学位申請論文

酸化ガリウム光触媒反応による難分解性 含フッ素農薬等の分解に関する研究

2020年3月

塚本 徹

		,我们就是我们的问题,我们就是我们的问题,我们就是我们的问题,我们就是我们的问题,我们就是我们的问题,我们就是我们的我们就是我们的我们就是我们的我们就是我们的我们 "我们们我们们我们们我们们我们们我们们我们们我们们我们们我们们我们们我们们我们们
第	1 章	: 緒言
1.1	研究	3背景
1.	1.1	水環境について
1.	1.2	様々な環境汚染と汚染物質使用に関する規制
1.	1.3	水質汚濁の浄化法
1.	1.4	有機フッ素化合物使用の増加
1.	1.5	有機化合物へのフッ素導入の効果
1.	1.6	有機フッ素化合物による汚染問題
1.	1.7	有機フッ素化合物の分解研究
1.	1.8 i	酸化ガリウムの利用分野
1.2	光化	学および光触媒反応
1.2	2.1	光化学
	1.2.1	.1 光化学反応
	1.2.1	.2 光分解に対する酸素の影響
1.	2.2	光触媒反応
	1.2.2	.1 光触媒
	1.2.2	.2 光触媒反応の原理
	1.2.2	2.3 光照射による電荷分離
	1.2.2	2.4 金属酸化物光触媒の添加量
	1.2.2	.5 光触媒反応の pH 依存性
	1.2.2	.6 光触媒反応の温度依存性
	1.2.2	.7 光触媒反応の濃度依存性
	1.2.2	2.8 光触媒反応に及ぼす光強度の影響
1.3	光分	}解中間生成物の毒性試験
1.4	酸化	とガリウム光触媒による種々の有機化合物の分解反応
1.5	本研	F究の意義と目的
1.6	本論	a文の構成
参考	文献	

目次

第2章 Ga2O3 光触媒による種々のモデルフッ素化合物の脱フッ素反応…31

2.1	研究	究背景および目的31	l
2.2	実駒	験方法	l
2.2	2.1	試薬	1

2.2.2	光触媒反応および生成物の分析方法	32
2.2.3	エイムズ試験による変異原性試験	32
2.3 結	果と考察・・・・・・	34
2.3.1	光還元反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
2.3.2	エイムズ試験による変異原性試験の結果	46
2.4 結	論	48
参考文薛	伏	

第3章	トリフルオロメチル安息香酸の位置異性体の光脱フッ素反応50
3.1 研究	ぞ背景および目的
3.2 実駒	黄方法
3.2.1	試薬
3.2.2	光分解および分析
3.2.2	2.1 光照射実験
3.2.2	2.2 生成物の分析
3.2.3	量子化学計算······51
3.3 結學	長と考察
3.3.1	反応液の吸光度の変化
3.3.2	脱フッ素反応
3.3.3	分解における OH ラジカルの効果
3.3.4	反応溶液の pH 変化
3.3.5	脱フッ素、開環反応および反応溶液の pH の関係
3.3.6	生成物の質量分析
3.3.7	生成物の ¹⁹ F-NMR分析61
3.3.8	反応機構の考察62
3.4 結請	侖 ······68

参考文献

第4	章	農薬フィプロニルの TiO2および Ga2O3 光触媒による脱フッ素反応…
••••	• • • • •	
4.1	研究	『背景および目的
4.2	実懸	专方法
4.2	2.1	試薬
4.2	2.2	光触媒反応および分析方法
4.2	2.3	エイムズ試験による変異原性試験

4.2.	3 量子	子化学計算	4
4.3	結果と	考察	4
4.3.	1 フィ	ィプロニルの光化学および酸化ガリウム光触媒による分解	4
4.3.	2 生质	戈物の質量分析	9
4.3.	3 反应	∑機構・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・8.	3
4	.3.3.1	光化学分解反応	3
4	.3.3.2	酸化ガリウムまたは酸化チタンによる光触媒反応80	5
4.3.	4 エ~	イムズ試験による変異原性試験の結果8	7
4.4	結論…	89)
参考了	ケ献		

第 5	章	水/有機混合溶媒中でのフィプロニルの光脱フッ素反応93
5.1	研究	- 背景および目的
5.2	実験	专方法
5.2	.1	試薬
5.2	.2	光触媒による分解反応
5.2	.3	反応生成物の分析
5.3	結果	- と考察······95
5.3	.1	水/混合溶媒に使用する有機溶媒の選択95
5.3	.2	水/エタノール混合溶媒を用いた反応による無機イオン生成96
5.3	.3	水/THF 混合溶媒中(還元性雰囲気)での光反応生成物の質量分析100
5.3	.4	反応機構
5.4	結論	أ
参考	文献	

第6章	£ 農薬フルベンジアミドの脱フッ素反応	106
6.1 研究	究背景および目的	·106
6.2 実験	験方法	·107
6.2.1	試薬	·107
6.2.2	光分解および分析	·107
6.2.2	2.1 光反応実験	·107
6.2.2	2.2 不溶成分の分析	·108
6.2.3	生成物の分析・・・・・・	·108
6.2.4	エイムズ試験による変異原性試験	·108
6.2.5	量子化学計算	·109

6.3	結果	₹と考察	109
6.3	.1	反応進行に伴うフルベンジアミド内の芳香環の消失	09
6.3	.2	フルベンジアミドの無機化	114
6.3	.3	量子計算	116
6.3	.4	エイムズ試験による変異原性試験の結果	119
6.4	結論	ה∙∙∙∙∙∙י]	121
v	+		

第7章 Ga2O3での分解機構との比較のためのTiO2を用いた医薬品で汚染さ
れる環境水の浄化法
7.1 研究背景および目的
7.2 実験方法
7.2.1 武薬
7.2.2 光分解実験
7.3 結果と考察
7.3.1 親水性医薬品の分解
7.3.2 疎水性医薬品の分解
7.3.3 太陽光反応装置による実験
7.4 結論
参考文献
第8章 総括
謝辞
研究業績

第1章 緒言

1.1 研究背景

1.1.1 水環境について

地球上に存在する水の総量は約 13 億 3800 万 km³、そのほとんどが海水(約 97%)で、淡水は約 3502 万 9000 km³(水の総量の 2.53 %)である[1]。淡水のほとんどは氷河として存在しており、河川水、湖沼水および地下水は約 1063 万 5000 km³(約 0.8 %)である。それら水圏の水は循環しており、地表や海面から蒸発した水は大気中を約 10 日、滞留後、距離にして1,000 km ほどを移動する[2]。そして雨または雪として地表もしくは海に落下する。地表の水は川の一部または地下水になる。水はその循環を繰り返している。世界で利用できる水資源は約 55,255 km³/年であるが、近年では農業用水、工業用水、生活水などの使用量が増加しており、限られた水資源をいかに確保して利用していくかが大きな課題となっている[1]。

1.1.2 様々な環境汚染と汚染物質使用に関する規制

18世紀の産業革命以降、石炭、石油、天然ガスなどを用いた人間の様々な生産活動の結 果、化学物質による大気・水環境の汚染が広がり、健康問題や生態環境への悪影響が報告 されている。化石燃料の大量消費による大気汚染に関しては、工場および自動車等から排 出された汚染物質、主に二酸化硫黄、二酸化窒素などによる呼吸器系の疾病が発生した。 また、水環境汚染では工業廃水および家庭からの汚染物質の流出が原因となり、水生生物 の体内での汚染物質の濃縮が生じ、欧米などでは揮発性有機塩素化合物による地下水の汚 染が問題となってきた。これに関して、近年では国ごとに基準を定め環境規制を行って生 態環境への汚染防止に取り組んできている。

日本における公害問題は、1880年の足尾銅山での鉱毒から始まったといわれている[3]。 銅山から排出された鉱毒水によって、魚類や稲作への被害が長期にわたって続いた。また、 その精錬に伴う煙害によって山林の樹木にも被害が及んだ。その後、1960年以降の高度経 済成長期に全国各地に工業地帯が形成され、四大公害と言われるイタイイタイ病(富山県)、 水俣病(熊本県)、新潟水俣病(新潟県)および四日市喘息(三重県)などが発生した。これらの 健康被害の拡大に伴い、70年代以降、数多くの公害対策の法令が整備された[3]。

本論文は、水質浄化の観点からの研究に関するものであるので、主に水質に関連した公 害および法令について以下に述べる。日本では、将来的に自然環境に悪影響を及ぼす状況 も含めて、河川、湖沼、沿岸海域に対する汚染を規制することを目的とし1970年に「水質 汚濁防止法」が制定された[3]。本法では、特定施設を定め、有害物質 27 項目に対して排水 基準を定めている。また、96 年に水質汚濁法が改正され、地下水の汚染の防止についても 定められた。具体的には都道府県知事による地下水の常時監視および地下水への汚染禁止 が新たに定められた[3]。また、時代が進むにつれて都市部での土壌汚染が問題となってき たため、2002年に土壌汚染対策法が制定された[3]。土壌汚染は地下水が存在する場所では、 それが原因となり地下水汚染が生じるため、土壌汚染の防止は地下水汚染の防止につながる。この法律により 25 の物質が汚染対象として指定され、土壌の調査方法、汚染土壌の修 復方法などについての規則が定められた[3]。

本研究では、農薬の分解に関するものである故、農薬による汚染及びその規制について 記す。農薬には除草剤、殺虫剤、殺鼠剤、植物成長調整剤などの種類があり、農業地、街 路樹、ゴルフ場、室内などで用いられる[3]。一般に農薬は生理活性を有し、対象の害虫な どに作用し、殺虫作用などの効果を示す。しかし、対象としない昆虫などに対しても生理 活性作用を示し、悪影響を与えることもある。そのため、農薬は「農薬取締法」によって 規制されている[3]。

さらに広く化学物質の汚染の規制について記す。アメリカにおいて登録されている化学 物質は約3千万種類中で、市場に流通している化学物質は数万種類であり、そのうちの1 割程度が有害性を有しているといわれている。そしてそれらの化学物質の汚染に対しては、 73年に「化学物質の審査及び製造等の規則に関する法律」が制定され、99年には「特定化 学物質の環境への排出量の把握等及び管理の改善の促進に関する法律(PRTR法)」が制定さ れ、人体及び環境への悪影響を阻止している[3]。

水質汚濁の原因となる化学物質は、重金属、PCB(ポリ塩化ビフェニル)、VOCs(揮発性有 機化合物)、リン、窒素などの富栄養化成分などがあり、BOD(生物化学的酸素消費量)およ び COD(化学的酸素消費量)を増加させる化学物質も含まれる。これらの物質は、化学工場 などから排出されるものもあるが、農地での農薬や生活排水なども排出元となっており多 様化複雑化し、河川・湖沼または地下水を経て環境暴露が起こる。そして地下水などを飲 むことによる直接摂取、河川・湖沼などに生息する魚類やなどを食べることやその水を用 いた農作物による間接摂取による暴露が起こる[3]。

また、残留性有機汚染物質(POPs: Persistent Organic Pollutants)という難分解性、高蓄積性、 長距離移動性、有害性を有する化合物が存在し、問題となっている。この POPs は水に難溶 性で、油溶性であり生体内の脂肪中に蓄積されやすい性質を持っており、生体内で濃縮が 起こりやすい。また、難分解性であるので地球規模で長距離を移動するので、1 カ国のみで は効果的な対策が難しいため、2001 年にストックホルムにおいて、179 カ国およびEUに よって「残留性有機汚染物質に関するストックホルム条約(POPs 条約)」が採択された[3]。 それにより POPs に含まれる化学物質の製造、輸入および使用の禁止や制限が定められた。 POPs に含まれる化学物質は、PCB、ヘキサクロロシクロヘキサン類、ダイオキシン類、ポ リブロモジフェニルエーテル類および PFOA 類などである。

1.1.3 水質汚濁の浄化法

水質汚濁の浄化方法は、対象とする物質によって異なっている。重金属イオンは中和す るために薬剤を用いて、固形物に変え、液体から分離する。BOD や COD などの原因とな っている物質に対しては、酸化分解法によって処理する。具体的には塩素、オゾンや過酸 化水素による酸化分解などである[1]。有害有機物質の分解には、バイオ処理法があり、好 気性微生物を用いる活性汚泥法や嫌気性微生物を用いたメタン発酵分解法、生物脱窒素法や生物脱リン法などがある。

一般に用いられている水質浄化法としての有機化合物の分解方法は、「標準活性汚泥法」 がある。活性汚泥とは、有機物を分解する細菌およびこれらの細菌を捕食する原生動物と 後生動物などの多種多様な微生物の集まりである[1]。有機物は微生物により分解され、二 酸化炭素と水になる。その結果、微生物が増殖するが上澄み液と活性汚泥を分離すること で、水質を浄化し、BOD や COD といった指標の数値を下げる。膜分離活性汚泥法という ものもあり、活性汚泥を膜で分離し、浄化する方法である[1]。また、生物膜法という浄化 法がある。これは接触材に付着した微生物により有機物を分解するものである。他に嫌気 性処理法などの有機物の分解法がある。窒素、リン、重金属などの個別の原子ごとに水質 浄化法がある。有機フッ素化合物の分解により生成するフッ素についても、処理方法があ る[1]。水溶液中ではフッ素はフッ化水素(HF)として存在し、「フッ化カルシウム法」及び「水 酸化物共沈着法」による処理では薬品を加えることでフッ化カルシウムなどの塩を形成す ることにより分離除去する。また、吸着樹脂を用いることでフッ素を取り除く「吸着法」 もある。

汚泥は、非常に多量であるので、その後脱水処理により、大部分の水分が取り除かれる。 そして残った固形状の汚泥は嫌気性微生物による消化や燃焼炉での焼却などの処理が行われ処分される[1]。

1.1.4 有機フッ素化合物の使用の増加

有機フッ素化合物は、現在、我々の生活に深く浸透し様々な分野の製品に利用されてい る。例えば、交通・輸送の分野ではエンジン、ガソリンタンク、飛行機などの材料、半導 体・情報通信の関係では半導体リソグラフィ、半導体エッチング、洗浄材料や光ファイバ ー、生活関連物質として撥水・撥油、汚れ防止剤、非粘着加工剤、スプレーや塗料、環境 エネルギー分野では燃料電池、太陽電池、二次電池、変電所、宇宙関連材料、イオン交換 膜、フィルターなどに使用されてきている[4、5]。最も重要でかつ頻度の高い用途は布地の 仕上げ剤、消火剤、電気めっき浴、潤滑油、および血液中の酸素運搬体[6]などである。日 本国内での 2008 年のフッ素製品の出荷量は約11 万トンであり、その63%は合成材料とし てのフルオロカーボン、22%は工業用の無機フッ化物、7%は金属表面処理用として使用 されている[7]。また世界全体では170万トンの無水フッ化水素酸が製造されており、その 消費量の内訳は中国が最も多く約55%、北米が続き約22%、欧州及びロシアで18%とな っている[7]。以上のことを表 1.1 にまとめた。そして現在、使用されている医薬品の総数 に対して含フッ素化合物は全体の16%に含まれており、農薬においては58%の物にフッ 素が含まれている[8]。そしてフッ素基またはトリフルオロメチル基を持つ農薬(殺虫剤)は、 寄生虫や害虫に対して非常に有効であるため、さまざまな植物に対して散布されている。 また使用量の多いフッ素化合物であるペルフルオロオクタン酸 (PFOA) やペルフルオロオ クタンスルホン酸(PFOS)界面活性剤などの過フッ素化学物質は、1947年に米国の DuPont によって製造され、以来70年が経過し[9]、現在までに世界中で大量に使用された。

表	11	フッ素の利用分野お上び利用量
11	1.1.	

