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Chapter 1

Introduction

This thesis is based on [31], [44] and [45].

Throughout this thesis, let k denote a field. By an algebra A, we mean a finite
dimensional associative and unital k-algebra, and all modules are assumed to be finitely
generated left modules.

The singularity category Dsg(A) of an algebra A, introduced by Buchweitz [12],
is defined by the Verdier quotient of the bounded derived category of A-modules by
the full subcategory of perfect complexes. The category Dy, (A) measures homological
singularity of A in the following sense: the global dimension of A is finite if and only
if Dgy(A) = 0. Therefore, singularity categories can be considered as homological
invariants for algebras of infinite global dimension.

The notion of Tate cohomology groups was also introduced by Buchweitz [12]. For
each integer i, the i-th Tate cohomology group of an A-module M with coefficients in
an A-module N is defined to be

Exty (M, N) 1= Homp, (1) (M, N[i).

He observed in [12] that there is an isomorphism E}R;G(Z,N ) ﬁ*(G, N), where
H*(G, N) stands for the original Tate cohomology group of a finite group G with coeffi-

cients in a ZG-module N. This justifies the terminology “Tate cohomology”. Recently,
Wang [47] defined the i-th Tate-Hochschild cohomology group of the algebra A as

HH (A) = Bxt yo(A, A) = Homp,_(1e) (A, Afi])

for any integer i. Then the Tate-Hochschild cohomology ﬁﬁ.(A) = D,y ﬁﬁZ(A)
naturally carries a structure of a graded ring, where the multiplication is given by
the Yoneda product. We call such a graded ring the Tate-Hochschild cohomology ring
of A. It was proved by Wang [47] that the Tate-Hochschild cohomology ring of any
algebra is graded commutative. Furthermore, Dotsenko, Gélinas and Tamaroff [17]
showed that, for a monomial Gorenstein algebra A, its Tate-Hochschild cohomology

1



2

ring ﬁﬁ.(A) is isomorphic to ﬁﬁZO(A)[Xfl], where ﬁﬁzo(/\) =@, ﬁﬁz(A), and x
is an invertible homogeneous element of positive degree. We point out that such an
invertible element was obtained from the fact that any minimal projective resolution of
a monomial Gorenstein algebra becomes periodic from some step. On the other hand,
Wang [47] showed that ﬁﬁ.(A) carries a Gerstenhaber structure. Roughly speaking, it
is a structure of a Lie algebra on the Tate-Hochschild cohom(ﬂo\g.y ring of A. Recently,
there are studies on a Batalin-Vilkovisky (BV) structure on HH (A), because if a BV
structure exists, then it generates a Gerstenhaber structure on the ring ﬁﬁ.(A). It
was proved in Wang [47] that if A is a symmetric algebra, then the Tate-Hochschild
cohomology ring of A has a BV structure generating Wang’s Gerstenhaber structure.
In this thesis, we first consider the existence of a BV structure on ﬁﬁ.(A) in the
case of Frobenius algebras. Let A be a Frobenius algebra. Then, for every integer i,

ﬁﬁz(A) is isomorphic to the i-th cohomology group H'(Home(7,, A)) of the cochain
complex Hom 4e(7T,, A), where T, is a complete resolution of A over A° that is, an
(unbounded) acyclic complex of projective A®-modules with Cok(d? : T} — Tp) = A.
The group H'(Hom4(T,, A)) is called the i-th complete cohomology group of A and
denoted by CH'(A). Thus, letting CH*(A) := @,., CH'(A), we have an isomorphism
CH*(A) = ﬁﬁ.(A) of graded vector spaces. Together with this isomorphism, we aim at
providing a sufficient condition for oo (A) to have a BV structure generating Wang’s
Gerstenhaber structure. On the other hand, inspired by a result of Dotsenko, Gélinas
and Tamaroff [17], we also investigate the ring structure on Tate-Hochschild cohomol-
ogy, and our second aim is to give a necessary and sufficient condition for the Tate-
Hochschild cohomology ring of A to have an invertible homogeneous element of positive
degree in the case that A is Gorenstein.

The organization of this thesis is as follows. In Chapter 2, we recall basic terminology
and facts related to Tate-Hochschild cohomology and Gorenstein algebras.

In Chapter 3, we try to clarify when the Tate-Hochschild cohomology ring of a
Frobenius algebra A has a BV structure generating Wang’s Gerstenhaber structure.
For this purpose, we first fix a complete resolution 7, of the A°-module A and set
D*(A, A) := Homugue(T,, A). We then recall from [47] a differential graded algebra
structure on D*(A, A) whose cohomology ring H*(D*(A, A)) = CH®*(A) is isomorphic
to the Tate-Hochschild cohomology ring ﬁﬁ.(A). Let v : A — A be the Nakayama
automorphism of the Frobenius algebra A, and assume that the set A of eigenvalues
of the Nakayama automorphism v as a k-linear map is contained in k. Then, for each
product p of finitely many elements in A, we define a graded subspace D(‘H)(A, A) of
D*(A, A), and it is proved that D), (A, A) becomes a differential graded subalgebra of
D*(A, A). Letting CHf;y(A) denote the cohomology ring for D)) (A, A), we will show
that if the Nakayama automorphism v : A — A is diagonalizable, then the induced ring
homomorphism CHf;y(A) — CH*(A) is an isomorphism, and CHP;)(A) = CH®*(A) has
a BV structure such that the induced Gerstenhaber structure coincides with Wang’s
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Gerstenhaber structure on ﬁﬁ.(A). Namely, we prove the following main result of
Chapter 3:

Main Result 1 (Theorem 3.3.7). Let A be a Frobenius algebra. If the Nakayama au-
tomorphism of A is diagonalizable, then the complete cohomology ring CH®*(A) is a BV

algebra ﬁ;\clz that the induced Gerstenhaber algebra is isomorphic to the Gerstenhaber
algebra Ext 4.(A, A).

We remark that this result generalizes Wang’s result for symmetric algebras, because
the Nakayama automorphism of a symmetric algebra is the identity.

Moreover, for certain three self-injective Nakayama algebras with diagonalizable
Nakayama automorphisms, we compute their Tate-Hochschild cohomology rings, the
BV structures constructed above and the induced Gerstenhaber structures.

In Chapter 4, under the assumption that the ground field k is algebraically closed,
we study the Tate-Hochschild cohomology rings themselves and decide when they have
invertible homogeneous elements of positive degree in the case of Gorenstein algebras.
It is shown that, for any module M over a Gorenstein algebra A, it is eventually periodic
if and only if there exists an invertible homogeneous element of positive degree in the
Tate cohomology ring of M. Since the enveloping algebra of a Gorenstein algebra is
also Gorenstein, we obtain the following main result of Chapter 4.

Main Result 2 (Theorem 4.2.3). Let A be a Gorenstein algebra. Then the following
conditions are equivalent.

(1) The Tate-Hochschild cohomology ring ﬁﬁ.(A) has an invertible homogeneous el-
ement of positive degree.

(2) A is an eventually periodic algebra.

——e —>0
In this case, there exists an isomorphism HH (A) =2 HH  (A)[x '] of graded algebras,
where the degree of an invertible homogeneous element x equals the period of the periodic
syzygy V% (A) of A for some n > 0.

As an application, we show that the property of being eventually periodic Goren-
stein is invariant under derived equivalence. It turns out that this result is new only
for eventually periodic Gorenstein algebras of infinite global dimension that are not
periodic. Taking this into account, we provide a method of giving such algebras.

Moreover, we describe the Tate-Hochschild cohomology rings of connected periodic
algebras. More concretely, for a connected periodic algebra A, we determine the Tate-
Hochschild cohomology ring modulo nilpotence ﬁﬁ.(A) /N and the graded subring

—— >0
HH™ (A). These results enable us to calculate the Tate-Hochschild cohomology ring
HH (A) whenever the Hochschild cohomology ring of A has been computed.



Chapter 2

Preliminaries

In this chapter, we recall basic terminology and facts which are used in this thesis. Let
us first fix some conventions. We write ® for ®; and Hom for Homy. For an algebra A,
we denote by A-mod the category of A-modules, by A-proj the category of projective
A-modules, by gl.dim A the global dimension of A and by A° the enveloping algebra
A ® A% of A. Here, we denote by A°? the opposite algebra of A. Remark that we can
identify an A-bimodule M with a left (right) A°-module M whose structure is given by
(a ®b°)m := amb (m(a @ b°) := bma) for m € M and a ® b° € A°. We denote by A
the quotient space of A by the subspace k1,4 generated by unit 14. Let 0 : A — A be
an algebra automorphism of A and 7 : A — A the canonical epimorphism of k-vector
spaces. We denote by @ the image of a € A under the epimorphism 7 : A — A. We write
a.m € A% for a, @+ ®a,, € A®™, by, € A" for h® --®b, € A" and GC1 € A%
for o(c1) @0 (ca) ®@---Qo(q) € A% when no confusion occurs. For an A-module M , We
denote by inj.dim 4 M (resp. proj.dim M) the injective (resp. projective) dimension of
M.

2.1. Gerstenhaber algebras and Hochschild (co)homology

In this section, we review the definition of Gerstenhaber algebras and Hochschild
(co)homology and some related facts. Let us start with the definition of Gerstenhaber
algebras.

Definition 2.1.1. A Gerstenhaber algebra is a graded k-vector space H* = D, ., H"
equipped with two bilinear maps: a cup product

—: Mol @ HIB — pled Bl (o, B) — o — B
and a Lie bracket, called the Gerstenhaber bracket,
[, ] H @ HPT = {0, B) s o, ]

such that



1 g = 18 a graded commutative algebra wi uni S , tn particutar, o ~
(i) (H*,—) graded tative algebra with unit 1 € H°, i ticul
1

B=(-1)Flg — a;
(ii) (H*[1],], |) is a graded Lie algebra with components (H*[1])" = H"*1, that is,

[, 5] = _(_1)(|al—1)(\6|—1)[5, o

and
(—=1)U=DBID [, 8], 4] + (=1)P=D0=D][5, 4], a

+(=1)(=DUBI=D1y ], 8] = 0;

(11i1) The Lie bracket [ , | is compatible with the cup product —
[, 8= 7] = [a, 8] — 7+ (1) 15 — o, 9],

where «, 3,7y are homogeneous elements in H®, and we denote by |a| the degree of a
homogeneous element o in H®.

We now recall that the Hochschild cohomology of an algebra A carries a structure
of a Gerstenhaber algebra. There is a projective resolution Bar,(A) of A over A®, which
is the so-called normalized bar resolution of A:

S ARAT AN AR AT T 9 A S ARARA L A A A0,

where we set
dy(ap ® G1,p @ arp1) = Qpay @ Ga,r @ Ariq
i _ -
+ E (—1)'ap @ @1,i—1 ® @Gt @ Giyo,r & Arpq

+(—=1)"ap @ a1, r—1 ® ArQry1,

do((lo & Cll) = Qpa1.

We denote ﬁT(A) := Imd, for all r > 0. For an A-bimodule M, consider the cochain
complex C*(A, M) := Homye(Bar,(A), M) with differential Hom 4c(ds, M). Note that
for any r > 0, we have

C"(A, M) = Hom e (Bar,(A), M) = Hom e (A® A~ @ A, M) = Hom(A"", M).

We identify CY(A, M) with M. Thus, the cochain complex C*(A, M) is of the form

0 - —®r 5" —®r+1
0— M — Hom(A, M) — --- — Hom(A~ ,M) — Hom(A~ |, M) —



whose each ¢" is defined by

r

O ()@ 1) = a1 f(@2,r41) + Z(_1>i+1f(al,i71 ® i1 @ ita,ri1)

i=1
+ (—1)T+1f(61,r)aT+1

—®r+1
A

for any f € Hom(Zw, M) and @ .41 € . Then the r-th cohomology group

H' (A, M) == H'(C*(A, M), 5*)

is said to be the r-th Hochschild cohomology group of A with coefficients in M. We
will write HH"(A) := H"(A, A). Since A is projective over k, we get H"(A, M) =
Ext’ie (A, M). Namely, Hochschild cohomology groups do not depend on the choice of
a projective resolution of A over A°. For two A-bimodules M and N, the cup product

—: C"™(A,M) @ C"(A,N) = C"™"(A,M @4 N)
is defined by

(a ~ B) (al,m—i-n) = a(al,m) Xa ﬁ(am-i-l,m-kn)

—®@m-+n

forall o € C™(A, M), € C"(A,N) and @y, i € A
a well-defined operator

. The cup product — induces

—:H™(A, M) ® H"(A,N) — H™"(A, M ®4 N).

The Gerstenhaber bracket on the Hochschild cohomology HH®*(A) is defined as fol-
lows: let « € C™(A, A) and g € C"(A, A). We define a k-bilinear map

[, ]:C™(AA) @ C"(AA) = C™" (A, A)

as

[0575] =aoff— (_1)(m—1)(n*1)ﬁ = Cernfl(A’A)’
where we determine « o 3 by

m

ao (@1, min-1) == Z(_1>(i_1)(n_1)05(61,i—1 ® B(@i,i4n-1) @ Tin, min—1)
i=1

with 3 := 7 o 3. This k-bilinear map [, ] induces a well-defined operator
[, ]: HH™(A) ® HH"(A) — HH™™1(A).

Gerstenhaber proved the following result.



Theorem 2.1.2 (25, page 267]). The Hochschild cohomology HH®*(A) equipped with
the cup product — and the Lie bracket | , | is a Gerstenhaber algebra.

For an A-bimodule M, consider a complex Cq(A, M) := M ® 4o Bar,(A) with differ-
ential idy; ® 4e do. Note that for any » > 0, we have

Co (A, M) =M @4 Bar, (A) = M @4 (ARA @ A)2 M@ A"
We identify Cy(A, M) with M. Thus, the complex Co(A, M) is of the form

S MeATT I e AT s s Mo A M o,

—@r+1
where 0,41 sends m ® @y, 41 € M ® A% 1o

,
_ i _ N 41 _
may & Ao, r41 + E (=1)'m ®@1,i-1 @ CGip1 @ Uigo,r41 + (—1) " arim @ @y,
i=1

Then the r-th homology group

H, (A, M) :=H,(Ce(A, M), 0,)

is called the r-th Hochschild homology group of A with coefficients in M. We denote
HH,(A) := H,(A, A). Since A is projective over k, we get H, (A, M) = Tor"y.(A, M),
which means that Hochschild homology groups are independent of projective resolutions
of A.

There is an action of Hochschild cohomology on Hochschild homology, called the
cap product. For two A-bimodules M, N and integers r,p > 0 with r > p, a k-bilinear
map

~: Cr(A,M) @ CP(A,N) = Cr—p(A,M ®4 N)
is defined by

(M®a,,) ~a:=m®sa(d,,) apr1,r

for all m ® @1, € C.(A, M) and o« € CP(A,N). The k-bilinear map —~ induces a
well-defined operator

~: H, (A, M) @ HP(A,N) — H,_,(A, M ®4 N).



2.2. Tate-Hochschild cohomology and its Gerstenhaber struc-
ture

This section is devoted to recalling Tate-Hochschild cohomology groups and a Ger-
stenhaber structure on the Tate-Hochschild cohomology. For more details, we refer the
reader to [46, Section 3 and 4].

Let A be an algebra. The singularity category Dsg(A) of A is the Verdier quotient
of the bounded derived category DP(A) = DP(A-mod) of the module category A-mod
of A by the full subcategory formed by those complexes quasi-isomorphic to bounded
complexes of projective A-modules. Recall that the shift functors [1] on DP(A) and
Dy (A) are induced by shift of complexes. Let M and N be A-modules. Follow-
ing [12], we define the i-th Tate cohomology group of M with coefficients in N to be

E}?c;(M, N) := Homp,,(4)(M, N[i]) for any i € Z. Then E}?c;e (A, A) is called the i-th
Tate-Hochschild cohomology group of A and denoted by ﬁﬁz(A).

The Tate cohomology E}R;(M, M) =@, Ex\t;(M, M) of a A-module M carries
a graded algebra structure, where the multiplication is given by the Yoneda product

—: Ext (M, M) @ Ext,(M, M) — Ext, (M, M); a® 8w alj]op.

We call the graded algebra Ex\t;(M , M) equipped with the Yoneda product — the
Tate cohomology ring of M, which is called the “stabilized Yoneda Ext algebra” of
M by Buchweitz [12]. Although Tate cohomology ring E}R;(M M) is not necessar-
1ly graded commutatlve Wang [47] showed that the Tate-Hochschild cohomology ring
ity (A) := Ext ., (A, A) of any algebra A is graded commutative. On the other hand,
since Ext’y (M, M) = Homps(4y(M, M[i]) for i > 0, using the canonical triangle func-
tor DP(A) — Dy (A), we obtain a morphism Ext% (M, M) — Ex\t:‘(M, M) of graded
algebras.

We now recall another description of Tate-Hochschild cohomology and the Gersten-
haber structure on Tate-Hochschild cohomology based on the description. Recall that
O°(A) = Imd,, where d, : Bar,(A) — Bar,_;(A) is the p-th differential of the nor-
malized bar resolution Bar,(A). We fix an integer m and put I, := {p SV ‘p >
0,m+p> O}. Consider an inductive system

{ngm)v 9m+p7p : X;Sm) - X;ST%} )

PEI(m)

where

XM = ExtP (A, Q°(A)),

p

and Op,1pp 1 Xp (m) _ x(m +i is the connecting homomorphism



Omsp.p : EXtTP(A O (A)) — Exta (4, 07 (A4)) (2.1)

induced by the short exact sequence
0— (A 5 A A" @ A — OP(A) — 0.

