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1 Background

Categorical data analysis plays an important role in many fields, from medical and phar-

maceutical sciences to social sciences. The need to evaluate data generated in research

stimulated statistical methods and techniques for categorical data analysis. A categor-

ical variable has a measurement scale consisting of a set of categories. For instance,

breast cancer diagnoses based on a mammography use categories of “normal”, “benign”,

“probably benign”, “suspicious”, and “malignant”. Similarly, unaided distance vision is

measured as “Best”, “Second”, “Third”, and “Worst”. According to the measurement

scale, categorical variables are distinguished as nominal or ordinal. Categories that can-

not be ordered in any aspect are nominal. Examples include the presence of a lung cancer

with the categories of “yes” and “no” and the geographic region measured as “Asia”,

“Europe”, “North America”, and “South America”. On the other hand, the categories

of with ordinal variables exhibit a natural ordering. An example is an opinion scale with

categories of “too little”, “about right”, and “too much”. The variables of interest influ-

ences the applicable analytical method. Methods for nominal variables can be used for

ordinal variables. In contrast, methods for ordinal variables require ordered categories.

Namely, methods designed for ordinal variables do not give the same results under arbi-

trary permutations of categories, whereas methods designed for nominal variables give the

same results under arbitrary permutation of categories. Therefore, methods for ordinal

variables should not be applied to data of nominal variables.

Let X1 and X2 denote two categorical variables, where X1 has r levels and X2 has c

levels. rc indicates the possible combinations of outcomes in a rectangular table with r

rows for the categories of X1 and c columns of the categories of X2. The cells represent

the rc possible outcomes. A table in this form where the cells contain frequency counts

of outcomes is called a contingency table. A contingency table that cross classifies two

variables is called a two-way contingency table. A two-way contingency table with r

rows and c columns is called an r × c contingency table. In addition, when T kinds of

cross-classifications are constructed from ri (i = 1, . . . , T ) categories, an r1 × · · · × rT

contingency table is obtained. This is known as a multi-way (T -way) contingency table.

Table 1.1, which is adapted from Agresti (2013, p.42), shows a two-way contingency

table from one of the first studies to link lung cancer and smoking. In this study, patients

admitted with lung cancer in the preceding year were queried about their smoking behav-

ior. For each patients, they also recorded the smoking behavior of a noncancer patient of

the same gender and similar age (within a five-year grouping) admitted to the same hos-
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pital. The cases in the first column shows the patients with lung cancer and the controls

in the second column shows the patients without lung cancer, respectively. For the data

in Table 1.1, we are interested in whether the presence of lung cancer is independent of

the smoking behavior. If they are independent, the probability that patients with lung

cancer (case) and those without lung cancer (control) will fall in the “yes” would be equal.

As a special case of a two-way contingency table, consider a contingency table with the

same row and column classifications. Such a table is called a square contingency table. A

unique characteristic of a square contingency table is that many observations tend to fall

in (or near) the main diagonal cells. Table 1.2, which is adapted from Tomizawa (1985), is

constructed from the data about unaided distance vision of students aged 18 to about 25

including about 10% women in the Faculty of Science and Technology, Science University

of Tokyo in Japan examined in April 1982. The row and column variables are the right

and left eye grades, respectively, where the categories are ordered from Best grade (1) to

Worst grade (4). For these data, the independence between the row and column is unlikely

to hold because many observations fall in the main diagonal cells which indicate that the

value of row category is the same as the value of column category. Therefore, instead of

evaluating independence, we are interested in whether the right eye grades is symmetric

with the left eye grades. Table 1.3 shows the data constructed from the 2016 General

Social Survey (Smith et al., 2018) conducted by the National Opinion Research Center at

the University of Chicago. These describe the cross classifications of subject’s opinions

regarding government spending on Education, Environment and Assistance to the poor in

2016. The common response categories are (1) “too little”, (2) “about right” and (3) “too

much”. Table 1.3 is a 3×3×3 contingency table with the same classifications. Similar to

Table 1.2, we are also interested in the symmetry structure of the opinions among items.

Data analysis provides the observed frequencies. However, the probability distribution

of the observed frequencies is unknown. The purpose of analyzing a contingency table is to

estimate the structure of the unknown probability distribution with a high confidence level

from the observed frequencies and to assess the association among categorical variables.

Namely, it is important to interpret for the data and propose models that fit the data

well. Furthermore, when a model fits the data poorly, it is also important to visualize the

reason.

This research deals with methods to analyze contingency tables with the same classifi-

cations for multi-way contingency tables. As described above, in analyzing such data it is

natural to deal with statistically dependent for categorical response. Consequently, model

with various types of symmetry instead of statistically independent models are often used
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for data tables with the same classifications.

For two-way contingency tables, many models have been proposed, including the sym-

metry model (Bowker, 1948), quasi-symmetry model (Caussinus, 1965), marginal ho-

mogeneity model (Stuart, 1955), marginal cumulative logistic model (McCullagh, 1977),

point-symmetry model (Wall and Lienert, 1976), quasi point-symmetry model (Tomizawa,

1985) and marginal point-symmetry model (Tomizawa, 1985). Models for multi-way con-

tingency tables include the complete symmetry model (Bhapkar and Darroch, 1990),

quasi-symmetry model (Bhapkar and Darroch, 1990), marginal symmetry model (Bhap-

kar and Darroch, 1990), marginal cumulative logistic model (Agresti, 2013, p.442), point-

symmetry model (Wall and Lienert, 1976), quasi point-symmetry model (Tahata and

Tomizawa, 2008) and marginal point-symmetry model (Tahata and Tomizawa, 2008).

Moreover, Agresti (2013, p.440) discussed the decomposition of model. That is, gen-

erally suppose that model H3 implies models H1 and H2, model H3 holds if and only if

both models H1 and H2 hold. This enables us to see that assuming that model H1 holds

true, the hypothesis that model H3 holds is equivalent to the hypothesis that the model

H2 holds. For analyzing the data, the decomposition of model should be useful to observe

the reason for its poor fit when model H3 does not fit the data well. Caussinus (1965) and

Bhapkar and Darroch (1990) gave a decomposition of the symmetry model for two-way,

and multi-way contingency tables, respectively.