	フッ素製品	の利用分野	
交通、輸送	半導体・情報通信	生活関連	環境エネルギー
	フッ素の	D利用量	
世界17	0万トン	日本11	万トン
医薬品の16%7	がフッ素を含む	農薬の58%が	フッ素を含む

1.1.5 有機化合物へのフッ素導入の効果

なぜ、近年有機フッ素化合物の製造およびその使用が増加しているのか、それは一般に この物質が、光学的・電気的特性、耐熱性、不燃性、化学的安定性、耐候性、摺動性、なら びに非接着性などの優れた特性[10]を有しているからである。これらの性質は次に示す特 性によるものと考えられ、それらのことを表1.2にまとめた。フッ素原子は水素に次いでそ の大きさが小さい。全元素中、最も高い電気陰性度を有し、炭素との結合エネルギーが非 常に大きく、結合が強いため、太鼓熱性、耐薬品性、耐酸化性および耐候性を有する。結 合エネルギーが大きいため、分極率が低く、屈折率、誘電率、表面張力、摩擦力、粘性な どが小さい[7]。また、分子間力が特に弱いため有機フッ素化合物の沸点や融点、摩擦力、 粘性などが比較的低い。医薬品や農薬等の有機化合物にフッ素を含有させる目的は、生理 学的効果を増強し、生体内での吸収輸送のような選択性および薬物動態を改善させること である[7]。具体的には、麻酔薬、ステロイド薬、抗がん剤、抗エイズ薬、抗真菌薬、糖尿 病薬や高脂血症治療薬などの医薬品へのフッ素導入の理由は次のようなものである。フッ 素原子は水素原子とほぼ同等のファンデルワールス半径を持っているので、生体内ではフ ッ素原子と水素原子を区別できない[7]。フッ素化合物は、生体内に容易に浸透する[11]の で、癌細胞などの抗がん剤として利用されている。またトリフルオロメチル基またはフッ 素基を有する化合物は、芳香族環に結合されたとき、組織または膜の透過性を高める親油 性基として作用するので、特に医薬および農薬等に対しては有効であり、タンパク質と相 互作用を示すアトルバスタチンという高脂血症治療薬などが開発されている。また、その 高い電気陰性度ため、生体内で吸収されたフッ素化合物は、活性領域に電気的な効果を示 す。フッ素化医薬品は、医学的効果について統計的に評価され、その合成が行われている。 また、農薬への応用でもフッ素原子によるミミック効果(水素原子と区別できずに生体内に 取り込むこと)やブロック効果(フッ素基の導入により、構造の安定性が増すこと)などによ り、医薬および農薬などの化合物へのフッ素基の導入が行われ、現在までに多種多様な有

機フッ素化合物が合成されている[7]。また、新薬の開発においてもフッ素原子の導入が積極的に検討されている。

			フッ素	の特性			
高い電気陰	性度 結合		きエネルギー大 低分極率			低	い分子間力
			フッ素導	入の効果			
電気特性	耐熱	热性	生 不燃性 化学的安定性 耐		而打作	 侯性	摺動性
接着性							

表 1.2. フッ素の特性およびその導入効果

1.1.6 有機フッ素化合物による汚染問題

種々の特長を有する、有機フッ素化合物の使用の増加は、植物、動物および人間にとっ て必ずしも有益であるとは限らない。例えばペルフルオロオクタン酸(PFOA)は、毒性およ び環境への残留効果のために、重大な環境問題を引き起こしている[12、13]。ペルフルオロ 化合物が生分解された時、元の物質よりも毒性が高い副産物を生じる[14]。また、抗うつ薬 であるフルオキセチンによる河川の汚染も報告されている[15]。これらの物質は海洋生物 の体内に濃縮されて、海洋生態系に悪影響を及ぼしている。そして、人間による生産活動 のない極地においても PFOA 等の汚染が広がっていることが報告されている[16-18]。日本 国内においても東京湾などの海域において魚類の体内から PFOA が検出された[19]。また、 PFOA 等を製造している工場の従業員の体内の血液からは PFOA および PFOS が数 mg / L の濃度で検出されており、一般の人々(北米)の体内からも数µg/Lの濃度で汚染が起こっ ていることが報告されている[20、21]。PFOA などによって汚染された水を飲むことで、体 内の血液中に PFOA が長期間残留していることが知られており、現に健康問題が深刻化し ている、その例として米国における大腸がん、腎臓がんなどの発生、わが国においても各 地で基準を超える濃度が検出されている。フッ化物は食品や医薬品を摂取することによっ て人体に濃縮され、フッ化物の過剰摂取はフッ素中毒につながる可能性[9]がある。含フッ 素系農薬の被害は、欧州連合において、フィプロニル[22]で汚染されている卵が、高齢者に 深刻な健康上の危険をもたらしている例がある。また動物の脳や甲状腺、松果体、腎臓お よび生殖器系の機能に障害を引き起こすことなどが懸念されている[23]。また現在、米国環 境保護庁によってフッ素化合物による飲料水の汚染が再調査され[24-28]、これらのフッ素 化学物質の使用によって引き起こされる深刻な生態学的および環境的問題が明らかになっ てきた。以上のことを表 1.3 に示す。

表 1.3. フッ素汚染について

	フッ素の汚染	
河川	東京湾の魚類	海洋生物体内での濃縮
工場作業員の血液	一般人の体内	毒性の高い副産物

1.1.7 有機フッ素化合物の分解研究

残留性有機汚染物質に含まれる有機フッ素化合物の一般的な分解法は確立されていない。 主に PFOA などの効果的な分解方法が検討されており、その研究論文が多数報告されてお り、これらの報告結果を表 1.4 にまとめた。ここでは、それらの実験方法及びその分解効率 (脱フッ素率=生成したフッ化物イオン量/(初濃度×親化合物組成中のフッ素原子数)×100) に関して記す。

ヘテロポリタングステン酸光触媒(PW12O40³⁻)による PFOA の分解研究では、その高い酸 化力(標準水素電極(NHE: normal hydrogen electrode)で 3.76 V)に基づき波長、220-400 nm の 光を照射することで PFOA の C-F 結合が開裂し、24 時間後で約 14.9%のフッ化物イオンが 生成した[29]。また、S₂O₈²⁻および UV を用いた PFOA の分解法では、12 時間後、約 59.1% のフッ化物イオンが生成する[30]。この反応では、光照射により S₂O₈²⁻から SO₄⁻⁻(標準水素 電極で 1.39 V)が生成し、このラジカルが有機化合物を酸化分解する。S2O8²⁻および UV の 条件を温水(約80℃)中で行うと、その分解効率が改善し、6時間後で約78.3%である[31]。 また、S₂O₈²⁻に超音波を併用した CF₃OC₂F₄OCF₂COOH(NFDOHA)の分解実験の報告による と 24 時間後に脱フッ素率が 84.8 %になる[32]。これは、超音波により SO4 ·· ラジカルがよ り生成したためと考えられている。鉄によるフェントン反応を用いたノナフルオロ吉草酸 (PFPeA)の分解では、24時間後に69.2%の脱フッ素率を示すことが報告された[33]。またペ ルフルオロオクタンスルホン酸(PFOS)の鉄粉および亜臨界水を用いた分解実験では、 51.4%の脱フッ素率が報告されている[34]。また生分解によるジフルオロベンゼン(1,3-DFB) の分解報告では、Labrys portucalensis という好気性細菌を用いることで、30日後に約28.6% の脱フッ素率を示す[35]。次いで、酸化ガリウム Ga2O3 が強力な光触媒としての可能性があ ることが報告された[36]。P-25 酸化チタン、UVC 及び酸化剤(KIO3)を用いたペンタフルオ ロ安息香酸(PFBA)の脱フッ素分解では、30分の光照射でほぼ100%の脱フッ素率を達成す る[37]。真空紫外光(VUV)および超音波を併用した PFOA の分解実験の報告では、光照射6 時間後に約90%の脱フッ素率を達成する[38]。また KI および UVC を用いた実験では14時 間後に98%の脱フッ素率を示すことが報告されている[39]。脱フッ素反応に関して、Zhao と Zhang は、低圧水銀ランプ(主波長 254 nm)と石英製反応器を用いて、光照射(UVC)によ り、TiO₂よりも β-Ga₂O₃(バンドギャップエネルギー=4.8 eV、電荷分離には波長 258.3 nm 以 下の光が必要(λ(nm)=1240/Eg (4.8) eV))が PFOA の分解に非常に有効であることを示した。 詳細な反応については以降に述べる。

有機フッ素化合物	実験条件	反応時間(h)	脱フッ素率(%)
PFOA	PW12O40 ³⁻ , UV/vis, O2	24	14.9
PFOA	$S_2O_8^{2-}$, UV/vis	4	59.1
PFOS	Fe、Ar 雰囲気、350 ℃、 23.3 MPa	6	51.4
PFPeA	Fe, UV/vis	24	69.2
PFOA	S ₂ O ₈ ²⁻ 、Ar 雰囲気、80℃、 0.78 MPa	6	78.3
NFDOHA	超音波、S ₂ O ₈ ²⁻	24	84.8
1,3-DFB	Labrys portucalensis	20 日	28.6
PFBA	TiO ₂ 、UVC、KIO ₃	0.5	100
PFOA	VUV、超音波	6	90
PFOA	KI、N2、UVC	14	98
PFOA	Ga ₂ O ₃ 、UVC	3	18

表 1.4. 様々な方法による有機フッ素化合物の分解結果

1.1.8 酸化ガリウムの利用分野

酸化ガリウムは近年、その利用がさまざまな分野で注目されてきている興味深い物質で ある。酸化ガリウムを光触媒として用いた有機化合物の分解報告は、本章の 1.4 で述べる ので、ここでは、酸化ガリウムの光触媒分解以外の用途について記す。酸化ガリウムは、 ナノデバイス、光検出器、ダイオード、ガスセンサー、などでの応用利用が研究されてい る。ナノデバイスとしては、20-250 度の範囲で動作するナノベルトの研究報告があり、酸 化ガリウムのデバイスとして大きな可能性がある[40-43]。光検出器としは、その大きいバ ンドギャップのために、高出力トランジスタおよび遠紫外検出器として近年、非常に注目 を集めている[44、45]。 ダイオードの利用に関しても、 その大きいバンドギャップが高出力 のデバイスとしての理想的な候補であることが報告されている[46-49]。ガスセンサーとし ても、大きなバンドギャップおよび高い破壊電界などの性質のため、その利用が多数報告 されている[50-70]。酸化ガリウムを用いた水の分解研究において、Sakata らの研究による と、β酸化ガリウム(1273K で調整したもの)および Rh0.5Cr1.5O3 を助触媒として用いて高圧 水銀灯の光を照射すると、時間当たり 7.9 mM の水素および 3.9 mM の酸素が生成すると報 告した[71]。また、酸化ガリウムに Zn(3 at %)を担持した光触媒および助触媒として Rh0.5Cr1.5O3を用いて、高圧水銀灯の光を照射すると 21.0 mM / hの水素および 10.5 mM / h の酸素が生成するとの報告がある[72]。二酸化炭素の還元に関する研究においては、酸化ガ リウム光触媒を用いて、温度 523 K 下でキセノンランプによる光照射で、二酸化炭素およ

びメタン(それぞれ 200 μmol)に対して 3 時間の光照射を行い、その結果、5.8 μmol の一酸化 炭素が生成する[73]。他の報告では、種々の酸化金属との二酸化炭素の還元が比較され、1.0 g の酸化ガリウムにより二酸化炭素および水素(それぞれ 150 μmol)の存在かで温度 673 K、 水銀キセノンランプにより 3.60 μmol の一酸化炭素が生成し、酸化ガリウムが最も良い結 果をしめす報告がある[74]。以上のように酸化ガリウムは近年、機能性材料としての研究が 盛んに行われている物質である。

1.2 光化学および光触媒反応

1.2.1 光化学

1.2.1.1 光化学反応

波長 200~800 nm の光エネルギーは有機物の結合解離エネルギーにほぼ対応し、その吸 収により様々な光化学反応が起こる。照射された化合物は励起一重項状態に励起され、そ の後にエネルギーの低い三重項状態になる。そのエネルギーは熱または光として放出する。 Jablonski スキーム[75]は、光励起機構と励起状態の変化過程の概略を示したものとして知 られている。光は物質によって吸収され、より低い軌道の電子をより高いエネルギーまで 上昇させることができる。その後、基底状態に戻る過程で結合開裂、異性化、開環、環化、 付加、置換、酸化および還元などの様々な光化学反応が起こる。

光化学反応によって起こる分裂反応があり、例えば下図に示すようなカルボニル基を持っている化合物では、光により開裂反応が起こる[76、77]。このように光のみでも化合物の分解が起こる。また有機化合物は直接光分解(ホモリシス、ヘテロリシス、および光イオン化)を介してさまざまな光化学反応を起こす[78]。

Norrish type I reaction

Norrish type II reaction

図 1.1. Norrish1 型反応および 2 型反応によるラジカル開裂反応

本研究では、光源として低圧水銀灯(主波長 254 nm(UVC))を用いるので、化合物に対する UVC 光の影響を述べる。このランプは、主に 254 nm(UVC)と 185 nm(VUV)の波長の光を放 射する。しかしながら、185 nmの光は空気分子によって吸収され、その波長の光を用いる ことはできない。さらに、耐熱ガラス製の容器は 300 nm より短い波長の光を吸収するので、光反応の実験には使用できない。それ故、254 nm の波長を透過する石英容器が光反応器として使用される。

254 nm の波長の光は水を分解させることができないので、低圧水銀灯からの光で OH ラ ジカルは生成しない[79]。また一般に、低圧水銀ランプからの光は空気中の分子状酸素から オゾンを生成しない。UVC 光は有機化合物中の C-C、C-H、C-CI 結合を切断することがで きる。フッ素化合物の結合解離エネルギーに関しては、F-CHFCI 構造の C-F 結合エネルギ ーは 460 kJ / mol であり、低圧ランプからの UVC 放射(254 nm の波長では約 471 kJ/mol)で も、この C-F 結合の開裂は可能である。しかし、フッ素基を持つほとんど全ての化学物質 の C-F 結合の解離エネルギーは、480~510 kJ / mol の範囲にある。そのため、含フッ素有 機化合物中の C-F 結合の切断は、UVC 照射だけでは起こり得ない[80]。

1.2.1.2 光分解に対する酸素の影響

光化学反応により酸素分子は、次の式(i-iv)に示すように、励起一重項状態とスーパ ーオキシドラジカルアニオンを生成し、それが有機化合物を酸化し、分解反応が進行する。 光化学の節ではあるが、理解をしやすくするために以下の式には光触媒による反応も含ま れている。

$O_2 + hv$	\rightarrow	$^{1}O_{2}$	(i)
$^{1}O_{2}$ + compound	\rightarrow	oxidized products	(ii)
$O_2 + e^{-}_{(catalyst)}$	\rightarrow	O_2^- .	(iii)
$O_2^- \cdot + H^+$	\rightarrow	·ООН	(iv)

光触媒を用いた場合、酸素分子は電子求引性を有するため、光触媒作用によって生成した 励起電子を捕獲し、スーパーオキシドアニオン(O2⁻・)となり、それが次に水素イオンと相互 作用してより強い酸化力を有するヒドロペルオキシラジカル(・OOH)を生成する。このよう に酸素分子は非常に反応性があり、光分解において重要な役割を果たす。

1.2.2.1 光触媒反応

1.2.2.1 光触媒

酸化ガリウム光触媒およびその反応について述べる前に一般的な光触媒(TiO₂)の性質、反応及び利用例について記す。一般に触媒とは、ある化学反応の速度を速めるかまたは遅くする働きを持ち、その過程の終了時には触媒自身は変化していない物質である。また、触媒を用いることで、高温高圧下で合成されていた物質をより温和な条件で効率的に合成することもできる。光触媒は、光(電磁波)により、電子励起することにより化合物に対して酸

化還元反応を起こすものである。そして、触媒であるので、その反応の前後で光触媒は変化しない。また、光触媒以外の方法による酸化還元反応(酸化剤など)では、その反応のために添加物が必要であるが、光触媒では添加物は不要である。

一般的な光触媒は酸化チタンがよく知られている。その利用例としては、建物等の外壁 に酸化チタンをコーティングすることにより、太陽光を利用して外壁の汚れを光分解し、 常にきれいな状態を保つことができる[81]。また、空気中の汚染物質である窒素酸化物 (NOx)や硫黄酸化物(SOx)などの物質を分解浄化する研究が行われている。加えて有害物質 による土壌や水の汚染浄化に対しても、光触媒が利用されている。この方法では、初めに 吸着媒を用いて、土壌などの汚染物質を吸着させ、その後、吸着した化学物質を光触媒に より分解することにより、この吸着媒を再利用することができる[81]。また、光触媒により 水を光分解し、水素を生成することにより燃料電池のための燃料を合成することができる [81]。