Here, we regard Ext’iP(A, Q" (A)) as H™P(A, Q" (A)), or equivalently, any element of
Ext1-”(A, Q"(A)) is represented by an element in Homy, (Z®m+p, Q2 (A)). Note that the
inductive system above has the form

Ext/ (A, 0 (A)) 25 Bt (A, 07 (4)) 22y pent 24, 07 (4)) — -
where 7 > 0 is the least integer such that m + i > 0.

Remark 2.2.1. Using the explicit description of the connecting homomorphism (2.1)
in [46, page 16], we see that, for any m € Z and p € I,,), the connecting homomorphism

Omsp.p : ExtTHP(A, O (A)) — ExtaH (4, 07 (A4))

sends an element [f] € Ext’-”(A, Q"(A)) represented by f € Homy,(A”"7 0P (A4)) to
the element [0,,4, ,(f)] € Extz:“p”Ll(A,ﬁpH(A)). Here, [0ppp(f)] is represented by
the k-linear map

9m+p,p(f) : Z®m+p+1 N QPH(A)

. — —®@m+p+1 .
taking an element @y ,4p+1 € A into

(D)™ P dp 1 (f(@1,map) @ Umipr1 @ 1) € Imidyyyy = ﬁp+1(A)>
where d,;1 : Bar,;1(A) — Bar,(A) is the (p + 1)-th differential of Bar(A).

Proposition 2.2.2 ([46, Proposition 3.1 and Remark 3.3]). For any m € Z, there is
an isomorphism

lim Ext’y”(A,97(A)) 2 Homp,, (4 (A, A[m]) = Ext . (A, A).

pe I('m)

We now define a Gerstenhaber structure on Tate-Hochschild cohomology defined by
Wang ([46]). Let m,n,p and ¢ be integers such that m,n,p,q¢ > 0. A cup product

gt C™A, QD (A) ® C™(A, QN (A)) — C™(A,Q7T(A))

is defined by
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f ~sg g<51,m+n) = CI)zquf(fa_)l,m) ®a 9(5m+1,m+n>>>

where f® g € C™(A, Q" (A)) @ C"(A, Q% (A)) and B,y : O(A) @40 (A) = QT(A) is

an isomorphism of A-bimodules determined by

Dy g0 @1,y @ apr1 @4 by @by g @ byi1) = ag @ Ty, @ Apr1by @ by g @ bgy

for ag @y, , @ ay1 € L (A) and by @by, @ byy1 € Q'(A), which is given in [47, Lemma
2.6].

Let m € Zsg, p € Zso and f € C™(A, Q°(A)) and let 7 : A — A be the canonical
epimorphism. We set

0

0= 1@idP ' @ids: AQA™ @ A5 A" @ 4,
) =ids®idP ! @ A9AT @A ARAT,

D
—®p—1 —®p+1

P =r@id¥ 'er: AR A" @A A

p

and then denote

fO .= Wz(f)f’ )= Wz(f)fv O = 7T;(;b)f‘

Let m,n,p and ¢ be integers such that m,n > 0 and p,q > 0. We now define a bilinear
map

[, Jg 0 C™(A, D (A) ® C(A,Q1(A)) — O™ 1A, Q7(4)).

as follows: let
feC™A T (A)) = Homy, (A", Q7 (A))

and
g € C"(A,Q%(A4)) = Homy (A”", Q" (A)).

We first define a k-linear map f e, g € C’m+”_1(A,§p+q(A)) for each integer ¢ with
1 <7 < m. Consider the following four k-linear maps:

(1) (1d ' @ g® @idEm ) A7 AP s given by
a1, min—1 > a1,i-1 @ g® (@, i4n-1) @ Cien, m4n—1;
(2) ( " ® id%q) LAY A @ AT s given by

At mtq = L7 (@1 m) ® Tt 1, mergd
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(3) (id A®idrHe ®1> LA AT 5 A0 AT ® A s given by
ap ® A1, prq = Ao R A1, prq @ 15

(4) dprg : A® A" 9 A 5 A A7 g A s the (p + q)-th differential of the
normalized bar resolution Bar,(A).

We then define a k-linear map f o; g € C" " 1(A, ﬁp+q(A)) by the composition of the
above four maps

foig:=dypiqo (s @id ™ @1) o (/O @idf) o (105 © o @ i)
= dyuy (/7 © 1450 @ g @1d5" ) @ 1)
for 1 <4 < m. On the other hand, we assume that ¢ > 0. We also define a k-linear

map fe_;g € C’m+”_1(A,ﬁp+q(A)) for each integer ¢ with 1 < i < ¢. Consider the
following four k-linear maps:

(1) (9(7“) ® id%m_l) LATTTT S A AT i given by
Aman-1 = 97 (@1,0) ® Tty mean—13
(2) (idA 2idE ! of® @ 1d§q—i> CA@ AT L A @ AP is given by
ag & a1, miyq—1 F> G0 ® a1,;—1 & AR (@i, itm—1) ® Cim, mtq—1

(3) (idA ®id§p+q ®1> A AT 5 A A" @ A is the same as above;
(4) dpyy : A® A A A® AT ® A is the same as above.

Then we define a k-linear map fe_; g € C™ ™ 1(A, ﬁp+q(A)) by the composition of
the above four maps

fe_ig:=dy,0 <idA ® id%PJrq ®1) o (idA ® id%iﬂ ®f(b) ® id%qfi) o (g(r) 2 id%mfl)
= dpi((ids @17 @f O @15 ) (¢ @) ©1)

for 1 < i < gq. So far, the k-linear map f e; g € C’m+”_1(A,§p+q(A)) has been defined
in the following way:
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feiyg
o (f ©1d5) (15T @ g ©1d5" ) @ 1) if 1 <i<m
= dpro((id @id5" " @ O ©id5"™) (¢ @i1d§" ) @ 1)
ifg>0and —qg<i<—1.
Now, we define a k-linear map fe g€ C™ ™ 1(A ﬁp+q(A)) by
S (=) pm G f e g ST (—1) B Gl fe_s g if g > 0;

S (-1y e f e g it g =0,

where r(m, p;n, q;1) and s(m, p;n,q;i) are determined by

feg:=

r(m,pin,q;i) :=p+q+ (i —1)(g—n—1) for 1 <i<m,
s(m,pin,q;i) =p+q+ (i —1)(¢g—n—1)for 1 <i<q.

Finally, we are able to define a k-linear map [f, glsg € Crn=1( A4, T A)) as

[f. glg = fog— (—1)m P rmalge f.

Wang [46] showed that the cup product —g, and the bilinear map |, |5, induce well-
defined operators, still denoted by —g, and [, |5, on a graded k-vector space

P ExthP(A,0°(4)
mEZ,pEZZ 05
m+p>0

with grading

<€BEth{CL”(A,ﬁp(A))) P Ext'(4, 0 (A))
iﬁgo

m,p

for ¢ € Z, which make it into a Gerstenhaber algebra. Furthermore, he proved that
the two induced operators —g, and [, ]s are compatible with the connecting homo-

morphisms 6,, , : ExtT (A, Q°(A)) — Ext?F 1(14,5‘”“(14)). Therefore, we have the
following result.

Theorem 2.2.3 (|46, Theorem 4.1]). Let A be a finite dimensional algebra over a field
k. Then the graded k-vector space

P lim ExtiP(4,Q°(A))

mez PELm)

equipped with the cup product —y, and the Lie bracket [, |sz is a Gerstenhaber algebra.
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Remark 2.2.4. The Gerstenhaber brackets on P, , Ext1 (A, Q" (A)) involving ele-
ments of degree zero are defined via the connecting homomorphisms

0o, + ExtO(A, Q7 (A)) = Extle (4,07 (4)),

that is, for f € Exts”(A, Q"(A)) and o € Ext%.(A4,Q(A)), we define

[fs alsg = [f, 00,q()]sg-

Remark 2.2.5. The induced cup product —, in Theorem 2.2.3 commutes with the

Yoneda product on ﬁﬁ.(/l) via the isomorphism in Proposition 2.2.2 (see [47, Propo-
sition 4.7]).

2.3. Gorenstein algebras

In this section, we recall the definition of Gorenstein algebras and facts related to
those algebras from [6, 11, 12]. Let A be an algebra. Recall that the stable cate-
gory A-mod of A-modules is the category whose objects are the same as A-mod and
morphisms are given by

Hom , (M, N) := Homu(M,N)/P(M,N),

where P(M, N) is the space of morphisms factoring through a projective module. We
denote by [f] the element of Hom, (M, N) represented by a morphism f : M — N.
There exists a canonical functor F' : A-mod — Dy (A) making the following square
commute:

A-mod — DP(A-mod)

i |

A-mod —5~ D, (A)

where the two vertical functors are the canonical ones, and the upper horizontal functor
is the one sending a module M to the complex M concentrated in degree 0. Further,
the functor F' satisfies F o Q) = [—1] o F, where €4 is the syzygy functor on A-mod
(i.e. the functor sending a module M to the kernel of a projective cover of M). On the
other hand, let APC(A) be the homotopy category of acyclic complexes of projective
A-modules. For a complex X, and an integer i, we denote by €2;(X,) the cokernel
Cok dY ; of the differential d;Y; and by X,[i] the complex given by (X,[i]); = X;_; and
dXll = (—1)’dX. Then taking the cokernel (X,) = Cokd{ of the differential df for
a complex X, defines a functor € : APC(A) — A-mod satisfying Qg o [—1] = Q4 0 Q.

Recall that an algebra A is Gorenstein if inj.dimyA < oo and inj.dim e 4 < 00.
Since the two dimensions coincide by [49, Lemma A], we call a Gorenstein algebra A
with inj.dimyA = d a d-Gorenstein algebra. In the rest of this section, we assume
that A is a d-Gorenstein algebra unless otherwise specified. We call an A-module
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M Cohen-Macaulay if Ext’ (M, A) = 0 for all i > 0. It is clear that projective A-
modules are Cohen-Macaulay. We denote by CM(A) the category of Cohen-Macaulay
A-modules. It is well-known that CM(A) is a Frobenius category, that is, an exact
category with enough projective objects and injective objects such that the classes of
projective objects and of injective objects coincide. Note that projective objects of
CM(A) are precisely projective A-modules. Thus the stable category CM(A) carries a
structure of a triangulated category (see [12, 28]). In particular, the syzygy functor
Q4 on A-mod agrees with the inverse of the shift functor 3 on CM(A). The following
result is due to Buchweitz [12].

Theorem 2.3.1 ([12, Theorem 4.4.1]). Let A be a Gorenstein algebra. Then there exist
equivalences of triangulated categories

APC(A) —= CM(A) —4> Dy (),
where the equivalence 14 is given by the restriction of F': A-mod — Dg,(A) to CM(A).

Thanks to the theorem, we can associate to any A-module M an object T, = TM
in APC(A), uniquely determined up to isomorphism, satisfying that Qy(7,) = M in
Dys(A). Thus the triangle equivalence 14 : CM(A) — Dy (A) induces an isomorphism

Exty (M, M) 2 Hom ,(Q(T.), X'Q(T.))

for all © € Z. We identify these via this isomorphism.

Recall that, for an algebra A, the Gorenstein dimension G-dims M of an A-module
M is defined by the shortest length of a resolution of M by A-modules X with X =2 X**
and Ext’ (X, A) = 0 = Ext’o, (X*, A) for all i > 0, where we set (—)* := Homy(—, A)
(see [2] for its original definition). The next proposition is easily obtained from the
results in [6] applied to the case of Gorenstein algebras: (1), (2) and (3) follow from
[6, Theorems 3.1 and 3.2], [6, Lemma 2.4 and Theorem 3.1] and [6, Theorem 5.2],
respectively.

Proposition 2.3.2. The following hold for a module M over a d-Gorenstein algebra
A.

(1) The Gorenstein dimension G-dimaM of M satisfies G-dima M < d and is equal
to the smallest integer r > 0 for which Q7 (M) is Cohen-Macaulay.

(2) There exists a diagram T, LN P, = M satisfying the following conditions:
(i) T, € APC(A) and P, = M is a projective resolution of M.

(i1) 0 : Ty — P, is a chain map with 0; an isomorphism for any i > 0.

(3) We have that Exti (M, M) = Exty (M, M) for all i > G-dimM.
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We call such a diagram as in Proposition 2.3.2 (2) a complete resolution of M (see
[6] for its definition in a general setting). A complete resolution is unique in the sense
of [6, Lemma 5.3] (when it exists).

The canonical triangle functor DP(A) — Dy, (A) induces a morphism

' : Exty (M, N) = Hompe s (M, N[i]) — Homp,_ 4 (M, N[i]) = Bxt 4 (M, N)

for any integer i. Note that ® = 0 for all 7 < 0. It follows from [12, Remarks (b)
on page 41] that &' : Ext’ (M, N) — Ex\t;(M, N) is surjective if i = d and bijective
if ¢ > d. In particular, for a 0-Gorenstein algebra A, we have an epimorphism 620 =
(®");50 : HH*(A) — ﬁﬁZO(A) of graded rings, where HH=’(A4) = @~ ﬁﬁl(/}).

Next, we explain how we find the corresponding object TM in APC(A) for any A-
module M. If T, — P, — M is a complete resolution of M, then T, in APC(A) is
the object corresponding to M via the triangle equivalence ¢ o g : APC(A) — Dye(A).
Indeed, the morphism Qy(7,) — M induced by the chain map 6 : 759 — P, is an
isomorphism in Dy, (A). Here, T5o stands for the following truncated complex of Ty:

dr dr
T20:—>T2—2>T1—1>T0—>0—>0—>

Thus constructing a complete resolution of M is equivalent to finding the corresponding
object TM of APC(A).

It follows from [9, Lemma 6.1] that if A is an n-Gorenstein algebra, then the en-
veloping algebra A° is a (2n)-Gorenstein algebra. Hence, by Proposition 2.3.2; there

exists a complete resolution 7T, LN P, S A of A over A°. The following is the definition
of the complete cohomology groups of a Gorenstein algebra.

Definition 2.3.3 (cf. [11, page 911]). Let A be a Gorenstein algebra and T, LN RN
a complete resoluiton of A over A®. For r € Z, the r-th complete cohomology group of
A with coefficients in an A-bimodule N is defined by CH"(A, N) := H'(Homu4(T,, N)).
We write CH"(A) := CH"(A, A).

Bergh and Jorgensen [11] defined the complete cohomology under the name “the
Tate-Hochschild cohomology”, and, in this thesis, we use the terminology “Tate-Hochschild” for
the cohomology groups defined by Wang [46, 47], which are described in the previous
section. We remark that both of these cohomology groups are isomorphic for any
Gorenstein algebra.



Chapter 3

Batalin-Vilkovisky structures on
complete cohomology rings for
Frobenius algebras

In this chapter, we give a sufficient condition for the Tate-Hochschild cohomology ring
of a Frobenius algebra to have a BV structure such that the induced Gerstenhaber
structure coincides with the one of Wang. Moreover, we consider certain three self-
injective Nakayama algebras and compute their Tate-Hochschild cohomology rings, their
BV structures, and the induced Gerstenhaber structures.

3.1. Frobenius algebras and complete resolutions

Let A be an algebra with dim; A = d, and let ¢ be an algebra automorphism of A.
For any A-bimodule M, we denote by M, the A-bimodule which is M as a k-vector
space and whose A-bimodule structure is defined by a - m - b := amo(b) for m € M,
and a,b € A. We also denote by AY the right A®-module Hom ge(ac A, 4c A®) whose
structure is given by the multiplication of A° on the right hand side. Note that we have
an isomorphism of right A°-modules

AV S(Ae A4
= {Z% ® Y

where a right A°module structure of (A ® A)# is defined by the multiplication of A°
on the right hand side. Recall that A is a Frobenius algebra if there is an associative
and non-degenerate bilinear form (, ) : A® A — k. The associativity means that
{ab,c) = (a,bc) for all a,b and ¢ € A. If (u;)%; is a k-basis of A, then there is a k-basis
(v;)%_; of A such that (v;,u;) = d;; with ¢;; Kronecker’s delta. In such a case, we call

(u)ey, (v;)L, dual bases of A. There exists an algebra automorphism v, up to inner

Za@»@yi = Zmi@)yia for any a € A};f — f(1),

16
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automorphism, of A such that (a,b) = (b,v(a)) for all a,b € A, and the automorphism
v is said to be the Nakayama automorphism of A. In fact, we can write both the
Nakayama automorphism v and its inverse v =1, explicitly: for z € A,

d d

v(z) = Z(z,vﬁui, v (z) = Z(UZ,IW@

i=1 i=1

Another definition of Frobenius algebras is that A is isomorphic to D(A) as right or
as left A-modules. Here, the left (right) A-module structure of D(A) is defined by
(af)(x) := f(za) ((fa)(z) := f(ax)) for any f € D(A) and any a € A. We can see that
the bilinear form (, ) : A® A — k induces an isomorphism of left A-modules

¢: A= D(A); a— (—,a).

