学位論文

現場施工における締固め土の 力学特性の評価手法に関する研究

2021年3月

永 井 裕 之

要旨

本研究は、盛土の締固め管理を高度化することにより施工の合理化や盛土構造物の高品質化 を実現する手法に着目したものである.本論文では、まず、品質規定方式や工法規定方式とい った現状の締固め管理手法に加え、施工全体の生産性向上を目指す i-Construction の取り組みに ついて説明した上で、施工の合理化、盛土構造物の高品質化を実現する新しい締固め管理技術 の重要性を示した.

一方,新しい締固め管理手法を実現するために解決すべき現状の締固め管理の課題として, 品質測定手法の即時性の確保,Walker-Holtzによる礫率補正式(以下,WH式)の修正による品質 評価手法の高度化の必要性について示した.これより,加速度応答法による締固め特性の評価 手法および礫率補正式の高度化を目的とした現場および室内実験を実施し,盛土構造物の品質 情報をリアルタイムかつ面的に測定し,その結果に礫率補正式を適用することで高精度な品質 評価を行うことのできる新しい締固め管理手法を提案した.本手法を実工事に適用し,その有 効性を明らかにした.

以下に本論文の各章の要旨を述べる.

第1章では、盛土の締固め管理の特徴を概観した上で、近年激甚化する自然災害による盛土構造物の被害状況、さらに施工の生産性向上を目的とした i-Construction の推定について説明し、施工の合理化、盛土構造物の高品質化を実現する新しい締固め管理手法の重要性を示した.上記の内容を踏まえ、本研究の目的を示し、本論文の全体構成を概説した.

第2章では、盛土の締固め管理に関して、これまでに得られている知見を示し、現状の締固め 管理手法(品質規定方式、工法規定方式)の詳細や、ICT 技術の現場導入実績などについて示 した.しかし、本研究の目的を達成するには、現状の締固め管理における品質測定手法の即時 性の確保、礫率補正式の高度化による品質評価手法の向上に関する課題などが存在することを 明らかにした.

以上の内容を踏まえ、上記の課題を解決するために行った実験結果を**第3章、第4章**にとり まとめた.

第3章は、地盤剛性指標による効率的な締固め管理手法の検討を目的とし、大型土槽内にて最 大粒径の小さい室内粒度試料を用いた実大締固め機械による転圧試験を実施した.転圧中には 加速度応答法(CCVシステム)による地盤剛性指標を計測し、所定の転圧回数施工後には砂置 換法、RI試験による密度および含水比測定とともに、小型FWD試験、キャスポル試験、現場 CBR試験による地盤剛性指標の計測を行った.転圧試験の測定データと、小型FWD試験、キ ャスポル試験、現場CBR試験、CCVシステムにより取得したそれぞれの地盤剛性指標((K30)FWD、 (K30)キャスポル、CBR値、CCV値)の相関を調べたところ、いずれの地盤剛性指標とも飽和度 Srと 乾燥密度 ρ_d をパラメータとする関係式が成立することを示した.これより,地盤剛性指標と乾燥密度 ρ_d ,飽和度 S_r との関係式に基づく締固め管理を行うことが可能であることが明らかとなった.地盤剛性指標のうち,(K_{30})FWD,(K_{30})キャスボル,CBR 値は,砂置換法と同様に施工完了後の点情報として得られる指標であるのに対して,CCV 値は,施工中にリアルタイムかつ面的な測定が可能であるため,本研究の目的の一つである施工の合理化に最も適した工法である.

第4章は、第3章に示した CCV 値による締固め管理手法の実工事への適用性を検証するため、 実工事において大粒径の土粒子を含む現場全粒度試料を対象とした転圧試験を実施した.転圧 施工中は CCV 値を計測し、転圧施工後は RI 試験による密度と含水比の測定を行った.

この転圧試験の測定データを解析し、*CCV* 値が飽和度 *S*_r と乾燥密度 *ρ*_d をパラメータとした 関係式で表現できることを示した.これより、*CCV* 値と乾燥密度 *ρ*_d、飽和度 *S*_r との関係式が実 大規模の大粒径土粒子を含む場合にも適用できることを意味しており、この関係式による締固 め管理は実工事に適用可能であることを示した.

ところで、一般に、現場施工における目標締固め度(D_c)_{IEc}=「現場施工時に取得した乾燥密 度 ρ_{dJ} /「現場全粒度試料での 1.0 E_c のエネルギーの時の最大乾燥密度 ρ_{dmax} 」は室内実験により 求めた 1.0 E_c のエネルギーの時の最大乾燥密度 ρ_{dmax} をもとに設定される.しかし、室内試験と 現場試験とでは用いる地盤材料の最大粒径 D_{max} が異なるため同じエネルギーで締め固めた時 の最大乾燥密度 ρ_{dmax} の最大粒径の違いによる補正が必要である.これには一般的には、WH 式 が用いられるが、WH 式には課題があり、その推定精度や適用範囲には制限がある.そこで、 現場全粒度試料での 1.0 E_c での最大乾燥密度 ρ_d を精度良く推定するためには新たな補正方法が 必要である.そこで、最大粒径 D_{max} を変化させて小型・大型装置による室内締固め試験を実施 した.その結果、WH 式によって求めた最大乾燥密度[ρ_{dmax}]WH を最大乾燥密度の比 X=「WH 式 による推定値」/「実測値」で補正することで礫率混入後の試料の礫率 Pから、現場全粒度試料 の 1.0 E_c での最大乾燥密度[ρ_{dmax}]WH.XPを推定できることを明らかにした.本章で提案した現場 最大乾燥密度 ρ_{dmax} を求めるための礫率補正手法を用いることにより、室内実験の結果から目標 締固め度(D_c)_{IEc}を設定できるようになることを示した.

第5章は,第3章,第4章の結論を受け,加速度応答法による品質測定手法,*X-P*関係による 締固め度(*D*_c)_{IE}。の推定手法を組合せた新しい締固め管理手法の実工事への適用方法を示した. 事前準備として室内試験と試験施工を行い,それらの結果を踏まえて本施工を行う.

室内試験では、土粒子密度、粒度試験などの基本的な物性試験に加えて、二種類の最大粒径 (例えば、最大粒径 D_{max}=2.00, 37.5mm)を持つ試料で突固め試験を実施し、最適飽和度 S_{ropt}, 突固め時の各締固め点から D_c~飽和度差 S_r-S_{ropt}曲線, X-P 関係、現場全粒度試料に相当する所 定締固めエネルギーでの最大乾燥密度[ρ_{dmax}]_{WH.X-P}を算出する.

試験施工では,要求性能を満足する施工仕様(重機,撒き出し厚,施工含水比 w,転圧回数 N など)を決定と, CCV 値と乾燥密度 pd, 飽和度 Sr の関係式を構築する.

本施工では、試験施工で構築した CCV 値と乾燥密度 pd, 飽和度 Sr の関係式を用いて、施工 中に取得する CCV 値と施工前に測定した含水比 w から乾燥密度 pd と飽和度 Sr をリアルタイム に推定し, 事前準備で求めた最大乾燥密度[ρ_{dmax}]_{WH,X-P}を用いて締固め度(D_c)_{IEc}を満たしている ことを確認していく.

なお、本手法の実工事への適用性を検討するため、実工事で取得した CCV 値をもとに乾燥密度 pd を求めた結果、推定値と実測値は概ね一致することが確認された.これより、加速度応答法と礫率による最大乾燥密度補正式を組み合わせた新しい締固め管理手法の実工事への適用に対する有効性が明らかとなった.

第6章では、本研究で得られた結論と今後の展開や課題についてまとめた.本研究によって、 盛土の品質情報をリアルタイムかつ面的に加えて高精度に評価することが可能であるため、本 研究の目的である施工の合理化、盛土構造物の高品質化を実現することを示した.一方で、残 された課題として、含水比のリアルタイムかつ面的な評価手法の開発の必要性と、その値を用 いた *CCV* 値による乾燥密度 *pa* の推定精度向上を指摘した.

目次案

第1章	序論1
1-1 研	·究の背景1
1-1-1	盛土構造物について1
1-1-2	激甚化する自然災害による盛土構造物の被害状況2
1-1-3	i-Constructionの推進による生産性向上3
1-2 本	研究の目的4
1-3 本	論文の構成4
第1章	の参考文献7
第2章	既往の研究と本研究の位置づけ9
2-1 盛	全土構造物の締固め管理の考え方
2-1-1	室内締固め試験9
2-1-2	現場での締固め施工法11
2-1-3	品質規定方式による施工管理12
2-1-4	工法規定方式による施工管理14
2-1-5	飽和度管理の考え方16
2-2 IC	CT 技術の利用状況と事例19
2-2-1	ICT 技術の利用状況19
2-2-2	ローラ加速度応答法を用いた盛土の品質管理20
2-3 盛	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
2-3-1	盛土の品質情報の即時推定手法の考案23
2-3-2	礫率補正式の高度化
2-4 C	BR 値と乾燥密度 ρdと飽和度 Srの関係
第2章	の参考文献

第3章	ł	地盤剛性指標を用いた盛土品質の即時推定手法による施工の合理化.	29
3-1	概	要	29
3-2	小ᡟ	粒形の盛土材料を対象とした屋外土槽ピット試験による検討	31
3-2	2-1	実験条件	31
3-2	2-2	試験ヤード,重機,品質試験の設定	
3-2	2-3	地盤剛性指標	37
3-3	実調	験結果および考察	

頁

3-3-1	試験値と転圧回数Nの関係	
3-3-2	地盤剛性指標と乾燥密度 $ ho_{d}$,飽和度 S_{r} の関係	42
3-3-3	地盤剛性指標の相関性	43
3-3-4	締固め試験での締固め状態	46
3-4 盛	土品質の即時推定手法の検討	48
3-4-1	現場 CBR 試験による品質指標の推定式	48
3-4-2	小型 FWD 試験による品質指標の推定式	50
3-4-3	キャスポル試験による品質指標の推定式	
3-4-4	CCV システムによる品質指標の推定式	54
3-4-5	CBR 値, (K ₃₀) _{FWD} , (K ₃₀) _{キャスポル} による CCV 値の推定精度	56
3-5 地	盤剛性指標を活用した締固め管理	61
第3章0	のまとめ	65
第3章0	の参考文献	67

第4章	: *	並度特性が盛土の品質に与える影響を考慮した盛土の高品質化	69
4-1	概	要	69
4-2	大料	位径の盛土材料を対象とした現場転圧試験による推定式の検証	71
4-	-2-1	実験手順	71
4-	-2-2	実験結果および考察	73
4-	-2-3	CCV 値による品質指標の推定式の検討	78
4-	-2-4	推定式を用いた締固め管理手法	81
4-3	粒质	度特性が締固め特性に与える影響	85
4-	-3-1	室内試験条件	85
4-	-3-2	室内試験結果	86
4-	-3-3	粒子破砕の影響の評価	89
4-	-3-4	Walker-Holtz による礫率補正式の妥当性検証	91
4-	-3-5	最大乾燥密度比Xと礫率Pの関係による礫率補正	
第4	章の)まとめ	104
第4	章の)参考文献	106

第5章	加速度応答法を用いた新しい締固め管理手法の実工事への適用性	107
5-1 こ	れまでの検討結果	
5-1-1	地盤剛性指標による乾燥密度 ρ _d ,飽和度 S _r の推定	
5-1-2	最大粒径 Dmaxの違いによる特性が品質評価に与える影響	
5-2 加	速度応答法を用いた新しい締固め管理手法の実工事への適用方法	
5-2-1	施工前の実施事項	
5-2-2	試験施工の実施事項	
5-2-3	本施工の実施事項	

5-3 CCV 値による現場締固め度(D _c) _{IEc} の推定方法	
5-3-1 実施工により得られた CCV 値の測定データ	
5-3-2 締固め曲線の礫率補正による締固め度(De)IFeの推定	
第5章のまとめ	
第5章の参考文献	125

第6章 結論	
6-1 各章における結論	
第2章の結論	
第3章の結論	
第4章の結論	
第5章の結論	
6-2 まとめ	
6-3 今後の課題	

謝辞133

第1章 序論

1-1 研究の背景

1-1-1 盛土構造物について

盛土構造物は、我々の生活に欠かすことのできない重要なインフラの一部である. 図 1-1 に盛土の種類と機能を示す 1). 図に示すように、盛土構造物は、道路、鉄道、造成地、河川 堤防,海岸堤防,貯水池,フィルダムなどそれぞれの目的に応じて様々な役割がある.道路, 鉄道盛土などの交通荷重を支持するもの、造成地盛土などの建物、施設の荷重を支持するも の、河川堤防や海岸堤防などの止水や防水を目的としたもの、調整池やフィルダムなどの貯 水を目的としたものなどがある.

盛土構造物の設計を行う場合は、上記に示したそれぞれの目的に応じて、施設の機能や荷 重条件, 盛土構造物の規模や形状などを考慮する必要がある. さらに, 万が一, 盛土構造物 が崩壊した場合の周辺環境へ与える影響の大きさや重要性、復旧の難易なども考慮した設計 が求められる.

全国には 51,306 箇所²⁾,総面積 99,684ha²⁾の大規模盛土造成地が存在することが国土交通 省により報告されている²⁾. この他にも,規模を問わずあらゆる用途で構築されたものも含 めると、膨大な数の盛土構造物が日本に存在していることがわかる.このことから、日本に おける盛土構造物の重要性が確認される.

(d) 河川堤防 (e) 海岸堤防

種	類	主な役割	所要条件	一般的なのり面勾配
道路	盛土	六通炭重の支持	①十分な支持力	1.150.1.20
鉄道	盛土	又通闻重切又打	②沈下量、不同沈 下が小かいこと	1.1.5 -1.2.0
遄成	地盛土	建物、施設の支持	③のり面の安定	1:1.8~1:2.0
河川	堤防			
海岸	:堤防	止水	①漏水がないこと	1:2.0~1:3.0
調整	汹	水防 貯水	⁽⁾ のり回の女足 ③沈下がないこと	
フィ	ルダム			1:2.5~1:4.0

図 1-1 盛土構造物の種類と機能¹⁾

1-1-2 激甚化する自然災害による盛土構造物の被害状況

盛土構造物は、自然材料である土が母材であり、現地発生土をそのまま用いることが多い ため、コンクリート材料のように品質の均一性が保たれていないことがほとんどである.そ のため、粒度や含水比などの材料管理や施工管理を入念に行った場合でも、盛土の品質は不 可避的にばらつきが生じる.これより、豪雨や地震時には盛土構造物には円弧すべりや滑動 などが作用し、崩壊などの事例が多く確認されている.特に、地震、津波、暴風、豪雨、洪 水等、多種の自然災害が発生しやすいという特性を有する日本においては、これらの被害は 顕著である.

図1-2には、東日本大震災により被災した藤沼ダム(本体)の写真を示す.平成23年3月11 日の東北地方太平洋沖地震(発生時刻14時46分,M9.0)により藤沼ダムは決壊し、流出した 多量の水が下流域の集落に達して、死者7名、行方不明者1名の惨事を引き起こした.藤沼ダ ムの決壊について、その原因究明を目的とした調査・検討³⁾が行われ、特に重要な要因の一つ として、締固め不足が挙げられた.藤沼ダムは昭和24年10月に竣工しており、盛土の性能を 表す指標である締固め度D_cが現在の施工方法と比較すると小さく、地震時に非排水条件にな ると堤体盛土の強度は小さくなる.特に、砂分に富む材料からなる堤体上部の盛土部では、 水で飽和されている部分があり、今回のような地震動をうけるとさらに強度低下を示すこと が判明した³⁾.なお、同地震により福島県内では約750箇所でフィル型式の農業用ダム・ため 池が被災している.

これより、今後も発生が予想される地震や豪雨などの大規模な自然災害に対して、締固め 管理の重要性が明らかとなった.

図 1-2 決壊した藤沼ダム(2011 年 4 月撮影)

1-1-3 i-Construction の推進による生産性向上

我が国は、今後、少子高齢化が進展し、働き手の減少が避けられない状況であるとともに、 近年激甚化している自然災害に対する対応、今後本格的に老朽化を迎えるインフラの維持管 理への対応など様々な課題を抱えている。このような中、少ない人手でも従来と同じ量の仕 事ができるよう生産性を向上することが不可欠であることから、国土交通省では、生産性向 上に向けたプロジェクトの一つとして、「ICT 技術の全面的な活用」、「規格の標準化」、「施工 時期の平準化」等の施策を建設現場に導入することによって、建設生産システム全体の生産 性向上を図り、魅力ある建設現場を目指す「i-Construction(アイ・コンストラクション)」を推進している. 平成28年度より、「i-Construction」のトップランナー施策として、土工事へICTを全面的に 導入する「ICT 土工」の施行が進められている.これは,「調査・測量」,「設計・施工」,「検 査」,「維持管理・更新」の建設生産プロセスに ICT 技術(情報通信技術)を取り入れること で生産性を向上させるというものである 45).

盛土の施工においても, ICT 技術による生産性の向上が進められている. 具体的には, ① 3次元起工測量, 23次元設計データ作成, 3ICT 建機による施工, 43次元出来形管理等の 施工管理, ⑤3 次元データの納品, ⑥3 次元モデルによる検査についての 6 項目が対象とな る. 図 1-3 には、実工事に適用された ICT 適用事例 ^のを示す. 土工事に用いる施工重機と位 置情報技術を組合せることによる施工履歴管理が進められていることがわかる.振動ローラ による施工においては、施工履歴を活用した転圧回数管理が行われており、従来の品質規定 による締固め管理よりも大幅な省力化が可能である ⁷.

A Des als and the set of the

このように、盛土構造物の施工方法の合理化が求められている.

UAVによる施工前の 空中写真測量

MCブルドーザによる 敷均し

施工前測量データと3D設計データを合成し土量算出

RTK/GNSSによる転圧管理 システム搭載ローラによる転圧

3DMGバックホウによる 法面整形

1-2 本研究の目的

以上のような、盛土構造物の施工に関する諸問題に対して、本研究においては、リアルタイ ムかつ面的に地盤剛性を評価することのできる加速度応答法に着目し、それを利用して品質測 定手法の即時性を確保することによる施工の合理化を目指した.さらに、盛土の品質評価手法 において課題とされてきた現場試験と室内試験との粒径特性の違いが品質評価に与える影響に 着目し、礫率補正式の高度化による盛土の高品質化を目指した.

これらの考え方を組合せることで、合理的な施工法による高品質な盛土構造物を構築するこ とが可能となる.

1-3 本論文の構成

本研究は、合理的な施工法による盛土構造物の高品質化の実現に向け、加速度応答値(以下, CCV値)によるリアルタイムかつ面的で高精度な締固め管理手法に着目し、現場試験や室内試 験により CCV値を用いた盛土の乾燥密度、飽和度の即時推定式の構築と礫率補正式の高度化 を検討し、これらを組み合わせた新しい締固め管理手法を提案したものである.本論文の全体 構成を図1-4に示す.

まず,近年の激甚化する自然災害による盛土構造物の崩壊や近年の建設生産システム全体の 生産性向上を目的とした i-Construction の推進により,施工手法の合理化と盛土の高品質化を実 現する新しい締固め管理手法を開発することの重要性を示す.次に,現状の盛土の締固め管理 手法について示すとともに,施工の合理化や盛土の高品質化を実現する上で課題となる①品質 管理の即時性の確保,②現場試験,室内試験における盛土材の粒形特性の違いを考慮した品質 評価手法について明らかとした.そして,それぞれの課題を解決することを目的とし,以下に 示す研究を実施した.

品質管理の即時性の確保

大型土槽内にて砂質土(最大粒径 D_{max} =9.50mm)を用いた実大締固め機械による転圧試験 を実施し、地盤剛性指標による盛土の乾燥密度 ρ_d 、飽和度 S_rの即時推定手法を検討した.

転圧試験で得られた砂置換による密度試験結果と、多数測定可能な重錘落下試験、リアル タイムで面的に測定可能な CCV システムによって得られた地盤剛性指標の測定データを解 析した結果、地盤剛性指標は飽和度 Sr をパラメータとして乾燥密度 pd との関係式が成立する ことが確認された.地盤剛性指標のうち、CCV 値は、リアルタイムかつ面的に計測すること が可能な手法であるため、本研究の目的である締固め管理の合理化に適していることがわか った.

次に、施工現場において大粒形を含む盛土材(最大粒径 D_{max} =75.0mm)を対象とした転圧 試験を実施し、CCV値による上記の推定式の適用性を検証した.その結果、大粒形を含む盛 土材が対象であっても CCV値は飽和度 S_r と乾燥密度 ρ_d の関係式で表現できることが確認さ れた.

最後に、CCV 値の関係式を用いた具体的な締固め管理手法について提案する.まず、締固

め過程における盛土材の含水比wは一定であると仮定した場合,推定式により転圧回数Nが 増加(すなわち,乾燥密度 ρ_d ,飽和度 S_r も増加)した場合のCCV値の変化を表現すること ができる. CCV値は、転圧の初期段階(転圧回数N=0~6回程度)では乾燥密度 ρ_d ,飽和度 S_r に比例して増加傾向を示すが、転圧の後期(転圧回数N=8~16回程度)に飽和度 S_r が最適 飽和度 S_{ropt} 以上になると、CCV値は乾燥密度 ρ_d ,飽和度 S_r が増加しても低下傾向を示す.こ の特性を考慮し、CCV値の関係式により乾燥密度 ρ_d 、飽和度 S_r を正確に推定するためには、 CCV値単体ではなく転圧回数Nと併用した締固め管理が必要であることがわかった.これに より、CCV値によるリアルタイムかつ面的な盛土の締固め管理を実現することができる.

② 現場試験,室内試験における盛土材の粒形特性の違いを考慮した品質評価手法

最大粒径 D_{max} を変化させた室内締固め試験を実施し、Walker-Holtz の礫率補正式(以下、WH 式)の推定精度の検証および礫率補正式の高度化を検討した.

道路造成工事に使用した最大粒径 $D_{max} = 75.0$ mm の盛土材を母材とし、せん頭粒度法によ り最大粒径 $D_{max} = 2.0$ mm, 4.75mm, 9.5mm, 19.0mm, 37.5mm, 53.0mm になるように粒度調 整して作製した試料を対象に締固めエネルギー*CEL*を 1.0*E*_c, 4.5 *E*_c に設定して大型・小型 締固め試験を実施した. 任意の最大粒径 D_{max} の最大乾燥密度 ρ_{dmax} を基準とし、WH 式によ り目標とする最大粒径 D_{max} の最大乾燥密度 $[\rho_{dmax}]_{WH}$ を推定する. 目標とする最大粒径 D_{max} で実際に締固め試験を行って得られた最大乾燥密度 ρ_{dmax} の実測値と前述の推定値との比較 を行った結果, 礫率 *P* に依らずに推定値は,実測値を過大評価することが明らかとなった. ここで,同一の *CEL* に対する最大乾燥密度の比 *X*=「WH 式による推定値」/「実測値」と 礫率混入後の試料の礫率 *P* の関係(以下, *X*-*P* 関係)を求めた結果,礫混入側,礫除去側の それぞれで,粒径の依らず高い相関関係を示した. これより,*X*-*P* 関係を構築しておくこと により,現場試験と室内試験との粒形特性の違いを考慮した品質評価が可能となる.

上記の①,②の課題に対する検討内容を踏まえ、加速度応答法を用いた新しい締固め管理手 法を以下のように提案する.

まず,室内試験において,最大粒径 D_{max} を変化させた 2 種類の締固め試験を実施し,X-P 関係を求める.この時の最大粒径 D_{max} は,室内締固め試験を実施可能な範囲で最大・最小の粒径(最大粒径 D_{max} =2.00mm, 37.5mm)とする.現場粒度の最大粒径 D_{max} を確認し,X-P 関係から現場粒度の最大粒径 D_{max} に対応する最大乾燥密度比 X を求める.

次に、試験施工において、CCV値と乾燥密度 pd、飽和度 Srの関係式を構築する.

最後に、本施工において、盛土の施工含水比wは既知で一定値と仮定した場合、施工中に得られる CCV 値と転圧回数 N の情報と上記の関係式により、乾燥密度 ρ_d、飽和度 S_rを推定する.

ただし、この時に得られる乾燥密度 ρ_d 、飽和度 S_r は、いずれも現場全粒度試料に対応した測定 結果であるため、室内粒度で実施した室内締固め曲線上にそのままプロットすることはできな い、そこで、室内試験で求めた最大乾燥密度比Xを用いて現場全粒度試料に相当する最大乾燥 密度[ρ_{dmax}]_{WH,X-P}を推定し、締固め度(D_c)_{IEc}を評価することができる.

以上より, CCV 値によるリアルタイムかつ面的で高精度な品質測定が可能となるため,施工 方法の合理化と,盛土の高品質化を実現できることを示した.

図 1-4 本論文の全体構成

第1章の参考文献

- 1) (社)地盤工学会編:「盛土の調査・設計から施工まで第一回改訂版」, pp. 6-7, 1990.
- 2) 国土交通省都市局都市安全課:都道府県別の大規模盛土造成地数および面積(別紙資料), 国土交通省ホームページ.
- 福島県農業用ダム・ため池耐震性検証委員会:藤沼湖の決壊原因調査報告書(要旨), pp. 1-7, 2012.
- 4) 国土交通省: i-Construction の取組状況 (ICT 土工事例集) ver. 2, 2016.
- 5) 亀山崇,山口賢一,野崎了: ICT土工における実際の効果と課題について,2017.
- 6) 国土交通省東北地方整備局:東北復興 i-Construction ICT 活用取組み事例集, 2018.
- 7) 吉田輝,北本幸義,早崎勉:施工規定方式における規定転圧回数の実用的な更新手法, 土木学会第59回年次学術講演会,pp.55-56,2004.

第2章 既往の研究と本研究の位置づけ

2-1 盛土構造物の締固め管理の考え方

2-1-1 室内締固め試験

土の締固めの考え方は, R.R.Proctor が発表した「転圧式アースダムの設計および施工について」と題する論文の中に示されている土の締固め特性, 締固め試験方法, 現場における施工管理手法に基づいており, 現在における締固め管理のルーツとなっている¹⁾.

ここで、図 2-1 に土の構造図を示す.図 2-1 に示すように、土は土粒子、空気、水の混合体である.土を締固めるということは、この混合体に外力を与えることで、土を密実にする行為である.図 2-2 に室内締固め試験により得られた締固め曲線の一例を示すが、土の締固め特性を表現する最も一般的な図表である.図中の曲線は、同一の土の含水比wを変化させ、それぞれを同一の締固めエネルギー*CEL*で締固めた時の乾燥密度 ρ_d の変化を表したグラフであり、含水比wと乾燥密度 ρ_d の関係は上に凸の曲線形である.これは、ある土に対して最も効率的に締固まる含水比wが存在することを意味しており、この時の含水比wを最適含水比wopt、乾燥密度 ρ_d を最大乾燥密度 ρ_{dmax} 、飽和度 S_r を最適飽和度 S_{ropt} という.締固め曲線は、扱う土質が変化する毎に室内締固め試験を実施して求める必要がある.

締固め曲線は、室内締固め試験により得られる値であり、表 2-1 に示すように土質の最大 粒径 D_{max} や土に与えるエネルギー(以下、締固めエネルギーCEL)などを変化させた合計 5 種類の試験方法²が存在する.

土に与える締固めエネルギー(仕事量) E_c (kJ/m³) は、次の式(2-1)²⁾で定義されている.ここに、 W_R : ランマーの重量(kN)、H: ランマーの落下高さ(m)、 N_B : 1 層あたりの突固め回数(回)、 N_L : 突固め層数、V: モールドの容積(m³) である.

$$E_c = \frac{W_R \cdot H \cdot N_B \cdot N_L}{V} \tag{2-1}$$

表 2-1 に示した各呼び名の諸条件を式(2-1)に代入すると、呼び名 A、B の締固めエネルギーは E_c = 550kJ/m³ となり、呼び名 C、D、E は E_c = 2500kJ/m³ となる.ここで、呼び名 A、B を 1.0 E_c とした場合、呼び名 C、D、E は 4.5 E_c に相当することになる.現場における土の固め管理では、構造物の種類や重要度によって異なるが、道路盛土においては、路体・路床では 1.0 E_c 、路盤では 4.5 E_c を用いると定義されている ³.