1.2.2.2 光触媒反応の原理

光触媒は一般に固体であり、固体はその性質により導体、絶縁体または半導体に区別される。導体は電気を通し、絶縁体は電気をほぼ通さないものであり、半導体は導体と絶縁体の中間の性質を持っている。この性質の違いにより構造中の電子の流れやすさが異なる。 その結晶構造中の電子のエネルギー準位がバンド状になっており、バンド間にはエネルギ ーギャップ(バンドギャップ)がある。

導体では、バンドとバンドの間隔があまり離れてなく、電子の移動が容易である。一方、 絶縁体および半導体ではバンドとバンドの間隔が離れているため、電位の移動が困難であ る。電子が入っているバンドを価電子帯、1つ上のバンドを伝導帯という。バンドギャップ 以上のエネルギーを持つ光を照射すると、半導体の価電子帯に存在する電子が伝導帯に励 起して、伝導性を持つ励起電子になる。一方、価電子帯には、電子が無くなり正孔が生じ て電化分離が起こる。続いて光触媒表面の化学物質と励起電子により還元反応、正孔によ り酸化反応が起こる。一般に光触媒(酸化チタンなど)によって還元される物質は酸素分子 が主なものである[81]。

これらの励起電子および正孔は光触媒表面に存在し、化合物が光触媒に吸着したときに 酸化還元反応を起こす。吸着は物理および化学吸着に分けられ、物理吸着は気質と触媒表 面の相互作用によるもので、化学結合をつくらない、一方、化学吸着はそれぞれの相互作 用によって化学結合を作って吸着する。一定の温度、濃度および圧力においては、吸着は 平衡状態になる。一定の温度において濃度を変化させたときに平衡吸着量の変化を示した ものが吸着等温線という。吸着等温式の中で最も知られているのがラングミュアの等温式 である。その式は、吸着は表面上の吸着サイトで起こり、その吸着力は一定であり、1つの 吸着サイトに1つの分子が吸着する、吸着サイト間の相互作用はないという仮説のもとこ

14

の式は作られている。Langmuir-Hinshelwood(LH)の式はしばしば使われ[82]、データを LH モデルに当てはめることができれば(次式)、光反応は光触媒(金属酸化物)の表面で起こることを示す。

$$\frac{1}{r_i} = \frac{1}{kK_{LH}} \cdot \frac{1}{c_i} + \frac{1}{k}$$

ここで、riは不均一光触媒分散液中の初期光分解速度、kは見かけの速度定数、ciは初期濃度、KLHは見かけのL-H吸着定数である。

励起電子の還元力は伝導帯下端のエネルギーによって決まり、正孔の酸化力については 価電子帯上端のエネルギーによって決まる。そして伝導帯下端のエネルギーは金属酸化物 の金属原子の原子軌道によって決まり、価電子帯上端のエネルギーは酸素原子の原子軌道 によって決まる。酸化力および還元力は標準電極電位によって定められており、酸化チタ ン(アナタース型;以降の文章で断りがない場合はアナタース型の酸化チタンのことを指 す)の伝導帯下端は-0.16Vであり、価電子帯上端は3.04Vである[81]。励起電子による酸素 分子の還元およびプロトンとの反応による・OOHの生成の標準電極電位は-0.046 V(vs NHE) となり、この電位が酸化チタンの伝導帯下端のエネルギーより低いので、酸化チタンによ って・OOH ラジカルを生成することができる。

化合物の分解実験においては、一般に励起電子による還元反応は酸素分子に対してのみ 起こる。通常の光触媒分解では、この電子は基質の還元反応には使われることはない。

酸化チタンの価電子帯の上端のエネルギーは約3Vであり、この正孔は水を酸化して・ OH ラジカルを生成する。このラジカルが化合物に対して酸化反応を起こすと考えられて いる。しかし水酸ラジカルは非常に反応性が高いので、この中間生成物を観測することは 困難である。または、正孔による化合物の直接酸化反応も起こる。そして、光触媒酸化反 応によって有機化合物はラジカルを生成すると考えられている。基質(R-H)が酸化されラジ カル(R・)が生成し、酸素分子が存在するとそれらが反応し、ペルオキシラジカル(R-OO・) ができ、水素と反応しヒドロペルオキシド(ROOH)となる。この反応が繰り返され、最終的 に基質が分解される[81]。

図 1.2 に酸化チタン(アナターゼ)および酸化ガリウムのエネルギー準位を示した。本論文 で述べられている酸化ガリウムと酸化チタンの違いは、β-Ga₂O₃の伝導帯と価電子帯のエネ ルギー差(バンドギャップの幅)が TiO₂の伝導帯及び価電子帯よりもはるかに大きいことに 起因している[83]。標準水素電極(NHE)に対して、酸化ガリウムは、伝導帯が-1.49 eV、価電 子帯が 3.31 eV となり、酸化チタンでは伝導帯が-0.16 eV、価電子帯が 3.04 eV となる[83]。 大きいバンドギャップを持つ β-Ga₂O₃ が TiO₂(バンドギャップ= 3.2 eV、光励起には波長 387.5 nm 以下の光が必要(λ(nm)=1240/Eg (3.2) eV; λ は波長、Eg はバンドギャップエネルギ ー))よりも高活性であることは、Basov らによって[80、81])金属酸化物のバンドギャップが

図 1.2 酸化チタンおよび酸化ガリウムのエネルギー準位

1.2.2.3 光照射による電荷分離

ここでは、UVC 照射下の酸化ガリウムと UVA 照射下の従来の二酸化チタンとの違いを 述べる。金属酸化物がバンドギャップを超える光エネルギーを照射されると、電荷分離が 起こり、価電子帯の正孔による化合物の酸化と、伝導帯電子による物質の還元反応が起こ る。TiO₂のバンドギャップは 3.2 eV(387 nm)であるので、387 nm 未満の波長の光を照射す るとこれらの反応が進行する[83]。高圧水銀灯は、二酸化チタンを活性化するのに適した UVA の光照射を行うことができる。一方、Ga₂O₃のバンドギャップは約 4.8 eV(吸収端は 約 258 nm)であり、電荷分離が起こるためにより高いエネルギーが必要である。したがっ て、254 nm 付近の UVC 光を放射する低圧水銀ランプを使用する必要がある。以上の事柄を 図 1.3 に酸化ガリウム、酸化チタンの吸収スペクトルおよび低圧水銀灯の発光スペクトル として示した。また、その図中に平均的な炭素-フッ素結合を開裂することのできる波長の 範囲を示した。

図 1.3. 酸化ガリウム、酸化チタンの吸収スペクトルおよび低圧水銀灯の発光スペクトル

酸化ガリウムには α 型、 β 型、 γ 型の 3 種類の結晶型がある。酸化ガリウムの価電子帯は O-2p 軌道からなる。伝導帯はガリウム原子 4s 4p 混成軌道からなる。酸化ガリウムの各結 晶型のバンドギャップは異なり(4.5~5.0 eV)、3 種類の Ga₂O₃結晶による、それぞれの有機 物分解の光触媒活性に関して、炭化水素除去率と CO₂生成率が報告されている(表1.5[84])。 α 、 β 、 γ -酸化ガリウムおよび二酸化チタンの使用による気体の芳香族化合物に対する UV 照 射の結果から、Ga₂O₃ は TiO₂よりも高い光活性を示すことが分かる [85-87]。 β 型 Ga₂O₃結 晶は、 α 型、 β 型および γ 型微結晶の中で最も高い光活性を示す。 α 型結晶は 2 番目に高い 活性を有する。この結果は、 β -酸化ガリウムが有機物質の分解のためにより最も良い光触 媒であることを示している。

		α -Ga ₂ O ₃	β-Ga ₂ O ₃	γ-Ga ₂ O ₃	TiO ₂
	Benzene	0.32	0.42	0.21	0.08
Hydrocarbon removal rate [umol h ⁻¹ m ⁻²]	Toluene	0.46	0.52	0.52 0.26 0.15 0.36 0.20 0.18 2.4 0.95 0.17 1.8 0.85 0.13	
	Ethylbenzene	0.31	0.36	0.20	0.18
	Benzene	1.7	2.4	0.95	0.17
CO_2 production rate [umol h ⁻¹ m ⁻²]	Toluene	1.3	1.8	0.85	0.13
	Ethylbenzene	1.2	1.6	0.73	0.15

表 1.5. 異なる結晶の Ga₂O₃ と TiO₂(P-25)による芳香族物質の光触媒活性の比較

前述のように、酸素は励起電子の捕捉剤として作用する。この理由から、酸化ガリウム光 触媒反応を酸素の存在下で起こるものとそうでないものとに分けて考えることが必要であ る。図 1.4 は、酸素の存在下および非存在下の両方で酸化ガリウムの表面上で起こる反応 を表す。これらの様々な反応は、酸素の存在下で起こるもの(反応 1~6)と無酸素状態で起 こるもの(反応 7~10)に分類を、下記にまとめた(R は炭化水素基、E は脱離基を意味する)。

図 1.4. 酸素雰囲気または非酸素雰囲気中での UVC 光照射された酸化ガリウム表面での反応 のモデル

[I] Photo-assisted Ga₂O₃ reaction in the presence of oxygen

$compound_{ads}$	+	$h^{+}\left(\mathrm{VB}\right)$	-	oxidized intermediates	(1)
O_{2ads}	+	e ⁻ (CB)	-	• O ₂ -	(2)
H_2O_{ads}	+	$h^{+}_{\rm (VB)}$	-	\cdot OH + H ⁺	(3)
• O ₂ -	+	H^{+}	-	• ООН	(4)
compound	+	• ОН	-	hydroxylated intermediates	(5)
compound	+	• OOH	-	peroxidized intermediates	(6)

[II] Photo-assisted Ga₂O₃ reaction in the absence of oxygen

compound _{ads}	+	e (CB)	-	reduced intermediates	(*)	7)
-------------------------	---	--------	---	-----------------------	-----	----

$compound_{ads}$	+	$h^{+}\left(\mathrm{VB}\right)$	-	oxidized intermediates	(8)
H_2O_{ads}	+	$h^{+}\left(\mathrm{VB}\right)$	-	\cdot OH + H ⁺	(9)
compound	+	• OH	-	hydroxylated intermediates	(10)

前述したように、酸素(酸化性)雰囲気では、酸化ガリウムの表面に多数の酸素分子が吸着 している。光触媒の表面で電荷分離が起こると、酸素分子は伝導帯の励起電子によって還 元される。その結果、(2)スーパーオキシドラジカルアニオンが生成し、ほとんどの励起電 子は酸化性雰囲気下で多数の酸素分子によって消費される。(4)ヒドロペルオキシラジカル (・OOH:電位は-0.046 V (vs NHE))は、スーパーオキシドアニオン(・O₂-; 水中での酸化還 元電位は-0.16 V(vs NHE)[88])とプロトンとの反応から生成する。化合物がヒドロペルオキ シラジカルによって酸化されると、(6)ペルオキソ中間生成物が生成する。一方、(3)水分子 は価電子帯の正孔によって酸化され、OH ラジカル(電位は 2.7 V(vs NHE))とプロトンを生 成する。これらのヒドロキシルラジカルは化合物と反応し、(5)ヒドロキシル化中間生成物 を生成する可能性がある。(1)酸化性ラジカルに加えて、価電子帯の正孔による直接の化合 物の酸化が起こる。

無酸素雰囲気での反応は、酸素雰囲気とは、伝導帯上の反応に大きな違いがある。反応 物は励起電子により還元されて(7)、化合物は脱離基(E)、例えばフッ化物イオンを放出し、 続いて残留基の水素化、あるいは二重結合が生成される。ある研究では、触媒として酸化 ガリウムが脱水素化反応によってプロパンをプロペンに変換することができることを示唆 している[89]。(9)価電子帯の正孔は無酸素条件下で水を酸化する。(10)OH ラジカルは化合 物を分解する。無酸素条件での(8)に対するその後の逐次反応は、酸素化条件下で起こるも のと同じである(反応(9)、(10)を反応(3)、(5)と比較)。

1.2.2.4 金属酸化物光触媒の添加量

光触媒の最適な添加量は、粒径や表面電荷などのさまざまな実験条件の影響を受ける。 次に一般的な傾向について説明する。触媒量がかなり少ない場合には、触媒添加量の増加 と共に分解収率が増加する傾向がある。分解は、ある添加量で最大効率を達成し、そして その後、その量がさらに増加すると効率は横ばいになる。これは、より多量の光触媒が不 均一分散体を通る光透過を妨げるためであり、ほとんどの触媒は光照射にさらされない状 態になる[90-92]。

触媒の表面積の増加は分解効率の増加を高める。表面積を増加させる様々な手法が報告 されている[93]。しかし水溶液中では光触媒粒子が凝集する傾向があり、活性表面積は減少 する。従って、表面積の大きさと触媒活性は必ずしも相関はない。

1.2.2.5 光触媒反応の pH 依存性

反応溶液のpHは、有機化合物の光触媒分解の効率に影響を与える。pHを変えると、表 面電荷などの光触媒表面の変化、とりわけ凝集状態が変化する。有機化合物のほとんどの 溶液のpHは酸性領域(4.5~7)にあることが広く報告されている[23-28]。このpH範囲では、 金属酸化物光触媒の表面電位はゼロに近い。等電点は、ゼロ電荷点(PZC)である。このPZC では、有機化合物と光触媒との間の接触が最小限に抑えられる。プロトン濃度が溶液中の PZCより低いとき、触媒表面の荷電電位は正である。したがって、負に帯電した化合物は この低い pH範囲で光触媒に強く吸着する傾向がある[94-96]。一方、pH が PZC より高い と、正に帯電した化合物は負に帯電した表面と容易に接触する。その結果、光触媒分解が 促進される可能性が高い。汚染物質の光触媒分解は触媒表面上で起こる可能性が高いので、 分解効率は pH によって影響される。さらに、分解反応が起こった溶液は一般に照射時間 の経過とともにより酸性になる[97]。

高いpH条件は光分解に有効であることが一般に示されている。高いpHでは、金属酸化物の触媒表面に多数の水酸化物イオンが吸着し[98]、その結果、同時に多数のヒドロキシル ラジカルが生成する。それが基質をヒドロキシル化し、分解反応を促進する。このように、 分解は高いpHで効果的である。しかしながら、対イオンのような不純物による抑制効果が 報告されている[86]。

1.2.2.6 光触媒反応の温度依存性

Ga₂O₃触媒反応の温度効果はTiO₂触媒のそれと同様であると考えられる[99]。高温では、 触媒表面での価電子帯の正孔と励起電子の再結合が促進され、それによって電荷分離が妨 げられる[91]。さらに、光触媒上への物質の吸着もまた高温で減少する。考慮すべき他の点 は、光触媒反応で生じた中間生成物の脱着であり、これは高温での律速段階である。吸着 は20℃から80℃の間で起こり、0℃以下では活性化エネルギーの増加が確認された。した がって、光触媒反応には一般的に20~80℃の範囲が好ましい[100]。

1.2.2.7 光触媒反応の濃度依存性

有機化合物の高濃度溶液の分解においては過剰な有機物は触媒の表面に吸着するため、 一般に分解効率は低くなる[101]。そのため光触媒による化合物の分解効率は、物質の濃度 によって変化する。完全無機化を達成するためには、より長い反応時間を必要とする。

1.2.2.8 光触媒反応に及ぼす光強度の影響

光強度は、基本的には、光分解における効率に影響を及ぼす。光強度が強いほど光触媒 反応が促進され有機化合物がより分解される。しかし、反応が光強度と無関係であること を示す光触媒活性についてのいくつかの報告もある[102]。

1.3 光分解中間生成物の毒性試験

有害化合物の浄化の確認には、中間生成物の毒性検証は重要である。現時点では、生成 した中間生成物の毒性についての報告はほとんどないが、分解した中間生成物の中には、 元の化合物よりも毒性が強いものがある。

毒性試験には、急性経口毒性試験、刺激試験、感作用試験、遺伝毒性試験、生殖毒性試 験、反復投与試験、内分泌かく乱試験、薬物動態試験、皮膚吸収試験、光毒性試験、癌原 生試験などの方法がある。

それらの中の癌原生試験の1つに発がん性を検査するエイムズ試験がある[103-105]。この試験の結果が陽性であれば、発がん性物質の可能性は高いと推定される。試験ガイドラインとしては、安衛法 GLP、OECD-GLP、薬機法 GLP などがある。