Moreover, this isomorphism gives rise to an isomorphism A, = D(A) of A-bimodules.
The first statement of the next lemma appears in [23, Lemma 2.1.35]. However, we
prove it again in order to get the explicit form of the isomorphism below.

Lemma 3.1.1. Let A be a Frobenius algebra. With the same notation as above, we
have the following assertions.

(1) There is an isomorphism A,-1 = AV of right A®-bimodules.

(2) If (u), (v3); and (u});, (v); are two dual bases of A, then we have ) u; ® v; =
POFRTAL R

(3) An element ), u; ® v; of A® A has the following properties:

(a) Y ui @ =0 @ v Hw) = 35, v(v;) ® ug;
(b) > aub@v; =3, u; @ v H(b)va for any a,b € A.

Proof. For (2) and (3), consider the composition 1 : A,-1 ® A — Homy(A, A) of iso-
morphisms

A1®A D(A)® A Homy, (A, A)
DT @Y= (=, T) QY —> [$ = Zi<$,9€i>y¢]

Since z = > .(x,w;)v; for any dual bases (u;)? ,,(v;)¢, of A and any = € A, the
statements (2) and (3) follow from the injectivity of . On the other hand, we define

e 4% s o () 9],

P:AY 5 (A A 5 A, a— a(ly) = Z% ® yi — Z(L%Mi.
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Then we get ¢ is a right A°~-module homomorphism. Indeed, if x € A,-1 and a®b°® € A°,
then we have p(z (a®0°)) = > . wv(br)a®@v; = >, uiv(r)a®@by; = (D, uv(x) ®v;)(a®
b°). One can easily check that ¢t =idsv and P =ida _,. O

As remarked in Section 2.3, if A is a Frobenius algebra A, then sois A°. In particular,
A¢ is a 0-Gorenstein algebra. Therefore, A has a complete resolution over A°. Note
that we may take a projective resolution of A over A° as the non-negative part of the
complete resolution. In fact, Nakayama [39] constructed a complete resolution T, of
A in the following way: we set T, := Bar,(A) = A® A" ® A for every v > 0 and
T s := D(Bars_1(A)),-1 for each s > 1. Then one gets an exact sequence

dy) d_ d—
T4 T . 3 T g —>---

dol TD(do)

A 7> D(A)V—l

dr dy
g . . Ty

=TT

where we put

D(do)(f) = fdo (f € D(A)y1), dy = D(do)¢do,  d-s(g) = gds (9 €T-s).

Sanada [42, Lemma 1.1] proved that there is an isomorphism Hom e (7., M) = M,-1® 4e
T_,_1 for any A-bimodule M and any integer r, and this isomorphism is natural in
M. Thus each T, (r € Z) is projective over A°. On the other hand, the isomor-
phisms Hom e (7)., M) = M,-1 ® 4e T_,._1 induces an isomorphism of complexes between
Homye (T, M) and M,-1 ®4e T. Therefore, the following complex (D*(A, M ),c?') has
the same cohomology groups as Hom 4 (7, M):

e Oy A, M) 2 O (A M) 2 My B M S oA, M) S oA, M) -

where we define p : M,-1 — M by pu(m) := Zle u;mu; for m € M and set

C"(A,M if r>0
Dria ) = &AM =
C_ (A, M,-) ifr<-—1;
o if r >0,
d = 1 it r=-—1,

a,r,1 if r S —2.

We give the explicit forms of the 0-th and (—1)-th cohomology groups as follows:

CHO(A) =2 MA/Ny(M), CH YA) =y, M/I(M),
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where we set

M#*:={m e M | am = ma for all a € A},
Na(M) :=TIm (p) = { Zuimvi | mEM},

nM:={meM| Zuimvi:O},

Ix(M) = { Z(miu_l(ai) — a;m;) (finite sum) | a; € A,m; € M}

Note that, for any z € A, ), u;,zv; = 0 holds if and only if >, w;v(z)v; = 0 holds.

Remark 3.1.2. If M = A, then CH°(A) and CH'(A) are appeared in the following
exact sequence:

0— CH(A) = A1 @40 AL Homye (A, A) — CHY(A) — 0,
where the morphism 7(z ® 4 a)(b) = >, bu;v(z)av;.

Suppose that A is a self-injective algebra. Recall that A is a self-injective algebra if
A is injective as a left and as a right A-module. Note that the enveloping algebra A° is
also a self-injective algebra. Observe that if A is a self-injective algebra, then all of the
connecting homomorphisms (2.1)

Ornsp.p : EXtTP(A Q(A)) — Ext™oPH (4, 07 (A4))
are isomorphisms except for the case m + p = 0, so that we have an isomorphism
Ethtp(A,ﬁp(A)) = Ext (A, A) for all ,p € Z such that p > 0 and r +p > 0. We
need modification for the inductive system {XS"), 6m+p7p}p€1<m) defined in Section 2.3.
Let us recall that
lim Ext’:7(A,Q"(A))
PE€I(m)

is the inductive limit of the inductive system {X™ Om+p.ptpel,, of which the term
X\ is defined by X\ = Ext’j:7(A,Q"(A)) and whose morphism 6,,,,, is the con-
necting homomorphism Ext’i. P(A, Q°(A)) — ExtP (A, ﬁpH(A)). Consider another
inductive system

{qu(m)’ 90m+p,p}p €1m)

of which the term Yp(m) is the same as XI(,m) and whose morphism ¢,4,, is given by

o (_1)m+iem+i,i if p =1,
A TR LV NN )
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where an integer 7 > 0 is the least one belonging to I(,,). Then we can readily see

lim V"™ = lim Ext;.7(A,Q"(A)).
PElim PE€lm)

We will utilize the inductive system {Y,™ @mip ptper (o instead of (X5 Brspntper -
and denote

m m +
90;1n+p,p = Pmtptq—1,p+q—1° """ O Pmtp,p - EXtA:rp(Aagp(A)) - EXtAijrq(Aﬁp q(A))‘

Note that ¢}, ., , = Pmtp,p-
The following is a special case of [12, Corollary 6.4.1], which says that the Tate-
Hochschild cohomology of a self-injective algebra can be written by using Ext and Tor.

Proposition 3.1.3. Let A be a self-injective algebra. Denote AY = Homye(A, A°).
Then we have the following.

(1) Ext (A, A) = Ext’y. (A4, A) for allr > 1.
(2) BExt o (A, A) = Tor™, (A, AY) for all v > 2.
(3) There exists an exact sequence of k-vector spaces
0 Ext (A, A) = AV @4e A2 Homue(A, A) — Extye (A, A) — 0,
where the morphism 1 is given by n((>_, x; ® yi) @ae a)(b) = >, bx;ay;.

(4) E}RL(A, A) = Hom 4. (A, A), which is the set of A-bimodule homomorphisms from
A to A modulo those homomorphisms passing through projective A-bimodules.

In particular, forr > 2 and p > 1,

ko1, Extope (A, A) = Ker () & Extl (A, 07 (A)) 2 Ext . (A, A),
h o Bxtige(A, A) = Coker () = Extly(A4,07(A4)) = Ext 10(A, A),
Kr_1p: Tord (A, AY) 55 Ext?. (A, Q7 (A)) = Ext . (A, A)
are defined, on the (co)chain level, as
K-1,p(a @ e a) (El,p) = Z dp1(Tia @ Y; ® Z_)l,p ® 1),
©6,0(F)(b1,p) = dp(f(1) ® b, @ 1),

Hr—l,p(a X Ae a1,1"—1)(51,1)) = Z dr+p($i ® a1,7”—1 X gz ® Bl,p ® 1)7

where we write a(1) =3, 2; @ y;. We denote g o by ©o,0.
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The third isomorphism #,_1.,, : Tor’" (A4, AY) = Ext . (A, A) in Proposition 3.1.3
is given by Wang [46, Remark 6.3].

Assume that A is a Frobenius algebra. Then the A-bimodule isomorphism A,-1 =2
AY induces an isomorphism of complexes between D*(A, A) and the complex C*(A, A)
defined by Wang [47]

e Oy(AAY) 2 (A, A D AV B AT oA, A) S 02 (AA)

whose negative part is the Hochschild chain complex (Cy(A, AY),d,) and of which the
non-negative part is the Hochschild cochain complex (C*(A, A),0®). Here, the map
p: AY — Ais defined by the multiplication of A, that is, p(a) = >, z;y; for a € AY
with o(1) =), 2, @ y;.

Moreover, Wang [47, Section 6.2] defined a product on C*(A, A), called x-product,
which extends the cup product on C*(A, A) and the cap product between C*(A, A)
and C,(A, AY). Although the *-product is not associative on C*(A, A) in general, the
*-product induces a graded commutative and associative product on H*(C*(A, A)). The
following is the product

x: D*(A, A) @ D*(A, A) — D*(A, A)

on D*(A, A) via the isomorphism D*(A, A) = C*(A, A): let f € C™(A, A), g € C"(A, A)
and a =ag @@, € Cp(A, A1), B=by @by 4 € Cy(AA,1).

(1) (m,n > 0) x: C™(A, A) @ C"(A, A) — C™ (A, A) is given by
frg:=[—g;

(2) (m>0,p>0,p>m)

(8) %: Cp(A, Ay1) @ C™(A, A) — Cy (A, A1) is given by
axfi=a~f=av(f(@,m) @iy ;
(b) % : C™(A, A) @ (A, Ayr) — Cy (A, A1) is given by
frai= f(@-mi1,p)a0 @ a1, p-m ;
(3) (m>0,p>0,p<m)

(a) x: C™(A, A) @ Cp(A, A1) — C™P7H(A, A) is given by

(f %) (Ormp1) =Y f(br,mp1 ® ui(ag) @ p)v; ;
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(b) x: Cy(A, A1) @ C™(A, A) = C™ P71 A, A) is given by
(Oé*f) blm —p— 1 = Zuz aO al,p®6i®51,mfp—1) ;
(4) (p’ q= O) *: Cp(Aa Aufl) ® Cq(Aa Azrl) — Cp+q+1(A7 A,fl) is given by

Oé*ﬁ = Zvibo ®Z_)1,q ®U1'V<Cl0) ®61,p .

Dual bases of A are used in our definition of x-product, but Lemma 3.1.1 (2) shows
that the x-product does not depend the choice of dual bases of A.
We summarize the above results in the following.

Proposition 3.1.4 (|47, Lemma 6.2, Propositions 6.5 and 6.9]). Let A be a Frobe-
nius algebra. Then the x-product is compatible with the differential d of the complex
D(A, A). Moreover, the induced product on CH*(A) = H*(D(A, A)), still denoted by *,
is graded commutative and associative. In particular, (CH®(A), ) = (E}?c;\e(A, A), —)
as graded algebras.

3.2. Decomposition of complete cohomology associated with the
spectrum of the Nakayama automorphism

In this section, we define and study certain subcomplexes of D*(A, A), which play
important roles in proving the main result of this chapter. For this purpose, we need
to recall the subcomplexes of the (co)chain Hochschild complexes defined in [35]. Let
A be a (not necessarily Frobenius) algebra, and let ¢ be an algebra automorphism of
A. Let A be the set of eigenvalues of o, and assume that A C k. We have 04 € A
and 14 € A because o is a ring automorphism. Let A := (A) be the submonoid of
k* generated by A. We denote by A, the eigenspace Ker (¢ — Aid) associated with an
eigenvalue A € A. For A € A, we write Ay = Ay for A # 1 and A} = A;/(k-1,) for
A =1, and for every u € A and every integer r > 0, we put

ngu)(Aa Aa) = @ Auo ® Zm Q- ZNT’
€N, TTi=p
Clin(AA) = {fe CT(A,A)lf(AM ® - ®AL) C Ay, for any p; € A},

Since o(zy) = o(x)o(y) for z,y € A, we have Ay - Ay C Ayy for A, N € A. It is under-
stood that Ayy = 0 when AX ¢ A. Then these subspaces CY (A4, A,) and Cly (A, A)
are compatible with the differentials 0, and ¢* of the complexes (Co(A4, Ay),ds) and
(C*(A, A),8*), respectively. Thus, we obtain subcomplexes (C¥)(A,A,),8%) and
(CF,) (A, A),62,)). Then we put
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H (A, A,) == H,(C(A, A,),00),

H{ (A, A) = H"(C?, (A, A), 00,)-

Hence, for all r > 0, we get morphisms H® (A, A,) — H,(A, A,) of k-vector spaces and
(w(A, A) — HH"(A). Kowalzing and Krihmer [33] defined a k-linear map

B O\ (A Ay) — Cria(A, Ay)

by

r+1
Bi(ay®a,) =Y (-1)"1®6G® - @8 @G @ d(a) @ @ o(a;_y).
=1

Let T: C(A, A,) = Cr(A, Ay) be the k-linear map defined by

T(ap ®a,,) = 0(ag) ® o(ar) ® -+~ @ o(ay).
A direct calculation shows that 9,,1B? — B 0, = (—1)""'(id — T') for all r > 0.
Proposition 3.2.1 ([35, Propositions 2.1, 2.2 and 2.5]). The following assertions hold.
(1) For every 1 # p € A and every r > 0, we get
HW(A, A,) = 0.

(2) For all v > 0, the restriction of the map B? : C.(A, A,) = Cr11(A, A,) to the
subspaces C',El)(A, A,) induces a twisted Connes operator

B? :HWY(A, A,) — HY (4, A,),
and it satisfies By, B = 0.
(3) If o is diagonalizable, then we have
H.(A,A,) 2 HY(A A,)
forr > 0.
The following is an easy consequence of Proposition 3.2.1.

Corollary 3.2.2. If the algebra automorphism o of A is diagonalizable, then so is its
inverse o~ Furthermore, if this is the case, then we have two twisted Connes operators

B? :HW(A, A,) = HY (A4, 4,), B :HW(A A, 1) — HY (A, 4, 4).

*
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From now on, we assume A to be a Frobenius algebra with Nakayama automorphism
v. Let A ={\1,..., A} be the set of distinct eigenvalues of v. Suppose that A C k. Let
A= (A) be the submonoid of k* generated by A. For any u € /A\, we define a subspace
D,y (A, A) of D*(A, A) in the following way: for any p € A,

Cr (A, A) if 7 > 0,
CW (A Ay)  ifr<—1.

Lemma 3.2.3. For any i € A, the subspaces D{,)(A, A) of D*(A, A) are compatible
with the differentials d* of the complex (D*(A, A), (3\')

Proof. Tt is sufficient to show that j_l(D(’#l)(A, A)) C DY, (A A). Tfx € A, =D (A, A),

(1)
then we have

v(d (@) =) vlwv@)v(v) = ) {ui,v;)u; - v(e)v(v)

2¥]

— i:ujy(x)y<z<ui, vjm) = (v (vy))

i J

= Zujl/(x)vj.

Since 0 = (v — pid)(z) = v(z) — px, we get

-~

(v = pid)(d ! () = v(d (@) = pd (@) = D wgp(e)e; = p 3 S usee; =0,

71 0
Therefore, we have d™'(z) € D, (4, A). O

From Lemma 3.2.3, we obtain a subcomplex (D7, (A, A), d¢,)) of (D*(A, A),d°®). Put

~

CH{,,(A) == H'(D(, (A, A), di,))

for all 7 € Z. Hence the inclusion D7, (A, A) — D*(A, A) induces a morphism
CHZM)(A) — CH"(A) of k-vector spaces for r € Z. Before stating the next proposi-
tion, let us recall a well-known duality between Hochschild cohomology and Hochschild
homology: there is an isomorphism © : D(C,(A, A,)) — C*(A, A) given by

D(C,(A, A,)) = Hom(A, ®4 A® A" ® A, k)
~ Homyu (A ® A~ ® A, Hom(4,, k))
~ Homyu (A® A” @ A, A) = C"(A, A),
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where r > 0 and the second isomorphism is induced by A, = D(A). Then O :
D(C.(A,A,)) — C*(A,A) is a morphism of complexes and hence induces a duality
D(H,(A,A,)) = HH"(A). In fact, we can write © : D(C,.(A, A,)) — C"(A, A) and its
inverse ©7! : C"(A, A) — D(C,(A, A,)) as follows:

0 :D(C.(AA)) = C(AA); ¢— {BM =Y Yy ® 51,r)vj] )
@_1 : CT(A, A) — D(CT(A, A,,)); f — [(10 ®517r — (f(aw), (10” .

Proposition 3.2.4. Let A be a Frobenius algebra. If the Nakayama automorphism v
of A is diagonalizable, then the following statements hold.

(1) The isomorphism © : D(C4(A, A,)) — C*(A, A) induces an isomorphism of com-
plexes

D(CH(A,A)) = CF 1y (A, A)
for all p e A

(2) ForreZ and ju #1 € N, we get

(3) For each r € Z, there exists an isomorphism of k-vector spaces

CHJ,(A) = CH'(A).

Proof. Tt follows from Lemma 3.2.5 below that the inverse of each eigenvalue A € A is
also an eigenvalue of the Nakayama automorphism v of A. Since A is the (finite) direct
sum of the eigenspaces A,,,..., Ay, we have D(C\(4,4,)) = D, D(C (A, A))
for all » > 0. For the first statement, it is sufficient to show that the inverse ©~! :
C*(A,4) = D(Ci(A,A,)) induces an isomorphism Cp, (A4, A) = D(C’r(’fl)(A7 A)).
Since ©71(f) € D(C,(A, A,)) is a non-zero map for 0 # f € Cl,y (A, A), there exist
i€ A and ap ® a1, € C’,g“,)(A,Al,) such that (f(@i,),ap) # 0, so that we get (uu' —
) {(f(@1,),a0) = 0 and hence ' = . As a result, we have shown that if \ € A with

A # pt, then the restriction of ©71(f) to C’T(A)(A, A,) is the zero map. Thus, we have
a monomorphism

O, = O Mor, (a4 Cly(A, A) = D(CF (A A,)).



