure on the ring ĤH
•
(A). It

was proved in Wang [47] that if A is a symmetric algebra, then the Tate-Hochschild

cohomology ring of A has a BV structure generating Wang’s Gerstenhaber structure.

In this thesis, we first consider the existence of a BV structure on ĤH
•
(A) in the

case of Frobenius algebras. Let A be a Frobenius algebra. Then, for every integer i,

ĤH
i
(A) is isomorphic to the i-th cohomology group Hi(HomAe(T•, A)) of the cochain

complex HomAe(T•, A), where T• is a complete resolution of A over Ae, that is, an

(unbounded) acyclic complex of projective Ae-modules with Cok(dT1 : T1 → T0) ∼= A.

The group Hi(HomAe(T•, A)) is called the i-th complete cohomology group of A and

denoted by CHi(A). Thus, letting CH•(A) :=
⊕

i∈ZCH
i(A), we have an isomorphism

CH•(A) ∼= ĤH
•
(A) of graded vector spaces. Together with this isomorphism, we aim at

providing a sufficient condition for ĤH
•
(A) to have a BV structure generating Wang’s

Gerstenhaber structure. On the other hand, inspired by a result of Dotsenko, Gélinas

and Tamaroff [17], we also investigate the ring structure on Tate-Hochschild cohomol-

ogy, and our second aim is to give a necessary and sufficient condition for the Tate-

Hochschild cohomology ring of A to have an invertible homogeneous element of positive

degree in the case that A is Gorenstein.

The organization of this thesis is as follows. In Chapter 2, we recall basic terminology

and facts related to Tate-Hochschild cohomology and Gorenstein algebras.

In Chapter 3, we try to clarify when the Tate-Hochschild cohomology ring of a

Frobenius algebra A has a BV structure generating Wang’s Gerstenhaber structure.

For this purpose, we first fix a complete resolution T• of the Ae-module A and set

D•(A,A) := HomAe(T•, A). We then recall from [47] a differential graded algebra

structure on D•(A,A) whose cohomology ring H•(D•(A,A)) = CH•(A) is isomorphic

to the Tate-Hochschild cohomology ring ĤH
•
(A). Let ν : A → A be the Nakayama

automorphism of the Frobenius algebra A, and assume that the set Λ of eigenvalues

of the Nakayama automorphism ν as a k-linear map is contained in k. Then, for each

product µ of finitely many elements in Λ, we define a graded subspace D•
(µ)(A,A) of

D•(A,A), and it is proved that D•
(1)(A,A) becomes a differential graded subalgebra of

D•(A,A). Letting CH•
(1)(A) denote the cohomology ring for D•

(1)(A,A), we will show

that if the Nakayama automorphism ν : A→ A is diagonalizable, then the induced ring

homomorphism CH•
(1)(A) → CH•(A) is an isomorphism, and CH•

(1)(A) = CH•(A) has

a BV structure such that the induced Gerstenhaber structure coincides with Wang’s
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Gerstenhaber structure on ĤH
•
(A). Namely, we prove the following main result of

Chapter 3:

Main Result 1 (Theorem 3.3.7). Let A be a Frobenius algebra. If the Nakayama au-

tomorphism of A is diagonalizable, then the complete cohomology ring CH•(A) is a BV

algebra such that the induced Gerstenhaber algebra is isomorphic to the Gerstenhaber

algebra Êxt
•
Ae(A,A).

We remark that this result generalizes Wang’s result for symmetric algebras, because

the Nakayama automorphism of a symmetric algebra is the identity.

Moreover, for certain three self-injective Nakayama algebras with diagonalizable

Nakayama automorphisms, we compute their Tate-Hochschild cohomology rings, the

BV structures constructed above and the induced Gerstenhaber structures.

In Chapter 4, under the assumption that the ground field k is algebraically closed,

we study the Tate-Hochschild cohomology rings themselves and decide when they have

invertible homogeneous elements of positive degree in the case of Gorenstein algebras.

It is shown that, for any moduleM over a Gorenstein algebra A, it is eventually periodic

if and only if there exists an invertible homogeneous element of positive degree in the

Tate cohomology ring of M . Since the enveloping algebra of a Gorenstein algebra is

also Gorenstein, we obtain the following main result of Chapter 4.

Main Result 2 (Theorem 4.2.3). Let A be a Gorenstein algebra. Then the following

conditions are equivalent.

(1) The Tate-Hochschild cohomology ring ĤH
•
(A) has an invertible homogeneous el-

ement of positive degree.

(2) A is an eventually periodic algebra.

In this case, there exists an isomorphism ĤH
•
(A) ∼= ĤH

≥0
(A)[χ−1] of graded algebras,

where the degree of an invertible homogeneous element χ equals the period of the periodic

syzygy Ωn
Ae(A) of A for some n ≥ 0.

As an application, we show that the property of being eventually periodic Goren-

stein is invariant under derived equivalence. It turns out that this result is new only

for eventually periodic Gorenstein algebras of infinite global dimension that are not

periodic. Taking this into account, we provide a method of giving such algebras.

Moreover, we describe the Tate-Hochschild cohomology rings of connected periodic

algebras. More concretely, for a connected periodic algebra A, we determine the Tate-

Hochschild cohomology ring modulo nilpotence ĤH
•
(A)/N̂ and the graded subring

ĤH
≥0
(A). These results enable us to calculate the Tate-Hochschild cohomology ring

ĤH
•
(A) whenever the Hochschild cohomology ring of A has been computed.



Chapter 2

Preliminaries

In this chapter, we recall basic terminology and facts which are used in this thesis. Let

us first fix some conventions. We write ⊗ for ⊗k and Hom for Homk. For an algebra A,

we denote by A-mod the category of A-modules, by A-proj the category of projective

A-modules, by gl.dimA the global dimension of A and by Ae the enveloping algebra

A⊗Aop of A. Here, we denote by Aop the opposite algebra of A. Remark that we can

identify an A-bimodule M with a left (right) Ae-module M whose structure is given by

(a ⊗ b◦)m := amb (m(a ⊗ b◦) := bma) for m ∈ M and a ⊗ b◦ ∈ Ae. We denote by A

the quotient space of A by the subspace k1A generated by unit 1A. Let σ : A → A be

an algebra automorphism of A and π : A → A the canonical epimorphism of k-vector

spaces. We denote by a the image of a ∈ A under the epimorphism π : A→ A. We write

a1,m ∈ A⊗m for a1⊗· · ·⊗am ∈ A⊗m, b1, n ∈ A
⊗n

for b1⊗· · ·⊗ bn ∈ A
⊗n

and σc1, l ∈ A
⊗l

for σ(c1)⊗σ(c2)⊗· · ·⊗σ(cl) ∈ A
⊗l

when no confusion occurs. For an A-module M , we

denote by inj.dimAM (resp. proj.dimAM) the injective (resp. projective) dimension of

M .

2.1. Gerstenhaber algebras and Hochschild (co)homology

In this section, we review the definition of Gerstenhaber algebras and Hochschild

(co)homology and some related facts. Let us start with the definition of Gerstenhaber

algebras.

Definition 2.1.1. A Gerstenhaber algebra is a graded k-vector space H• =
⊕

r∈ZHr

equipped with two bilinear maps: a cup product

^: H|α| ⊗H|β| → H|α|+|β|, (α, β) 7−→ α ^ β

and a Lie bracket, called the Gerstenhaber bracket,

[ , ] : H|α| ⊗H|β| → H|α|+|β|−1, (α, β) 7−→ [α, β]

such that

4
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(i) (H•,^) is a graded commutative algebra with unit 1 ∈ H0, in particular, α ^

β = (−1)|α||β|β ^ α;

(ii) (H•[1], [ , ]) is a graded Lie algebra with components (H•[1])r = Hr+1, that is,

[α, β] = −(−1)(|α|−1)(|β|−1)[β, α]

and

(−1)(|α|−1)(|γ|−1)[[α, β], γ] + (−1)(|β|−1)(|α|−1)[[β, γ], α]

+(−1)(|γ|−1)(|β|−1)[[γ, α], β] = 0;

(iii) The Lie bracket [ , ] is compatible with the cup product ^ :

[α, β ^ γ] = [α, β]^ γ + (−1)(|α|−1)|β|β ^ [α, γ],

where α, β, γ are homogeneous elements in H•, and we denote by |α| the degree of a

homogeneous element α in H•.

We now recall that the Hochschild cohomology of an algebra A carries a structure

of a Gerstenhaber algebra. There is a projective resolution Bar•(A) of A over Ae, which

is the so-called normalized bar resolution of A:

· · · → A⊗ A
⊗r ⊗ A

dr−→ A⊗ A
⊗r−1 ⊗ A→ · · · → A⊗ A⊗ A

d1−→ A⊗ A
d0−→ A→ 0,

where we set

dr(a0 ⊗ a1, r ⊗ ar+1) = a0a1 ⊗ a2, r ⊗ ar+1

+
r−1∑
i=1

(−1)ia0 ⊗ a1, i−1 ⊗ aiai+1 ⊗ ai+2, r ⊗ ar+1

+ (−1)ra0 ⊗ a1, r−1 ⊗ arar+1,

d0(a0 ⊗ a1) = a0a1.

We denote Ω
r
(A) := Im dr for all r ≥ 0. For an A-bimodule M , consider the cochain

complex C•(A,M) := HomAe(Bar•(A),M) with differential HomAe(d•,M). Note that

for any r ≥ 0, we have

Cr(A,M) = HomAe(Barr(A),M) = HomAe(A⊗ A
⊗r ⊗ A,M) ∼= Hom(A

⊗r
,M).

We identify C0(A,M) with M . Thus, the cochain complex C•(A,M) is of the form

0 →M
δ0−→ Hom(A,M) → · · · → Hom(A

⊗r
,M)

δr−→ Hom(A
⊗r+1

,M) → · · ·
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whose each δr is defined by

δr(f)(a1, r+1) = a1f(a2, r+1) +
r∑

i=1

(−1)i+1f(a1, i−1 ⊗ aiai+1 ⊗ ai+2, r+1)

+ (−1)r+1f(a1, r)ar+1

for any f ∈ Hom(A
⊗r
,M) and a1, r+1 ∈ A

⊗r+1
. Then the r-th cohomology group

Hr(A,M) := Hr(C•(A,M), δ•)

is said to be the r-th Hochschild cohomology group of A with coefficients in M . We

will write HHr(A) := Hr(A,A). Since A is projective over k, we get Hr(A,M) ∼=
ExtrAe(A,M). Namely, Hochschild cohomology groups do not depend on the choice of

a projective resolution of A over Ae. For two A-bimodules M and N , the cup product

^: Cm(A,M)⊗ Cn(A,N) → Cm+n(A,M ⊗A N)

is defined by

(α ^ β)(a1,m+n) := α(a1,m)⊗A β(am+1,m+n)

for all α ∈ Cm(A,M), β ∈ Cn(A,N) and a1,m+n ∈ A
⊗m+n

. The cup product^ induces

a well-defined operator

^: Hm(A,M)⊗ Hn(A,N) → Hm+n(A,M ⊗A N).

The Gerstenhaber bracket on the Hochschild cohomology HH•(A) is defined as fol-

lows: let α ∈ Cm(A,A) and β ∈ Cn(A,A). We define a k-bilinear map

[ , ] : Cm(A,A)⊗ Cn(A,A) → Cm+n−1(A,A)

as

[α, β] := α ◦ β − (−1)(m−1)(n−1)β ◦ α ∈ Cm+n−1(A,A),

where we determine α ◦ β by

α ◦ β(a1,m+n−1) :=
m∑
i=1

(−1)(i−1)(n−1)α(a1, i−1 ⊗ β(ai, i+n−1)⊗ ai+n,m+n−1)

with β := π ◦ β. This k-bilinear map [ , ] induces a well-defined operator

[ , ] : HHm(A)⊗ HHn(A) → HHm+n−1(A).

Gerstenhaber proved the following result.
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Theorem 2.1.2 ([25, page 267]). The Hochschild cohomology HH•(A) equipped with

the cup product ^ and the Lie bracket [ , ] is a Gerstenhaber algebra.

For an A-bimodule M , consider a complex C•(A,M) :=M ⊗Ae Bar•(A) with differ-

ential idM ⊗Ae d•. Note that for any r ≥ 0, we have

Cr(A,M) =M ⊗Ae Barr(A) =M ⊗Ae (A⊗ A
⊗r ⊗ A) ∼= M ⊗ A

⊗r
.

We identify C0(A,M) with M . Thus, the complex C•(A,M) is of the form

· · · →M ⊗ A
⊗r+1 ∂r+1−−→M ⊗ A

⊗r → · · · →M ⊗ A
∂1−→M → 0,

where ∂r+1 sends m⊗ a1, r+1 ∈M ⊗ A
⊗r+1

to

ma1 ⊗ a2, r+1 +
r∑

i=1

(−1)im⊗ a1, i−1 ⊗ aiai+1 ⊗ ai+2, r+1 + (−1)r+1ar+1m⊗ a1, r

Then the r-th homology group

Hr(A,M) := Hr(C•(A,M), ∂•)

is called the r-th Hochschild homology group of A with coefficients in M . We denote

HHr(A) := Hr(A,A). Since A is projective over k, we get Hr(A,M) ∼= TorrAe(A,M),

which means that Hochschild homology groups are independent of projective resolutions

of A.

There is an action of Hochschild cohomology on Hochschild homology, called the

cap product. For two A-bimodules M , N and integers r, p ≥ 0 with r ≥ p, a k-bilinear

map

_: Cr(A,M)⊗ Cp(A,N) → Cr−p(A,M ⊗A N)

is defined by

(m⊗ a1, r)_ α := m⊗A α(a1, p)⊗ ap+1, r

for all m ⊗ a1, r ∈ Cr(A,M) and α ∈ Cp(A,N). The k-bilinear map _ induces a

well-defined operator

_: Hr(A,M)⊗ Hp(A,N) → Hr−p(A,M ⊗A N).
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2.2. Tate-Hochschild cohomology and its Gerstenhaber struc-

ture

This section is devoted to recalling Tate-Hochschild cohomology groups and a Ger-

stenhaber structure on the Tate-Hochschild cohomology. For more details, we refer the

reader to [46, Section 3 and 4].

Let A be an algebra. The singularity category Dsg(A) of A is the Verdier quotient

of the bounded derived category Db(A) = Db(A-mod) of the module category A-mod

of A by the full subcategory formed by those complexes quasi-isomorphic to bounded

complexes of projective A-modules. Recall that the shift functors [1] on Db(A) and

Dsg(A) are induced by shift of complexes. Let M and N be A-modules. Follow-

ing [12], we define the i-th Tate cohomology group of M with coefficients in N to be

Êxt
i

A(M,N) := HomDsg(A)(M,N [i]) for any i ∈ Z. Then Êxt
i

Ae(A,A) is called the i-th

Tate-Hochschild cohomology group of A and denoted by ĤH
i
(A).

The Tate cohomology Êxt
•
A(M,M) :=

⊕
i∈Z Êxt

i

A(M,M) of a A-module M carries

a graded algebra structure, where the multiplication is given by the Yoneda product

^: Êxt
i

A(M,M)⊗ Êxt
j

A(M,M) → Êxt
i+j

A (M,M); α⊗ β 7→ α[j] ◦ β.

We call the graded algebra Êxt
•
A(M,M) equipped with the Yoneda product ^ the

Tate cohomology ring of M , which is called the “stabilized Yoneda Ext algebra” of

M by Buchweitz [12]. Although Tate cohomology ring Êxt
•
A(M,M) is not necessar-

ily graded commutative, Wang [47] showed that the Tate-Hochschild cohomology ring

ĤH
•
(A) := Êxt

•
Ae(A,A) of any algebra A is graded commutative. On the other hand,

since ExtiA(M,M) ∼= HomDb(A)(M,M [i]) for i ≥ 0, using the canonical triangle func-

tor Db(A) → Dsg(A), we obtain a morphism Ext•A(M,M) → Êxt
•
A(M,M) of graded

algebras.

We now recall another description of Tate-Hochschild cohomology and the Gersten-

haber structure on Tate-Hochschild cohomology based on the description. Recall that

Ω
p
(A) = Im dp, where dp : Barp(A) → Barp−1(A) is the p-th differential of the nor-

malized bar resolution Bar•(A). We fix an integer m and put I(m) :=
{
p ∈ Z

∣∣ p ≥
0,m+ p ≥ 0

}
. Consider an inductive system{

X(m)
p , θm+p, p : X

(m)
p → X

(m)
p+1

}
p∈ I(m)

,

where

X(m)
p = Extm+p

Ae (A,Ω
p
(A)),

and θm+p, p : X
(m)
p → X

(m)
p+1 is the connecting homomorphism
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θm+p, p : Ext
m+p
Ae (A,Ω

p
(A)) → Extm+p+1

Ae (A,Ω
p+1

(A)) (2.1)

induced by the short exact sequence

0 −→ Ω
p+1

(A) −→ A⊗ A
⊗p ⊗ A −→ Ω

p
(A) −→ 0.

Here, we regard Extm+p
Ae (A,Ω

p
(A)) as Hm+p(A,Ω

p
(A)), or equivalently, any element of

Extm+p
Ae (A,Ω

p
(A)) is represented by an element in Homk(A

⊗m+p
,Ω

p
(A)). Note that the

inductive system above has the form

Extm+i
Ae (A,Ω

i
(A))

θm+i, i−−−−→ Extm+i+1
Ae (A,Ω

i+1
(A))

θm+i+1, i+1−−−−−−→ Extm+i+2
Ae (A,Ω

i+2
(A)) → · · · ,

where i ≥ 0 is the least integer such that m+ i ≥ 0.

Remark 2.2.1. Using the explicit description of the connecting homomorphism (2.1)

in [46, page 16], we see that, for anym ∈ Z and p ∈ I(m), the connecting homomorphism

θm+p, p : Ext
m+p
Ae (A,Ω

p
(A)) → Extm+p+1

Ae (A,Ω
p+1

(A))

sends an element [f ] ∈ Extm+p
Ae (A,Ω

p
(A)) represented by f ∈ Homk(A

⊗m+p
,Ω

p
(A)) to

the element [θm+p, p(f)] ∈ Extm+p+1
Ae (A,Ω

p+1
(A)). Here, [θm+p, p(f)] is represented by

the k-linear map

θm+p, p(f) : A
⊗m+p+1 → Ω

p+1
(A)

taking an element a1,m+p+1 ∈ A
⊗m+p+1

into

(−1)m+p dp+1(f(a1,m+p)⊗ am+p+1 ⊗ 1) ∈ Im dp+1 = Ω
p+1

(A),

where dp+1 : Barp+1(A) → Barp(A) is the (p+ 1)-th differential of Bar•(A).

Proposition 2.2.2 ([46, Proposition 3.1 and Remark 3.3]). For any m ∈ Z, there is

an isomorphism

lim−→
p∈ I(m)

Extm+p
Ae (A,Ω

p
(A)) ∼= HomDsg(Ae)(A,A[m]) = Êxt

m

Ae(A,A).

We now define a Gerstenhaber structure on Tate-Hochschild cohomology defined by

Wang ([46]). Let m,n, p and q be integers such that m,n, p, q ≥ 0. A cup product

^sg: C
m(A,Ω

p
(A))⊗ Cn(A,Ω

q
(A)) → Cm+n(A,Ω

p+q
(A))

is defined by
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f ^sg g(b1,m+n) := Φp+q(f(b1,m)⊗A g(bm+1,m+n)),

where f ⊗ g ∈ Cm(A,Ω
p
(A))⊗Cn(A,Ω

q
(A)) and Φp+q : Ω

p
(A)⊗A Ω

q
(A) → Ω

p+q
(A) is

an isomorphism of A-bimodules determined by

Φp+q(a0 ⊗ a1, p ⊗ ap+1 ⊗A b0 ⊗ b1, q ⊗ bq+1) = a0 ⊗ a1, p ⊗ ap+1b0 ⊗ b1, q ⊗ bq+1

for a0⊗ a1, p⊗ ap+1 ∈ Ω
p
(A) and b0⊗ b1, q ⊗ bq+1 ∈ Ω

q
(A), which is given in [47, Lemma

2.6].

Let m ∈ Z>0, p ∈ Z≥0 and f ∈ Cm(A,Ω
p
(A)) and let π : A → A be the canonical

epimorphism. We set

π(l)
p := π ⊗ id⊗p−1

A
⊗ idA : A⊗ A

⊗p−1 ⊗ A→ A
⊗p ⊗ A,

π(r)
p := idA ⊗ id⊗p−1

A
⊗ π : A⊗ A

⊗p−1 ⊗ A→ A⊗ A
⊗p
,

π(b)
p := π ⊗ id⊗p−1

A
⊗ π : A⊗ A

⊗p−1 ⊗ A→ A
⊗p+1

and then denote

f (l) := π(l)
p f, f (r) := π(r)

p f, f (b) := π(b)
p f.