エイムズ試験の概略を図 1.5 にまとめた。エイムズ試験は、サルモネラ菌を用いること で、化学物質の変異原性を評価する方法である。一般に、変異原性を有する物質は発がん 性物質であることが多い。しかしエイムズ試験が陽性の物質でも発がん性を示さないこと もある。その原理は遺伝子操作によりアミノ酸の合成ができないように改良された細菌を 用い、この細菌が化学物資などの影響により、突然変異を起こし再び自身でアミノ酸合成 をできるようになり、寒天培地上で形成されるコロニー数を比較して発がん性の有無を評 価する方法である。エイムズ試験の名は考案者であるカルフォルニア大学バークレー校の Bruce Nathan Ames 教授による[106]。

急性経口毒性試験	刺激試験	感作性試験	遺伝毒性試験	生殖毒性試験
反復投与試験	内分泌撹乱試験	薬物動態試験	皮膚吸収試験	光毒性試験
癌原性試験	など			
\checkmark				
エイムズ試験				
発がん性の検査(試験	験ガイドラインとしては主	に安衛法GLP、OECD	D-GLPさらに薬機	法GLPが存在)
試験方法				
遺伝子操作により増殖不	*************************************	▶ コロニー数増加		副性右(発がく性右)
		(数倍以上になる)		(庄伯(先))(庄伯)
検体化合物の添加	□□□□□□>□□□□>□□□□□□□□□□□□□□□□□□□□□□□□□			
		🖒 コロニー数変化なし	□ 文異原	ē性無(発がん性無)

各種毒性試験

図 1.5. 各試験方法およびエイムズ試験について

1.4. 酸化ガリウム光触媒による種々の有機化合物の分解反応

酸化ガリウムを光触媒として用い、エチレンジアミン四酢酸(EDTA)、フェノール、PFOA、 PFOS、ローダミン-B、メチルオレンジ、メチレンブルー、4-クロロフェノール、ベンゼン、 トルエンおよびエチレンなどの分解を行った報告がある。これらの実験条件および結果の 概要を以下に記載する。

Seshadri とその共同研究者[107]は、β-、γ-酸化ガリウムおよび二酸化チタンによる EDTA の分解を行い、それぞれの光触媒活性を比較した。 β -および γ-酸化ガリウムはガリウム金 属から合成し、X 線回折、示差熱分析および Raman スペクトル測定により分析していた。 実験には 4 つの低圧水銀灯(16 W)で囲んだ円筒形の光反応器を用いてい、冷却ファンで周 囲温度 25~30°Cに保った。各光触媒(3mg)、0.5 ml の 30%H₂O₂および 0.1 % EDTA を含む 1 Lの反応溶液で分解実験が行われ、EDTA は 60 分以内にほぼ完全に分解した。一方、無 触媒/H₂O₂系では、180 分後の分解効率は 50%にすぎない。それらの触媒活性は次の順序で 低下する: β -酸化ガリウム/H₂O₂> γ-酸化ガリウム/H₂O₂>二酸化チタン/H₂O₂> H₂O₂。 また EDTA の分解効率は中性条件下(pH 7)よりも pH 10 の方が良好であった。

他の報告では γ-、β-酸化ガリウムおよび二酸化チタンによるジオキサンの分解に対して の光触媒活性の比較が行われ、γ-酸化ガリウムが 1,4-ジオキサンの分解に対して、最も効果 的であった[108]。180 分の光照射後、γ-酸化ガリウム(10mg/L)/H₂O₂ (0.5 ml)によって 90% 以上の 1, 4-ジオキシアン(1g/L)が分解した。

また α-酸化ガリウムを用いた 4-クロロフェノールの光分解が研究された[86]。pH 7.8 で 2 時間後の分解効率は約 98%である。4-クロロフェノール溶液(20 mg/L、200 ml)に、α-酸 化ガリウム(0.4 g/L)を添加し、この溶液を、反応器の中央に配置された 15Wの低圧水銀 UVC ランプによって UVC 照射を行った。酸化ガリウムによる照射 2 時間後の分解の程度 は 98%であった。一方、二酸化チタンでは 81%である。

酸化ガリウムマイクロ粒子によるモデル化合物の分解に関する研究がある[109]。この論 文では、酸化ガリウムマイクロ粒子を界面活性剤支援水熱法により調製し、走査型電子顕 微鏡、X線回折および透過型電子顕微鏡、フーリエ変換赤外分光法、UV-vis分光法および 表面積分析によって分析した。水溶液中でモデル化合物であるローダミンBとメチレンブ ルー(それぞれ 50 mL、0.02 mM)に対して酸化ガリウムマイクロ粒子(50 mg)の光触媒分解活 性を検討した。150Wキセノンランプの光照射により、メチレンブルーの分解とローダミン Bの完全無機化反応はそれぞれ 90 分と 180 分以内で達成した。

またナノ構造の β-酸化ガリウムを使用したリン酸トリ-n-ブチルの分解が検討された[87]。 リン酸トリーn-ブチル溶液の濃度は 400 ppm(1000 mL)であり、それに 10 mg のナノ構造 β-酸化ガリウムおよび 0.5 mL の 30 % H₂O₂ を添加し、反応器に 4 つの低圧水銀ランプからの UVC 光を照射した結果、分解が 40 分で達成した。一方、比較のために二酸化チタンを用 いた場合、トリーn-ブチルホスフェートの分解は 70 分を要する。 酸化ガリウムによる水処理は有害な、過フッ素化基質、特に PFOA を分解するために広く研究されている[110、111]。β-酸化ガリウム(0.5 g/L)による PFOA(約 40 mg/L)の分解率は、3 時間後に 18 %という報告がある[110]。これは反応溶液に低圧水銀灯からの UVC 光を照射した実験であり、酸素分子を脱気した窒素雰囲気下での結果は、還元反応による PFOA の分解の有効性を示した。表面積が大きい二酸化チタンによる分解の結果は約 8 % に止まった。他の論文では、β-酸化ガリウム/低 pH(pH4)の系が PFOA の分解に有効である(3 時間後に約 53 %)[87]。B-酸化ガリウム/チオ硫酸(50 µmol/L)/N₂系における PFOA の分解率は 98.8 %である。針状のナノ構造酸化ガリウムを使用することにより、1 時間後に PFOA を完全に分解した報告もある[111]。

1.5 本研究の意義と目的

残留性有機汚染物質(POPs)に含まれている含フッ素有機化合物の使用が世界的に様々な 産業分野で増加している。一方、これらの含フッ素有機化合物による環境汚染および健康 被害が多数報告されている。数種の含フッ素有機化合物に関しては、その使用を削減する ようになってきているが、いまだに多くの分野で新たな含フッ素有機化合物が製造され、 多量に使用されている。このような難分解性物質は環境中に長期間残留し、生体濃縮が進 行しやすい。しかし難分解性有機フッ素化合物の無機化による無害化は、細菌の生分解(活 性汚泥法)によっても、または従来の TiO₂ 光分解によっても困難であることが報告されて いる。こうした現状から、環境に悪影響を及ぼさずに含フッ素有機化合物を分解浄化する 方法の研究開発が求められている。

一方、酸化ガリウムは広いバンドギャップを有するために、他の材料にはない特殊な効 果を持つことから、近年様々な分野で新たな材料として注目されている。本論文では、近 年、問題となってきた難分解性含フッ素有機化合物の浄化処理を目指してその基礎的研究 を行う。残留性有機汚染物質(POPs)に含まれている PFOA および生理活性を有する農薬な どの様々な有機フッ素化合物に対して、酸化ガリウムを光触媒として用いて脱フッ素分解 反応を行い、その効果を検討する。具体的には以下のような実験を行う。異なる構造の数 種類のモデル化合物で脱フッ素反応の傾向を確認し、分解メカニズムを位置異性体モデル 化合物の光触媒分解より考察する。さらに、現在使用されている2種類の疎水性含フッ素 農薬の分解無機化を種々の条件で研究し、基礎的な知見を集める。さらに大量浄化処理法 を目指し、酸化チタンによる太陽光パイロットプラントを試作し、大量の汚水の浄化を行 う。脱フッ素反応により生成したフッ化物イオンは既存の水処理法で、フッ素は再利用す ることができ資源の循環利用を行うことができる。

以上、本研究で、得られた基礎的知見を発展させることができれば、将来の含フッ素有 機化合物による環境汚染の浄化に寄与する事が出来ると考えられる。

23

1.6 本論文の構成

本論文は「酸化ガリウム光触媒による難分解性含フッ素農薬等の分解に関する研究」と 題し、第1章緒言、第2章Ga2O3光触媒による種々のモデルフッ素化合物の脱フッ素反応、 第3章トリフルオロメチル安息香酸の位置異性体の光脱フッ素反応、第4章農薬フィプロ ニルのTiO2およびGa2O3光分解による脱フッ素反応、第5章水/有機混合溶媒中のフィプ ロニルの脱フッ素反応、第6章農薬フルベンジアミドの脱フッ素反応、第7章Ga2O3での 分解機構との比較のためのTiO2を用いた医薬品で汚染される環境水の浄化法などにより構 成される。

第1章の1.1では、主に水環境中での汚染とその規制の歴史的な変遷、一般的な水質汚濁の浄化方法、有機フッ素化合物の特殊性およびその使用の増加による環境汚染、それに対する今までの分解研究、1.2 では一般的な光化学および光触媒反応についての概論、1.3 では分解中間生成物の毒性試験、1.4 ではこれまでの酸化ガリウム光触媒による分解研究、1.5 に本研究の意義と目的、1.6 には本論文の構成について述べた。

第2章において、酸化ガリウム光触媒による様々な含フッ素化合物の脱フッ素分解を行い、効率的な実験条件、触媒の量、反応液のpHを調べた。さらに、光触媒脱フッ素反応が触媒表面で起こることを確認した。また、数種のモデル化合物について構造異性体の脱フッ素効率の差異を研究した。そして様々なフッ素系化合物の各時間における脱フッ素反応の効率を調べ、構造に依存する脱フッ素率の傾向を考察した。

第3章では、モデル化合物としてトリフルオロメチル安息香酸の3つの位置異性体の光 脱フッ素分解および光触媒脱フッ素分解を行った。各条件はUVC光および窒素雰囲気系、 UVC光および空気酸素雰囲気系、UVC光および光触媒酸化ガリウムおよび窒素雰囲気系、 UVC光および光触媒酸化ガリウムおよび酸素雰囲気系である。多くの脱フッ素分解反応に おいては、個々の有機フッ素化合物についての研究が行われているが、構造の違いに依存 する分解特性の研究は少ない。そのため多くの医薬品および農薬の構造中に含まれている トリフルオロメチル基を有する安息香酸をモデル化合物として光分解および光触媒分解を 行い、その構造に基づく生成物の分解傾向を HPLC、TOF-MS、紫外可視吸光光度計、¹⁹F-NMR などの測定から求め、その分解メカニズムを考察した。

第4章では、近年問題になっている含フッ素農薬(殺虫剤)フィプロニルの光触媒脱フッ 素分解を様々な条件下で行った。各条件は、UVC光および窒素雰囲気系、UVC光および空 気酸素雰囲気系、UVC光および光触媒酸化ガリウムおよび窒素雰囲気系、UVC光および 光触媒酸化ガリウムおよび酸素雰囲気系、UVC光および光触媒酸化チタンおよび窒素雰囲 気系、UVC光および光触媒酸化チタンおよび酸素雰囲気系である。また、光触媒分解反応 より生成した分解中間生成物の毒性(発がん性)を確認するためにエイムズ試験を行い、分 解中間生成物の毒性の有無を確認した。さらに、各分解条件における、分解反応の機構を 考察した。

 $\mathbf{24}$

第5章では、近年環境問題になっている含フッ素農薬(殺虫剤)フィプロニルの光触媒脱 フッ素分解を水/有機溶媒中で様々な条件下で行った。一般に有機フッ素化合物(多くの POPs もその傾向がある)は疎水的な性質を帯びており、水溶媒中にはほとんど溶解しない。 光触媒反応は触媒表面で起こるため、疎水性のフッ素有機化合物は水溶液中で光触媒との 接触が著しく低く、脱フッ素分解反応の進行が遅い。そのため、様々な有機溶媒および濃 度の水/有機混合溶媒を用いて、疎水性含フッ素農薬フィプロニルの光分解および光触媒分 解を、UVC 光および窒素雰囲気系、UVC 光および空気酸素雰囲気系、UVC 光および光触 媒酸化ガリウムおよび窒素雰囲気系、UVC 光および光触媒酸化ガリウムおよび酸素雰囲気 系で実験を行い、その反応特性を検証した。

第6章では、含フッ素農薬(殺虫剤)フルベンジアミドの光分解および光触媒分解をUVC 光および窒素雰囲気系、UVC 光および空気酸素雰囲気系、UVC 光および光触媒酸化ガリ ウムおよび窒素雰囲気系、UVC 光および光触媒酸化ガリウムおよび酸素雰囲気系で行った。 各条件下で照射時間ごとに生成される中間生成物および無機イオンを分析し、分解機構を 調べた。また、光触媒分解反応より生成した分解中間生成物の毒性(発がん性)を確認するた めにエイムズ試験を行った。さらに、各分解条件における、分解反応およびその機構を考 察した。

第7章では、親水性の抗炎症薬および鎮痛薬ジクロフェナクおよびクロフィブリン酸(コ レステロール低下薬クロフィブラートの代謝産物)、および疎水性化合物であるエチニルエ ストラジオール(経口避妊薬)とインドメタシン(発熱、痛み、こわばり、腫れを軽減するた めの処方薬として一般的に使用される非ステロイド系抗炎症薬)などの医薬品の酸化チタ ン光触媒による酸化分解および無機化について検討した。初めに実験室規模で光源として 高圧水銀灯を用いて、オゾンの存在下で、TiO2 懸濁液中でこれらの医薬品の光触媒分解を 行った。さらに屋外での環境汚染水の浄化の実用化を目指し、稼働に必要な電力をすべて 同じ太陽エネルギーでまかなうパイロットプラントを試作し、大量(300 L)の汚染溶液の光 触媒分解実験を行った。屋外規模の無害化プラントでは光源として太陽光を利用し、完全 分解を試みた。

第8章ではこれまでの章での総括、その後に謝辞および研究業績を記した。

参考文献

- [1] オルガノ(株)開発センター編 中村日出夫; 竹井登; 清水和彦; 川田和彦; 八木寿子; 恵 良彰, トコトンやさしい水処理の本, B&T ブックス日刊工業新聞社, 2009
- [2] Julian, E. A.; Peter, B.; Tim, D. J.; Peter, S. L.; Brian, J. R., 地球環境化学入門, 2012
- [3] 大岩敏夫; 大木久光; 高堂彰二; 保坂義男, トコトンやさしい環境汚染の本, B&T ブッ クス日刊工業新聞社, 2014
- [4] Senaweera, S.; Weaver, J. D., Aldrichimica Acta 2016, 49, 45