26

Furthermore, we get @(_ul) is surjective. Indeed, for any ¢ € D(C’ﬁ“ 71)(A,A,,)), there
exists f € C"(A, A) such that ¢ = ©7L(f). Let py,..., . € Aand by, € A, ®@---®A, .
It follows from A = €@, Ay, and ¢[00, , = 0 for all A p ! that

(f(brr),a) = (W(f(Dr,) v(a)) = W(f(Drr), (- o) " 1 a)
for any a € A. Consequently, we get v(f(bi,)) = p1---purpf(br,) and hence f €
C(,)(A; A). This shows that @(_Ml) 1Oy (A A) = D(C’T(’fl)(A/i A,)) is surjective.
For the second statement, let  be an integer and p € A such that g # 1. In the

case 1 < —2, the desired result is a consequence of Proposition 3.2.1 (1). If r > 1, then
the first statement (1) and Proposition 3.2.1 (1) imply that there is an isomorphism

CH,)(A) = H[, (4, A) = D(H¥ (A, A,)) = 0.

We also have CH(_/})(A) =0 and CH(()M) (A) = 0 because CH(_/}) (A) < HY(A4, 4,-1), and
CH?M)(A) is a quotient space of H(()M)(A, A).

For the last statement, let  be an integer. For the case r < —2, the desired result
is a consequence of Proposition 3.2.1 (3). If » > 1, then the first statement (1) and
Proposition 3.2.1 (1) yield that there are isomorphisms

CH'(A) = HH'(A) = D(H, (4, A,)) = D(H()(A, 4,)) = H}})(A, 4) = CH},,(4).

Since A,-1 @ Ay, as k-vector spaces, the differential d~! can be decomposed as
d-! [d_ d/\ '], where d : Ay, = A is the restriction of d! to Ay, Then we have

“(A) = @5 CH{! (A) = CH\(A).

1<i<t
Similarly, we have CH"(A) = CH?I)(A). This completes the proof. O

Lemma 3.2.5 ([35, Lemma 3.5]). Let A be a Frobenius algebra such that its Nakayama
automorphism v is diagonalizable. Then we have the following statements.

(1) For any X\ € A, its inverse A\~ belongs to A.

(2) The isomorphism A, = D(A) of A-bimodules induces an isomorphism A =
D(Ay-1) of vector spaces for any A € A.

Suppose that the Nakayama automorphism v is diagonalizable. For each \; €
A ={\1,..., N}, we denote by m; its algebraic multiplicity. Then we have a k-basis

(u, ..., upi. A ) of the eigenspace A, associated with \;. Thus d-tuple (u}, . .. ,u)‘mll, ,
TS mt) forms a k-basis of A, and we obtain its dual basis (vf‘l, e ,v;\nll, LUt



27

vyt ) of A with respect to the bilinear form ( , ). It follows from Lemma 3.2.5 and

bV

(vpi,u)?) = 80, that the dual basis vectors v}, ... . belong to A,-1 for each A;.

We fix the dual bases (u;\’)z s (v]’\’)z ; of A. For simphfymg the notation, we will write

(u,...,uq) and (vq,...,vy) for (ug\)” and (vj’\)” when there is no danger of confusion.

Proposition 3.2.6. Let A be a Frobenius algebra such that its Nakayama automorphism
v is diagonalizable. For any pu, i € A, x : D(A,A) @ D*(A, A) — D*(A, A) induces
the restrictions %, : D[ (A, A) @ D[ (A, A) = D, (A, A).

(k')

Proof. We only show that the x-product « restricts to the subcomplexes in the cases (32
(i). Proofs of the other cases are similar to the proof of the case (3) (i). Let p, /' € A
be arbitrary and m,p € Z such that m > 0,p > 0 and p > m, and let f € C(TZ)(A,A)
and a = ay®a,, € Ay @ Ay @ @A, C (A, A1) with [T} = 1. We claim
that

(fx@)Ormp-1) = Y fOrmp1 @6} v(a0) O )0 € Aoy
1<i<t,
1Sj§mi
holds for any 517m_p_1 € Xm R QA
we have

fim—p1 where the p; are elements of A. Indeed,

V(Z 1 mep1® U;\iV(GO) ® 51,p)”;\i)

= Z V(fa_)l,m—p—l ® U;\iV(CL(]) ® 6171,))1/(1);%)

= Z g1+ fan—p—1 Aipt! f (b1, m—p—1 @ 1} v(ag) ® @y, p)A; 0}

= ' 1 Y f(O1mpo1 @y v(ag) @ @ p)0)

1,]
and therefore fxa € C 5" Y(A,A). O

We denote x; := x11 : Dfy) (A, A) @ Dy (A, A) — Df (A, A). Then we have the
following result.

Corollary 3.2.7. Let A be a Frobenius algebra. Then (CHPy)(A), 1) is a graded com-
mutative algebra. Furthermore, if the Nakayama automorphism v of A is diagonalizable,
then (CHYy)(A), %1) is isomorphic to (CH®*(A), ) as graded algebras.

3.3. BV structure on the complete cohomology

In this section, we prove the main result of this chapter. Let us recall the definition
of Batalin-Vilkovisky algebras.
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Definition 3.3.1. A graded commutative algebra (H® = @, ., H",—) with 1 € H° is
called a Batalin-Vilkovisky algebra (BV algebra, for short) if there exists an operator
A, H* — H* such that:

(1) Ar_1A, =0 for any r € Z;

(11i) For homogeneous elements o, B and v in H®,

Ala— B —7)=Ala— ) — 7+ (=1)a — A5 — )
+ ()P — Al —y) = Ala) = B — 7
— (D — AB) =y = (=)Hla — 5 — A(y),

where |a| denotes the degree of a homogeneous element o € H®.

Remark 3.3.2. For each BV algebra (H®,—, A), we can associate a graded Lie bracket
[, ] of degree —1 as

0, 5] = (=1L () A 0 — §) + (—1)IA(a) — §+a — A()),

where «, § are homogeneous elements of H®. The equation is said to be the BV identity.
It follows from [26, Proposition 1.2] that the bracket [ , | above makes (H®,—,[, ])
into a Gerstenhaber algebra.

Recall that a symmetric algebra A is a Frobenius algebra with a non-degenerate
bilinear form ( , ) : A® A — k satisfying (a,b) = (b, a) for all a,b € A. Wang [46] has
proved the following result.

Theorem 3.3.3 (|46, Corollary 6.21]). Let A be a symmetric algebra. Then the com-

plete cohomology ring (CH®*(A),*) is a BV algebra together with an operator A, -
CH*(A) — CH* '(A) defined by

Ar: Zf?“:(),

A, ifr>1,
0
(-1)T B,T,1 ZfT S —1,

where B, 1is the Connes operator defined by

r+1
Bi(ag®1,) = » (~1)"1 @, ® by @ 1,i1
i=1
for any ap @ @1, € C.(A, A1), and A, defined in [43] is the dual of the Connes
operator B,_1, which is equivalent to saying that A, is given by a formula
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T

(Ar(f)(@r,r-1),a,) = Z(—l)i(rflmf(ai,rfl ® @, ®a1,i-1), 1)

i=1

for any f € C"(A,A). In particular, the restrictions CH=°(A) and CH=°(A) are BV
subalgebras of CH®(A).

Remark 3.3.4. Let A be a symmetric algebra. It follows from Remark 3.3.2 that the
BV differential A in Theorem 3.3.3 gives rise to a Lie bracket { , } (of degree —1)
defined by

{a, 8} i= (~)lHerA (et A - §) + (1) IA(a) — B+a — A(F))

for any homogeneous elements «, 5 € CH®*(A). Moreover, the Gerstenhaber algebra
(CH*(A), *, {, }) is isomorphic to (Ext 4e(A, A), —«g. [, ]se) as Gerstenhaber algebras.

In the rest of this section, we show the following result on Frobenius algebras whose
Nakayama automorphisms are diagonalizable.

Theorem 3.3.5. Let A be a Frobenius algebra. If its Nakayama automorphism v is

diagonalizable, then the graded commutative ring (CHYy)(A), *1) is a BV algebra together
with an operator A, : CH{yy(A) — CHZF;)l(A) defined by

AY ifr>1,

A,=40 ifr=0,
(-1 B, ifr<-1,

where B;’*l is the twisted Connes operator defined by
r+1

B (ag@a,) =Y (-1)"1®8, 0% @ v (1) @ @ v (a;_1)
=1

for any ag®ay . € C.(A, A,-1), and AY defined in [35] is the dual of the twisted Connes

operator BY_,, which is equivalent to saying that AY is given by a formula

T

AN (@) a) =Y (=D (f (@, ©a,@v(a) @ @v(a)),1)

i=1

for any f € C"(A, A). In particular, the restrictions CH(Zl())(A) and CH(SI())(A) are BV

subalgebras of CHYy)(A). Furthermore, the induced Gerstenhaber algebra (CHpy,(A), %1,
{, }) is isomorphic to the Gerstenhaber algebra (E}R; (A, A), —se, [ 5 se)-
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Remark 3.3.6. Each of the components A and B” ' is defined on the chain level.
Corollary 3.2.2 and Lemma 3.2.5 imply that we can lift the two components AY and
B to the cohomology level when we restrict them to Dy (4, A).

Using the isomorphism CH{;)(A) = CH®(A) appeared in Corollary 3.2.7, we have
our main result.

Theorem 3.3.7. Let A be a Frobenius algebra. If the Nakayama automorphism of A is
diagonalizable, then the complete cohomology ring CH®*(A) is a BV algebra such that the
induced Gerstenhaber algebra is isomorphic to the Gerstenhaber algebra Ext 4.(A, A).

In order to prove Theorem 3.3.5, we claim that the bilinear map
{, }:CH{}(A) ® CH{(A) — CH?}T”*(A) (m,n € Z)
defined by
o B} 1= (1) IR ()R @ B) 4+ (=1)7R(@) 11 8+ a1 A(H))
for any o ® 8 € CH{},(A) ® CH{}y(A) commutes with the Gerstenhaber bracket

n—1

[, Jog @ Extye (A, A) ® Extge(A, A) — Ext (A, A).

II n I

SV
w% %w

Figure 3.1: A plane with six regions

By considering whether m+n—1 is negative or not together with Figure 3.1, and by
using the anti-commutativity of the Gerstenhaber bracket | , |5, we see that it suffices
to show our claim for a pair (m,n) of integers n < m satisfying one of the following
conditions:

(1) (m,n) is on the lines m = 0 or n = 0.

(2) (m,n) belongs to the regions I, IV, V or VL.
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Thus our claim can be divided into the five cases Propositions 3.3.8, 3.3.9, 3.3.10 and
3.3.11 and Remark 3.3.12. In particular, Propositions 3.3.8, 3.3.9, 3.3.10 and 3.3.11
prove our claim for the pairs in the regions VI, V, IV and I, respectively. Further, we
consider the case (1) in Remark 3.3.12. Among the four propositions, we prove only
the first one. We also remark that, in the following propositions, the appearing integers
m and n are independent of the above argument.

Proposition 3.3.8. Let A be a Frobenius algebra with the Nakayama automorphism v
of A diagonalizable, and let m,n be integers such that m >n >1, som—n—1 2> 0.
Then we have the following commutative diagram.

" _n {} mn—
CH;)(A) ® CH}(A) CH{1"H(A)
Ext’. (A, A) @ Toris | (A, A1) Ext "1 (A, A)
d®Kn—1,1 | = ‘P:Lntln—l,o

Ext (A, A) @ Extle (A, Q" (4)) = Bxt (4, 0" (4
A A A

o) o

——m-—n—1

Exty (A, A) @ Ext (A, A) — = CEG" 7 (4, A),

where { , }: D})(A, A) @ DY(A,A) — D?f)_”_l(A,A) is defined by

{f.2}
= (= )R (AT (f oy 2) 4 (~D)VIA(f) 0 2+ (<) B (2))
= (—1)Hlel 1z <(_1)|f|+13(f w1 2) + (—DIA(f) %1 2+ f %1 3(2))

for f®z €D (A A) @D (A A).

Proof. 1t follows from the definition of the induced Gerstenhaber bracket on E}R;e (A, A)
that the bottom square is commutative (see Theorem 2.2.3). It remains to show the
commutativity of the top diagram. It suffices to prove that a formula

([ Je(id @ mna, ))(f ®2) = 37 1 oL, HF®2)) (3.1)

holds in EXtZLc<A,§n+1(A)) for f € Kerdfj) and z := ap ® @1,n—1 € Ker 8,51_)1. Denote

by f the composition of f : A®™ - A with the canonical epimorphism 7 : A — A. For
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the right hand side of the formula (3.1), we have, for b; ,, € A%

szlrj_ln 1, o({f; Z})(El m)
= (=)t (A (f ~ 2)) (b ) + (1) (A ()~ 2)(brm)
(=1t o(f ~ B (2)(br,m)

Z Z l nomty +n+1d(<uk7fa0f(51,n—1 ® Vg @ b mn—1 @ uj & vbyio1), L)v;

7k =1
®&nnm®n

+Z Z 1) d(u a0 (f (@i, n-1 @ Tj @ by, m—n-1 @ U @ vLag,;-1), L)vg
g,k i=1

®Rnnm®n

+ Z Z (Z+n m+l)d(ujya0<f(5i,mfnfl ® Uk @ vlay -1 @ VY;

J,k i=1

@ Vb1 1), 1)Uk @ by @ 1)
+Y i(—l)(m“)("“)d(f@l,m_n_l QW © Ty @ Ty © V- Lar,i1)0;
@ b @ 1)
in ﬁnH(A). On the other hand, for the left hand side of the formula (3.1), we get

[f+ fin1,1(2)]sg (b1, m) )
= (forp11(z) = (=1 Vg 1(2) @ f)(brm)

ZZ n+1 +1) g (f(b“1®ujya0®a1n1®vj®bzmn1)

& bm n,m & 1) (3.2)
+ Z Z (n+1)(1+1)d(f(51,z‘—1 ® W;0a) @ 1, m—i) @ Am—itl,n—1 O Tj

7 i1=m—n-+1
® bi.m @ 1) (3.3)

+ZZ zm+1)du1/ao®alz1®f<azn1®'U]®b1m nti— 1)
® bmfn+i,m® 1) (34)

We will transform [f, £,—1,1(2)](b1,m) to @t 1 o({f, 2})(b1,m) in ﬁnH(A), using some
boundaries.
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First, we deform the first term (3.2). A direct calculation shows

Z (—1)i("7m+1)+n+1d((UkVaof(aan QU ® Bi,mfnfl Qu; ® V_bl,ifl)a L)v;
jok i=1
® by @ 1)
+ (—1)(i+n)(m+1)d(uﬂ/ao(f(l_%‘,mfnq ® Uk @vlay -1 QTT; ® V_bufl), Lvy,
jk i=1
® bynym @ 1
m—n—2 m—n
_ (_1)z(m+1)+(n+1)l+1Spnm—_ln_LO (5((2 <f(id§l—z—1 ® —Ujl/a[)
joi=1 I=it2 .k

® Tyt ©T; @1 @ W OV, Lvi) 0 ti-1>) (b1,m)

m—n—1

+Z Z (_1)i(m+1)+(n+1)(i+1)+1¢¢n—1n1’0(5((2 (f(wrag @ @y, -1 @ T;
gk =1

j?k

910" 0 @ 7). ur) 017 ) B

+ Z Z(—1)(n+1)(i+1)d(f([_?1,i—1 ® UV @ 1,1 @ V) @ bimn—1) @ b, m
i =1

® 1),

where the k-linear map ¢ : AP AT g given by t(b1 n_n_2) = bo.m_n_2® by
—®@m—n—2

for by pmn_o € A . In particular, we have #=*(by 1n_n_2) = bi.m—n_2®b1 ;1. Note
that the two maps

B0 (5«2 (@70 © Tt €75 @ 147" @ @ 7). ue) o t’”)) ,
g,k

Prn—1,0 (5((2 <f(id§liiil @ ujvag @ ap-1 ®V; & idgmfnfl ® W @ 7, vy

g,k
o til)>



=n+1

are zero in Ext".(A,Q" " (A)). Hence, we have

ZZ nH 4 (f(blz 1 ®UVay Q ay pn- 1®U3®b%m n-1) @ by nm @ 1)

_ Z Z (_1)z(m+1)+(n+1)l¢% ln ) 0(5((2 <f(id§lfi71 ® W;vag ® Gyt

i i=l l=i+2 j.k

® 1; @1 @ @ TFT), L)uy) o 7 1))(b1,m)

m—n—1
> 2 <—1>“m“)+(”+”‘””so?n‘_ln_l,o(5<<Z (@75 @ Ty ©7;

j?k

910" 0 @ 7). a0 17) ) B

+ Z Z Z " m+1)+n+1d(<uk7/a0f(51,n—1 QU ® Bi,m—n—l & u;
gk =1

®%1i 1) >’Uj®5m nm®1)