Let m,n, p and q be integers such that m,n > 0 and p, q ≥ 0. We now define a bilinear

map

[ , ]sg : C
m(A,Ω

p
(A))⊗ Cn(A,Ω

q
(A)) → Cm+n−1(A,Ω

p+q
(A)).

as follows: let

f ∈ Cm(A,Ω
p
(A)) = Homk(A

⊗m
,Ω

p
(A))

and

g ∈ Cn(A,Ω
q
(A)) = Homk(A

⊗n
,Ω

q
(A)).

We first define a k-linear map f •i g ∈ Cm+n−1(A,Ω
p+q

(A)) for each integer i with

1 ≤ i ≤ m. Consider the following four k-linear maps:

(1)
(
id⊗i−1

A
⊗ g(b) ⊗ id⊗m−i

A

)
: A

⊗m+n−1 → A
⊗m+q

is given by

a1,m+n−1 7→ a1, i−1 ⊗ g(b)(ai, i+n−1)⊗ ai+n,m+n−1;

(2)
(
f (r) ⊗ id⊗q

A

)
: A

⊗m+q → A⊗ A
⊗p+q

is given by

a1,m+q 7→ f (r)(a1,m)⊗ am+1,m+q;
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(3)
(
idA⊗ id⊗p+q

A
⊗1
)
: A⊗ A

⊗p+q → A⊗ A
⊗p+q ⊗ A is given by

a0 ⊗ a1, p+q 7→ a0 ⊗ a1, p+q ⊗ 1;

(4) dp+q : A ⊗ A
⊗p+q ⊗ A → A ⊗ A

⊗p+q−1 ⊗ A is the (p + q)-th differential of the

normalized bar resolution Bar•(A).

We then define a k-linear map f •i g ∈ Cm+n−1(A,Ω
p+q

(A)) by the composition of the

above four maps

f •i g : = dp+q ◦
(
idA ⊗ id⊗p+q

A
⊗1
)
◦
(
f (r) ⊗ id⊗q

A

)
◦
(
id⊗i−1

A
⊗ g(b) ⊗ id⊗m−i

A

)
= dp+q((f

(r) ⊗ id⊗q

A
)(id⊗i−1

A
⊗ g(b) ⊗ id⊗m−i

A
)⊗ 1)

for 1 ≤ i ≤ m. On the other hand, we assume that q > 0. We also define a k-linear

map f •−i g ∈ Cm+n−1(A,Ω
p+q

(A)) for each integer i with 1 ≤ i ≤ q. Consider the

following four k-linear maps:

(1)
(
g(r) ⊗ id⊗m−1

A

)
: A

⊗m+n−1 → A⊗ A
⊗m+q−1

is given by

a1,m+n−1 7→ g(r)(a1, n)⊗ an+1,m+n−1;

(2)
(
idA⊗ id⊗i−1

A
⊗f (b) ⊗ id⊗q−i

A

)
: A⊗ A

⊗m+q−1 → A⊗ A
⊗p+q

is given by

a0 ⊗ a1,m+q−1 7→ a0 ⊗ a1, i−1 ⊗ f (b)(ai, i+m−1)⊗ ai+m,m+q−1;

(3)
(
idA⊗ id⊗p+q

A
⊗1
)
: A⊗ A

⊗p+q → A⊗ A
⊗p+q ⊗ A is the same as above;

(4) dp+q : A⊗ A
⊗p+q ⊗ A→ A⊗ A

⊗p+q−1 ⊗ A is the same as above.

Then we define a k-linear map f •−i g ∈ Cm+n−1(A,Ω
p+q

(A)) by the composition of

the above four maps

f •−i g : = dp+q ◦
(
idA⊗ id⊗p+q

A
⊗1
)
◦
(
idA ⊗ id⊗i−1

A
⊗f (b) ⊗ id⊗q−i

A

)
◦
(
g(r) ⊗ id⊗m−1

A

)
= dp+q((idA ⊗ id⊗i−1

A
⊗f (b) ⊗ id⊗q−i

A
)(g(r) ⊗ id⊗m−1

A
)⊗ 1)

for 1 ≤ i ≤ q. So far, the k-linear map f •i g ∈ Cm+n−1(A,Ω
p+q

(A)) has been defined

in the following way:
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f •i g

=


dp+q((f

(r) ⊗ id⊗q

A
)(id⊗i−1

A
⊗ g(b) ⊗ id⊗m−i

A
)⊗ 1) if 1 ≤ i ≤ m;

dp+q((id⊗ id⊗−i−1

A
⊗ f (b) ⊗ id⊗q+i

A
)(g(r) ⊗ id⊗m−1

A
)⊗ 1)

if q > 0 and − q ≤ i ≤ −1.

Now, we define a k-linear map f • g ∈ Cm+n−1(A,Ω
p+q

(A)) by

f • g :=


∑m

i=1(−1)r(m, p;n, q; i)f •i g +
∑q

i=1(−1)s(m, p;n, q; i)f •−i g if q > 0;∑m
i=1(−1)r(m, p;n, q; i)f •i g if q = 0,

where r(m, p;n, q; i) and s(m, p;n, q; i) are determined by

r(m, p;n, q; i) := p+ q + (i− 1)(q − n− 1) for 1 ≤ i ≤ m,

s(m, p;n, q; i) := p+ q + (i− 1)(q − n− 1) for 1 ≤ i ≤ q.

Finally, we are able to define a k-linear map [f, g]sg ∈ Cm+n−1(A,Ω
p+q

(A)) as

[f, g]sg := f • g − (−1)(m−p−1)(n−q−1)g • f.

Wang [46] showed that the cup product ^sg and the bilinear map [ , ]sg induce well-

defined operators, still denoted by ^sg and [ , ]sg, on a graded k-vector space⊕
m∈Z, p∈Z≥ 0,

m+p≥ 0

Extm+p
Ae (A,Ω

p
(A))

with grading (⊕
m, p

Extm+p
Ae (A,Ω

p
(A))

)i

=
⊕
l≥ 0,
i+l≥ 0

Exti+l
Ae (A,Ω

l
(A))

for i ∈ Z, which make it into a Gerstenhaber algebra. Furthermore, he proved that

the two induced operators ^sg and [ , ]sg are compatible with the connecting homo-

morphisms θm, p : ExtmAe(A,Ω
p
(A)) → Extm+1

Ae (A,Ω
p+1

(A)). Therefore, we have the

following result.

Theorem 2.2.3 ([46, Theorem 4.1]). Let A be a finite dimensional algebra over a field

k. Then the graded k-vector space⊕
m∈Z

lim−→
p∈ I(m)

Extm+p
Ae (A,Ω

p
(A))

equipped with the cup product ^sg and the Lie bracket [ , ]sg is a Gerstenhaber algebra.
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Remark 2.2.4. The Gerstenhaber brackets on
⊕

m, p Ext
m+p
Ae (A,Ω

p
(A)) involving ele-

ments of degree zero are defined via the connecting homomorphisms

θ0, ∗ : Ext
0
Ae(A,Ω

∗
(A)) → Ext1Ae(A,Ω

∗+1
(A)),

that is, for f ∈ Extm+p
Ae (A,Ω

p
(A)) and α ∈ Ext0Ae(A,Ω

q
(A)), we define

[f, α]sg := [f, θ0, q(α)]sg.

Remark 2.2.5. The induced cup product ^sg in Theorem 2.2.3 commutes with the

Yoneda product on ĤH
•
(A) via the isomorphism in Proposition 2.2.2 (see [47, Propo-

sition 4.7]).

2.3. Gorenstein algebras

In this section, we recall the definition of Gorenstein algebras and facts related to

those algebras from [6, 11, 12]. Let A be an algebra. Recall that the stable cate-

gory A-mod of A-modules is the category whose objects are the same as A-mod and

morphisms are given by

HomA(M,N) := HomA(M,N)/P(M,N),

where P(M,N) is the space of morphisms factoring through a projective module. We

denote by [f ] the element of HomΛ(M,N) represented by a morphism f : M → N .

There exists a canonical functor F : A-mod → Dsg(A) making the following square

commute:

A-mod //

��

Db(A-mod)

��
A-mod F // Dsg(A)

where the two vertical functors are the canonical ones, and the upper horizontal functor

is the one sending a module M to the complex M concentrated in degree 0. Further,

the functor F satisfies F ◦ ΩΛ
∼= [−1] ◦ F , where ΩA is the syzygy functor on A-mod

(i.e. the functor sending a module M to the kernel of a projective cover of M). On the

other hand, let APC(A) be the homotopy category of acyclic complexes of projective

A-modules. For a complex X• and an integer i, we denote by Ωi(X•) the cokernel

Cok dXi+1 of the differential dXi+1 and by X•[i] the complex given by (X•[i])j = Xj−i and

dX[i] = (−1)idX . Then taking the cokernel Ω0(X•) = Cok dX1 of the differential dX1 for

a complex X• defines a functor Ω0 : APC(A) → A-mod satisfying Ω0 ◦ [−1] ∼= ΩA ◦Ω0.

Recall that an algebra A is Gorenstein if inj.dimAA < ∞ and inj.dimAopA < ∞.

Since the two dimensions coincide by [49, Lemma A], we call a Gorenstein algebra A

with inj.dimAA = d a d-Gorenstein algebra. In the rest of this section, we assume

that A is a d-Gorenstein algebra unless otherwise specified. We call an A-module
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M Cohen-Macaulay if ExtiA(M,A) = 0 for all i > 0. It is clear that projective A-

modules are Cohen-Macaulay. We denote by CM(A) the category of Cohen-Macaulay

A-modules. It is well-known that CM(A) is a Frobenius category, that is, an exact

category with enough projective objects and injective objects such that the classes of

projective objects and of injective objects coincide. Note that projective objects of

CM(A) are precisely projective A-modules. Thus the stable category CM(A) carries a

structure of a triangulated category (see [12, 28]). In particular, the syzygy functor

ΩA on A-mod agrees with the inverse of the shift functor Σ on CM(A). The following

result is due to Buchweitz [12].

Theorem 2.3.1 ([12, Theorem 4.4.1]). Let A be a Gorenstein algebra. Then there exist

equivalences of triangulated categories

APC(A)
Ω0 // CM(A)

ιA // Dsg(A),

where the equivalence ιA is given by the restriction of F : A-mod → Dsg(A) to CM(A).

Thanks to the theorem, we can associate to any A-module M an object T• = TM
•

in APC(A), uniquely determined up to isomorphism, satisfying that Ω0(T•) ∼= M in

Dsg(A). Thus the triangle equivalence ιA : CM(A) → Dsg(A) induces an isomorphism

Êxt
i

Λ(M,M) ∼= HomA(Ω0(T•),Σ
iΩ0(T•))

for all i ∈ Z. We identify these via this isomorphism.

Recall that, for an algebra A, the Gorenstein dimension G-dimAM of an A-module

M is defined by the shortest length of a resolution ofM by A-modules X with X ∼= X∗∗

and ExtiA(X,A) = 0 = ExtiAop(X∗, A) for all i > 0, where we set (−)∗ := HomA(−, A)
(see [2] for its original definition). The next proposition is easily obtained from the

results in [6] applied to the case of Gorenstein algebras: (1), (2) and (3) follow from

[6, Theorems 3.1 and 3.2], [6, Lemma 2.4 and Theorem 3.1] and [6, Theorem 5.2],

respectively.

Proposition 2.3.2. The following hold for a module M over a d-Gorenstein algebra

A.

(1) The Gorenstein dimension G-dimAM of M satisfies G-dimAM ≤ d and is equal

to the smallest integer r ≥ 0 for which Ωr
A(M) is Cohen-Macaulay.

(2) There exists a diagram T•
θ−→ P•

ε−→M satisfying the following conditions:

(i) T• ∈ APC(A) and P•
ε−→M is a projective resolution of M .

(ii) θ : T• → P• is a chain map with θi an isomorphism for any i� 0.

(3) We have that ExtiΛ(M,M) ∼= Êxt
i

Λ(M,M) for all i > G-dimAM .
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We call such a diagram as in Proposition 2.3.2 (2) a complete resolution of M (see

[6] for its definition in a general setting). A complete resolution is unique in the sense

of [6, Lemma 5.3] (when it exists).

The canonical triangle functor Db(A) → Dsg(A) induces a morphism

Φi : ExtiA(M,N) = HomDb(A)(M,N [i]) → HomDsg(A)(M,N [i]) = Êxt
i

A(M,N)

for any integer i. Note that Φi = 0 for all i < 0. It follows from [12, Remarks (b)

on page 41] that Φi : ExtiA(M,N) → Êxt
i

A(M,N) is surjective if i = d and bijective

if i > d. In particular, for a 0-Gorenstein algebra A, we have an epimorphism Φ≥0 =

(Φi)i≥0 : HH
•(A) → ĤH

≥0
(A) of graded rings, where HH≥0(A) =

⊕
i≥0 ĤH

i
(A).

Next, we explain how we find the corresponding object TM
• in APC(A) for any A-

module M . If T• → P• → M is a complete resolution of M , then T• in APC(A) is

the object corresponding to M via the triangle equivalence ι ◦Ω0 : APC(A) → Dsg(A).

Indeed, the morphism Ω0(T•) → M induced by the chain map θ≥0 : T≥0 → P• is an

isomorphism in Dsg(A). Here, T≥0 stands for the following truncated complex of T•:

T≥0 = · · · → T2
dT2−→ T1

dT1−→ T0 → 0 → 0 → · · · .

Thus constructing a complete resolution ofM is equivalent to finding the corresponding

object TM
• of APC(A).

It follows from [9, Lemma 6.1] that if A is an n-Gorenstein algebra, then the en-

veloping algebra Ae is a (2n)-Gorenstein algebra. Hence, by Proposition 2.3.2, there

exists a complete resolution T•
θ−→ P•

ε−→ A of A over Ae. The following is the definition

of the complete cohomology groups of a Gorenstein algebra.

Definition 2.3.3 (cf. [11, page 911]). Let A be a Gorenstein algebra and T•
θ−→ P•

d0−→ A

a complete resoluiton of A over Ae. For r ∈ Z, the r-th complete cohomology group of

A with coefficients in an A-bimodule N is defined by CHr(A,N) := Hi(HomA(T•, N)).

We write CHr(A) := CHr(A,A).

Bergh and Jorgensen [11] defined the complete cohomology under the name “the

Tate-Hochschild cohomology”, and, in this thesis, we use the terminology “Tate-Hochschild”for

the cohomology groups defined by Wang [46, 47], which are described in the previous

section. We remark that both of these cohomology groups are isomorphic for any

Gorenstein algebra.



Chapter 3

Batalin-Vilkovisky structures on

complete cohomology rings for

Frobenius algebras

In this chapter, we give a sufficient condition for the Tate-Hochschild cohomology ring

of a Frobenius algebra to have a BV structure such that the induced Gerstenhaber

structure coincides with the one of Wang. Moreover, we consider certain three self-

injective Nakayama algebras and compute their Tate-Hochschild cohomology rings, their

BV structures, and the induced Gerstenhaber structures.

3.1. Frobenius algebras and complete resolutions

Let A be an algebra with dimk A = d, and let σ be an algebra automorphism of A.

For any A-bimodule M , we denote by Mσ the A-bimodule which is M as a k-vector

space and whose A-bimodule structure is defined by a · m · b := amσ(b) for m ∈ Mσ

and a, b ∈ A. We also denote by A∨ the right Ae-module HomAe(AeA, AeAe) whose

structure is given by the multiplication of Ae on the right hand side. Note that we have

an isomorphism of right Ae-modules

A∨ ∼−→(A⊗ A)A

:=

{∑
i

xi ⊗ yi

∣∣∣∣∑ axi ⊗ yi =
∑

xi ⊗ yia for any a ∈ A

}
; f 7→ f(1),

where a right Ae-module structure of (A ⊗ A)A is defined by the multiplication of Ae

on the right hand side. Recall that A is a Frobenius algebra if there is an associative

and non-degenerate bilinear form 〈 , 〉 : A ⊗ A → k. The associativity means that

〈ab, c〉 = 〈a, bc〉 for all a, b and c ∈ A. If (ui)
d
i=1 is a k-basis of A, then there is a k-basis

(vi)
d
i=1 of A such that 〈vi, uj〉 = δij with δij Kronecker’s delta. In such a case, we call

(ui)
d
i=1, (vi)

d
i=1 dual bases of A. There exists an algebra automorphism ν, up to inner

16
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automorphism, of A such that 〈a, b〉 = 〈b, ν(a)〉 for all a, b ∈ A, and the automorphism

ν is said to be the Nakayama automorphism of A. In fact, we can write both the

Nakayama automorphism ν and its inverse ν−1, explicitly: for x ∈ A,

ν(x) :=
d∑

i=1

〈x, vi〉ui, ν−1(x) :=
d∑

i=1

〈ui, x〉vi.

Another definition of Frobenius algebras is that A is isomorphic to D(A) as right or

as left A-modules. Here, the left (right) A-module structure of D(A) is defined by

(af)(x) := f(xa) ((fa)(x) := f(ax)) for any f ∈ D(A) and any a ∈ A. We can see that

the bilinear form 〈 , 〉 : A⊗ A→ k induces an isomorphism of left A-modules

φ : A
∼−→ D(A); a 7→ 〈−, a〉.

Moreover, this isomorphism gives rise to an isomorphism Aν
∼−→ D(A) of A-bimodules.

The first statement of the next lemma appears in [23, Lemma 2.1.35]. However, we

prove it again in order to get the explicit form of the isomorphism below.

Lemma 3.1.1. Let A be a Frobenius algebra. With the same notation as above, we

have the following assertions.

(1) There is an isomorphism Aν−1
∼= A∨ of right Ae-bimodules.

(2) If (ui)i, (vi)i and (u′j)j, (v
′
j)j are two dual bases of A, then we have

∑
i ui ⊗ vi =∑

j u
′
j ⊗ v′j.

(3) An element
∑

i ui ⊗ vi of A⊗ A has the following properties:

(a)
∑

i ui ⊗ vi =
∑

i vi ⊗ ν−1(ui) =
∑

i ν(vi)⊗ ui;

(b)
∑

i auib⊗ vi =
∑

i ui ⊗ ν−1(b)via for any a, b ∈ A.

Proof. For (2) and (3), consider the composition η : Aν−1 ⊗ A → Homk(A,A) of iso-

morphisms

Aν−1 ⊗ A // D(A)⊗ A // Homk(A,A)∑
i xi ⊗ yi

� //
∑

i〈−, xi〉 ⊗ yi
� //

[
x 7→

∑
i〈x, xi〉yi

]
.

Since x =
∑

i〈x, ui〉vi for any dual bases (ui)
d
i=1, (vi)

d
i=1 of A and any x ∈ A, the

statements (2) and (3) follow from the injectivity of η. On the other hand, we define

ϕ : Aν−1 → A∨; x 7→
[
a 7→

∑
i

auiν(x)⊗ vi
]
,

ψ : A∨ → (A⊗ A)A → Aν−1 ; α 7→ α(1A) =
∑
i

xi ⊗ yi 7→
∑
i

〈1, xi〉yi.
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Then we get ϕ is a right Ae-module homomorphism. Indeed, if x ∈ Aν−1 and a⊗b◦ ∈ Ae,

then we have ϕ(x (a⊗b◦)) =
∑

i ui ν(bx)a⊗vi =
∑

i uiν(x)a⊗bvi = (
∑

i uiν(x)⊗vi)(a⊗
b◦). One can easily check that ϕψ = idA∨ and ψϕ = idAν−1 .

As remarked in Section 2.3, if A is a Frobenius algebra A, then so is Ae. In particular,

Ae is a 0-Gorenstein algebra. Therefore, A has a complete resolution over Ae. Note

that we may take a projective resolution of A over Ae as the non-negative part of the

complete resolution. In fact, Nakayama [39] constructed a complete resolution T• of

A in the following way: we set Tr := Barr(A) = A ⊗ A
⊗r ⊗ A for every r ≥ 0 and

T−s := D(Bars−1(A))ν−1 for each s ≥ 1. Then one gets an exact sequence

· · · // Tr
dr // Tr−1

// · · · d1 // T0
d′0 //

d0
��

T−1
d−1 // · · · // T−s

d−s // T−s−1
// · · ·

A ∼
ϕ

// D(A)ν−1

D(d0)

OO

where we put

D(d0)(f) = fd0 (f ∈ D(A)ν−1), d′0 = D(d0)φd0, d−s(g) = gds (g ∈ T−s).

Sanada [42, Lemma 1.1] proved that there is an isomorphism HomAe(Tr,M) ∼= Mν−1⊗Ae

T−r−1 for any A-bimodule M and any integer r, and this isomorphism is natural in

M . Thus each Tr (r ∈ Z) is projective over Ae. On the other hand, the isomor-

phisms HomAe(Tr,M) ∼= Mν−1 ⊗Ae T−r−1 induces an isomorphism of complexes between

HomAe(T,M) and Mν−1 ⊗Ae T . Therefore, the following complex (D•(A,M), d̂•) has

the same cohomology groups as HomAe(T,M):

· · · → C2(A,Mν−1)
∂2−→ C1(A,Mν−1)

∂1−→Mν−1
µ−→M

δ0−→ C1(A,M)
δ1−→ C2(A,M) → · · · ,

where we define µ :Mν−1 →M by µ(m) :=
∑d

i=1 uimvi for m ∈M and set

Dr(A,M) :=

{
Cr(A,M) if r ≥ 0,

C−r−1(A,Mν−1) if r ≤ −1;

d̂r :=


δr if r ≥ 0,

µ if r = −1,

∂−r−1 if r ≤ −2.