- [5] Theodoridis G., Chapter 4 Fluorine-Containing Agrochemicals: An Overview of Recent Developments, Advances in Fluorine Science **2006**, *2*, 121
- [6] Lewandowski, G.; Meissner, E.; Milchert, E., J. Hazard. Mater., 2006, 136, 385
- [7] 山辺正顕; 原田光恵; 高須賀智子; 石井章央; 加登幸治; 高原; 児玉俊一; 笹田康幸; 清水哲男; 毛利晴彦; 森澤義富; 山崎孝; 足立健二; 稲葉剛志; 入江貞成; 上田晶彦; 薄ケ谷光宏; 梅村和朗; 岡本秀一; 河田恒佐; 喜田康; 木下琢哉; 久保勝義; 高明天; 匂坂重仁; 柴沼俊; 下平哲司; 助川勝通; 関根克彦; 中村京浩; 日比野泰雄; 福岡昌二; 三木淳; 南野悦男; 茂木大亮; 渡辺俊行, トコトンやさしいフッ素の本, B&T ブックス日刊工業新聞社, 2012
- [8] 田口武夫, ファルマジア, 2014, 50 (1), 1
- [9] Morrison, J., Am. Chem. Soc., Chem. Eng. News, 2016, May 16, 20
- [10] Pavlath, A. E., Pest Management Science 1986, 17 (4), 412
- [11] Filler, R.; Kobayashi, Y.; Yagupolskii L. M. (Eds.) Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications (Studies in Organic Chemistry), Elsevier, 1993
- [12] Ulhaq, M.; Carlsson, G.; Örn, S.; Norrgren, L., Environ. Toxicol. Pharmacol., 2013, 36, 423
- [13] Zaggia, A.; Ameduri, B., Current Opinion Coll. Interf. Sci., 2012, 17, 188
- [14] Bauer W. H., Am J Orthod Oral Surg. 1945, 31, 700
- [15] Halford, B., Chem. Engin. News, 2008, 86 (8), 13
- [16] Giesy, J. P.; Kannan, K., Environ. Sci. Technol., 2001, 35, 1339
- [17] Kannan, K.; Koistinen, J.; Bowerman, W., W.; Hansen, K., J.; Jones, P., D.; Giesy J., P., Environ. Sci. Technol., 2001, 35, 3065
- [18] Kannan, K.; Koistinen, J., Beckmen, K., Evans, T.; Gorzelany, J., F.; Hansen K., J.; Jones, P., J.;Helle, E.; Nyman, M.; Giesy J., P., Environ. Sci. Technol., 2001, 35, 1593
- [19] Taniyasu, S.; Kannan, K.; Horii, Y.; Hanari, N.; Yamashita, N., Environ. Sci. Technol., 2003, 37, 2634
- [20] Olsen, G., W.; Bussis, J., M.; Burlew, M. M.; Marndel, J., H.; J. Occupational Env. Med., 2003, 45, 260
- [21] Hansen, K., J.; Clemen, L., A.; Ellefson, M., E.; Johnson, H., O., Environ. Sci. Technol., 2001, 35, 766
- [22] https://www.theguardian.com/world/2017/aug/11/tainted-eggs-found-in-hong-kong-switzerland -and-15-eu-countries
- [23] Ellen, Connett, P., Pesticides and You, 2001, 21 (1), 18
- [24] Reisch, M., Am. Chem. Soc., Chem. Eng. News, 2017, January 30, 20
- [25] Reisch, M., DuPont, Am. Chem. Soc., Chem. Eng. News, 2017, February 20, 5
- [26] Hirzy J W.; Connett, P.; Xiang, Q.; Spittle, B. J.; Kennedy, D. C., Fluoride 2017, 49 (4 Pt 1), 379

- [27] Drinking Water Regulations and Contaminantshttps://www.epa.gov/dwstandardsregulations, 22 May 2017. Journal.
- [28] Ayoob, S.; Gupta, A. K., Critical Reviews in Environmental Science and Technology, 2006, 36 (6), 433
- [29] Hori, H.; Hayakawa, E.; Einaga, H.; Kutsuna, S.; Koike, K.; Ibusuki, T.; Kitagawa, H.; Arakawa, R., Environ. Sci. Technol., 2004, 38, 6118
- [30] Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S.; Kitagawa, H.; Arakawa, R., Environ. Sci. Technol., 2005, 39, 2383
- [31] Hori, H.; Nagaoka, Y.; Murayama, M.; Kutsuna, S., Environ. Sci. Technol., 2008, 42, 7438
- [32] Hori, H.; Nagano, Y.; Murayama, M.; Koike, K.; Kutsuna, S., J. Fluorine Chem., 2012, 141, 5
- [33] Hori, H.; Yamamoto, A.; Koike, K.; Kutsuna, S.; Osaka, I.; Arakawa, R., Chemosphere, 2008, 42, 7438
- [34] Hori, H.; Nagaoka, Y.; Yamoto, A.; Sano, T.; Yamashita, N.; Taniyasu, A.; Katsuna, S.; Osaka, I.; Arakawa, R., Environ. Sci. Technol., 2006, 40, 1049
- [35] Irina, S. M.; Catarina L., A.; Maria F. C.; Paula M. L. C., Biodegradation, 2012, 23 (5), 653
- [36] Geller, S., J. Chem. Phys. 1960, 33, 676
- [37] Rsvichandran, L.; Selvan, K.; Muruganandham, M.; Swaminathan, M., J. Fluorine Chem., 2006, 127 1204
- [38] Yang, S., W.; Sun, J.; Hu, Y., Y.; Cheng, J., H.; Liang, X. Y., Chem. Eng. J., 2013, 234, 106
- [39] Qu, Y.; Zhang, C.; Li, F.; Chen, J.; Zhou, Q., Water Reseach, 2010, 44, 2939
- [40] Janghyuk, K.; Sooyeoun, O.; Michael A. M.; Jihyun K., Phys. Chem. Chem. Phys., 2016,18, 15760
- [41] Masataka, H.; Kohei, S.; Takafumi, Kamimura1, Man H. W.; Daivasigamani, K.; Akito K.; Takekazu M.; Shigenobu Y., Appl. Phys. Lett. 2013, 103, 123511
- [42] Masataka, H.; Kohei, S.; Akito, K.; Takekazu, M.; Shigenobu, Y., Appl. Phys. Lett. 2012, 100, 13504
- [43] Sasaki, K.; Higashiwaki, M.; Kuramata, A.; Masui, T.; Yamakoshi, S., IEEE Electron. Device Lett., 2013, 34 (4), 493
- [44] Onuma, T.; Fujioka, S.; Yamaguchi, T.; Higashiwaki, M.; Sasaki, K.; Masui, T.; Honda, T., Appl. Phys. Lett. 2013, 103, 41910
- [45] Tippins, H. H., Phys. Rev., 1965, 140, A316
- [46] Sze, S. M.; Gibbons, G., Appl. Phys. Lett. 1966, 8, 111
- [47] Baliga, B. J.; IEEE Electron Device Lett. 1989, 10, 455
- [48] Baliga, B. J., J. Appl. Phys. 1982, 53, 1759
- [49] Hudgins, J. L.; Simin, G. S.; Santi, E.; Khan, M. A., IEEE Trans. Power Electron., 2003, 18, 907.

- [50] Lin, H. J.; Gao, H.; Gao, P. X., Appl. Phys. Lett. 2017, 110, 043101
- [51] Lin, H. J.; Baltrus, J. P.; Gao, H.; Ding, Y.; Nam, C. Y.; Ohodnicki, P.; Gao, P. X.; ACS Appl. Mater. Interfaces 2016, 8, 8880
- [52] Miura, N.; Lu, G.; Yamazoe, N., Solid State Ionics 2000, 136-137, 533-542
- [53] Bartic, M.; Baban, C.I.; Suzuki, H.; Ogita, M.; M. Isai, J. Am. Ceram. Soc. 2007, 90, 2879
- [54] Kim, H.; Jin, C.; An, S.; Lee, C., Ceram. Int. 2012, 38, 3563
- [55] Fleischer, M.; Meixner, H., Sensors Actuators B Chem. 1997, 43, 1
- [56] Mazeina, L.; Perkins, F. K.; Bermudez, V. M.; Arnold, S. P.; Prokes, S. M., Langmuir 2010, 26, 13722
- [57] Li, Y.; Trinchi, A.; Wlodarski, W.; K. Galatsis, K. Kalantar-zadeh, Sensors Actuators B Chem. 2003, 93, 431
- [58] Trinchi, A.; Kaciulis, S.; Pandolfi, L.; Ghantasala, M. K.; Li, Y. X.; Wlodarski, W., Viticoli, S.; Comini, E.; Sberveglieri, G.; Sensors Actuators B Chem. 2004, 103, 129
- [59] Wu, N.; Chen, Z.; Xu, J.; Chyu, M.; Mao, S. X., Sensors Actuators B Chem. 2005, 110, 49
- [60] Liu, Z.; Yamazaki, T.; Shen, Y.; Kikuta, T.; Nakatani, N.; Li, Y., Sensors Actuators B Chem.2008, 129, 666
- [61] Pohle, R.; Fleischer, M.; Meixner, H., Sensors Actuators B Chem. 2000, 68, 151
- [62] Ogita, M.; Higo, K.; Nakanishi, Y.; Hatanaka, Y., Appl. Surf. Sci. 2001, 175–176, 721
- [63] Hoefer, U.; Frank, J.; Fleischer, M., Sensors Actuators B Chem. 2001, 78, 6
- [64] Fleischer, M.; Meixner, H., Sensors Actuators B Chem. 1995, 24-25, 544
- [65] Schwebel, T.; Fleischer, M.; Meixner, H.; Kohl, C. D., Sensors Actuators B Chem. 1998, 49, 46
- [66] Jin, C.; Park, S.; Kim, H.; Lee, C., Sensors Actuators B Chem. 2012, 161, 223
- [67] Girija, K., Thirumalairajan, S.; Mastelaro, V. R.; Mangalaraj, D., Anal. Methods 2016, 8, 3224.
- [68] Pohle, R.; Weisbrod, E.; Hedler, H., Procedia Eng. 2016, 168, 211
- [69] Nakagomi, S.; Sai, T.; Kokubun, Y., Sensors Actuators B Chem. 2013, 187, 413
- [70] Stepanov, S. I.; Nikolaev, V. I.; Bougrov, V. E.; Romanov, A. E., Rev. Adv. Mater. Sci. 2016, 44, 63
- [71] Sakata, Y.; Nakagawa, T.; Nagamatsu, Y.; Matsuda, Y.; Yasunaga, R.; Nakao, E.; Imamura, H., J. Catal., 2014, 310, 45
- [72] Sakata, Y.; Nakagawa, T.; Nakagawa, T.; Yasunaga, R.; Imamura, H.; Teramura, K., Chem.Sus. Chem., 2011, 4 (2), 181
- [73] Yoshida, H.; Maeda, K., Studies in Surface Science and Catalysis, 2010, 175, 351
- [74] Tsuneoka, H.; Teramura, K.; Tetsuya Shishido, T.; Tanaka, T., J. Phys. Chem. C, 2010, 114, 19

- [75] Jablonski, A., Nature, **1933**, 131 (3319), 839
- [76] Dasaratha, R. G.; Usha, G.; Ramanathan, K. V.; Ramamurthy, V., J. Org. Chem. 1986, 51 (16), 3085
- [77] Ramamurthy, V.; Corbin, D. R.; Johnston, L. J., J. Am. Chem. Soc. 1992, 114 (10), 3870
- [78] Burrows, H. D.; Canle, M.; Santaballa, J. A.; Steenken, S., J. Photochem. Photobiol. B: Biol. 2002, 67, 71
- [79] Gonzalez, M. G.; Oliveros, E.; Wörner, M.; Braun, A. M., J. Photochem. Photobiol. C: Photochem. Reviews 2004, 5 (3), 225
- [80] Luo, Y. R.; CRC Press, Boca Raton, FL, 2007 bond dissociation energies (book)
- [81] 大谷文章, 光触媒のしくみがわかる本,技術評論社, 2003
- [82] Emeline, A. V.; Ryabchuk, V. K.; Serpone, N., J. Phys. Chem. B 2005, 109, 18515
- [83] Xu, Y.; Schoonen, M. A. A., Am. Mineral., 2000, 85, 543
- [84] Hou, Y.; Wang, X.; Wu, L.; Ding, Z.; Fu, X., Environ. Sci. Technol. 2006, 40 (18), 5799
- [85] Zhao, B.; Zheng, L.; Wei, Y.; Yang, F., Adv. Mat. Res. 2012, 356-360, 1319
- [86] Zhao, B.; Lv, M.; Zhou, L., J. Environ. Sci. 2012, 24, 774
- [87] Seshadri, H.; Sinha, P. K., J. Radioanal Nucl. Chem. 2012, 292, 649
- [88] 長野哲雄, 有機合成化学, 1989, 47 (9), 843
- [89] Zheng, B.; Hua, W.; Yue, Y.; Gao, Z.; J. Catalysis 2005, 232 (1), 143
- [90] Gaya, U. Ib.; Abdullah, A. H., J. Photochem. Photobiol. C: Photochem. Reviews 2008, 9 (1) 1
- [91] Chong, M. N.; Lei, S.; Jin, B.; Saint, C.; Chow, C. W. K., Separation and Purif.ication Technol. 2009, 67 (3), 355
- [92] Ochuma, I. J.; Fishwick, R. P.; Wood, J.; Winterbottom, J. M., Appl. Catal. B: Environ. 2007, 73 (3–4), 259
- [93] Amano, F.; Nogami, K.; Tanaka, M.; Ohtani, B.; Langmuir 2010, 26 (10), 7174
- [94] Abdullah, M.; Low, G. K. C.; Matthews, R. W.; J. Phys. Chem., 1990, 94 (17), 6820
- [95] Xua, Y.; Langford, C. H.; J. Photochem. Photobiol. A: Chem. 2000, 133 (1-2), 67
- [96] Gogniat, G.; Thyssen, M.; Denis, M.; Pulgarin, C.; Dukan, S.; FEMS Microbiol Lett. 2006, 258 (1), 18
- [97] Rincón, A.; Pulgarin, C.; Appl. Catal. B: Environmental 2004, 51 (4), 283
- [98] Stylidi, M.; Kondarides, D. I.; Verykios, X. E.; Appl. Catal. B: Environ. 2003, 40 (4), 271
- [99] Evgenidou, E.; Fytianos, K.; Poulios, I.; Appl. Catal. B: Environ. 2005, 59 (1-2), 81
- [100] Malato, S.; Fernández-Ibáñez, P.; Maldonado, M. I.; Blanco, J.; Gernjak, W., Catal. Today 2009, 147 (1), 1
- [101] Saquib M.; Muneer, M., Dyes and Pigments 2003, 56 (1), 37
- [102] Fujishima, A.; Rao, T. N.; Tryk, D. A., J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1 1

- [103] Misaki, K.; Hisamatsu, Y.; Suzuki, H.; Takamura-Enya, T., Mutagenesis 2008, 23 (5), 359
- [104] Takamura-Enya, T.; Kawanishi, M.; Yagi, T.; Hisamatsu, Y., Chemistry An Asian Journal 2007, 2 (9), 1174
- [105] Takamura-Enya, T.; Suzuki, H.; Hisamatsu, Y., Mutagenesis, 2006, 21 (6), 399
- [106] Bruce N. A.; Willam E. D.; Edith Y.; Frank D. L., Proc. Natl. Acad. Sei. USA, 1973, 70 (8), 2281
- [107] Seshadri, H.; Sasidha, P.; Sinha P. K., J. Environ. Waste Managem., 2013, 11, 244
- [108] Seshadri, H.; Cheralathan, M.; Sinha, P. K., Research on Chemical Intermediates 2013, 39 (3), 991
- [109] Girija, K.; Thirumalairajan, S.; Mastelaro, V. R.; Mangalaraj, D., J. Mater. Chem. A, 2015, 3, 2617
- [110] Zhao, B.; Zhang, P., Catalysis Communications, 2009, 10 (8), 1184
- [111] Shao, T.; Zhang, P.; Li, Z.; Jin, L., Chinese Journal of Catalysis 2013, 34 (8), 1551

第2章 Ga₂O₃光触媒による種々のモデルフッ素化合物の脱フッ素反応

2.1 研究背景および目的

一般的な汚水処理法である活性汚泥処理では、微生物によって多くの環境汚染物質を解 毒および無害化することができるが、強い C-F 結合を有する化合物を切断分解することは できない。そのため、環境汚染物質を分解する光触媒技術が、フッ素化合物の分解に関し て積極的に研究されている。TiO₂ 光触媒を用いても、C-F 結合の開裂は極めて困難であが、 不活性窒素雰囲気下で波長 254 nm UVC 照射時に酸化ガリウム(β-Ga₂O₃)の存在は、多数の C-F 結合を有する環境に有害なペルフルオロオクタン酸(PFOA)を分解することができるこ とが報告されている[1、2]。実際に、Ga₂O₃ が TiO₂ よりも PFOA の分解に対して高い光触 媒活性を示すことが実証されている[3、4]。しかし、TiO₂(アナターゼ;バンドギャップ 3.2eV; 吸収端、387nm)よりも大きなバンドギャップ(4.8-5.0 eV)を持つ酸化ガリウムは、電荷分離 のために、大きなエネルギーを必要とするので、より短い波長(254 nm)の光を必要とする。

本研究では酸化ガリウム光触媒の適正量、反応溶液の最適 pH などを求め、光触媒脱フッ 素反応が触媒表面で起こることを確認する実験を行った。また、構造異性体の脱フッ素効 率の差異を検討した。様々なフッ素系化合物の脱フッ素効率を確認し、脱フッ素率の構造 依存性を検討した。