図 2-2 締固め曲線

表 2-1 試験方法一覧表 2)

呼び名	ランマー質量	ランマ—落下高	モールド内径	モールド容積	突固め層数	各層の 突固め回数	許容最大粒径
	$W_{\rm R}$	H (am)	(2m)	V ³	N _L		$D_{\rm max}$
	(Kg)	(CIII)	(cili)	(cm)	()冒)	(凹)	(mm)
А	2.5	30	10	1000	3	25	19
В	2.5	30	15	2209	3	55	37.5
С	4.5	45	10	1000	5	25	19
D	4.5	45	15	2209	5	55	19
Е	4.5	45	15	2209	5	92	37.5

2-1-2 現場での締固め施工法

道路,空港,フィルダムなどの土構造物の造成手順について説明する. 図 2-3 には,実工 事における盛土の締固め施工法のフロー図を示す.

まず, バックホウにより土砂を掘削し, それをダンプに積込み, 盛土の施工ヤードに運搬, 荷下ろしする. 次に, ブルドーザにより所定の高さに敷き均し, その上を振動ローラなどの 締固め機械が走行する. 一層当りの土の仕上がり厚さは, 一般的に 25~30cm に設定される ことが多く, 締固め機械が 6~10 回程度の転圧を繰り返し, 所定の品質の盛土構造物を構築 する.

土工事に用いられる締固め機械として最も一般的な機種は振動ローラである. 図 2-4 には, 振動ローラの全体図 %を示す. 振動ローラは,ドラムと呼ばれる鉄製タイヤの前輪と,ゴム 製タイヤの後輪によって構成されており,前輪が振動しながら走行することができる. 大規 模造成工事では,一般的に7~10t級の重量に該当する機種が選定されることが多い.

上記に示した締固め施工法により所定の品質を満足する盛土を構築するには,締固め機械, 撒き出し厚,転圧回数*N*,施工含水比*w*などの施工条件を適切に設定および管理するととも に,造成された盛土構造物が所定の品質を満足していることを確認する必要がある.盛土構 造物の施工管理は,品質規定方式と工法規定方式の2通りが存在する.次項では,それらに ついて説明する.

図 2-3 盛土の締固め施工法のフロー図

図 2-4 振動ローラの概要⁴⁾

2-1-3 品質規定方式による施工管理

品質規定方式 ⁵とは、転圧施工後の盛土の密度や強度などの品質を直接的に確認し、良否 を判定する手法である.施工手順は、まず盛土の対象となる土質を用いた室内試験を実施し、 物性情報を取得する.次に、盛土の管理基準値を設定し、それを満足するように締固め施工 管理を行う.本施工では、施工完了後に施工ヤードの代表的な地点で人力による品質試験を 実施する.

品質管理基準値はいくつか存在する.以下にそれぞれの基準値について説明する.なお, 本研究においては,D値管理(締固め度Dc)に基づく品質評価を基準とした.

(1) D 值管理 5)

D 値管理は、 締固めにおける品質管理手法として最も現場適用事例の多い手法である. なお、 道路土工では D 値ではなく締固め度 D_eと表現されており、本研究においても、 締固め度 D_eに基づく品質評価を基準とする.本管理手法は、現場から採取した土を対象 に室内締固め試験を行い、図 2-2 に示すような締固め曲線を求め、最大乾燥密度 ρ_{dmax} を 算出する.次に、現場において転圧施工後の締固め土の乾燥密度 ρ_{d} を砂置換法や RI 試 験などの人力手法により測定する.これらの値を式(2-2)に代入し、締固め度 D_e(%)を 算出する.

締固め度 $D_c = \frac{現場で測定された締固め土の乾燥密度 \rho_d}{$ 室内締固め試験で得られた最大乾燥密度 ρ_{dmax} × 100 (2-2)

締固め度 D_cの管理基準値は、造成する構造物毎に設定されるが、通常は締固め度 D_c=90%、95%を下限値として設定することが多い.転圧施工後に実施する品質試験によ り得られた締固め度 D_c が所定の下限値を超えているかの確認を行い、施工の良否を判定する.

ここで、現場施工と室内試験で取り扱う土質の最大粒径の違いが締固め度 D_c の評価 に与える影響についても留意する必要がある.式(2-2)の最大乾燥密度 ρ_{dmax} は室内締固め 試験により得られる指標であるのに対し、現場で測定された締固め土の乾燥密度 ρ_d は室 内締固め試験の許容最大粒径 D_{max} を超える大粒径粒子を有する現場全粒度試料が対象 となる場合が多く、同じ締固めエネルギーCEL で締固めても、乾燥密度 ρ_d の値が室内試 験とは異なることがある.このため、締固め度 D_c として適切なものを規定できなくなる という欠点がある.この場合は、室内締固め試験結果に礫率補正を施し、現場全粒度試 料に相当する締固め曲線から基準となる最大乾燥密度[ρ_{dmax}]wH を算出することが行われ ている.

礫率を補正する手法は、Walker-Holtzの手法の他、Humphresの手法、福本の手法など 多くの手法が研究されているが、ここでは、最も適用事例の多い Walker-Holtz の手法を 説明する.許容最大粒径 D_{max} より大きな礫を混入した土の乾燥密度 p_dの補正式を図 25に示す.

Walker-Holtz の礫率補正式 0.7は、大きい礫同士の空隙中には、細かな土で充填されて いると仮定し、礫部分の含水比 w はないものと仮定しており、土(礫以外)と礫の乾燥 密度をそれぞれ ρ_{d1} 、 ρ_{d2} と定義とした場合に、図 2-5 に示す補正式により礫を混入した 後の乾燥密度 ρ_d を算出することができる。図 2-6 は、礫混入率と混合したあとの土の最 大乾燥密度の実測値と Walker-Holtz 式による計算した理論値との関係を示す ⁸. 理論上 の乾燥密度 ρ_{d0} と実際の乾燥密度 ρ_{d0} との曲線を比較すると、礫率 P=30~40%までは Walker-Holtz の理論上の乾燥密度 ρ_{d0} と実際の乾燥密度 ρ_{d0} は完全に一致し、礫率 P が 40%を超えると一致しなくなることを示している。これより、Walker-Holtz の適用範囲 は礫率 P=30~40%までとされている。

図 2-5 Walker Holtz 法の概念図

図 2-6 Walker-Holtz の理論値と実測値との比較⁸⁾

(2) Ds 值管理 5)

既に述べたように大粒径の礫分を多く含む盛土材を対象とする場合は、室内締固め試

験により最大乾燥密度を求めること困難である.また,大規模盛土において大型の締固 め機械を用いる場合は,室内締固め試験との締固めエネルギーの乖離が大きくなりすぎ ている懸念がある.このように,現場の施工状況により,D値管理に用いる締固め度D。 を算出するための最大乾燥密度 pdmax を室内試験により求めることが困難な場合にD。値 管理が適用される.

本手法では、現場転圧試験において実大締固め機械による転圧施工を繰り返し、乾燥 密度 ρ_d が収束した値を最大乾燥密度 ρ_{dmax} として採用し、式(2-3)に代入することで締固 め度 D_s を算出する手法である.

締固め度
$$D_s = \frac{現場で測定された締固め土の乾燥密度\rho_d}{$$
転圧試験から得られた最大乾燥密度 ρ_{dmax} × 100 (2-3)

(3) V_a值, S_r值管理⁴⁾

自然含水比 w_n が最適含水比 w_{opt} よりも著しく高い細粒土を対象とする場合は,現場の 転圧施工において所定の締固め度 D_c を満足することが困難である.このような場合は, 空気間隙率 V_a の上限値管理や飽和度 S_r による下限値管理が行われる場合がある.なお, 空気感激率 V_a や飽和度 S_r は RI 試験や砂置換法により算出される指標である.空気間隙 率 V_a , 飽和度 S_r の公式をそれぞれ式(2-4),式(2-5)に示す.ただし,ここに示す飽和度 S_r による管理手法は,2-1-5節で説明する「飽和度管理」の考え方とは異なる.

$$v_a = \frac{v_a}{v} \times 100 \tag{2-4}$$

$$S_r = \frac{V_w}{V_v} \times 100 \tag{2-5}$$

2-1-4 工法規定方式による施工管理

工法規定方式 ⁹は,盛土の締固めに関する工法そのものを規定する方法であり,施工着手前の試験施工で目標品質を満足する施工方法(締固め機械,撒き出し厚,含水比 w,転圧回数 N)を設定し,その方法に基づいて本施工を実施するものである.

近年の締固め機械の大型化,高性能化により転圧回数を管理することで CEL の管理を厳密 に行えるようになった. さらに,品質規定方式のように,施工管理のために多大な労力を有 する現場密度測定なども行わなくても良くなるため,施工管理の省力化が大幅に期待されて いる.

近年は、上記の工法規定方式に基づく情報化施工手法の一つとして「TS・GNSS を用いた 締固め管理技術」⁹の現場適用が主流となりつつある. 図 2-7 には、TS・GNSS による締固め 管理の概要図¹⁰を示す.本手法は、振動ローラによる転圧施工に適用されるものであり、TS や GNSS などの位置計測装置を用いて振動ローラの走行軌跡を計測し、転圧回数 N をリアル タイムにオペレータ画面に表示することで規定の転圧回数Nに対する過不足を確実に防止するシステムである.

試験施工で設定した施工方法を実施および管理することで,施工後の現場での密度試験が 不要とされている.本手法は,従来管理に比べて施工の省力化,高速化,確実性の向上に寄 与する技術である.

図 2-7 TS・GNSS を用いた締固め管理技術の概要図¹⁰⁾

2-1-5 飽和度管理の考え方

現代の締固め管理は、Proctorの研究以来、室内締固め試験によって得られた最大乾燥密度 ρ_{dmax} と最適含水比 w_{opt} を基準にした方法が行われてきて、膨大な研究と現場でのデータの蓄 積がなされてきている.しかし、日本のように雨の多い地帯では、自然含水比 w_n が最適含水 比 w_{opt} よりかなり高い場合が多く、その状態で単に乾燥密度 ρ_d を高める施工を進めようとす るとオーバーコンパクションが生じやすくなり、どんなに締固めエネルギー*CEL*を加えても 乾燥密度 ρ_d は大きくならないため、目標とする締固め度 D_c を達成できなくなる.加えて、 内部摩擦角 ϕ も小さくなるため、盛士構造物の安定性の確保が難しくなるなどの問題が生じ ることが多い.このような背景より、従来の締固め度 D_c に基づく品質管理に加えて、飽和度 S_r を管理するという新しい品質管理手法 ^{11,12,13,14)}が注目されている.

近年, 龍岡ら^{11,12,13,14}の研究より, 粘性土・砂・礫質土といった幅広い土質材料を対象に, 最適飽和度 S_{ropt} は締固めエネルギーCELに依存せず一定であり, 土質の変化に鈍感であるこ とが明らかにされている. 図 2-8, 図 2-9 は,異なる締固めエネルギーCELと土質の締固め 曲線結果を乾燥密度 ρ_d と含水比 w,締固め度 D_c と飽和度 S_r - S_{ropt} の関係でそれぞれ示したも のである¹⁵⁾. 図 2-8 をみると,最大乾燥密度 ρ_{dmax} ,最適含水比 w_{opt} は,締固めエネルギーCELや土質の変化に応じて変動する指標であるのに対して,最適飽和度 S_{ropt} は一定値を示してい ることがわかる.ここで,最適飽和度 S_{ropt} とは,最大乾燥密度 ρ_{dmax} ,最適含水比 w_{opt} の締固 め状態の時の飽和度 S_r である.また,図 2-9 をみると,締固め曲線の横軸を飽和度 S_r - S_{ropt} , 縦軸を締固め度 D_c で表記することで,締固めエネルギーCELや土質の変化に依らずに締固 め曲線の形は相似形であることがわかる.

図 2-10(a),(b)には、それぞれ従来の締固め管理図と、上記に示した最適飽和度 Sroptに関連する特性を考慮して設定した飽和度管理図を示す.図 2-10(a)に示すように、従来の締固め管理では、締固め度 D_cの下限値と含水比 w の上下限値により規定された管理範囲による品質管理が行われいる.しかし、現場の施工条件に相当する締固め曲線は通常は不明であるため、既に述べたように締固め度 D_cを過大に評価してしまうという欠点がある.

これに対し、図 2-10(b)に示すように、飽和度管理では、図 2-8 に示したように締固めエ ネルギーCEL と土質に依らず一定値を示す最適飽和度 Sropt を目指した管理を行うため、土質 材料と重機等の施工条件の変化と共に締固めエネルギーCEL や土質が変動しても、現場の施 工条件に相当する締固め曲線の最大乾燥密度 pdmax を用いて評価した締固め度 D_c が 100%に なることを目指した施工を行うことが可能となる.これより、実工事に飽和度管理を適用す ることで、従来の締固め管理に比べて高品質な盛土を構築することが可能となる.

図 2-8 異なる締固めエネルギーCELと土質の締固め曲線¹⁵⁾

図 2-9 異なる 締固めエネルギー CEL と土質の 締固め度(D_c)_{1Ec} と飽和度 Srの関係

図 2-10 従来の締固め度管理図と飽和度管理図の比較

2-2 ICT 技術の利用状況と事例

我が国における ICT 技術は、国交省および各都市、自治体が主導となり、平成 25 年度から 現場適用が進められてきた.本項では、ICT 技術の利用状況と、主に盛土の締固め管理に関す る ICT 技術の適用事例について以下に示す.

2-2-1 ICT 技術の利用状況

建設施工の生産性向上,品質確保,安全性向上,熟練労働者不足への対応など,建設施工 が直面している諸課題に対応する ICT 施工技術(情報化施工)の利用状況を説明する.表2-2 には,ICT 活用工事の実施状況¹⁰を示す.表2-2 より,平成28 年度から ICT 土工の適用が 開始され,以降は舗装工,浚渫工,地盤改良まで工種が拡大している.さらに,令和元年度 は,公告件数2397 件のうち79%に該当する1890 件が ICT 活用工事である¹⁰.

具体的な ICT 技術として、コントロール (MC) 技術、マシンガイダンス (MG) 技術、TS・ GNSS による締固め管理技術など施工の効率化を目的とした技術は多く基準化されており、 いずれも、施工の生産性を向上することが可能である.

一方,本研究の目的の一つである盛土の高品質化に着目した ICT 技術はほとんど報告され ておらず,「ローラ加速度応答法を用いた盛土の品質管理(案)」¹⁷は盛土の品質向上に関連 する技術として唯一基準化されている.しかし,前述した施工の効率化に関する ICT 技術と 比較すると,現場への導入実績は圧倒的に少ないのが現状である.本手法については,次項 で説明する.

	平成28年度		平成29年度		平成30年度		令和元年度	
工種	公告 件数	うちICT 実施	公告 件数	うちICT 実施	公告 件数	うちICT 実施	公告 件数	うちICT 実施
±Ι	1, 625	584	1, 952	815	1, 675	960	2, 246	1, 799
舗装工	-	_	201	79	203	80	340	233
浚渫工	_	_	28	24	62	57	63	57
浚渫工(河川)	_	_	_	-	8	8	39	34
地盤改良工	_	_	_	_	_	_	22	9
合計	1, 625	584	2, 175	912	1, 947	1, 104	2, 397	1, 890
実施率	36	5%	42	2%	57	%	79	9%

表 2-2 ICT 活用工事の実施状況¹⁶⁾

2-2-2 ローラ加速度応答法を用いた盛土の品質管理

盛土の品質評価に焦点を当てた ICT 技術の一つとして、「ローラ加速度応答法を用いた盛 土の品質管理(案)」¹⁷について説明する.

ローラ加速度応答法とは、振動ローラの振動挙動を利用して地盤の剛性を評価し、そこに GPS による重機の位置特定技術を融合させることで、施工中に施工ヤード全面の品質を評価 する技術のことである.この技術は、1975 年に設立された Geodynamik の Thurner 博士によ り本格化し、Geodynamik、Dynapac 社が共同して *CMV* という加速度応答システムを開発し たことが起源とされている¹⁸⁾.我が国においても、1980 年代からローラ加速度応答法の検討 が進められ、1990 年代後半に GPS 技術の発展とともに実用技術として現場への導入が検討 されてきた.¹⁸⁾

表 2-3 には,機械メーカにより採用されているいずれも地盤剛性を評価するための各種シ ステムの解析手法および全体概要図¹⁸⁾を示す.

舌撚メーカ	システムの特徴					
重機メーカ	締固め時の計測と解析手法	フィードバック				
Ammann	$k_s = 4\pi^2 f^2 \left[m_d + \frac{m_r \gamma_t cos(\varphi)}{A_1} \right]$	振幅と周波数制御				
Bomag	$Z_{a} = \frac{(1-\nu^{2})}{E_{V1B}} \cdot \frac{F_{t}}{L} \cdot \frac{2}{\pi} \cdot \left(1.884 + In\frac{L}{B}\right)$ where, $B = \sqrt{\frac{16}{\pi} \cdot \frac{R(1-\nu^{2})}{E_{VIB}} \cdot \frac{F_{s}}{L}}$	振幅と振動方向の制御				
Caterpillar	$GoedynamikCMV = C\left(\frac{A_2}{A_1}\right)$ $MDP = P_g - WV\left(sin\alpha + \frac{\alpha}{g}\right) - (mV + b)$	振幅制御				
Dynapac	GoedynamikCMV = $C\left(\frac{A_2}{A_1}\right)$ BouncingValue = $\frac{A_{0.5}}{A_1}$	振幅制御				
Sakai	$CCV = \left(\frac{A_{0.5} + A_{1.5} + A_2 + A_{2.5} + A_3}{A_{0.5} + A_1}\right) \times 100$	_				

表 2-3 重機メーカのシステム一覧¹⁸⁾

表 2-3 のうち,日本において最も適用実績が多い酒井重工業製の CCV システム ¹⁹⁾の仕組 みについて説明する.振動ローラは,鉄製車輪の内部に回転する偏心錘を持ち,その遠心力 による周期的な振動力を発生させる機械である.鉄製車輪の主軸付近に CCV という加速度 センサを取り付け、転圧施工中の振動挙動を波形データとして計測することが可能である.

図 2-11 には、転圧回数 N が 2 回と 8 回の地盤上を振動ローラで転圧した際の振動輪の振動挙動の例を示したものである.この振動挙動は、土の締固めの進行とともに変化する.転圧回数 N が多くなるほど地盤剛性は大きくなると仮定すると、地盤剛性が一番低い転圧回数 N が 2 回 (図 2-11(a))では、加速度と時間の関係は規則性を有する形状になっていること がわかる.振動ローラの基本周波数にのみスペクトルがあらわれている.これから転圧が進み、転圧回数 N が 8 回 (図 2-11(b))では、種々の振動数成分を含んだ複雑な振動挙動を示す.

この結果に対してフーリエ解析を施すことで、図 2-12 に示すような各周波数のスペクト を算出することができる.図 2-12 に示すように、地盤が軟らかい場合には、基本周波数 Fo の振幅スペクトル A2 のみが卓越しているが、転圧回数 N が増加するにつれて基本周波数以 外のスペクトルが卓越し始めていることがわかる.このようなスペクトルの変化を地盤剛性 とを関連付けることを目的とし、表 2-3 に示す数式が考案された.この時、地盤剛性指標を *CCV* 値と定義した.

CCV システムは、従来の同類指標である CMV システムを改良することにより考案された システムであり、CMV 値は式(2-6)に示す関数により算出される.

$$CMV = \frac{A_4}{A_2}$$
(2-6)

*CMV*値は*CCV*値と同様に振動ローラの加速度信号を処理して得られる締固め指標であり、 主既に欧州を中心に普及している.しかし、横田ら¹⁹⁾の研究によると、ある種の土質条件に よっては、乾燥密度 ρ_d は転圧回数 Nの増加に伴い単調増加するのに対して *CMV*値は一貫し て減少する傾向を示すことがわかった.この原因は、式(2-6)に示すように、*CMV*値は転圧回 数 Nが増加して地盤が硬化することにより卓越する加速度振幅スペクトル (S₁, S₅, S₆)を反 映していないためとしている.これに対し、**表 2-3**に示す *CCV*値の数式は上記の加速度振幅 スペクトルを反映しているため、転圧回数 Nの増加に伴う乾燥密度 ρ_d の増加傾向と類似の傾 向を示すことのできる指標である.

図 2-13 には、CCV システムの概要を示す.図 2-13 より、振動ローラの振動輪の振動軸に 加速度センサを設置し、振動ローラの天端部には GNSS 受信機を設置する.加速度センサよ り得られる波形データを瞬時に解析し、CCV 値としてデータを取得する.データのサンプリ ングピッチは 5 回/秒であるため、施工中の CCV 値はリアルタイムに計測することが可能で ある.これに、GNSS 受信機による位置情報を組み合わせることで、面的な CCV 値を取得す ることが可能になる.従来の転圧回数管理に加え、地盤剛性を面的にモニタリングすること で、高品質な盛土の構築が可能となる.

図 2-12 周波数と振幅スペクトル

図 2-13 CCV システムの概要

2-3 盛土締固め管理の課題

本研究の目的である合理的な施工法と盛土の高品質化を実現するためには、従来の締固め管 理手法に関する二つの課題について検討する必要がある.一つ目の課題は、品質測定手法につ いて、盛土の品質指標の即時推定法を考案するというものである.二つ目の課題は、品質評価 手法について、礫率補正式を高度化するというものである.それぞれの課題について、以下に 説明する.

2-3-1 盛土の品質情報の即時推定手法の考案

品質測定手法の課題は、盛土の品質情報の即時推定手法を考案することである.品質規定 方式における品質測定手法は、砂置換や RI 試験による密度管理が主流である.すなわち、盛 土の品質を直接的に管理する手法である.しかし、これらの品質試験は転圧施工が完了して から行うため、仮に目標品質を満足しない場合には、転圧施工の追加や、時には土砂を撤去 してやり直しを行わなければいけなくなる可能性も含まれている.さらに、品質試験は人力 により実施されるものであるため、広い施工ヤードの代表点でしか実施することができない. これより、測定範囲以外に品質不良個所が存在した場合には、それらを見逃す可能性がある.

一方,工法規定方式においても課題がある.工法規定方式で大規模造成工事を行う場合に は,盛土材の採取場所が広範囲に及ぶため,施工に伴って締固め特性が変化し,施工着手前 に設定した施工方法が実状と合わなくなる場合がある.このため,同一の施工方法(特に転 圧回数)で施工すると,場所によっては転圧不足や過転圧が発生する可能性がある.そのた め,材料の変化に応じて頻繁に試験施工を行い,適切な施工方法を設定する必要があり,施 工において大きな労力を要するという懸念がある.このような課題は,特定の施工仕様(転 圧回数や撒き出し厚)を設定する工法規定方式に,土の乾燥密度 ρd や飽和度 Sr などの品質情 報も含めた施工管理を行うことで解決することができると考えられる.

2-3-2 礫率補正式の高度化

品質評価手法の課題は、現場試験と室内試験で取り扱う土質の粒度特性の違いが品質評価 に与える影響を考慮した礫率法正式の高度化を行うことである.

締固め度 D。による管理を実施する場合,最大乾燥密度は室内締固め試験により求めることが一般的である.しかし,現場試験は,室内試験の許容最大粒径以上の礫を含む場合が多いため,粒径の違いを解消することを目的として Walker-Holtz の礫率補正(WH式)を適用させる必要がある.

図 2-14 に Walker-Holtz による礫率補正をした計算締固め曲線と実測締固め曲線とを比較 した結果を示す,図 2-14 に示すように,最大粒径 D_{max}=2.00mmの実測締固め曲線を基準と し,D_{max} =75.0mm になるように WH 式による算出した計算締固め曲線は,最大粒径 D_{max} =75.0mmの実測の締固め曲線と比較して乾燥密度を大幅に高く評価する傾向がみられる.現 場試験結果より任意の乾燥密度 ρ_d を取得した時,計算締固め曲線の最大乾燥密度 ρ_{dmax} で算出した締固め度 D_c は実測締固め曲線の最大乾燥密度 ρ_{dmax} により評価した締固め度 D_c よりも大幅に小さい値ということになる.すなわち,過小品質として評価されてしまうという課題がある.仮に礫を除去した場合には,過大評価ということになる.このため,Walker-Holtz による礫率補正式の高度化が課題の一つである.

図 2-14 Walker-Holtz による礫率補正をした計算締固め曲線と実測締固め曲線との比較

以上,従来の締固め管理手法である品質規定方式,工法規定方式における課題を解決し, 合理的な施工法による高品質な盛土を構築する新しい締固め管理手法が求められていること がわかる.

本研究では、地盤の剛性を評価する指標の一つであり、リアルタイムかつ面的な情報取得 が可能な加速度応答値(以下,CCV値)に着目し、CCV値による乾燥密度 pd、飽和度 Srの推 定について検討した.また、CCV値以外の地盤剛性指標に関しても、同様の検討を実施した. 一方、現場試験と室内試験との粒径特性の違いが品質評価に与える影響の解消については、 同一の土質に対して多種の最大粒径 Dmax での室内締固め試験を実施し、Walker-Holtz による 礫率補正式の妥当性を検証するとともに、さらなる推定精度の高度化に関する検討を実施し た.上記の二つの技術を組み合わせた新たな締固め管理手法を提案し、施工の合理的と盛土 構造物の高品質化を目指した.

2-4 CBR 値と乾燥密度 pd と飽和度 Sr の関係

盛土の締固め管理における品質試験の効率化について,現場 CBR 試験により得られる地盤 剛性指標である CBR 値は,同一の盛土材において,締固め機種と転圧回数 N に依らず,乾燥 密度 ρ_d と飽和度 S_r を変数とした関係式で表せることが龍岡らの研究により報告されている.

龍岡ら ^{11, 12, 13, 14}は, 旧建設機械化研究所で砂質ロームを用いて多様な締固め機械と異なる含水比 w で行われた実大締固め試験(1965~1990年)で得られたデータを解析し, 図 2-15(a)と 図 2-15(b) に示すように締固め時の飽和度 S_r と含水比 w をパラメータとした *CBR* 値と乾燥密度 ρ_d の関係を得ている. 図 2-15(a)を見ると, 飽和度 S_r が一定であれば, 乾燥密度 ρ_d の増加に伴い *CBR* 値は一貫して増加し, 乾燥密度 ρ_d が一定であれば, *CBR* 値は飽和度 S_r が減少すると増加している. 一方, 図 2-15(b)を見ると, 含水比 w が一定の時の乾燥密度 ρ_d と *CBR* 値の関係は, 大きくばらつくほか, それぞれの含水比 w において, 乾燥密度 ρ_d が増加に伴い *CBR* 値は低下する. なお, 乾燥密度 ρ_d が増加すると飽和度 S_r が増加するため, *CBR* 値に対する乾燥密度 ρ_d の 正の影響よりも飽和度 S_r の負の影響(飽和度 S_r が高くなりすぎる)が卓越するようになると *CBR* 値が低下するためであるとしている. 以上の結果は転圧回数 N= 8 回のデータであるが, 他の転圧回数 Nでも同様な結果を得ている.

これらの結果から、締固め土の乾燥密度 ρ_d と *CBR* 値の関係は含水比 w ではなく飽和度 S_rが 主要なパラメータであることがわかる. 龍岡ら⁹は、さらに、図 2-15(a)に示す転圧回数 N=8 回における *CBR* 値~乾燥密度 ρ_d 関係と他の転圧回数 N での同様な関係を解析して、*CBR* 値を 乾燥密度 ρ_d と締固め時の飽和度 S_rを独立変数とした変数分離式(2-6)を得ている.