This research considers models with a symmetry structure and discusses decomposi-

tions for multi-way contingency tables. The aims of this research are (i) to consider a

model with an inhomogeneity structure of marginal distribution for general order, and

discuss a decomposition of model, and (ii) to consider a generalized model, and consider

its property in the information theoretic sense, and discuss a decomposition of model, and

(iii) to consider a model with a moment symmetry and homogeneity structure for general

order, and present a decomposition of model.

2 Preliminaries

Preliminary material for analysis of contingency table is briefly presented. For an square

contingency tables and multi-way contingency tables, various symmetry models, usually

applied for contingency table, are introduced. Furthermore, hypothesis testing and model

selection are also discussed.
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2.1 Joint and Marginal Probability

First, we present the probability for two-way contingency tables. Let X1 and X2 denote

the row and column variables, respectively, and let pij = Pr(X1 = i,X2 = j) denote

the probability that an observation will fall in the ith row and jth column of the table

(i = 1, . . . , r; j = 1, . . . , c). The probability {pij} is the joint distribution of X1 and X2.

These satisfy
∑r

i=1

∑c
j=1 pij = 1. Let pi· = Pr(X1 = i) =

∑c
t=1 pit and p·j = Pr(X2 =

j) =
∑r

s=1 psj. Then {pi·} is the marginal distribution of X1 and {p·j} is the marginal

distribution of X2.

Second, we present the probability for three-way contingency tables. For the r1× r2×
r3 contingency table, let X1, X2, and X3 denote the first, second, and third variables,

respectively, and let Pr(X1 = i,X2 = j,X3 = k) = pijk, where i = 1, . . . , r1; j =

1, . . . , r2; k = 1, . . . , r3. Let p
(1)
i = pi·· = Pr(X1 = i), p

(2)
j = p·j· = Pr(X2 = j) and

p
(3)
k = p··k = Pr(X3 = k) denote the first-order marginal probability. Note that “·”
denotes the sum; thus pi·· =

∑
s

∑
t pist, etc. Let p

(1,2)
ij = pij· = Pr(X1 = i,X2 = j),

p
(1,3)
ik = pi·k = Pr(X1 = i,X3 = k) and p

(2,3)
jk = p·jk = Pr(X2 = j,X3 = k) denote the

second-order marginal probability.

Finally, we present the probability for multi-way contingency tables. For the r1×· · ·×
rT contingency table (T ≥ 2), let i = (i1, . . . , iT ) for ik = 1, . . . , rk (k = 1, . . . , T ), and let

pi denote the probability that an observation will fall in the ith cell of the table. In addi-

tion, letXk (k = 1, . . . , T ) denote the kth variable. Denote the hth-order (h = 1, . . . , T−1)

marginal probability Pr(Xs1 = i1, . . . , Xsh = ih) by pshi , where sh = (s1, . . . , sh) and

i = (i1, . . . , ih) with 1 ≤ s1 < · · · < sh ≤ T and ik = 1, . . . , rsk (k = 1, . . . , h).

2.2 Various symmetry models

Consider the case of r1 = · · · = rT since each classifications are the same.

(a) Case of r × r tables

Consider an r × r square contingency table with the same classifications. The symmetry

(S) model is defined by

pij = ψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji (Bowker, 1948). This indicates the probability that an observation

will fall in row category i and column category j is equal to the probability that the

observation falls in row category j and column category i. The S model is described by
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many statisticians; see, for example, Bishop, Fienberg and Holland (1975, p.282), Agresti

(2013, p.426) and Kateri (2014, p.236). Also, Bishop, et al. (1975, p.282) expressed the

S model in terms of a log-linear model as follows:

log pij = u1(i) + u2(j) + u12(ij) (i = 1, . . . , r; j = 1, . . . , r),

where u1(i) = u2(j) and u12(ij) = u12(ji).

The quasi-symmetry (QS) model is defined by

pij = αiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji (Caussinus, 1965). A special case of this model with {αi = βi} is the

S model. Denote the odds ratio for row i and j (> i), and column s and t (> s) by

θ(i<j;s<t). Namely θ(i<j;s<t) = (pispjt)/(pjspit). Using the odds ratios, the QS model is

further expressed as

θ(i<j;s<t) = θ(s<t;i<j) (i < j; s < t).

Therefore the QS model has characterization in terms of symmetry of odds ratios. Also,

Bishop, et al. (1975, p.286) expressed the QS model in terms of a log-linear model as

follows:

log pij = u1(i) + u2(j) + u12(ij) (i = 1, . . . , r; j = 1, . . . , r),

where u12(ij) = u12(ji). For details, see, Goodman (1979), Darroch and McCloud (1986),

Agresti (2013, p.427) and Kateri (2014, p.238).

The marginal homogeneity (M) model is defined by

pi· = p·i (i = 1, . . . , r),

where pi· =
∑r

t=1 pit and p·i =
∑r

s=1 psi (e.g., Stuart, 1955; Bishop, et al., 1975, p.294).

This model states that the row marginal distribution is identical with column marginal

distribution.

Let F
(1)
i and F

(2)
i denotes the marginal cumulative probability, and let L

(1)
i and L

(2)
i

denote the marginal cumulative logit of X1 and X2 for i = 1, . . . , r − 1, k = 1, 2; namely,

F
(k)
i = Pr(Xk ≤ i) and L

(k)
i = logit

(
F

(k)
i

)
= log

(
F

(k)
i /

(
1− F

(k)
i

))
. The marginal

cumulative logistic (ML) model is defined by

L
(2)
i = L

(1)
i −∆ (i = 1, . . . , r − 1),

see McCullagh (1977). A special case of this model obtained by putting ∆ = 0 is the M

model (also see Agresti, 2010, p.231). This model states that the odds that X1 is i or
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below instead of i+1 or above, is exp(∆) times higher than the odds that X2 is i or below

instead of i+ 1 or above, for every i = 1, . . . , r − 1.