2.2 実験方法

2.2.1 試薬

酸化ガリウム β-Ga₂O₃(和光純薬工業)は電気炉(600°C)で焼成した後、使用した。和光純 薬工業より、4-フルオロ安息香酸、4-トリフルオロメチル安息香酸、4-フルオロフェノール、 2-クロロ-6-フルオロ安息香酸、3-クロロ-4-フルオロ安息香酸、4-クロロ-2-フルオロ安息香 酸および 4-フルオロニトロベンゼン、東京化成工業から、2,6-ジニトロ-4-トリフルオロメ チルベンゼンスルホン酸ナトリウム、フルオキセチン(FLX)、マレイン酸フルボキサミン (FOM と表記)およびフルアジナム(FZM)、アルドリッチからトリフルオロ酢酸、2,2,2-トリ フルオロエタノール、およびパーフルオロオクタン酸(PFOA)を購入した。HPLC 較正のた めの標準溶液として使用したフッ化ナトリウム NaF は Aldrich のものを使用した。図 2.1 は、実験に用いたフッ素化合物の構造式を示す。

使用した白金担持(1.0 wt%Pt) Ga₂O₃は、以下の方法で調製した。試薬級ヘキサクロロ白 金酸六水和物(H₂PtCl₆・6H₂O、22.6 mg; 99.9%;和光純薬工業)を、pH約9.3のメタノール性 (4 vol.%、全容量=100 mL)アルカリ性溶液に溶解させた。その溶液に Ga₂O₃粒子(1.00g)を 加えた。得られた混合物を窒素雰囲気下、60 分間低圧水銀ランプで照射した。Ga₂O₃粒子 上へのPt 担持が完了した後、懸濁溶液を濾過し、生成した固体の灰色を帯びた粒子を乾燥 し、電気炉中で800℃で焼成した。

図 2.1. 実験で用いた有機フッ素化合物の構造式

2.2.2 光触媒反応および生成物の分析方法

実験装置の模式図および実験方法のフローチャートを図 2.2 に示す。反応水溶液に β-Ga₂O₃を加えた水性懸濁液 100 mL を入れた石英製の円筒形光反応器を、光源として 1 つの 低圧水銀ランプ滅菌ランプ(東芝ライティングアンドテクノロジー社、GL 20-A; Topcon Corp. UVR-2 および UD-25 ラジオメーターを用いて測定した反応容器表面での光強度(波長 250 nm)は 10.00 mW cm⁻²である)を使用した。反応系から酸素を除くために、照射前に窒素ガ スで 30 分間脱気した。反応液の温度は、反応容器を空冷することによって約 35 ℃に保っ た。反応液を遠心分離した後、0.2 mm フィルター(アドバンテック)による濾過によって触 媒を除去した後、全ての分析を行った。 フッ化物イオンの量は、TSKgel SuperIC-AZ カラム(シリカベースの逆相カラム、内径 4.6 mm、長さ 15 cm、親水性ポリマーに第4級アンモニウム基を導入した充填剤、イオン交換量:約30 meq/L)を用いた東ソーイオンクロマトグラフモデル IC-2001 を使用し、イオンクロマトグラフィーによって測定した。溶離液は、1.1mM の Na₂CO₃ と 7.5 mM の NaHCO₃ との混合水溶液(TOSOH の SuperIC-AZ カラムにおける精密分析条件(流出の早いフッ化物イオンなどのイオン種の分離を向上させる条件)での溶離液)を使用した。流速は 0.8 mL min⁻¹ であり、カラムは 40 °Cに維持され、検出器は電気伝導度検出器を用いた。照射により生成したフッ化物イオンの量は、フッ化ナトリウムの標準溶液を用いて決定した較正曲線を用いて分析した。芳香環の消失は、UV-VIS 分光光度計によって決定した[5、6]。

図 2.2. 光照射反応装置の模式図

2.2.3 エイムズ試験による変異原性試験

エイムズ変異原性試験は、フレームシフト型の TA-98 株と塩基対置換型の TA-100 株の 両方を用いて、反応前の基質および脱フッ素化分解後の中間生成物について行った[7-9]。 この2株を独立して 37 ℃で 10 時間または 11 時間振とう培養し、各株を一定濃度含む懸濁 液を調製した。分散液(0.10 mL)を 37 ℃で 20 分、保温した後、軟寒天溶液の一定分量(2 mL) を最小グルコースプレートに添加した。最後に、プレートを 37 ℃で 48 時間以上培養した。 培養後、コロニーカウンターで復帰体のコロニー数を評価した。

S9 は、9000 の重力で遠心分離した後の均質化したラット肝臓からなる上清を意味する。 様々な薬物代謝酵素を集めた、酵素群は共酵素を必要とするので、ラット肝臓 S9 を試験し た一定分量(S9mix と表示した)に加えた。付加された場合、+S9mix と示され、非付加のものは-S9mix と示した。一般に、DNA に直接結合された化合物(例えば、エポキシド)または ニトロ基を有する化合物は、S9mix を除いて陽性反応を引き起こす、ところがアミノ基ま たは芳香族基を有する化合物は、通常 S9mix の付加によって陽性反応を引き起こす。

2.3 結果と考察

2.3.1 光還元反応

図 2.3 に強力 X 線回折装置 RINT-2500 を用いて、実験で使用した焼成(800°C)した酸化 ガリウムの XRD の測定結果を示す。解析結果より、本触媒は PDF No. 41-1103 (β -Ga₂O₃)の パターンとほぼ一致した。購入した本試薬は、和光純薬工業の情報では純度 99.99 %とな っていたが、わずかに不純物(α -Ga₂O₃、 γ -Ga₂O₃など)含んでいることが分かった。この測 定結果を下図に示す。また、主なピークにミラー指数を記した。また図中の下段のパター ンが PDF No. 41-1103 の物になる。表 2.1 にミラー指数(表中のhkl)をまとめたものを示す。 BET 測定による表面積は 1 m²/g であった。

図 2.3 実験に使用した酸化ガリウムの XRD パターン(a)および PDF 41-110 との比較(b)

表 2.1 PDF41-1103のミラー指数

晶系, 12 =12.219) 密度=5.9 =ibid.	/m(12 <3.039)28) x5.80	8<9	0~10	<u> </u>	- 300 - 100 40									
		,	測密	度=	3.67x90>	分子量=	体	:積=		Z=4 Pearson=		融点	=		ANN AND AN AN AN
ピーク: 2.8	2/X	1.44/	4 2.	.55/3	2.93/2	2.97/2 2.	94/2 1.98	/2 2.	34/1					7-1	
の反射,	角度	の計算	算に	使った	た波長 =	1.54056(C	J), 1%種類	= (未	知)	and the second	<u></u>			••••	
d(A)	l(f)	h	k	1	20	θ	1/(2d)	#	d(A)	l(f) h	k	I	20	θ	1/(2d
5.6400	1	0	0	1	15.699	7.850	0.0887	35	1.4456	7 -2	2	1	64.396	32.198	0.345
4.6900	8	-2	0	1	18.906	9.453	0.1066	36	1.4402	46 -7	1	2	64.666	32.333	0.347
3.6720	1	2	0	1	24.218	12.109	0.1362	37	1.4111	1 -4	0	4	66.169	33.084	0.354
2.9670	27	4	0	0	30.095	15.047	0,1685	38	1.4046	<1 2	2	1	66.514	33.257	0.356
2.9410	24	-1	1	0	30.367	15.183	0.1700	39	1.3876	<1 3	1	3	67.438	33.719	0.360
2.9020	100	-4	0	2	31 602	15.231	0.1705	40	1.3580	2 8	0	0	60 410	34.556	0.368
2.6760	8	-1	1	1	33,458	16,729	0.1868	41	1.3029	3 -4	2	1	69 640	34.705	0.30
2.5490	34	1	1	1	35.178	17.589	0.1962	43	1.3380	10 -2	2	2	70,297	35.148	0.373
2.4120	8	-3	1	0	37.248	18.624	0.2073	44	1.3291	<1 -8	0	3	70.838	35.419	0.376
2.4030	9	4	0	1	37.392	18.696	0.2081	45	1.3039	2 2	0	4	72.421	36.210	0.383
2.3430	19	-3	1	1	38.387	19.193	0.2134	46	1.2840	2 4	2	1	73.726	36.863	0.389
2.1090	3	3	1	1	42.844	21.422	0.2371	47	1.2748	2 -4	2	2	74.348	37.174	0.392
2.1000	5	-1	1	2	43.037	21.518	0.2381	48	1.2441	<1 -5	1	4	76.508	38.254	0.401
2.0240	2	-6	0	1	44.738	22.369	0.2470	49	1.2245	1 6	0	3	77.961	38.981	0.408
1.9796	20	-3	1	2	45.798	22.899	0.2526	50	1.2226	<1 -10	0	1	78.105	39.053	0.409
1.9298	<1	-2	0	3	47.050	23.525	0.2591	51	1.2170	<1 5	1	3	78.534	39.267	0.410
1.8851	1	-5	1	1	48.236	24.118	0.2652	52	1.2153	<1 -6	2	1	78.665	39.332	0.411
1.8807	3	0	0	3	48.356	24.178	0.2659	53	1.2126	<1 -9	1	2	78.874	39.437	0.412
1.8380	0 6	-5	0	0	48.017	24.309	0.2672	54	1.2112	<u><1</u> /	1	2	78.983	39.492	0.412
1 7937	2	-4	0	2	49.004	24.111	0.2720	56	1.2099	(1 -9	1	0	79.085	39.342	0.413
1.7418	<1	6	0	1	52 493	26 246	0.2700	57	1.2030	2 -6	2	2	82 247	41 194	0.414
1.6838	2	5	1	1	54.447	27.224	0.2969	58	1.1602	<1 -2	0	5	83,199	41.600	0.431
1.6804	2	2	0	3	54.567	27.283	0.2975	59	1.1592	<1 -4	2	3	83.287	41.643	0.431
1.6287	1	-1	1	3	56.451	28.225	0.3070	60	1.1496	1 -4	0	5	84.141	42.070	0.434
1.5995	9	-3	1	3	57.577	28.788	0.3126	61	1.1475	2 -7	1	4	84.330	42.165	0.435
1.5621	3	-6	0	3	59.090	29.545	0.3201	62	1.1450	16	2	1	84.557	42.278	0.436
1.5435	6	1	1	3	59.874	29.937	0.3239	63	1.1371	<1 -9	1	3	85.283	42.641	0.439
1.5286	4	-8	0	1	60.518	30.259	0.3271	64	1.1339	2 -10	0	3	85.581	42.790	0.441
1.5196	9	0	2	0	60.915	30.457	0.3290	65	1.1282	<1 0	0	5	86.118	43.059	0.443
1.0110	2	-1	1	1	62 670	30.636	0.3308	66	1.1268	<1 2	2	3	86.251	43.126	0.443
	3		0	4	64.092	32 041	0.3370	0/	1.0994	1 -0	U	5	88.936	44.478	0.454
1 4510	Q	-2		-	UT U00	02.041	0.0444	1							-
	Ø (Z, §7). d(A) 5.6400 4.6900 3.6720 2.9670 2.9410 2.9320 2.8210 2.6760 2.5490 2.4120 2.4120 2.4300 2.1000 2.0240 1.9796 1.9298 1.8851 1.8807 1.7418 1.6838 1.6804 1.6287 1.5995 1.5621 1.5435 1.5286 1.5196	の反射、角度で d(A) (f) 5.6400 1 4.6900 8 3.6720 1 2.9670 27 2.9410 24 2.9320 28 2.8210 100 2.6760 8 2.5490 34 2.4120 8 2.4120 8 2.4030 9 2.3430 19 2.1000 5 2.0240 2 1.9796 20 1.9298 <1 1.8851 1 1.8851 2 1.7418 <1 1.6838 2 1.6838 2 1.6804 2 1.6287 1 1.5995 9 1.5621 3 1.5435 6 1.5286 4 1.5196 9	の反射、角度の計。 d(A) l(f) h 5.6400 1 0 4.6900 8 -2 3.6720 1 2 2.9670 27 4 2.9410 24 -1 2.9320 28 -4 2.8210 100 -2 2.6760 8 -1 2.5490 34 1 2.4120 8 -3 2.4030 9 4 2.3430 19 -3 2.1090 3 3 2.1090 3 3 2.1090 3 3 2.1090 3 3 2.1090 3 3 2.1090 3 3 1.9298 <1	の反射、角度の計算に d(A) (f) h k 5.6400 1 0 0 4.6900 8 -2 0 3.6720 1 2 0 2.9670 27 4 0 2.9410 24 -1 1 2.9320 28 -4 0 2.8210 100 -2 0 2.6760 8 -1 1 2.5490 34 1 1 2.4120 8 -3 1 2.4030 9 4 0 2.3430 19 -3 1 2.0240 2 -6 0 1.9796 20 -3 1 1.9298 <1	O $[C, 57]$ $FI [E O] RT [F] (-[E, 5])$ $d(A)$ $[(f)$ h k I 5.6400 1 0 0 1 4.6900 8 -2 0 1 3.6720 1 2 0 1 2.9670 27 4 0 0 2.9410 24 -1 1 0 2.9320 28 -4 0 1 2.8210 100 -2 0 2 2.6760 8 -1 1 1 2.4120 8 -3 1 0 2.4430 9 4 0 1 2.10240 2 -6 0 1 2.0240 2 -6 0 1 1.9796 20 -3 1 2 1.9298 <1 -2 0 3	O (A) (f) h k I 2θ $d(A)$ (f) h k I 2θ 5.6400 1 0 0 1 15.699 4.6900 8 -2 0 1 18.906 3.6720 1 2 0 1 24.218 2.9670 27 4 0 0 30.095 2.9410 24 -1 1 0 30.367 2.9320 28 -4 0 1 30.462 2.8210 100 -2 0 2 31.692 2.6760 8 -1 1 1 35.178 2.4120 8 -3 1 0 37.248 2.4030 9 4 0 1 37.392 2.3430 19 -3 1 1 48.387 2.1090 3 1 1 <td>O D X, H Z H I 2θ θ $d(A)$ $I(f)$ h k I 2θ θ 5.6400 1 0 0 1 15.699 7.850 4.6900 8 -2 0 1 18.906 9.453 3.6720 1 2 0 1 24.218 12.109 2.9670 27 4 0 0 30.095 15.047 2.9410 24 -1 1 0 30.367 15.183 2.9320 28 -4 0 1 30.462 15.231 2.8210 100 -2 2 31.692 15.846 2.6760 8 -1 1 33.458 16.729 2.4120 8 -3 1 0 37.392 18.696 2.3430 19 -3 1 $12.8.844$</td> <td>の反射、角度の計具に受った波長号 1.54056(CU), 將種類 $d(A)$ I(f) h k 1 20 0 1/(2d) 5.6400 1 0 0 1 15.699 7.850 0.0887 4.6900 8 -2 0 1 18.906 9.453 0.1066 3.6720 1 2 0 1 24.218 12.109 0.1362 2.9670 27 4 0 0 30.095 15.047 0.1685 2.9410 24 -1 1 0 30.367 15.183 0.1700 2.9320 28 -4 0 1 30.462 15.231 0.1705 2.8210 100 -2 0 2 31.692 15.846 0.1772 2.6760 8 -1 1 33.458 16.729 0.1868 2.5490 34 1 1 37.392 18.696 0.2081 2.4120 8 -3</td> <td>O Dχ \Re \Re χ 2θ θ $1/(2d)$ $\#$ $d(A)$ $I(f)$ h k 1 2θ θ $1/(2d)$ $\#$ 5.6400 1 0 0 1 15.699 7.850 0.0887 35 4.6900 8 -2 0 1 24.218 12.109 0.1362 37 2.9670 27 4 0 0 30.095 15.047 0.1685 38 2.9410 24 -1 1 0 30.367 15.183 0.1700 39 2.9320 28 -4 0 1 30.462 15.231 0.1705 40 2.8210 100 -2 0 2 31.692 15.846 0.1772 41 2.6760 8 -1 1 33.458 16.729 0.1868 42 2.4420 8 3 1<</td> <td>(J) 反射、用度(O)計算(-(使))+: 次後年)=1.54056(CU)、除種類 = (未知) d(A) (f) h k 1 20 θ 1/(2d) # d(A) 5.6400 1 0 0 1 15.699 7.850 0.0887 35 1.4456 4.6900 8 -2 0 1 18.906 9.453 0.1066 36 1.4402 3.6720 1 2 0 1 24.218 12.109 0.1362 37 1.4111 2.96700 27 4 0 0 30.095 15.047 0.1685 38 1.4046 2.9320 28 -4 0 1 30.462 15.231 0.1705 40 1.3589 2.8210 100 -2 0 2 31.692 15.846 0.1772 41 1.3529 2.6760 8 -1 1 3.458 16.729 0.1868 42 1.3490 2.47120 8 -3 1</td> <td>$OD \ Rathornov T, \ Table CO \ Rathornov T, \$</td> <td>(D) $\mathbb{R}\pi$, π \mathbb{R} \mathbb{C} \mathbb{C} \Im (f) h k 1 20 0 1/(2d) # d(A) (f) h k 5.6400 1 0 0 1 15.699 7.850 0.0887 35 1.4456 7 -2 2 4.6900 8 -2 0 1 18.906 9.453 0.1066 36 1.4402 46 -7 1 3.6720 1 2 0 1 24.218 12.109 0.1362 37 1.4111 1 -4 0 2.9670 27 4 0 0 30.095 15.047 0.1685 38 1.4046 <1</td> 2 2 2.9410 24 -1 1 30.462 15.231 0.1705 40 1.3580 2 8 0 2.6490 3 -1 1 3.458 16.729 0.1868 42 1.3490 10 -2 2	O D X , H Z H I 2θ θ $d(A)$ $I(f)$ h k I 2θ θ 5.6400 1 0 0 1 15.699 7.850 4.6900 8 -2 0 1 18.906 9.453 3.6720 1 2 0 1 24.218 12.109 2.9670 27 4 0 0 30.095 15.047 2.9410 24 -1 1 0 30.367 15.183 2.9320 28 -4 0 1 30.462 15.231 2.8210 100 -2 2 31.692 15.846 2.6760 8 -1 1 33.458 16.729 2.4120 8 -3 1 0 37.392 18.696 2.3430 19 -3 1 $12.8.844$	の反射、角度の計具に受った波長号 1.54056(CU), 將種類 $d(A)$ I(f) h k 1 20 0 1/(2d) 5.6400 1 0 0 1 15.699 7.850 0.0887 4.6900 8 -2 0 1 18.906 9.453 0.1066 3.6720 1 2 0 1 24.218 12.109 0.1362 2.9670 27 4 0 0 30.095 15.047 0.1685 2.9410 24 -1 1 0 30.367 15.183 0.1700 2.9320 28 -4 0 1 30.462 15.231 0.1705 2.8210 100 -2 0 2 31.692 15.846 0.1772 2.6760 8 -1 1 33.458 16.729 0.1868 2.5490 34 1 1 37.392 18.696 0.2081 2.4120 8 -3	O D χ \Re \Re χ 2θ θ $1/(2d)$ $\#$ $d(A)$ $I(f)$ h k 1 2θ θ $1/(2d)$ $\#$ 5.6400 1 0 0 1 15.699 7.850 0.0887 35 4.6900 8 -2 0 1 24.218 12.109 0.1362 37 2.9670 27 4 0 0 30.095 15.047 0.1685 38 2.9410 24 -1 1 0 30.367 15.183 0.1700 39 2.9320 28 -4 0 1 30.462 15.231 0.1705 40 2.8210 100 -2 0 2 31.692 15.846 0.1772 41 2.6760 8 -1 1 33.458 16.729 0.1868 42 2.4420 8 3 1 <	(J) 反射、用度(O)計算(-(使))+: 次後年)=1.54056(CU)、除種類 = (未知) d(A) (f) h k 1 20 θ 1/(2d) # d(A) 5.6400 1 0 0 1 15.699 7.850 0.0887 35 1.4456 4.6900 8 -2 0 1 18.906 9.453 0.1066 36 1.4402 3.6720 1 2 0 1 24.218 12.109 0.1362 37 1.4111 2.96700 27 4 0 0 30.095 15.047 0.1685 38 1.4046 2.9320 28 -4 0 1 30.462 15.231 0.1705 40 1.3589 2.8210 100 -2 0 2 31.692 15.846 0.1772 41 1.3529 2.6760 8 -1 1 3.458 16.729 0.1868 42 1.3490 2.47120 8 -3 1	$OD \ Rathornov T, \ Table CO \ Rathornov T, \$	(D) $\mathbb{R}\pi$, π \mathbb{R} \mathbb{C} \mathbb{C} \Im (f) h k 1 20 0 1/(2d) # d(A) (f) h k 5.6400 1 0 0 1 15.699 7.850 0.0887 35 1.4456 7 -2 2 4.6900 8 -2 0 1 18.906 9.453 0.1066 36 1.4402 46 -7 1 3.6720 1 2 0 1 24.218 12.109 0.1362 37 1.4111 1 -4 0 2.9670 27 4 0 0 30.095 15.047 0.1685 38 1.4046 <1	(D) \mathbb{R} (D) R	ODE RT FIGE OFT #IC C > 7: $\mathbb{R} + \mathbb{R}$ 1.54056(CU) # $\mathbb{R} + \mathbb{R} + \mathbb{R}$ (A) (f) h k 1 2.0 0 1.7(2d) # d(A) (f) h k 1 2.0 5.6400 1 0 0 1 15.899 7.850 0.0887 35 1.4456 7 7 2 1 64.396 4.6900 8 -2 0 1 24.218 12.109 0.1362 37 1.4111 1 1 2.9410 24 -1 1 0 30.367 15.183 0.1705 38 1.4046 <1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
4-フルオロ安息香酸および種々のクロロ-フルオロ安息香酸の光分解によるフッ化物イオンの生成および芳香族の UV 吸収の変化から求めた芳香環の光分解を図 2.4a および 2.4b に示す。フッ化物イオンの生成および安息香酸の分解速度と基質のフッ素基および塩素基の位置との相関性を検討した。これらの基質の分解反応の速度定数、収率および脱フッ素反応の収率と反応速度を表 2.1 にまとめた。脱フッ素率は下の式より求めた。