We give the explicit forms of the 0-th and (−1)-th cohomology groups as follows:

CH0(A) ∼= MA/NA(M), CH−1(A) = NA
M/IA(M),
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where we set

MA := {m ∈M | am = ma for all a ∈ A},

NA(M) := Im (µ) =

{ ∑
i

uimvi | m ∈M

}
,

NA
M := {m ∈M |

∑
i

uimvi = 0},

IA(M) :=

{ ∑
i

(miν
−1(ai)− aimi) (finite sum) | ai ∈ A,mi ∈M

}
.

Note that, for any x ∈ A,
∑

i uixvi = 0 holds if and only if
∑

i uiν(x)vi = 0 holds.

Remark 3.1.2. If M = A, then CH0(A) and CH−1(A) are appeared in the following

exact sequence:

0 → CH−1(A) → Aν−1 ⊗Ae A
η−→ HomAe(A,A) → CH0(A) → 0,

where the morphism η(x⊗Ae a)(b) =
∑

i buiν(x)avi.

Suppose that A is a self-injective algebra. Recall that A is a self-injective algebra if

A is injective as a left and as a right A-module. Note that the enveloping algebra Ae is

also a self-injective algebra. Observe that if A is a self-injective algebra, then all of the

connecting homomorphisms (2.1)

θm+p, p : Ext
m+p
Ae (A,Ω

p
(A)) → Extm+p+1

Ae (A,Ω
p+1

(A))

are isomorphisms except for the case m + p = 0, so that we have an isomorphism

Extr+p
Ae (A,Ω

p
(A)) ∼= Êxt

r

Ae(A,A) for all r, p ∈ Z such that p ≥ 0 and r + p > 0. We

need modification for the inductive system {X(m)
p , θm+p, p}p∈ I(m)

defined in Section 2.3.

Let us recall that

lim−→
p∈ I(m)

Extm+p
Ae (A,Ω

p
(A))

is the inductive limit of the inductive system {X(m)
p , θm+p, p}p∈ I(m)

of which the term

X
(m)
p is defined by X

(m)
p := Extm+p

Ae (A,Ω
p
(A)) and whose morphism θm+p, p is the con-

necting homomorphism Extm+p
Ae (A,Ω

p
(A)) → Extm+p+1

Ae (A,Ω
p+1

(A)). Consider another

inductive system

{Y (m)
p , ϕm+p, p}p∈ I(m)

of which the term Y
(m)
p is the same as X

(m)
p and whose morphism ϕm+p,p is given by

ϕm+p, p :=

{
(−1)m+iθm+i, i if p = i,

(−1)mθm+p, p if p > i,
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where an integer i ≥ 0 is the least one belonging to I(m). Then we can readily see

lim−→
p∈ I(m)

Y (m)
p

∼= lim−→
p∈ I(m)

Extm+p
Ae (A,Ω

p
(A)).

We will utilize the inductive system {Y (m)
p , ϕm+p, p}p∈ I(m)

instead of {X(m)
p , θm+p, p}p∈ I(m)

and denote

ϕq
m+p, p := ϕm+p+q−1, p+q−1 ◦ · · · ◦ ϕm+p, p : Ext

m+p
Ae (A,Ω

p
(A)) → Extm+p+q

Ae (A,Ω
p+q

(A)).

Note that ϕ1
m+p, p = ϕm+p, p.

The following is a special case of [12, Corollary 6.4.1], which says that the Tate-

Hochschild cohomology of a self-injective algebra can be written by using Ext and Tor.

Proposition 3.1.3. Let A be a self-injective algebra. Denote A∨ = HomAe(A,Ae).

Then we have the following.

(1) Êxt
r

Ae(A,A) ∼= ExtrAe(A,A) for all r ≥ 1.

(2) Êxt
−r

Ae (A,A) ∼= TorA
e

r−1(A,A
∨) for all r ≥ 2.

(3) There exists an exact sequence of k-vector spaces

0 → Êxt
−1

Ae (A,A) → A∨ ⊗Ae A
η−→ HomAe(A,A) → Êxt

0

Ae(A,A) → 0,

where the morphism η is given by η((
∑

i xi ⊗ yi)⊗Ae a)(b) =
∑

i bxiayi.

(4) Êxt
0

Ae(A,A) = HomAe(A,A), which is the set of A-bimodule homomorphisms from

A to A modulo those homomorphisms passing through projective A-bimodules.

In particular, for r ≥ 2 and p ≥ 1,

κ−1, p : Êxt
−1

Ae (A,A) = Ker (η)
∼−→ ExtpAe(A,Ω

p+1
(A)) ∼= Êxt

−1

Ae (A,A),

ϕp
0, 0 : Êxt

0

Ae(A,A) = Coker (η)
∼−→ ExtpAe(A,Ω

p
(A)) ∼= Êxt

0

Ae(A,A),

κr−1, p : Tor
Ae

r−1(A,A
∨)

∼−→ ExtpAe(A,Ω
r+p

(A)) ∼= Êxt
−r

Ae (A,A)

are defined, on the (co)chain level, as

κ−1, p(α⊗Ae a)(b1, p) =
∑
i

dp+1(xia⊗ yi ⊗ b1, p ⊗ 1),

ϕp
0, 0(f)(b1, p) = dp(f(1)⊗ b1, p ⊗ 1),

κr−1, p(α⊗Ae a1, r−1)(b1, p) =
∑
i

dr+p(xi ⊗ a1, r−1 ⊗ yi ⊗ b1, p ⊗ 1),

where we write α(1) =
∑

i xi ⊗ yi. We denote ϕ1
0, 0 by ϕ0, 0.
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The third isomorphism κr−1, p : TorA
e

r−1(A,A
∨)

∼−→ Êxt
−r

Ae (A,A) in Proposition 3.1.3

is given by Wang [46, Remark 6.3].

Assume that A is a Frobenius algebra. Then the A-bimodule isomorphism Aν−1
∼=

A∨ induces an isomorphism of complexes between D•(A,A) and the complex C•(A,A)

defined by Wang [47]

· · · → C2(A,A
∨)

∂2−→ C1(A,A
∨)

∂1−→ A∨ µ−→ A
δ0−→ C1(A,A)

δ1−→ C2(A,A) → · · ·

whose negative part is the Hochschild chain complex (C•(A,A
∨), ∂•) and of which the

non-negative part is the Hochschild cochain complex (C•(A,A), δ•). Here, the map

µ : A∨ → A is defined by the multiplication of A, that is, µ(α) =
∑

i xiyi for α ∈ A∨

with α(1) =
∑

i xi ⊗ yi.

Moreover, Wang [47, Section 6.2] defined a product on C∗(A,A), called ?-product,

which extends the cup product on C∗(A,A) and the cap product between C∗(A,A)

and C∗(A,A
∨). Although the ?-product is not associative on C∗(A,A) in general, the

?-product induces a graded commutative and associative product on H∗(C•(A,A)). The

following is the product

? : D∗(A,A)⊗D∗(A,A) → D∗(A,A)

on D∗(A,A) via the isomorphism D•(A,A) ∼= C•(A,A): let f ∈ Cm(A,A), g ∈ Cn(A,A)

and α = a0 ⊗ a1, p ∈ Cp(A,Aν−1), β = b0 ⊗ b1, q ∈ Cq(A,Aν−1).

(1) (m,n ≥ 0) ? : Cm(A,A)⊗ Cn(A,A) → Cm+n(A,A) is given by

f ? g := f ^ g ;

(2) (m ≥ 0, p ≥ 0, p ≥ m)

(a) ? : Cp(A,Aν−1)⊗ Cm(A,A) → Cp−m(A,Aν−1) is given by

α ? f := α _ f = a0ν
−1(f(a1,m))⊗ am+1, p ;

(b) ? : Cm(A,A)⊗ Cp(A,Aν−1) → Cp−m(A,Aν−1) is given by

f ? α := f(ap−m+1, p)a0 ⊗ a1, p−m ;

(3) (m ≥ 0, p ≥ 0, p < m)

(a) ? : Cm(A,A)⊗ Cp(A,Aν−1) → Cm−p−1(A,A) is given by

(f ? α)(b1,m−p−1) :=
∑
i

f(b1,m−p−1 ⊗ uiν(a0)⊗ a1, p)vi ;
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(b) ? : Cp(A,Aν−1)⊗ Cm(A,A) → Cm−p−1(A,A) is given by

(α ? f)(b1,m−p−1) :=
∑
i

uiν(a0)f(a1, p ⊗ vi ⊗ b1,m−p−1) ;

(4) (p, q ≥ 0) ? : Cp(A,Aν−1)⊗ Cq(A,Aν−1) → Cp+q+1(A,Aν−1) is given by

α ? β :=
∑
i

vib0 ⊗ b1, q ⊗ uiν(a0)⊗ a1, p .

Dual bases of A are used in our definition of ?-product, but Lemma 3.1.1 (2) shows

that the ?-product does not depend the choice of dual bases of A.

We summarize the above results in the following.

Proposition 3.1.4 ([47, Lemma 6.2, Propositions 6.5 and 6.9]). Let A be a Frobe-

nius algebra. Then the ?-product is compatible with the differential d̂ of the complex

D(A,A). Moreover, the induced product on CH∗(A) = H∗(D(A,A)), still denoted by ?,

is graded commutative and associative. In particular, (CH•(A), ?) ∼= (Êxt
•
Ae(A,A),^sg)

as graded algebras.

3.2. Decomposition of complete cohomology associated with the

spectrum of the Nakayama automorphism

In this section, we define and study certain subcomplexes of D•(A,A), which play

important roles in proving the main result of this chapter. For this purpose, we need

to recall the subcomplexes of the (co)chain Hochschild complexes defined in [35]. Let

A be a (not necessarily Frobenius) algebra, and let σ be an algebra automorphism of

A. Let Λ be the set of eigenvalues of σ, and assume that Λ ⊂ k. We have 0A 6∈ Λ

and 1A ∈ Λ because σ is a ring automorphism. Let Λ̂ := 〈Λ〉 be the submonoid of

k× generated by Λ. We denote by Aλ the eigenspace Ker (σ − λ id) associated with an

eigenvalue λ ∈ Λ. For λ ∈ Λ, we write Aλ = Aλ for λ 6= 1 and A1 = A1/(k · 1A) for

λ = 1, and for every µ ∈ Λ̂ and every integer r ≥ 0, we put

C(µ)
r (A,Aσ) :=

⊕
µi∈Λ,

∏
µi=µ

Aµ0 ⊗ Aµ1 ⊗ · · · ⊗ Aµr ,

Cr
(µ)(A,A) :=

{
f ∈ Cr(A,A)

∣∣f(Aµ1 ⊗ · · · ⊗ Aµr) ⊂ Aµµ1···µr , for any µi ∈ Λ
}
.

Since σ(xy) = σ(x)σ(y) for x, y ∈ A, we have Aλ ·Aλ′ ⊂ Aλλ′ for λ, λ′ ∈ Λ. It is under-

stood that Aλλ′ = 0 when λλ′ 6∈ Λ. Then these subspaces C
(µ)
∗ (A,Aσ) and C

∗
(µ)(A,A)

are compatible with the differentials ∂∗ and δ∗ of the complexes (C•(A,Aσ), ∂•) and

(C•(A,A), δ•), respectively. Thus, we obtain subcomplexes (C
(µ)
• (A,Aσ), ∂

(µ)
• ) and

(C•
(µ)(A,A), δ

•
(µ)). Then we put
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H(µ)
r (A,Aσ) := Hr(C

(µ)
• (A,Aσ), ∂

(µ)
• ),

Hr
(µ)(A,A) := Hr(C•

(µ)(A,A), δ
•
(µ)).

Hence, for all r ≥ 0, we get morphisms H(µ)
r (A,Aσ) → Hr(A,Aσ) of k-vector spaces and

Hr
(µ)(A,A) → HHr(A). Kowalzing and Krähmer [33] defined a k-linear map

Bσ
r : Cr(A,Aσ) → Cr+1(A,Aσ)

by

Bσ
r (a0 ⊗ a1, r) =

r+1∑
i=1

(−1)ir1⊗ ai ⊗ · · · ⊗ ar ⊗ a0 ⊗ σ(a1)⊗ · · · ⊗ σ(ai−1).

Let T : Cr(A,Aσ) → Cr(A,Aσ) be the k-linear map defined by

T (a0 ⊗ a1, r) = σ(a0)⊗ σ(a1)⊗ · · · ⊗ σ(ar).

A direct calculation shows that ∂r+1B
σ
r −Bσ

r−1∂r = (−1)r+1(id− T ) for all r ≥ 0.

Proposition 3.2.1 ([35, Propositions 2.1, 2.2 and 2.5]). The following assertions hold.

(1) For every 1 6= µ ∈ Λ̂ and every r ≥ 0, we get

H(µ)
r (A,Aσ) = 0.

(2) For all r ≥ 0, the restriction of the map Bσ
r : Cr(A,Aσ) → Cr+1(A,Aσ) to the

subspaces C
(1)
∗ (A,Aσ) induces a twisted Connes operator

Bσ
r : H(1)

r (A,Aσ) → H
(1)
r+1(A,Aσ),

and it satisfies Bσ
r+1B

σ
r = 0.

(3) If σ is diagonalizable, then we have

Hr(A,Aσ) ∼= H(1)
r (A,Aσ)

for r ≥ 0.

The following is an easy consequence of Proposition 3.2.1.

Corollary 3.2.2. If the algebra automorphism σ of A is diagonalizable, then so is its

inverse σ−1. Furthermore, if this is the case, then we have two twisted Connes operators

Bσ
∗ : H(1)

∗ (A,Aσ) → H
(1)
∗+1(A,Aσ), Bσ−1

∗ : H(1)
∗ (A,Aσ−1) → H

(1)
∗+1(A,Aσ−1).
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From now on, we assume A to be a Frobenius algebra with Nakayama automorphism

ν. Let Λ = {λ1, . . . , λt} be the set of distinct eigenvalues of ν. Suppose that Λ ⊂ k. Let

Λ̂ := 〈Λ〉 be the submonoid of k× generated by Λ. For any µ ∈ Λ̂, we define a subspace

D∗
(µ)(A,A) of D∗(A,A) in the following way: for any µ ∈ Λ̂,

Dr
(µ)(A,A) :=

C
r
(µ)(A,A) if r ≥ 0,

C
(µ)
−r−1(A,Aν−1) if r ≤ −1.

Lemma 3.2.3. For any µ ∈ Λ̂, the subspaces D∗
(µ)(A,A) of D∗(A,A) are compatible

with the differentials d̂∗ of the complex (D•(A,A), d̂•).

Proof. It is sufficient to show that d̂−1(D−1
(µ)(A,A)) ⊂ D0

(µ)(A,A). If x ∈ Aµ = D−1
(µ)(A,A),

then we have

ν(d̂−1(x)) =
∑
i

ν(ui)ν(x)ν(vi) =
∑
i, j

〈ui, vj〉uj · ν(x)ν(vi)

=
∑
j

ujν(x)ν

(∑
i

〈ui, vj〉vi
)

=
∑
j

ujν(x)ν(ν
−1(vj))

=
∑
j

ujν(x)vj.

Since 0 = (ν − µ id)(x) = ν(x)− µx, we get

(ν − µ id)(d̂−1(x)) = ν(d̂−1(x))− µ d̂−1(x) =
∑
j

ujν(x)vj − µ
∑
j

ujxvj = 0.

Therefore, we have d̂−1(x) ∈ D0
(µ)(A,A).

From Lemma 3.2.3, we obtain a subcomplex (D•
(µ)(A,A), d̂

•
(µ)) of (D•(A,A), d̂•). Put

CHr
(µ)(A) := Hr(D•

(µ)(A,A), d̂
•
(µ))

for all r ∈ Z. Hence the inclusion D•
(µ)(A,A) → D•(A,A) induces a morphism

CHr
(µ)(A) → CHr(A) of k-vector spaces for r ∈ Z. Before stating the next proposi-

tion, let us recall a well-known duality between Hochschild cohomology and Hochschild

homology: there is an isomorphism Θ : D(C∗(A,Aν)) → C∗(A,A) given by

D(Cr(A,Aν)) = Hom(Aν ⊗Ae A⊗ A
⊗r ⊗ A, k)

∼= HomAe(A⊗ A
⊗r ⊗ A,Hom(Aν , k))

∼= HomAe(A⊗ A
⊗r ⊗ A,A) = Cr(A,A),
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where r ≥ 0 and the second isomorphism is induced by Aν
∼= D(A). Then Θ :

D(C∗(A,Aν)) → C∗(A,A) is a morphism of complexes and hence induces a duality

D(Hr(A,Aν)) ∼= HHr(A). In fact, we can write Θ : D(Cr(A,Aν)) → Cr(A,A) and its

inverse Θ−1 : Cr(A,A) → D(Cr(A,Aν)) as follows:

Θ : D(Cr(A,Aν)) → Cr(A,A); ψ 7→
[
b1, r 7→

∑
j

ψ(uj ⊗ b1, r)vj

]
,

Θ−1 : Cr(A,A) → D(Cr(A,Aν)); f 7→
[
a0 ⊗ a1, r 7→ 〈f(a1, r), a0〉

]
.

Proposition 3.2.4. Let A be a Frobenius algebra. If the Nakayama automorphism ν

of A is diagonalizable, then the following statements hold.

(1) The isomorphism Θ : D(C•(A,Aν)) → C•(A,A) induces an isomorphism of com-

plexes

D(C(µ)
• (A,Aν)) ∼= C•

(µ−1)(A,A)

for all µ ∈ Λ̂.

(2) For r ∈ Z and µ 6= 1 ∈ Λ̂, we get

CHr
(µ)(A) = 0.

(3) For each r ∈ Z, there exists an isomorphism of k-vector spaces

CHr
(1)(A)

∼= CHr(A).

Proof. It follows from Lemma 3.2.5 below that the inverse of each eigenvalue λ ∈ Λ is

also an eigenvalue of the Nakayama automorphism ν of A. Since A is the (finite) direct

sum of the eigenspaces Aλ1 , . . . , Aλt , we have D(Cr(A,Aν)) ∼=
⊕

µ∈Λ̂D(C
(µ)
r (A,Aν))

for all r ≥ 0. For the first statement, it is sufficient to show that the inverse Θ−1 :

C•(A,A) → D(C•(A,Aν)) induces an isomorphism Cr
(µ)(A,A)

∼= D(C
(µ−1)
r (A, Aν)).

Since Θ−1(f) ∈ D(Cr(A,Aν)) is a non-zero map for 0 6= f ∈ Cr
(µ)(A,A), there exist

µ′ ∈ Λ̂ and a0 ⊗ a1,r ∈ C
(µ′)
r (A,Aν) such that 〈f(a1,r), a0〉 6= 0, so that we get (µµ′ −

1)〈f(a1,r), a0〉 = 0 and hence µ′ = µ−1. As a result, we have shown that if λ ∈ Λ̂ with

λ 6= µ−1, then the restriction of Θ−1(f) to C
(λ)
r (A,Aν) is the zero map. Thus, we have

a monomorphism

Θ−1
(µ) := Θ−1|Cr

(µ)
(A,A) : C

r
(µ)(A,A) → D(C(µ−1)

r (A,Aν)).
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Furthermore, we get Θ−1
(µ) is surjective. Indeed, for any ψ ∈ D(C

(µ−1)
r (A,Aν)), there

exists f ∈ Cr(A,A) such that ψ = Θ−1(f). Let µ1, . . . , µr ∈ Λ and b1,r ∈ Aµ1⊗· · ·⊗Aµr .

It follows from A =
⊕

iAλi
and ψ|

C
(λ)
r (A,Aν)

= 0 for all λ 6= µ−1 that

〈f(b1,r), a〉 = 〈ν(f(b1,r)), ν(a)〉 = 〈ν(f(b1,r)), (µ1 · · ·µr)
−1µ−1a〉

for any a ∈ A. Consequently, we get ν(f(b1,r)) = µ1 · · ·µrµf(b1,r) and hence f ∈
Cr

(µ)(A,A). This shows that Θ
−1
(µ) : C

r
(µ)(A,A) → D(C

(µ−1)
r (A,Aν)) is surjective.

For the second statement, let r be an integer and µ ∈ Λ̂ such that µ 6= 1. In the

case r ≤ −2, the desired result is a consequence of Proposition 3.2.1 (1). If r ≥ 1, then

the first statement (1) and Proposition 3.2.1 (1) imply that there is an isomorphism

CHr
(µ)(A) = Hr

(µ)(A,A)
∼= D(H(µ−1)

r (A,Aν)) = 0.

We also have CH−1
(µ)(A) = 0 and CH0

(µ)(A) = 0 because CH−1
(µ)(A) ≤ H

(µ)
0 (A,Aν−1), and

CH0
(µ)(A) is a quotient space of H0

(µ)(A,A).