 $CBR = f_{CBR}(S_r) \cdot (\rho_d / \rho_w - b)^c$ (2-7)

式(2-7)中の ρ_w は水の密度である. 図 2-15(a), (b)中に示す実線の曲線群は,それぞれ式(2-7)を用いて図化した等飽和度線と等含水比線である.また,式(2-7)の定数b,cは,それぞれb=0.4, c=9.5 としているが,これらの係数は土の種類によって異なる可能性がある.また,図2-15(c)に示すように,関数 $f_{CBR}(S_r)$ は飽和度 S_r の減少関数となる.これより,式(2-7)を用いることで,乾燥密度 ρ_d と飽和度 S_r からCBR値を推定できることが確認された.

地盤の剛性と乾燥密度 ρ_d および含水比 w との関係については、地盤の剛性は乾燥密度 ρ_d が 増加すると増加すること、また、乾燥密度 ρ_d が一定の条件下において、最適含水比 w_{opt} よりも 乾燥側にある時には締固め時の地盤の剛性が高く、湿潤側になると締固め時の地盤の剛性が低 くなるという一般的傾向があることが知られている.式(2-7)は、地盤剛性指標のひとつである *CBR* 値の場合について、上記の傾向を飽和度 S_r を介して具体的に示したものである.これに類 した関係が *CCV* 値を含めた各種の地盤剛性指標でも示すことができるかを同一条件で検討し た例は見当たらない.

そこで、第3章では、実大締固め試験を広い範囲の含水比wで実施し、CCV値を含めた各種

の地盤剛性指標を測定の上で比較を行い、これらの指標の類似性を検討した. さらに、*CBR* 値 と同様に、各地盤剛性指標と乾燥密度 ρ_d 、飽和度 S_r との関係式が成り立つかを検討し、このよ うな関係式に基づく締固め管理法を検討した.

(a) 締固め終了時の飽和度 S をパラメータとした関係

(b) 含水比wをパラメータとした関係

図2-15 旧建設機械化研究所での実大締固め試験で得られた CBR 値と乾燥密度 ρ_d , 含水比 w, 飽和度 S_rの関係^{11), 12), 13), 14)}

第2章の参考文献

- 1) Proctor, R.R. : Four Articles on the Design and Construction of Rolled Earth Dams, Engineering news Records, Vol.111, 1933.
- 2) 公益社団法人地盤工学会:突固めによる土の締固め試験方法,地盤材料試験の方法と 解説-二分冊の1-, pp.373~383, 2009.
- 3) 道路土工指針
- 4) 酒井重工業: SV513D 製品紹介, 土用振動ローラ製品カタログ.
- 5) 公益社団法人地盤工学会:土の締固め,地盤工学・実務シリーズ 30, pp.22~27, 2012.
- 6) Walker, F. C. and Holtz, W.C. : Control of Embankment Material by Laboratory Testing. Proc. ASCE, 77-108, pp.1-25, 1951.
- Holtz, W. G. and Lowitz. : Compaction characteristics of gravelly soils. Bureau of Reclamation, Earth laboratory report, No. EM-509, 1957.
- 8) 公益社団法人地盤工学会:突き砂法による土の密度試験,地盤調査の方法と解説―二 分冊の2―, pp.787, 2013.
- 国土交通省: TS・GNSS を用いた盛土の締固め管理要領,国土交通省ホームページ, 2020.
- 10) 国土交通省: TS・GNSS を用いた盛土の締固め管理要領【施工者用】, 近畿地方整備局 ホームページ, 2014.
- Tatsuoka, F. : Compaction characteristics and physical properties of controlled the degree of saturation, Keynote Lecture, Proc. of 15th Pan-American Conf. on SMGE and 6th Int. Conf. on Deformation Characteristics of Geomaterials, Buenos Aires, pp.40-76, 2015.
- 12) 龍岡文夫ら: 地盤工学・技術ノート, 盛土の締固め1~20回, 雑誌「基礎工」, 2013年 7月号~2015年2月号.
- 13) 龍岡文夫: 土の締固めにおける飽和度管理の重要性,雑誌ダム技術, No.354,3,3-16 頁, 2016.
- 14) 龍岡文夫: 飽和度と剛性に管理に基づく盛土締固めの合理化について、地盤工学会誌、
 11,12月号,67-11/112(742/743),pp.30-33,2019
- 1 5) Nagai, H., Sandambata, I., Hyodo, T., Kikuchi, Y. and Tatsuoka, F. : Soil compaction control for different soil types and energy levels based on the saturation degree, KGS & JGS Joint Workshop, 2018.
- 16) 国土交通省:ICT 施工の実施状況,国土交通省ホームページ,2020.
- 17) 東日本高速道路株式会社,中日本高速道路株式会社,西日本高速道路株式会社:ローラ 加速度応答法を用いた盛土の品質管理(案),土工施工管理要領,pp.参-127,2017.
- 18) 公益社団法人地盤工学会:土の締固め,地盤工学・実務シリーズ 30, pp.103~104, 2012.
- 19) 横田聖哉,吉田武男,藤井弘章,内山恵一:振動ローラ加速度を利用した締固め管理の 検討ー大規模土工における情報化施工に関する研究(3)-,第37回地盤工学研究発表 会,pp.664-665,2002
第3章 地盤剛性指標を用いた盛土品質の即時推定

手法による施工の合理化

第2章では、従来の盛土の締固め管理における品質管理に関する二つの課題を示した.本章 においては、盛土の品質測定手法の即時性の課題に着目し、実大土槽ピットでの転圧試験を実施し、地盤剛性指標による乾燥密度 ρ_dや飽和度 S_rの関係式を構築するとともに、関係式を用い た具体的な締固め管理手法の実施工における適用性について検討した.

3-1 概要

盛土の締固め管理における品質評価手法の即時性を確保することを目的とし、大型土槽ピット内で含水比wを変化させた砂質土層を用いた実大締固め機械による転圧試験を実施した.

本研究に使用した盛土材料は,造成工事で最も用いられることの多い砂質土とした.ただし, 最大粒径 D_{max}は9.5mm であり,実工事に用いられる土質に比べて小粒径が主体の材料である. 実大締固め機械は,現場施工において最も適用事例の多い 12t 級の土工用振動ローラとした. 大型土槽ピットは,長さ20m,幅3m,深さ95cmのコンクリート製ピットであり,基盤層10cm×5 層(CBR 値の目標値:60%以上)の上に,複数の含水比条件に調整した試験層30cm(1層)を 設けて転圧試験を実施した.試験後には、レベル測量による沈下量の測定,砂置換による上層 10cm での密度測定,現場 CBR 試験¹⁾,小型 FWD 試験²⁾とキャスポル試験(簡易支持力計)³⁾ による地盤剛性指標の測定, CCV システムによる地盤剛性指標の一つである CCV 値の測定⁴⁾ を実施し,これらの結果を解析した.

まず,各試験結果と転圧回数 N との関係を確認した上で,地盤剛性指標同士(現場 CBR 試験,小型 FWD 試験,キャスポル試験,CCV システム)の相関性について検証した.その結果,各地盤剛性指標はいずれも一定のばらつきはあるものの相関性の高い結果を得ることができた.これより,地盤剛性指標のいずれか一つの値を取得できれば,その他の指標を推定できる可能性が示唆された.

次に、地盤剛性指標と乾燥密度 ρ_d や飽和度 S_r の関係式について検討した。地盤剛性指標は、 乾燥密度 ρ_d が増加するほど増加傾向を示し、飽和度 S_r が低くなるほどその傾向は顕著となる。 この関係性に着目し、飽和度 S_r をパラメータとした地盤剛性指標と乾燥密度 ρ_d の関係式を構築 した。従来の締固め管理では、砂置換により乾燥密度 ρ_d 、飽和度 S_r を取得してきたが、小型 FWD 試験、キャスポル試験は砂置換と比較して測定手法が簡易であり、短時間で結果を取得す ることができる。さらに、CCV システムは、リアルタイムかつ面的な測定が可能であるため、 本章の目的である品質測定手法の即時性を確保するのに適した手法であるといえる。すなわち 本章に示すいずれの地盤剛性指標の測定手法は、従来の砂置換よりも効率的に乾燥密度 ρ_d 、飽 和度 Sr を推定できる.

ここで、地盤剛性指標同士の相関性が高いことに着目し、仮に現場 CBR 試験、小型 FWD 試験、キャスポル試験の結果を介して推定した CCV システムの地盤剛性指標とその実測値との 関係についても検証した.その結果、いずれも推定値と実測値との間にやや乖離があることが わかった.これより、地盤剛性指標から乾燥密度 ρ_d 、飽和度 S_r を精度良く推定するためには、 各地盤剛性指標から直接的に関係式を構築した方が良いことがわかった.

最後に、関係式を用いた地盤剛性指標による具体的な締固め管理手法について検証した.従来の締固め管理において、飽和度 S_r の上下限値を設定することの重要性については第2章に示した通りであるが、関係式を用いて構築した地盤剛性指標、乾燥密度 ρ_d の空間上において乾燥密度 ρ_d 、締固め度 D_c と飽和度 S_r の管理値を設定することで、地盤剛性指標と乾燥密度 ρ_d の取りうる範囲を示すことができる.これにより、目標とする地盤剛性指標を目指した施工を行うことにより、乾燥密度 ρ_d 、飽和度 S_r により規定された品質管理を行うことができることを示した.

3-2 小粒形の盛土材料を対象とした屋外土槽ピット試験による検討

盛土の締固め管理における品質評価手法の即時性を確保することを目的とし、大型土槽ピット内で含水比 w を変化させた砂質土層を用いた実大締固め機械による転圧試験を実施した. 実験条件および試験結果を以下に示す.

3-2-1 実験条件

本試験で使用した砂質土の物性値, 粒度分布, 締固め曲線(JISA1210) ⁵をそれぞれ表 3-1, 図 3-1, 図 3-2 に示す.

図 3-3 は、本研究と同様に、大型土層ピット、砂質土、起振力 Low(起振力:172kN,振動数:33.3Hz)条件の13t級振動ローラを用いた既往の実大試験(撒き出し厚 30cm)で得られた転圧回数 N が 12 回での締固め曲線と、本研究の含水比条件を併記したものである.図 3-3 に示す乾燥密度 pd と含水比 w は、表層 10cm での測定値であり、振動ローラ転圧回数 N が 12 回による締固め曲線での最適含水比 wopt(以下(wopt)N=12=11.2%)を挟んで変化させた4 種類の含水比(w1=8.9%, w2=9.8%, w3=10.8%, w4=11.8%)を設定した.なお、図 3-2 に示す室内締固め試験による 1.0Ec と修正プロクター(4.5Ec)の締固め曲線を基準にすると、図 3-3 に示す締固め曲線の最大乾燥密度 pdmax 状態での締固め度はそれぞれ(Dc)1Ec=106%と(Dc)4.5Ec=94%になる.

試験項目	実測値
土粒子密度 $\rho_{\rm s}({\rm g/cm^3})$	2.779
最大粒径 D _{max} (mm)	9.5
細粒分含有率 F _c (%)	42.6
最大乾燥密度 $ ho_{dmax}$ (g/cm ³)	2.120
最適含水比 wopt (%)	9.50
地盤材料の工学的分類	細粒分質砂(SF)

表 3-1 物性值一覧

図 3-3 振動ローラによる締固め曲線(既往の実大実験)と含水比条件

3-2-2 試験ヤード, 重機, 品質試験の設定

転圧試験に使用したコンクリート製ピットを図 3-4 に示す. コンクリート製ピットの寸法 は、長さ 20m、幅 3m、深さ 95cm である. 転圧試験は、10cm×5 層(*CBR* 値の目標値:60% 以上)で締固めた層を基盤層として、その上に、図 3-3 に示した各含水比wに調整した砂質 土を 30cm 撒き出しで 1 層作製して行った.転圧試験は合計で 4 回実施した.各回の試験で は、試験層は同じ試料を再攪拌により含水比調整して作製し、基盤層は掘り返すことなく同 じものを 4 回とも用いた.品質試験を実施する試験区間は、図 3-4 に示すようにピット底面 長と同じ 15m 区間内で実施した.土の敷均しには、土槽に備え付けの敷均し機(ピットスタ ビライザ)を用いた.

転圧試験に使用した重機は、盛土工事に比較的広く利用されている 13t 級振動ローラ(酒 井重工業製 SV620D)とした.この振動ローラは、図 3-3 に示した既往の実大実験でも用い られている.表 3-2 には、振動ローラの仕様を示す.転圧実験では、振動ローラの起振力は Low の設定で行った.これは、実工事で適用されている実績が最も多いためである.

品質試験項目を表 3-3 に示す.表 3-3 より,品質試験項目は,施工中は CCV システムに よる地盤剛性指標の一つである CCV 値の測定,施工後はレベル測量による沈下量の測定,砂 置換法による上層 10cm での密度測定,現場 CBR 試験,小型 FWD 試験とキャスポル試験(簡 易支持力計)による地盤剛性指標の測定を行った.その結果に基づいて,各試験結果と転圧 回数 N との関係,地盤剛性指標同士の相関性を検討した.なお,表 3-3 に示す品質試験の品 質試験測定位置,品質試験頻度を図 3-5,表 3-4 に示す.

図 3-5 品質試験の測定位置

名称		SV620D					
重量		t	12.610				
電源容量		V	24				
起振力(Low/High)		kN	172/255				
振動数(Low/High)		Hz	33.3/28.3				
走行速度(Low/High) km/		km/h	0-6/0-10				
土槽試験中の走行速度		km/h	2.0				
	全長	m	5.840				
寸法	全幅	m	2.295				
	全高	m	2.835				
	ロール幅	m	2.130				
写真	SV620D						

表 3-2 振動ローラの仕様

分類	種別	測定状況	概要				
沈下量	レベル測量		締固めによる地盤表面沈下量を測 定				
密度・含水比	砂置換		直径 100mm×高さ 100mm の締固め 土を密度が既知の珪砂に置き換え, その比重により締固め土の密度等 を測定(主に表層 10cm で測定)				
地盤反力係数	小型 FWD 試験		締固め後の地盤を対象とし,東京 測器研究所製 FWD-100A を用いて 地盤反力係数を測定				
	キャスポル試験		締固め後の地盤で,㈱マルイ製簡易 支持力測定器キャスポルを使用し, 地盤反力係数を測定				
	現場 CBR 試験		締固め後の地盤で,ロードセルを貫 入させるのに必要な荷重を測定し, 支持力特性を測定				
	CCV システム (加速度応答法)		振動ローラに取り付けた GPS と加 速度計によって,振動ローラの位 置情報と振動加速度波形を測定 し,地盤の剛性を測定				

表 3-3 品質試験方法

表 3-4 品質試験頻度(Oは測定実施を意味する)

測定名称	測定項目	敷均	予備	測定転圧回数						
				0	2	4	6	8	12	16
速度メータ	車速				0	0	0	0	0	0
レベル測量	沈下量	0	0	0	0	0	0	0	0	0
砂置換法	乾燥密度 ρ _d 含水比 w 飽和度 S _r	_	0	0	0	0	0	0	0	0
現場 CBR 試験	CBR 值	_		0	0	0	0	0	0	0
小型 FWD 試験	$(K_{30})_{\rm FWD}$	_		0	0	0	0	0	0	0
キャスポル試験	(K30)キャスポル	_		0	0	0	0	0	0	0
CCV システム	CCV 值	_	_	_	0	0	0	0	0	0

3-2-3 地盤剛性指標

地盤剛性指標のうち,現場 CBR 試験は従来から実際の盛土の締固め管理で用いられてい て、データが豊富である.また、第2章で示したように、現場 CBR 試験と乾燥密度 ρ_d 、飽和 度 S_r との間には関係式が成立することが龍岡ら^のの研究により明らかとなった.そこで、本 研究では、小型 FWD 試験、キャスポル試験および CCV システムの測定結果と現場 CBR 試 験との相関を確認することで、関係式の適用性を検討した.ここで、各試験方法の概要を以 下に示す. CCV システムの概要に関しては、第2章に示したため、ここでは省略する.

現場 CBR 試験(Calfornia Bearing Ratio)では,貫入ピストンを 0.1mm/min の速さで地盤の 中に貫入させ,最大 12.5mm の貫入量に到達するまでの荷重を計測し,標準荷重と比較して 相対的な強さを CBR 値として算出する試験である. CBR 値は,貫入量 2.5mm における載荷 を標準荷重で除した値を百分率で標記した指標¹⁾である. CBR 値の算出式を式(3-1)に示す.

ここに、q:所定の貫入量における載荷圧力(MN/m^2)、 q_0 :所定の貫入量における標準載荷圧力(MN/m^2)とする.

$$CBR = \frac{q}{q_0} \times 100 \tag{3-1}$$

小型 FWD 試験 (FWD-Light) では、直径 10cm の載荷板上に重錐を自由落下させて衝撃荷 重を加え、これにより生じた荷重中心位置での変位量を測定して、地盤反力係数 (*KP.FWD*, kN/m^3) を得た²). この係数から変形係数 $E(kN/m^2)$ を得て、経験式によって *CBR* 値や一軸 圧縮強度 $q_u(kN/m^2)$ などに換算することができる.また、*KP.FWD* は、載荷板の直径が 30cm の平板載荷試験より得られる K_{30} と相関性が高く、地盤材料が砂質土の場合は、*KP.FWD* か ら式(3-2)によって K_{30} を推定することが行われている²).本研究では、測定した *KP.FWD* を 式(3-2)に代入し、算出した K_{30} を(K_{30})FWD と定義する.

 $(K_{30})_{\rm FWD} = \frac{1.0}{1.5} \times (KP.\,FWD) \tag{3-2}$

キャスポル試験は、4.5kgのランマーを盛土面に落下させ、衝撃加速度法によるインパクト値(以下、 I_a 値,無次元量)を得て、この値から締固め状態を調べる測定器である³⁾. I_a 値は、平板載荷試験による K_{30} と相関性が高く、式(3-3)によって I_a 値から K_{30} の値に推定する³⁾.本研究では、測定された I_a 値を式(3-3)によって換算した K_{30} を(K_{30})_{キャスポル}と定義した.

$$(K_{30})_{\neq \gamma \land \vec{\pi} \land \nu} = -37.58 + 8.554I_a \tag{3-3}$$

小型 FWD 試験とキャスポル試験による測定は、現場 CBR 試験に比べて測定方法が簡易で 結果出力までの時間は迅速であるが、施工完了後の転圧面で限定された箇所でしか実施でき ないという点では同様である.

3-3 実験結果および考察

転圧試験で得られた全ての計測データを整理し、各試験結果と転圧回数 N の関係、地盤剛性 指標同士の相関性および測定結果と締固め曲線との関係について検証する.

3-3-1 試験値と転圧回数 N の関係

各試験結果(沈下量,含水比w,乾燥密度ρd,飽和度Sr,CBR 値,(K30)FWD,(K30)キャスボル, CCV 値)と転圧回数Nとの関係および標準誤差をそれぞれ図 3-6(a)~(h)に示す.

図 3-6(a)は沈下量と転圧回数 N の関係を示したものである.沈下量はいずれの施工含水 比条件においても転圧回数 N の増加とともに増加し、含水比 w が最適含水比(wopt)N=12 に近い ほど大きくなった.

図 3-6(b) は含水比 w と転圧回数 N の関係を示したものである. 各試験での転圧によって 含水比 w の測定結果にはある程度ばらつきはあるものの,ほぼ一定であった.

図 3-6(c) は乾燥密度 ρ_d と転圧回数 Nの関係を示したものである。この乾燥密度 ρ_d はすでに述べたように表層 10cm の部分のものである. 初期含水比 w が低いほど転圧回数 Nの増加に伴う乾燥密度 ρ_d の増加率が小さく,最終的な乾燥密度 ρ_d が小さいことが特徴的である.

図 3-6 (d) は測定された含水比 w と乾燥密度 ρ_d から求めた飽和度 S_r と転圧回数 N の関係 を示した.含水比 w は締固め中に一定であったため、乾燥密度 ρ_d と飽和度 S_r は同じ傾向の 変化を示し、転圧回数 N の増加とともに一貫して増加し、転圧回数 N が 6 回以降は増加率が 小さくなった。なお、含水比 w_3 、 w_4 は、転圧回数 N が 4~6 回で最適飽和度 S_{ropt} を上回るこ とがわかった.

図 3-6 (e) は小型 FWD 試験による地盤剛性指標である地盤反力係数(K_{30})FWD と転圧回数 Nの関係を示したものである. (K_{30})FWD は、低い含水比 w_1 , w_2 では、転圧回数 Nの増加による増加率が大きく一貫して大きな値を示している. 一方、高い含水比 w_3 では転圧回数 N が 12 回以降、含水比 w_4 では転圧回数 N が 4 回以降は(K_{30})FWD が一定、もしくは減少する傾向を示し、含水比 w が低い時よりも低い値となっている.

図 3-6 (f) はキャスポル試験による地盤剛性指標である地盤反力係数(K₃₀)キャスポルと転圧 回数 N の関係を示したものである.(K₃₀)キャスポルも,低い含水比 w₁, w₂ では転圧回数 N の増 加による増加率が最も大きく一貫して大きな値を示している.一方,高い含水比 w₄ では転圧 回数 N が 4 回以降は(K₃₀)キャスポルが一定もしくは減少する傾向を示し,全般的に低い値となっ ている.

図 3-6 (g) は現場 CBR 試験による CBR 値と転圧回数 N の関係を示したものである. CBR 値も,低い含水比 w₁, w₂ では,転圧回数 N の増加による増加率が高く一貫して大きな値を示している.一方,高い含水比 w₃ では転圧回数 N が 12 回以降,含水比 w₄ では転圧回数 N が 2 回以降は CBR 値が一定,もしくは減少する傾向を示し,全般的に低い値となっている.

図 3-6 (h) は CCV システムによる CCV 値と転圧回数 Nの関係を示したものである. CCV

値も、含水比wが低いほど転圧回数Nの増加とともにより大きく増加し、全般的に高い値となっている。含水比w₁では転圧回数Nが6回以降、含水比w₂では転圧回数Nが12回以降にCCV値は急激に増加する。一方、含水比wが高くなるほど転圧回数Nの増加に伴うCCV値の増加が明確ではなくなり、含水比w₃、w₄では、転圧回数Nが6~8回以前(締固め初期)ではCCV値の増加量がある程度認められるが、転圧回数Nが6~8回以降(締固め後期)では微増であり、全般的に低い値となっている。

なお、各試験結果の標準誤差をみると、湿潤密度 ρ_t 、含水比w、乾燥密度 ρ_d 、飽和度 S_r はいずれも試験条件に依らずばらつきの小さい結果となった.一方、地盤剛性指標は、いずれも乾燥側(すなわち飽和度が低い時)になるほどばらつきが大きく、湿潤側(すなわち飽和度が高い時)になるほどばらつきは小さいことが確認された.

3-3-2 地盤剛性指標と乾燥密度 pd, 飽和度 Sr の関係

図 3-7(a) ~(d) は、含水比条件($w_1 \sim w_4$)毎に分類したそれぞれ *CBR* 値、(K_{30})_{FWD}、(K_{30})_キ _{キスポル}、*CCV* 値と乾燥密度 ρ_d との関係を示す.

図 3-7 より,地盤剛性指標は,乾燥密度 ρ_d の増加に伴い全体的に増加する傾向を示すが, その傾向は含水比条件により異なる.例えば,最も乾燥側の含水比 w_1 では,乾燥密度 ρ_d の 増加に伴い各地盤剛性指標は一貫して増加し,増加量は全含水比条件の中で最大を示す.含 水比 wが増加するにつれて増加量は徐々に低下し,最も湿潤側の含水比 w_4 では増加量が最 小を示し,乾燥密度 ρ_d が増加すると各地盤剛性指標の増加が停止する傾向となる.このよう に,地盤剛性指標はいずれも乾燥密度 ρ_d だけに支配されるのではなく,含水比 w(すなわち 飽和度 S_r)に複雑に影響される.このことはすなわち,各地盤剛性指標だけから乾燥密度 ρ_d の値を推定することはできないことを意味している.以上のことから,地盤剛性指による締 固め管理を実施する場合には、地盤剛性指標単体による管理ではなく,含水比 w あるいは飽 和度 S_r と組み合わせた管理が必要である.

3-3-3 地盤剛性指標の相関性

地盤剛性指標同士の相関性について検証する.まず,図3-8に示すように*CBR*値,(K_{30})_{FWD}, (K_{30})_{キャスポル}の相関性について確認した.図3-8をみると,*CBR*値と(K_{30})_{キャスポル}と(K_{30})_{FWD}, *CBR*値と(K_{30})_{キャスポル}は相互に高い相関を示した.これは,(K_{30})_{キャスポル}と(K_{30})_{FWD}も高い相関 を示すことを意味している.図3-8には,近似線も示すが,いずれの関係も線形で近似でき ることがわかる.これより,*CBR*値,(K_{30})_{キャスポル},(K_{30})_{FWD}の指標のうちのいずれか一つを 把握すれば,近似線を用いて他の二つの指標を推定することができる.

次に、*CCV* 値と *CBR* 値、(K_{30})_{キャスポル},(K_{30})_{FWD} との相関性について検証する.図 3-9 には、*CBR* 値、(K_{30})_{キャスポル},(K_{30})_{FWD} を基準とした *CCV* 値との相関を示す.図 3-9 より、いずれも非線形ではあるものの概ね正の相関を示した.ここで、*CCV* 値と *CBR* 値、(K_{30})_{キャス}_{ポル},(K_{30})_{FWD} の平均的な関係をそれぞれ式(3-4)~(3-6)、式(3-7)~(3-9)、式(3-10)~(3-11)で近似

した. *CBR* 値, (*K*₃₀)_{キャスボル}, (*K*₃₀)_{FWD} のいずれかを取得し, それぞれ式(3-4)~式(3-11)の近似 式を適用することで, *CCV* 値を概ね推定することができる.

・CBR 値を介して CCV 値を推定する近似式

CBR 値 $\leq 45\%$ の場合: $CCV = 0.400 \times CBR + 0.700$ (3-4)

45% < CBR 値 $\leq 50\%$ の場合: $CCV = 3.460 \times CBR - 137.0$ (3-5)

$$50\% < CBR$$
 値の場合: $CCV = 0.667 \times CBR + 2.667$ (3-6)

 $(K_{30})_{FWD} \le 780 MN/m^3 \mathcal{O}$ 場合: $CCV = 0.025 \times (K_{30})_{FWD} - 1.566$ (3-7) $780 MN/m^3 < (K_{30})_{FWD} \le 830 MN/m^3 \mathcal{O}$ 場合: $CCV = 0.344 \times (K_{30})_{FWD} - 250.52$ (3-8)

830MN/m³ <
$$(K_{30})_{FWD}$$
 の場合: $CCV = 0.173 \times (K_{30})_{FWD} - 108.87$ (3-9)

・ $((K_{30})_{+,\tau,\chi_{HL}}$ を介して CCV 値を推定する近似式 (K_{20})、 、 、 、 < < 210 MN/m³ の 提合 : CCV = 0.105 × (K_{20}) 、 、 、 、 、 = 6.131

$$(K_{30})_{**\pi\pi\pi} \leq 210$$
MN/m³ の場合: $CCV = 0.105 \times (K_{30})_{*\pi\pi\pi\pi} - 6.131$ (3-10)

$$210MN/m^{3} < (K_{30})_{+\nu,\lambda,\ell\nu} \le 215MN/m^{3}$$
()場合: CCV = 4.200 × (K_{30})_{+\nu,\lambda,\ell\nu} - 866.0
(3-11)

3-3-4 締固め試験での締固め状態

図 3-10 に、室内締固め試験による 1.0*Ec* と 4.5*Ec* での締固め曲線と実大締固め試験結果を示 す.図 3-10 には、含水比条件毎の転圧回数 *N* が 2~16 回までの締固め状態をプロットしてお り、いずれも転圧回数 *N* の増加に伴い乾燥密度 ρ_d が増加する傾向を示している.なお、実大締 固め試験の乾燥密度 ρ_d 、含水比 *w* は、いずれも表層 10cm を対象に実施した砂置換の試験結果 である.締固め時の乾燥密度 ρ_d は深さ方向に変化することが知られているが、表層に近いとこ ろの試料について調べて室内締固め試験と対比したものである. 図 3-10 に、同一の転圧回数 N での測定値の平均値を点線でつないで示している.図 3-10 を みると、転圧回数 N が 2 回の時は、1.0Ec の締固め曲線とほぼ一致しているが、転圧回数 N が 増えるにつれて湿潤側の乾燥密度 pd が急激に増加するのに対し、乾燥側の乾燥密度 pd の増加 が少ないため、同一締固めエネルギーCEL で締固めをしている室内締固め曲線の形状とは少し 異なる形となっている.その原因として、試料のばらつき、室内締固め試験と転圧試験での締 固めメカニズムの相違等が考えられるが、詳細は不明である.