Caussinus (1965) gave a decomposition of the S model as follows:

Theorem 2.1. The S model holds if and only if both the QS and M models hold.

This theorem enables us to see that assuming that the QS model holds true, the

hypothesis that the S model holds is equivalent to the hypothesis that the M model

holds. For analyzing the data, the decomposition of the S model would be useful for

seeing the reason for the poor fit when the S model fits the data poorly.

Refer to model of equality of marginal means, i.e., E(X1) = E(X2), as the marginal

mean equality (ME) model. Then, Miyamoto, Niibe and Tomizawa (2005) gave a decom-

position of the M model as follows:

Theorem 2.2. The M model holds if and only if both the ML and ME models hold.

The point-symmetry (PS) model is defined by

pij = ψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψi∗j∗ and i∗ = r + 1 − i (Wall and Lienert, 1976; Tomizawa, 1985). This

model states that the probability that an observation will fall in cell (i, j) is equal to the

probability that it falls in point symmetric cell (i∗, j∗) with respect to the center point

(or cell). The PS model is also expressed in log-linear form

log pij = u1(i) + u2(j) + u12(ij) (i = 1, . . . , r; j = 1, . . . , r),

where u1(i) = u1(i∗), u2(j) = u2(j∗) and u12(ij) = u12(i∗j∗).

Tomizawa (1985) considered the quasi point-symmetry (QP) model defined by

pij = αiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψi∗j∗ . A special case of the QP model obtained by putting
{
α(i) = α(i∗)

}
and{

β(j) = β(j∗)
}
is the PS model. Using odds ratios, the QP model is also expressed as

θ(i<j;s<t) = θ(j∗<i∗;t∗<s∗) (i < j; s < t).

Therefore the QP model has its characterization in terms of point-symmetry of odds

ratios. The QP model is also expressed in log-linear form

log pij = u1(i) + u2(j) + u12(ij) (i = 1, . . . , r; j = 1, . . . , r),
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where u12(ij) = u12(i∗j∗).

The marginal point-symmetry (MP) model is defined by

pi· = pi∗· (i = 1, . . . , r) and p·j = p·j∗ (j = 1, . . . , r).

This indicates that the row (column) marginal distributions are point symmetric with

respect to the midpoint of the row (column) categories.

Tomizawa (1985) gave a decomposition of the PS model as follows:

Theorem 2.3. The PS model holds if and only if both the QP and MP models hold.

Let p = (pij) and q = (qij) be two discrete finite bivariate probability distributions.

The f -divergence between p and q is defined as

IC(p : q) =
∑
i

∑
j

qijf

(
pij
qij

)
,

where f is a convex function on (0,+∞) with f(1) = 0. Also, we take f(0) = limu→0 f(u),

0f(0/0) = 0, and 0f(a/0) = a limu→∞ [f(u)/u] (Csiszár and Shields, 2004). Kateri

and Papaioannou (1997), Kateri and Agresti (2007), and Saigusa, Tahata and Tomizawa

(2015) have described some models of symmetry based on f -divergence, and considered

the property of the model in the information theoretic sense. Also see, for example, Gilula,

Krieger and Ritov (1988), and Kateri (2018).

(b) Case of rT tables

Consider an rT contingency table (T ≥ 2) with the same classifications. The complete

symmetry (ST ) model is defined by

pi = pj ,

for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ). See Bhapkar and Darroch (1990),

Lovison (2000), and Agresti (2013, p.439). The ST model may be expressed as in a

log-linear form

log pi = λ(i),

where λ(i) = λ(j) for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ).

Bhapkar and Darroch (1990) defined the hth-order (h = 1, . . . , T −1) quasi-symmetry

(QST
h ) model, which may be expressed as

log pi =
T∑

k=1

λk(ik) +
∑∑

1≤k1<k2≤T

λk1k2(ik1 ,ik2 ) + · · · +
∑

· · ·
∑

1≤k1<···<kh≤T

λk1...kh(ik1 ,...,ikh ) + λi,
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where λi = λj for any permutation j = (j1, . . . , jT ) of i = (i1, . . . , iT ).

For a fixed h (h = 1, . . . , T − 1), the hth-order marginal symmetry (MT
h ) model is

defined by

pshi = pshj = pthi ,

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih) and for any sh = (s1, . . . , sh) and

th = (t1, . . . , th) with 1 ≤ t1 < · · · < th ≤ T and ik = 1, . . . , r (k = 1, . . . , h) (Bhapkar

and Darroch, 1990; Tomizawa and Tahata, 2007). This model indicates the structure of

symmetry and homogeneity of hth-order marginal distribution. For the case of h = 1, the

MT
h model is expressed as

p
(1)
i = · · · = p

(T )
i (i = 1, . . . , r),

where p
(k)
i = Pr(Xk = i). For instance, see Bishop, et al. (1975, p.303) and Agresti

(2013, p.439). This model indicates the homogeneity structure of first-order marginal

distribution.

Let F
(k)
i denote the first-order marginal cumulative probability and let L

(k)
i denote

the first-order marginal cumulative logit of Xk for i = 1, . . . , r − 1, k = 1, . . . , T ; namely,

F
(k)
i = Pr(Xk ≤ i) and L

(k)
i = logit

(
F

(k)
i

)
= log

(
F

(k)
i /

(
1− F

(k)
i

))
. The marginal

cumulative logistic (MLT ) model is defined by

L
(k)
i = L

(1)
i −∆k (i = 1, . . . , r − 1; k = 1, . . . , T ),

where ∆1 = 0. See e.g., Agresti (2010, p.241) and Agresti (2013, p.442). A special case

of this model obtained by putting
{
∆k = 0

}
is the MT

1 model.

Bhapkar and Darroch (1990) gave the extension of Theorem 2.1 into multi-way con-

tingency tables as follows:

Theorem 2.4. For an rT table and fixed h (h = 1, . . . , T − 1), the ST model holds if and

only if both the QST
h and MT

h models hold.

When T = 2, this theorem is identical to Theorem 2.1.

The marginal mean equality (MET ) model can be considered as follows:

E(X1) = · · · = E(XT ).