図 2.4a に示すように、脱フッ素反応は、3 時間の光照射後の 2-クロロ-6-フルオロ安息香 酸が最も高かった(約 60%)。フッ化物イオン生成の反応速度定数は k_F = 0.0066 min⁻¹ であっ た。この2-クロロ-6-フルオロ安息香酸の4位へのOHラジカルの攻撃によって安定的なヒ ドロキシル化された中間生成物が生成したためと考えられる。これは図 2.4b に示されるよ うに、反応時間と共に芳香族吸収帯の増減(C / C₀)から明らかである。この中間生成物は、 酸化ガリウム粒子の表面上により容易に吸着されることが考えられる。比較すると、4-ク ロロ-2-フルオロ安息香酸の光還元反応からのフッ化物イオンの収率はわずか 25%であっ た。その反応速度定数は k_F==0.057 min⁻¹ であった。ベンゼン環が開環したにもかかわらず、 フッ素基が結合した脂肪族中間生成物は依然として残っており、さらなる光照射でもそれ 以上の脱フッ素は起こらなかった。3-クロロ-4-フルオロ安息香酸基質の脱フッ素化の程度 は約42%であり、基準である4-フルオロ安息香酸の脱フッ素収率45%とほぼ同一であっ た。脱フッ素反応の速度定数は、ほぼ同じ傾向を示した(図 2.4a、表 2.2; 表中の KF-はフッ化 物イオンの生成速度、Kdegは基質の芳香環の消失から求めた分解速度を意味する)。明らかに、安 息香酸環の3位のクロロ基は脱フッ素化にほとんど効果がなかったが、分解の程度および 対応する反応速度にある程度の効果を示した。対照的に、クロロ基を2位および4位に位 置付けることは、2-クロロ-6-フルオロ安息香酸および4-クロロ-2-フルオロ安息香酸基質の 脱フッ素化および分解の両方の速度に影響した。光触媒が TiO2 である場合に報告されてい るように、溶液中で検出されたフッ化物イオンの生成が低い結果は、F・イオンの触媒表面へ の吸着に起因する可能性がある[10]。

図 2.4. 光化学および光触媒分解によるハロゲン含有芳香環からの(a)フッ化物イオン生成 (mM)および(b)芳香環の消失(C/C₀ は初濃度に対する各時間の濃度の比)(初濃度, 0.10 mM;体 積, 100 mL);初期 pH = 4.2; UVC 照射 3 時間後の最終 pH = 3.7: (1) 4-フルオロ安息香酸; (2) 3-クロロ-4-フルオロ安息香酸; (3) 2-クロロ-6-フルオロ安息香酸; (4) 4-クロロ-2-フルオロ安息香 酸。実験条件:酸化ガリウム(β-Ga₂O₃)添加量, 50 mg;窒素ガス (0.05 Mpa; 3.5 hrs); 250 nm の 光強度, 10 mW cm⁻²

表 2.2. 3 時間の光照射後の 4-フルオロ安息香酸と 3 種のクロロフルオロ安息香酸の部分的 脱フッ素化および分解の反応速度定数および収率

化合物	<i>k</i> _{F-} (min ⁻¹)	脱フッ素率(%)	k _{deg} (min ⁻¹)	分解(%)
4-フルオロ安息香酸	0.0092	45	0.0070	50
3-クロロ-4-フルオロ安息香酸	0.0096	42	0.013	40
2-クロロ-6-フルオロ安息香酸	0.0066	38		
4-クロロ-2-フルオロ安息香酸	0.057	25	0.034	55

β-酸化ガリウムおよび白金担持 β-酸化ガリウム(Pt(1%)付加)の存在下での 2,2,2-トリフ ルオロエタノールの脱フッ素反応によって生成した F・イオン量の時間変化を図 2.5a に示 す。光還元脱フッ素化は、窒素雰囲気の場合、進行したが、酸素雰囲気での光酸化過程で は脱フッ素化が観察されなかった。生成した伝導帯の電子は、C-F 結合を開裂し、フッ素基 をフッ化物イオンに光還元した。次に光触媒に白金担持した場合の効果を検討した。トリ フルオロエタノールの脱フッ素化(k_F=0.016 min⁻¹)において白金担持触媒 Pt/β-Ga₂O₃は、反 応の促進が認められた(図 2.5a 参照)。

4-(トリフルオロメチル)安息香酸の脱フッ素化およびその酸化分解を、それぞれ図 2.5b および 2.5c に示す。図中縦軸の C/C₀ は初濃度に対する各時間の濃度の比(芳香環部分の吸 光度の測定結果の比)を意味している。それぞれの反応速度定数は k_F. (Ga₂O₃)= 0.0064 min⁻¹、k_F-(Pt /β-Ga₂O₃)= 0.011 min⁻¹であった。Pt/β-Ga₂O₃の存在下でのフッ素化安息香酸の脱フ ッ素反応は、担持していない触媒よりも、より高い収率(0.18 mM 対 0.16 mM)を示した。自 金担持された β-Ga₂O₃による 4-(トリフルオロメチル)安息香酸のベンゼン環の開環反応は、 β-Ga₂O₃(k_{deg}=0.0093 min⁻¹)の存在下よりも幾分速かった(k_{deg}=0.011 min⁻¹)。さらに、光照射 の 180 分後に、Pt/β-Ga₂O₃ 系の pH は、β-Ga₂O₃ 系よりも、溶液が酸性に向かう傾向があっ た。

フルオキセチン(FLX; 0.10 mM、100 mL)の光分解によるフッ化物イオンの生成量の Ga₂O₃ 光触媒の添加量に対する依存性を図 2.6 に示す。フッ化物イオンの収量は、照射時間 とともに増加した。この基質に対する酸化ガリウムの最適量は約 0.5 g L⁻¹であった。添加 量を多くすると、フッ化物イオンの生成が減少する傾向があった。おそらくフッ化物イオ ンが TiO₂ と同様に触媒表面に吸着することを示唆している[11]。Ga₂O₃ 50 mg の添加量での FLX の脱フッ素化の程度は約 75%であったが、100 mg では 24 時間の UV 照射後に収率が 60 %に低下した。

光還元はβ-Ga₂O₃の固体表面上で生じるが、この過程において酸素分子は電子捕捉剤で あり、酸素分子がハロゲン化基質への励起電子の消費と競合するため、フッ化物イオンの 生成を抑制する。したがって、光収率を高めるために酸素の存在しない不活性雰囲気(例え ば、窒素雰囲気)が有効である。不活性雰囲気条件では、芳香環の消失は、価電子帯の正孔 によって、水分子から生成した OH ラジカルが芳香環を攻撃してヒドロキシル化した中間 生成物を生成し、続いて芳香族環の開環反応が起こり、脱フッ素反応と開環反応の両方が 同時に起こった。

38

図 2.5. 窒素雰囲気下酸化ガリウムおよび白金担持酸化ガリウムによる(a) 2,2,2-トリフルオロ メチルエタノール (0.10 mM)および(b) 4-(トリフルオロメチル)安息香酸の芳香環の消失と脱 フッ素分解によるフッ化物イオンの生成

図 2.6. 窒素雰囲気での 24 時間の UV 照射後の FLX(初期 p H6、0.10 mM, 100 mL)の分解によるフッ化物イオンの生成に対する β-Ga₂O₃添加量の効果

図 2.7. 窒素または空気(酸素)雰囲気、β-Ga₂O₃(添加量 50 mg)の存在下での FLX(0.10 mM、100 mL)の光還元によるフッ化物イオン生成の pH 依存性

種々の初期 pH 値の反応液での FLX の光分解反応によるフッ化物イオンの生成を図 2.7 に示す。フッ化物イオンの濃度は、照射時間とともに増加し、約 6~8 時間以内に最大収率 を達成した。フッ化物イオンの最高収率 76 %は、不活性窒素雰囲気、光照射 24 時間後の 初期 pH が中性に近い(約 pH 6)溶液の条件から得られた。pH 8 および pH 10 における対応 する収率はそれぞれ 53 %および 68 %であったが、酸性条件下(pH 4)では収率はわずかであった(約 20 %)。光照射 24 時間後、いずれの条件においても最終 pH の値は約 4 になった。 空気雰囲気でのフッ化物イオンの生成はほぼ無視できる程度であった。各条件下でのフル オキセチンの脱フッ素化速度定数および生成したフッ化物イオンの収率を表 2.3 に示す。

表 2.3. β-Ga ₂ O ₃ /UVC	系での各種条件下でのフルオキセチンの光触媒	分解による脱フッ素反
応速度定数およびフッ	ッ化物イオンの収量および収率	

雰囲気	pН	<i>k</i> F- (hr ⁻¹)	F⁻イオンの収量(mM)	F⁻イオンの収率(%)
N_2	4	0.30	0.060	20
N_2	6	0.32	0.22	76
N_2	8	0.32	0.15	53
N_2	10	0.49	0.18	68
O ₂	6	0.13	0.014	

図 2.8 は、β- Ga₂O₃(50 mg)の存在下、不活性窒素雰囲気中でのフルオキセチン(0.10 mM、100 mL)の芳香環による吸収スペクトル強度から求めた光照射に伴う濃度変化(縦軸は前述 と同様の意味の C/C₀)を示す。低圧水銀灯を用い、β-Ga₂O₃粒子の存在下、窒素雰囲気での 光照射(光分解)での吸光度の消失は、比較のために行った TiO₂の存在下の吸光度の減少よ りもかなり遅かった(k_{deg} = 0.20 hr⁻¹)。後者の懸濁液は酸素雰囲気であるが、酸素分子が伝導 帯上の励起電子を優先的に捕捉し、基質への電子の授受が起こり難いにもかかわらず、(k_{deg} = 0.72 hr⁻¹)このような結果となった。光源として高圧水銀ランプ(波長 360 nm で光強度 3.5 mW cm⁻²の光照射)を用いた場合も同様の結果が得られた。

図 2.8. 窒素雰囲気、β-Ga₂O₃(50 mg)存在下での FLX(0.10 mM, 100 mL)の芳香環消失。初期 pH = 6±0.5。酸素(空気)雰囲気、TiO₂存在下の場合も比較のために示した。

図 2.9. 不活性窒素雰囲気、β-Ga₂O₃の存在下、様々な初期濃度の FLX および FOM 溶液の 光脱フッ素化反応結果のラングミュア - ヒンシェルウッドプロット