+ Z Z l+n)(m+l d(uj’/a0<f(5i, men—1 QU @ Vvtay n_1 @ VY
gk =1

® %l,i—l)a 1>Uk & l_)m—n,m ® 1) (3

Secondly, we deform the second term (3.3). A direct calculation shows

Z Z Z n (mA-i41)+(n+1) (1 z+1)5(d(f(id§m—n+i—1 ®Wj @ Tniis1.n1 ® Ao

7 1=0 l=i+1
Q@ vlay o) @ v lan_141, ntiol T; ® id%n_i ® 1))(51711)

Z Z (—1)(n+1)(i+1)d(f(51,i—1 R UVay @ A1 m—i) @ Um—it1,n—1 @ Tj
7 i=m—n+1
+ Z Z )OIV (b1 iyt @ Tj @ Tiynoy © To @ vTan,io1)0;
® bmfn,m ®1)
N Z Z(_l)m(nﬂ)ﬂ'ﬂd(f(gLm_nH. @ U @ Vg1, 1)V ® Ay, @ T,
—

® Bm—n-‘,—i—l—l,m ® 1)

34
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Hence, we have

Z Z nH) (1) d(f(l_h,z'—l ® UVay @ A1, m—i) @ Am—it1,n—1 @ Vj @ bi,m ® 1)

7 i=m—n-+1

Z Z Z n m+i+1)+(n+1)(l—i+1)5(d(f(id%mfnJrifl ® ﬂj ® an+i—l+1,n—1

=0 [=i+1
® To @ Va1 1) @V an 141, nri ® v; ® idgn_i ® 1)) (b1, m)

+ Z Z (mﬂ (n+1) d(f(l_h,m—n—l R U; @ i1 @ Ao @V Lay,i—1)v;
® bm—n,m & 1)
+ Z Z(_1>m(n+1)+id(f<gl,mfn+i QU @V ai41,0-1)VA0 @ Ty, @ Ty

&® l_)m—n—i-i—l—l,m & 1) (36)

Finally, we deform the last term (3.4). A direct calculation shows

S S (5 a0 © 7T © (st O,

7 1=0 l=i+1
® 12" @ Uy @ Wit nt44), 1)V @ 1T @ 1)) (b1, )

ZZ lm—H)duVa()@alz 1®f<azn 1®’U]®b1m n+i— 1)®bm n+i,m

® 1)

+ Z Z ) +1d(ujVa0<f(ai,n71 ®V; @ b1, mn—1 @ U @ v Lag ;_1), L)y,
7,k =1

® binp,m @ 1)

+ Z Z(_l)m(n+l)+id(f(51,m—n+z‘ ® Uy @V ai41,n-1)Va0 @ Ty, @ Uy,

® Bm—n+i+1,m ® 1)
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Thus, we get

Z Z 1" d(ujvag @ @1 © f@in-1 @0 @ bimentic1) ® bmniym © 1)

Z Z Z n (s (nH)(HH)‘S(d(“j’/ao ®@vtar; @ (f(vanriip1,n

ji=0 l=i+1
® T; @ idS" " @ Uy @ Ty i), 1T @ 1S @ 1)) (b, )

+ Z Z +1)d (ujvap(f(@;, n—1 ®7T; ® Bl,m—n—l QUL ® V——lal,i_l), 1wy,
gk i=1
® bnym ® 1)
+ Z i(—l)m(nJrl)HHd(f(l_?l,m—n+i R up ® Ei—i—l,n—l)VaO &K a1, ® Vg
® bmnnitt,m © 1), (3.7)

Combining the formulas (3.6), (3.7) and (3.5), we obtain

[f in1,1(2)sg (b1, m) + 0() (ba,m) + 21,0 (0(4)) (br,m) = 1,0 ({5 23) (b1, m)

in ﬁnH(A) for all by ,, € A”™ and therefore

[f? Kn—l,l(z)] QOZ”L—Hn 1, 0({f7 Z})

in Ext’f. (A, QnH(A)) for f € Kerd(j) and z = ag ® ay,,—1 € Ker 87(3_)1. This completes
the proof of the statement. Il

Proposition 3.3.9. Let A be a Frobenius algebra with the Nakayama automorphism v
of A diagonalizable, and let m,n be integers such that n > m >1, som —n—1 < 0.
Then we have a commutative diagram

-n {7} m—n—
CH{}y(4) ® CH{J(A4) CH{jy " (4)
Ext". (A, A) @ Tor (A, A, 1) Tor (A, A, 1)
id®l€n,]_11 o > | Kn—m,m

=n+1

Ext’i.(A, A) ® Exth (A, Q

Ext (A, Q" (A))

o o

[, lse ——m—-—n—1

Ext 4o (A, A) ® Ext . (A, A) Exta (A, A),
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where { , } : Dj)(A, A) ® DJ(A,A) — Dzrf)*"*l(A,A) is defined by

{f.2}
= (=) ()BT (f oy 2) 4 (< D)MIAY(f) sy 2 4+ (< )F f 0 B (2))
= (=) ()R 2) 4+ (<) IB(f) 51 2 4 f o A2))

for f®z € D} (A, A) @ D J(4, A).

Proposition 3.3.10. Let A be a Frobenius algebra with the Nakayama automorphism

v of A diagonalizable, and let m,n be integers such that m > 1 and n > 1. Then we
have the following commutative diagram:

{3
CH_7'(A) ® CH{J/(A)

CH_7 "~ 1(A)

o

Tor2"” (A, A,-1) ® Tor’" (A, A1) Torp (A, A,-1)

Km—1,10Kn—1,1 | =

o~

Km+n,1

Extle (A, 07" (A)) @ Extl (A, 077 (4)) — s Byl (4,07

(4))

o

(=23

Ext o (A, A) @ Bxt g (A, A) —— = CEGTN (A, A),

where { , } : D "(A,A) @ D;)(A, A) = D" YA, A) is defined by

{w, 2}
= (—1)lwllzlel+z] (<_1)IZI+1BV‘1 (w1 2) + B (W) %1 2+ (=D)FFlwx, B (z))
= (—1)lwllel+ul+z] ((—1)le+1£(w w1 2) + (DA (w) %1 2+ wH ﬁ(z))
forw® z ED"”(A A)®D (A A).
The following is a consequence of Lambre-Zhou-Zimmermann

Proposition 3.3.11 ([35, Corollary 3.8]). Let A be a Frobenius algebra whose Nakayama
automorphism v is diagonalizable, and let m,n be integers such that m >0 andn > 0
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Then we have the following commutative diagram:

m n { ’ } m-+n—
CH{})(A) ® CH{y (A) CH{}"H(A)

- y

Ext™ (A, A) @ Ext™. (A, A) — 1~ Extmn=1(4, A)

: !

——m+n—1

Ext (A, A) @ Ext (A, A) — = Extn ™ (A, A),

where [, | is the Gerstenhaber bracket on Hochschild cohomology and { , } : Dff (A, A)®
Dy (A, A) — Dg';j"-l(A, A) is defined by
{f, g} = (=)l (O VIFEAY(f 5y g) + (—D)HIAY(f) %1 g + f %1 A(g))

= (=) ()R (51 g) 4+ (~D)IB(F) 51 g+ £ Alg) )

for f® g € D}y (A,A) ® Dy (A, A).

Remark 3.3.12. We have to consider the case of either m =0orn=0. If m > 0 and
n = 0, then we will prove that there is a commutative diagram

m {,} m—
CH{y(A) ® CH{)(A) CH{};(A4)
Ext. (A, A) ® CH(A) Ext’ (A, A)

id@(poyo o >~ ¥Pm-1,0

=1

Ext™ (A, A) @ Exth. (A, 0 (A)) — =2~ Bxt™ (4,0 (A))

o) o

Ext (A, A) © Extye(A, A) — % BG4, ),

where the vertical isomorphism g o : CHY(A) — Extl. (A,ﬁl(A)) is defined in Propo-
sition 3.1.3 and { , } is defined by

{f.9} = COVH((=DHAY(f 5 g) + (~D)VIAY(f) %1 g)

for f®g €Dl (AA) @ D?l)(A, A). We must show that

Cm-10{, }(f®9) = ([, lsc(id®¢0,0)(f ® g)
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in Extfe(A,ﬁl(A)) for f @ g € Kerd(j) @ Ker 6?1). A direct calculation shows that we
have

L/, @0,0(9)]5g = Om-1,0([f, 9])

as maps, where | , | is the Gerstenhaber bracket on Hochschild cohomology. Tt follows
from [35, Corollary 3.8] that [f,g] = —AY(f %1 g) + AY(f) %1 g in Ext’}o '(A, A). As a
result, we obtain a formula in Ext’. (A4, QI(A)):

/5 20.0(9)lse = Pm-1.0([f, 9]) = Pm-1,0(=A"(f x1 9) + A" (f) %1 9) = m-1.0({[, 9})-
Similarly, one can prove our claim in the other case m = 0 and n > 0.

We are now able to prove Theorem 3.3.5.

Proof of Theorem 3.3.5. It follows from Propositions 3.3.8, 3.3.9, 3.3.10 and 3.3.11
and Remark 3.3.12 that we have the following commutative diagram

{3

CH;)(A) ® CH} (A) CHP: "1 (A)

- |

Ext (A, A) @ Bxt o (A, A) L BG4, 4),

where m,n are arbitrary integers. Since (E}?t;e (A, A), —s [, |se) s a Gerstenhaber
algebra, we have

[f7g ng h’]sg = [fv g]Sg \'/Sg h + (_ )(lf‘ 1 |g| [f> ]
for arbitrary homogeneous elements f,g and h € Ext AE(A,A). Since we have proved
that [, |s; commutes with { , }, using the defining formula for { , } and the formula

(f,g% by = (—1)" ((—1)|f\+1£(f w1 g% h) - (—DVIA(S) %1 g1 b+ [ Alg 5 h))

with 7 = [f[(lg] + [k]) + [f] + |g] + [R], we obtain

A(fr1gxih) = A(fxig)xh+ (~1)Vf % (g w1 h) + (= 1)IED g5 A(f % R)
- B(f) *x1g* h+ (-1 )lﬂf *1 (9) *1 h + (‘1)|f‘+|g‘f *1 g *1 ﬁ(h)

for arbitrary homogeneous elements f,g and h € CH{;)(A). Finally, by the definition
of the operator 3, we get A =0 and 30(1) = 0. ]

Remark 3.3.13. Recall that the Nakayama automorphism v of A is semisimple if the
map v ®idy : A® k — A ® k is diagonalizable over the algebraic closure k of k. The
results of Lambre-Zhou-Zimmermann [35, Section 4] and an easy calculation imply
that the complete cohomology ring of a Frobenius algebra is a BV algebra when the
Nakayama automorphism is semisimple.
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3.4. Examples

Throughout this section, we assume that &k is an algebraically closed field whose
characteristic char k is p. Lambre-Zhou-Zimmermann [35] showed that there are many
examples of Frobenius algebras with diagonalizable Nakayama automorphisms. This
section is devoted to computing the graded commutative ring structure and the BV
structure of the complete cohomology for three certain self-injective Nakayama alge-
bras whose Nakayama automorphisms are diagonalizable. Lambre-Zhou-Zimmermann
[35] also gave an useful and combinatorial criterion to check that the Nakayama au-
tomorphism is diagonalizable: let A = kQ/I be the algebra given by a quiver with
relations. Let Qg be the set of vertices in (). It is well-known that we can choose a
k-basis B of A such that B contains a k-basis of the socle of the right regular A-module
A. Suppose that A is a Frobenius algebra. It follows from [30, Proposition 2.8] that
we can construct an associative and non-degenerate bilinear form (, ) : A® A — k by
defining (a, b) := tr(ab) for a,b € A, where tr : A — k is given by

0 otherwise.

1 if pe BnNsocAy,
tr(p) =

Suppose that B satisfies two additional conditions:

(i) For any two paths p,q € B, there exist a path r € B and a constant A € k such
that p-q = Ar in A;

(ii) For every path p € B, there uniquely exists a path p’ € B such that 0 # p-p’ €
soc A 4.

Criterion 3.4.1 ([35, Criterion 5.1]). Under the situation as above, assume that k is
an algebraically closed field of characteristic zero or of characteristic p larger than the
number of arrows of Q. Then the Nakayama automorphism of A associated with the
bilinear form { , ) : A® A — k given above is diagonalizable over k.

Suppose that A = kQ/I is a self-injective Nakayama algebra. It is known that the
ordinary quiver @) of A is a cyclic quiver with |Qy| = s, and an admissible ideal I of
kQ is of the form Rg , where R is the arrow ideal of k() and N > 2. Obviously, we
can take a k-basis B of A consisting of paths contains a k-basis of soc A4. Since any
indecomposable projective A-module is uniserial, B satisfies the two condition (i) and
(ii). Hence, we can rewrite Criterion 3.4.1 as follows:

Criterion 3.4.2. Let A = k‘Q/Rg be a self-injective Nakayama algebra. If the char-
acteristic of k is zero or p larger than the number of arrows of (), then the Nakayama
automorphism of A is diagonalizable over k.

Remark 3.4.3. If A = kQ/ Rg is a self-injective Nakayama algebra, then the exponent
N does not affect Criterion 3.4.2, and only the number of arrows of () is important.

We will compute BV algebras of Nakayama algebras A = kQ/R{ with |Qo| = s for
three cases.
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The case s =2, N = 2.

Let @ be the following quiver

o
1—=2.
as

Consider the algebra A := kQ/ Ré. Thus, A is a self-injective Nakayama algebra and,
moreover, a truncated algebra. It follows from Criterion 3.4.2 that the Nakayama
automorphism of A is diagonalizable if and only if char k # 2. Thus, we suppose that
chark # 2. Note that we need the assumption on chark only if we construct BV
differential. However, we assume that chark # 2 in advance. We denote by e; the
primitive idempotent of A corresponding to a vertex i of ) such that e;aze;1 = o
holds, where we regard the subscripts ¢ of e¢; and a; modulo 2. Take a k-basis B =
(w1, ug, ug,uy) = (€1, e, a1, ) of A. Clearly, it contains a k-basis {1, as} of soc A4.
We hence get an associative and non-degenerate bilinear form ( , ) : A® A — k and
the dual basis B* = (v, v2,v3,v4) = (a2, o1, €1, €2) of A such that (v;,u;) = §;;, where
0;; denotes Kronecker’s delta. Under the basis B, the representation matrix of the
Nakayama automorphism v of A is

01 00
100 0
00 01
0010
and is similar to a diagonal matrix
10 0 0
01 0 O
00 -1 0
00 0 -1

Moreover, we have a decomposition A = A; & A_; of A by two k-vector spaces

A =Ker(v—id) =k1a® k(o1 + o),
Ay =Ker(v+id) =k (e; —e3) ® k(a1 — ).

Let us recall that a set {Ae; ® e;A]i,j € Qo} is a complete set of pairwise non-
isomorphic indecomposable projective A-bimodules, and we denote by P(7,j) the in-
decomposable projective A-bimodule Ae; ® e;A. It follows from [7] that a minimal
projective resolution P, of A as an A-bimodule is an exact sequence

"'—>P2r+1¢2T—+1>P2T&>P27«_1—>"'—>P1ﬂ)Poﬂ)A—)O,

where



42

p . JPAL2)®P2,1) ifnisodd,
o P(1,1)® P(2,2) ifniseven

and A-bimodule homomorphisms ¢, : P, — P,_; are defined as follows:

dole; ® €;) = ey
Par(e; ®e;) =€ @ i1 + a; D e

Garr1(€; @ eip1) = a; R e — € D .