図 3-10 同一転圧回数 N(締固めエネルギーCEL)の締固め曲線

3-4 盛土品質の即時推定手法の検討

地盤剛性指標(*CBR* 値, (*K*₃₀)_{FWD}, (*K*₃₀) キャスボル, *CCV* 値)と乾燥密度 ρ_d, 飽和度 *S*_r, 含水比 *w* との関係式について検討した.また,前項に示した *CBR* 値, (*K*₃₀)_{FWD}, (*K*₃₀) キャスボルと *CCV* 値 との近似式(式(3-4)~式(3-12))と各地盤剛性指標の関係式を組合わせることによる *CCV* 値の 推定精度についても検討した.

3-4-1 現場 CBR 試験による品質指標の推定式

締固め時の締固め状態を表すパラメータとして一般的には、乾燥密度 ρ_d と含水比wが用いられている. 乾燥密度 ρ_d は、土粒子比重 G_s 、間隙比e、水の密度 ρ_w によって式(3-13)のように表せる.また、含水比wは、土粒子比重 G_s 、間隙比e、飽和度 S_r によって式(3-14)のように表せる.

$$\rho_d = \frac{G_s}{1+e} \rho_w \tag{3-13}$$

$$w = \frac{eS_r}{G_s} \tag{3-14}$$

このように、土の締固め状態は、間隙比 e と飽和度 Sr によっても表現できる.

第2章にも示した龍岡らの研究成果からもわかるように *CBR* 値と乾燥密度 ρ_d の関係は 含水比 w をパラメータにするよりも飽和度 S_r をパラメータにするほうがばらつきの少なく 法則性が明確な関係式を構築できる.このようなことから,飽和度 S_r と乾燥密度 ρ_d を二つ のパラメータとし,それぞれが変数分離の形で表せられるものとして,式(3-15)に示す関係式 を構築することにした.この考え方は,後で議論する(K_{30})_{FWD},(K_{30})_{キャスポル}, *CCV* 値に関し ても共通である.

 $CBR = f_{CBR}(S_r) \times (\rho_d/\rho_w - b)^C$ (3-15)

図 3-11 に、転圧試験で得られた *CBR* 値~乾燥密度 ρ_d との関係の全データを示す. 全デー タを飽和度 S_r で 10%ごとに分類し、それぞれを別の記号でプロットした. 図 3-11 をみると、 それぞれの分類した飽和度 S_r において *CBR* 値は乾燥密度 ρ_d の増加に伴って一貫して増加し ている. この傾向を表現する関係式として、式(3-15)の形式を設定する. この式のうち、関数 $f_{CBR}(S_r)$ 、定数 b、c は実験的に求められるパラメータである. これらのパラメータは以下の ような手続きで決定した.

まず,飽和度 S_r の範囲として 10%毎にデータを分類し,関数 $f_{CBR}(S_r)$ の変化が少ないと思われるそれぞれの範囲の飽和度 S_r のデータごとに最適な定数 b, c の組み合わせを求めた. それらの定数 b, c に対してそれぞれのパラメータごとに各飽和度範囲での値の算術平均を もって仮の定数 b, c を決め、それらを用いて個々のデータの関数 $f_{CBR}(S_r)$ と飽和度 S_r の関係 を求めた.その結果を図 3-12 に示すが、データを見ると、飽和度 S_r の値によるプロットの 平均的関係からの偏りは見られないことから、この関係を定式化したのが、式(3-16)である. さらに、式(3-15)に式(3-16)を代入し、式(3-17)を得た.

式(3-17)において、従属変数 *CBR* 値の独立変数は乾燥密度 ρ_d と飽和度 *S*_r であり、この関係 は転圧回数 *N* や締固めエネルギー*CEL* には寄らない関係である.式(3-17)は乾燥密度 ρ_d と飽和度 *S*_r から *CBR* 値を決定する式の形となっているが、三つの変数のうち二つの変数の値が わかれば他の変数の値を決定できるので、例えば、*CBR* 値と飽和度 *S*_r から乾燥密度 ρ_d を推定することも可能である.また、飽和度 *S*_r は式(3-18)にように表せるため、*CBR* 値と含水比 *w* から飽和度 *S*_r と乾燥密度 ρ_d を推定することも可能な式であるといえる.

このように,式(3-17)を用いることで,施工後に測定した *CBR* 値と含水比 w から乾燥密度 *p*_d や飽和度 *S*_rを推定可能である.

$$f_{CBR}(S_r) = \frac{5.70}{\{1 + exp(0.037S_r)\}}$$
(3-16)

$$CBR = \left[\frac{5.70}{\{1 + exp(0.037S_r)\}}\right] (\rho_d / \rho_w - 0.4)^{9.5}$$
(3-17)

$$S_r = \frac{G_s}{\frac{G_s \rho_W}{\rho_d} - 1} W$$
(3-18)

図 3-11 本研究で得られた飽和度 Srをパラメータとした CBR 値と乾燥密度 paの関係

図 3-12 関数 f_{CBR}(S_r)~ 飽和度 S_r関係

3-4-2 小型 FWD 試験による品質指標の推定式

飽和度 S_r と乾燥密度 ρ_d を二つのパラメータとし、それぞれが変数分離の形で表せられる ものとして、式(3-19)に示す関係式を構築することにした.

$$(K_{30})_{FWD} = f_{FWD}(S_r) \times (\rho_d/\rho_w - b)^C$$
(3-19)

図 3-13 に、転圧試験で得られた(K_{30})_{FWD}~乾燥密度 ρ_d 関係の全データを示す. 全データを 飽和度 S_r で 10%ごとに分類し、それぞれを別の記号でプロットした. 図 3-13 をみると、そ れぞれの分類した飽和度 S_r において(K_{30})_{FWD}は乾燥密度 ρ_d の増加に伴って一貫して増加して いる. この傾向を表現する関係式として、式(3-19)の形式を設定する. この式のうち、関数 $f_{FWD}(S_r)$ 、定数 b、c は実験的に求められるパラメータである. これらのパラメータは以下の ような手続きで決定した.

まず,飽和度 S_rの範囲として 10%毎にデータを分類し,関数 $f_{FWD}(S_r)$ の変化が少ないと思われるそれぞれの範囲の飽和度 S_rのデータごとに最適な定数 b, c の組み合わせを求めた. それらの定数 b, c に対してそれぞれのパラメータごとに各飽和度範囲での値の算術平均を もって仮の定数 b, c を決め,それらを用いて個々のデータの関数 $f_{FWD}(S_r)$ と飽和度 S_rの関 係を求めた.その結果を図 3-14 に示すが,データを見ると,飽和度 S_rの値によるプロット の平均的関係からの偏りは見られないことから,この関係を定式化したのが,式(3-20)である. さらに,式(3-19)に式(3-20)を代入し,式(3-21)を得た.

式(3-17)において、従属変数(K_{30})FWDの独立変数は乾燥密度 ρ_d と飽和度 S_r であり、この関係

は転圧回数 N や締固めエネルギー*CEL* には寄らない関係である.式(3-21)は乾燥密度 ρ_d と飽 和度 S_r から(K_{30})_{FWD} を決定する式の形となっているが、三つの変数のうち二つの値がわかれ ば他の変数の値を決定できるので、例えば、(K_{30})_{FWD} と飽和度 S_r から乾燥密度 ρ_d を推定する ことも可能である.また、飽和度 S_r は式(3-18)にように表せるため、(K_{30})_{FWD} と含水比 w から 飽和度 S_r と乾燥密度 ρ_d を推定することも可能な式であるといえる.

このように、式(3-21)を用いることで、施工後に測定した(K_{30})FWD と含水比 w から乾燥密度 ρ_d や飽和度 S_r を推定可能である.小型 FWD 試験は、従来の砂置換と比較すると、転圧施工 が完了したタイミングで実施するという点は共通しているものの、試験方法が簡易で短時間 で試験結果を取得できるという部分で品質試験の効率化が期待される手法である.

$$f_{FWD}(S_r) = \frac{115.3}{\{1 + exp(0.038S_r)\}}$$
(3-20)

$$(K_{30})_{FWD} = \left[\frac{115.3}{\{1 + exp(0.038S_r)\}}\right] (\rho_d / \rho_w - 0.4)^{9.5}$$
(3-21)

図 3-14 関数 f_{FWD}(S_r)~ 飽和度 S_r関係

3-4-3 キャスポル試験による品質指標の推定式

飽和度 Sr と乾燥密度 pd を二つのパラメータとし、それぞれが変数分離の形で表せられる ものとして、式(3-22)に示す関係式を構築することにした.

図 3-15 に、転圧試験で得られた(K_{30})キャスポル~乾燥密度 p_d 関係の全データを示す. 全デー タを飽和度 S_rで 10%ごとに分類し、それぞれを別の記号でプロットした. 図 3-15 をみると、 それぞれの分類した飽和度 S_r において(K_{30})キャスポルは乾燥密度 p_d の増加に伴って一貫して増 加している. この傾向を表現する関係式として、式(3-22)の形式を設定する. この式のうち、 関数 $f_{+ャスポル}(S_r)$ 、定数 b、c は実験的に求められるパラメータである. これらのパラメータ は以下のような手続きで決定した.

まず,飽和度 S_rの範囲として 10%毎にデータを分類し,関数 $f_{++,Z,K,L}(S_r)$ の変化が少ない と思われるそれぞれの範囲の飽和度 S_rのデータごとに最適な定数 b, c の組み合わせを求め た.それらの定数 b, c に対してそれぞれのパラメータごとに各飽和度範囲での値の算術平均 をもって仮の定数 b, c を決め,それらを用いて個々のデータの関数 $f_{++,Z,K,L}(S_r)$ と飽和度 S_r の関係を求めた.その結果を図 3-16 に示すが,データを見ると,飽和度 S_rの値によるプロ ットの平均的関係からの偏りは見られないことから,この関係を定式化したのが,式(3-23)で ある.さらに,式(3-22)に式(3-23)を代入し,式(3-24)を得た.

式(3-24)において、従属変数(K30)キャスポルの独立変数は乾燥密度 pd と飽和度 Sr であり、この

関係は転圧回数 N や締固めエネルギーレベル CEL には寄らない関係である.式(3-24)は乾燥 密度 ρ_d と飽和度 S_r から(K_{30})_{キャスポル}を決定する式の形となっているが,三つの変数のうち二つ の変数の値がわかれば他の変数の値を決定できるので,例えば,(K_{30})_{キャスポル}と飽和度 S_r から 乾燥密度 ρ_d を推定することも可能である.また,飽和度 S_r は式(3-18)にように表せるため,(K_{30})_{キャスポル}と含水比 w から飽和度 S_r と乾燥密度 ρ_d を推定することも可能な式であるといえる.

このように、式(3-24)を用いることで、施工後に測定した(K_{30})キャスポルと含水比 w から乾燥 密度 ρ_d や飽和度 S_r を推定可能である.キャスポル試験は、小型 FWD 試験と同様に、従来の 砂置換と比較すると、転圧施工が完了したタイミングで実施するという点は共通しているも のの、試験方法が簡易で短時間で試験結果を取得できるという部分で品質試験の効率化が期 待される手法である.

$$f_{\# \neq \pi \not\subset \pi^{2} \not\downarrow}(S_{r}) = \frac{38.6}{\{1 + exp(0.039S_{r})\}}$$
(3-23)

$$(K_{30})_{\# \neq \forall \not\subset \vec{\mathcal{M}} \not\sim \mathcal{V}} = \left[\frac{38.6}{\{1 + exp(0.039S_r)\}}\right] (\rho_d / \rho_w - 0.4)^{9.5}$$
(3-24)

図 3-15 (K30)キャスポルと乾燥密度 pdの関係

図 3-16 関数 f +ャスポル(Sr)~飽和度 Sr 関係

3-4-4 CCV システムによる品質指標の推定式

飽和度 S_r と乾燥密度 ρ_d を二つのパラメータとし、それぞれが変数分離の形で表せられる ものとして、式(3-25)に示す関係式を構築することにした.

 $CCV = f_{CCV}(S_r) \times (\rho_d/\rho_w - b)^C$ (3-25)

図 3-17 に、転圧試験で得られた CCV 値~乾燥密度 ρ_d 関係の全データを示す. 全データを 飽和度 S_rで 10%ごとに分類し、それぞれを別の記号でプロットした. 図 3-17 をみると、そ れぞれの分類した飽和度 S_rにおいて CCV 値は乾燥密度 ρ_dの増加に伴って一貫して増加して いる. この傾向を表現する関係式として、式(3-25)の形式を設定する. この式のうち、関数 fccv(S_r)、定数 b, c は実験的に求められるパラメータである. これらのパラメータは以下のよ うな手続きで決定した.

まず, 飽和度 S_rの範囲として 10%毎にデータを分類し, 関数 f_{ccv}(S_r)の変化が少ないと思わ れるそれぞれの範囲の飽和度 S_rのデータごとに最適な定数 b, c の組み合わせを求めた. そ れらの定数 b, c に対してそれぞれのパラメータごとに各飽和度範囲での値の算術平均をも って仮の定数 b, c を決め, それらを用いて個々のデータの関数 f_{ccv}(S_r)飽和度 S_rの関係を求 めた. その結果を図 3-18 に示すが, データを見ると, 飽和度 S_rの値によるプロットの平均 的関係からの偏りは見られないことから, この関係を定式化したのが, 式(3-26)である. さら に, 式(3-25)に式(3-26)を代入し, 式(3-27)を得た. 式(3-27)において、従属変数 CCV 値の独立変数は乾燥密度 ρ_d と飽和度 S_r であり、この関係 は転圧回数 N や締固めエネルギーCEL には寄らない関係である.式(3-27)は乾燥密度 ρ_d と飽和度 S_r から CCV 値を決定する式の形となっているが、三つの変数のうち二つの変数の値が わかれば他の変数の値を決定できるので、例えば、CCV 値と飽和度 S_r から乾燥密度 ρ_d を推定することも可能である.また、飽和度 S_r は式(3-18)にように表せるため、CCV 値と含水比 w から飽和度 S_r と乾燥密度 ρ_d を推定することも可能な式であるといえる.

このように、式(3-27)を用いることで、施工後に測定した *CCV* 値と含水比 w から乾燥密度 ρ_d や飽和度 S_r を推定可能である. CCV システムは、施工中にリアルタイムかつ面的な測定が可能であるため、砂置換や現場 CBR 試験、小型 FWD 試験、キャスポル試験と比較すると施工の効率を大幅に向上することができる.

$$f_{CCV}(S_r) = \frac{560}{\{1 + exp(0.075S_r)\}}$$
(3-26)

$$CCV = \left[\frac{560}{\{1 + exp(0.075S_r)\}}\right] (\rho_d / \rho_w - 0.87)^{15.0}$$
(3-27)

図 3-18 関数 f_{CCV}(S_r)~ 飽和度 S_r関係

3-4-5 CBR 値, (K₃₀)_{FWD}, (K₃₀)_{キャスポル}による CCV 値の推定精度

図 3-9 に示したように、*CCV* 値と *CBR* 値、(K_{30})_{FWD},(K_{30})_{キャスポル}は、多少のばらつきはあるものの、非線形ではあるが正の相関関係を示しており、式(3-4)~式(3-12)のような近似式が成立する.これより、これらの近似式を用いて、*CBR* 値、(K_{30})_{FWD},(K_{30})_{キャスポル}を介して *CCV* 値と乾燥密度 ρ_d と飽和度 *S*_rの関係式を構築することを試みた.

ここで、実測の *CBR* 値、(*K*₃₀)_{FWD}、(*K*₃₀)_{キャスボル}をそれぞれ図 **3**-9 に示した式(3-4)~式(3-6)、 式(3-7)~式(3-9)、式(3-10)~式(3-12)に代入して *CCV* 値を求め、実測の乾燥密度 ρ_d に対して 実測の飽和度 *S*_r をパラメータとしてプロットしたのが図 **3**-19 である.また、それぞれの飽 和度 *S*_r の値における点線の関係は、所定の乾燥密度 ρ_d の値とその飽和度 *S*_r の値をそれぞれ 式(3-17)、式(3-21)、式(3-24)に代入して *CBR* 値、(*K*₃₀)_{FWD}、(*K*₃₀)_{キャスボル}を求め、それらを式(3-4)~式(3-6)、式(3-7)~式(3-9)、式(3-10)~式(3-12)にそれぞれ代入して *CCV* 値を求めて乾燥密 度 ρ_d との関係を得たものである.この結果を見ると、いずれも近似線(点線)は、ややいび つな形をしているほか、プロット点で示した *CCV* 値の推定値との間にやや乖離があること がわかる.

図 3-20 に、乾燥密度 ρ_d 、飽和度 S_r の実測値を式(3-17)、式(3-21)、式(3-24)、式(3-27)に代入して *CBR* 値、(K_{30})_{FWD}、(K_{30})_{F*マスポル}、*CCV* 値の推定値を算出し、*CBR* 値、(K_{30})_{FWD}、(K_{30})_{**マスポル}に関しては前述の式(3-4)~式(3-12)に代入して *CCV* 値を間接的に推定し、それらと *CCV* 値の実測値を比較した結果を示す。それぞれのグラフには、相関係数 R^2 を示すが、図 3-20 (d) からもわかるように、式(3-27)を用いて乾燥密度 ρ_d と飽和度 S_r の実測値から直接的に *CCV* 値 を推定した時に最も推定精度が高いことが確認された。ただし、*CCV* 値の実測値が 30 以上

の範囲における推定精度が低いことがわかる.これは、図 3-17、図 3-18 に示すように、CCV 値が高い範囲(すなわち飽和度 S_rが低い範囲)における関係式の測定精度が低いためである. 次に、CCV値以外の地盤剛性指標を介して推定した CCV値の結果をみると、CCV値の実測 値が 20~40 の範囲における推定精度が低いことがわかる.これは、図 3-9 からわかるよう に、CCV値が 20 から 40 になる範囲では、CBR 値、(K₃₀)FWD、(K₃₀)キャスポルの変化に対して CCV 値の変化が大きいためである.

以上より、*CCV* 値を乾燥密度 ρ_d と飽和度 S_r から精度良く推定するためには、乾燥密度 ρ_d と飽和度 S_r を変数とした *CBR* 値、(K_{30})_{FWD}、(K_{30})_{キャスポル}の関係式(3-17)、式(3-21)、式(3-24)と 近似式(3-4)~式(3-12)を介して推定するのではなく、*CCV* 値を乾燥密度 ρ_d と飽和度 S_r を変数 とした関係式(3-27)を用いて直接的に推定したほうが良いことがわかる.

(b) (K₃₀)FWD を介して推定した CCV 値

(c) (K₃₀)_{キャスポル}を介して推定した CCV 値
 図 3-19 CBR 値, (K₃₀)_{FWD}, (K₃₀)_{キャスポル}を介して推定した CCV 値と乾燥密度 ρ_dの関係

(b) (K₃₀)FWD を介して推定した CCV 値

(d) CCV 値の実測値と推定値図 3-20 地盤剛性指標を介して推定した CCV 値と実測値との関係

3-5 地盤剛性指標を活用した締固め管理

図 3-21 に示すように、従来の締固め度 D_c の許容下限値と盛土材の含水比 w の上下限値による管理に加え、締固め盛土の「最適飽和度 S_{ropt} を挟んだ一定の範囲での飽和度 S_r を実現する飽和度管理」が提案されている $^{(3,7),8),9),10}$. 締固め管理に飽和度 S_r を重視する理由は、土構造物の設計で参照する変形・強度特性と透水係数、浸水沈下量などの基本的な物性は、土質と乾燥密度 ρ_d (あるいは締固め度(D_c)_{1Ec})に加えて締固め時の飽和度 S_r の関数であることがわかったからである.また、これらの物性は浸水・湿潤によって変化する.特に、締固め時の飽和度 S_r が最適飽和度 S_{ropt} よりも低いほど、同一の締固めエネルギー*CEL*に対して乾燥密度 ρ_d は低下するが、締固めもの地盤剛性は高くなる傾向を示し、湿潤化・飽和化によって大きく低下する.このため、締固め時の飽和度 S_r の下限値制限が必要となる.また、飽和度 S_r が最適飽和度 S_{ropt} ときには、オーバーコンパクションを起こしやすくなることと、飽和度 S_r が最適飽和度 S_{ropt} となる。

これまでに求めた地盤剛性指標 (*CBR* 値, (*K*₃₀)_{FWD}, (*K*₃₀)_{キャスポル}, *CCV* 値) と乾燥密度 ρ_d , 飽和度 *S*_rの関係から, 図 3-22 に示すように,乾燥密度 ρ_d と対数で表記した地盤剛性指標を軸 にとると,上記の飽和度管理に基づいて,地盤剛性指標と乾燥密度 ρ_d の取りうる範囲をそれぞ れ図示することができる.式(3-18),式(3-22),式(3-25),式(3-28)からもわかるように,関数 *f*_{CBR}(*S*_r), *f*_{FWD}(*S*_r), *f*_{キャスポル}(*S*_r), *f*_{CCV}(*S*_r)は飽和度 *S*_rが増加するとともに低下するため, 図 3-22 では飽和 度 *S*_rが大きいほど相対的に地盤剛性指標が小さくなっている. 図 3-22 に、含水比 *w* の一定線 を書き込むと,上に凸な曲線として示すことができる.また、含水比 *w* が小さい方が、同一の 乾燥密度 ρ_d で比較すると大きな地盤剛性指標を示すことになる.図 3-22 に示すように、飽和 度 *S*_r の一定線は正の傾きを持った線であるので、締固めをある一定の飽和度 *S*_r の範囲に収め ようとすると、自動的に含水比 w が小さいほうが大きな乾燥密度 pd を得ることになる. 図 3-22 にも示してあるように、最適含水比 wopt は締固めエネルギーCEL が大きいほうが小さくなる ため、低い含水比 w で目標とする飽和度 Sr の範囲に収めるためには、より高い締固めエネルギーCEL で締固めることが必要となる.

(b) (K₃₀)_{FWD}

(d) CCV 値 図3-22 乾燥密度 pd と地盤剛性指標による締固め管理図

次に,乾燥密度ρ_dの算定方法について,ここでは*CCV*値を参考に説明する. *CBR*値,(*K*₃₀)_{FWD}, (*K*₃₀)_{キャスポル}も同様の手順により乾燥密度ρ_dを算定する.

式(3-27)に基づいて含水比 w と乾燥密度 ρ_d の空間に CCV 値の等値線を書くと図 3-23 のよう になる. すでに述べてきているように, CCV 値だけからでは乾燥密度 ρ_d を推定できないこと, また乾燥側では乾燥密度 ρ_d が小さくても大きな地盤剛性指標が得られることがわかる. そのため, すでに述べてきているように含水比 w をあらかじめ調べたうえで施工することが要求される.

実務においては、予め含水比 w を調整した上で転圧がなされることが一般的である. 図 3-23 に示す、含水比 w=11%の場合を例とすると、含水比一定の下で締固めていく過程においては、転圧回数 N を増やしていくということは図中の B 点から A 点を通って C 点に向かっていくと いうことになる. その際、単に、含水比 w=11%で CCV 値=10.0 という測定データを取得しただ けとすると、二点、B 点と C 点の二つの乾燥密度 ρ_d の点が候補となることになる. しかし、こ の時、転圧回数 N ごとの地盤剛性指標の変化の様子を把握していれば、B 点に至るときには、転圧回数 N ごとに地盤剛性指標が増加する傾向にある段階であることがわかる. 一方で、C 点 に至る場合には、A 点で極大値を示した後に転圧回数 N ごとに CCV 値が減少傾向にあること になる. このように、地盤剛性指標の変化の時系列も考慮に入れることで、同じ地盤剛性指標 を持つ二つの乾燥密度 ρ_d のどちらの条件にあるかがわかるようになる. また、含水比 w が 11% の時の CCV 値の極大値は A 点 (すなわち CCV 値=12) であることがわかる.

このように、CCV値と含水比wから乾燥密度 ρ_d を推定するような施工管理を行う場合には、 予め転圧試験を実施して、CCV値と乾燥密度 ρ_d 、飽和度 S_r の関係式を求めておき、実際に施工 する際には、含水比wを把握した上で転圧し、CCV値とCCV値の転圧回数Nごとの変化を考 慮に入れることで、リアルタイムかつ面的に飽和度 S_r と乾燥密度 ρ_d を管理した施工が実施でき るようになる.

図 3-23 CCV 値と転圧回数管理による乾燥密度 pdの推定
第3章のまとめ

本章においては、盛土締固め管理における品質評価の即時性の確保に着目し、地盤剛性指標 による乾燥密度、飽和度の推定式の検討を行うとともに、推定式を用いた具体的な締固め管理 手法について考察した.本章での検討結果を以下に示す.

① 地盤剛性指標による乾燥密度 pd, 飽和度 Sr の推定式

模型盛土における実大締固め試験の結果から、いずれの地盤剛性指標も、転圧回数 Nを変数として含まない乾燥密度 ρ_d と飽和度 S_r を独立変数とする関係式で表現できた.これらの経験式に基づくと、転圧回数 N に関わらず、含水比 w と測定された地盤剛性指標から、乾燥密度 ρ_d と飽和度 S_r を求めることができる.

② 地盤剛性指標同士の相関性

CCV システムと現場 CBR 試験,小型 FWD 試験,キャスポル試験の各試験から求められる地盤剛性指標の変化挙動は、含水比 w や転圧回数 N に対して異なる面があるが、締固め条件によらずほぼ一対一の関係があることがわかった.このことは、CCV 値によってその他の地盤剛性指標を面的にリアルタイムで収集が可能であること意味している.

③ CBR 値, (K₃₀)_{FWD}, (K₃₀)_{キャスポル}による CCV 値の推定

CBR 値, (*K*₃₀)_{FWD}, (*K*₃₀)_{キャスボル}と乾燥密度 ρ_d と飽和度 *S*_rの関係式が導かれており,いずれも *CCV* 値と正の相関を示すことから, *CBR* 値, (*K*₃₀)_{FWD}, (*K*₃₀)_{キャスボル}を介して *CCV* 値と乾燥密度 ρ_d と飽和度 *S*_rの関係式が導くことができるが,いずれも *CCV* 値,乾燥密度 ρ_d と飽和度 *S*_rの測定値を直接用いて相関式を求める方がよいという結果が得られた.また,所定の含水比 *w* と *CCV* 値から関係式によって推定される乾燥密度 ρ_d と実測の乾燥密度 ρ_d の間の推定誤差は十分に小さくすることが可能である.

④ 推定式を用いた地盤剛性指標の上下限値による締固め管理手法

地盤剛性指標(*CBR* 値, (K_{30})_{FWD}, (K_{30})_{キャスボル}, *CCV* 値)と乾燥密度 ρ_d , 飽和度 S_r の関係から, 乾燥密度 ρ_d と対数で表示した地盤剛性指標を軸にとると, 飽和度管理に基づいて, 地盤剛性指標と乾燥密度 ρ_d の取りうる範囲をそれぞれ図示することができる.これにより, 目標とする地盤剛性指標を目指した施工を行うことで, 締固め度 D_c , 飽和度 S_r , 含水比wにより規定された品質管理を行うことができる。

また、地盤剛性指標を用いた締固め管理において、一つの地盤剛性指標と含水比wより 二つの乾燥密度 pd が推定されることがあるため、転圧回数 N ごとの地盤剛性指標の変化方 向も考慮することで乾燥密度 pd を正しく評価することができる.