For the last statement, let r be an integer. For the case r ≤ −2, the desired result

is a consequence of Proposition 3.2.1 (3). If r ≥ 1, then the first statement (1) and

Proposition 3.2.1 (1) yield that there are isomorphisms

CHr(A) = HHr(A) ∼= D(Hr(A,Aν)) ∼= D(H(1)
r (A,Aν)) ∼= Hr

(1)(A,A) = CHr
(1)(A).

Since Aν−1 =
⊕

iAλi
as k-vector spaces, the differential d̂−1 can be decomposed as

d̂−1 = [d̂−1
λ1

· · · d̂−1
λt
], where d̂−1

λj
: Aλj

→ A is the restriction of d̂−1 to Aλj
. Then we have

CH−1(A) ∼=
⊕
1≤i≤t

CH−1
(λi)

(A) = CH−1
(1)(A).

Similarly, we have CH0(A) ∼= CH0
(1)(A). This completes the proof.

Lemma 3.2.5 ([35, Lemma 3.5]). Let A be a Frobenius algebra such that its Nakayama

automorphism ν is diagonalizable. Then we have the following statements.

(1) For any λ ∈ Λ, its inverse λ−1 belongs to Λ.

(2) The isomorphism Aν
∼= D(A) of A-bimodules induces an isomorphism Aλ

∼=
D(Aλ−1) of vector spaces for any λ ∈ Λ.

Suppose that the Nakayama automorphism ν is diagonalizable. For each λi ∈
Λ = {λ1, . . . , λt}, we denote by mi its algebraic multiplicity. Then we have a k-basis

(uλi
1 , . . . , u

λi
mi
) of the eigenspace Aλi

associated with λi. Thus d-tuple (u
λ1
1 , . . . , u

λ1
m1
, . . . ,

uλt
1 , . . . , u

λt
mt
) forms a k-basis of A, and we obtain its dual basis (vλ1

1 , . . . , v
λ1
m1
, . . . , vλt

1 , . . . ,
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vλt
mt
) of A with respect to the bilinear form 〈 , 〉. It follows from Lemma 3.2.5 and

〈vλi
k , u

λj

l 〉 = δijδkl that the dual basis vectors vλi
1 , . . . , v

λi
mi

belong to Aλ−1
i

for each λi.

We fix the dual bases (uλi
j )i, j, (v

λi
j )i, j of A. For simplifying the notation, we will write

(u1, . . . , ud) and (v1, . . . , vd) for (u
λi
j )i, j and (vλi

j )i, j when there is no danger of confusion.

Proposition 3.2.6. Let A be a Frobenius algebra such that its Nakayama automorphism

ν is diagonalizable. For any µ, µ′ ∈ Λ̂, ? : D∗(A,A) ⊗ D∗(A,A) → D∗(A,A) induces

the restrictions ?µ,µ′ : D∗
(µ)(A,A)⊗D∗

(µ′)(A,A) → D∗
(µµ′)(A,A).

Proof. We only show that the ?-product ? restricts to the subcomplexes in the cases (3)

(i). Proofs of the other cases are similar to the proof of the case (3) (i). Let µ, µ′ ∈ Λ̂

be arbitrary and m, p ∈ Z such that m ≥ 0, p ≥ 0 and p > m, and let f ∈ Cm
(µ)(A,A)

and α = a0 ⊗ a1, p ∈ Aµ′
0
⊗ Aµ′

1
⊗ · · · ⊗ Aµ′

p
⊂ C

(µ′)
p (A,Aν−1) with

∏
µ′
i = µ′. We claim

that

(f ? α)(b1,m−p−1) =
∑

1≤i≤t,
1≤j≤mi

f(b1,m−p−1 ⊗ uλi
j ν(a0)⊗ a1, p)v

λi
j ∈ Aµµ′µ1···µm−p−1

holds for any b1,m−p−1 ∈ Aµ1 ⊗ · · · ⊗ Aµm−p−1 , where the µi are elements of Λ. Indeed,

we have

ν(
∑
i,j

f(b1,m−p−1 ⊗ uλi
j ν(a0)⊗ a1, p)v

λi
j )

=
∑
i,j

ν(f(b1,m−p−1 ⊗ uλi
j ν(a0)⊗ a1, p))ν(v

λi
j )

=
∑
i,j

µµ1 · · ·µm−p−1λiµ
′f(b1,m−p−1 ⊗ uλi

j ν(a0)⊗ a1, p)λ
−1
i vλi

j

= µµ′µ1 · · ·µm−p−1

∑
i,j

f(b1,m−p−1 ⊗ uλi
j ν(a0)⊗ a1, p)v

λi
j

and therefore f ? α ∈ Cm−p−1
(µµ′) (A,A).

We denote ?1 := ?1,1 : D•
(1)(A,A) ⊗ D•

(1)(A,A) → D•
(1)(A,A). Then we have the

following result.

Corollary 3.2.7. Let A be a Frobenius algebra. Then (CH•
(1)(A), ?1) is a graded com-

mutative algebra. Furthermore, if the Nakayama automorphism ν of A is diagonalizable,

then (CH•
(1)(A), ?1) is isomorphic to (CH•(A), ?) as graded algebras.

3.3. BV structure on the complete cohomology

In this section, we prove the main result of this chapter. Let us recall the definition

of Batalin-Vilkovisky algebras.
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Definition 3.3.1. A graded commutative algebra (H• =
⊕

r∈ZHr,^) with 1 ∈ H0 is

called a Batalin-Vilkovisky algebra (BV algebra, for short) if there exists an operator

∆∗ : H∗ → H∗−1 such that:

(i) ∆r−1∆r = 0 for any r ∈ Z;

(ii) ∆0(1) = 0;

(iii) For homogeneous elements α, β and γ in H•,

∆(α ^ β ^ γ) = ∆(α ^ β)^ γ + (−1)|α|α ^ ∆(β ^ γ)

+ (−1)|β|(|α|−1)β ^ ∆(α ^ γ)−∆(α)^ β ^ γ

− (−1)|α|α ^ ∆(β)^ γ − (−1)|α|+|β|α ^ β ^ ∆(γ),

where |α| denotes the degree of a homogeneous element α ∈ H•.

Remark 3.3.2. For each BV algebra (H•,^,∆), we can associate a graded Lie bracket

[ , ] of degree −1 as

[α, β] := (−1)|α||β|+|α|+|β| ((−1)|α|+1∆(α ^ β) + (−1)|α|∆(α)^ β + α ^ ∆(β)
)
,

where α, β are homogeneous elements of H•. The equation is said to be the BV identity.

It follows from [26, Proposition 1.2] that the bracket [ , ] above makes (H•,^, [ , ])

into a Gerstenhaber algebra.

Recall that a symmetric algebra A is a Frobenius algebra with a non-degenerate

bilinear form 〈 , 〉 : A⊗A→ k satisfying 〈a, b〉 = 〈b, a〉 for all a, b ∈ A. Wang [46] has

proved the following result.

Theorem 3.3.3 ([46, Corollary 6.21]). Let A be a symmetric algebra. Then the com-

plete cohomology ring (CH•(A), ?) is a BV algebra together with an operator ∆̂∗ :

CH∗(A) → CH∗−1(A) defined by

∆̂r =


∆r if r ≥ 1,

0 if r = 0,

(−1)r B−r−1 if r ≤ −1,

where Br is the Connes operator defined by

Br(a0 ⊗ a1, r) =
r+1∑
i=1

(−1)ir1⊗ ai, r ⊗ a0 ⊗ a1, i−1

for any a0 ⊗ a1, r ∈ Cr(A,Aν−1), and ∆r defined in [43] is the dual of the Connes

operator Br−1, which is equivalent to saying that ∆r is given by a formula
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〈∆r(f)(a1, r−1), ar〉 =
r∑

i=1

(−1)i(r−1)〈f(ai, r−1 ⊗ ar ⊗ a1, i−1), 1〉

for any f ∈ Cr(A,A). In particular, the restrictions CH≥0(A) and CH≤0(A) are BV

subalgebras of CH•(A).

Remark 3.3.4. Let A be a symmetric algebra. It follows from Remark 3.3.2 that the

BV differential ∆̂ in Theorem 3.3.3 gives rise to a Lie bracket { , } (of degree −1)

defined by

{α, β} := (−1)|α||β|+|α|+|β|
(
(−1)|α|+1∆̂(α ^ β) + (−1)|α|∆̂(α)^ β + α ^ ∆̂(β)

)
for any homogeneous elements α, β ∈ CH•(A). Moreover, the Gerstenhaber algebra

(CH•(A), ?, { , }) is isomorphic to (Êxt
•
Ae(A,A), ^sg, [ , ]sg) as Gerstenhaber algebras.

In the rest of this section, we show the following result on Frobenius algebras whose

Nakayama automorphisms are diagonalizable.

Theorem 3.3.5. Let A be a Frobenius algebra. If its Nakayama automorphism ν is

diagonalizable, then the graded commutative ring (CH•
(1)(A), ?1) is a BV algebra together

with an operator ∆̂∗ : CH
∗
(1)(A) → CH∗−1

(1) (A) defined by

∆̂r =


∆ν

r if r ≥ 1,

0 if r = 0,

(−1)i Bν−1

−r−1 if r ≤ −1,

where Bν−1

r is the twisted Connes operator defined by

Bν−1

r (a0 ⊗ a1, r) =
r+1∑
i=1

(−1)ir1⊗ ai, r ⊗ a0 ⊗ ν−1(a1)⊗ · · · ⊗ ν−1(ai−1)

for any a0⊗a1, r ∈ Cr(A,Aν−1), and ∆ν
r defined in [35] is the dual of the twisted Connes

operator Bν
r−1, which is equivalent to saying that ∆ν

r is given by a formula

〈∆ν
r(f)(a1, r−1), ar〉 =

r∑
i=1

(−1)i(r−1)〈f(ai, r−1 ⊗ ar ⊗ ν(a1)⊗ · · · ⊗ ν(ai−1)), 1〉

for any f ∈ Cr(A,A). In particular, the restrictions CH≥0
(1)(A) and CH≤0

(1)(A) are BV

subalgebras of CH•
(1)(A). Furthermore, the induced Gerstenhaber algebra (CH•

(1)(A), ?1,

{ , }) is isomorphic to the Gerstenhaber algebra (Êxt
•
Ae(A,A),^sg, [ , ]sg).



30

Remark 3.3.6. Each of the components ∆ν
∗ and Bν−1

∗ is defined on the chain level.

Corollary 3.2.2 and Lemma 3.2.5 imply that we can lift the two components ∆ν
∗ and

Bν−1

∗ to the cohomology level when we restrict them to D∗
(1)(A,A).

Using the isomorphism CH•
(1)(A)

∼= CH•(A) appeared in Corollary 3.2.7, we have

our main result.

Theorem 3.3.7. Let A be a Frobenius algebra. If the Nakayama automorphism of A is

diagonalizable, then the complete cohomology ring CH•(A) is a BV algebra such that the

induced Gerstenhaber algebra is isomorphic to the Gerstenhaber algebra Êxt
•
Ae(A,A).

In order to prove Theorem 3.3.5, we claim that the bilinear map

{ , } : CHm
(1)(A)⊗ CHn

(1)(A) → CHm+n−1
(1) (A) (m,n ∈ Z)

defined by

{α, β} := (−1)|α||β|+|α|+|β|
(
(−1)|α|+1∆̂(α ?1 β) + (−1)|α|∆̂(α) ?1 β + α ?1 ∆̂(β)

)
for any α⊗ β ∈ CHm

(1)(A)⊗ CHn
(1)(A) commutes with the Gerstenhaber bracket

[ , ]sg : Êxt
m

Ae(A,A)⊗ Êxt
n

Ae(A,A) → Êxt
m+n−1

Ae (A,A).

n

m

III

III

IV

V

VI

Figure 3.1: A plane with six regions

By considering whether m+n−1 is negative or not together with Figure 3.1, and by

using the anti-commutativity of the Gerstenhaber bracket [ , ]sg, we see that it suffices

to show our claim for a pair (m,n) of integers n ≤ m satisfying one of the following

conditions:

(1) (m,n) is on the lines m = 0 or n = 0.

(2) (m,n) belongs to the regions I, IV, V or VI.
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Thus our claim can be divided into the five cases Propositions 3.3.8, 3.3.9, 3.3.10 and

3.3.11 and Remark 3.3.12. In particular, Propositions 3.3.8, 3.3.9, 3.3.10 and 3.3.11

prove our claim for the pairs in the regions VI, V, IV and I, respectively. Further, we

consider the case (1) in Remark 3.3.12. Among the four propositions, we prove only

the first one. We also remark that, in the following propositions, the appearing integers

m and n are independent of the above argument.

Proposition 3.3.8. Let A be a Frobenius algebra with the Nakayama automorphism ν

of A diagonalizable, and let m,n be integers such that m > n ≥ 1, so m − n − 1 ≥ 0.

Then we have the following commutative diagram.

CHm
(1)(A)⊗ CH−n

(1) (A)
{ , } //

∼=
��

CHm−n−1
(1) (A)

∼=
��

ExtmAe(A,A)⊗ TorA
e

n−1(A,Aν−1)

id⊗κn−1,1 ∼=
��

Extm−n−1
Ae (A,A)

φn+1
m−n−1,0

∼=
��

ExtmAe(A,A)⊗ Ext1Ae(A,Ω
n+1

(A))
[ , ]sg //

∼=
��

ExtmAe(A,Ω
n+1

(A))

∼=
��

Êxt
m

Ae(A,A)⊗ Êxt
−n

Ae (A,A)
[ , ]sg // Êxt

m−n−1

Ae (A,A),

where { , } : Dm
(1)(A,A)⊗D−n

(1) (A,A) → Dm−n−1
(1) (A,A) is defined by

{f, z}

= (−1)|f ||z|+|f |+|z|
(
(−1)|f |+1∆ν(f ?1 z) + (−1)|f |∆ν(f) ?1 z + (−1)|z|f ?1 B

ν−1

(z)
)

= (−1)|f ||z|+|f |+|z|
(
(−1)|f |+1∆̂(f ?1 z) + (−1)|f |∆̂(f) ?1 z + f ?1 ∆̂(z)

)
for f ⊗ z ∈ Dm

(1)(A,A)⊗D−n
(1) (A,A).

Proof. It follows from the definition of the induced Gerstenhaber bracket on Êxt
•
Ae(A,A)

that the bottom square is commutative (see Theorem 2.2.3). It remains to show the

commutativity of the top diagram. It suffices to prove that a formula

([ , ]sg(id⊗ κn−1, 1))(f ⊗ z) = ϕn+1
m−n−1, 0({ , }(f ⊗ z)) (3.1)

holds in ExtmAe(A,Ω
n+1

(A)) for f ∈ Ker δm(1) and z := a0 ⊗ a1, n−1 ∈ Ker ∂
(1)
n−1. Denote

by f the composition of f : A
⊗m → A with the canonical epimorphism π : A→ A. For
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the right hand side of the formula (3.1), we have, for b1,m ∈ A
⊗m

,

ϕn+1
m−n−1, 0({f, z})(b1,m)

= (−1)mn+n+1ϕn+1
m−n−1, 0(∆

ν(f _ z))(b1,m) + (−1)mn+nϕn+1
m−n−1, 0(∆

ν(f)_ z)(b1,m)

+(−1)mn+mϕn+1
m−n−1, 0(f _ Bν−1

(z))(b1,m)

=
∑
j, k

n−m∑
i=1

(−1)i(n−m+1)+n+1d(〈ukνa0f(a1, n−1 ⊗ vk ⊗ bi,m−n−1 ⊗ uj ⊗ νb1, i−1), 1〉vj

⊗ bm−n,m ⊗ 1)

+
∑
j, k

n∑
i=1

(−1)i(m+1)d(ujνa0〈f(ai, n−1 ⊗ vj ⊗ b1,m−n−1 ⊗ uk ⊗ ν−1a1, i−1), 1〉vk

⊗ bm−n,m ⊗ 1)

+
∑
j, k

m−n∑
i=1

(−1)(i+n)(m+1)d(ujνa0〈f(bi,m−n−1 ⊗ uk ⊗ ν−1a1, n−1 ⊗ νvj

⊗ νb1, i−1), 1〉vk ⊗ bm−n,m ⊗ 1)

+
∑
j

n∑
i=1

(−1)(m+i)(n+1)d(f(b1,m−n−1 ⊗ uj ⊗ ai, n−1 ⊗ a0 ⊗ ν−1a1, i−1)vj

⊗ bm−n,m ⊗ 1)

in Ω
n+1

(A). On the other hand, for the left hand side of the formula (3.1), we get

[f, κn−1, 1(z)]sg(b1,m)

= (f • κn−1, 1(z)− (−1)(m−1)(−n−1)κn−1, 1(z) • f)(b1,m)

=
∑
j

m−n∑
i=1

(−1)(n+1)(i+1)d(f(b1, i−1 ⊗ ujνa0 ⊗ a1, n−1 ⊗ vj ⊗ bi,m−n−1)

⊗ bm−n,m ⊗ 1) (3.2)

+
∑
j

m∑
i=m−n+1

(−1)(n+1)(i+1)d(f(b1, i−1 ⊗ ujνa0 ⊗ a1,m−i)⊗ am−i+1, n−1 ⊗ vj

⊗ bi,m ⊗ 1) (3.3)

+
∑
j

n∑
i=1

(−1)i(m+1)d(ujνa0 ⊗ a1, i−1 ⊗ f(ai, n−1 ⊗ vj ⊗ b1,m−n+i−1)

⊗ bm−n+i,m ⊗ 1). (3.4)

We will transform [f, κn−1, 1(z)](b1,m) to ϕ
n+1
m−n−1, 0({f, z})(b1,m) in Ω

n+1
(A), using some

boundaries.
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First, we deform the first term (3.2). A direct calculation shows

∑
j, k

n−m∑
i=1

(−1)i(n−m+1)+n+1d(〈ukνa0f(a1, n−1 ⊗ vk ⊗ bi,m−n−1 ⊗ uj ⊗ νb1, i−1), 1〉vj

⊗ bm−n,m ⊗ 1)

+
∑
j, k

m−n∑
i=1

(−1)(i+n)(m+1)d(ujνa0〈f(bi,m−n−1 ⊗ uk ⊗ ν−1a1, n−1 ⊗ νvj ⊗ νb1, i−1), 1〉vk

⊗ bm−n,m ⊗ 1)

=
∑
j

m−n−2∑
i=1

m−n∑
l=i+2

(−1)i(m+1)+(n+1)l+1ϕn−1
m−n−1, 0

(
δ((
∑
j, k

〈f(id⊗l−i−1

A
⊗ ujνa0

⊗ a1, n−1 ⊗ vj ⊗ id⊗m−n−l

A
⊗ uk ⊗ ν⊗i−1), 1〉vk) ◦ ti−1)

)
(b1,m)

+
∑
j, k

m−n−1∑
i=1

(−1)i(m+1)+(n+1)(i+1)+1ϕn−1
m−n−1, 0

(
δ((
∑
j, k

〈f(ujνa0 ⊗ a1, n−1 ⊗ vj

⊗ id⊗m−n−i−1

A
⊗ uk ⊗ ν⊗i−1), 1〉vk) ◦ ti−1)

)
(b1,m)

+
∑
j

m−n∑
i=1

(−1)(n+1)(i+1)d(f(b1, i−1 ⊗ ujνa0 ⊗ a1, n−1 ⊗ vj ⊗ bi,m−n−1)⊗ bm−n,m

⊗ 1),

where the k-linear map t : A
⊗m−n−2 → A

⊗m−n−2
is given by t(b1,m−n−2) = b2,m−n−2⊗ b1

for b1,m−n−2 ∈ A
⊗m−n−2

. In particular, we have ti−1(b1,m−n−2) = bi,m−n−2⊗b1, i−1. Note

that the two maps

ϕn−1
m−n−1, 0

(
δ((
∑
j, k

〈f(ujνa0 ⊗ a1, n−1 ⊗ vj ⊗ id⊗m−n−i−1

A
⊗ uk ⊗ ν⊗i−1), 1〉vk) ◦ ti−1)

)
,

ϕn−1
m−n−1, 0

(
δ((
∑
j, k

〈f(id⊗l−i−1

A
⊗ ujνa0 ⊗ a1, n−1 ⊗ vj ⊗ id⊗m−n−l

A
⊗ uk ⊗ ν⊗i−1), 1〉vk)

◦ ti−1)

)
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are zero in ExtmAe(A,Ω
n+1

(A)). Hence, we have

∑
j

m−n∑
i=1

(−1)(n+1)(i+1)d(f(b1, i−1 ⊗ ujνa0 ⊗ a1, n−1 ⊗ vj ⊗ bi,m−n−1)⊗ bm−n,m ⊗ 1)

=
∑
j

m−n−2∑
i=1

m−n∑
l=i+2

(−1)i(m+1)+(n+1)lϕn−1
m−n−1, 0

(
δ((
∑
j, k

〈f(id⊗l−i−1

A
⊗ ujνa0 ⊗ a1, n−1

⊗ vj ⊗ id⊗m−n−l

A
⊗ uk ⊗ ν⊗i−1), 1〉vk) ◦ ti−1)

)
(b1,m)