Tahata, Katakura and Tomizawa (2007) gave a decomposition as follows:

Theorem 2.5. For an rT table, the MT
1 model holds if and only if both the MLT and

MET models hold.
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When T = 2, this theorem is identical to Theorem 2.2.

The point-symmetry (PST ) model is defined by

pi = pi∗ for any i,

where i∗ = (i∗1, . . . , i
∗
T ) for i

∗
k = r + 1− ik (k = 1, . . . , T ) (Wall and Lienert, 1976).

For a fixed h (h = 1, . . . , T−1), Tahata and Tomizawa (2008) considered the hth-order

quasi point-symmetry (QPT
h ) model defined by

log pi =
T∑

k=1

uk(ik) +
∑∑

1≤k1<k2≤T

uk1k2(ik1 ,ik2 )

+ · · ·+
∑

· · ·
∑

1≤k1<···<kT−1≤T

uk1...kT−1(ik1 ,...,ikT−1
) + u12...T (i) for any i,

where uk1k2...kl(ik1 ,ik2 ,...,ikl ) = uk1k2...kl(i∗k1 ,i
∗
k2

,...,i∗kl
)

(l = h+ 1, . . . , T ; 1 ≤ k1 < k2 < · · · < kl ≤ T ).

Note that the PST model can be expressed in a log-linear form as a special case of the

QPT
h model with

uk1k2...kl(ik1 ,ik2 ,...,ikl ) = uk1k2...kl(i∗k1 ,i
∗
k2

,...,i∗kl
) (l = 1, . . . , T ; 1 ≤ k1 < k2 < · · · < kl ≤ T ).

For a fixed h (h = 1, . . . , T − 1), Tahata and Tomizawa (2008) also considered the

hth-order marginal point-symmetry (MPT
h ) model defined by

pshi = pshi∗ for any sh = (s1, . . . , sh),

where i = (i1, . . . , ih) and i∗ = (i∗1, . . . , i
∗
h).

Tahata and Tomizawa (2008) gave the extension of Theorem 2.3 into multi-way con-

tingency tables as follows:

Theorem 2.6. For an rT table and fixed h (h = 1, . . . , T − 1), the PST model holds if

and only if both the QP T
h and MP T

h models hold.

2.3 Hypothesis testing and model selection

Let ni1...iT denote the observed frequency in the (i1, . . . , iT )th cell of the rT table. Assume

that a multinomial distribution is applied to the rT table. The maximum likelihood

estimates (MLEs) of the expected frequencies under each model can be obtained by the

Newton-Raphson method in the log-likelihood equation. Each model can be tested for
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the goodness-of-fit using, for example, the likelihood ratio chi-squared statistic (denoted

by G2) with the corresponding degrees of freedom (df). The test statistic G2 for model

H is given by

G2(H) = 2
r∑

i1=1

· · ·
r∑

iT=1

ni1...iT log

(
ni1...iT

m̂i1...iT

)
,

where m̂i1...iT is the MLE of expected frequency mi1...iT under model H.

We shall consider the comparison between two nested models for analyzing the data.

Consider two nested models, say H1 and H2, such that model H1 is a special case of model

H2, if model H1 holds, then model H2 also holds. Let v1 and v2 denote the df for models

H1 and H2, respectively. For testing that model H1 holds assuming that model H2 holds

true, the likelihood ratio statistics is given as G2(H1 | H2) = G2(H1)−G2(H2). Under the

null hypothesis, this test statistic has an asymptotic chi-square distribution with v1 − v2

df.

Akaike (1974) information criterion (AIC) is used to select the preferable model among

different models which include non-nested models. For details, see Konishi and Kitagawa

(2008). Since the difference between AIC’s is only required when two models are com-

pared, it is possible to ignore a common constant of AIC. Thus, the modified AIC is

defined as

AIC+ = G2 − 2(number of df).

For analyzing the data, the model with the minimum AIC+ is the preferable model.

For the analysis of contingency tables, Lang and Agresti (1994) considered the si-

multaneous modeling joint and marginal distribution, and Lang (1996) discussed the

partitioning of goodness-of-fit statistics. Aitchison (1962) discussed the asymptotic sep-

arability of models. Also the similar property of models is described by Darroch and

Silvey (1963) and Read (1977). (See also, Tahata and Tomizawa, 2008; Tomizawa and

Tahata, 2007). Generally suppose that model H3 holds if and only if both model H1 and

model H2 hold. When the test statistic for goodness-of-fit of model H3 is asymptotically

equivalent to the sum of those for model H1 and model H2, if both model H1 and model

H2 are accepted (at the α significance level) with high probability, then model H3 would

be accepted. However, when it does not hold, it is quite possible for an incompatible sit-

uation to arise where both model H1 and model H2 are accepted but model H3 is rejected

with high probability. Then, for Theorem 2.1, following separability of test statistic holds

(Tomizawa and Tahata, 2007).

Theorem 2.7. For an r×r table, G2(S) is asymptotically equivalent to the sum of G2(QS)

and G2(M).
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Also for Theorems 2.3, 2.4 and 2.6, Tomizawa and Tahata (2007) and Tahata and

Tomizawa (2008) gave similar orthogonal decompositions, although the detail is omitted.

3 Outline of Doctoral Thesis

The doctoral thesis consists of five chapters. Chapter 1 overviews the background of

this research and provides preparation for Chapters 2 through 4. Chapter 2 introduces a

marginal cumulative logistic model of general order and decompositions of the marginal

symmetry model. This chapter is based on Yoshimoto, Tahata and Tomizawa (2019).

Chapter 3 discusses a quasi point-symmetry model based on f -divergence and orthogo-

nal decompositions of the point-symmetry model. This chapter is based on Yoshimoto,

Tahata, Saigusa and Tomizawa (2019). Chapter 4 details a moment symmetry model and

decompositions of the complete symmetry model and marginal symmetry model. This

chapter is based on Yoshimoto, Tahata, Iki and Tomizawa (2019). Finally, Chapter 5

presents the conclusion of the doctoral thesis. We present here a brief description of the

content for Chapters 2 through 4.