For a k-vector space V and a k-basis B of V| given a basis vector p € B, we denote
by p* the k-linear map V' — k sending ¢ € B to 1 if ¢ = p and to 0 otherwise.
Applying the exact functor D = Hom(—, k) to P, and twisting each term of D(P,) by
the automorphism v~! on the right hand side, we get an exact sequence D(P,),-1 as

follows:
0= D(A)y1 2% . DRy 1) 22 DRy 2 DRy )yt e
where

Alae @ a9)*A @ A1 @ a1)* A if n is odd,

D(P,), 1 —
(F) {A(ag ® o) A Al ® ag)*A  if n is even

and A-bimodule homomorphisms D(¢,) : D(Pi_1),-1 — D(P,),-1 are defined as fol-
lows:

D(¢0)((—,14)) = a1(aa @ a1)* + (a2 @ a1) a1 + s ® ag)* + (1 ® ) awg;
D(d2) (i @ i)*) = ciy1(i @ i1)” + (Qip1 @ i) ay;

D(¢2ri1) (i @ iy1)”) = (4 @ 3) i1 — Qi (@i @ i)™
Therefore, we obtain an exact sequence X,

Pyt D(Py) s 2 D(P) s 2 D(By)yr — -

¢0J/ O TD(%)
A—=>D(A),

o2 o1

P, P

of which the composition p is defined by

ple; ®e) = a; @ e; + i1 @ i1

and whose term P, is of degree n > 0. Observe that there are A-bimodule isomorphisms
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D(P(i,7))y-1 = D(,-14e; ® e;A) = Hom(ejA, D(,-1Ae;))
= D(GJA) X D(Aez')u*l = A€j+1 & ei—l—lAy*l
= A6j+1 & €Z'A = P(] + ].,7:),
where the fourth isomorphism is induced by the A-bimodule isomorphism A, = D(A)
and the fact that v = v~!. Since A° is injective as an A-bimodule, the contravariant
functor Hom 4e(—, A®) is exact, so that the exact sequence X, is a complete resolu-

tion of A. Before applying the functor Homae(—, A) to X,, we notice that there are
isomorphisms

Hom e (D(P(i, )),-1, A) = Homae (D(P(i, 7)), D(A)) = D(A @4 D(P(i, j)))
= Homae (A, P(i,5)) = Homye(A, A®) @4 P(i, )
= A1 ®ae P(i,))
for any 7,5 € Q)o. Using these isomorphisms, we have the following commutative dia-
gram with exact rows:
Homge (D(Pay 1)1, A) 22O o g (D(Pay)y1, A) 22 PO e (D(Pay1)-1, A)

ig l% 5 ig

id®dp2r+1 id®@de2r,
AV*1 R ge P2r+1 AJ/*1 & Ae P27‘ Au*1 @ 4e p2r717

where the A-bimodules A,-1 ® 4¢ P, are given by

Ay1 @pe Pop = k(€3 ®@ac €1 @ €3) Dk (€1 @ae €2 @ €1);
Ay1 @pe Porypr =k (g ®ac 61 ®e1) @ k(1 ®ae €2 ® €3),

and the k-linear maps id ® 4 ¢, are given by

id ® o, (i @ac €; @ €;) = 0;
id ® gor1(6 Pac €11 @ €;) = A Rae € @ €5 — A1 Dae €511 @ €41

Hence, the complex Hom 4¢(X,, A) can be identified with a complex

id®

"'—)Ay—l R e Py ﬂ)AV—l R ae Py
Hom(u,A
E—

s Hom e (Py, A)

Ao, Hom e (Py, A) = - -

of which the remaining terms and differentials are given by

Hom i (P, A) = e1Aes @ esAer = kay B kas if nis odd,
e1Ae; B esAes =ker D key if nis even;

HOH1A6<¢2T+17 A)<€i) = Q41 — Oy,

Hom ge (2, A) (i) = 0;

Hom e (11, A) (0 @ e €; @ €;) =0
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and whose term Hom 4e (P, A) is of degree n > 0.
Therefore, the complete cohomology groups CH*(A) are given as follows: for n > 0

kaoy if nis odd

CH(A) = {01 D1 Eoth (3.8)
k14 if nis even;
k e if n is odd

CH*"(A): a1 Qe €1 X ey 1 nlso. , (3.9)
kel Qaeea®@e; +es Qe 1 Des if n >0 1s even.

Observe that we have CH?(A) = HH’(A) and CH *(A) = Hy(A, A,1).

From now on, we fix a k-basis
(u17u27 us, u4> - (]-) aq + g, €1 — €2,071 — O(Q)

of A consisting of eigenvectors associated with the eigenvalues of the diagonalizable
Nakayama automorphism v of A. Then we have its dual basis

(v, 2,03, 04) = ((1/2) (01 + 02),1/2,(1/2) (a1 — a2), (1/2)(e1 — e2))

of A. Following [1], we will construct comparison morphisms between the minimal
projective resolution P, and the normalized bar resolution Bar,(A) of A (cf.[40] for
monomial algebras in general). Let Fy be the canonical inclusion Py — A ® A, and for
each n > 0, we define F,, : P, - A ® A" ® A in the following way: if n = 2r, then let

2r

A

Foei®e) =100 Q053 ® Q0 ®au D1,

where @; and @;,; appear each other. If n = 2r 4+ 1, then let

2r+1
Forii(e; ®ei41) = 1@ @i @ ©0; ® iyt @ 0; D1

On the other hand, let G( be the canonical projection A® A — F,, and for each n > 0,
G, A® A ® A — P, is given as follows: if n = 2r, then let

e Hw=100;00,411 Q- @ @1,

GQT(w) = .
0 otherwise.

If n=2r+1, then let

€i®€i+1 1fw:1®5z®az+1®®6Z®5,+1®62®1,

0 otherwise.

Gopp1(w) = {

One can easily check that F and G are comparison morphisms. Using these comparison
morphisms and the definition of the x-product x, we have the following result.



45

Proposition 3.4.4. For every i € Z, the n-th complete cohomology group CH"(A) of
A is of dimension one, and the complete cohomology ring (CH®*(A), ) is isomorphic to

kla, B,7]/(ay = 1, 8%)

with |a| = 2,|8| = 1 and |y| = —2, where o, B and ~y correspond to 1, € CH?*(A) in
(3.8), @y € CHY(A) in (3.8) and e] @4 €3 D €1 + €3 D40 €, @ €3 € CH2(A) in (3.9),
respectively.

Remark 3.4.5. As we have seen before, the complete cohomology groups CH"(A) with
n > 0 of A coincide with the Hochschild cohomology groups HH"(A) of A. Hence, the
Hochschild cohomology ring (HH®*(A), —) of A is a subring of the complete cohomology
ring (CH®*(A), %).

Remark 3.4.6. We have another description of the complete cohomology ring above
as follows:

klo, 8,071/ (B%)
where |a| = 2,|8] =1 and |a™!| = —2. Therefore, we will write o~ for 7.

Following our main result, we now construct a BV operator A; : CH'(A) — CH"!(A)
for all 7+ € Z. It follows from Proposition 3.4.4 that

CH*(A)=ka' and CH?*"(A) =k Bd

for all [ € Z. Note that the number of the generators contained in the basis element
of CHi(A) is at least 3 except for —4 < ¢ < 4. Thus, one can use the operators
A; : CHY(A) — CHY(A) for —4 < i < 4 and the formulas in Definition 3.3.1 to
obtain the remaining operators A, : CH*(A) — CH*"'(A). From this point of view,
it suffices to construct 31 only for i = —4,—-2,-1,1,2,3,4. We will show a way of
constructing ﬁl and ﬁ,l. The others can be constructed in a similar way. Let us
recall that every complete cohomology group has a decomposition associated with the
product of eigenvalues and in particular, except for the cohomology associated with
the product of eigenvalues equal to 14, the other vanish. Moreover, the BV operator
defined on the chain level can be lifted to the cohomology level when we restrict it to
the subcomplex associated with the product of eigenvalues equal to 14.
We first compute A; : CH'(A4) — CH’(A). Consider a diagram

Hom 4 (P, A) —~> Hom e ( Py, A)
Hom ge (G1,A4) J/ THomAe Fo,A)

Hom (A, A O

l

R
IR

D(By) T

T
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Since CH'(A) = kay, we deal with only a;. Put
fo, = Homue(Gy, A)(a),  fu, := Homae(Gq, A)(ua), fu, := Homue(Gq, A)(uy).

Namely, each of f,,, fu, and f,, sends Z € A with = € B to

7 o aq lff:Oé_l, (07] lffIOé_l,
— ap 1L T = ag, _ e _ e
fou(T) = . w(@) =qa fT=0;, fu@)={-a ifT=0a3
0  otherwise, ] ]
0  otherwise, 0 otherwise.

Then we have f,, = (1/2) fu, +(1/2) fus, fus € C’(ll)(A,A) and f,, € C’(l_l)(A,A). Since
it is sufficient to only consider the image of (1/2)f,,, a direct computation shows that

Ri(8) = A(@m) = (1/2) Ta = 1/2

in CHY(A). On the other hand, consider a diagram
) g

Ay
AV—I ®Ae pOHAV—l ®Ae P]_
id®AeF0l O Tid@AeGl

—1
A, A, ® A.

We know that CH™(A) = ka; ®4e €3 @ e; holds and hence handle o ® 4e €3 ® €. The
element (id ®4c F) (a1 ® 4c €2 ® €1) = 1 can be decomposed as a; = (1/2) ug + (1/2) uy
in A,-1, where uy € C(()l)<A,AV71) and uy € Cé_l)(A,Afl). Thus, a direct calculation
gives us the formula

371(041 X ge €9 ®€1) = (—1/2) €1 @ae 2 @ e1 + €3 Qye €] K €2

in CH ?(A). Thus, we have ﬁ_l(oflﬂ) = (—1/2)a~!. Combining the formulas in
Definition 3.3.1, we have the following result.

Proposition 3.4.7. The nonzero BV differentials A, on CH*(A) are

32n+1(047lﬁ) =((2n+1)/2)a"

with n € Z. In particular, the nonzero Gerstenhaber brackets are induced by

{a76}:a7 {ﬁ7a_1}:a_l'

Remark 3.4.8. Since the non-negative part CH=°(A) of the complete cohomology
CH*®(A) is the Hochschild cohomology of A, the non-negative BV differential 320 gives
rise to a BV differential on the Hochschild cohomology ring of A, which means that
there is a non-trivial example for our main theorem and for the theorem of Lambre-
Zhou-Zimmermann [35, Theorem 4.1].
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The case s =3, N = 2.

Let @ be the following quiver

and A the algebra kQ/ Ré. It follows from Criterion 3.4.2 and the fact that a primitive
root of a polynomial 2® — 1 is not equal to 1 € k when char k = 2 that the Nakayama
automorphism of A is diagonalizable if and only if chark # 3. Hence we assume
that chark # 3. We see that A is a self-injective Nakayama algebra of which the
representation matrix of the Nakayama automorphism v is

001000
100000
010000
000O0O0T1
000100
00 0O0T1OQO0

under a k-basis (eq, g, €3, a1, o, avg) of A. This matrix is similar to a diagonal matrix

100 0 0 O
010 0 0 O
0 0wO 0 O
000 w 0 0
000 0 w 0
0000 0 w?

where the element w € k is one of roots of a polynomial z2 + x + 1. Moreover, we can
decompose A = A; ® A, ® A2, where

3
Ay =Ker(v—id) =k1a@ k(D ),

i=1
A, =Ker (v —wid) = k (w?e; +weg + €3) @ k (w?ay + was + a3),

3 3
Ay = Ker (v —w?id) = k (Z wie;)) Ok (Z wiay).

i=1 =1
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Let [ > 0 be an integer. In a similar way to the first example, we have a complete
resolution of A as follows:

Py D(Py)r 2 D(P), o P DY)yt

¢0J{ O TD(%)

A—=>D(A),-

o2 1

Py P

where each of the P, and the D(P,),-1 is given by

(

@2, P(i,i) if n =3,
P,=1 @, P(i,i+1) ifn=314+1,
P>, P(i,i+2) ifn=3l4+2,
'@?:1 Al ® aj1)*A  if n =3,
D(Py),1 = @, Al ® aiso) A if n =314 1,
\@?:114( F ® a;) A if n=30+2,

each A-bimodule homomorphism ¢, : P, — P,_; given by

Goir1(€; @ eiy1) = 0 D ep1 — € Q s Peira(€; ® €iqa) = € @ Qi1 + @ ® €49;
Doirs(ei ®e) =0, @e; —e; @ ya;  Perralei ®eip1) =€ Q o + o ® eyq;

Pei45(ei @ €i2) = @ ® €42 — €, @ Aiy1;  Perve(e; @ €;) = € @ Qo + ; @ e,

each A-bimodule homomorphism D(¢,) : D(P,_1),~1 — D(P,),-1 given by

D(¢e141) (i ® air1)”) = (qtiga @ i) o — a0 @ @iya)™;
D(¢e142) (i ® aig2)”) = i ® ;)" + (e ® aiya) oy;
D(¢e143) (i ® ;)") = (g2 ® )"y — a1 @ aigr)”;
D(¢g144) (i ® 1)) = qigo( ® aiga)” + (iga @ qig1) igo;
D(¢e145) (i ® iiga)”) = (e ® aiga) a — iy ® o)™
D(der+6) (i @ 07)") = i1 @ i) + (aige @ )

the A-bimodule homomorphism ¢, : Py — A given by the multiplication of A, the
A-bimodule homomorphism D(¢g) : D(A),~+ — D(F),~1 given by

D(Qbo)((_’ 1>) = Z Oéz‘+1(04i & 04¢+1)* + (Oéz'+2 & 042‘)*0%;

i=1

and the composition u : Py — D(P,),-1 given by
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ples ® e;) = aiivr ® )" + (g1 ® qiga) i1

A complex which is used to compute complete cohomology groups CH*(A) is a complex

"'—>Ay71®AeP1M>AV—1®AePO

Hom(u,A) Hom(¢1,A)

Hom e (P, A) Hom e (P, A) — - -

of which the terms and the nonzero differentials of the non-negative part are determined
by

@?:1 e;Ae; if n = 3,
Hom e (P, A) &2 S @7, eideiny if n=31+1,
0 if n=30+2,

Hom(¢61+1> A)(ei) = Qg — Qy; Hom(¢6l+4a A)(@‘) = Q; + Q40

and that of the negative part are given by

0 if n =3I,
Ayt @ue Py = { B, i1 Qe €5 @ ey if n=31+1,
@?:1 Ciya ®ae €; @ €yo  ifn=3l+2,

id @ Pgrr2(€irr @ac €; @ €i42) = Qito @ae €111 ® €io + Qi1 Dae €; D €41;

id ® @gris(€; Rae €i11 ® €;) = Qo Dae €41 ® €40 — Qi1 Dae €; D €41.

Here the term Homye(FP,, A) is of degree n > 0. Note that the two morphisms
Hom(¢g44, A) and id @ ¢g42 are isomorphisms when chark # 2. We can see that
the complete cohomology groups CH*(A) of A are divided into two cases: for [ > 0,

(1) chark # 2,3

k14 ifn=0 (mod 6),
CH"(A)=<¢ka; ifn=1 (mod 6),

0 otherwise,
kas @ac 61 D €3 ifn=>5 (mod 6),
CH™A) =<k Z?:1 it Qac €, Reiyo ifn=0 (mod6),n>1,
0 otherwise,

(2) chark =2
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k1, ifn =3,
CH™(A) = { kar ifn=31+1,
0 if n=230+2;
0 if n=30+1,
CH™(A) = ko ®ac 1 @ €z if n =30+ 2,
kS eiis @ue € ®@eipn  if n=31+3.

As can be seen, the complete cohomology groups have the period six if char k # 2, 3 and
the period three if char k£ = 2. We omit the constructions of two comparison morphisms
between the minimal projective resolution and the normalized bar resolution of A.
However, they are constructed in a similar way to the first example. We have the
graded commutative ring structure and the BV structure on the complete cohomology

of A.

Proposition 3.4.9. If char k # 2,3, then the complete cohomology ring (CH®(A),*) is
isomorphic to

kla, B,a71/(8%)

where |a| = 6,|6] = 1 and |a™'| = —6. Further, if this is the case, then the nonzero
BV differentials A, on CH®*(A) are

Aga(0'8) = (61 +1)/3)a', A g_s(a”'7'8) = ((—61 —5)/3) o
with 1 > 0. In particular, the nonzero Gerstenhaber brackets are induced by

{o, B} =20, {B,07'} =2a7L.

Proposition 3.4.10. If chark = 2, then the complete cohomology ring (CH®*(A), %) is
1somorphic to

kla, B,a7/(5%)

where |o| = 3,|8] = 1 and |o~| = —3. Further, if this is the case, then the nonzero
BV differentials on CH®*(A) are

Agp1(a®B) = o, Ay s(a™ ') =™

with 1 > 0. In particular, the nonzero Gerstenhaber brackets are induced by

{a,f} = o
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The case s =3, N = 3.

Let @ be the following quiver

and A the algebra kQ/ R‘Zf?. It follows from Criterion 3.4.2 and Remark 3.4.3 that the
Nakayama automorphism of A is diagonalizable if and only if chark # 3. Hence, we
assume that chark # 3. We see that A is a self-injective Nakayama algebra of which
the representation matrix of the Nakayama automorphism v is

01 00O0O0O0O00O0
001 0O0O0O0O0O©O0
10000O0O0GO0O
000O01O0O0O0T© 0
0000O0OT1O0GO0O©O
0001O00O0O00O0
000O0O0OO0OO0OT1F@ O
000O0O0OO0O0OGO0OT1
000O0O0OO0OT1TO0D@O0

under a k-basis (eq, g, €3, a1, o, a3, 1 (ig, aprg, gy ) of A. This matrix is similar to a
diagonal matrix

S O OO o oo

[\

cCcoococococoo—
coococoococor~o
coocoococorooO
CoO o000 & oo o
coof ocoococoo
cof oocoocococo
&
coocoocoococoo

oo oo & oo oo

o
&
[

where the element w € k is one of roots of a polynomial z2 + x + 1. Moreover, we can
decompose A = Ay & A, & A2, where
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3 3
Ay =Ker(v—id) =k1a @k (Do) k(D ciaipn),

i=1 i=1

A, =Ker (v —wid) = k( Zwel )k ( Zwozz )k ( Zwalalﬂ)

1=1 =1
A2 = Ker (v — w?id)

=k (wle1 +wey + e3) @ k (wPaq + was + a3) O k (wraias + wasas + asay).
In a similar way to the first example, we have a complete resolution of A as follows:

Py~ D(Py)ys 2L D(P), 1 P D(Py), s —— -

¢0l O TD(%)

A—=>D(A),~

o2 1

Py P

where each of the P, and the D(P,),-1 is given by

@; i,1) if n is even;
D7, Al @ ) A if nis odd,
@z 1 A

each A-bimodule homomorphism ¢, : P, — P,_; given by

P — {@ P(i,i+1) if nis odd,
P(i,
(
(a

D(P,),~1 = {

Q0 @ qypoyrs) A if nois even,

Gori1(€; ®eip1) = @ e — €; ® ay;

Gar(e; ®e;) = €; @ ip10ire + 04 @ Qo + 11 @ ey,

cach A-bimodule homomorphism D(¢.) : D(Pi_1),~1 — D(P,),-1 given by

D(¢ars1)((itiy1 ® qigariys)”)
= (20 ® Qi) i — i1 (i1 ® Qi)™
D(¢2r) (i1 ® aiisn)”)
= Qip20ip3(it1 @ Qiaiys)” + aipa (10 ® Qp1Qigo) Qg
+ (i—20_1 ® iaig1) _g0y_g,

the A-bimodule homomorphism ¢y : Py — A given by the multiplication of A, the
A-bimodule homomorphism D(¢g) : D(A),-1 — D(FP,),-1 given by

w

E3
D( E alaerl Q201 Q Ozz+1) + Oéi+1(05i7204i71 & Oéz'Oéz'+1) Qo

=1

+ (201 ® Oéiai+1>*05i7305i72)7
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and the composition u : Py — D(P,),~1 given by

ple: ®e;) = a1 (02051 ® i)™ + (im104 @ 0G1Q42) 040051
+ a;(i—30-2 @ a;_105) _y.