+
∑
j, k

m−n−1∑
i=1

(−1)i(m+1)+(n+1)(i+1)ϕn−1
m−n−1, 0

(
δ((
∑
j, k

〈f(ujνa0 ⊗ a1, n−1 ⊗ vj

⊗ id⊗m−n−i−1

A
⊗ uk ⊗ ν⊗i−1), 1〉vk) ◦ ti−1)

)
(b1,m)

+
∑
j, k

n−m∑
i=1

(−1)i(n−m+1)+n+1d(〈ukνa0f(a1, n−1 ⊗ vk ⊗ bi,m−n−1 ⊗ uj

⊗ νb1, i−1), 1〉vj ⊗ bm−n,m ⊗ 1)

+
∑
j, k

m−n∑
i=1

(−1)(i+n)(m+1)d(ujνa0〈f(bi,m−n−1 ⊗ uk ⊗ ν−1a1, n−1 ⊗ νvj

⊗ νb1, i−1), 1〉vk ⊗ bm−n,m ⊗ 1). (3.5)

Secondly, we deform the second term (3.3). A direct calculation shows

∑
j

n−1∑
i=0

n∑
l=i+1

(−1)n(m+i+1)+(n+1)(l−i+1)δ(d(f(id⊗m−n+i−1

A
⊗ uj ⊗ an+i−l+1, n−1 ⊗ a0

⊗ ν−1a1, n−l)⊗ ν−1an−l+1, n+i−l ⊗ vj ⊗ id⊗n−i

A
⊗ 1))(b1,m)

=
∑
j

m∑
i=m−n+1

(−1)(n+1)(i+1)d(f(b1,i−1 ⊗ ujνa0 ⊗ a1,m−i)⊗ am−i+1, n−1 ⊗ vj

⊗ bi,m ⊗ 1)

+
∑
j

n∑
i=1

(−1)(m+i)(n+1)+1d(f(b1,m−n−1 ⊗ uj ⊗ ai, n−1 ⊗ a0 ⊗ ν−1a1, i−1)vj

⊗ bm−n,m ⊗ 1)

+
∑
j

n−1∑
i=0

(−1)m(n+1)+i+1d(f(b1,m−n+i ⊗ uk ⊗ ν−1ai+1, n−1)νa0 ⊗ a1, i ⊗ vk

⊗ bm−n+i+1,m ⊗ 1).
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Hence, we have

∑
j

m∑
i=m−n+1

(−1)(n+1)(i+1)d(f(b1,i−1 ⊗ ujνa0 ⊗ a1,m−i)⊗ am−i+1, n−1 ⊗ vj ⊗ bi,m ⊗ 1)

=
∑
j

n−1∑
i=0

n∑
l=i+1

(−1)n(m+i+1)+(n+1)(l−i+1)δ(d(f(id⊗m−n+i−1

A
⊗ uj ⊗ an+i−l+1, n−1

⊗ a0 ⊗ ν−1a1, n−l)⊗ ν−1an−l+1, n+i−l ⊗ vj ⊗ id⊗n−i

A
⊗ 1))(b1,m)

+
∑
j

n∑
i=1

(−1)(m+i)(n+1)d(f(b1,m−n−1 ⊗ uj ⊗ ai, n−1 ⊗ a0 ⊗ ν−1a1, i−1)vj

⊗ bm−n,m ⊗ 1)

+
∑
j

n−1∑
i=0

(−1)m(n+1)+id(f(b1,m−n+i ⊗ uk ⊗ ν−1ai+1, n−1)νa0 ⊗ a1, i ⊗ vk

⊗ bm−n+i+1,m ⊗ 1). (3.6)

Finally, we deform the last term (3.4). A direct calculation shows

∑
j

n−1∑
i=0

n∑
l=i+1

(−1)n(m+i+1)+(n+1)(l−i+1)δ(d(ujνa0 ⊗ ν−1a1, i ⊗ 〈f(ν−1an+i−l+1, n−1 ⊗ vj

⊗ id⊗m−n+i−1

A
⊗ uk ⊗ ai+1, n−l+i), 1〉vk ⊗ id⊗n−i

A
⊗ 1))(b1,m)

=
∑
j

n∑
i=1

(−1)i(m+1)d(ujνa0 ⊗ a1, i−1 ⊗ f(ai, n−1 ⊗ vj ⊗ b1,m−n+i−1)⊗ bm−n+i,m

⊗ 1)

+
∑
j, k

n∑
i=1

(−1)i(m+1)+1d(ujνa0〈f(ai, n−1 ⊗ vj ⊗ b1,m−n−1 ⊗ uk ⊗ ν−1a1, i−1), 1〉vk

⊗ bm−n,m ⊗ 1)

+
∑
j

n−1∑
i=0

(−1)m(n+1)+id(f(b1,m−n+i ⊗ uk ⊗ ν−1ai+1, n−1)νa0 ⊗ a1, i ⊗ vk

⊗ bm−n+i+1,m ⊗ 1).
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Thus, we get

∑
j

n∑
i=1

(−1)i(m+1)d(ujνa0 ⊗ a1, i−1 ⊗ f(ai, n−1 ⊗ vj ⊗ b1,m−n+i−1)⊗ bm−n+i,m ⊗ 1)

=
∑
j

n−1∑
i=0

n∑
l=i+1

(−1)n(m+i+1)+(n+1)(l−i+1)δ(d(ujνa0 ⊗ ν−1a1, i ⊗ 〈f(ν−1an+i−l+1, n−1

⊗ vj ⊗ id⊗m−n+i−1

A
⊗ uk ⊗ ai+1, n−l+i), 1〉vk ⊗ id⊗n−i

A
⊗ 1))(b1,m)

+
∑
j, k

n∑
i=1

(−1)i(m+1)d(ujνa0〈f(ai, n−1 ⊗ vj ⊗ b1,m−n−1 ⊗ uk ⊗ ν−1a1, i−1), 1〉vk

⊗ bm−n,m ⊗ 1)

+
∑
j

n−1∑
i=0

(−1)m(n+1)+i+1d(f(b1,m−n+i ⊗ uk ⊗ ν−1ai+1, n−1)νa0 ⊗ a1, i ⊗ vk

⊗ bm−n+i+1,m ⊗ 1). (3.7)

Combining the formulas (3.6), (3.7) and (3.5), we obtain

[f, κn−1, 1(z)]sg(b1,m) + δ(∗)(b1,m) + ϕn−1
m−n−1, 0(δ(∗))(b1,m) = ϕn+1

m−n−1, 0({f, z})(b1,m)

in Ω
n+1

(A) for all b1,m ∈ A
⊗m

and therefore

[f, κn−1, 1(z)]sg = ϕn+1
m−n−1, 0({f, z})

in ExtmAe(A,Ω
n+1

(A)) for f ∈ Ker δm(1) and z = a0 ⊗ a1, n−1 ∈ Ker ∂
(1)
n−1. This completes

the proof of the statement.

Proposition 3.3.9. Let A be a Frobenius algebra with the Nakayama automorphism ν

of A diagonalizable, and let m,n be integers such that n ≥ m ≥ 1, so m − n − 1 < 0.

Then we have a commutative diagram

CHm
(1)(A)⊗ CH−n

(1) (A)
{ , } //

∼=
��

CHm−n−1
(1) (A)

∼=
��

ExtmAe(A,A)⊗ TorA
e

n−1(A,Aν−1)

id⊗κn−1,1 ∼=
��

TorA
e

n−m(A,Aν−1)

κn−m,m∼=
��

ExtmAe(A,A)⊗ Ext1Ae(A,Ω
n+1

(A))
[ , ]sg //

∼=
��

ExtmAe(A,Ω
n+1

(A))

∼=
��

Êxt
m

Ae(A,A)⊗ Êxt
−n

Ae (A,A)
[ , ]sg // Êxt

m−n−1

Ae (A,A),
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where { , } : Dm
(1)(A,A)⊗D−n

(1) (A,A) → Dm−n−1
(1) (A,A) is defined by

{f, z}

= (−1)|f ||z|+|f |+|z|
(
(−1)|z|+1Bν−1

(f ?1 z) + (−1)|f |∆ν(f) ?1 z + (−1)|z|f ?1 B
ν−1

(z)
)

= (−1)|f ||z|+|f |+|z|
(
(−1)|f |+1∆̂(f ?1 z) + (−1)|f |∆̂(f) ?1 z + f ?1 ∆̂(z)

)
for f ⊗ z ∈ Dm

(1)(A,A)⊗D−n
(1) (A,A).

Proposition 3.3.10. Let A be a Frobenius algebra with the Nakayama automorphism

ν of A diagonalizable, and let m,n be integers such that m ≥ 1 and n ≥ 1. Then we

have the following commutative diagram:

CH−m
(1) (A)⊗ CH−n

(1) (A)
{ , } //

∼=
��

CH−m−n−1
(1) (A)

∼=
��

TorA
e

m−1(A,Aν−1)⊗ TorA
e

n−1(A,Aν−1)

κm−1,1⊗κn−1,1 ∼=
��

TorA
e

m+n(A,Aν−1)

κm+n,1∼=
��

Ext1Ae(A,Ω
m+1

(A))⊗ Ext1Ae(A,Ω
n+1

(A))
[ , ]sg //

∼=
��

Ext1Ae(A,Ω
m+n+2

(A))

∼=
��

Êxt
−m

Ae (A,A)⊗ Êxt
−n

Ae (A,A)
[ , ]sg // Êxt

−m−n−1

Ae (A,A),

where { , } : D−m
(1) (A,A)⊗D−n

(1) (A,A) → D−m−n−1
(1) (A,A) is defined by

{w, z}

= (−1)|w||z|+|w|+|z|
(
(−1)|z|+1Bν−1

(w ?1 z) +Bν−1

(w) ?1 z + (−1)|z|w ?1 B
ν−1

(z)
)

= (−1)|w||z|+|w|+|z|
(
(−1)|w|+1∆̂(w ?1 z) + (−1)|w|∆̂(w) ?1 z + w ?1 ∆̂(z)

)
for w ⊗ z ∈ D−m

(1) (A,A)⊗D−n
(1) (A,A).

The following is a consequence of Lambre-Zhou-Zimmermann.

Proposition 3.3.11 ([35, Corollary 3.8]). Let A be a Frobenius algebra whose Nakayama

automorphism ν is diagonalizable, and let m,n be integers such that m > 0 and n > 0.
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Then we have the following commutative diagram:

CHm
(1)(A)⊗ CHn

(1)(A)
{ , } //

∼=
��

CHm+n−1
(1) (A)

∼=
��

ExtmAe(A,A)⊗ ExtnAe(A,A)

∼=
��

[ , ] // Extm+n−1
Ae (A,A)

∼=
��

Êxt
m

Ae(A,A)⊗ Êxt
n

Ae(A,A)
[ , ]sg // Êxt

m+n−1

Ae (A,A),

where [ , ] is the Gerstenhaber bracket on Hochschild cohomology and { , } : Dm
(1)(A,A)⊗

Dn
(1)(A,A) → Dm+n−1

(1) (A,A) is defined by

{f, g} = (−1)|f ||g|+|f |+|g| ((−1)|f |+1∆ν(f ?1 g) + (−1)|f |∆ν(f) ?1 g + f ?1 ∆
ν(g)

)
= (−1)|f ||g|+|f |+|g|

(
(−1)|f |+1∆̂(f ?1 g) + (−1)|f |∆̂(f) ?1 g + f ?1 ∆̂(g)

)
for f ⊗ g ∈ Dm

(1)(A,A)⊗Dn
(1)(A,A).

Remark 3.3.12. We have to consider the case of either m = 0 or n = 0. If m ≥ 0 and

n = 0, then we will prove that there is a commutative diagram

CHm
(1)(A)⊗ CH0

(1)(A)
{ , } //

∼=
��

CHm−1
(1) (A)

∼=
��

ExtmAe(A,A)⊗ CH0(A)

id⊗φ0, 0 ∼=
��

Extm−1
Ae (A,A)

∼= φm−1,0

��

ExtmAe(A,A)⊗ Ext1Ae(A,Ω
1
(A))

∼=
��

[ , ]sg // ExtmAe(A,Ω
1
(A))

∼=
��

Êxt
m

Ae(A,A)⊗ Êxt
0

Ae(A,A)
[ , ]sg // Êxt

m−1

Ae (A,A),

where the vertical isomorphism ϕ0, 0 : CH
0(A) → Ext1Ae(A,Ω

1
(A)) is defined in Propo-

sition 3.1.3 and { , } is defined by

{f, g} = (−1)|f |
(
(−1)|f |+1∆ν(f ?1 g) + (−1)|f |∆ν(f) ?1 g

)
for f ⊗ g ∈ Dm

(1)(A,A)⊗D0
(1)(A,A). We must show that

ϕm−1,0({ , }(f ⊗ g)) = ([ , ]sg(id⊗ ϕ0, 0))(f ⊗ g)
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in ExtmAe(A,Ω
1
(A)) for f ⊗ g ∈ Ker δm(1) ⊗ Ker δ0(1). A direct calculation shows that we

have

[f, ϕ0, 0(g)]sg = ϕm−1, 0([f, g])

as maps, where [ , ] is the Gerstenhaber bracket on Hochschild cohomology. It follows

from [35, Corollary 3.8] that [f, g] = −∆ν(f ?1 g) + ∆ν(f) ?1 g in Extm−1
Ae (A,A). As a

result, we obtain a formula in ExtmAe(A,Ω
1
(A)):

[f, ϕ0, 0(g)]sg = ϕm−1, 0([f, g]) = ϕm−1, 0(−∆ν(f ?1 g) + ∆ν(f) ?1 g) = ϕm−1, 0({f, g}).

Similarly, one can prove our claim in the other case m = 0 and n ≥ 0.

We are now able to prove Theorem 3.3.5.

Proof of Theorem 3.3.5. It follows from Propositions 3.3.8, 3.3.9, 3.3.10 and 3.3.11

and Remark 3.3.12 that we have the following commutative diagram

CHm
(1)(A)⊗ CH−n

(1) (A)
{ , } //

∼=
��

CHm−n−1
(1) (A)

∼=
��

Êxt
m

Ae(A,A)⊗ Êxt
−n

Ae (A,A)
[ , ]sg // Êxt

m−n−1

Ae (A,A),

where m,n are arbitrary integers. Since (Êxt
•
Ae(A,A),^sg, [ , ]sg) is a Gerstenhaber

algebra, we have

[f, g ^sg h]sg = [f, g]sg ^sg h+ (−1)(|f |−1)|g|g ^sg [f, h]sg

for arbitrary homogeneous elements f, g and h ∈ Êxt
•
Ae(A,A). Since we have proved

that [ , ]sg commutes with { , }, using the defining formula for { , } and the formula

{f, g ?1 h} = (−1)r
(
(−1)|f |+1∆̂(f ?1 g ?1 h) + (−1)|f |∆̂(f) ?1 g ?1 h+ f ?1 ∆̂(g ?1 h)

)
with r = |f |(|g|+ |h|) + |f |+ |g|+ |h|, we obtain

∆̂(f ?1 g ?1 h) = ∆̂(f ?1 g) ? h+ (−1)|f |f ?1 ∆̂(g ?1 h) + (−1)|g|(|f |−1)g ?1 ∆̂(f ?1 h)

− ∆̂(f) ?1 g ?1 h+ (−1)|f |f ?1 ∆̂(g) ?1 h+ (−1)|f |+|g|f ?1 g ?1 ∆̂(h)

for arbitrary homogeneous elements f, g and h ∈ CH•
(1)(A). Finally, by the definition

of the operator ∆̂, we get ∆̂2 = 0 and ∆̂0(1) = 0.

Remark 3.3.13. Recall that the Nakayama automorphism ν of A is semisimple if the

map ν ⊗ idk : A ⊗ k → A ⊗ k is diagonalizable over the algebraic closure k of k. The

results of Lambre-Zhou-Zimmermann [35, Section 4] and an easy calculation imply

that the complete cohomology ring of a Frobenius algebra is a BV algebra when the

Nakayama automorphism is semisimple.
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3.4. Examples

Throughout this section, we assume that k is an algebraically closed field whose

characteristic char k is p. Lambre-Zhou-Zimmermann [35] showed that there are many

examples of Frobenius algebras with diagonalizable Nakayama automorphisms. This

section is devoted to computing the graded commutative ring structure and the BV

structure of the complete cohomology for three certain self-injective Nakayama alge-

bras whose Nakayama automorphisms are diagonalizable. Lambre-Zhou-Zimmermann

[35] also gave an useful and combinatorial criterion to check that the Nakayama au-

tomorphism is diagonalizable: let A = kQ/I be the algebra given by a quiver with

relations. Let Q0 be the set of vertices in Q. It is well-known that we can choose a

k-basis B of A such that B contains a k-basis of the socle of the right regular A-module

A. Suppose that A is a Frobenius algebra. It follows from [30, Proposition 2.8] that

we can construct an associative and non-degenerate bilinear form 〈 , 〉 : A⊗A→ k by

defining 〈a, b〉 := tr(ab) for a, b ∈ A, where tr : A→ k is given by

tr(p) =

{
1 if p ∈ B ∩ socAA,

0 otherwise.

Suppose that B satisfies two additional conditions:

(i) For any two paths p, q ∈ B, there exist a path r ∈ B and a constant λ ∈ k such

that p · q = λr in A;

(ii) For every path p ∈ B, there uniquely exists a path p′ ∈ B such that 0 6= p · p′ ∈
socAA.

Criterion 3.4.1 ([35, Criterion 5.1]). Under the situation as above, assume that k is

an algebraically closed field of characteristic zero or of characteristic p larger than the

number of arrows of Q. Then the Nakayama automorphism of A associated with the

bilinear form 〈 , 〉 : A⊗ A→ k given above is diagonalizable over k.

Suppose that A = kQ/I is a self-injective Nakayama algebra. It is known that the

ordinary quiver Q of A is a cyclic quiver with |Q0| = s, and an admissible ideal I of

kQ is of the form RN
Q , where RQ is the arrow ideal of kQ and N ≥ 2. Obviously, we

can take a k-basis B of A consisting of paths contains a k-basis of socAA. Since any

indecomposable projective A-module is uniserial, B satisfies the two condition (i) and

(ii). Hence, we can rewrite Criterion 3.4.1 as follows:

Criterion 3.4.2. Let A = kQ/RN
Q be a self-injective Nakayama algebra. If the char-

acteristic of k is zero or p larger than the number of arrows of Q, then the Nakayama

automorphism of A is diagonalizable over k.

Remark 3.4.3. If A = kQ/RN
Q is a self-injective Nakayama algebra, then the exponent

N does not affect Criterion 3.4.2, and only the number of arrows of Q is important.

We will compute BV algebras of Nakayama algebras A = kQ/RN
Q with |Q0| = s for

three cases.



41

The case s = 2, N = 2.

Let Q be the following quiver

1
α1 // 2.
α2

oo

Consider the algebra A := kQ/R2
Q. Thus, A is a self-injective Nakayama algebra and,

moreover, a truncated algebra. It follows from Criterion 3.4.2 that the Nakayama

automorphism of A is diagonalizable if and only if char k 6= 2. Thus, we suppose that

char k 6= 2. Note that we need the assumption on char k only if we construct BV

differential. However, we assume that char k 6= 2 in advance. We denote by ei the

primitive idempotent of A corresponding to a vertex i of Q such that eiαiei+1 = αi

holds, where we regard the subscripts i of ei and αi modulo 2. Take a k-basis B =

(u1, u2, u3, u4) = (e1, e2, α1, α2) of A. Clearly, it contains a k-basis {α1, α2} of socAA.

We hence get an associative and non-degenerate bilinear form 〈 , 〉 : A ⊗ A → k and

the dual basis B∗ = (v1, v2, v3, v4) = (α2, α1, e1, e2) of A such that 〈vi, uj〉 = δij, where

δij denotes Kronecker’s delta. Under the basis B, the representation matrix of the

Nakayama automorphism ν of A is 
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


and is similar to a diagonal matrix

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .

Moreover, we have a decomposition A = A1 ⊕ A−1 of A by two k-vector spaces

A1 = Ker (ν − id) = k 1A ⊕ k (α1 + α2),

A−1 = Ker (ν + id) = k (e1 − e2)⊕ k (α1 − α2).

Let us recall that a set {Aei ⊗ ejA | i, j ∈ Q0} is a complete set of pairwise non-

isomorphic indecomposable projective A-bimodules, and we denote by P (i, j) the in-

decomposable projective A-bimodule Aei ⊗ ejA. It follows from [7] that a minimal

projective resolution P• of A as an A-bimodule is an exact sequence

· · · → P2r+1
ϕ2r+1−−−→ P2r

ϕ2r−−→ P2r−1 → · · · → P1
ϕ1−→ P0

ϕ0−→ A→ 0,

where
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Pn :=

{
P (1, 2)⊕ P (2, 1) if n is odd,

P (1, 1)⊕ P (2, 2) if n is even

and A-bimodule homomorphisms φ∗ : P∗ → P∗−1 are defined as follows:

φ0(ei ⊗ ei) = ei;

φ2r(ei ⊗ ei) = ei ⊗ αi+1 + αi ⊗ ei;

φ2r+1(ei ⊗ ei+1) = αi ⊗ ei+1 − ei ⊗ αi.