以上のことから、地盤剛性指標(*CBR* 値, (*K*₃₀)_{FWD}, (*K*₃₀)_{キャスボル}, *CCV* 値)は、いずれも 乾燥密度 ρ_d , 飽和度 *S*_rを推定することが可能であるため、地盤剛性指標による締固め管理の 有効性を確認した. さらに, 現場 CBR 試験, 小型 FWD 試験, キャスポル試験は, いずれも 施工後の点情報としてデータを取得するのに対して, CCV システムは施工中にリアルタイム かつ面的にデータを取得できるため,本研究の目的の一つである施工の合理化に最も適して いるといえる.

第3章の参考文献

- 1) 公益社団法人地盤工学会:現場 CBR 試験,辞意版調査の方法と解説-二分冊の 2-, pp.723~731, 2013.
- 近畿地方整備局近畿技術事務所:簡易支持力測定器(キャスポル)利用手引き, pp.5-6, 2005.
- 3) 東京測器株式会社: FWD-Light による小型 FWD 試験方法(地盤編), pp.21-22.
- 4) 横田聖哉,吉田武男,藤井弘章,内山恵一:振動ローラ加速度を利用した締固め管理の 検討-大規模土工における情報化施工に関する研究(3)-,第37回地盤工学研究発表会, pp.664-665,2002.
- 5) 公益社団法人地盤工学会:突固めによる土の締固め試験方法,地盤材料試験の方法と解 説-二分冊の1-, pp373~383, 2009.
- 6) 龍岡文夫ら:地盤工学・技術ノート,盛土の締固め1~20回,雑誌「基礎工」,2013年7 月号~2015年2月号.
- 7) Tatsuoka, F. : Compaction characteristics and physical properties of controlled the degree of saturation, Keynote Lecture, Proc. of 15th Pan-American Conf. on SMGE and 6th Int. Conf. on Deformation Characteristics of Geomaterials, Buenos Aires, pp.40-76, 2015.
- 8)
 龍岡文夫: 土の締固めにおける飽和度管理の重要性, 雑誌ダム技術, No. 354, pp. 3-16, 2012.
- 9) 龍岡文夫: 飽和度と剛性に管理に基づく盛土締固めの合理化について, 地盤工学会誌, 11, 12月号, 67-11/112 (742/743), pp.30-33, 2019.
- 1 0) Nagai, H., Nishio, T., Sandambata, I., Makabe, J., Kogusuri, H., Tatsuoka, F., Kikuchi, Y., and Hyodo, T.: Effects of the degree of saturation on the stiffness and dry density relation of compacted soil, Transportation Research Record: Journal of the Transportation Research Board, 2019.

第4章 粒度特性が盛土の品質に与える影響を考慮した 盛土の高品質化

第3章では、最大粒径 $D_{max}=9.5mm$ の砂質土を対象に実施した転圧試験の結果より、地盤剛 性指標と盛土の品質指標である乾燥密度 ρ_d 、飽和度 S_r との間には関係式が成立することが明ら かにした.本章では、実工事に用いられる最大粒径 $D_{max}=75.0mm$ の大粒径を含む砂礫土を対象 とした転圧試験を実施し、リアルタイムかつ面的に地盤剛性指標を計測可能な CCV システム による乾燥密度 ρ_d 、飽和度 S_r の推定式を構築するとともに、実工事の締固め管理への適用性に ついて検証した.

一方,上記の関係式により CCV 値から推定された乾燥密度 ρ_d ,飽和度 S_r は,いずれも大粒 径粒子を含む現場全粒度試料の品質情報であるため、小粒径粒子を対象とした室内粒度試料を 用いた室内締固め試験により得られる最大乾燥密度 ρ_{dmax} を基準として締固め度(D_c)_{1Ec} を評価 した場合、締固め度(D_c)_{1Ec} を過大評価する可能性がある。そこで、現場全粒度試料と室内粒度 試料による最大粒径の違いによる特性が品質評価に与える影響を明らかにし、Walker-Holtz に よる礫率補正式と最大乾燥密度比 X を組合せることによる礫率補正の高度化について検討し た。

4-1 概要

土の乾燥密度 pdや飽和度 Srは, 盛土の品質管理において最も主要な指標であり, いずれも転 圧施工後に代表箇所で実施する砂置換法や RI 試験により計測されてきた. そのため, 品質不良 や過転圧による再施工の実施や測定箇所以外の品質不良の見逃しなど様々なリスクの発生が予 想されてきた.

これに対し, 第3章で示した地盤剛性指標を用いた締固めた土の乾燥密度 ρ_d, 飽和度 S_rの 推定手法は,従来の品質試験法に比べて即時性を有しており,特に CCV 値は施工中にリアルタ イムに品質評価が可能であるため,前述したリスクの発生を防止することが期待される.

しかし, 第3章での検討内容は, 最大粒径 D_{max}=9.5mm の小粒径材料を含む盛土材料(以下, 室内粒度試料)を対象としたものであり,実際の現場施工では,室内試験では取り扱うことが 困難な大粒径粒子を含む現地発生土を使用することがほとんどである.そのため, 第3章で示 した地盤剛性指標による締固め管理手法の実工事への適用性を検討するためには,大粒径粒子 を含む現場全粒度に相当する盛土材を対象とした転圧試験を行う必要がある.

本章では、最大粒径 D_{max}=75mm の大粒径粒子を含む盛土材料(以下、現場全粒度試料)を用いて実大締固め機械による転圧試験を実施し、地盤剛性指標による締固め管理手法の実工事へ

の適用性ついて検討した.

一方,現場全粒度試料を用いた実工事では,施工後に密度試験を実施し,室内粒度試料を対象とした室内締固め試験で得られた最大乾燥密度 ρ_{dmax} を用いて締固め度(D_c)_{IEc}を評価する.しかし,締固め度(D_c)_{IEc}を正しく評価するためには,現場全粒度試料を用いた締固め曲線の最大乾燥密度 ρ_{dmax} を用いることが適切である.しかし,現場全粒度試料の締固め特性を求めるためには、多大な費用や労力を必要とする大型締固め試験が必要となる.そのため、第2章で示したように、Walker-Holtzの礫率補正式(以下,WH式)により、室内粒度試料を対象とした室内試験の結果から現場全粒度試料に相当する乾燥密度 ρ_d や含水比*w*を推定する必要がある.ただし、礫率補正式は、その特性上、礫率*P*が大きくなるほど乾燥密度 ρ_d を過大評価し、その逆もまた然りである.

そこで、本研究では、最大粒径 D_{max} を変化させた多種の室内締固め試験を実施し、任意の最 大粒径 D_{max} に対して WH 式を用いて推定した最大乾燥密度[(ρ_d)_{max}]_{WH} と実測の最大乾燥密度 (ρ_d)_{max}の比である最大乾燥密度比 X と礫率 P との関係を調べ、その一般性を検証した.

4-2 大粒径の盛土材料を対象とした現場転圧試験による推定式の検証

最大粒径 D_{max}=75.0mm の大粒径粒子を含む砂礫材を現場全粒度試料とした転圧試験を実施 し、多種の品質試験データを取得および解析を行い、CCV 値による乾燥密度 p_d、飽和度 S_rの関 係式を構築するとともに、関係式を用いた締固め管理手法について検討した.

4-2-1 実験条件

転圧試験に用いた現場全粒度試料は,最大粒径 *D*_{max}=75.0mmの細粒分混じり礫質砂である. 現場全粒度試料の写真を図 4-1 に,物性値を表 4-1 に示す.図 4-2 には,現場全粒度試料と, 現場全粒度試料を粒度調整し,剪頭粒度法により最大粒径 *D*_{max}=37.5mm, 9.50mm に作製した それぞれの試料の粒度分布を示す.

盛土の締固め管理基準値を設定することを目的とし、室内締固め試験(JISA 1210)¹, 圧 密排水三軸圧縮試験(JGS 0524-2009)を実施した.室内締固め試験は、図 4-1 に示す最大粒 径 *D*_{max}=37.5mmの剪頭粒度の試料を用いて, B-c 法(標準プロクター:1.0*E*_c)にて実施した.

圧密排水三軸圧縮試験(以下, CD 試験)²⁾は、供試体寸法 Φ 5cm×H10cm とし、図 4-1 に示す最大粒径 D_{max} =9.5mmの試料を用いて実施した. CD 試験は土の内部摩擦角 φ_d を求めるために実施した.

転圧試験ヤードおよび品質試験位置図を図 4-3 に示す.転圧試験ヤードの寸法は,長さ 20m, 幅 6m,高さ 60cm とした.1層当りの撒き出し厚は 30cm とし,計2層で造成した.1層目 は,予備層として平均含水比 w_n =11%の盛土材を 11t級の振動ローラを用いて 8回転圧により 構築した.2層目は,試験層として平均含水比 w_n を 11%にして 16回転圧により構築した. なお,平均含水比 w_n は,ダンプトラックから運搬されてきた土砂が施工ヤードに荷下ろしさ れた際に,土塊のうち代表的な個所の土を採取し,電子レンジ法³により計測した含水比 wの平均値である.2層目の転圧中は転圧ヤードの全面を対象に振動ローラの加速度応答値に よる *CCV* 値の測定を実施し,転圧回数 *N*=2,4,6,8,16回の施工後に図 4-3 に示す測点1 〜測点6でレベル測量による沈下量測定,RI試験 4による上層 20cmの密度測定を行った.

ここで、CCV 値 ⁵の測定頻度について説明する. 図 4-3 のうち、転圧試験ヤード表面を 50cm メッシュで分割している. CCV 値のサンプリングピッチは 5 回/秒であり、50cm のメッ シュ範囲の移動平均値により CCV 値が算出される. 図 4-3 に示す各測点の RI 試験の計測位 置に対応する 50cm メッシュの CCV 値を抽出することが理想であるが、CCV 値は地盤中に 礫などの硬質な材料が混在している場合に特異値を発生させる傾向がみられるため、RI 試験 の測定位置に対応する 50cm メッシュの CCV 値を直接抽出するのではなく、青枠で囲った 2m メッシュ(50cm×16 個)の平均値として抽出することにした.

図 4-1 現場全粒度試料写真

土粒子密度(g/cm ³)		2.778						
最大粒径(mm)		75.0						
細粒分含有率(%)		10.1						
均等係数		334						
曲率係数		16.2						
分類名		細粒分混じり礫質砂						
分類記号		G-FS						
液性限界	WL (%)	29.6						
塑性限界	w _P (%)	19.7						
塑性指数	IP	9.9						
最大粒径 D _{max=} 37.5 mm での試験結果								
標準プロクター試験の最大乾燥密度 $ ho_{dmax}(g/cm^3)$			1.897					
標準プロクター試験の最適含水比 Wopt(%)			14.8					
最適飽和度 Sropt(%)			88.5					

表 4-1 盛土材の物性値

図 4-2 粒度試験

4-2-2 実験結果および考察

(1) 室内試験

図 4-2 に示す最大粒径 D_{max} =37.5mm の剪頭粒度の試料を用いた室内締固め試験結果を図 4-4 に示す. 図 4-4 に示す締固め曲線を WolkerHoltz 法 $^{0,7)}$ により最大粒径 D_{max} =9.5mm に礫 率補正して求めたものを図 4-5 に示す. 図 4-5 には, CD 試験の供試体条件も示している. CD 試験の供試体条件として,乾燥密度 ρ_d は図中の締固め曲線の最大乾燥密度 ρ_{dmax} に対して 締固め度(D_c)_{IEc} を 95%とし,含水比 w は図中の No.1~3 の位置とした. なお, CD 試験は内 部摩擦角 φ_d を求めるために行ったものであり,盛土の要求性能である内部摩擦角 $\varphi \ge 30^{\circ}$ を 達成することを締固め管理の目標とした.

飽和度 S_r が一定の条件下において締固め度 $(D_c)_{1Ec}$ (すなわち乾燥密度 ρ_d)が増加した場合,内部摩擦角 φ は一貫して増加する傾向を示す⁸⁾ことから,No.1~3の全試験条件で内部 摩擦角 $\varphi \ge 30^\circ$ を達成することができれば,締固め度 $(D_c)_{1Ec} \ge 95\%$ かつNo.1~No.3と同じ飽和 度 S_r で包括された範囲はいずれも要求品質を満足することになる.

CD 試験は、No.1~3 の条件で作成した供試体を飽和化して実施した. 表 4-2 に CD 試験の 供試体条件と内部摩擦角 φ の実測値を示す. 表 4-2 より、締固め度(D_c)_{1Ec} \geq 95%では、いず れの飽和度 S_r でも内部摩擦角 $\varphi \geq 30^\circ$ であることを確認した. この結果に基づき、現場全粒度 試料(最大粒径 D_{max} =75mm)でも締固め度(D_c)_{1Ec} \geq 95%であればいずれの飽和度 S_r でも内部 摩擦角 $\varphi \geq 30^\circ$ であると判断した⁹.

この結果を参考にして、図 4-6 に示すように要求品質を満足する乾燥密度 ρ_d , 飽和度 S_r , 含水比wの管理範囲(図中の黄色のハッチング部)を設定した.

なお、目標とする最低乾燥密度 ρ_d は、現場全粒度試料(最大粒径 D_{max} =75mm)の時の乾燥 密度 ρ_d であり、この曲線は、図 4-4 に示す最大粒径 D_{max} =37.5mm の締固め曲線を Walker-Holtz 法によって最大粒径 D_{max} =75.0mm に礫率補正して求めたものである.

図 4-5 三軸試験実施時の密度と含水比の条件

供試体	乾燥密度	含水比	飽和度	内部摩擦角
番号	$ ho_{\rm d}~({ m g/cm^3})$	w (%)	<i>S</i> _r (%)	arphi (°)
No.1	1.573	15.7	58	32.3
No.2	1.568	21.0	72	36.6
No.3	1.554	27.6	95	34.6

表 4-2 排水三軸圧縮試験(CD)の結果

(2) 現場試験

図 4-7~4-11 に、いずれも図 4-3 に示した計 6 つの測点で計測した全データを示した.図 4-7、図 4-8、図 4-9、図 4-10 に転圧試験により得られた湿潤密度 *ρ*t,含水比 *w*,乾燥密度 *ρ*d, 飽和度 *S*r と転圧回数 *N* の関係を示す.湿潤密度 *ρ*t,含水比 *w* は RI 試験により直接的に得られる実測値であり、乾燥密度 *ρ*d,飽和度 *S*r はこれらの実測値より算出された値である.

図4-7,図4-8に、湿潤密度 ρ,含水比 w と転圧回数 N との関係を示したものである.図に示すように、湿潤密度 ρ,含水比 w は、測点によって値が異なっていることがわかる.特に、含水比 w は、最も低い測点 1 と最も高い測点 2 とで 3~4%程度の差が生じている.また、同じ測点の結果をみても、転圧回数 Nの増加に伴い値は若干変動していることがわかる.転圧試験における盛土材は、ストックヤードに塊として存在している盛土材を対象に数点の含水比 w を代表的に測定し、その平均値をその土の自然含水比 w a とし、自然含水比 w nが目標とする施工含水比 w の範囲内であることが確認できれば、転圧ヤードに盛土材が運搬される.このため、転圧ヤードに撒き出された盛土材は、場所によって若干のばらつきが生じていることが予想される.

図 4-9, 図 4-10 に,乾燥密度 ρ_d ,飽和度 S_r と転圧回数 N との関係を示したものである. 図に示すように,乾燥密度 ρ_d ,飽和度 S_r は測点により値が大きく異なる.各測点の転圧回数 N と測定値との関係をみると,概ね転圧回数 N が 2 回の時に大きく増加し,それ以降は漸増 傾向が続き,転圧回数 N が 6~16 回の時にほぼ収束する傾向が確認された.

図 4-11 には、 *CCV* 値と転圧回数 *N*の関係図を示す. *CCV* 値は、湿潤密度 ρ_{t} 、含水比 *w*、乾燥密度 ρ_{d} 、飽和度 S_{r} と同様に測点によって異なる傾向を示すが、いずれも転圧回数 *N* が 2 ~8 回まで一貫して増加し、転圧回数 *N* が 8 回の時に極大値を示し、転圧回数 *N* が 16 回の時に減少する傾向を示した. すなわち、転圧回数 *N* が 8 回の時を境にして、締固め過程における *CCV* 値の増減傾向が異なる.

図 4-7 湿潤密度 pd と転圧回数 N の関係

図 4-8 含水比 w と転圧回数 N の関係

図 4-11 CCV 値と転圧回数 N の関係

4-2-3 CCV 値による品質指標の推定式の検討

盛土の品質指標である乾燥密度 ρ_d , 飽和度 $S_r \in CCV$ 値と含水比 w から推定する手法を検討 する. 第3章で示した地盤剛性指標による乾燥密度 ρ_d , 飽和度 S_r の関係式を参考とし, 転圧試 験で得られたデータを解析し, CCV 値による乾燥密度 ρ_d と飽和度 S_r の関係式を式(4-1)のよう に構築することにした.

$$CCV = f_{CCV}(S_r)(\rho_d/\rho_w - b)^c$$
(4-1)

図 4-12 に、転圧試験で得られた *CCV* 値~乾燥密度 ρ_d 関係の全データを示す. 全データを 飽和度 *S*_rで 5%毎(50%≦*S*_r<55%、55%≦*S*_r<60%、60%≦*S*_r<65%、70%≦*S*_r<75%、75%≦*S*_r <85%、85%≦*S*_r<90%、90%≦*S*_r<95%)に分類し、それぞれを別の記号でプロットした. 図 4-12 に示すデータは、転圧回数 *N* 毎に取得した図 4-2 に示す 6 測点の全データである. 図 4-12 をみると、*CCV* 値は乾燥密度 ρ_d の増加に伴って一貫して増加している. この傾向を表 現する関係式として、式(4-1)の形式を設定する. 式中の関数 *f*_{ccv}(*S*_r)、定数 *b*, *c* は、実験的に 求められるパラメータであり、これらのパラメータは以下のように設定した.

まず,飽和度 S_rを 5%毎に分類し,関数 $f_{ccv}(S_r)$ の変化の小さいと思われるそれぞれの範囲 の飽和度 S_rのデータ毎に最適な定数 b, cの組合せを求める.それらの定数 b, cに対してそ れぞれのパラメータ毎に各飽和度範囲での値の算術平均をもって仮の定数 b, cを設定し,そ れらを用いて関数 $f_{ccv}(S_r)$ と飽和度 S_rの関係を求めた.その結果を図 4-13 に示すが,飽和度 S_rの値によるプロットの平均的関係からの偏りは見られないことから,式(4-2)のようにこの 関係を定式化した.さらに,式(4-1)に式(4-2)を代入し,式(4-3)が得られる.

図 4-12 にプロットされているデータはいずれも実測値であり、曲線は式(4-3)により算出 した飽和度 Sr の等値線である.これらの実測値の飽和度 Sr は、飽和度 Sr の等値線の間にそ れぞれ収まっていることが望ましいが、必ずしもそうはなっていない.特に、図 4-12(b)に 示すように、飽和度 S_r =65-70% (図中の \blacksquare)、70-75% (図中の \blacksquare) では整合性が低い.しかし それ以外の図では比較的よく、実験結果を表すことができている.本研究では、最適飽和度 S_{ropt} =88.5%付近を精度良く評価するため、飽和度 S_r が 75-95%の範囲を精度良くフィッティグ することにした.

$$f_{CCV}(S_r) = 2.0/[1 + exp(0.04S_r)]$$
(4-2)

$$CCV = \left\{ \frac{2.0}{[1 + exp(0.04S_r)]} \right\} (\rho_d / \rho_w - 0.4)^{9.5}$$
(4-3)

4-2-4 推定式を用いた締固め管理手法

第3章に示した小粒径粒子(最大粒径 $D_{max}=9.5$ mm)の砂質材を対象とした試験結果と同様に、最大粒径 $D_{max}=75.0$ mmの大粒径粒子を含む現場全粒度試料に対しても *CCV* 値と乾燥密度 p_{d} ,飽和度 S_{r} との関係式が成立することがわかった。そこで、*CCV* 値の関係式を用いた締固め管理手法の実工事への適用性について検討する。

ここで、式(4-4)は式(4-3)の飽和度 S_r を土粒子密度 ρ_s 、含水比 w、乾燥密度 ρ_d で表した関数 である.

$$CCV = \left\{ \frac{2.0}{\left[1 + exp\left(0.04\frac{\rho_d \rho_s w}{\rho_s - \rho_d} \right) \right]} \right\} (\rho_d / \rho_w - 0.4)^{9.5}$$
(4-4)

目標とする乾燥密度 ρ_d が決まっており、含水比 w と土粒子密度 ρ_s が既知であれば、式(4-4)から目標の CCV 値を決めることができる.一方で、土粒子密度 ρ_s 、含水比 w が既知で、 CCV 値を施工時に測定した場合には乾燥密度 ρ_d を算出できる.したがって、式(4-4)を用いる ことで、本研究の目的とするリアルタイムかつ面的な締固め管理手法を実現することが可能 となる.

次に、式(4-4)を用いた乾燥密度 ρ_d の推定手法の検討を行う. 図 4-14 には、現場全粒度試料の締固め曲線上に転圧試験で得られた乾燥密度 ρ_d と含水比 wの実測値,乾燥密度 ρ_d の推定値と含水比 wの実測値との関係をプロットした. 乾燥密度 ρ_d の推定値は、*CCV* 値、含水比 wの実測値を式(4-4)に代入して算出した. 図 4-14 より、乾燥密度 ρ_d の実測値と推定値は、概ね一致していることがわかった. ただし、飽和度 $S_r=65\sim75\%$ のデータは推定精度が低く、推定値は実測値に比べて低い値を示した.

図 4-15 には、乾燥密度 ρ_d の実測値と推定値との関係を示す.図 4-15 には、Y=X、Y=X-0.1、Y=X+0.1 の線分に加えて、最小二乗法により求めた乾燥密度 ρ_d の実測値と推定値との 近似曲線と相関係数 R^2 をそれぞれ示した.実測値と推定値が一致している場合には、Y=X の 線分上にデータがプロットされることになる.図 4-15 をみると、一部のデータを除き概ね全 てのデータが Y=X の線分上の付近にプロットされており、いずれも Y=X+0.1、Y=X-0.1 の 線分に挟まれた範囲の中に存在することがわかった.さらに、相関係数は R^2 =0.7023 となり、 推定精度は高いことが確認された.なお、*CCV*値により推定した乾燥密度 ρ_d のほとんどは実 測値よりも低く評価されていることがわかる.これより、式(4-4)を用いた乾燥密度 ρ_d の推定 精度は概ね良好であり、推定値は現場施工において安全側に評価していることがわかった.

次に,実工事における CCV 値と関係式を用いた具体的な締固め管理手法について検討する.

図 4-16には、乾燥密度 *ρ*_dと対数で表記した *CCV* 値を軸にとり、締固め度 *D*_cの下限値と 飽和度 *S*_rの上下限値により規定された品質管理範囲に対応する *CCV* 値と乾燥密度 *ρ*_dの管理 範囲を図化した. **図 4-16** に示す *CCV* 値の管理範囲を目指した施工を行うことで、締固め度 *D*_cと飽和度 *S*_r、含水比 *w* により規定された品質管理を行うことができる. この結果は、**第 3** 章に示した小粒径粒子を含む盛土材料を対象とした地盤剛性指標による締固め管理手法と同様であるため、取り扱う土質の最大粒径 D_{max}に依らず、地盤剛性指標による締固め管理の実工事への有効性を確認した.

最後に、CCV値による乾燥密度 ρ_dの推定手法について検討する.図4-17には、CCV値と 転圧回数管理による乾燥密度 ρ_dの推定手法を示す.図4-17より、乾燥密度 ρ_dと含水比 wの 空間で現場全粒度試料の締固め曲線上に含水比 w=9%の等値線と式(4-4)より求めた CCV 値 =1、5、10、11.2、30の等値線をそれぞれ図化した.現場全粒度試料の含水比 wは、ダンプア ップした土塊毎に RI 試験を行うことで求めるものとし、いずれも土塊を敷均したエリアの 代表値として設定する.なお、含水比 w は面的にばらつかないものと仮定し、面的な含水比 情報として取り扱う.ここでは、現場全粒度試料の含水比 w は 9%として検討を行った.

図 4-17 より、*CCV* 値の等値線は、いずれも $S_r < S_{ropt}$ の範囲では乾燥密度 ρ_d が増加すると 含水比 w は増加し、最適飽和度 S_{ropt} になる少し前で含水比 w は極大値を示し、 $S_r > S_{ropt}$ の範 囲では乾燥密度 ρ_d が増加すると含水比 w は減少することがわかる.この特性を活用し、乾燥 密度 ρ_d の推定を行う.今、盛土の含水比が仮に含水比 w は 9%で一定値であると仮定すると、 締固め過程における乾燥密度 ρ_d は含水比 w が 9%の等値線上を変化することになる.ここで、 *CCV* 値=11.2 と含水比 w=9%の等値線をみると、二つの線分は A 点で接していることがわか る.これは、含水比 w=9%における *CCV* 値の極大値は 11.2 であることを意味している.

続いて、極大値以下の CCV 値が得られた状態について検討する. 図 4-17 のように CCV 値 =10 のデータが得られた場合、CCV 値と含水比 w の等値線は B 点、C 点の二点で交わること がわかる.これは、乾燥密度 ρ_d の解の候補が二つ存在すること意味しており、乾燥密度 ρ_d は $S_r \leq S_{ropt}$ の範囲(締固め初期段階)、もしくは $S_r > S_{ropt}$ (締固め後期)のどちらかであるかを検 討する必要がある.ここで、図 4-11 に示した締固め過程における CCV 値の変化を確認する と、CCV 値は締固めの初期は増加傾向を示し、締固め後期で減少傾向を示すことがわかる. これより、現在とそれ以前の転圧回数の時の CCV 値を比較し、現在の締固め段階を把握する ことができれば、乾燥密度 ρ_d を正しく評価することができる.

このように、関係式を用いて CCV 値と含水比 w から乾燥密度 pd を推定する際には、CCV 値は単体ではなく、必ず転圧回数 N と組合せて管理することが重要である.これにより、リアルタイムかつ面的な締固め管理が可能となるため、高品質な盛土構造物を合理的な施工法 により実現できる.

82

図 4-16 乾燥密度 pd と CCV 値空間による締固め管理図

4-3 粒度特性が締固め特性に与える影響

盛土の締固め管理では、現場で測定された乾燥密度 p_d と含水比 w を、現場代表試料を用いて所定の締固めエネルギー*CEL* で行われた室内締固め試験で得られる最大乾燥密度 ρ_{dmax} と最適含水比 w_{opt} と比較する.前節で述した *CCV* 値より推定した乾燥密度 ρ_d に関しても、乾燥密度 ρ_d は現場全粒度相当であるのに対して、締固め度(Dc)_{IEe} を算定する際には、室内粒度試料を用いて行わわれる室内締固め試験により得られる最大乾燥密度 ρ_{dmax} が用いられる.施工現場で使用する現場全粒度試料は、岩砕や礫など室内試験適用外の大粒径の土を含む.その場合、室内試験モールドの許容最大粒径内に収まるように粒度調整した試料を用いて室内締固め試験を行い、得られた結果を Walker-Holtz の礫率補正式 $^{0.7}$ (以下、WH式)により補正し、現場全粒度試料の所定の締固めエネルギー*CEL* における最大乾燥密度[ρ_{dmax}]wH を推定する.WH 式の適用範囲は、礫率 P<0.3-0.4 とされているが、現場全粒度試料の礫率 P はその適用範囲外となることも多く、さらに、礫率 P<0.3-0.4 でも一定の誤差があることが知られている $^{0.7}$.なお、ここでの礫率とは、土の工学的分類による礫ではなく、ある最大粒径 D_{max} 以上の土粒子の質量と、全粒子の重量の比を指す.