3.1 Chapter 2

The MLT model focuses on the first order marginal distributions, and describes the in-

homogeneity structure of first-order marginal distribution. Focusing on the hth-order

marginal distribution, we are now interested in the symmetry and inhomogeneity struc-

ture of the hth-order marginal distribution.

Chapter 2 (i) proposes a marginal cumulative logistic model for order h, which is the

extensions of the MLT model, (ii) gives the decompositions of the MT
h model by using

proposed model. Chapter 2 also analyzes the data in more details. The decompositions

of model may be useful for seeing in more detail the reason for the poor fit when the MT
h

model fits the data poorly. These models and the decompositions are described simply as

below.

Consider an rT table. For order h (h = 1, . . . , T − 1), denote the hth-order marginal

cumulative probability Pr(Xs1 ≤ i1, . . . , Xsh ≤ ih) by F sh
i , where sh = (s1, . . . , sh) and

i = (i1, . . . , ih) with 1 ≤ s1 < · · · < sh ≤ T and ik = 1, . . . , r (k = 1, . . . , h). Then the

MT
h model may be expressed as

F sl
i = F sl

j = F tl
i (l = 1, . . . , h),

for any permutation j = (j1, . . . , jl) of i = (i1, . . . , il), where ik = 1, . . . , r−1 (k = 1, . . . , l)

11



and for any sl = (s1, . . . , sl) and tl = (t1, . . . , tl). Focusing on the hth-order marginal

distribution, we consider the symmetry and inhomogeneity structure based on the logits

of
{
F sh
i

}
. Then, for a fixed h (h = 1, . . . , T − 1), consider a model defined by

Lsh
i = Llh

i −∆sh and Lsh
i = Lsh

j ,

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih) and lh = (1, . . . , h), where ik =

1, . . . , r − 1 (k = 1, . . . , h) and for any sh = (s1, . . . , sh) with 1 ≤ s1 < · · · < sh ≤ T ,

Lsh
i = logit (F sh

i ) = log

(
F sh
i

1− F sh
i

)
,

where ∆lh = 0. We shall refer to this model as the hth-order marginal cumulative logistic

(MLT
h ) model. When h = 1, the MLT

h model is identical to the MLT model.

For a fixed h (h = 1, . . . , T − 1), consider a model defined by

E (Xs1 · · ·Xsh) = E (X1 · · ·Xh) ,

for 1 ≤ s1 < · · · < sh ≤ T . We shall refer to this model as the hth-order marginal moment

equality (MET
h ) model. Although the details and the proof are omitted, we obtain the

following theorem and corollary.

Theorem 3.1. For a fixed h (h = 1, . . . , T −1), the MT
h model holds if and only if all the

MLT
h , MET

h , and M
T
h−1 models hold, where the MT

0 model indicates the saturated model.

Corollary 3.1. The MT
T−1 model holds if and only if all the MLT

h models for h =

1, . . . , T − 1 and all the MET
h models for h = 1, . . . , T − 1 hold.

The details of the proof for theorems and examples are given in Chapter 2.

3.2 Chapter 3

Chapter 3 proposes a quasi point-symmetry (QP[f ]) model based on f -divergence, and

discusses the decomposition of the PS model for two-way, three-way and multi-way con-

tingency tables, respectively. Proposed model is a generalized model in the sense that it

includes the QP model. These models and the decompositions are described simply as

below.

First, consider an r × r table. Let f be a twice-differentiable and strictly convex

function, and let F (u) = df(u)/du. Let pPS
ij = (pij + pi∗j∗)/2 for i = 1, . . . , r and

j = 1, . . . , r, where i∗ = r + 1 − i. Consider the quasi point-symmetry (QP[f ]) model

based on f -divergence defined by

pij = pPS
ij F

−1(u1(i) + u2(j) + u12(ij)) (i = 1, . . . , r; j = 1, . . . , r),
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where u12(ij) = u12(i∗j∗). The QP[f ] model can also be expressed as

θ
[f ]
(i<j;k<l) = θ

[f ]
(j∗<i∗;l∗<k∗) (i < j; k < l),

where

θ
[f ]
(i<j;k<l) = F

(
pik
pPS
ik

)
+ F

(
pjl
pPS
jl

)
− F

(
pjk
pPS
jk

)
− F

(
pil
pPS
il

)
.

Therefore the QP[f ] model has its characterization in terms of point-symmetry of θ
[f ]
(i<j;k<l).

The QP[f ] model with f(u) = u log u, u > 0 is the QP model. We obtain the following

theorems.

Theorem 3.2. The QP[f ] model for {pij} minimizes the f -divergence between {pij} and{
pPS
ij

}
with the structure of the PS model under the condition that row marginals {pi·},

column marginals {p·j} and sums {pij + pi∗j∗} are given.

Theorem 3.3. The PS model holds if and only if both the QP[f ] and MP models hold.

Second, consider an r × r × r contingency table. Let f be a twice-differentiable and

strictly convex function, and let F (u) = df(u)/du. Let pPS
ijk = (pijk + pi∗j∗k∗)/2 for

1 ≤ i, j, k ≤ r, where i∗ = r + 1− i. First, consider the first-order quasi point-symmetry

(QP[f ]31) model based on f -divergence defined by

pijk = pPS
ijkF

−1
(
u1(i) + u2(j) + u3(k)

+u12(ij) + u13(ik) + u23(jk) + u123(ijk)
)

(1 ≤ i, j, k ≤ r),

where for 1 ≤ s < t ≤ 3,

ust(ij) = ust(i∗j∗), u123(ijk) = u123(i∗j∗k∗).