For a k-vector space V and a k-basis B of V , given a basis vector p ∈ B, we denote

by p∗ the k-linear map V → k sending q ∈ B to 1 if q = p and to 0 otherwise.

Applying the exact functor D = Hom(−, k) to P• and twisting each term of D(P•) by

the automorphism ν−1 on the right hand side, we get an exact sequence D(P•)ν−1 as

follows:

0 → D(A)ν−1
D(ϕ0)−−−→ · · · → D(P2r−1)ν−1

D(ϕ2r)−−−−→ D(P2r)ν−1
D(ϕ2r+1)−−−−−→ D(P2r+1)ν−1 → · · · ,

where

D(Pn)ν−1 =

{
A(α2 ⊗ α2)

∗A⊕ A(α1 ⊗ α1)
∗A if n is odd,

A(α2 ⊗ α1)
∗A⊕ A(α1 ⊗ α2)

∗A if n is even

and A-bimodule homomorphisms D(φ∗) : D(P∗−1)ν−1 → D(P∗)ν−1 are defined as fol-

lows:

D(φ0)(〈−, 1A〉) = α1(α2 ⊗ α1)
∗ + (α2 ⊗ α1)

∗α1 + α2(α1 ⊗ α2)
∗ + (α1 ⊗ α2)

∗α2;

D(φ2r)((αi ⊗ αi)
∗) = αi+1(αi ⊗ αi+1)

∗ + (αi+1 ⊗ αi)
∗αi;

D(φ2r+1)((αi ⊗ αi+1)
∗) = (αi ⊗ αi)

∗αi+1 − αi+1(αi+1 ⊗ αi+1)
∗.

Therefore, we obtain an exact sequence X•

· · · // P2
ϕ2 // P1

ϕ1 // P0
µ //

ϕ0

��

D(P0)ν−1

D(ϕ1) // D(P1)ν−1

D(ϕ2) // D(P2)ν−1 // · · ·

A
∼= // D(A)ν−1

D(ϕ0)

OO

⟳

of which the composition µ is defined by

µ(ei ⊗ ei) = αi ⊗ ei + αi+1 ⊗ ei+1

and whose term Pn is of degree n ≥ 0. Observe that there are A-bimodule isomorphisms
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D(P (i, j))ν−1 = D(ν−1Aei ⊗ ejA) ∼= Hom(ejA,D(ν−1Aei))
∼= D(ejA)⊗D(Aei)ν−1

∼= Aej+1 ⊗ ei+1Aν−1

∼= Aej+1 ⊗ eiA = P (j + 1, i),

where the fourth isomorphism is induced by the A-bimodule isomorphism Aν
∼= D(A)

and the fact that ν = ν−1. Since Ae is injective as an A-bimodule, the contravariant

functor HomAe(−, Ae) is exact, so that the exact sequence X• is a complete resolu-

tion of A. Before applying the functor HomAe(−, A) to X•, we notice that there are

isomorphisms

HomAe(D(P (i, j))ν−1 , A) ∼= HomAe(D(P (i, j)), D(A)) ∼= D(A⊗Ae D(P (i, j)))
∼= HomAe(A,P (i, j)) ∼= HomAe(A,Ae)⊗Ae P (i, j)
∼= Aν−1 ⊗Ae P (i, j)

for any i, j ∈ Q0. Using these isomorphisms, we have the following commutative dia-

gram with exact rows:

HomAe(D(P2r+1)ν−1 , A)
Hom(D(ϕ2r+1),A) //

∼=
��

HomAe(D(P2r)ν−1 , A)
Hom(D(ϕ2r),A) //

∼=
��

HomAe(D(P2r−1)ν−1 , A)

∼=
��

Aν−1 ⊗Ae P2r+1
id⊗ϕ2r+1 // Aν−1 ⊗Ae P2r

id⊗ϕ2r //

⟳

Aν−1 ⊗Ae P2r−1,

⟳

where the A-bimodules Aν−1 ⊗Ae P∗ are given by

Aν−1 ⊗Ae P2r = k (e2 ⊗Ae e1 ⊗ e2)⊕ k (e1 ⊗Ae e2 ⊗ e1);

Aν−1 ⊗Ae P2r+1 = k (α2 ⊗Ae e1 ⊗ e1)⊕ k (α1 ⊗Ae e2 ⊗ e2),

and the k-linear maps id⊗Ae φ∗ are given by

id⊗ φ2r(αi ⊗Ae ei ⊗ ei) = 0;

id⊗ φ2r+1(ei ⊗Ae ei+1 ⊗ ei) = αi ⊗Ae ei ⊗ ei − αi+1 ⊗Ae ei+1 ⊗ ei+1.

Hence, the complex HomAe(X•, A) can be identified with a complex

· · · → Aν−1 ⊗Ae P1
id⊗ϕ1−−−→ Aν−1 ⊗Ae P0

Hom(µ,A)−−−−−→ HomAe(P0, A)
Hom(ϕ1,A)−−−−−−→ HomAe(P1, A) → · · ·

of which the remaining terms and differentials are given by

HomAe(Pn, A) ∼=

{
e1Ae2 ⊕ e2Ae1 = k α1 ⊕ k α2 if n is odd,

e1Ae1 ⊕ e2Ae2 = k e1 ⊕ k e2 if n is even;

HomAe(φ2r+1, A)(ei) = αi+1 − αi;

HomAe(φ2r, A)(αi) = 0;

HomAe(µ,A)(αi ⊗Ae ei ⊗ ei) = 0
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and whose term HomAe(Pn, A) is of degree n ≥ 0.

Therefore, the complete cohomology groups CH∗(A) are given as follows: for n ≥ 0

CHn(A) =

{
k α1 if n is odd,

k 1A if n is even;
(3.8)

CH−n(A) =

{
k α1 ⊗Ae e1 ⊗ e1 if n is odd,

k e1 ⊗Ae e2 ⊗ e1 + e2 ⊗Ae e1 ⊗ e2 if n > 0 is even.
(3.9)

Observe that we have CH0(A) = HH0(A) and CH−1(A) = H0(A,Aν−1).

From now on, we fix a k-basis

(u1, u2, u3, u4) = (1, α1 + α2, e1 − e2, α1 − α2)

of A consisting of eigenvectors associated with the eigenvalues of the diagonalizable

Nakayama automorphism ν of A. Then we have its dual basis

(v1, v2, v3, v4) =
(
(1/2)(α1 + α2), 1/2, (1/2)(α1 − α2), (1/2)(e1 − e2)

)
of A. Following [1], we will construct comparison morphisms between the minimal

projective resolution P• and the normalized bar resolution Bar•(A) of A (cf. [40] for

monomial algebras in general). Let F0 be the canonical inclusion P0 ↪→ A⊗A, and for

each n > 0, we define Fn : Pn → A⊗A
⊗n ⊗A in the following way: if n = 2r, then let

F2r(ei ⊗ ei) = 1⊗
2r︷ ︸︸ ︷

αi ⊗ αi+1 ⊗ · · · ⊗ αi ⊗ αi+1⊗1,

where αi and αi+1 appear each other. If n = 2r + 1, then let

F2r+1(ei ⊗ ei+1) = 1⊗
2r+1︷ ︸︸ ︷

αi ⊗ αi+1 ⊗ · · · ⊗ αi ⊗ αi+1 ⊗ αi⊗1.

On the other hand, let G0 be the canonical projection A⊗A→ P0, and for each n > 0,

Gn : A⊗ A
⊗n ⊗ A→ Pn is given as follows: if n = 2r, then let

G2r(w) =

{
ei ⊗ ei if w = 1⊗ αi ⊗ αi+1 ⊗ · · · ⊗ αi ⊗ αi+1 ⊗ 1,

0 otherwise.

If n = 2r + 1, then let

G2r+1(w) =

{
ei ⊗ ei+1 if w = 1⊗ αi ⊗ αi+1 ⊗ · · · ⊗ αi ⊗ αi+1 ⊗ αi ⊗ 1,

0 otherwise.

One can easily check that F and G are comparison morphisms. Using these comparison

morphisms and the definition of the ?-product ?, we have the following result.
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Proposition 3.4.4. For every i ∈ Z, the n-th complete cohomology group CHn(A) of

A is of dimension one, and the complete cohomology ring (CH•(A), ?) is isomorphic to

k[α, β, γ]/〈αγ − 1, β2〉

with |α| = 2, |β| = 1 and |γ| = −2, where α, β and γ correspond to 1A ∈ CH2(A) in

(3.8), α1 ∈ CH1(A) in (3.8) and e1 ⊗Ae e2 ⊗ e1 + e2 ⊗Ae e1 ⊗ e2 ∈ CH−2(A) in (3.9),

respectively.

Remark 3.4.5. As we have seen before, the complete cohomology groups CHn(A) with

n ≥ 0 of A coincide with the Hochschild cohomology groups HHn(A) of A. Hence, the

Hochschild cohomology ring (HH•(A),^) of A is a subring of the complete cohomology

ring (CH•(A), ?).

Remark 3.4.6. We have another description of the complete cohomology ring above

as follows:

k[α, β, α−1]/〈β2〉

where |α| = 2, |β| = 1 and |α−1| = −2. Therefore, we will write α−1 for γ.

Following our main result, we now construct a BV operator ∆̂i : CH
i(A) → CHi−1(A)

for all i ∈ Z. It follows from Proposition 3.4.4 that

CH2l(A) = k αl and CH2l+1(A) = k βαl

for all l ∈ Z. Note that the number of the generators contained in the basis element

of CHi(A) is at least 3 except for −4 ≤ i ≤ 4. Thus, one can use the operators

∆̂i : CHi(A) → CHi−1(A) for −4 ≤ i ≤ 4 and the formulas in Definition 3.3.1 to

obtain the remaining operators ∆̂∗ : CH∗(A) → CH∗−1(A). From this point of view,

it suffices to construct ∆̂i only for i = −4,−2,−1, 1, 2, 3, 4. We will show a way of

constructing ∆̂1 and ∆̂−1. The others can be constructed in a similar way. Let us

recall that every complete cohomology group has a decomposition associated with the

product of eigenvalues and in particular, except for the cohomology associated with

the product of eigenvalues equal to 1A, the other vanish. Moreover, the BV operator

defined on the chain level can be lifted to the cohomology level when we restrict it to

the subcomplex associated with the product of eigenvalues equal to 1A.

We first compute ∆̂1 : CH
1(A) → CH0(A). Consider a diagram

HomAe(P1, A)

HomAe (G1,A)
��

∆̂1 // HomAe(P0, A)

Hom(A,A)

∼=
��

A

HomAe (F0,A)

OO

D(Aν ⊗ A)
D(Bν

0 ) // D(Aν).

⟳

∼=

OO
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Since CH1(A) = k α1, we deal with only α1. Put

fα1 := HomAe(G1, A)(α1), fu2 := HomAe(G1, A)(u2), fu4 := HomAe(G1, A)(u4).

Namely, each of fα1 , fu2 and fu4 sends x ∈ A with x ∈ B to

fα1(x) =

{
α1 if x = α1,

0 otherwise,
fu2(x) =


α1 if x = α1,

α2 if x = α2,

0 otherwise,

fu4(x) =


α1 if x = α1,

−α2 if x = α2,

0 otherwise.

Then we have fα1 = (1/2) fu2 +(1/2) fu4 , fu2 ∈ C1
(1)(A,A) and fu4 ∈ C1

(−1)(A,A). Since

it is sufficient to only consider the image of (1/2)fu2 , a direct computation shows that

∆̂1(β) = ∆̂1(α1) = (1/2) 1A = 1/2

in CH0(A). On the other hand, consider a diagram

Aν−1 ⊗Ae P0

id⊗AeF0

��

∆̂−1 // Aν−1 ⊗Ae P1

Aν−1

−Bν−1

0 // Aν−1 ⊗ A.

⟳ id⊗AeG1

OO

We know that CH−1(A) = k α1 ⊗Ae e2 ⊗ e1 holds and hence handle α1 ⊗Ae e2 ⊗ e1. The

element (id⊗Ae F0)(α1⊗Ae e2⊗ e1) = α1 can be decomposed as α1 = (1/2)u2+(1/2)u4
in Aν−1 , where u2 ∈ C

(1)
0 (A,Aν−1) and u4 ∈ C

(−1)
0 (A,Aν−1). Thus, a direct calculation

gives us the formula

∆̂−1(α1 ⊗Ae e2 ⊗ e1) = (−1/2) e1 ⊗Ae e2 ⊗ e1 + e2 ⊗Ae e1 ⊗ e2

in CH−2(A). Thus, we have ∆̂−1(α
−1β) = (−1/2)α−1. Combining the formulas in

Definition 3.3.1, we have the following result.

Proposition 3.4.7. The nonzero BV differentials ∆̂∗ on CH•(A) are

∆̂2n+1(α
nβ) = ((2n+ 1)/2)αn

with n ∈ Z. In particular, the nonzero Gerstenhaber brackets are induced by

{α, β} = α, {β, α−1} = α−1.

Remark 3.4.8. Since the non-negative part CH≥0(A) of the complete cohomology

CH•(A) is the Hochschild cohomology of A, the non-negative BV differential ∆̂≥0 gives

rise to a BV differential on the Hochschild cohomology ring of A, which means that

there is a non-trivial example for our main theorem and for the theorem of Lambre-

Zhou-Zimmermann [35, Theorem 4.1].
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The case s = 3, N = 2.

Let Q be the following quiver

3

α3
??�����

1
α1

��?
??

??

2α2

oo

and A the algebra kQ/R2
Q. It follows from Criterion 3.4.2 and the fact that a primitive

root of a polynomial x3 − 1 is not equal to 1 ∈ k when char k = 2 that the Nakayama

automorphism of A is diagonalizable if and only if char k 6= 3. Hence we assume

that char k 6= 3. We see that A is a self-injective Nakayama algebra of which the

representation matrix of the Nakayama automorphism ν is

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0


under a k-basis (e1, e2, e3, α1, α2, α3) of A. This matrix is similar to a diagonal matrix



1 0 0 0 0 0

0 1 0 0 0 0

0 0 ω 0 0 0

0 0 0 ω 0 0

0 0 0 0 ω2 0

0 0 0 0 0 ω2


where the element ω ∈ k is one of roots of a polynomial x2 + x+ 1. Moreover, we can

decompose A = A1 ⊕ Aω ⊕ Aω2 , where

A1 = Ker (ν − id) = k 1A ⊕ k (
3∑

i=1

αi),

Aω = Ker (ν − ω id) = k (ω2e1 + ωe2 + e3)⊕ k (ω2α1 + ωα2 + α3),

Aω2 = Ker (ν − ω2 id) = k (
3∑

i=1

ωiei)⊕ k (
3∑

i=1

ωiαi).
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Let l ≥ 0 be an integer. In a similar way to the first example, we have a complete

resolution of A as follows:

· · · // P2
ϕ2 // P1

ϕ1 // P0
µ //

ϕ0

��

D(P0)ν−1

D(ϕ1) // D(P1)ν−1

D(ϕ2) // D(P2)ν−1 // · · ·

A
∼= // D(A)ν−1

D(ϕ0)

OO

⟳

where each of the Pn and the D(Pn)ν−1 is given by

Pn =


⊕3

i=1 P (i, i) if n = 3l,⊕3
i=1 P (i, i+ 1) if n = 3l + 1,⊕3
i=1 P (i, i+ 2) if n = 3l + 2,

D(Pn)ν−1 =


⊕3

i=1A(αi ⊗ αi+1)
∗A if n = 3l,⊕3

i=1A(αi ⊗ αi+2)
∗A if n = 3l + 1,⊕3

i=1A(αi ⊗ αi)
∗A if n = 3l + 2,

each A-bimodule homomorphism φ∗ : P∗ → P∗−1 given by

φ6l+1(ei ⊗ ei+1) = αi ⊗ ei+1 − ei ⊗ αi; φ6l+2(ei ⊗ ei+2) = ei ⊗ αi+1 + αi ⊗ ei+2;

φ6l+3(ei ⊗ ei) = αi ⊗ ei − ei ⊗ αi+2; φ6l+4(ei ⊗ ei+1) = ei ⊗ αi + αi ⊗ ei+1;

φ6l+5(ei ⊗ ei+2) = αi ⊗ ei+2 − ei ⊗ αi+1; φ6l+6(ei ⊗ ei) = ei ⊗ αi+2 + αi ⊗ ei,

each A-bimodule homomorphism D(φ∗) : D(P∗−1)ν−1 → D(P∗)ν−1 given by

D(φ6l+1)((αi ⊗ αi+1)
∗) = (αi+2 ⊗ αi+1)

∗αi − αi+2(αi ⊗ αi+2)
∗;

D(φ6l+2)((αi ⊗ αi+2)
∗) = αi(αi ⊗ αi)

∗ + (αi+2 ⊗ αi+2)
∗αi;

D(φ6l+3)((αi ⊗ αi)
∗) = (αi+2 ⊗ αi)

∗αi − αi+1(αi ⊗ αi+1)
∗;

D(φ6l+4)((αi ⊗ αi+1)
∗) = αi+2(αi ⊗ αi+2)

∗ + (αi+2 ⊗ αi+1)
∗αi+2;

D(φ6l+5)((αi ⊗ αi+2)
∗) = (αi+2 ⊗ αi+2)

∗αi − αi(αi ⊗ αi)
∗;

D(φ6l+6)((αi ⊗ αi)
∗) = αi+1(αi ⊗ αi+1)

∗ + (αi+2 ⊗ αi)
∗αi,

the A-bimodule homomorphism φ0 : P0 → A given by the multiplication of A, the

A-bimodule homomorphism D(φ0) : D(A)ν−1 → D(P0)ν−1 given by

D(φ0)(〈−, 1〉) =
3∑

i=1

αi+1(αi ⊗ αi+1)
∗ + (αi+2 ⊗ αi)

∗αi,

and the composition µ : P0 → D(P0)ν−1 given by
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µ(ei ⊗ ei) = αi(αi+2 ⊗ αi)
∗ + (αi+1 ⊗ αi+2)

∗αi−1.

A complex which is used to compute complete cohomology groups CH∗(A) is a complex

· · · → Aν−1 ⊗Ae P1
id⊗ϕ1−−−→ Aν−1 ⊗Ae P0

Hom(µ,A)−−−−−→ HomAe(P0, A)
Hom(ϕ1,A)−−−−−−→ HomAe(P1, A) → · · ·

of which the terms and the nonzero differentials of the non-negative part are determined

by

HomAe(Pn, A) ∼=


⊕3

i=1 eiAei if n = 3l,⊕3
i=1 eiAei+1 if n = 3l + 1,

0 if n = 3l + 2,

Hom(φ6l+1, A)(ei) = αi+2 − αi; Hom(φ6l+4, A)(ei) = αi + αi+2

and that of the negative part are given by

Aν−1 ⊗Ae Pn =


0 if n = 3l,⊕3

i=1 αi+1 ⊗Ae ei ⊗ ei+1 if n = 3l + 1,⊕3
i=1 ei+2 ⊗Ae ei ⊗ ei+2 if n = 3l + 2,

id⊗ φ6l+2(ei+2 ⊗Ae ei ⊗ ei+2) = αi+2 ⊗Ae ei+1 ⊗ ei+2 + αi+1 ⊗Ae ei ⊗ ei+1;

id⊗ φ6l+5(ei ⊗Ae ei+1 ⊗ ei) = αi+2 ⊗Ae ei+1 ⊗ ei+2 − αi+1 ⊗Ae ei ⊗ ei+1.

Here the term HomAe(Pn, A) is of degree n ≥ 0. Note that the two morphisms

Hom(φ6l+4, A) and id ⊗ φ6l+2 are isomorphisms when char k 6= 2. We can see that

the complete cohomology groups CH∗(A) of A are divided into two cases: for l ≥ 0,

(1) char k 6= 2, 3

CHn(A) =


k 1A if n ≡ 0 (mod 6),

k α1 if n ≡ 1 (mod 6),

0 otherwise,

CH−n(A) =


k α2 ⊗Ae e1 ⊗ e2 if n ≡ 5 (mod 6),

k
∑3

i=1 ei+2 ⊗Ae ei ⊗ ei+2 if n ≡ 0 (mod 6), n ≥ 1,

0 otherwise,

(2) char k = 2
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CHn(A) =


k 1A if n = 3l,

k α1 if n = 3l + 1,

0 if n = 3l + 2;

CH−n(A) =


0 if n = 3l + 1,

k α2 ⊗Ae e1 ⊗ e2 if n = 3l + 2,

k
∑3

i=1 ei+2 ⊗Ae ei ⊗ ei+2 if n = 3l + 3.

As can be seen, the complete cohomology groups have the period six if char k 6= 2, 3 and

the period three if char k = 2. We omit the constructions of two comparison morphisms

between the minimal projective resolution and the normalized bar resolution of A.

However, they are constructed in a similar way to the first example. We have the

graded commutative ring structure and the BV structure on the complete cohomology

of A.