上記のような課題を解決するためには、大型締固め試験を実施して、大粒径粒子を含む現場 全粒度試料の締固め特性の把握する必要がある.しかし、室内試験においても現場全粒度試料 では多大な労力と費用を要することに加え、大型締固め試験機の希少さを鑑みて、全ての施工 現場でそれを実施することは現実的ではないといえる.これより、せん頭粒度により現場全粒 度試料の最大粒径 *D*_{max}を小さくして室内締固め試験を実施し、WH 式に何らかの補正を施すこ とで現場全粒度試料の締固め特性を推定することを要求される.

そこで本研究では、最大粒径 D_{max} の異なる粒度調整試料を複数用意して室内締固め試験を実施し、各最大粒径 D_{max} の最大乾燥密度 ρ_{dmax} の実測値と WH 式により推定した最大乾燥密度 $[\rho_{dmax}]_{WH}$ を比較することで WH 式の礫率補正式の精度を確認した上で、最大乾燥密度 ρ_{dmax} の推定値と実測値との比で表される最大乾燥密度比Xと礫率Pの関係による礫率補正式の高度化 について検討した.

4-3-1 室内試験条件

本実験に使用した盛土材は、前項の転圧試験に使用した最大粒径 $D_{\text{max}} = 75.0 \text{ mm}$ の細粒分 混じり礫質土(以下,現場全粒径試料.土粒子密度 $\rho_{\text{s}} = 2.77 \text{ g/cm}^3$)を母材とし、目標とする 最大粒径 D_{max} なるようにせん頭粒度法により粒度調整して作製した試料である.図4-18 に は、現場全粒度試料と、現場全粒度試料をせん頭粒度法により最大粒径 $D_{\text{max}} = 2.00 \text{ mm}$, 4.75 mm, 9.50 mm, 19.0 mm, 37.5 mm, 53.0 mm に粒度調整して作製したそれぞれの試料の粒度分布を示 す.なお、最大粒径 $D_{\text{max}} = 75.0$, 53.0 mm を現場全粒度試料,最大粒径 $D_{\text{max}} = 2.00 \text{ mm}$, 4.75 mm, 9.50 mm, 19.0 mm, 37.5 mm を実場全粒度試料,最大粒径 $D_{\text{max}} = 2.00 \text{ mm}$, 4.75 mm,

これらの試料を対象に室内締固め試験¹⁾を実施した.室内締固め試験に使用した大型・小型装置の写真と試験条件をそれぞれ図 4-19,表 4-3 に示す.

室内粒度試料を用いた小型装置による室内締固め試験では、半径 15cm、体積 2209cm³のモールドを使用した. 2.5kg のランマーを高さ 30cm から自由落下させ、締固め回数は 1 層 55 回で 3 層にて締固めを行い、この場合の締固めエネルギー*CEL*を 1.0*E*。と呼ぶ. さらに、4.5kg のランマーを高さ 45cm から自由落下させ、1 層 55 回として計 5 層で締固めた. この場合の締固めエネルギー*CEL*を 4.5 *E*。と呼ぶ.

現場全粒度試料を用いた大型装置による室内締固め試験では、内径 30cm、体積 25000cm³ のモールドを使用した.単位体積あたりのエネルギーは、式(4-5)で計算した¹⁾. 1.0*E*。では、10kg のランマーを高さ 45cm から自由落下させた. 締固め回数は 1 層 104 回として計 3 層で 締固めた. 4.5*E*。では、10kg のランマーを高さ 45cm から自由落下させた. 締固め回数は 1 層 468 回として計 3 層で締固めた. なお、含水比は実験試料の全量を乾燥して測定した.

$$E_c = \frac{W_R \cdot H \cdot N_L \cdot N_B}{V} \tag{4-5}$$

ここに, $W_{\rm R}$: ランマー重量(kN), H: ランマー落下高さ(m), $N_{\rm L}$: 層数, $N_{\rm B}$: 1 層あたりの 突固め回数, V: モールド容積(m³)である.式(4-5)に表 4-3 に示すモールドの仕様などを代入 した上で,目標とする 1.0 $E_{\rm c}$, 4.5 $E_{\rm c}$ の締固めエネルギーになるように締固め層厚,締固め回 数を調整した.小型締固め試験に関しては,試験基準 (JIS) に倣い,締固め層厚,締固め回 数を設定した.

4-3-2 室内試験結果

締固めエネルギー*CEL* が 1.0*E*_c, 4.5 *E*_c の時の室内締固め試験結果をそれぞれ図 4-20 (a), (b) に示す. 図 4-20 より, 締固めエネルギー*CEL* に依らず,最大粒径 D_{max} の増加に伴って 最大乾燥密度 ρ_{dmax} は増加し,最適含水比 w_{opt} は減少していることがわかる.また,最適飽和 度 S_{ropt} は,締固めエネルギー*CEL と*最大粒径 D_{max} に依らず概ね 80%で一致していることも 確認された.

次に,図4-20に示す締固めエネルギーCELが1.0Ec,4.5Ecの時の締固め曲線を,締固め度 (Dc)IEc ~飽和度差Sr-Sroptの関係で表記したグラフをそれぞれ図4-21(a),(b)に示す.図4-21より,締固めエネルギーCEL,最大粒径Dmaxに依らず,曲線形は相関関係にあることがわ かる.

以上の内容から、同一試料に対しては、締固めエネルギーCEL、最大粒径 D_{max} に依らず、 最適飽和度 S_{ropt} と締固め曲線形は一致することがわかった.これらは、龍岡ら¹⁰⁾の既往の研 究成果と同様である.

図 4-18 粒径加積曲線

(a) 小型締固め機械(手動)

(b) 大型締固め機械(自動)

図 4-19 締固め機械装置 表 4-3 締固め試験の仕様

項目	小型締固め機械		大型締固め機械	
締固めエネルギー (Ec)	1.0	4.5	1.0	4.5
モールド直径 (cm)	15.0	15.0	30.0	30.0
モールド高さ (cm)	17.5	17.5	35.37	35.37
モールド体積 V (cm3)	3,091	3,091	25,000	25,000
ランマー重量 $W_{ m R}$ (kg)	2.5	4.5	10.0	10.0
落下高さ H (cm)	30.0	45.0	45.0	45.0
締固め層数 NL	3	5	3	3
1 層当たりの締固め回数 N _B (回)	55	55	104	468

4-3-3 粒子破砕の影響の評価

粒子の繰り返し利用による粒子破砕の影響を検討するため、最大粒径 D_{max} =19.0mm において締固め試験前後の粒度試験を実施した¹¹⁾. 粒度試験でのばらつきの影響を小さくするために、締固め試験前の試料で3回の粒度試験を行うとともに締固め試験後の試料を全量用いて粒度試験を行い、それぞれで得た粒径加積曲線を比較した.また、締固め試験後の粒度試験では、含水比 w を測定した後に 2.0mm ふるいを行い、2.0mm 残留試料を水洗いして炉乾

燥した後に沈降分析, 粒度試験を実施した.

締固めによる粒子破砕を調べた結果を図 4-22 に示す. 締固め前の試料を用いて粒度試験 を3回行った結果は、ややばらつきが大きい. 最適含水比 Wopt で締固めエネルギーCEL が 1.0E。で締固めた後の粒度分布は、締固め前の3回の測定で得られた粒度分布と比較すると、 ほとんどがばらつきの範囲内に含まれており、有意な粒子破砕は無かったと判断できる.

図 4-23 に、締固め試験において試料を繰返し使用した場合に測定結果に及ぼす影響を検 討した結果を示す. 最大粒径 D_{max}=19.0mm 試料について締固めエネルギーCEL が 1.0E_cの締 固め試験で得られた非繰返しによる締固め曲線(処女試料)および1回(繰返し試料①)と 2回(繰返し試料②)繰返し使用した後の締固め曲線を示している.乾燥側の含水比wにお ける乾燥密度 ραは、繰返し試料①、②よりも処女試料の方がやや低い値を示すが、最大乾燥 密度 pdmax と最適含水比 woot は繰返し使用による影響は見られない.従って、試料を2回程度 繰返し使用しても最大乾燥密度 ρ_{dmax} と最適含水比 wortの有意な変化は無いと判断し, 繰返し 法による締固め試験により以下に示す検討を行った.

図 4-22 締固め試験前後の粒径加積曲線 11)

図 4-23 最大粒径 D_{max}=19.0mm における繰返し締固め試験結果¹¹⁾

4-3-4 Walker-Holtz による礫率補正式の妥当性検証

WH 式による礫率補正の精度を検証することを目的とし,図4-20に示した異なる最大粒径 D_{max}の実測締固め曲線と,任意の最大粒径 D_{max}を基準にWH 式により推定した計算締固め曲線との比較を行う.WH 式の概要については,第2章で説明しているため,ここでの説明は省略するが,WH 式をそれぞれ式(4-6),式(4-7)に示す.

$$[\rho_d]'_{WH} = \frac{\rho_d \cdot \rho_s}{(1-P) \cdot \rho_s + P \cdot \rho_d}$$

$$[\rho_d]''_{WH} = \frac{(1-P)\rho_d \cdot \rho_s}{\rho_s - P \cdot \rho_d}$$

$$(4-6)$$

$$(4-7)$$

式中の $\rho_{\rm H}$ は礫粒子を混入する前の試料の乾燥密度である. $\rho_{\rm s}$ は土粒子密度である.Pは礫率であり,所定の最大粒径 $D_{\rm max}$ よりも大きい粒子の土の重量と、全粒子の土の重量の比である.本研究では、所定の最大粒径 $D_{\rm max}$ よりも大きい粒子の土と、それ以外の土の土粒子密度 $\rho_{\rm s}$ は同一であると仮定しており、この時の飽和度 $S_{\rm r}$ は変化していないとしている.所定の最大粒径よりも大きい粒子の土を混入した場合の全粒子の乾燥密度[$\rho_{\rm d}$]wH'は式(4-6)から求め、所定の最大粒径 $D_{\rm max}$ より小さい土の乾燥密度[$\rho_{\rm d}$]wH'は式(4-7)から求める.

まず, 締固めエネルギーCEL が 1.0E_c, 4.5 E_c で締固められた最大粒径 D_{max}=2.00mm の締 固め曲線を基準として, 礫粒度を混入した場合の WH 式の精度について確認する. 図 4-24 には, 図 4-20 に示した 1.0E_c, 4.5 E_c における最大粒径 D_{max} = 75.0mm, 53.0mm, 37.5mm, 19.0mm, 9.5mm, 4.75mm, 2.00mmの締固め曲線の実測値と,最大粒径 D_{max} =2.0mmの締固め 曲線を基準として式(4-6)によって推定した最大粒径 D_{max} =75.0mm, 53.0mm, 37.5mm, 19.0mm, 9.5mm, 4.75mmの計算締固め曲線を示す. 図 4-24 より,式(4-6)により推定した異なる最大粒 径 D_{max} の最大乾燥密度[ρ_{dmax}]_{WH}'は, 1.0 E_c での締固めにより得られた実測値よりも大きくな り,大きな粒子を混入した後の試料の乾燥密度 ρ_{d} を著しく過大評価する結果となった. この 傾向は礫混入率が高い(すなわち,最大粒径 D_{max} 大きくなる)ほど顕著となる.なお,これ らの結果は,締固めエネルギー*CEL*に依らす同様であることがわかった.

次に、締固めエネルギー*CEL* が 1.0*E*。、4.5*E*。で締固められた最大粒径 D_{max} =75.0mm の締固 め曲線を基準として、礫粒子を除去した場合の WH 式の精度を確認する. 図 4-25 には、図 4-20 にも示した 1.0*E*。、4.5 *E*。における最大粒径 D_{max} =75.0mm、53.0mm、37.5mm、19.0mm、 9.5mm、4.75mm、2.00mm の締固め曲線の実測値と、最大粒径 D_{max} =75.0mm の締固め曲線を基 準として式(4-7)によって推定した最大粒径 D_{max} =53.0mm、37.5mm、19.0mm、9.5mm、4.75mm、 2.00mm の計算締固め曲線を示す. 図 4-25 をみると、式(4-7)により算出した最大乾燥密度 $[\rho_{dmax}]_{WH}$ "は、1.0*E*。での締固めにより得られた実測値よりも小さくなり、大きな粒子を除去 した後の試料の乾燥密度 ρ_{d} を著しく過小評価する結果となった. この傾向は礫除去率が高い (すなわち、最大粒径 D_{max} が小さくなる)ほど顕著となる. なお、これらの結果は、締固め エネルギー*CEL* に依らす同様であることがわかった.

図 4-26~図 4-30 は、図 4-24、図 4-25 に示した最大粒径 D_{max}=2.00、75.0mm を基準とした 検討方法と同様に、最大粒径 D_{max}=4.75、9.50、19.0、37.5、53.0mm を基準として礫粒子を混 入・除去した場合の WH 式の精度を検証した結果を示すが、いずれも前述した結果と同様で あることがわかった.

これらの WH 法による補正結果の実測結果との相違は、実際には試料全体に加える締固め エネルギーCEL が一定であっても、礫粒子以外の細粒成分に加わる締固めエネルギーCEL は 小さくなることが考慮されていないためである.

図 4-24 最大粒径 D_{max}=2.00mm を基準として WH 式より推定した各最大粒径 D_{max}の計算 締固め曲線と実測値との比較

図 4-25 最大粒径 D_{max}75.0mm を基準として WH 式より推定した各最大粒径 D_{max}の計算締固 め曲線と実測値との比較

図 4-26 最大粒径 D_{max}=4.75mm を基準として WH 式より推定した各最大粒径 D_{max}の計算締 固め曲線と実測値との比較

(b) 締固めエネルギーCEL 4.5 Ec

図 4-27 最大粒径 D_{max}=9.50mm を基準として WH 式より推定した各最大粒径 D_{max}の計算締 固め曲線と実測値との比較

(b) 締固めエネルギーCEL 4.5 Ec

図 4-28 最大粒径 D_{max}=19.0mm を基準として WH 式より推定した各最大粒径 D_{max}の計算締 固め曲線と実測値との比較

(b) 締固めエネルギーCEL 4.5 Ec

図 4-29 最大粒径 D_{max}=37.5mm を基準として WH 式より推定した各最大粒径 D_{max}の計算締 固め曲線と実測値との比較

(b) 締固めエネルギーCEL 4.5 Ec

図 4-30 最大粒径 D_{max}=53.0mm を基準として WH 式より推定した各最大粒径 D_{max}の計算締 固め曲線と実測値との比較

4-3-5 最大乾燥密度比 X と礫率 P の関係による礫率補正

図 4-24~図 4-30 より,ある締固めエネルギー*CEL* で締固められた基準となる最大粒径 D_{max} 試料の乾燥密度 $\rho_{\rm H}$ から,それより大きな粒子の土を混入した後に同一の締固めエネルギー*CEL* で締固めた場合の乾燥密度 $[\rho_{\rm d}]_{\rm WH}$ 'を式(4-6)により正確に推定することは難しく,これを実現するためには,式(4-6)に示す WH 式をさらに補正する必要があることを示した.また,式(4-7)における所定の最大粒径 $D_{\rm max}$ よりも小さい粒子の土を除去した場合の WH 式による乾燥密度 $[\rho_{\rm d}]_{\rm WH}$ "に関しても,その推定精度は礫率 P に依らず高いものではなく,式(4-7)の更なる補正が必要である.

ここで、式(4-6)、(4-7)により推定した最大乾燥密度を[(ρ_d)max]WH、同一の最大粒径 D_{max} 試料を 1.0 E_c で締固めた時の最大乾燥密度の実測値を[(ρ_d)max]IEc と定義すると、[(ρ_d)max]WH を[(ρ_d)max]IEc で除したものを最大乾燥密度比 X と定義し、これと礫率 P との関係(以下、X-P 関係)による 式(4-6)、式(4-7)の更なる補正を検討した.

まず,最大乾燥密度比*X*の算出方法について,最大粒径 D_{max} =2.00mm の締固め曲線を例に用 いて説明する. 図 4-31 は,締固めエネルギー*CEL* が 1.0 E_c で締固めた最大粒径 D_{max} =2.00mm, 75.0mm の実測締固め曲線と,最大粒径 D_{max} =2.00mm の実測締固め曲線を基準とし,式(4-6)に より最大粒径 D_{max} =75.0mm に礫率補正した計算締固め曲線を示した. 図 4-31 より,最大乾燥 密度比 *X* は,"式(4-6)より推定した最大粒径 D_{max} =75.0mm の最大乾燥密度[(ρ_d)_{max}]_{WH}=2.472g/cm³ (推定値)"/"実測の最大乾燥密度[(ρ_d)_{max}]_{1Ec}=2.014g/cm³ (実測値)"≒1.227 ということになる.

この時, 図 4-18 に示す粒度分布より,最大粒径 D_{max} =2.00mm に対する最大粒径 D_{max} =75.0mm の礫率 P を算出することで, X-P 関係が得られる. 同様に,図 4-32 に最大粒径 D_{max} =75.0mm を基準として最大粒径 D_{max} =2.00mm に礫率補正した結果も示すが,このときの最大乾燥密度 比Xは 0.579 となる.

この整理方法に倣い、その他の最大粒径 D_{max} に対しても最大乾燥密度比 X と礫率 Pの組合 せを算出し、それら全ての結果を図 4-33 のように取り纏めた. 図 4-33 より、所定の最大粒径 D_{max} よりも大きい粒子の土を混入した時では、推定値は実測値よりも大きく、最大乾燥密度比 Xは 1.0 以上となっている. つまり、実際の締固めにより得られた最大乾燥密度[$(\rho_d)_{max}$]_{IEc} が WH 式により推定した最大乾燥密度[$(\rho_d)_{max}$]_{WH}に達するために必要な締固めエネルギー*CEL* は 1.0*E*_c よりも大きいことを示している. 一方、所定の最大粒径 D_{max} よりも大きい粒子の土を除去した 時では、推定値は実測値よりも小さく、最大乾燥密度比 Xは 1.0 以下となっている. つまり、 礫粒子を含む試料を締固めた場合に、礫除去部分に加わった締固めエネルギー*CEL* は試料全量 に与えた締固めエネルギー*CEL* よりも小さいことを示している.

従来,WH式の適用範囲とされてきた礫率 P<0.3~0.4 においても推定値と実測値との差は 有意であり、計算値は過大評価されており、その程度は礫率 Pが大きくなるほど顕著となるこ とが分かる.また、所定の最大粒径 Dmax よりも小さい土を除去する場合も同様であり、礫率 P<0.3~0.4 の範囲でも計算値と実測値の差は大きく、計算値は過小評価されており、その程度 は礫率 Pが大きくなるほど明白となる.これらの傾向は最大粒径 Dmax に依らず同様であり、図 4-33 に示す X-P 関係の形状が相関関係にあることからも明らかである.
図 4-34 には、最適含水比率 Wと礫率 Pの関係(以下,W-P関係)を示した.ここで、最適 含水比率 W は、最大乾燥密度比 X の算出方法と同様に、WH 式により算出した最適含水比 [wopt]WH を、同一の最大粒径 D_{max} 試料を同一の締固めエネルギーCEL で締固めた時の最適含水 比(wopt)IEc で除した値と定義した.図 4-34 は、図 4-33 に示す X-P 関係と同様に、W-P 関係も最 大粒径 D_{max} に依らず高い相関関係が確認された.これは、WH 式による礫率補正式では、飽和 度 S_rが一定と仮定しており、乾燥密度 pd と含水比w は飽和度 S_rの従属関数であるためである.

以上のことから, *X-P* 関係は最大粒径 *D*_{max} を変化させても一意の関係にあることが示され, それは室内試験用のモールドの許容最大粒径を超えるような大粒径を含む試料に対しても適用 できることがわかった.これより, WH 式と *X-P* 関係を用いることで,室内締固め試験結果か ら大粒径を含む現場全粒径相当の乾燥密度 *p*_d や含水比 *w* を推定できることを示した.

図 4-31 最大乾燥密度比 X と礫率 P の算出(礫混入)

図 4-32 最大乾燥密度比 X と礫率 P の算出(礫除去)

図 4-33 最大乾燥密度比 X と礫率 Pの関係

図 4-34 最適含水比率 Wと礫率 Pの関係

第4章 まとめ

本章では、大粒径を含む盛土材を対象に現場転圧試験を実施し、*CCV*値を用いた乾燥密度 ρ_d 、飽和度 Srの関係式を構築するとともに、関係式を用いた *CCV*値による締固め管理手法の 実工事への適用性を検討し、以下の知見を得た.

- ① 最大粒径D_{max}=75.0mmの大粒径粒子を含む盛土材に対しても、CCV値は、転圧回数Nと締固 めエネルギーCELに依らずに乾燥密度pdと飽和度Srの独立変数とする関係式で表現できる. 土粒子密度ps,含水比wが既知で、CCV値を施工時に測定した場合には乾燥密度pdを算出で きる.したがって、関係式を用いればリアルタイムかつ面的な締固め管理手法を実現する ことが可能となる.
- ② 関係式に基づく締固め管理において,乾燥密度pdとCCV値の空間上に締固め度D。と飽和度Srの管理値を図化することで,CCV値と乾燥密度pdの取りうる範囲を設定できる.CCV値の目標値を目指した施工を行うことで,締固め度D。,飽和度Sr,含水比wにより規定された品質管理を行うことができる.また,盛土材の含水比wを一定と仮定した場合,飽和度Srが最適飽和度Sroplになる少し前でCCV値は極大値を示す.施工時には,所定の転圧回数Nを達成した上でCCV値がこの極大値に達成したことを確認すれば,高い締固め状態を実現できる.また,CCV値が極大値以下の場合,CCV値単体ではなく転圧回数Nと組合せて管理することで,乾燥密度pdを正しく評価することができる.

次に,現場全粒度試料に対して,せん頭粒度法により最大粒径D_{max}を変化させて得られた, 異なる最大粒径D_{max}の試料に対する室内締固め試験を実施し,*X-P*関係によるWH式のさらなる 補正手法について検討し,以下の知見を得た.

- ③ 最大粒径 D_{max} を変化させた室内締固め試験結果より,最大乾燥密度 $(\rho_d)_{max}$ が得られる飽和度 S_r である最適飽和度 $(S_r)_{opt}$ は,最大粒径 D_{max} や締固めエネルギーCELに依らず概ね一定値を示 すことがわかった.
- ④ ある締固めエネルギーCELで締固められた最大粒径D_{max}の小さい土の乾燥密度p_dを用いて、 Walker-Holtz式(以下、WH式)^{6,7)}により、より大きな粒径の土を含む土の乾燥密度[p_d]_{WH}、を 推定する場合、WH式はより大きな粒径の土を混入した場合でも元の土にも一定の締固め エネルギーが加えられていると仮定しているため、乾燥密度p_dを過大に評価する傾向がみ られた.

一方,ある締固めエネルギー*CEL*で締固められた最大粒径 D_{max} の大きい土の乾燥密度 ρ_d を用いて,WH式により,所定の最大粒径 D_{max} がより小さな土の乾燥密度[ρ_d]wH"を推定する場合,乾燥密度 ρ_d を過小に評価する傾向がみられた.

また、本来、WH式の適用範囲はある既定の最大粒径D_{max}よりも大きい礫率P=0.3~0.4までとされているが、この傾向は礫率Pに依らず確認されているため、乾燥密度pdを精度良く 推定するためには、WH式による礫率補正式のさらなる補正が必要である.なお、礫率Pは、 ある所定の最大粒径Dmaxよりも大きい粒径の土の重量と、全粒径の土の重量の比である.

⑤ 所定の最大粒径D_{max}の土を用いて、最大粒径D_{max}がより大きい土、もしくはより小さい土の 最大乾燥密度p_{dmax}を精度良く推定するためには、WH式と最大乾燥密度比Xと礫率Pの関係 を組み合わせることによる修正が好ましい.この方法は、WH式の適用範囲である礫率P が0.3~0.4よりも低い範囲から高い範囲の広範囲の礫率Pに適用できる.

以上より、大粒径粒子を含む現場全粒度試料に対しても、*CCV*値による締固め管理の有効性 を確認するとともに、WH式と*X-P*関係を組合せによる礫率補正の高度化により、現場試験と 室内試験における最大粒径 *D*_{max}の違いが品質評価に与える影響を解消した.これより、従来よ りも適切な品質評価に基づく盛土構造物の高品質化を実現することができる.

第4章の参考文献

- 1) 公益社団法人地盤工学会:突固めによる土の締固め試験方法,地盤材料試験の方法と解 説-二分冊の1-, pp373~383, 2009.
- 2) 公益社団法人地盤工学会:土の圧密排水(CD)三軸圧縮試験方法,地盤材料試験の方法 と解析-二分冊の2-, pp.579~604, 2009.
- 3) 公益社団法人地盤工学会:電子レンジを用いた土の含水比試験,地盤材料試験の方法と 解析-二分冊の1-, pp106~113, 2009.
- 4) 東日本高速道路株式会社,東日本高速道路株式会社,東日本高速道路株式会社: RI 計器 による管理,土工施工管理要領, pp.2-12~2-25, 2017.
- 5) 横田聖哉,吉田武男,藤井弘章,内山恵一:振動ローラ加速度を利用した締固め管理の 検討-大規模土工における情報化施工に関する研究(3)-,第37回地盤工学研究発表会, pp.664-665,2002.
- Walker, F. C. and Holtz, W.C.: Control of Embankment Material by Laboratory Testing. Proc. ASCE, 77-108, pp.1-25 (1951)
- Holtz, W. G. and Lowitz.: Compaction characteristics of gravelly soils. Bureau of Reclamation, Earth laboratory report, No. EM-509 (1957).
- 8) 井原壮,岡田舜啓,真柄海里,野田翔兵,菊池喜昭,龍岡文夫,永井裕之,三反畑勇:砂 礫の締固め特性と強度特性に及ぼす礫含有の影響の実験的検討,第16回地盤工学関東支 部発表会 GEO 関東,2019
- 9) 上本雄也, 澁谷啓, 橋元洋典, 川尻峻三: 砂礫盛土材の締固め特性および変形・強度特性に及ぼす粒度特性の影響, 地盤工学ジャーナル, Vol.6, No.2, pp181-190, 2011.
- 10) 龍岡文夫ら(2013~2015): 地盤工学・技術ノート, 盛土の締固め 1~20回, 雑誌「基礎工」, 2013年7月号~2015年2月号.
- 11) 井原壮,飯名亮介,永井裕之,三反畑勇,西尾竜文,野田翔兵,菊池喜昭,龍岡文夫: Walker-Holtz の礫率補正法の実験的検討,第15回関東支部発表会,2018.

第5章 加速度応答法を用いた新しい締固め管理手法の

実工事への適用性

本章においては、第3章と第4章で行った実験的検討の結果を踏まえ、*CCV*値と乾燥密度 ρ_s ,飽和度 S_r の関係式と*X-P*関係による礫率補正式に基づく新しい締固め管理手法を提案する. さらに、上記の締固め管理手法の実工事への適用性を検証することを目的とし、実工事で得ら れた*CCV*値と含水比*w*の測定データを対象に締固め度(D_c)_{IE}を評価した.

5-1 これまでの検討結果

本項においては、第3章の検討によって得られた地盤剛性指標と盛土の乾燥密度 ρ_{d} ,飽和度 S_r との関係式と、第4章の検討から得られた最大乾燥密度比Xと礫率Pとの関係に基づく礫率 補正の高度化に関する検討結果から、それぞれが盛土締固め管理における施工の効率化と盛土 構造物の高品質化に与える影響について整理した.

5-1-1 地盤剛性指標による乾燥密度 pd, 飽和度 Srの推定

盛土締固め管理における施工方法の効率化に与える影響として,**第3章**における検討結果 から,以下のような主要な結論が得られた.

① 各地盤剛性指標による乾燥密度 pd, 飽和度 Sr の推定式

CCV システム¹⁾と現場 CBR 試験²⁾,小型 FWD 試験³⁾,キャスポル試験⁴⁾の各試験から 求められるいずれの地盤剛性指標(*CCV* 値, *CBR* 値, (K_{30})_{キャスポル})において,地盤 剛性指標と乾燥密度 ρ_d と飽和度 S_r を独立変数とする関係式で表現できることがわかった. これらの経験式を用いれば,転圧回数 N に関わらず,含水比 w と測定された地盤剛性指標 から,乾燥密度 ρ_d と飽和度 S_r を求めることができる.