The QP[f ]31 model can also be expressed as

θ
[f ]
(i;j1<j2;k1<k2)

= θ
[f ]
(i∗;j∗2<j∗1 ;k

∗
2<k∗1)

(1 ≤ i ≤ r; 1 ≤ j1 < j2 ≤ r; 1 ≤ k1 < k2 ≤ r),

θ
[f ]
(i1<i2;j;k1<k2)

= θ
[f ]
(i∗2<i∗1;j

∗;k∗2<k∗1)
(1 ≤ i1 < i2 ≤ r; 1 ≤ j ≤ r; 1 ≤ k1 < k2 ≤ r),

and

θ
[f ]
(i1<i2;j1<j2;k)

= θ
[f ]
(i∗2<i∗1;j

∗
2<j∗1 ;k

∗) (1 ≤ i1 < i2 ≤ r; 1 ≤ j1 < j2 ≤ r; 1 ≤ k ≤ r),

where

θ
[f ]
(i;j1<j2;k1<k2)

= F

(
pij1k1
pPS
ij1k1

)
+ F

(
pij2k2
pPS
ij2k2

)
− F

(
pij2k1
pPS
ij2k1

)
− F

(
pij1k2
pPS
ij1k2

)
,
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θ
[f ]
(i1<i2;j;k1<k2)

= F

(
pi1jk1
pPS
i1jk1

)
+ F

(
pi2jk2
pPS
i2jk2

)
− F

(
pi2jk1
pPS
i2jk1

)
− F

(
pi1jk2
pPS
i1jk2

)
,

θ
[f ]
(i1<i2;j1<j2;k)

= F

(
pi1j1k
pPS
i1j1k

)
+ F

(
pi2j2k
pPS
i2j2k

)
− F

(
pi2j1k
pPS
i2j1k

)
− F

(
pi1j2k
pPS
i1j2k

)
.

The QP[f ]31 model with f(u) = u log u, u > 0 is equivalent to the first-order quasi point-

symmetry (QP3
1) model.

Next, consider the second-order quasi point-symmetry (QP[f ]32) model based on f -

divergence defined by
pijk = pPS

ijkF
−1
(
u1(i) + u2(j) + u3(k)

+u12(ij) + u13(ik) + u23(jk) + u123(ijk)
)

(1 ≤ i, j, k ≤ r),

where u123(ijk) = u123(i∗j∗k∗).

The QP[f ]32 model can also be expressed as

θ
[f ]
(i2;j1<j2;k1<k2)

− θ
[f ]
(i1;j1<j2;k1<k2)

= θ
[f ]
(i∗2;j

∗
2<j∗1 ;k

∗
2<k∗1)

− θ
[f ]
(i∗1;j

∗
2<j∗1 ;k

∗
2<k∗1)

,

or

θ
[f ]
(i1<i2;j2;k1<k2)

− θ
[f ]
(i1<i2;j1;k1<k2)

= θ
[f ]
(i∗2<i∗1;j

∗
2 ;k

∗
2<k∗1)

− θ
[f ]
(i∗2<i∗1;j

∗
1 ;k

∗
2<k∗1)

,

or

θ
[f ]
(i1<i2;j1<j2;k2)

− θ
[f ]
(i1<i2;j1<j2;k1)

= θ
[f ]
(i∗2<i∗1;j

∗
2<j∗1 ;k

∗
2)
− θ

[f ]
(i∗2<i∗1;j

∗
2<j∗1 ;k

∗
1)
,

for 1 ≤ i1 < i2 ≤ r; 1 ≤ j1 < j2 ≤ r and 1 ≤ k1 < k2 ≤ r. The QP[f ]32 model

with f(u) = u log u, u > 0 is equivalent to the second-order quasi point-symmetry (QP3
2)

model. We obtain the following theorems.

Theorem 3.4. The QP [f ]31 model for {pijk} minimizes the f -divergence between {pijk}
and

{
pPS
ijk

}
with the structure of the PS3 model under the condition that {pi··}, {p·j·},

{p··k}, {pij· + pi∗j∗·}, {pi·k + pi∗·k∗}, {p·jk + p·j∗k∗} and {pijk + pi∗j∗k∗} are given.

Theorem 3.5. The QP [f ]32 model for {pijk} minimizes the f -divergence between {pijk}
and

{
pPS
ijk

}
with the structure of the PS3 model under the condition that {pi··}, {p·j·},

{p··k}, {pij·}, {pi·k}, {p·jk} and {pijk + pi∗j∗k∗} are given.

Theorem 3.6. For an r × r × r table and h fixed (h = 1, 2), the PS3 model holds if and

only if both the QP [f ]3h and MP 3
h models hold.
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Finally, consider an rT table. Let f be a twice-differentiable and strictly convex

function, and let F (u) = df(u)/du. Let pPS
i = (pi + pi∗)/2 for any i = (i1, . . . , iT ), where

i∗k = r + 1 − ik (k = 1, . . . , T ). For a fixed h (h = 1, . . . , T − 1), consider the hth-order

quasi point-symmetry (QP[f ]Th ) model based on f -divergence defined by

pi = pPS
i F−1

(
T∑

k=1

uk(ik) +
∑∑

1≤k1<k2≤T

uk1k2(ik1 ,ik2 )

+ · · ·+
∑

· · ·
∑

1≤k1<···<kT−1≤T

uk1...kT−1(ik1 ,...,ikT−1
) + u12...T (i)

 for any i,

where uk1k2...kl(ik1 ,ik2 ,...,ikl ) = uk1k2...kl(i∗k1 ,i
∗
k2

,...,i∗kl
)

(l = h+ 1, . . . , T ; 1 ≤ k1 < k2 < · · · < kl ≤ T ).

When we set f(u) = u log u, u > 0, the QP[f ]Th model is equivalent to the QPT
h model.

We obtain the following theorems.

Theorem 3.7. For an rT table and h fixed (h = 1, . . . , T − 1), the QP [f ]Th model for

{pi} minimizes the f -divergence between {pi} and
{
pPS
i

}
with the structure of the PST

model under the condition that
{
pskik
}

for any sk = (s1, . . . , sk) and ik = (i1, . . . , ik),

k = 1, . . . , h, are given, and
{
pslil + psli∗l

}
for any sl = (s1, . . . , sl), il = (i1, . . . , il) and

i∗l = (i∗1, . . . , i
∗
l ), l = h+ 1, . . . , T , are given.

Theorem 3.8. For an rT table and h fixed (h = 1, . . . , T − 1), the PST model holds if

and only if both the QP [f ]Th and MP T
h models hold.