Moreover, a complex which is used to compute complete cohomology groups is a complex

"'—>AV—1®AeP1M>AV—I®AePO

Hom(u,A) Hom(¢1,A)

HomAe(PO,A) HomAe(Pl,A)_)"'

of which the terms and the nonzero differentials are determined by
3 o
- ka; ifnisodd,
Hom 4e (Pn, A) = ®§:1 ' '

D, ke, ifnis even;
3 o

A, @y P, = @ézl kei1 ®aee; ® e ?f n ?s odd,

D ko ®ace; @ e if n is even;

Hom(¢or11, A)(€;) = g1 —

id ® ¢orr1(e; @ac €ip1 @ €;) = @ @pe € ® €5 — A1 Dae €41 @ €i41

and whose term Hom4e(FP,, A) is of degree n > 0. Therefore, we have, for n > 0,

kay if nis odd,

k1, if nis even;

CH"(A) = {

kag Qae 1 @€y if n is odd,

3 . )
kY o eiv1 ®ace;@eipq if n >0 1is even.

CH™™(A) = {

We omit the description of comparison morphisms between the minimal projective
resolution and the normalized bar resolution of A, because it is not easy to write the two
comparison morphisms. However, a direct calculation shows the graded commutative
ring structure and the BV structure on the complete cohomology of A.

Proposition 3.4.11. The complete cohomology ring (CH®*(A), ) is isomorphic to
kle, B,a71/(6%)

where |a| = 2,|8] = 1 and |a7 Y| =

CH*(A) are

—2. Moreover, the nonzero BV differentials on

(=1/3)a™t if l=0,
(=31—2)/3) a1 if 140

with 1 > 0. In particular, the nonzero Gerstenhaber brackets are induced by

{a.f} =0, {B,a'}=a""

Agia(a'B) = ((81+2)/3)a',  A_y_y(a™'7'8) = {



Chapter 4

Tate-Hochschild cohomology rings
for eventually periodic Gorenstein
algebras

In this chapter, for Gorenstein algebras, we decide when Tate-Hochschild cohomology
rings have homogeneous invertible elements of positive degree. The key is eventual
periodicity of algebras. Furthermore, for connected periodic algebras, we give a com-
putation method of their Tate-Hochschild cohomology rings, using their Hochschild
cohomology rings.

First, we define eventually periodic algebras and provide examples of them. Through-
out this chapter, we assume that the ground field k is algebraically closed.

4.1. Eventually periodic algebras

As mentioned above, let us first define the eventual periodicity of algebras and
provide examples of eventually periodic algebras. Before that, we make a remark on
eventually periodic modules and eventually periodic algebras.

Eventually periodic modules have been studied over commutative Noetherian local
ring and over artin algebras. In the first case, such modules are defined to have minimal
free resolutions that eventually become periodic. On the other hand, over artin algebras,
eventually periodic modules mean modules whose minimal projective resolutions have
the same property as above. Eisenbud [18], Avramov, Gasharov and Peeva [5] and Croll
[16] investigated eventually periodic modules in the commutative Noetherian local ring
case, while Bergh [10] and the author [45] did in the artin algebra case.

By considering an algebra A as a one-sided module over the enveloping algebra
A°, Kiipper [34, Definition 2.3] introduced eventually periodic algebras. Our definition
of such algebras is slightly weaker than Kiipper’s one (since our eventually periodic
algebras may have finite projective dimension as bimodules). Now, we define eventually
periodic algebras precisely.
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Definition 4.1.1. Let A be an algebra. An A-module M is called periodic if Qf (M) =
M in A-mod for some p > 0. The smallest such p is said to be the period of M. We
say that M € A-mod is eventually periodic if (M) is periodic for some n > 0. An
algebra A is called periodic (resp. eventually periodic) if A € A®-mod is periodic (resp.
eventually periodic).

From the definition, periodic algebras are eventually periodic algebras. Periodic
algebras have been studied for a long time (see [19]). We know from [27, Lemma 1.5]
that periodic algebras are self-injective algebras (i.e. 0-Gorenstein algebras). On the
other hand, it follows from the proof of [17, Corollary 6.4] that monomial Gorenstein
algebras are eventually periodic algebras. It also follows from the formula gl.dim A =
proj.dim . A (see [29, Section 1.5]) that algebras of finite global dimension are even-
tually periodic algebras. As will be seen in Example 4.1.2 below, not all eventually
periodic algebras are Gorenstein algebras.

Example 4.1.2. (1) Let A; be the algebra given by the following quiver with relation

1&2 aBa = 0.
5 5}

Then A; is a monomial algebra that is not Gorenstein (since inj.dim,Ae; =
oo, where e; is the primitive idempotent corresponding to the vertex 1). Using
Bardzell’s minimal projective resolution of a monomial algebra (see [7]), we have
that A; is an eventually periodic algebra having Q?ﬁ(Al) as its first periodic
SYZygy.

(2) Let Ay be the algebra given by the following quiver with relation

(12 2 _
vl 2 a”=0.

Then the algebra A, is monomial 1-Gorenstein and hence eventually periodic.
Bardzell’s minimal projective resolution allows us to see that QQg(Ag) is the first
periodic syzygy of A,.

Moreover, one can see that the algebras in [14, Example 4.3] are eventually periodic
algebras.

4.2. Tate-Hochschild cohomology rings of eventually periodic
Gorenstein algebras
This section is devoted to showing the main result of this chapter. We prove it after

two propositions below. Before the first one, we prepare some terminology. Recall that
we write ;(X,) = Cokd;%, for a complex X, and ¢ € Z. For a module M over a
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Gorenstein algebra A, we say that its complete resolution T, — P, — M is periodic if
there exists an integer p > 0 such that €;(7,) = Q;4,(7,) in A-mod for all i € Z. The
least integer p > 0 with this property is called the period of the complete resolution.

Proposition 4.2.1. Let A be a Gorenstein algebra and M an A-module. If there exists
an integer n > 0 such that Q7% (M) is periodic of period p, then M admits a periodic
complete resolution of period p. Further, the period of the periodic complete resolution
15 independent of the choice of periodic syzygies.

Proof. Assume that there exists a minimal projective resolution P, — M satisfying
that Q7 (M) is periodic of period p. Then, by using the periodicity of Q% (M), we can
extend the truncated complex Ps, to an (unbounded) complex 7, in APC(A) having
the following properties:

(i) Top = P
(ii) For each i € Z, there exists an integer 0 < j < p such that Q;(T,) = Q%™ (M).

In particular, one sees that Q;(7,) = Q,4,(7,) for all i € Z. Note that one may take
T, = 0 if proj.dim,M < oco. It follows from Theorem 2.3.1 that Q;(T,) = L7Q(Ts) is
Cohen-Macaulay for each i € Z, where ¥ denotes the shift functor on CM(A). Then it
is easily checked that Homy(a)(7s, Afi]) = 0 for all i € Z, where IC(A) is the homotopy
category of A-modules. Hence, as in [15, Lemma 2.4], the family {idz,};>, can be
extended uniquely up to homotopy to a chain map 6 : T, — P, with 0; the identity
for all 7 > n. Therefore, the chain map 6 gives rise to the desired complete resolution.
We remark that the period of the resulting complete resolution does not depend on
the choice of n. Indeed, if we take the smallest integer r > 0 such that Q7 (M) is
periodic, then, for each ¢ > n, the module Q% (M) is periodic and has the same period
as Q7 (M). O

Recall that the Yoneda product of the Tate cohomology ring E/)><\t:4(M , M) is denoted
by —.

Proposition 4.2.2. Let A be a Gorenstein algebra and M a A-module. Then the
following conditions are equivalent.

(1) The Tate cohomology ring E}R.A(M, M) has an invertible homogeneous element of
positive degree.

(2) M is eventually periodic.

Proof. Tt suffices to prove the statement for M € A-mod with proj.dim, M = oo.
First, we assume that a A-module M satisfies that Q% (M) is periodic of period p for
some n > 0. By Proposition 4.2.1, there exists a complete resolution Ty, — Py, — M
such that Qo(7,) is periodic of period p, where p is the period of Q7% (M). We fix this
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complete resolution. Then the shift functor 3 on CM(A) satisfies XQ(T,) = Q_4(T,)
for all ¢ € Z. Let f € Homu(2,(7s),Q(7s)) be an isomorphism and consider two
homogeneous elements

x:=YP[f] € Exty(M, M) and y:=[f"']€Ext, (M,M).

Then we have x — y = (X Pz) oy = [f] o [f~!] = 1 and similarly y — x = 1, where we
set 1 := [ida,(m))-

Conversely, we let T, — P, — M be a complete resolution of M and assume that
there exists an isomorphism

€ Hom , (Q(T.), 5PQ(T)) = Exty (M, M)

of degree p > 0. From the definition of complete resolutions, we have

Hom ,(2(7%), X720(T4)) = Hom , (X770 (T4), 57" (14))
= Hom,, (7""(M), (M)

for some sufficiently large m > 0. Hence we get Q% "P(M) = Q% (M) in A-mod. This
implies that Q5™ (M) @ P = Q%(M) ® Q in A-mod for some P and ) € A-proj.
By applying the syzygy functor €24 to this isomorphism, we obtain an isomorphism
QPN (M) 22 QmHY(M) in A-mod. This completes the proof. O

Using Proposition 4.2.2, we obtain our main result.

Theorem 4.2.3. Let A be a Gorenstein algebra. Then the following conditions are
equivalent.

(1) The Tate-Hochschild cohomology ring ﬁﬁ.(A) has an invertible homogeneous el-
ement of positive degree.

(2) A is an eventually periodic algebra.

——e —>0
In this case, there erists an isomorphism HH (A) 2 HH (A)[x '] of graded algebras,
where the degree of an invertible homogeneous element x equals the period of the periodic
syzygy Ve (A) of A for some n > 0.

Proof. We know from [3, Proposition 2.2| that if A is a Gorenstein algebra, then so is
the enveloping algebra A°. Hence the former statement follows from Proposition 4.2.2
applied to A € A®mod. On the other hand, suppose that the Gorenstein algebra A
satisfies that Q%.(A) is periodic for some n > 0. By tl the proof of Proposition 4.2.2,
there exists an invertible homogeneous element x € oo (A) whose degree equals the
period of the periodic A®-module Q%.(A). Then the fact that ﬁﬁ.(A) is a graded
commutative algebra yields the desired isomorphism of graded algebras (cf. the proof
of [44, Corollary 3.4]). O



o8

Remark 4.2.4. From the definition of singularity categories, an algebra A has finite
projective dimension as a A°-module if and only if its Tate-Hochschild cohomology ring
is the zero ring (cf. [12, Section 1]). Thus Theorem 4.2.3 makes essential sense for the
case of Gorenstein algebras with infinite global dimension.

Remark 4.2.5. Applying Theorem 4.2.3 to monomial Gorenstein algebras and to pe-
riodic algebras, one obtains [17, Corollary 6.4] and [44, Corollary 3.4], respectively.

Remark 4.2.6. For an eventually periodic Gorenstein algebra A, one can obtain

dimy ﬁﬁz(A) for all integers ¢ by using Theorem 4.2.3 and the Hochschild cohomology
HH*(A) == D5 Ext’ye(A, A) of A (see Example 4.3.7). In Section 4.4, we explain how

>0
we compute the graded subring HH™ (A) when A is connected and periodic. However,

it is open how we compute the ring structure of HH™ (A) in general.

Recall that two algebras A and B are derived equivalent if there exists a triangle
equivalence between DP(A-mod) and D"(B-mod) (see [41]). The following shows that
being eventually periodic Gorenstein is invariant under derived equivalence.

Proposition 4.2.7. Assume that two algebras A and B are derived equivalent. If A is
eventually periodic Gorenstein, then so is B. In particular, the periods of their periodic
syzygies coincide.

Proof. By [48, Theorem 1.1] and [32, Proposition 1.7], Tate-Hochschild cohomology
ring and the property of being Gorenstein are invariant under derived equivalence.
Thus the statement follows from Theorem 4.2.3.

Now, let p and ¢ be the periods of some periodic syzygies of the regular bimodules
A and B, respectively. Note that all the periodic syzygies of A and B has period p
and ¢, respectively. Then it follows from the proof of Proposition 4.2.2 that there exist
invertible homogeneous elements x4 € ﬁﬁ.(A) and xyp € ﬁﬁ.(B) with degxa = p
and degxp = ¢, where deg x4 denotes the degree of the homogeneous element x 4.
We claim that p = ¢. Since ﬁﬁ.(A) = HH.(B) as graded rings, HH.(B) has an
invertible homogeneous element of degree p, and an argument as in the proof of the
implication from (2) to (1) in Proposition 4.2.2 shows that there exists an isomorphism
Q%P (B) 2 Q.(B) in B*-mod for some j > 0. Since the periodic syzygy Q%.(B) has
period ¢, we obtain that ¢ divides p. Since one can similarly show that p divides ¢, we
conclude that p = ¢. Il

Periodic algebras and algebras with finite global dimension are both eventually
periodic Gorenstein, and being periodic and finiteness of global dimension are derived
invariants (see [32] and [24] for example). Consequently, Proposition 4.2.7 gives a new
reslt only for eventually periodic Gorenstein algebras of infinite global dimension that
are not periodic. In the next section, we construct such algebras by means of tensor
product of algebras.
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4.3. Construction of eventually periodic Gorenstein algebras

In this section, we aim at describing a way of giving eventually periodic Gorenstein
algebras. First, we show two propositions which will be used latter. Let us start with
the following.

Proposition 4.3.1. Any periodic A-module M over a d-Gorenstein algebra A is Cohen-
Macaulay.

Proof. Assume that M is a periodic A-module of period p. Since Q% (M) € CM(A) for
i > d by [12, Lemma 4.2.2], we have that M = Q’F(M) € CM(A) for some j > 0. O

We now show that, for an eventually periodic Gorenstein algebra A, the smallest
integer n > 0 satisfying that 2.(A) is periodic has a lower bound.

Proposition 4.3.2. Let A be a d-Gorenstein algebra. Assume that there exists an
integer n > 0 such that Q%.(A) is periodic. Then the least such integer n satisfies
n > d. In particular, an equality holds if and only if there exists a simple A-module S
such that Ext} (S, A) # 0.

Proof. Let A be an eventually periodic Gorenstein algebra and P, — A a minimal
projective resolution of A over A° satisfying that Q%.(A) is the first periodic syzygy
of period p. For any M € A-mod, an exact sequence P, 4 M — A®,4 M = M is a
projective resolution of M and has the property that €,,(P, @4 M) = Q% (A) @4 M =
QZlLip(A)®AM = Qpiip(Pe®a M) for all i > 0. In particular, as in Proposition 4.3.1, one
concludes that Q, (P, ® 4 M) is Cohen-Macaulay. This implies that n > inj.dim,A = d.
Indeed, for any A-module M, we have Ext’;" (M, A) = Ext}(Q,(P, ®4 M), A) = 0.
For the latter statement, we first suppose that n = d. Then it follows from [17,
Proposition 2.4] that we have n = G-dimy4(A/¢), where t denotes the Jacobson radical
of A. This shows that Ext’j(A/r, A) # 0, so that one obtains the desired simple A-
module. Conversely, assume that Ext’; (S5, A) # 0 for some simple A-module S. Then
one concludes that Q7 '(S) € CM(A). However, since we know that Q%(S) is Cohen-
Macaulay, we have n = G-dim4S and hence n < d. Then the proof is completed since
n > d by the former statement. O]

Now, we recall some facts on projective resolutions for tensor algebras. Let A and
B be algebras and P, =% A and Q. =% B projective resolutions as bimodules. Then
the tensor product P, ® (), 495 A® Bisa projective resolution of the tensor algebra
A® B over (A® B)° (see [38, Section X.7]). Here, we identify (A ® B)® with A°® B°.
It also follows from [9, Lemma 6.2] that if both P, — A and )¢ — B are minimal, then
s0is P, ® Qe —+ AR B.