② 地盤剛性指標同士の相関性

それぞれの地盤剛性指標(CCV 値, CBR 値, (K₃₀)_{FWD}, (K₃₀)_{キャスボル})の間の相関を見ると, ある程度のばらつきはあるもののそれぞれほぼ一対一の関係があることがわかった.この ことは,従来よく用いられてきた地盤剛性指標(CBR 値, (K₃₀)_{FWD}, (K₃₀)_{キャスボル})に替わって, CCV 値によって従来の地盤剛性指標と同等の地盤剛性指標を求めることができるというこ とを意味しており,すなわち, CCV 値によって地盤剛性指標を面的にリアルタイムで収集 が可能であること意味している.

③ 関係式を用いた地盤剛性指標の上下限値による締固め管理手法

地盤剛性指標(*CCV* 値, *CBR* 値, (K_{30})_{FWD}, (K_{30})_{キャスボル})と乾燥密度 ρ_d , 飽和度 S_r の関係 により,地盤剛性指標の目標値を目指した施工を行うことで、締固め度 D_c , 飽和度 S_r , 含 水比wにより規定された品質管理を行うことができる.また,地盤剛性指標単体ではなく, 転圧回数 *N* ごとの地盤剛性指標の変化方向も考慮することで乾燥密度 ρ_d を正しく評価す ることができる.

以上より,地盤剛性指標(*CCV* 値, *CBR* 値, (*K*₃₀)_{FWD}, (*K*₃₀)_{キャスボル})は,いずれも乾燥密度 ρ_d, 飽和度 *S*_rを推定することが可能であるため,地盤剛性指標による締固め管理の有効性を確認 した. なお,現場 CBR 試験,小型 FWD 試験,キャスポル試験は,いずれも施工後の点情報 としてデータを取得するのに対して, CCV システムは施工中にリアルタイムかつ面的にデー タを取得できるため,本研究の目的の一つである施工の合理化に最も適しているといえる.

5-1-2 最大粒径 Dmax の違いによる特性が品質評価に与える影響

第3章の検討では、比較的最大粒径の小さい、また比較的よく管理された条件での実験であったので、第4章では、大粒径の土を含む現場の施工試験相当の条件で、*CCV* 値について、 *CCV* 値と乾燥密度 ρ_d 、飽和度 S_r の関係を求め、その結果を用いて、実施工での施工管理の検討を行った。以下がその主たる結論である。

- ① 最大粒径D_{max}=75.0mmの大粒径粒子を含む盛土材に対しても、CCV値は、転圧回数Nや締固 めエネルギーCELに依らずに乾燥密度ρ_dと飽和度S_rの独立変数とする関係式で表現できる. この関係式を用いることで、土粒子密度ρ_s、含水比wが既知で、CCV値を施工時に測定した 場合には乾燥密度ρ_dを算出できる.
- ② 関係式に基づく締固め管理において、乾燥密度pdとCCV値の空間上に締固め度Dcと飽和度Sr の管理値を図化することで、CCV値による品質管理を行うことができる.また、盛土材の 含水比wを一定と仮定した場合、飽和度Srが最適飽和度Sroptになる少し前でCCV値は極大値 を示すため、施工時には、所定の転圧回数Nを達成した上でCCV値がこの極大値に達成した ことを確認すれば、必要な高い締固め状態を実現できる.また、CCV値が極大値以下の場 合、CCV値単体ではなく転圧回数Nと組合せた管理を行うことで、乾燥密度pdを正しく評価 することができる.

実務での施工管理においても、既定の締固めエネルギーレベルでの最大乾燥密度 ρ_{dmax} をもとに密度管理が行われることが多い.このような管理をするためには、室内締固め試験が必要となる.室内締固め試験では、用いることのできる最大粒径に限りがあるため、実際に用いる代表的な地盤材料から最大粒径 D_{max} を変更させて行われる.**第4章**では、小さい最大粒径 D_{max} の締固め試験結果から、大粒径を含む地盤材料の締固め挙動を推定する方法について検討した.如何その主たる結論である.

- ③ せん頭粒度法により最大粒径 D_{max} を変化させたいくつかの地盤材料に対する室内締固め試験結果より、最大乾燥密度 ρ_{dmax} が得られる飽和度 S_r である最適飽和度 S_{ropt} は最大粒径 D_{max} や締固めエネルギー*CEL*に依らず概ね一定値を示すことがわかった.
- ④ ある締固めエネルギーCELで締固められた最大粒径D_{max}の小さい土の乾燥密度p_dを用いて, Walker-Holtz式(以下,WH式)^{0,7}により、より大きな粒径の土を含む土の乾燥密度(p_d)_{WH}を推 定する場合,WH式はより大きな粒径の土を混入した場合でも元の土にも一定の締固めエ ネルギーが加えられていると仮定しているため、乾燥密度p_dを過大に評価する傾向がみら れた.

一方,ある締固めエネルギー*CEL*で締固められた最大粒径 D_{max} の大きい土の乾燥密度 ρ_d を用いて、WH式により、所定の最大粒径 D_{max} がより小さな土の乾燥密度(ρ_d)wHを推定する場合、乾燥密度 ρ_d を過小に評価する傾向がみられた.

また、本来、WH式の適用範囲はある既定の最大粒径D_{max}よりも大きい礫率P=0.3~0.4と されているが、この傾向は礫率Pに依らず確認されているため、乾燥密度pdを精度良く推定 するためには、WH式による礫率補正式のさらなる補正が必要である.なお、礫率Pは加え た礫粒子の重量と礫混入後の全粒子の質量の比である.

⑤ 所定の最大粒径D_{max}の土を用いて、最大粒径D_{max}がより大きい土、もしくはより小さい土の 最大乾燥密度ρ_{dmax}を精度良く推定するためには、WH式と最大乾燥密度比Xと礫率Pの関係 を組み合わせることによる修正が好ましい.この方法は、WH式の適用範囲である礫率P が0.3~0.4よりも低い範囲から高い範囲の広範囲の礫率Pに適用できる.

以上より、大粒径粒子を含む盛土材に対しても、CCV値による締固め管理の有効性を確認するとともに、WH式と X-P 関係を組合せによる礫率補正の高度化により、粒径特性の違いが品質評価に与える影響を解消した締固め管理を実現できる.

5-2 加速度応答法を用いた新しい締固め管理手法の実工事への適用方法

前項に示した検討結果を踏まえ、加速度応答法(CCV 値)を用いた新しい締固め管理手法の実 工事への適用方法について説明する. 図 5-1 には、本手法を実工事に適用する場合の手順フロ ーを示す.

まず,施工前の事前準備として,室内試験と試験施工を行う.

室内試験では, 締固め施工に用いる試料をふるって, 少なくとも二種類の最大粒径 (例えば, 最大粒径 D_{max} =2.00, 37.5mm)を持つ試料を準備し, 突固め試験 (JISA 1210:2009)⁸⁾を実施す る. この際, 付随して, 土粒子密度試験 (JISA 1202:2009)⁹⁾, 粒度試験 (JISA 1204:2009) ¹⁰⁾も実施する. 締固め試験の結果を整理し, 最適飽和度 S_{ropt} , 突固め時の各締固め点から D_c ~ 飽和度差 S_r - S_{ropt} 曲線, 最大乾燥密度比 (最大粒径 D_{max} が小さいほうの実測最大乾燥密度 ρ_{dmax} を礫混入率 P に基づいて WH 式で補正した最大乾燥密度[ρ_{dmax}]_{WH} をより大きな最大粒径 D_{max} を持つ試料の実測最大乾燥密度 ρ_{dmax} で除したもの) X-礫混入率 P 関係を求める.

次に、試験施工を行う. 試験施工は、要求性能を満足する施工仕様(重機、撒き出し厚、施工含水比w,転圧回数Nなど)を決定することと、CCV値と乾燥密度 ρ_{d} 、飽和度 S_r の関係式を構築することを目的として行う. そのため、試験施工では、CCV値を取得するとともに、施工後に RI 試験(密度と含水比の計測)を実施する. なお、要求性能を満足する施工仕様となっているかの判断は、上記の室内試験の結果を利用する. すなわち、現場試料の 1.0 E_c での最大乾燥密度 ρ_{dmax} を求め、その密度をもとに、目標とする締固め度 D_c の時の密度を決定するとともに、室内試験の時の最適飽和度 S_{root} も不変のものとして取り扱う.

最後に、本施工において CCV 値による締固め管理を行う. 試験施工で構築した CCV 値と乾燥密度 ρ_d 、飽和度 Srの関係式を用いて、施工中に取得する CCV 値と施工前に測定した含水比 w から乾燥密度 ρ_d と飽和度 Sr をリアルタイムに推定する. このうち、乾燥密度 ρ_d と事前準備 で算出した最大乾燥密度[ρ_{dmax}]wH.X-P を用いて締固め度(D_c)_{IEc} を評価する.

これらの情報を重機のオペレータが施工中にリアルタイムかつ面的に確認できるようなモニ タリングシステムを構築することで、締固め度(*D*_c)_{IEc}や飽和度*S*_rの良否を判断しながら最適な 施工を行うことが可能となる.これより、合理的な施工法による高品質な盛土構造物の構築が 可能になる.以下に、各項目の実施内容の詳細を説明する.

110

図 5-1 加速度応答法 (CCV 値) を用いた新しい締固め管理手法の手順フロー

5-2-1 施工前の実施事項

施工前は、室内土質試験とデータ整理を行う必要がある. それぞれにおける実施内容を以下に示す.

(1) 室内試験

室内試験では、以下に示す三つの試験を行う.これらは必要最低限の試験項目を示したものであり、これ以外にも必要な試験があれば、適宜実施する.

- ・突固めによる土の締固め試験(JISA 1210:2009)⁸⁾
- ・土粒子の密度試験(JISA1202:2009)⁹⁾
- ・土の粒度試験(JISA 1204:2009)¹⁰⁾

土粒子密度試験は、土質の性状を把握するために必要な情報であり、飽和度 Sr の算出に欠かすことのできない指標の一つである.

粒度試験は、土質の性状(細粒分含有率 F_cや礫率 P, 均等係数 U_cや曲率係数 U_cなど)を 把握するために必要な試験であり、基本情報として把握する必要があり、可能な限り沈降分 析も実施する. 粒度試験の結果より、現場全粒径試料の最大粒径 D_{max} を確認する.

土の締固め試験は、土質の締固め特性を把握するために必要な試験である.通常の盛土の 締固め管理では、1 種類の土試料を対象に締固め試験を実施するが、本研究で提案する新し い締固め管理では、室内試験において実現可能な範囲で最大粒径 *D*_{max} を変化させた 2 種類の 土質を対象に試験を行う.この目的は、第4章に示したように、*X-P* 関係は粒径に依らず高 い相関関係にあるため、必要最低限の試験数で合理的に *X-P* 関係を構築することである.図 5-2 は、最大粒径 *D*_{max}=2.00mm、37.5mm の 2 種類の材料を対象に実施した締固め試験の例を 示す.図 5-2 より、粒径に依らず最適飽和度 *S*_{ropt} は一致していることがわかる.

図 5-2 最大粒径 Dmax=2.00m,75.0mm の締固め曲線の例

(2) データ整理

室内試験データを整理し、図 5-3 に示す締固め度 D_c ~飽和度差 S_r-S_{ropt} 曲線を作成する.図 5-3 より、締固め曲線形は湿潤側では相関性が低下する結果がみられるものの、粒径に依ら ず概ね相似関係にあることがわかる.図 5-4 は、2 種類の締固め曲線から得られた X-P 関係 図を示す. X-P 関係は、粒径や締固めエネルギーCEL に依らず一致することが確認されてい るため、図中に示すような推定線を記述することができる.これより、最大粒径 D_{max} =37.5mm を基準とした場合の現場全粒径試料に相当する礫率 P と最大乾燥密度比 X を求めることがで きるため、最大粒径 D_{max} =37.5mm の締固め曲線を礫率補正により現場全粒度試料相当の締 固め曲線に変換し、その時の最大乾燥密度[ρ_{dmax}]WH.X-P'を求める.

図 5-3 締固め度 Dc と飽和度差 Sr-Sroptの関係の例

図 5-4 最大粒径 D_{max}=2.00mm, 75.0mmの X-P 関係の例

5-2-2 試験施工の実施事項

試験施工では、試験施工と *CCV* 値による乾燥密度 ρ_d 、飽和度 S_r の関係式の構築を行う. それぞれについて、以下にその詳細を示す.

(1) 試験施工

通常の工法規定方式と同様に、施工仕様(施工重機,敷き均し厚,含水比 w,転圧回数 N など)を決定するための試験施工を実施する.これに加え、新しい締固め管理では、CCV値 の取得と、それに対応する密度試験(RI 試験など)を実施する.表5-1 には、品質試験項目と 品質試験測定頻度を示す.品質試験項目は、施工中には CCV値を計測し、施工後には、レベ ルによる沈下量の計測、砂置換もしくは RI 試験による密度試験を実施する.なお、CCV シ ステムは、衛星通信状態が芳しくない山間部では、稀に測定データを取得できない事象が発 生する.そのため、CCV値と正の相関を示すキャスポル試験や小型 FWD 試験を補足的に実 施することを推奨する.図5-5、図5-6 には、試験施工試験ヤードと品質試験測定位置の例 を示す.これらの品質測定データを解析し、CCV値と乾燥密度 pd、飽和度 Srの関係式を構築 する.また、締固め過程における CCV 値の変化も確認する.これは、第4章に示したよう に、一つの CCV 値から推定される二つの乾燥密度 pd を正しく評価するためである.

測定項目	撒出し	敷均し	初期	転圧回数 N(有振動)				
			(無振動)	2	4	6	8	12
CCV 測定	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
レベル測定	-	-	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
密度試験	-	-	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
RI 試験	-	-	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
キャスポル試験	-	-	0	0	0	0	0	\bigcirc
小型 FWD 試験	-	-	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc

表 5-1 品質管理項目と測定頻度の例

図 5-5 試験盛立ヤードの例

図 5-6 品質試験位置図の例

(2) データ整理

試験施工で取得した測定データを解析し、飽和度 S_r をパラメータとした CCV 値と乾燥密度 ρ_d の推定式を作成する. 図 5-7 に示すように、転圧試験で得られた乾燥密度 ρ_d と CCV 値の測 定データを、飽和度 S_r 毎に分類する. この関係を表現する関数式として式(5-1)に示す飽和度 S_r をパラメータとした CCV 値と乾燥密度 ρ_d との関係式を構築する. これより、施工中に得られ る CCV 値から乾燥密度 ρ_d や飽和度 S_r を即時に推定することができる.

$$CCV = f_{CCV}(S_r) \times (\rho_d - b)^C$$

(5-1)

図 5-7 飽和度 Sr毎に分類した CCV 値と乾燥密度 pdの関係

5-2-3 本施工の実施事項

実施工では、施工中に取得する CCV 値と試験施工で構築した CCV 値と乾燥密度 ρ_d ,飽和度 Sr の関係式を組合わせることで、リアルタイムかつ面的な品質管理を行う. CCV 値から推定す る乾燥密度 ρ_d は現場全粒径試料に相当する値であるため、事前準備で求めた最大乾燥密度 [ρ_{dmax}]WH.X-P を用いて締固め度(D_c)IEc を評価する.

図 5-8 には、飽和度のモニタリング画面 ¹¹⁾を示す.これは、振動ローラの操縦席に搭載する モニタ上に投影される画面であり、振動ローラの GNSS 情報と連動して画面上のローラアイコ ンが動くようになっている.振動ローラの走った軌跡には、締固め度(*D*_c)_{IEc} や飽和度 *S*_r などの 品質情報をコンタ表示することができる.画面には、締固め曲線も示すが、乾燥密度 *p*_d、含水 比*w*、飽和度 *S*_rで規定された品質管理範囲に概要する場合は黄色、それ以外は青や赤色で標記 するようにプログラム上で認識されておくことで、オペレータはそのコンタを確認しながら施 工することができる.これより、施工の手戻りや品質不良個所の見落としなどのリスクを排除 した施工管理が可能となる.

図 5-8 飽和度のモニタリング画面

5-3 CCV 値による締固め度(D_c)_{1Ec}の推定方法

前節に示した締固め管理手法に倣い,第4章に示した転圧試験や*X-P*関係の検討に使用した 最大粒径 *D*_{max}=75.0mm の細粒分混じり礫質土を現場全粒度試料とする実施工において取得し た *CCV* 値と含水比 *w* の測定データの一部を用いて,締固め度(*D*_c)_{1Ec}の算出を行う.具体的に は,小粒径粒子を主体とする室内粒度試料を用いた室内締固め試験の結果を WH 式と *X-P* 関係 により現場全粒度試料相当に礫率補正し,その時の最大乾燥密度[*p*_{dmax}]_{WH.X-P}を用いて締固め度 (*D*_c)_{1Ec} を評価した.なお,盛土材料や使用重機などの諸条件は,第4章に示した内容と同様で あるため,ここでは説明を省略する.

5-3-1 実施工により得られた CCV 値の測定データ

最大粒径 D_{max}=75.0mm の細粒分混じり礫質土(以下,現場全粒度試料)を用いて実大締固 め機械による実施工時において得られた含水比毎(w=10.4%,10.7%,11.0%,11.3%,12.3%, 12.7%,13.0%)の CCV 値データを図 5-9~図 5-15 に示す.これらのデータは,施工日,施 工層がそれぞれ異なる条件での施工時に得られたデータである.CCV 値は,第4章に示した 転圧試験と同様に施工エリアを2m 各に分割し,その範囲内に存在する50cm メッシュの CCV 値の平均値として評価した.施工含水比wは,盛土場にダンプ運搬した土砂の代表的な場所 で複数回の RI 試験を実施し,それらの平均値を設定した.また,施工含水比wは場所,時 間によるばらつきはないものと仮定し,一定値として取り扱うことにした.図 5-9~図 5-15 をみると,含水比毎にデータ数にばらつきはあるものの,CCV 値は10以下のデータが大半 を占めており,そのうち CCV 値は4~6のデータ量が最も多い傾向が確認されている.

図 5-9 含水比 w=10.3%の時の CCV 値のヒストグラム

図 5-10 含水比 w=10.7%の時の CCV 値のヒストグラム

図 5-11 含水比 w=11.0%の時の CCV 値のヒストグラム

118

図 5-13 含水比 w=12.3%の時の CCV 値のヒストグラム

図 5-14 含水比 w=12.7%の時の CCV 値のヒストグラム

図 5-15 含水比 w=13.0%の時の CCV 値のヒストグラム

5-3-2 締固め曲線の礫率補正による締固め度(D_c)_{1Ec}の推定

ここでは、小粒形粒子を主体とした室内粒度試料を用いた室内締固め試験により得られた 締固め曲線に WH 式と X-P 関係による礫率補正を施すことで現場粒度試料に相当する締固 め曲線に取得し、その時の最大乾燥密度[ρ_{dmax}]WH.X-P と CCV 値データより推定した乾燥密度 ρ_d より締固め度(D_c)IEc を推定する手法について説明する.

図 5-9~図 5-15 に示した含水比 w 毎の CCV 値の測定データと土粒子密度 ρ_s を用いて,第 4 章に示した CCV 値と乾燥密度 ρ_d ,飽和度 S_r の関係式より乾燥密度 ρ_d の推定を行う.図 5-16 には,締固め曲線上に乾燥密度 ρ_d の推定値と含水比 wの実測値をプロットした.図 5-16 には,最大粒径 $D_{max}=75.0$ mmの現場全粒度試料と,現場全粒度試料をせん頭粒度法により最 大粒径 $D_{max}=37.5$ mm に粒度調整した室内粒度試料の締固め曲線を示した.室内粒度試料の締 固め曲線は,室内締固め試験(B-b 法)により得られた結果であり,現場全粒度試料の締固 め曲線は,室内粒度試料の締固め曲線をWH法により礫率補正して得られた結果である.

まず、WH 式により算出した現場全粒度試料の締固め曲線を用いた用いた場合の締固め度 (D_c)_{IEc} を評価する. 締固め度(D_c)_{IEc} は、*CCV* 値より推定した乾燥密度 ρ_d と、室内粒度試料に よる室内締固め曲線をWH 法により現場全粒度試料相当に礫率補正し、その時の最大乾燥密 度[ρ_{dmax}]_{WH}を用いて算出した. 図 5–16 より、締固め度(D_c)_{IEc} は、一部を除いて概ね 95%以下 に分布していることがわかる. 特に、締固め度(D_c)_{IEc} は 90%以下のデータが大半を占めてお り、最大・最小の締固め度(D_c)_{IEc} はそれぞれ 96.5%、77.6%であった.

図 5-17 には、締固め度(*D*_c)_{IEc}のヒストグラムを示すが、締固め度(*D*_c)_{IEc}は 70~100%の区 間に分布しており、締固め度(*D*_c)_{IEc}の平均値は 86.5%であった. 道路の盛土の締固め管理で は締固め度(*D*_c)_{IEc}≧90%を管理基準値とする場合が多く、本試験で得られた全データのうち 約 15%がこの管理基準値以上という結果となった. この要因の一つとして *CCV* 値のばらつ きも考えられるが、主たる要因として WH式による礫率補正の精度が低いことが考えられる. 第4章に示したように、礫粒子を混入した場合は、WH 式により推定した乾燥密度 ρ_d は実測 値よりも過大に評価され、礫粒子を除去した場合は、実測値よりも過小に評価される. すな わち、図 5-17 に示す WH 式により求めた現場全粒度粒度の締固め曲線は、実際の現場全粒 度試料の締固め曲線よりも過大に評価されている可能性が高い. そこで、第4章に示した *X*-*P* 関係を用いて現場全粒度試料に相当する締固め曲線を正しく補正した上で、締固め度(*D*_c)_{IEc} を評価することにした.

図 5-17 締固め度(D_c)_{1Ec}のヒストグラム

図 5-18 には、第4章に示した X-P 関係のうち、最大粒径 D_{max}=37.5mm を基準とした X-P 関係のみをプロットした.図 5-18 より、最大粒径 D_{max}=37.5mm を基準とした場合、最大粒 径 D_{max}=75.0mm を目標とした場合の X-P 関係を確認すると、それぞれ礫率 P=0.219、最大乾 燥密度比 X=1.034 であることがわかった.すなわち、図 5-16 に示した WH 式により算出し た最大粒径 $D_{max} = 75.0 \text{mm}$ の現場全粒度試料の締固め曲線の最大乾燥密度[ρ_{dmax}]_{WH} を最大乾燥密度比 X で除した値を算出し、その値を最大乾燥密度[ρ_{dmax}]_{WH} とする新しい締固め曲線 をプロットすることで、X-P 関係により補正した現場全粒度試料に相当する締固め曲線を得ることができる.

図 5-19 には、WH 式と X-P 関係により取得した現場全粒度試料の締固め曲線と、CCV 値 より推定した乾燥密度 ρ_d の推定値と含水比 w の実測値を示した.図 5-19 をみると、図 5-16 に比べて締固め度(D_c)_{IEc} は全体的に増加しており、中には、締固め度(D_c)_{IEc} は 100%を超え る結果も確認された.最大・最小の締固め度(D_c)_{IEc}は、それぞれ 100%、80.1%という結果が 得られた.

図 5-20 には、締固め度(D_c)_{IEc}のヒストグラムを示すが、締固め度(D_c)_{IEc}は 85~100%の範囲 に分布しており、平均値は 89.5%であった.図5-17 の結果と比較すると、WH 式と X-P 関係 を用いることで、締固め度(D_c)_{IEc} は高めに評価されることがわかった.実工事においては、 工法規定方式で規定された施工仕様を確実に履行しているため、目標品質である締固め度 (D_c)_{IEc}≧90%を満足しているものと仮定すると、図 5-19 に示す WH 式と X-P 関係の組合せに より算出した品質試験結果はその実態と概ね一致しており、図 5-17 に示す WH 式のみによ り算出した品質試験結果は実態を過小評価していることがわかる.

このように、*CCV*値より推定した乾燥密度 *ρ*_dを用いて締固め度(*D*_c)_{IEc}を評価する場合,室 内試験で得られた締固め曲線に対して WH 式と *X-P* 関係による礫率補正を施すことで,粒径 特性の違いが品質評価に与える影響を排除した高精度な締固め度(*D*_c)_{IEc} の評価が可能である.

図 5-18 D_{max}=37.5mm を基準とした X-P 関係

図 5-19 締固め曲線と実施エデータの関係

図 5-20 締固め度(D_c)_{1Ec}のヒストグラム

第5章のまとめ

本章においては,第3章と第4章で行った実験による検討結果を踏まえ,盛土の施工方法の 合理化するとともに,盛土構造物を高品質化することが可能な加速度応答法を用いた新しい締 固め管理方法について検討した.本章での検討結果を以下に示す.

① CCV 値を用いた新しい締固め管理手法の実工事への適用方法

施工前の事前準備,試験施工,実施工において実施すべき項目を整理し,施工の合理化と 盛土の高品質化を実現する新しい締固め管理手法を提案した.

施工前の事前準備では、土粒子密度試験、粒度試験、締固め試験を実施する.土の締固め 試験は、室内試験において実現可能な範囲で最大粒径 D_{max} を変化させた 2 種類の土質を対象 に試験を実施し、最大粒径 D_{max}、締固めエネルギーCEL に依らず最適飽和度 S_{ropt} は一定値を 示すこと、締固め度 D_c~飽和度差 S_r-S_{ropt} 曲線は相似関係にあることを確認する.また、X-P 関係を図化し、粒度試験で得られた現場全粒度試料の最大粒径 D_{max} に対応する最大乾燥密度 比 X の値を算出し、室内締固め試験結果を現場全粒度試料に相当する締固め曲線に変換し、 その時の最大乾燥密度[ρ_{dmax}]_{WH.X-P}を求めておく.

試験施工では、通常の工法規定方式と同様に、施工仕様を決定するための試験施工を実施し、*CCV*値と乾燥密度ρ_d、飽和度S_rの関係式を構築する.

本施工では、施工前に取得した含水比 w と施工中に取得する CCV 値の測定データを関係 式に代入し、乾燥密度 ρd, 飽和度 Srをリアルタイムに推定しながら施工する. なお、CCV 値 から推定される乾燥密度 ρd と事前準備で求めた最大乾燥密度[pdmax]WH.X-P より締固め度[Dc]IEc を正確に評価する. これらの品質情報を振動ローラの操縦席のモニタ上にコンタ表示するこ とで、再施工の発生や品質不良個所の見落としなどのリスクを回避した施工が可能となる. ② CCV 値による締固め度(Dc)IEc の推定方法

実工事において取得した *CCV* 値と含水比 w の測定データの一部を用いて,従来の WH 式 を用いた場合と、本研究で提案する WH 式と X-P 関係を用いた場合とで求めた締固め度(D_c)_{IE} を比較した.その結果,WH 式と X-P 関係により算出した締固め度(D_c)_{IE} は,WH 式により 算出した締固め度(D_c)_{IE} よりも高く評価され,WH 式により算出した締固め度(D_c)_{IE} は実際 の値を過小評価していることがわかった.これより、実施工により得られた *CCV* 値と含水比 w の測定データに対して *CCV* 値と乾燥密度 ρ_d ,飽和度 Sr の関係式と X-P 関係を適用するこ とで、締固め度(D_c)_{IE} を正しく評価できることが示唆された.

以上のように、本研究で提案する新しい締固め管理は、加速度応答法(CCV 値)による品質手法の即時推定式と、X-P 関係を用いて高度化した礫率補正式を組合せた管理手法により、施工の合理化と盛土構造物の高品質化を実現可能であることを示した.