Moreover, Chapter 3 shows that under the PS model, the likelihood ratio statistic for

testing goodness-of-fit of the PS model is asymptotically equivalent to the sum of those

for testing the QP[f ] and MP models for two-way, three-way and multi-way contingency

tables, respectively. Although the details and the proof of Theorems 3.9, 3.10 and 3.11

are omitted, we obtain the following theorems.

Theorem 3.9. For an r × r table, G2(PS) is asymptotically equivalent to the sum of

G2(QP [f ]) and G2(MP ) under the PS model.

Theorem 3.10. For an r×r×r table and a fixed h (h = 1, 2), G2(PS3) is asymptotically

equivalent to the sum of G2(QP [f ]3h) and G
2(MP 3

h ) under the PS3 model.

Theorem 3.11. For an rT table and a fixed h (h = 1, . . . , T − 1), G2(PST ) is asymptot-

ically equivalent to the sum of G2(QP [f ]Th ) and G
2(MP T

h ) under the PST model.

The details of the proof for theorems and examples are given in Chapter 3.
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3.3 Chapter 4

Chapter 4 proposes the moment symmetry model, and gives decompositions of symmetry

for two-way, three-way and multi-way tables, respectively. These models and decomposi-

tions are described simply as below.

First, for an r × r tables, consider random variables

X(1) = (X
(1)
1 , X

(1)
2 , . . . , X(1)

r )t, X(2) = (X
(2)
1 , X

(2)
2 , . . . , X(2)

r )t,

where X
(1)
i = 0, 1, X

(2)
j = 0, 1 for i = 1, . . . , r; j = 1, . . . , r,

∑r
i=1X

(1)
i =

∑r
j=1X

(2)
j = 1,

and “t” denotes the transpose. δi is the r × 1 vector where the ith factor is set to 1 and

all others are set to 0. Define the probability distribution of (X(1),X(2)) by

Pr(X(1) = δi,X
(2) = δj) = Pr(X1 = i,X2 = j) = pij,

for i = 1, . . . , r; j = 1, . . . , r. Consider the second-order moment symmetry (MOS2)

model, which is expressed as

Cov(X
(1)
i , X

(2)
j ) = Cov(X

(1)
j , X

(2)
i ) for 1 ≤ i < j ≤ r,

where

Cov(X
(1)
i , X

(2)
j ) = E

[
(X

(1)
i − µ

(1)
i )(X

(2)
j − µ

(2)
j )
]
= pij − pi·p·j,

µ1 = E(X(1)) = (p1·, . . . , pr·)
t, µ2 = E(X(2)) = (p·1, . . . , p·r)

t.

The MOS2 model indicates the symmetry of the second-order moments about the means

and leads to the following theorem.

Theorem 3.12. For an r× r table, the S model holds if and only if both the MOS2 and

M models hold.

Second, for an r × r × r tables, consider random variables X(1), X(2), and X(3) with

Pr(X(1) = δi,X
(2) = δj,X

(3) = δk) = Pr(X1 = i,X2 = j,X3 = k) = pijk.

Then

Pr(X(s) = δi,X
(t) = δj) = Pr(Xs = i,Xt = j) = p

(s,t)
ij (1 ≤ s < t ≤ 3),

and

Pr(X(u) = δi) = Pr(Xu = i) = p
(u)
i (u = 1, 2, 3).
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Then, consider the second-order moment symmetry (MOS3
2) model, which is given by

Cov(X
(s)
i , X

(t)
j ) = Cov(X

(s)
j , X

(t)
i ) = Cov(X

(k)
i , X

(l)
j ),

where

Cov(X
(s)
i , X

(t)
j ) = E

[
(X

(s)
i − µ

(s)
i )(X

(t)
j − µ

(t)
j )
]
= p

(s,t)
ij − p

(s)
i p

(t)
j ,

for 1 ≤ s < t ≤ 3, 1 ≤ i, j ≤ r, and 1 ≤ k < l ≤ 3; (s, t) ̸= (k, l). This model indicates

the symmetry and homogeneity of the second-order moments about the means. Because

we are also interested in the structure of third-order moments about the means, consider

the third-order moment symmetry (MOS3
3) model, which is expressed as

µijk = µikj = µjik = µkij = µjki = µkji for 1 ≤ i, j, k ≤ r,

where

µijk = E
[
(X

(1)
i − µ

(1)
i )(X

(2)
j − µ

(2)
j )(X

(3)
k − µ

(3)
k )
]
.

Note that

µijk = pijk − p
(1)
i p

(2,3)
jk − p

(2)
j p

(1,3)
ik − p

(3)
k p

(1,2)
ij + 2p

(1)
i p

(2)
j p

(3)
k .

We obtain the following two theorems and corollary.

Theorem 3.13. For an r× r× r table, the M3
2 model holds if and only if both the MOS3

2

and M3
1 models hold.

Theorem 3.14. For an r× r× r table, the S3 model holds if and only if both the MOS3
3

and M3
2 models hold.

Corollary 3.2. For an r × r × r table, the S3 model holds if and only if all the MOS3
3 ,

MOS3
2 , and M

3
1 models hold.

Finally, for an rT tables, consider random variables X(1), X(2), . . . , X(T ) with

Pr(X(1) = δi1 , . . . ,X
(T ) = δiT ) = Pr(X1 = i1, . . . , XT = iT ) = pi,

where i = (i1, . . . , iT ).

Denote the hth-order (h = 2, . . . , T ) moment,

E
[
(X

(s1)
i1

− µ
(s1)
i1

)(X
(s2)
i2

− µ
(s2)
i2

) · · · (X(sh)
ih

− µ
(sh)
ih

)
]

by µsh
i , where sh = (s1, . . . , sh) and i = (i1, . . . , ih) with 1 ≤ s1 < · · · < sh ≤ T and

ik = 1, . . . , r (k = 1, . . . , h).
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For a fixed h (h = 2, . . . , T ), consider the hth-order moment symmetry (MOST
h ) model,

which is given by

µsh
i = µsh

j = µth
i ,

for any permutation j = (j1, . . . , jh) of i = (i1, . . . , ih) and for any sh = (s1, . . . , sh) and

th = (t1, . . . , th).