Proposition 3.4.9. If char k 6= 2, 3, then the complete cohomology ring (CH•(A), ?) is

isomorphic to

k[α, β, α−1]/〈β2〉

where |α| = 6, |β| = 1 and |α−1| = −6. Further, if this is the case, then the nonzero

BV differentials ∆̂∗ on CH•(A) are

∆̂6l+1(α
lβ) = ((6l + 1)/3)αl, ∆̂−6l−5(α

−l−1β) = ((−6l − 5)/3)α−l−1

with l ≥ 0. In particular, the nonzero Gerstenhaber brackets are induced by

{α, β} = 2α, {β, α−1} = 2α−1.

Proposition 3.4.10. If char k = 2, then the complete cohomology ring (CH•(A), ?) is

isomorphic to

k[α, β, α−1]/〈β2〉

where |α| = 3, |β| = 1 and |α−1| = −3. Further, if this is the case, then the nonzero

BV differentials on CH•(A) are

∆̂6l+1(α
2lβ) = α2l, ∆̂−3l−2(α

−l−1β) = α−l−1

with l ≥ 0. In particular, the nonzero Gerstenhaber brackets are induced by

{α, β} = α.
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The case s = 3, N = 3.

Let Q be the following quiver

3

α3
??�����

1
α1

��?
??

??

2α2

oo

and A the algebra kQ/R3
Q. It follows from Criterion 3.4.2 and Remark 3.4.3 that the

Nakayama automorphism of A is diagonalizable if and only if char k 6= 3. Hence, we

assume that char k 6= 3. We see that A is a self-injective Nakayama algebra of which

the representation matrix of the Nakayama automorphism ν is

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0


under a k-basis (e1, e2, e3, α1, α2, α3, α1α2, α2α3, α3α1) of A. This matrix is similar to a

diagonal matrix 

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 ω 0 0 0 0 0

0 0 0 0 ω 0 0 0 0

0 0 0 0 0 ω 0 0 0

0 0 0 0 0 0 ω2 0 0

0 0 0 0 0 0 0 ω2 0

0 0 0 0 0 0 0 0 ω2


where the element ω ∈ k is one of roots of a polynomial x2 + x+ 1. Moreover, we can

decompose A = A1 ⊕ Aω ⊕ Aω2 , where
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A1 = Ker (ν − id) = k 1A ⊕ k (
3∑

i=1

αi)⊕ k (
3∑

i=1

αiαi+1),

Aω = Ker (ν − ω id) = k (
3∑

i=1

ωiei)⊕ k (
3∑

i=1

ωiαi)⊕ k (
3∑

i=1

ωiαiαi+1),

Aω2 = Ker (ν − ω2 id)

= k (ω2e1 + ωe2 + e3)⊕ k (ω2α1 + ωα2 + α3)⊕ k (ω2α1α2 + ωα2α3 + α3α1).

In a similar way to the first example, we have a complete resolution of A as follows:

· · · // P2
ϕ2 // P1

ϕ1 // P0
µ //

ϕ0

��

D(P0)ν−1

D(ϕ1) // D(P1)ν−1

D(ϕ2) // D(P2)ν−1 // · · ·

A
∼= // D(A)ν−1

D(ϕ0)

OO

⟳

where each of the Pn and the D(Pn)ν−1 is given by

Pn =

{⊕3
i=1 P (i, i+ 1) if n is odd,⊕3
i=1 P (i, i) if n is even;

D(Pn)ν−1 =

{⊕3
i=1A(αiαi+1 ⊗ αiαi+1)

∗A if n is odd,⊕3
i=1A(αiαi+1 ⊗ αi+2αi+3)

∗A if n is even,

each A-bimodule homomorphism φ∗ : P∗ → P∗−1 given by

φ2r+1(ei ⊗ ei+1) = αi ⊗ ei+1 − ei ⊗ αi;

φ2r(ei ⊗ ei) = ei ⊗ αi+1αi+2 + αi ⊗ αi+2 + αiαi+1 ⊗ ei,

each A-bimodule homomorphism D(φ∗) : D(P∗−1)ν−1 → D(P∗)ν−1 given by

D(φ2r+1)((αiαi+1 ⊗ αi+2αi+3)
∗)

= (αi+2αi ⊗ αi+2αi)
∗αi+1 − αi+1(αiαi+1 ⊗ αiαi+1)

∗;

D(φ2r)((αiαi+1 ⊗ αiαi+1)
∗)

= αi+2αi+3(αiαi+1 ⊗ αi+2αi+3)
∗ + αi+2(αi−1αi ⊗ αi+1αi+2)

∗αi−2

+ (αi−2αi−1 ⊗ αiαi+1)
∗αi−3αi−2,

the A-bimodule homomorphism φ0 : P0 → A given by the multiplication of A, the

A-bimodule homomorphism D(φ0) : D(A)ν−1 → D(P0)ν−1 given by

D(φ0)(〈−, 1〉) =
3∑

i=1

(
αiαi+1(αi−2αi−1 ⊗ αiαi+1)

∗ + αi+1(αi−2αi−1 ⊗ αiαi+1)
∗αi

+ (αi−2αi−1 ⊗ αiαi+1)
∗αi−3αi−2

)
,
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and the composition µ : P0 → D(P0)ν−1 given by

µ(ei ⊗ ei) = αiαi+1(αi−2αi−1 ⊗ αiαi+1)
∗ + (αi−1αi ⊗ αi+1αi+2)

∗αi−2αi−1

+ αi(αi−3αi−2 ⊗ αi−1αi)
∗αi−4.

Moreover, a complex which is used to compute complete cohomology groups is a complex

· · · → Aν−1 ⊗Ae P1
id⊗ϕ1−−−→ Aν−1 ⊗Ae P0

Hom(µ,A)−−−−−→ HomAe(P0, A)
Hom(ϕ1,A)−−−−−−→ HomAe(P1, A) → · · ·

of which the terms and the nonzero differentials are determined by

HomAe(Pn, A) ∼=

{⊕3
i=1 k αi if n is odd,⊕3
i=1 k ei if n is even;

Aν−1 ⊗Ae Pn =

{⊕3
i=1 k ei+1 ⊗Ae ei ⊗ ei+1 if n is odd,⊕3
i=1 k αi ⊗Ae ei ⊗ ei if n is even;

Hom(φ2r+1, A)(ei) = αi+1 − αi;

id⊗ φ2r+1(ei ⊗Ae ei+1 ⊗ ei) = αi ⊗Ae ei ⊗ ei − αi+1 ⊗Ae ei+1 ⊗ ei+1

and whose term HomAe(Pn, A) is of degree n ≥ 0. Therefore, we have, for n ≥ 0,

CHn(A) =

{
k α1 if n is odd,

k 1A if n is even;

CH−n(A) =

{
k α1 ⊗Ae e1 ⊗ e1 if n is odd,

k
∑3

i=1 ei+1 ⊗Ae ei ⊗ ei+1 if n > 0 is even.

We omit the description of comparison morphisms between the minimal projective

resolution and the normalized bar resolution of A, because it is not easy to write the two

comparison morphisms. However, a direct calculation shows the graded commutative

ring structure and the BV structure on the complete cohomology of A.

Proposition 3.4.11. The complete cohomology ring (CH•(A), ?) is isomorphic to

k[α, β, α−1]/〈β2〉

where |α| = 2, |β| = 1 and |α−1| = −2. Moreover, the nonzero BV differentials on

CH•(A) are

∆̂2l+1(α
lβ) = ((3l + 2)/3)αl, ∆̂−2l−1(α

−l−1β) =

{
(−1/3)α−1 if l = 0,

((−3l − 2)/3)α−l−1 if l 6= 0

with l ≥ 0. In particular, the nonzero Gerstenhaber brackets are induced by

{α, β} = α, {β, α−1} = α−1.



Chapter 4

Tate-Hochschild cohomology rings

for eventually periodic Gorenstein

algebras

In this chapter, for Gorenstein algebras, we decide when Tate-Hochschild cohomology

rings have homogeneous invertible elements of positive degree. The key is eventual

periodicity of algebras. Furthermore, for connected periodic algebras, we give a com-

putation method of their Tate-Hochschild cohomology rings, using their Hochschild

cohomology rings.

First, we define eventually periodic algebras and provide examples of them. Through-

out this chapter, we assume that the ground field k is algebraically closed.

4.1. Eventually periodic algebras

As mentioned above, let us first define the eventual periodicity of algebras and

provide examples of eventually periodic algebras. Before that, we make a remark on

eventually periodic modules and eventually periodic algebras.

Eventually periodic modules have been studied over commutative Noetherian local

ring and over artin algebras. In the first case, such modules are defined to have minimal

free resolutions that eventually become periodic. On the other hand, over artin algebras,

eventually periodic modules mean modules whose minimal projective resolutions have

the same property as above. Eisenbud [18], Avramov, Gasharov and Peeva [5] and Croll

[16] investigated eventually periodic modules in the commutative Noetherian local ring

case, while Bergh [10] and the author [45] did in the artin algebra case.

By considering an algebra A as a one-sided module over the enveloping algebra

Ae, Küpper [34, Definition 2.3] introduced eventually periodic algebras. Our definition

of such algebras is slightly weaker than Küpper’s one (since our eventually periodic

algebras may have finite projective dimension as bimodules). Now, we define eventually

periodic algebras precisely.

54
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Definition 4.1.1. Let A be an algebra. An A-module M is called periodic if Ωp
A(M) ∼=

M in A-mod for some p > 0. The smallest such p is said to be the period of M . We

say that M ∈ A-mod is eventually periodic if Ωn
A(M) is periodic for some n ≥ 0. An

algebra A is called periodic (resp. eventually periodic) if A ∈ Ae-mod is periodic (resp.

eventually periodic).

From the definition, periodic algebras are eventually periodic algebras. Periodic

algebras have been studied for a long time (see [19]). We know from [27, Lemma 1.5]

that periodic algebras are self-injective algebras (i.e. 0-Gorenstein algebras). On the

other hand, it follows from the proof of [17, Corollary 6.4] that monomial Gorenstein

algebras are eventually periodic algebras. It also follows from the formula gl.dimA =

proj.dimAeA (see [29, Section 1.5]) that algebras of finite global dimension are even-

tually periodic algebras. As will be seen in Example 4.1.2 below, not all eventually

periodic algebras are Gorenstein algebras.

Example 4.1.2. (1) Let A1 be the algebra given by the following quiver with relation

1
α // 2
β

oo αβα = 0.

Then A1 is a monomial algebra that is not Gorenstein (since inj.dimAAe1 =

∞, where e1 is the primitive idempotent corresponding to the vertex 1). Using

Bardzell’s minimal projective resolution of a monomial algebra (see [7]), we have

that A1 is an eventually periodic algebra having Ω2
Ae

1
(A1) as its first periodic

syzygy.

(2) Let A2 be the algebra given by the following quiver with relation

1
β //α 99 2 α2 = 0.

Then the algebra A2 is monomial 1-Gorenstein and hence eventually periodic.

Bardzell’s minimal projective resolution allows us to see that Ω2
Ae

2
(A2) is the first

periodic syzygy of A2.

Moreover, one can see that the algebras in [14, Example 4.3] are eventually periodic

algebras.

4.2. Tate-Hochschild cohomology rings of eventually periodic

Gorenstein algebras

This section is devoted to showing the main result of this chapter. We prove it after

two propositions below. Before the first one, we prepare some terminology. Recall that

we write Ωi(X•) = Cok dXi+1 for a complex X• and i ∈ Z. For a module M over a
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Gorenstein algebra A, we say that its complete resolution T• → P• → M is periodic if

there exists an integer p > 0 such that Ωi(T•) ∼= Ωi+p(T•) in A-mod for all i ∈ Z. The
least integer p > 0 with this property is called the period of the complete resolution.

Proposition 4.2.1. Let A be a Gorenstein algebra and M an A-module. If there exists

an integer n ≥ 0 such that Ωn
A(M) is periodic of period p, then M admits a periodic

complete resolution of period p. Further, the period of the periodic complete resolution

is independent of the choice of periodic syzygies.

Proof. Assume that there exists a minimal projective resolution P• → M satisfying

that Ωn
A(M) is periodic of period p. Then, by using the periodicity of Ωn

A(M), we can

extend the truncated complex P≥n to an (unbounded) complex T• in APC(A) having

the following properties:

(i) T≥n = P≥n.

(ii) For each i ∈ Z, there exists an integer 0 ≤ j < p such that Ωi(T•) ∼= Ωn+j
A (M).

In particular, one sees that Ωi(T•) ∼= Ωi+p(T•) for all i ∈ Z. Note that one may take

T• = 0 if proj.dimAM < ∞. It follows from Theorem 2.3.1 that Ωi(T•) = Σ−iΩ0(T•) is

Cohen-Macaulay for each i ∈ Z, where Σ denotes the shift functor on CM(A). Then it

is easily checked that HomK(A)(T•, A[i]) = 0 for all i ∈ Z, where K(A) is the homotopy

category of A-modules. Hence, as in [15, Lemma 2.4], the family {idTj
}j≥n can be

extended uniquely up to homotopy to a chain map θ : T• → P• with θj the identity

for all j ≥ n. Therefore, the chain map θ gives rise to the desired complete resolution.

We remark that the period of the resulting complete resolution does not depend on

the choice of n. Indeed, if we take the smallest integer r ≥ 0 such that Ωr
A(M) is

periodic, then, for each i ≥ n, the module Ωi
A(M) is periodic and has the same period

as Ωr
A(M).

Recall that the Yoneda product of the Tate cohomology ring Êxt
•
A(M,M) is denoted

by ^.

Proposition 4.2.2. Let A be a Gorenstein algebra and M a A-module. Then the

following conditions are equivalent.

(1) The Tate cohomology ring Êxt
•
A(M,M) has an invertible homogeneous element of

positive degree.

(2) M is eventually periodic.

Proof. It suffices to prove the statement for M ∈ A-mod with proj.dimAM = ∞.

First, we assume that a A-module M satisfies that Ωn
A(M) is periodic of period p for

some n ≥ 0. By Proposition 4.2.1, there exists a complete resolution T• → P• → M

such that Ω0(T•) is periodic of period p, where p is the period of Ωn
A(M). We fix this
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complete resolution. Then the shift functor Σ on CM(A) satisfies ΣiΩ0(T•) = Ω−i(T•)

for all i ∈ Z. Let f ∈ HomA(Ωp(T•),Ω0(T•)) be an isomorphism and consider two

homogeneous elements

x := Σp[f ] ∈ Êxt
p

A(M,M) and y := [f−1] ∈ Êxt
−p

A (M,M).

Then we have x ^ y = (Σ−px) ◦ y = [f ] ◦ [f−1] = 1 and similarly y ^ x = 1, where we

set 1 := [idΩ0(T•)].

Conversely, we let T• → P• → M be a complete resolution of M and assume that

there exists an isomorphism

x ∈ HomA(Ω0(T•),Σ
pΩ0(T•)) = Êxt

p

A(M,M)

of degree p > 0. From the definition of complete resolutions, we have

HomA(Ω0(T•),Σ
pΩ0(T•)) ∼= HomA(Σ

−m−pΩ0(T•),Σ
−mΩ0(T•))

∼= HomA(Ω
m+p
A (M),Ωp

A(M))

for some sufficiently large m > 0. Hence we get Ωm+p
A (M) ∼= Ωm

A (M) in A-mod. This

implies that Ωm+p
A (M) ⊕ P ∼= Ωm

A (M) ⊕ Q in A-mod for some P and Q ∈ A-proj.

By applying the syzygy functor ΩA to this isomorphism, we obtain an isomorphism

Ωm+p+1
A (M) ∼= Ωm+1

A (M) in A-mod. This completes the proof.

Using Proposition 4.2.2, we obtain our main result.

Theorem 4.2.3. Let A be a Gorenstein algebra. Then the following conditions are

equivalent.

(1) The Tate-Hochschild cohomology ring ĤH
•
(A) has an invertible homogeneous el-

ement of positive degree.

(2) A is an eventually periodic algebra.

In this case, there exists an isomorphism ĤH
•
(A) ∼= ĤH

≥0
(A)[χ−1] of graded algebras,

where the degree of an invertible homogeneous element χ equals the period of the periodic

syzygy Ωn
Ae(A) of A for some n ≥ 0.

Proof. We know from [3, Proposition 2.2] that if A is a Gorenstein algebra, then so is

the enveloping algebra Ae. Hence the former statement follows from Proposition 4.2.2

applied to A ∈ Ae-mod. On the other hand, suppose that the Gorenstein algebra A

satisfies that Ωn
Ae(A) is periodic for some n ≥ 0. By the proof of Proposition 4.2.2,

there exists an invertible homogeneous element χ ∈ ĤH
•
(A) whose degree equals the

period of the periodic Ae-module Ωn
Ae(A). Then the fact that ĤH

•
(A) is a graded

commutative algebra yields the desired isomorphism of graded algebras (cf. the proof

of [44, Corollary 3.4]).
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Remark 4.2.4. From the definition of singularity categories, an algebra A has finite

projective dimension as a Ae-module if and only if its Tate-Hochschild cohomology ring

is the zero ring (cf. [12, Section 1]). Thus Theorem 4.2.3 makes essential sense for the

case of Gorenstein algebras with infinite global dimension.

Remark 4.2.5. Applying Theorem 4.2.3 to monomial Gorenstein algebras and to pe-

riodic algebras, one obtains [17, Corollary 6.4] and [44, Corollary 3.4], respectively.

Remark 4.2.6. For an eventually periodic Gorenstein algebra A, one can obtain

dimk ĤH
i
(A) for all integers i by using Theorem 4.2.3 and the Hochschild cohomology

HH•(A) :=
⊕

i≥0 Ext
i
Ae(A,A) of A (see Example 4.3.7). In Section 4.4, we explain how

we compute the graded subring ĤH
≥0
(A) when A is connected and periodic. However,

it is open how we compute the ring structure of ĤH
≥0
(A) in general.

Recall that two algebras A and B are derived equivalent if there exists a triangle

equivalence between Db(A-mod) and Db(B-mod) (see [41]). The following shows that

being eventually periodic Gorenstein is invariant under derived equivalence.

Proposition 4.2.7. Assume that two algebras A and B are derived equivalent. If A is

eventually periodic Gorenstein, then so is B. In particular, the periods of their periodic

syzygies coincide.

Proof. By [48, Theorem 1.1] and [32, Proposition 1.7], Tate-Hochschild cohomology

ring and the property of being Gorenstein are invariant under derived equivalence.

Thus the statement follows from Theorem 4.2.3.

Now, let p and q be the periods of some periodic syzygies of the regular bimodules

A and B, respectively. Note that all the periodic syzygies of A and B has period p

and q, respectively. Then it follows from the proof of Proposition 4.2.2 that there exist

invertible homogeneous elements χA ∈ ĤH
•
(A) and χB ∈ ĤH

•
(B) with degχA = p

and degχB = q, where degχA denotes the degree of the homogeneous element χA.

We claim that p = q. Since ĤH
•
(A) ∼= ĤH

•
(B) as graded rings, ĤH

•
(B) has an

invertible homogeneous element of degree p, and an argument as in the proof of the

implication from (2) to (1) in Proposition 4.2.2 shows that there exists an isomorphism

Ωj+p
Be (B) ∼= Ωj

Be(B) in Be-mod for some j � 0. Since the periodic syzygy Ωj
Be(B) has

period q, we obtain that q divides p. Since one can similarly show that p divides q, we

conclude that p = q.

Periodic algebras and algebras with finite global dimension are both eventually

periodic Gorenstein, and being periodic and finiteness of global dimension are derived

invariants (see [32] and [24] for example). Consequently, Proposition 4.2.7 gives a new

reslt only for eventually periodic Gorenstein algebras of infinite global dimension that

are not periodic. In the next section, we construct such algebras by means of tensor

product of algebras.
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4.3. Construction of eventually periodic Gorenstein algebras

In this section, we aim at describing a way of giving eventually periodic Gorenstein

algebras. First, we show two propositions which will be used latter. Let us start with

the following.

Proposition 4.3.1. Any periodic A-moduleM over a d-Gorenstein algebra A is Cohen-

Macaulay.

Proof. Assume that M is a periodic A-module of period p. Since Ωi
A(M) ∈ CM(A) for

i ≥ d by [12, Lemma 4.2.2], we have that M ∼= Ωjp
A (M) ∈ CM(A) for some j � 0.

We now show that, for an eventually periodic Gorenstein algebra A, the smallest

integer n ≥ 0 satisfying that Ωn
Ae(A) is periodic has a lower bound.

Proposition 4.3.2. Let A be a d-Gorenstein algebra. Assume that there exists an

integer n ≥ 0 such that Ωn
Ae(A) is periodic. Then the least such integer n satisfies

n ≥ d. In particular, an equality holds if and only if there exists a simple A-module S

such that ExtnA(S,A) 6= 0.

Proof. Let A be an eventually periodic Gorenstein algebra and P• → A a minimal

projective resolution of A over Ae satisfying that Ωn
Ae(A) is the first periodic syzygy

of period p. For any M ∈ A-mod, an exact sequence P• ⊗A M → A ⊗A M = M is a

projective resolution of M and has the property that Ωn(P• ⊗A M) = Ωn
Ae(A)⊗A M ∼=

Ωn+ip
Ae (A)⊗AM = Ωn+ip(P•⊗AM) for all i ≥ 0. In particular, as in Proposition 4.3.1, one

concludes that Ωn(P•⊗AM) is Cohen-Macaulay. This implies that n ≥ inj.dimAA = d.