第5章の参考文献

- 1) 横田聖哉,吉田武男,藤井弘章,内山恵一:振動ローラ加速度を利用した締固め管理の 検討-大規模土工における情報化施工に関する研究(3)-,第37回地盤工学研究発表会, pp.664-665, 2002.
- 2) 東京測器株式会社: FWD-Light による小型 FWD 試験方法(地盤編), pp.21-22.
- 近畿地方整備局近畿技術事務所:簡易支持力測定器(キャスポル)利用手引き, pp.5-6, 2005.
- 4) 公益社団法人地盤工学会:現場 CBR 試験,辞意版調査の方法と解説―二分冊の 2―, pp.723~731, 2013.
- 5) 龍岡文夫ら(2013~2015): 地盤工学・技術ノート, 盛土の締固め 1~20回, 雑誌「基礎工」, 2013 年 7月号~2015 年 2 月号.
- Walker, F. C. and Holtz, W.C.: Control of Embankment Material by Laboratory Testing. Proc. ASCE, 77-108, pp.1-25 (1951)
- Holtz, W. G. and Lowitz.: Compaction characteristics of gravelly soils. Bureau of Reclamation, Earth laboratory report, No. EM-509 (1957).
- 8) 公益社団法人地盤工学会:突固めによる土の締固め試験方法,地盤材料試験の方法と解 説-二分冊の1-,pp373~383,2009.
- 9) 公益社団法人地盤工学会:土粒子の密度試験方法,地盤材料試験の方法と解析-二分冊の1-, pp.97~103, 2009.
- 10)公益社団法人地盤工学会:土の粒度試験方法,,地盤材料試験の方法と解析-二分冊の1
 -, pp.115~136, 2009.
- 11) 永井裕之: ICT を活用した盛土施工の品質管理,公益財団都市計画協会,新都市,第71<
 巻第10号, pp.10~14, 2017.

第6章 結論

本研究においては、リアルタイムかつ面的に地盤剛性を評価することのできる加速度応答法 に着目し、品質測定手法の即時性を確保することによる施工の合理化に関する検討を行った. さらに、盛土の品質評価手法において課題とされてきた現場試験と室内試験で取り扱う土質の 最大粒径 *D*_{max}の違いが品質評価に与える影響に着目し、礫率補正式の高度化による盛土の高品 質化に関する検討を行った.これらの検討結果を組合せることで、高品質な盛土構造物を構築 するための新しい締固め管理手法を提案し、その手法を実施工で用いることによってその妥当 性を明らかとした.

6-1 各章における結論

以下に本論文の主要な要旨を述べる.

第2章の結論

第2章においては、盛土の締固め管理に関して、これまでに得られている知見を示し、往年中に行われてきた盛土締固め管理手法である品質規定方式、工法規定方式に加え、i-Constructionの推進による生産性向上を目的とした ICT 技術について示した.しかし、現状で現場施工に用いられている ICT 技術は、いずれも施工の効率化を目指した技術であり、盛土構造物の品質向上に寄与するような技術の開発はなされていない.

このような背景を踏まえ、施工方法の合理化と盛土構造物の高品質化を実現する技術の重 要性を明らかにした上で、盛土の締固め管理における品質測定手法と品質評価手法に関連す るそれぞれの課題を示した.

品質測定手法の課題は、盛土の品質情報の即時推定手法を考案することである.品質規定 方式における品質測定手法は、砂置換や RI 試験による盛土の品質を直接的に管理する手法 が主流である.しかし、これらの品質試験は転圧施工が完了してから行うため、仮に目標品 質を満足しない場合には、転圧施工の追加や、時には土砂を撤去してやり直しを行わなけれ ばいけなくなる可能性も含まれている.さらに、品質試験は人力により実施されるものであ るため、広い施工ヤードの代表点でしか実施することができない.これより、測定範囲以外 に品質不良個所が存在した場合には、それらを見逃す可能性がある.

一方,品質評価手法の課題は,現場試験と室内試験で取り扱う土質の最大粒径 D_{max}の違い が品質評価に与える影響を排除することの可能な礫率法正式を構築することである. 締固め 度 D_eによる管理を実施する場合,最大乾燥密度 ρ_{dmax} は室内締固め試験により求めることが 一般的である.これに対して,現場試験は,室内試験の許容最大粒径以上の大きい粒子の土 を含む場合が多いため、最大粒径 D_{max} の違いを解消することを目的として Walker-Holtz の礫 率補正(以下、WH式)を適用させる必要がある.しかし、室内粒度の乾燥密度 ρ_d を用いて WH 式により推定した現場全粒度試料の乾燥密度 $[\rho_d]_{WH}$ 'は、現場全粒度試料の乾燥密度 ρ_d の 実測値よりも過大に評価される.一方、現場全粒度試料の乾燥密度 ρ_d を用いて WH 式によ り推定した室内粒度試料の乾燥密度 $[\rho_d]_{WH}$ ''は、室内粒度試料の乾燥密度 ρ_d の実測値より過小 に評価することがわかった.

このため、現場試験と室内試験において取り扱う土質の最大粒径 D_{max}の違いを排除するためには、Walker-Holtz による礫率補正式の高度化が課題の一つである.

以上の内容を踏まえ,盛土の締固め管理において,施工方法の合理化と盛土構造物の高品 質化を実現することを目的とし,第3章,第4章に示す実験的検討を行った.

第3章の結論

第3章においては、多数測定可能な重錘落下試験やリアルタイムで面的に測定可能な CCV システムにより測定された地盤剛性指標による効率的な締固め管理手法の検討を目的とし、 大型土槽内にて砂質土層を用いた実大締固め機械による転圧試験を実施した.

転圧試験は、長さ 20m,幅 3m,深さ 95cm のコンクリート製ピットに砂質土を敷設し、転 圧回数 N=0, 2, 4, 6, 8, 12, 16回の転圧施工を実施した.施工中には CCV システムによ り得られる地盤剛性指標の一つである CCV 値をリアルタイムに計測し、施工後には RI 試験、 砂置換による密度試験、レベル測量による沈下量計測、小型 FWD 試験、キャスポル試験や 現場 CBR 試験により得られる地盤剛性指標($(K_{30})_{FWD}$, $(K_{30})_{+ャスポル}$, CBR 値)を計測した. なお、本試験に用いた砂質土の最大粒径 D_{max} は 9.5mm であり、室内試験に用いられる材料 に相当する.

転圧試験により得られた全ての計測データを解析した.転圧回数 N と乾燥密度 ρ_d ,飽和度 S_r ,さらに地盤剛性指標との関係は,締固めの初期段階で増加傾向を示し,転圧回数 N が 8 回以降は収束する傾向を示した.なお,転圧回数 N の増加に伴う地盤剛性指標の増加量は,飽和度 S_r が低いほど大きく,飽和度 S_r が高くなると剛性の増加量は低下した.ここで,龍岡 らによる既往の研究成果に基づき,(K_{30})FWD,(K_{30})キャスポル, CBR 値, CCV 値による乾燥密度 ρ_d と飽和度 S_r の推定式の構築を行った.その結果,いずれも飽和度 S_r をパラメータとして乾燥密度 ρ_d との関係式が成立することを確認した.

次に,地盤剛性指標同士の相関性について検討した. それぞれの地盤剛性指標(CCV 値, CBR 値, (K₃₀)_{FWD}, (K₃₀)_{キャスポル})の間の相関を見ると,ある程度のばらつきはあるもののそれ ぞれほぼ一対一の関係があることがわかった. このことは,従来よく用いられてきた地盤剛 性指標(CBR 値, (K₃₀)_{FWD}, (K₃₀)_{キャスポル})に替わって, CCV 値によって従来の地盤剛性指標と同 等の地盤剛性指標を求めることができるということを意味している.さらに, CBR 値, (K₃₀)_{FWD}, (K₃₀)_{キャスポル}は施工完了後の点情報として取得する指標であるのに対して, CCV 値はリアルタ イムかつ面的に取得することのできる指標であるため, CCV 値によってその他の地盤剛性指 標を面的にリアルタイムで収集が可能であること意味している.

次に、各地盤剛性指標と乾燥密度 pa, 飽和度 Sr の関係式を用いた締固め管理手法について

提案した.地盤剛性指標の関係式に基づく乾燥密度 ρ_d と各地盤剛性指標との関係をみると, 同じ乾燥密度 ρ_d でも飽和度 S_r が低下(増加) すると地盤剛性指標値は大きく増加(減少) す ることから,地盤剛性指標だけで締固めの良否を判定することはできないことがわかる.ま た,同じ締固めエネルギー*CEL* で飽和度 S_r が最適飽和度 S_{ropt} よりも低下すると,乾燥密度 ρ_d は低下するが地盤剛性指標は増加する.この特性を活用し,地盤剛性指標を用いた飽和度 S_r と締固め度 D_c による締固め管理手法について検討する.

地盤剛性指標と乾燥密度 ρ_d の空間上に、上記に示した関係式を用いて締固め度 D_c の下限 値、飽和度 S_r の上下限値を図化することができるため、地盤剛性指標の目標値を設定するこ とができる.実施工においては、地盤剛性指標の目標値を目指した施工を行うことで、締固 め度 D_c ,飽和度 S_r により規定された品質管理を行うことができる.また、地盤剛性指標から 関係式を用いて乾燥密度 ρ_d を推定する場合、一つの地盤剛性指標から二つの乾燥密度 ρ_d を 推定することになる.この時、締固め過程における地盤剛性指標の変化(すなわち転圧回数 情報)を併せて管理することで、正しい乾燥密度 ρ_d を推定することができる.

この手法は、盛土の高品質化と締固め管理の効率化に有効と考えられる. なお、(*K*₃₀)_{FWD}, (*K*₃₀)_{キャスボル}, *CBR* 値はいずれも施工後の点情報としてデータを取得するのに対して, *CCV* 値 は施工中にリアルタイムかつ面的にデータを取得できるため、締固め管理の効率化に最も適 した手法であるといえる.

第4章の結論

第4章においては、粒径特性が盛土の品質に与える影響の評価に関する研究とし、まずは 大粒径の土を含んだ現場全粒度試料を対象とした実工事における転圧試験を実施し、*CCV*値 による合理的な締固め管理手法を検討した.

本研究に使用する現場全粒度試料は,最大粒径 D_{max}=75mmの細粒分混じり砂質礫であり, 長さ 20m,幅 6m,高さ 60cmの施工ヤードにて転圧試験を行った.転圧施工中には CCV 値 を計測し,施工後には施工エリアの計 6 測点で RI 試験による密度試験を行った.

転圧試験の結果より、含水比w、乾燥密度 ρ_d 、飽和度 S_r 、*CCV*値はいずれも測点によって 値が異なることがわかった.このことは、含水比wに基づく締固め管理法では、含水比wの 分布の把握が重要なことを示している.測点毎の結果をみると、含水比wは転圧回数Nの増 加に伴い値が若干変動した.乾燥密度 ρ_d 、飽和度 S_r は、転圧回数Nが 2回で大幅に増加し、 6回まで漸増し、8~16回で収束傾向を示した.*CCV*値は、転圧回数Nが 2~6回まで一貫し て増加し、8回で極大値を示し、16回で減少した.*CCV*値は、転圧回数Nと締固めエネルギ -*CEL*を変数とせずに乾燥密度 ρ_d 、飽和度 S_r を独立変数とする関係式により表現できる.

関係式を用いて推定した乾燥密度 ρ_d の推定精度は、飽和度 S_r と関数 $f_{cev}(S_r)$ の精度が高いほど向上することがわかった.目標とする乾燥密度 ρ_d が決まっており、含水比 w と土粒子密度 ρ_s が既知であれば、関係式により目標の *CCV* 値を決めることができる.一方で、土粒子密度 ρ_s 、含水比 w が既知で、*CCV* 値を施工時に測定した場合には乾燥密度 ρ_d を算出できる.したがって、関係式を用いればリアルタイムかつ面的な締固め管理手法を実現できる.

上記の関係式を用いて乾燥密度 pd と含水比 w の空間上に CCV 値の等値線を図化すると,

現場全粒度試料の含水比 w を一定と仮定した場合,飽和度 S_r が最適飽和度 S_{ropt} になる少し前 で *CCV* 値は極大値を示すことがわかる.施工時には,所定の転圧回数 N を達成した上で *CCV* 値がこの極大値に達成したことを確認すれば,必要な高い締固め状態を実現できる.*CCV* 値 が極大値以下の場合,第3章の検討結果と同様に,*CCV* 値単体ではなく転圧回数 N と組合せ て管理することで,乾燥密度 ρ_d を正しく評価することができる.これより,大粒径を含む現 場全粒度試料を対象とした実施工においても *CCV* 値によるリアルタイムかつ面的な乾燥密 度 ρ_d ,飽和度 S_r の管理が可能となるため,従来よりも効率的な施工法による高品質な盛土の 実現が可能となる.

次に、現場試験と室内試験で取り扱う土質の最大粒径 D_{max}の違いが品質評価に与える影響を排除することを目的とし、Walker-Holtz による礫率補正式の高度化について検討した.

転圧試験に使用した現場全粒度試料を母材とし、最大粒径 D_{max} を変化させた小型・大型室 内締固め試験を実施した.最大粒径 D_{max} を 2.00, 4.75, 9.50, 19.0, 37.5, 53.0, 75.0mm と変 化させ、それぞれ 1.0 E_c , 4.5 E_c による締固め試験を実施した.次に、WH 式により所定の最大 粒径 D_{max} よりも大きい粒子の土を混入した試料を同一の締固めエネルギーCEL で締固めた 時の最大乾燥密度[ρ_{dmax}]_{WH}'を推定した.その結果、最大乾燥密度[ρ_{dmax}]_{WH}'は、所定の最大粒 径 D_{max} よりも大きい粒子の土を混入した試料の実際の最大乾燥密度 ρ_{dmax} よりも過大に評価 されることがわかった.この傾向は、礫率 Pの値に依らず確認されているが、礫率 Pが 0.3 よりも大きくなると、より明白に過大評価することが分かった.これは、WH 式の仮定では、 所定の最大粒径 D_{max} よりも大きい粒子の土を混合した場合、全粒子の土に均等に締固めエネ ルギーCEL が加えられるものとしているが、実際には、混入した土以外の元の土には均一な 締固めエネルギーCEL が加えられていないことを意味している.

そこで、同一の締固めエネルギー*CEL*に対する最大乾燥密度比*X*=「WH 式による推定値」 /「実測値」と礫率*P*の関係を求め、WH 式の補正を試みた.ある締固めエネルギー*CEL*で締 固められた最大粒径 D_{max} の小さい土の最大乾燥密度 ρ_{dmax} を用いて、Walker-Holtz 式(以下、 WH 式)により、より大きな粒径の土を含む土の最大乾燥密度(ρ_{dmax})_{WH}'を推定し、その値を*X*-*P*関係から求めた最大乾燥密度比 *X*の値を用いて修正することで最大乾燥密度[ρ_{dmax}]_{WH.X-P}' が得られる.これと同様に、所定の最大粒径 D_{max} よりも小さい粒子の土を除去した場合、WH 式と *X-P*関係を用いることで最大乾燥密度[ρ_{dmax}]_{WH.X-P}"を得ることができる.最大乾燥密度 [ρ_{dmax}]_{WH.X-P}"は、それぞれの土質の最大乾燥密度 ρ_{dmax} の実測値と一致する.

これより,WH式に*X-P*関係を組合せることで,現場試験と室内試験で取り扱う土質の最 大粒径 *D*_{max}の違いが品質評価に与える影響を排除した,高精度な品質管理を行うことができる.

第5章の結論

第5章においては、第3章と第4章で行った実験的検討の結果を踏まえ、CCV 値と乾燥密度 ρ_s 、飽和度 S_r の関係式と X-P 関係による礫率補正式に基づく新しい締固め管理手法を提案 する. さらに、本手法の有効性を確認するため、実工事で得られた CCV 値と含水比 w の測 定データを対象に本手法を用いて締固め度(D_c)_{IEc} を評価した.

まず、本手法の施工手順について、事前準備、試験施工、本施工に分けて説明する.

事前準備では、土粒子密度や粒度試験など基本的な物性試験に加えて、最大粒径 D_{max} を変化させた締固め試験を実施し、最大粒径 D_{max}, 締固めエネルギーCEL に依らず最適飽和度 S_{ropt}は一定値を示すこと、締固め度(D_c)_{IEc}~飽和度差 S_r-S_{ropt} 曲線は相似形を示すことを確認する. さらに、X-P 関係図を求めて、現場全粒度試料の最大乾燥密度[p_{dmax}]_{WH.X-P}'を予め算出する.

試験施工では、現場全粒度試料を用いた転圧施工を行い、施工中に得られる CCV 値と施工 後に実施する密度試験結果を解析し、CCV 値と乾燥密度 pd、飽和度 Srの関係式を構築する.

本施工では、試験施工で構築した関係式を用いたリアルタイムかつ面的な品質管理を実施 する.施工前に盛土材の含水比 w を測定し、施工中に CCV 値を測定し、これらを上記の関 係式に代入することで乾燥密度 ρ_d と飽和度 S_r を推定する.なお、含水比 w は施工中に一定 であると仮定する. CCV 値より推定した乾燥密度 ρ_d は現場全粒度試料の値であるため、事前 準備で算出した最大乾燥密度 [ρ_{dmax}]wH.x.P'を用いて締固め度(D_c)_{IEc} を算出する.

上記の手順に倣い施工を行うことで、CCV値から締固め度(D_c)_{IEc}を正しく評価できる.

次に、本手法の有効性を確認するため、実工事で得られた CCV 値と含水比 w の測定デー タを対象に締固め度(D_c)_{1Ec} の評価を行った.なお、本手法の有効性を明確にするため、従来 の品質管理と同様に WH 式のみを用いた場合の締固め度(D_c)_{1Ec} の評価結果との比較を行う.

まず、実施工で取得した *CCV* 値と含水比 w の測定データを対象とし、*CCV* 値と乾燥密度 ρ_d ,飽和度 *S*_r との関係式を用いて乾燥密度 ρ_d を算出した.これに対し、最大粒径 *D*_{max}=37.5mm の室内粒度試料を用いて算出した締固め曲線を対象とし、WH 式、WH 式と *X-P* 関係を用い てそれぞれの締固め曲線を算出し、それぞれの最大乾燥密度[ρ_{dmax}]_{WH}'、[ρ_{dmax}]_{WH,X-P}'を求めて 締固め度(*D*_c)_{IEc} を得た.なお、実工事においては、工法規定方式で規定された施工仕様を確 実に履行しているため、目標品質である締固め度(*D*_c)_{IEc} ≥90%を満足していると仮定する.

WH 式, WH 式と *X-P* 関係を用いて評価したそれぞれの締固め度(D_c)_{IEc} を比較すると, WH 式のみの場合は, WH 式と *X-P* 関係を用いた場合よりも締固め度(D_c)_{IEc} が低く評価された. これは, WH 式のみを用いて推定した最大乾燥密度[ρ_{dmax}]_{WH}'が実測値よりも過大に評価され たためである. WH 式と *X-P* 関係を用いて評価した締固め度(D_c)_{IEc} の平均値は 89.5%となり, 目標品質である締固め度(D_c)_{IEc} \geq 90%と比較すると若干低め(安全側)に評価されているもの の, 概ね良好な試験結果が得られた. これより, WH 式と *X-P* 関係を用いることで正しい品 質管理が可能であることが明らかとなった.

以上より, CCV 値と乾燥密度 ps, 飽和度 Sr の関係式と X-P 関係による礫率補正式に基づく 新しい締固め管理手法は実工事に有効な管理手法であり,本研究の目的とする施工の効率化, 盛土構造物の高品質化を実現する手法であることを示した.

131

6-2 まとめ

本研究においては、リアルタイムかつ面的に地盤剛性を評価する加速度応答法に着目し、品 質測定手法の即時性を確保することによる施工の合理化に関する検討を行った. さらに、盛土 の品質評価手法において課題とされてきた現場試験と室内試験との粒径特性の違いが品質評価 に与える影響に着目し、礫率補正式の高度化による盛土の高品質化に関する検討を行った. こ れらの検討結果を組合せることで、施工の合理化と盛土構造物の高品質化を実現する新しい締 固め管理手法の提案を目指した. 各章の検討内容と効果について下記に示した.

第3章では、室内粒度試料(粒径が小さい)を対象とし、地盤剛指標(現場 CBR 試験、小型 FWD 試験、キャスポル試験、CCV システム)を用いた乾燥密度 pd、飽和度 Srの即時推定手法 を示した.砂置換や RI 測定により得られる乾燥密度 pdや飽和度 Srは、いずれも施工完了後の 点情報として得られる指標であるのに対して、CCV システムは、施工中にリアルタイムかつ面 的にそれらの品質情報を取得することができるため、本研究の一つ目の目的である施工の合理 化を実現する上で有効な手法であることを明らかにした.

第4章では、第3章に示した *CCV* 値による乾燥密度 ρ_d と飽和度 S_r の推定手法が現場全粒度 試料(粒径が大きい)にも適用可能であることを示した.これより、*CCV* 値によるリアルタイ ムかつ面的な品質管理手法の実工事における適用性を示すことができた.

さらに、walker-Holtzによる礫率補正式に最大乾燥密度比*X*-礫率*P*の関係を組合せることで、 従来の締固め管理において課題であった現場試験と室内試験の最大粒径 *D*_{max} の違いが品質評 価に与える影響を解消し、高精度な品質評価を行えることを示した.これにより、本研究の二 つ目の課題である盛土構造物の高品質化を実現する上で有効な手法であることを明らかにした.

第5章では,第3章と第4章の検討結果より,*CCV*値と乾燥密度ραと飽和度Srの関係式, Walker-Holtz による礫率補正式と*X-P*関係に基づく礫率補正式を組合せた新しい締固め管理手 法を示した.本手法を実工事に適用することにより,本研究の主目的である施工の合理化と盛 土構造物の高品質化を実現することを明らかにした.

第2章に示したように、現在、現場に適用されている ICT 技術のほとんどが施工の省力化を 目的としたものであり、その中において、施工の合理化に加えて盛土の高品質化を実現する本 研究の優位性は明確であり、今後に発生が予想される自然災害や少子高齢化に伴う生産性の向 上などの課題に対応することのできる技術である.

6-3 今後の課題

本研究により提案した加速度応答法を用いた新しい締固め管理手法により,現状の締固め管 理における課題を解決し,社会のニーズ(盛土の高品質化,施工の合理化)に対応することが できることがわかった.しかし,本手法により品質評価精度をさらに向上させるためには,施 工中各場所での含水比wをリアルタイムに測定あるいは推定することが必要である.今後,含 水比wのリアルタイムかつ面的な技術の発展は必要な事項であり,将来の研究成果を待ちたい.

謝辞

本論文は、東京理科大学理工学研究科土木工学専攻博士後期課程において、東京理科大学大学院教授 菊池喜昭先生のご指導の下で、研究成果を取り纏めたものであります.

東京理科大学より本論文に対して博士の学位を授与して頂くに際し、本論文の研究活動 に対して、休日も厭わず熱心で丁寧にご指導、ご鞭撻を賜りました東京理科大学理工学部 土木工学科教授 菊池喜昭先生に、心より感謝申し上げます.2015 年に共同研究を開始し て以来、菊池先生のご指導の下、研究活動の面白さに気付かせていただき、こうして学位 の取得にチャレンジすることができました.日々ご多忙の中にも関わらず、隔週ごとに打 合せの機会を設けていただき、研究計画や進行、論文執筆に対して叱咤激励をしていただ きました.また、世の中の複雑さや面白さなどについても日常会話を通じて教えていただ きました.更には、人との接し方、物事の考え方、文章の書き方など力量不足な私に対し て多大なる時間と労力を費やしていただき、大変感謝しております.

菊池先生からご指導頂いた様々な名言の中で特に印象的なものは,「社会に出て実務を 通じて研究の重要性に気付き,そこから学び始めることは非常に大切である」というお言 葉です.2009 年度学部卒の私にとって,博士取得とは縁遠いものでありました.そんな私 が博士課程に進学させて頂くにあたり「私のような未熟者にしっかりとした研究ができる のか?」と自問自答を繰り返しました.その時に,菊池先生より前述した温かいお言葉を かけていただきました.この言葉に共感を覚え,それ以降,常に前向きな気持ちで研究に 取り組んできました.菊池先生からは,このお言葉以外にも本当に様々な温かい言葉の与 えて頂いたことで,忘れることの出来ない充実した研究生活を過ごすことができました. 共同研究を開始してから今までの約6年間を価値あるものとして下さった菊池先生には, 重ねて御礼申し上げます.

本論文の副査として、ご多忙にも関わらず本論文の審査をしていただき、貴重なご意見、 ご指導を賜りました東京理科大学理工学部土木工学科教授 塚本良道先生、東京理科大学 理工学部土木工学科教授 佐伯昌之先生、東京理科大学理工学部機械工学科教授 野口昭治 先生、東京理科大学建築学科教授 永野正行先生に謹んで感謝申し上げます.

東京大学名誉教授・東京理科大学名誉教授 龍岡文夫先生には,地盤工学全体の視点から 研究の方針や実務適用に向けた課題など多くご指導,ご助言をいただきました.私の初歩 的な質問や相談にも丁寧に答えていただきありがとうございました. 龍岡先生のお陰で研 究生活を順調に進めることができました. 今後共、ご指導ご鞭撻の程よろしくお願い致し ます. 富山県立大学工学部環境・社会基盤工学科講師 兵動太一先生には,研究に対するアドバ イスに限らず研究者としての心構えや社会人としての処世術などたくさんのお話を聞かせ ていただきました.いつも温かく見守っていただいたことに御礼申し上げます.今後とも よろしくお願い致します.

東京理科大学理工学部土木工学科助教 野田翔兵先生には,実験方法や結果の解釈,更に は単位取得などについて様々な助言をいただきました.また,趣味の話もたくさん聞かせ ていただき,とても楽しい研究生活を送ることができました.今後ともよろしくお願い致 します.

本研究を取りまとめることができたのは、加速度応答法(CCV システム)による締固め 管理技術の基礎を築き上げた株式会社安藤・間建設本部技術研究所 黒台昌弘氏、国際事業 本部 中島聡氏の功績のおかげです.黒台氏には、CCV システムを発展させた研究で学位論 文に取り組むことに背中を押して頂いただけではなく、同校で学位を取得した先輩として 様々なアドバイスをいただきました.また、株式会社安藤・間建設本部技術研究所 三反畑 勇氏、足立有史氏、室山拓生氏、西尾竜文氏、土木技術統括部 松本江基氏、木付拓磨氏に は、実験の進行やデータ解析法に加えて、実務者としての観点からの見方や現場適用に関 するアドバイスをいただきました.また、同社の齋藤淳氏には、ZOOM による公聴会の際に 発生した通信障害により困惑していた私にご自身の貴重な PC を提供していただきました. さらには、東京理科大学博士 1 年 井原壮氏をはじめとする菊池研究室の方々にもご協力 をいただきました.ここに深く感謝申し上げます.

本研究を進めるにあたり,第3章の実大ピット試験では,土槽ピットの貸出し,実験計 画の立案,実験の進行および品質試験結果の取りまとめまで酒井重工業株式会社内山恵 一氏, 眞壁淳氏,小薬はるな氏にご協力をいただきました. 謹んで感謝申し上げます.

本研究を学位論文としてまとめる機会を与えて下さった株式会社安藤・間代表取締役社 長 福富正人氏,執行役員技術研究所長 弘末文紀氏,技術研究所副所長 笠 博義氏,技術 研究所副所長 鈴木英之氏,技術研究所副所長 谷口裕史氏,技術企画部長 坂本 守氏,土 木研究部長 浦野和彦氏,土木技術統括部長 名倉 浩氏,土木技術統括部副部長 西嶋岳郎 氏,技術第二部長 木村 聡氏をはじめとして,建設企画部,社長室人事部の関係者の皆様 に深く謝意を表します.また,快く研究に必要な環境を与えていただくとともに応援して いただいた技術研究所,土木技術統括部の皆様に深く感謝申し上げます.

最後に、これまで私をいつも応援してくれた母(弥生)、コロナ禍では仕事場所を提供し て下さった義親(父:雅直,母:恭子)と家族の皆様に心より感謝の意を捧げます.また、 出産・育児と大変な状況の中、常に仕事と研究を最優先とした環境を提供してくれた愛す べき妻 幸子、天使のような笑顔で私の心を癒してくれた娘 佑茉に心から感謝します.

2021年3月 永井裕之