We obtain following theorem and corollary.

Theorem 3.15. For an rT table and a fixed h (h = 2, . . . , T ), the MT
h model holds if and

only if both the MOST
h and MT

h−1 models hold.

Corollary 3.3. For an rT table, the ST model holds if and only if all the MOST
T ,

MOST
T−1, . . . , MOST

2 , and M
T
1 models hold.

The details of the proof for theorems and examples are given in Chapter 4.
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Table 1.1: Cross-classification of smoking by lung cancer; adapted from Agresti (2013,

p.42). Note that nij denote the observed frequency in the (i, j) cell of the table (i =

1, 2; j = 1, 2), and n·1 and n·2 denote the marginal observed frequencies, i.e., n·j =∑2
i=1 nij.

Lung Cancer

Smoker Cases Controls

Yes n11 n12

No n21 n22

Total n·1 n·2
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Table 1.2: Unaided distance vision of students aged 18 to about 25 including about

10% women in Faculty of Science and Technology, Science University of Tokyo in Japan

examined in April 1982; adapted from Tomizawa (1985). Note that nij denotes the

observed frequency in the (i, j) cell of the table (i = 1, . . . , 4; j = 1, . . . , 4), ni· and

n·j denote the row and column marginal observed frequencies, i.e., ni· =
∑4

j=1 nij and

n·j =
∑4

i=1 nij, and n denotes the total number of observed frequencies.

Right eye Left eye grade Total

grade Best(1) Second(2) Third(3) Worst(4)

Best(1) n11 n12 n13 n14 n1·

Second(2) n21 n22 n23 n24 n2·

Third(3) n31 n32 n33 n34 n3·

Worst(4) n41 n42 n43 n44 n4·

Total n·1 n·2 n·3 n·4 n
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Table 1.3: Opinions about government spending in 2016 from the 2016 General Social

Survey; constructed from Smith et al. (2018). Note that nijk denotes the observed

frequency in the (i, j, k) cell of the table (i = 1, . . . , 3; j = 1, . . . , 3; k = 1, . . . , 3).

Assistance to the poor

Education Environment (1) too little (2) about right (3) too much

(1) too little (1) too little n111 n112 n113

(1) too little (2) about right n121 n122 n123

(1) too little (3) too much n131 n132 n133

(2) about right (1) too little n211 n212 n213

(2) about right (2) about right n221 n222 n223

(2) about right (3) too much n231 n232 n233

(3) too much (1) too little n311 n312 n313

(3) too much (2) about right n321 n322 n323

(3) too much (3) too much n331 n332 n333
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R. Birkhäuser/Springer, New York.

[15] Kateri, M. (2018). ϕ-divergence in contingency table analysis. Entropy, 20, 1-12.

[16] Kateri, M. and Agresti. A. (2007). A class of ordinal quasi-symmetry models for

square contingency tables. Statistics and Probability Letters, 77, 598-603.

[17] Kateri, M. and Papaioannou, T. (1997). Asymmetry models for contingency tables.

Journal of the American Statistical Association, 92, 1124-1131.

[18] Konishi, S. and Kitagawa, G. (2008). Information Criteria and Statistical Modeling.

Springer, New York.

[19] Lang, J. B. (1996). On the partitioning of goodness-of-fit statistics for multivariate

categorical response models. Journal of the American Statistical Association, 91,

1017-1023.

[20] Lang, J. B. and Agresti, A. (1994). Simultaneously modeling joint and marginal

distributions of multivariate categorical responses. Journal of the American Statistical

Association, 89, 625-632.

[21] Lovison, G. (2000). Generalized symmetry models for hypercubic concordance tables.

International Statistical Review, 68, 323-338.

[22] McCullagh, P. (1977). A logistic model for paired comparisons with ordered categor-

ical data. Biometrika, 64, 449-453.

[23] Miyamoto, N., Niibe, K. and Tomizawa, S. (2005). Decompositions of marginal ho-

mogeneity model using cumulative logistic models for square contingency tables with

ordered categories. Austrian Journal of Statistics, 34, 361-373.

[24] Read, C. B. (1977). Partitioning chi-square in contingency tables: a teaching ap-

proach. Communications in Statistics-Theory and Methods, 6, 553-562.

[25] Saigusa, Y., Tahata, K. and Tomizawa, S. (2015). Orthogonal decomposition of sym-

metry model using the ordinal quasi-symmetry model based on f -divergence for

square contingency tables. Statistics and Probability Letters, 101, 33-37.

23



[26] Smith, T. W., Davern, M., Freese, J. and Hout, M. (2018). General Social Surveys,

1972-2016 [machine-readable data file] /Principal Investigator, Smith, T. W.; Co-

Principal Investigator, Davern, M.; Co-Principal Investigator, Freese, J; Co-Principal

Investigator, Hout, M.; Sponsored by National Science Foundation. –NORC ed.–

Chicago: NORC at the University of Chicago [producer]; Storrs, CT: The Roper

Center for Public Opinion Research, University of Connecticut [distributor].

[27] Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way

classification. Biometrika, 42, 412-416.

[28] Tahata, K., Katakura, S. and Tomizawa, S. (2007). Decompositions of marginal ho-

mogeneity model using cumulative logistic models for multi-way contingency tables.

Revstat: Statistical Journal, 5, 163-176.

[29] Tahata, K. and Tomizawa, S. (2008). Orthogonal decomposition of point-symmetry

for multi-way tables. Advances in Statistical Analysis, 92, 255-269.

[30] Tomizawa, S. (1985). The decompositions for point-symmetry models in two-way

contingency tables. Biometrical Journal, 27, 895-905.

[31] Tomizawa, S. and Tahata, K. (2007). The analysis of symmetry and asymmetry: or-

thogonality of decomposition of symmetry into quasi-symmetry and marginal sym-

metry for multi-way tables. Journal de la Société Française de Statistique, 148, 3-36.
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