Indeed, for any A-module M , we have Extn+1
A (M,A) ∼= Ext1A(Ωn(P• ⊗A M), A) = 0.

For the latter statement, we first suppose that n = d. Then it follows from [17,

Proposition 2.4] that we have n = G-dimA(A/r), where r denotes the Jacobson radical

of A. This shows that ExtnA(A/r, A) 6= 0, so that one obtains the desired simple A-

module. Conversely, assume that ExtnA(S,A) 6= 0 for some simple A-module S. Then

one concludes that Ωn−1
A (S) 6∈ CM(A). However, since we know that Ωn

A(S) is Cohen-

Macaulay, we have n = G-dimAS and hence n ≤ d. Then the proof is completed since

n ≥ d by the former statement.

Now, we recall some facts on projective resolutions for tensor algebras. Let A and

B be algebras and P•
εA−→ A and Q•

εB−→ B projective resolutions as bimodules. Then

the tensor product P•⊗Q•
εA⊗ εB−−−−→ A⊗B is a projective resolution of the tensor algebra

A⊗B over (A⊗B)e (see [38, Section X.7]). Here, we identify (A⊗B)e with Ae ⊗Be.

It also follows from [9, Lemma 6.2] that if both P• → A and Q• → B are minimal, then

so is P• ⊗Q• → A⊗B.

From now on, we assume that A is a periodic algebra of period p and that B is

an algebra of finite global dimension n. Set C := A ⊗ B. Since periodic algebras are

self-injective algebras, it follows from [9, Lemma 6.1] that we have

inj.dimC = inj.dimA+ inj.dimB = 0 + n = n
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as one-sided modules. Thus C is an n-Gorenstein algebra. Note that the same lemma

also implies that the enveloping algebra Ce is a (2n)-Gorenstein algebra. We now show

that the algebra C has an eventually periodic minimal projective resolution.

Proposition 4.3.3. Let A and B be as above. Then C = A ⊗ B is an eventually

periodic n-Gorenstein algebra with gl.dimC = ∞ such that Ωn
Ce(C) is the first periodic

syzygy of C.

Proof. Let P• → A and Q• → B be minimal projective resolutions as bimodules. Recall

that the r-th component of the total complex P• ⊗Q• with r ≥ 0 is given by

(P• ⊗Q•)r =
r⊕

i=0

Pr−i ⊗Qi.

Since Qi = 0 for i > n = gl.dimB = proj.dimBeB, we have

(P• ⊗Q•)r =
n⊕

i=0

Pr−i ⊗Qi

for all r ≥ n. Moreover, the (r + 1)-th differential

dP⊗Q
r+1 : (P• ⊗Q•)r+1 → (P• ⊗Q•)r (r ≥ n)

can be written as the square matrix (∂ijr+1)ij of degree n+ 1 whose (i, j)-th entry

∂ijr+1 : Pr+1−(j−1) ⊗Qj−1 → Pr−(i−1) ⊗Qi−1 (1 ≤ i, j ≤ n+ 1)

is given by

∂ijr+1 =


dPr−i+2 ⊗ idQi−1

if i = j;

(−1)r−i+1 idPr−i+1
⊗ dQi if j = i+ 1;

0 otherwise.

We claim that Cok dP⊗Q
n+p+1

∼= Cok dP⊗Q
n+1 . First, suppose that p is even. Since ∂ijn+p+1 =

∂ijn+1 for all 1 ≤ i, j ≤ n+ 1 because p is even and dPl = dPl+p for any l ≥ 0, we conclude

that dP⊗Q
n+p+1 = dP⊗Q

n+1 , which implies the claim. Now, assume that p is odd. Consider the

isomorphism of Ce-modules between (P• ⊗Q•)r and (P• ⊗Q•)r+p with r ≥ n induced

by the diagonal matrix D of degree n+1 whose (i, i)-th entry is (−1)n+i. Together with

the fact that p + 1 is even, a direct calculation shows that there exists a commutative

diagram of Ce-modules with exact rows

(P• ⊗Q•)n+p+1

dP⊗Q
n+p+1//

D∼=
��

(P• ⊗Q•)n+p
//

D∼=
��

Cok dP⊗Q
n+p+1

// 0

(P• ⊗Q•)n+1

dP⊗Q
n+1 // (P• ⊗Q•)n // Cok dP⊗Q

n+1
// 0
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This implies the claim. Since the projective resolution P• ⊗ Q• → C is minimal, we

have that Ωn+p
Ce (C) = Cok dP⊗Q

n+p+1
∼= Cok dP⊗Q

n+1 = Ωn
Ce(C). From Proposition 4.3.2 and

the isomorphism, we conclude that the n-th syzygy Ωn
Ce(C) is the first periodic syzygy

of C.

Remark 4.3.4. Proposition 2.3.2 allows us to get G-dimCeC ≤ 2n = inj.dimCeCe and

hence HHi(C) ∼= ĤH
i
(C) for all i > 2n. On the other hand, the i-th syzygy Ωi

Ce(C) of

C is Cohen-Macaulay for any i ≥ n by Propositions 4.3.1 and 4.3.3. Again, Proposition

2.3.2 yields that G-dimCeC ≤ n. One of the advantages of this observation is that there

exists an isomorphism HHi(C) ∼= ĤH
i
(C) for all i > n.

Remark 4.3.5. It follows from Theorem 4.2.3 and the proof of Proposition 4.3.3 that

the Tate-Hochschild cohomology ring ĤH
•
(C) of C is of the form ĤH

≥0
(C)[χ−1], where

the degree of χ divides the period p of A.

We end this section with the following two examples. Note that the tensor algebra

C in Example 4.3.7 can be found in [9, Example 6.3].

Example 4.3.6. For an integer n ≥ 0, let Bn be the algebra given by the following

quiver with relations

0
α0 // 1

α1 // · · · // n− 1
αn−1 // n αi+1αi = 0 for i = 0, . . . , n− 2.

Then we have gl.dimBn = n. By Proposition 4.3.3, any periodic algebra A gives us an

eventually periodic n-Gorenstein algebra C = A ⊗ Bn with Ωn
Ce(C) the first periodic

syzygy of C.

Example 4.3.7. Let A = k[x]/(x2) and let B be the algebra B1 defined in Example

4.3.6. Thanks to Bardzell’s minimal projective resolution, we see that A is a periodic

algebra whose period is equal to 1 if char k = 2 and to 2 otherwise. On the other hand,

the tensor algebra C = A⊗B is given by the following quiver with relations

1
β //α 99 2 γee α2 = 0 = γ2 and βα = γβ.

Thus we see that C is a (non-monomial) eventually periodic Gorenstein algebra whose

first periodic syzygy is Ω1
Ce(C). Now, we compute dimk ĤH

i
(C) for all i ∈ Z. It follows

from [29, Section 1.6] that the Hochschild cohomology ring HH•(B) is of the form

HH•(B) = k.

According to [8, Section 5], the Hochschild cohomology ring HH•(A) is as follows:

HH•(A) =

k[a0, a1]/(a
2
0) if char k = 2;

k[a0, a1, a2]/(a
2
0, a

2
1, a0a1, a0a2) if char k 6= 2,
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where the index i of a homogeneous element ai denotes the degree of ai. On the other

hand, by [36, Lemma 3.1], there exists an isomorphism of graded algebras

HH•(C) ∼= HH•(A)⊗ HH•(B) = HH•(A).

It follows from Remark 4.3.4 that HHi(C) ∼= ĤH
i
(C) for all i > 1. Hence, the fact that

ĤH
∗
(C) ∼= ĤH

∗+p
(C) with p the period of A (see Remark 4.3.5) implies that, for any

integer i, we have

dimk ĤH
i
(C) =

{
2 if char k = 2;

1 if char k 6= 2.

4.4. The case of connected periodic algebras

The aim of this section is to describe the Tate-Hochschild cohomology rings of

connected periodic algebras. Throughout this section, all algebras are assumed to be

connected.

We first remind the reader of two results, which are extended to Tate cases later.

Let us begin with a result of Carlson [13] (see also [27, Proposition 1.3]).

Theorem 4.4.1 ([13]). Let A be a self-injective algebra, M an indecomposable periodic

A-module and N (M) the ideal of the Yoneda algebra Ext•A(M,M) generated by the

homogeneous nilpotent elements. Then we have

Ext•A(M,M)/N (M) ∼= k[x],

where the degree of the homogeneous element x is equal to the period of M .

The following is a result due to Green, Snashall and Solberg [27].

Theorem 4.4.2 ([27, Theorem 1.6]). Let A be an algebra satisfying Ωn
Ae(A) ∼= 1Λσ for

some n ≥ 1 and some automorphism σ of A and N the ideal of HH•(A) generated by

the homogeneous nilpotent elements. Then we have

HH•(A)/N ∼=

{
k[x] if A is periodic

k otherwise.

Remark that the algebra appearing in Theorem 4.4.2 is self-injective ([27, Lemma 1.5]).

In particular, periodic algebras are self-injective algebras.

Now, we extend the two theorems above to Tate cases. Our proofs of the extended

statements are based on that of the original statements. Let us first consider the Tate

cohomology ring modulo nilpotence of a periodic module over a self-injective algebra.
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Proposition 4.4.3. Let A be a self-injective algebra, M an indecomposable periodic A-

module of period d and N̂ (M) the ideal of Êxt
•
A(M,M) generated by the homogeneous

nilpotent elements. Then we have

Êxt
•
A(M,M)/N̂ (M) ∼= k[x, y]/(xy − 1)

with deg x = d and deg y = −d, where deg z denotes the degree of a homogeneous

element z.

Proof. Let f : Ωs
A(M) →M be a morphism in A--mod, where s is an integer. We first

show that if s 6≡ 0 (-modd), then [f ] ∈ Êxt
s

A(M,M) is nilpotent with respect to the

Yoneda product. Let r ≥ 1 and q 6= 0 be integers such that rs = qd, and consider

α := [f ]r ∈ Êxt
qd

A (M,M) ∼= EndA(M). Since [f ] is not an isomorphism because of the

choice of s, then neither is α, so that we have α ∈ radEndA(M), which implies that it is

a nilpotent element in the local algebra EndA(M). Then, for any n ≥ 1, the morphism

Ωnd
A (α) ∈ EndA(M) is also a nilpotent element and hence in radEndA(M). Since the

ideal radEndA(M) is nilpotent, we obtain αl = α ◦Ωd
A(α) ◦Ω2d

A (α) ◦ · · · ◦Ω(l−1)d
A (α) = 0

for some l > 0. This yields that [f ] ∈ N̂ (M).

Now, we claim that if s ≡ 0 (-modd) and [f ] ∈ HomA(Ω
s
A(M),M) is not an isomor-

phism, then [f ] ∈ N̂ (M). However, we are done by a similar discussion as above.

By assumption, there exists an isomorphism ϕ : Ωd
A(M) → M in A--mod. Observe

that such an isomorphism form Ωd
A(M) toM is uniquely determined up to scalar because

EndA(M)/ radEndA(M) ∼= k. Set

x := [ϕ] ∈ Êxt
d

A(M,M), y := Ω−d
A ([ϕ−1]) ∈ Êxt

−d

A (M,M).

Clearly, we have x ^ y = 1 = y ^ x, where 1 = [idM ]. Since the Yoneda product

of Êxt
•
A(M,M) agrees with the one of Ext•A(M,M) in positive degrees, it follows from

Theorem 4.4.1 that the n-th power xn of x is non-nilpotent for every n ≥ 1. Then it is

trivial that the n-th power yn of the inverse y is also non-nilpotent for all n ≥ 1. As a

result, we have shown that the powers xn and yn with n ≥ 1 are all the non-nilpotent

homogeneous elements of Êxt
•
A(M,M). Since deg x = d, deg y = −d and d ≥ 1, we have

x− y 6∈ N̂ (M), because otherwise both x and y are nilpotent. Therefore, we obtain the

desired isomorphism.

Now, we extend Theorem 4.4.2 to a Tate-Hochschild case.

Theorem 4.4.4. Let A be an algebra satisfying Ωn
Ae(A) ∼= 1Λσ for some n ≥ 1 and

some automorphism σ of A and N̂ the ideal of ĤH
•
(A) generated by the homogeneous

nilpotent elements. Then we have

ĤH
•
(A)/N̂ ∼=

{
k[x, y]/(xy − 1) if A is periodic

k otherwise.
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Proof. Let A be an algebra A which satisfies the assumption. By [27, Lemma 1.5],

the algebra A is a self-injective algebra. It is known that the enveloping algebra Ae is

self-injective as well (see [3, Proposition 2.2]).

Assume that A is a periodic algebra. Since A is connected, i.e, indecomposable as

an A-bimodule, the statement follows from Proposition 4.4.3.

Suppose that A is non-periodic, i.e., Ωi
Ae(A) 6∼= A for any i ≥ 0. Clearly, this holds

even for all negative integers. First, we claim that [η] ∈ ĤH
np
(A) is nilpotent for any

η : Ωnp
Ae(A) → A, where p is a non-zero integer. It is clear that the indecomposable

A-bimodule Ωinp
Ae (A) is isomorphic to 1Λσip for any i ≥ 1. Hence each Ωinp

Ae (A) has the

same length as the regular A-bimodule A. Since the induced morphism Ω
(i−1)np
Ae ([η]) :

Ωinp
Ae (A) → Ω

(i−1)np
Ae (A) is not an isomorphism for every i ≥ 1, it follows from Harada-Sai

(see [4]) that there exists a positive integer N such that [η]N = [η]◦Ωnp
Ae([η])◦Ω2np

Ae ([η])◦
· · · ◦ Ω(N−1)np

Ae ([η]) = 0. This implies that [η] ∈ N̂ . We now let η : Ωs
Ae(A) → A, where

0 6= s ∈ Z satisfies s 6≡ 0 (-modn). Taking integers r ≥ 1 and q 6= 0 such that rs = nq,

we have [η]r ∈ ĤH
nq
(A). The argument above shows that [η]r is nilpotent, and so is [η].

Hence we have proved that any homogeneous element of ĤH
•
(A) of non-zero degree is

nilpotent. Since EndA(M)/ radEndA(M) ∼= k, we get the desired isomorphism.

Let A be a periodic algebra of period d. We now apply the Hochschild cohomology

ring HH•(A) in order to describe the non-negative subring ĤH
≥0
(A). Recall from

Section 2.3 that there exists an epimorphism Φ• : HH•(A) → ĤH
≥0
(A) of graded

algebras such that Φ0 is surjective with KerΦ0 = P(A,A) and Φ≥1 is bijective. We

call P(A,A) the projective center of A and denote it by Zpr(A). Remark that, in our

setting, the non-negative part ĤH
≥0
(A) coincides with the stable Hochschild cohomology

(see [37]). So far, we obtain ĤH
≥0
(A) ∼= HH•(A)/Zpr(A) as graded algebras. We now

characterize the projective center in terms of the Yoneda product of the Hochschild

cohomology ring. Recall from Theorems 4.4.2 and 4.4.4 that HH•(A) has a unique

homogeneous non-nilpotent element χ of degree d such that it is invertible in ĤH
•
(A).

Thus we have the following commutative square

HH0(A)
−∪χ //

Φ0

��

HHd(A)

Φd

ĤH
0
(A)

−⌣χ // ĤH
d
(A)

where the lower horizontal k-linear map −^ χ is bijective. Then, clearly, the k-linear

map − ∪ χ is surjective. Since χ ∈ ĤH
d
(A) is invertible, one easily shows that Zpr(A)

agrees with Ker(− ∪ χ) = {α ∈ HH0(A) |α ∪ χ = 0}. Moreover, it is trivial that

Zpr(A) = 0 if and only if dimk HH
0(A) = dimk HH

d(A). Hence, we have proved the

following proposition.
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Proposition 4.4.5. Let A be a periodic algebra of period d and χ ∈ HHd(A) a unique

homogeneous non-nilpotent element of HH•(A). Then we have Zpr(A) = Ker(− ∪ χ)

and hence ĤH
≥0
(A) = HH•(A)/Ker(−∪χ). Furthermore, the following are equivalent.

(1) The projective center Zpr(A) of A vanishes.

(2) The k-linear map Φ0 : HH0(A) → ĤH
0
(A) is bijective.

(3) dimk HH
0(A) = dimk HH

d(A).

In this case, we have ĤH
≥0
(A) = HH•(A) and hence ĤH

•
(A) = HH•(A)[χ−1].

Next, we explain how we use Proposition 4.4.5 to compute the Tate-Hochschild

cohomology of a periodic algebra. For this purpose, we deal with preprojective algebras

of type An. Recall that the preprojective algebra ΠQ associated with a Dynkin quiver Q

(i.e., the underlying graph of Q is one of the Dynkin diagrams An(n ≥ 1), Dn(n ≥ 4)

and En(n = 6, 7, 8)) is defined by

ΠQ := kQ/

〈∑
a∈Q1

(aa− aa)

〉
,

where Q is the quiver obtained from Q by adding, for each arrow a : i → j, an arrow

a : j → i having the opposite direction. By definition, the preprojective algebra ΠQ

depends only on the underlying graph of Q. Hence we associate to each preprojective

algebra one of the Dynkin diagrams. It was shown by Schofield that the preprojective

algebra of Dynkin type is a periodic algebra whose period is dividing 6. In particular,

the period of the preprojective algebra of type An is equal to 6 if n ≥ 3 (cf. [20, Section

1]). On the other hand, the Hochschild cohomology ring for the preprojective algebras

of Dynkin type has been obtained by Erdmann and Snashall [21] for type An and by

Eu [22] for the other types.

Let Πn denote the preprojective algebra of type An, and we assume that n ≥ 3.

Following the notation from [21], we set m := (n− 1)/2 if n is odd, and m := (n− 2)/2

if n is even. According to [20, 21], we have

HH0(Πn) = k[z]/〈zm+1〉, dimk HH
6(Πn) =

{
m if n is odd

m+ 1 if n is even.

In view of Proposition 4.4.5, we see that ĤH
0
(Πn) = HH0(Πn) if and only if Πn has even

vertices. On the other hand, if Πn has odd vertices, then it follows from [21, Section

5] that zrX 6= 0 for 1 ≤ r < m and zmX = 0, where X is a unique homogeneous non-

nilpotent element of HH•(Πn) of degree 6. Proposition 4.4.5 yields that Ker(−∪X) =
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〈zm〉 and ĤH
0
(Πn) = HH0(Πn)/〈zm〉 = k[z]/〈zm〉. Hence the 0-th Tate-Hochschild

cohomology algebra ĤH
0
(Πn) is as follows:

ĤH
0
(Πn) =

{
k[z]/〈zm+1〉 if n is even

k[z]/〈zm〉 if n is odd.

For the first case, we have ĤH
•
(Πn) = HH•(Πn)[X

−1] . As a result, using the descrip-

tion of ĤH
0
(Πn) and Theorem 4.2.3, one can completely describe the Tate-Hochschild

cohomology ring ĤH
•
(Πn) for all the preprojective algebras Πn of type An with n ≥ 3.

Example 4.4.6. Let Π5 be the preprojective k-algebra of type A5. For simplicity, we

assume that char k = 2. Since n = 5, we have m = 2 and ĤH
0
(Π5) = k[z]/〈z2〉. It fol-

lows from [21, Section 5] that the Hochschild cohomology ring HH•(Π5) has generators

1, z, g0, f0, f1, h0, h1, ψ0, X

with deg z = 0, deg g0 = 1, deg fi = 2, deg hi = 3, degψ0 = 4, degX = 6, and these

generators satisfy the following relations

z3 = 0, g20 = 0, f 3
0 = 0, f 2

1 = 0, ψ2
0 = 0, zfi = 0, z2ψi = 0, z2X = 0,

f 2
0 = zψ0 = f0f1, fiψ0 = 0, zhi = 0, hihj = 0, g0hi = 0, g0z

2 = 0,

g0fi = 0, hifj = δijzg0ψ0, hiψ0 = 0,

where 1 ≤ i, j ≤ 2. Then one sees that the dimension of HHi(Π5) is equal to 3 if i = 0

and to 2 if i ≥ 1. Theorem 4.2.3 implies that the Tate-Hochschild cohomology ring

ĤH
•
(Π5) = ĤH

≥0
(Π5)[X

−1] has generators

1, z, g0, f0, f1, h0, h1, ψ0, X,X
−1

with degX−1 = −6, and these generators satisfy the relations obtained from the ones

of HH•(Π5) by replacing z3 by z2. In particular, dimk ĤH
i
(Π5) = 2 for all i ∈ Z.

We remark that even if char k 6= 2, we can calculate ĤH
•
(Π5) from HH•(Π5) in

the same way as in the above. More concretely, after providing the generators and

the relations of HH•(Π5) based on [21, Section 5], we add X−1 to the generators and

replace z3 by z2 in the relations to obtain the presentation of ĤH
•
(Π5).
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