From now on, we assume that A is a periodic algebra of period p and that B is
an algebra of finite global dimension n. Set C' := A ® B. Since periodic algebras are

self-injective algebras, it follows from [9, Lemma 6.1] that we have

inj.dim C' = inj.dim A + inj.dm B =0+n =n
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as one-sided modules. Thus C' is an n-Gorenstein algebra. Note that the same lemma
also implies that the enveloping algebra C° is a (2n)-Gorenstein algebra. We now show
that the algebra C' has an eventually periodic minimal projective resolution.

Proposition 4.3.3. Let A and B be as above. Then C = A ® B is an eventually
periodic n-Gorenstein algebra with gl.dim C' = oo such that Q. (C) is the first periodic

syzygy of C.

Proof. Let P, — A and (), — B be minimal projective resolutions as bimodules. Recall
that the r-th component of the total complex P, ® Qo with r > 0 is given by

(P ®Qu), @PH@QZ

Since Q; = 0 for ¢ > n = gl.dim B = proj.dimg. B, we have

(P ®Qu), @mez

for all » > n. Moreover, the (r 4+ 1)-th differential

dIER  (Pa® Q)i = (Pe®Qa),  (r>n)

can be written as the square matrix (9)7,,);; of degree n + 1 whose (i, j)-th entry

aijﬂ C P (-1) @ Qi1 — Pr_i-1) @ Qi1 (1<i,j<n+1)

is given by
dq]iiw ® idQH if i = J;
Y =1 ()T g @d? =i
0 otherwise.

We claim that Cok dffﬁl >~ Cokd"e@ - First, suppose that p is even. Since okl hprl =
P

7, forall 1 <i,j <n+1 because p is even and dr = dj,, for any [ > 0, we conclude
that df_ﬁfil dfle , which implies the claim. Now, assume that p is odd. Consider the
isomorphism of C°-modules between (P @ Qs ), and (Ps ® Qs),4p With 7 > n induced
by the diagonal matrix D of degree n+ 1 whose (,)-th entry is (—1)"*%. Together with
the fact that p + 1 is even, a direct calculation shows that there exists a commutative

diagram of C'°-modules with exact rows

d7}j®Q
(P. X Q.)n+p+1 BALAS (P. X Q0>n+p — Cok dvlzj—%zg-l 0
>~ D =D
aFee

(Pe @ Qa)ni1 — (Po @ Q) — Cokd, 7 —0
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This implies the claim. Since the projective resolution P, ® ()¢ — C' is minimal, we
have that Q% ?(C) = Cok dff’ﬁl =~ Cok d?? = Q2.(C). From Proposition 4.3.2 and
the isomorphism, we conclude that the n-th syzygy Qf.(C) is the first periodic syzygy

Remark 4.3.4. Proposition 2.3.2 allows us to get G-dimgeC' < 2n = inj.dim.C*® and

hence HH'(C') 2 ﬁﬁl(C) for all 4 > 2n. On the other hand, the i-th syzygy Q&.(C) of
C' is Cohen-Macaulay for any ¢ > n by Propositions 4.3.1 and 4.3.3. Again, Proposition
2.3.2 yields that G-dimgeC' < n. One of the advantages of this observation is that there

exists an isomorphism HH'(C') ﬁﬁl(C) for all i > n.

Remark 4.3.5. It follows from Theorem 4.2.3 and the proof of Proposition 4.3.3 that

the Tate-Hochschild cohomology ring ﬁﬁ.(C’) of C'is of the form ﬁﬁZO(C’) [x'], where
the degree of x divides the period p of A.

We end this section with the following two examples. Note that the tensor algebra
C' in Example 4.3.7 can be found in [9, Example 6.3].

Example 4.3.6. For an integer n > 0, let B,, be the algebra given by the following
quiver with relations

aq

0 1 n—12"4n i =0fori=0,...,n—2.

Then we have gl.dim B,, = n. By Proposition 4.3.3, any periodic algebra A gives us an
eventually periodic n-Gorenstein algebra C' = A ® B,, with Q%.(C) the first periodic
syzygy of C.

Example 4.3.7. Let A = k[z]/(z?) and let B be the algebra B; defined in Example
4.3.6. Thanks to Bardzell’s minimal projective resolution, we see that A is a periodic
algebra whose period is equal to 1 if char £ = 2 and to 2 otherwise. On the other hand,
the tensor algebra C' = A ® B is given by the following quiver with relations

B
0‘614>2QV o> =0=19* and PBa=1p.

Thus we see that C' is a (non-monomial) eventually periodic Gorenstein algebra whose

first periodic syzygy is 25.(C). Now, we compute dimy, ﬁﬁZ(C’) for all © € Z. Tt follows
from [29, Section 1.6] that the Hochschild cohomology ring HH®*(B) is of the form

HH*(B) = k.
According to [8, Section 5|, the Hochschild cohomology ring HH®(A) is as follows:

klag, ai]/(a?) if char k = 2;
HH®(A) — (20, /(o

klag, a1, as]/(ad, a?, apay, apas) if chark # 2,



62

where the index i of a homogeneous element a; denotes the degree of a;. On the other
hand, by [36, Lemma 3.1], there exists an isomorphism of graded algebras

HH*(C) = HH*(A) ® HH*(B) = HH*(A).

It follows from Remark 4.3.4 that HH'(C) = ﬁﬁl(C’) for all i > 1. Hence, the fact that

ﬁﬁ*(C) = ﬁﬁ*+p(0) with p the period of A (see Remark 4.3.5) implies that, for any
integer 7, we have
2 if chark = 2;

dimy, HH (C) =
1 if chark # 2.

4.4. The case of connected periodic algebras

The aim of this section is to describe the Tate-Hochschild cohomology rings of
connected periodic algebras. Throughout this section, all algebras are assumed to be
connected.

We first remind the reader of two results, which are extended to Tate cases later.
Let us begin with a result of Carlson [13] (see also [27, Proposition 1.3]).

Theorem 4.4.1 ([13]). Let A be a self-injective algebra, M an indecomposable periodic
A-module and N (M) the ideal of the Yoneda algebra Ext% (M, M) generated by the
homogeneous nilpotent elements. Then we have

Ext}y (M, M)/N (M) = k],
where the degree of the homogeneous element x is equal to the period of M.

The following is a result due to Green, Snashall and Solberg [27].

Theorem 4.4.2 ([27, Theorem 1.6]). Let A be an algebra satisfying Q4. (A) = 1A, for
some n > 1 and some automorphism o of A and N the ideal of HH*(A) generated by
the homogeneous nilpotent elements. Then we have

HE® (A) /A = {k:[x] if A s Periodic
k otherwise.
Remark that the algebra appearing in Theorem 4.4.2 is self-injective ([27, Lemma 1.5]).
In particular, periodic algebras are self-injective algebras.
Now, we extend the two theorems above to Tate cases. Our proofs of the extended
statements are based on that of the original statements. Let us first consider the Tate
cohomology ring modulo nilpotence of a periodic module over a self-injective algebra.
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Proposition 4.4.3. Letfl be a self—z’njective/glgebm, M an indecomposable periodic A-
module of period d and N (M) the ideal of Ext ,(M, M) generated by the homogeneous
nilpotent elements. Then we have

Ext y (M, M)/N(M) 2 kfz,y)/(zy — 1)

with degx = d and degy = —d, where degz denotes the degree of a homogeneous
element z.

Proof. Let f: Q% (M) — M be a morphism in A--mod, where s is an integer. We first
show that if s # 0 (-modd), then [f] € Eth(M, M) is nilpotent with respect to the
Yoneda product. Let » > 1 and g # 0 be integers such that rs = ¢d, and consider

a:=[f]" € E}Rid(M, M) = End 4 (M). Since [f] is not an isomorphism because of the
choice of s, then neither is a, so that we have a € rad End , (M), which implies that it is
a nilpotent element in the local algebra End ,(M). Then, for any n > 1, the morphism
Q%4 («) € End 4(M) is also a nilpotent element and hence in rad End ,(M). Since the
ideal rad End , (M) is nilpotent, we obtain a! = a0 Q4 (a) 0 Q2(a) o 0 Q™) = 0
for some [ > 0. This yields that [f] € N(M).

Now, we claim that if s = 0 (-modd) and [f] € Hom , (25 (M), M) is not an isomor-
phism, then [f] € N'(M). However, we are done by a similar discussion as above.

By assumption, there exists an isomorphism ¢ : Q4 (M) — M in A--mod. Observe
that such an isomorphism form Q¢ (M) to M is uniquely determined up to scalar because
Enda(M)/rad Ends(M) = k. Set

v = [p] € Exty(M, M), y:=Q3%(p™") € Bxt, (M, M),

Clearly, we have + — y = 1 = y — z, where 1 = [idy/]. Since the Yoneda product
of E}R;(M , M) agrees with the one of Ext% (M, M) in positive degrees, it follows from
Theorem 4.4.1 that the n-th power " of x is non-nilpotent for every n > 1. Then it is
trivial that the n-th power y" of the inverse y is also non-nilpotent for all n > 1. As a
result, we have shown that the powers ™ and y” with n > 1 are all the non-nilpotent
homogeneous elements of Ex\t;l(M, M). Since degx = d,degy = —d and d > 1, we have
r—y & N (M), because otherwise both x and y are nilpotent. Therefore, we obtain the
desired isomorphism. Il

Now, we extend Theorem 4.4.2 to a Tate-Hochschild case.

Theorem 4.4.4. Let A be an algebra satisfying Q%.(A) = 1A, for some n > 1 and

some automorphism o of A and N the ideal of ﬁﬁ.(A) generated by the homogeneous
nilpotent elements. Then we have

HH (A)/N =

k otherwise.

e {k[a:, yl/(xy — 1) if A is periodic
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Proof. Let A be an algebra A which satisfies the assumption. By [27, Lemma 1.5],
the algebra A is a self-injective algebra. It is known that the enveloping algebra A® is
self-injective as well (see [3, Proposition 2.2]).

Assume that A is a periodic algebra. Since A is connected, i.e, indecomposable as
an A-bimodule, the statement follows from Proposition 4.4.3.

Suppose that A is non-periodic, i.e., Q4.(A4) ¥ A for any 2 > 0. Clearly, this holds
even for all negative integers. First, we claim that [n] € HH" (A) is nilpotent for any
n: QE(A) — A, where p is a non-zero integer. It is clear that the indecomposable
A-bimodule Q{?(A) is isomorphic to 1A, for any i > 1. Hence each Q'f?(A) has the
same length as the regular A-bimodule A. Since the induced morphism Q(z E
QWP (A) — Q(je D2 (A) is not an isomorphism for every i > 1, it follows from Harada-Sai
(see [4]) that there exists a positive integer N such that [7]¥ = [7]o Q2 ([n]) 0 Q5 ([n])

o QY™ ([n]) = 0. This implies that [n] € . We now let 7 : Q%.(A) — A, where
0#£seZ satlsﬁes s # 0 (-modn). Taking integers r > 1 and g # 0 such that rs = ng,
we have [n]" € HH (A) The argument above shows that [n]” is nilpotent, and so is [r].
Hence we have proved that any homogeneous element of ﬁﬁ.(A) of non-zero degree is
nilpotent. Since End 4(M)/rad End (M) = k, we get the desired isomorphism. O

Let A be a periodic algebra of period d. We now apply the Hochschild cohomology
ring HH*(A) in order to describe the non-negative subring ﬁﬁzU(A). Recall from
Section 2.3 that there exists an epimorphism ®* : HH*(A) — ﬁﬁZO(A) of graded
algebras such that ®° is surjective with Ker ®° = P(A, A) and ®=! is bijective. We
call P(A, A) the projective center of A and denote it by ZP*(A). Remark that, in our
setting, the non-negative part ﬁﬁZO(A) coincides with the stable Hochschild cohomology
(see [37]). So far, we obtain ﬁﬁzO(A) =~ HH*(A)/Z"P*(A) as graded algebras. We now
characterize the projective center in terms of the Yoneda product of the Hochschild
cohomology ring. Recall from Theorems 4.4.2 and 4.4.4 that HH*(A) has a unique

homogeneous non-nilpotent element x of degree d such that it is invertible in ﬁﬁ.(A).
Thus we have the following commutative square

HHO(A4) —% HH"(A)

*| \

HH (A) —“X HH(A)

(I)d

where the lower horizontal k-linear map — — x is bijective. Then, clearly, the k-linear
map — U x is surjective. Since x € ﬁﬁd(A) is invertible, one easily shows that ZP"(A)
agrees with Ker(— U x) = {a € HH(A)|a U x = 0}. Moreover, it is trivial that
7P (A) = 0 if and only if dim, HH’(A) = dimj, HH%(A). Hence, we have proved the
following proposition.
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Proposition 4.4.5. Let A be a periodic algebra of period d and x € HHY(A) a unique
homogeneous non-nilpotent element of HH*(A). Then we have ZP*(A) = Ker(— U x)

and hence ﬁﬁZO(A) = HH*(A)/ Ker(—Ux). Furthermore, the following are equivalent.

(1) The projective center ZP*(A) of A vanishes.
(2) The k-linear map ®° : HH(A) — ﬁﬁO(A) is bijective.
(3) dim, HH(A) = dimy, HH%(A).
In this case, we have ﬁﬁZO(A) = HH*(A) and hence ﬁﬁ.(A) = HH*(A)[x7Y].

Next, we explain how we use Proposition 4.4.5 to compute the Tate-Hochschild
cohomology of a periodic algebra. For this purpose, we deal with preprojective algebras
of type A,,. Recall that the preprojective algebra Il associated with a Dynkin quiver )
(i.e., the underlying graph of @ is one of the Dynkin diagrams A, (n > 1), D,(n > 4)
and E,(n =6,7,8)) is defined by

Mg = kQ/ < > (aa—aa)> ,

ac@Qq

where @ is the quiver obtained from @ by adding, for each arrow a : i — j, an arrow
a : j — ¢ having the opposite direction. By definition, the preprojective algebra Ilg
depends only on the underlying graph of ). Hence we associate to each preprojective
algebra one of the Dynkin diagrams. It was shown by Schofield that the preprojective
algebra of Dynkin type is a periodic algebra whose period is dividing 6. In particular,
the period of the preprojective algebra of type A, is equal to 6 if n > 3 (cf. [20, Section
1]). On the other hand, the Hochschild cohomology ring for the preprojective algebras
of Dynkin type has been obtained by Erdmann and Snashall [21] for type A, and by
Eu [22] for the other types.

Let II,, denote the preprojective algebra of type A,,, and we assume that n > 3.
Following the notation from [21], we set m := (n—1)/2 if n is odd, and m := (n —2)/2
if n is even. According to [20, 21|, we have

if 1 is odd
HH(IT,) = &[2]/(=™),  dim, HH%(IT,) = {m smmo

m-+1 if n is even.

In view of Proposition 4.4.5, we see that ﬁﬁo(ﬂn) = HH(IL,,) if and only if IT,, has even
vertices. On the other hand, if I, has odd vertices, then it follows from [21, Section
5] that 2" X # 0 for 1 <r < m and z™X = 0, where X is a unique homogeneous non-
nilpotent element of HH®(II,,) of degree 6. Proposition 4.4.5 yields that Ker(— U X) =
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(z™) and ﬁﬁo(ﬂn) = HH(I,)/(z™) = k[z]/{(z™). Hence the 0-th Tate-Hochschild
cohomology algebra ﬁﬁo(ﬂn) is as follows:

k[z]/{(z™*1) if n is even

HH (IL,) = {k[z]/<2m> if n is odd.

For the first case, we have ﬁﬁ.(ﬂn) = HH*(IL,)[X '] . As a result, using the descrip-

tion of ﬁﬁo(ﬂn) and Theorem 4.2.3, one can completely describe the Tate-Hochschild
cohomology ring HH (II,,) for all the preprojective algebras II,, of type A,, with n > 3.

Example 4.4.6. Let II5 be the preprojective k-algebra of type As. For simplicity, we

assume that char k = 2. Since n = 5, we have m = 2 and ﬁﬁo(ﬂ5) = k[2]/(z%). It fol-
lows from [21, Section 5] that the Hochschild cohomology ring HH®(II;) has generators

17Zag(]7f07f1)h07h17¢07X

with degz = 0, deggy = 1, deg f; = 2, degh; = 3, degyy = 4, deg X = 6, and these
generators satisfy the following relations

23:07 93207 fg:()a f12:O7 ¢§:07 Zfzzoa 22¢1207 ZQX:O)
f()2 = Z@Z)[) = f0f17 fﬂ% - Oa Zh’b = 07 hzh] = 07 gOh'L = 07 9022 - Oa
gofi = 0, hifj = dij2g0%0, hitbo = 0,

where 1 < 4,5 < 2. Then one sees that the dimension of HHi(H5) is equal to 3if i =0
and to 2 if ¢+ > 1. Theorem 4.2.3 implies that the Tate-Hochschild cohomology ring

HH (II5) = ﬁﬁZO(H5)[X_1] has generators

]-727907f07f17h07h171/}07X7X_1

with deg X! = —6, and these generators satisfy the relations obtained from the ones
of HH*(II5) by replacing 2° by 22. In particular, dimy, HI (II;) = 2 for all i € Z.

We remark that even if chark # 2, we can calculate ﬁﬁ.(ﬂ5) from HH*(II;) in
the same way as in the above. More concretely, after providing the generators and
the relations of HH*(Il5) based on [21, Section 5], we add X! to the generators and
replace z3 by 22 in the relations to obtain the presentation of ﬁﬁ.(ﬂg,).
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