FLXおよびFOMの光化脱フッ素化反応のLangmuir-Hinshelwood(HL)図を図2.9に示す。 これからLH吸着平衡定数(K_{LH})および見掛け上の脱フッ素速度定数(k_{LH})を決定し、これら の値は、FLX についてはK_{LH}=0.026 μ M⁻¹および k_{LH}=3.01 μ M min⁻¹ であるのに対し、FOM についてはK_{LH}=0.14 μ M⁻¹および k_{LH}=3.37 μ Mmin⁻¹ であった。明らかに、FOM の脱フッ 素化は FLX の場合よりもわずかに速く、FOM は触媒金属酸化物の表面により強く吸着し ていることを示している。

表 2.4 に種々のフッ素化合物の化学構造(図 2.1 を参照)と脱フッ素率を示す。一般に、 フッ素基の部分は非常に撥水性を有しているので、親油性物質への吸着または触媒粒子の 表面へ吸着が促進される傾向にある。親水性または親油性の程度は、Inorganic/Organic Balance (IOB; 文献[12]参照)として知られる概念によって予測することができる。ここで無 機値は化合物の親水性または極性レベルを表し、有機値は化合物の親油性または非極性レ ベルを表す。フッ素化合物が酸化ガリウム表面に吸着する程度は、この IOB 概念から予測 することができる。フッ素化された物質の化学構造上の脱フッ素収率について IOB 分析な どを適用することも有益である。

この結果から、UV 照射の 3 時間後および 24 時間後の脱フッ素収率が化合物の分子量 が高いほど、より低いという点で、脱フッ素化の程度をフッ素化合物の分子量と比較する と、相関が見られた(図 2.10 参照)。無機性値が有機性値と近い値の場合(表 2.3[12-14]参照)、 脱フッ素収率も高くなる傾向があった。医薬品に関しては、FLX の脱フッ素化の程度は、 FOM よりも大きかった。

不溶性農薬 FZM の光触媒分解は、アセトニトリル/水(1:1)混合溶媒中で実施した。照射時間の増加とともに吸収スペクトルの吸光度が増加した。この結果は、親油性 FZM が種々の親水性中間生成物に変換されたことを示唆している。

43

表 2.4.異なる化学構造を有する化合物の脱フッ素収率(%)(実験条件、濃度 0.1 mM、β-Ga₂O₃ 量 50 mg/100 mL、光強度 10 mW cm⁻² at 250 nm;初期 pH, 6.0±0.5、最終 pH, 4.0±0.5、光照 射 3 時間または 24 時間)

フッ素化合物	分子量	IOB	条件	脱フッ素収率 (%)		
	(g mol ⁻¹)		(裕殊)	3 hrs	24 hrs	
4-fluorophenol	112.1	0.92	$N_2(H_2O)$	94		
4-fluorobenzoic acid	140.1	1.17	$N_2(H_2O)$	49	68	
3-chloro-4-fluorobezoic acid	174.6	0.97	$N_2(H_2O)$	43		
2-chloro-6-fluorobezoic acid	174.6	0.97	$N_2(H_2O)$	62		
4-chloro-2-fluorobezoic acid	174.6	0.97	$N_2(H_2O)$	27		
4-fluoronitrobenzene	141.1	0.46	N ₂ (H ₂ O)	68	93	
2,2,2-trifluoroethanol	100.0	2.1	$N_2(H_2O)$	67		
4-(trifluoromethyl)benzoic acid	190.1	1.0	$N_2(H_2O)$	51		
2,6-dinitro-4-(trifluoromethyl)benzene- sulfonate	338.2	2.97	$N_2(H_2O)$	10	40	
Fluoxetine (FLX; Prozac)	309.3	0.33	$N_2(H_2O)$	46	76	
Fluvoxamine maleate (FOM; Luvox)	318.3	0.67	$N_2(H_2O)$	25	56	
Fluazinam (FZM)	465.1	0.57	N ₂ (1:1 CH ₃ CN/ H ₂ O)	7	41	
Perfluorooctanoic acid (PFOA)	414.1	0.96	N ₂ (H ₂ O)	18	37	

図 2.10. フッ素化化合物の分子量との脱フッ素収率との相関関係。直線は、相関関係を示す (R 値は約 80%)

図 2.11. β-Ga₂O₃の表面上で起こるフッ素化合物の脱フッ素化反応の模式図

図 2.11 に、Ga₂O₃でのフッ素化合物の光分解および脱フッ素化反応の単純化したモデル を示す。光照射により生成した伝導帯上の励起電子は、酸素分子が存在しない場合、触媒 表面に吸着されたハロゲン化基質を還元する。同時に、価電子帯上の正孔は、光照射時に より溶液が酸性になるという実験結果から明らかなように水分子を酸化し・OH ラジカル およびプロトンを生成する。この・OH ラジカルは電子密度の高い芳香環を選択的に攻撃し てヒドロキシル化し、最終的に環が開いた中間生成物を生成する。様々な他の研究[15]で報 告されているように、比較的進行が遅いが、アルキル鎖上への OH ラジカルの攻撃も起こ る。

2.3.2 エイムズ試験による変異原性試験の結果

ヒドロキシル、アルデヒドおよびカルボン酸などの反応性の高い中間生成物は、光酸化 および光還元反応を経て生成し、最終的に CO₂ ガスを発生させる。環境汚染物質の光分解 法で、生成される中間生成物および最終生成物が最初の汚染物質より毒性がないことの確 認が不可欠であるが、光分解によって生じる生成物の変異原性に関する研究は少ない。本 研究では、生成された中間生成物が毒性も変異原性もないことを確認するために、エイム ズ試験を実施した。

FLX と 4-(トリフルオロメチル)安息香酸(TFMBA)のそれぞれ TiO₂ および Ga₂O₃ を用い た光反応後の生成物の変異原性活性を 2 つの菌株 TA-98 と TA-100 の S9mix を含むもの (+S9mix)と含まないもの(-S9mix)で検討した。その結果を図 2.11a および図 2.11b に示す。 TA-98 の前者(-S9mix)データのバックグラウンドレベルは、他のシステムよりも比較的高か った。試験方法の有効性は、4-ニトロキノリン-N-オキシドを用いた陽性対照で得られた復 帰突然変異体コロニーの数の投与量の依存によって確認した。他の試験では、コロニー選 択を繰り返した結果、感度が向上してバックグラウンドレベルが低下した。TA-100 株のバ ックグラウンドは一般に約 80 以下のバックグラウンドレベルを示したので、これらの条件 下では問題はなかったが、突然変異誘発性試験の結果はわずかに低かった。

(a)右上の TA-98 株の細菌細胞コロニー(バックグラウンドレベル、27)は、光照射前の初 期サンプルの結果に対して光照射時間の増加とともにわずかに増加した。25、50 および 100 µL の添加量にかかわらず、光分解された FLX 溶液の突然変異誘発活性はなかった。TA-100 株を使用した場合、(a)右下のバックグラウンドレベル(+ S9mix)は 77 であった。初期溶液 の細菌細胞コロニーの数は、25 µL 添加量の場合に約 80 であった。様々な光照射時間の後、 コロニーの数は初期溶液の数と比較して低かった。コロニー数は光照射時間の増加ととも に徐々に増加する傾向があった。しかし、光照射後の溶液は、依然として比較的低い値を 示した。そのため、長時間の光照射の後でも、FLX の光分解による中間生成物および生成 物に変異原性活性がないことが明らかになった。

(a)

(b)

図 2.12. FLX (8.0 mM)の光分解(TiO₂)溶液(a)および 4-(trifluoromethyl)benzoic acid (8.0 mM)の 光分解(β-Ga₂O₃)溶液(b)の TA 98 および TA 100 株の変異原性活性。棒線は左から添加量 25、 50、100 μL を意味する。

図 2.12b1 および 2.12b2(それぞれ左上および右上は TA-98 株、左下および右下は TA-100 株)に示すように、-S9mix および+S9mix の条件下で、両 TA-98 株と TA-100 株による TFMBA の光分解による中間生成物および生成物からの突然変異誘発活性の試験も行った。各試験 のバックグラウンドレベルは 27~120 の復帰突然変異体であった。したがって、この場合 についても TFMBA の光分解溶液の全ての試験サンプルについて突然変異誘発活性が認め られなかった。

2.4 結論

本研究では、フッ素化合物が UVC 光および酸化ガリウム(β-Ga₂O₃)によって、脱フッ素化 および光分解されることが示された。フッ素含有医薬品である Fluoxetine(FLX)および Fluvoxamine maleate(FOM)および他の基質の脱フッ素化は、光照射と共に増加した。光照射 の3時間および24時間後の脱フッ素率と基質の分子量の間に相関性が見いだされ、低分子 量のフッ素化合物の脱フッ素率が高く、分子量が大きい化合物の脱フッ素分解は困難であ った。脱フッ素反応のための最適光触媒量は、溶液 100 mL に対して 50 mg であり、FLX の 脱フッ素化における反応液の調整時の pH の最適 pH の値は 6 であった。白金 (1%)担持酸 化ガリウムを用いた、空気平衡雰囲気での反応ではフッ化物イオンの生成が減少したが、 基質の分解が促進した。FLX および 4-トリフルオロメチル安息香酸の脱フッ素化および光 分解による中間生成物および生成物は、エイムズ試験により変異原性がないことを確認し た。

参考文献

- [1] Zhao, B.; Lu, M.; Zhou, L.; J. Environ. Sci. (China) 2012, 24 (4), 774
- [2] B. Zhao, B.; Zhang, P., Catal. Commun., 2009, 10, 1184
- [3] Hou, Y.; Wang, X.; Wu, L.; Ding, Z.; Fu, X., Environ. Sci. Technol. 2006, 40, 5799
- [4] Dasaratha, R. G.; Usha, G.; Ramanathan, K. V.; Ramamurthy, V., J. Org. Chem. 1986, 51 (16), 3085
- [5] Hidaka, H.; Honjou, H.; Koike, T.; Mitsutsuka, Y.; Oyama, T.; Serpone, N., J. Photochem. Photobiol. A: Chem. 2008, 197, 115
- [6] Mendez-Arriaga, F.; Otsu, T.; Oyama, T.; Gimenez, J.; Esplugas, S.; Hidaka, H.; Serpone, N., Water Res., 2011, 45, 2782
- [7] Misaki, K.; Hisamatsu, Y.; Suzuki, H.; Takamura-Enya, T., Mutagenesis, 2008, 23, 359
- [8] Takamura-Enya, T.; Kawanishi, M.; Yagi, T.; Hisamatsu, Y., Chem. Asian J., 2007, 2, 1174
- [9] Takamura-Enya, T.; Suzuki, H.; Hisamatsu, Y., Mutagenesis, 2006, 21, 399
- [10] Minero, C.; Marirlla, G.; Maurino, V.; Vione, D.; Pelizzetti, E., Langmuir, 2000, 16, 8964

- [11] Minero, C.; Aliberti, C.; Pelizzetti, E.; Terzian, R.; Serpone, N., Langmuir, 1991, 7, 928
- [12] NIHON EMULSION CO., LTD., Formulation Design with Organic Conceptual Diagram; http://www.nihon-emulsion.co.jp
- [13] Fujita, A., Parmaceutical Bull. 1954, 2, 163
- [14] Kozuki, Y.; Ohtsubo, T., J. ASTM International, 2009, 6, 69
- [15] Hidaka, H.; Zhao, J.; Pelizzetti, E.; Serpone, N., J. Phys. Chem., 1992, 96, 2226

第3章 トリフルオロメチル安息香酸の位置異性体の光脱フッ素反応

3.1 研究背景および目的

フッ素含有農薬及び医薬品は、その分子構造中にトリフルオロメチル基を有しているが、 ほとんどであるがその化合物の分解に関する報告は、個々の化合物に対してのものであり、 統一的な分解過程や反応機構の研究がない。

それ故、本研究では、モデル化合物として、2-、3-および4-トリフルオロメチル安息香酸 (TFMBA、それぞれオルト、メタおよびパラ位置異性体と呼ばれる)を対象とし、β酸化ガ リウム光触媒を用いた光触媒分解反応を行い、構造と脱フッ素反応との関係を検討した。

3.2 実験方法

3.2.1 試薬

2-トリフルオロメチル安息香酸、3-トリフルオロメチル安息香酸および4-トリフルオロメ チル安息香酸、β-酸化ガリウム(β-Ga₂O₃)は和光純薬から購入した。

3.2.2 光分解および分析

3.2.2.1 光照射実験

水溶媒中の各トリフルオロメチル安息香酸(TFMBA)の初期濃度は 0.10 mM である。 115mL の石英円筒形光反応器に 100m L の TFMBA および、50 mg の β-Ga₂O₃を導入した。 この懸濁液を 2 つの低圧 Hg ランプ(Toshiba Lighting&Technology 社、GL20-A滅菌ランプ; 長さ約 60 cm)で照射した。波長 254nm での光強度は約 10.0 mW cm⁻² である。還元型実験の ために、UVC 照射(254 n m)の前に、反応液を窒素ガスで 30 分間脱気した。酸素雰囲気下 の実験では照射中に溶液を全時間で空気バブリングした。反応後、遠心分離により触媒を 除去し、さらに Advantec0.20µm フィルターを用いて濾過した。

3.2.2.2 生成物の分析

生成したフッ化物イオンの定量分析は TSK Gel Super IC-AZ カラム(内径 4.6 mm x 15 cm) を用いてイオンクロマトグラフィーTosoh Ion Chromatograph Model IC-2001 により行った。 溶離液は、3.2 mM の Na₂CO₃ と 1.9 mM の NaHCO₃ の混合水溶液(流速は 0.8 mL / min)であ る。検出器は、40°Cに維持したカラムで作動する伝導度検出器である。フッ化物イオンの 量は、NaF の標準溶液による検量線を使用して決定した。

物質中の芳香族成分および分解中間生成物は、JASCO V-570 分光光度計を用いた吸収分 光法および ESI-飛行時間型質量分析(ESI-TOF-MS)によって測定した。エレクトロスプレー イオン化(ESI +)の印加針電圧は 2000 V、検出電圧は 2500 V である。分解した試料の気化 温度は 100 ℃であり、オリフィス1 の気化温度は 80 ℃であった。

溶液濃度 0.1 M(溶媒:重水)の 4-トリフルオロメチル安息香酸溶液を窒素雰囲気中で酸化 ガリウムにより光触媒分解した。この溶液に対して、内部標準としてトリフルオロメチル ギ酸を加え、¹⁹F-NMR の測定を行った。

さらに反応液中のフェノール中間生成物を検出するため上記と同じ方法で調整した各ト リフルオロメチル安息香酸の各 10 mM 溶液を低圧水銀灯で照射(Ga2O3/UVC/N2)した。濾過 後、各試料溶液に 200 µL の FeCl3 水溶液(0.20 M)を加え、紫外可視分光法により分析した [1]。

3.2.3 量子化学計算

トリフルオロメチル安息香酸位置異性体の各原子の電子密度と部分電荷を、Gaussian 09 ソフトウェアのmp46-31g(水溶媒)を使用して計算および最適化した。各原子の電子密度は、 分子内で最も高い電子密度を持つ位置を OH ラジカルが攻撃する可能性があることを示している。一方、各原子の計算された部分電荷は、どの原子が金属酸化物の表面に物理吸着する可能性が最も高いかを推定するのに役立つ。

3.3. 結果と考察

3.3.1 反応液の吸光度の変化

紫外可視吸光光度計によって各位置異性体の吸収スペクトルを測定した(図 3.1)。また各 照射時間での、空気および窒素雰囲気条件での反応時間毎に、254、223 および 195 nm で の各 TFMBA 異性体のスペクトルを測定し、波長ごとにまとめたものを図 3.2 に示した。 その縦軸は 0 時間に対する各時間での吸光度の比(Abst/Abso)を示している。223 nm での吸 収帯は芳香環に起因すると考えられる。最大吸収はメタおよびパラ異性体に存在したが、 約 195nm のバンドは共役二重結合によるものである[2]。異性体はまた、260~300 nm の範 囲で弱い吸収を示した。これらの波長における吸光度の減少は芳香環や共役二重結合が減 少していることを意味する。

図 3.2a に示すように、空気雰囲気では、3 つの異性体すべての 254 nm での吸収は、2 時間の照射後にほぼ無くなった。低圧水銀ランプから照射される光の主な波長は 254 nm である。223 nm および 195 nm の吸光度についても同様の変化(図 3.2c および 3.2e)であった。対照的に、不活性窒素雰囲気下では、最初の 2 時間では各トリフルオロメチル安息香酸異性体の 254 nm の吸光度が照射時間と共に増加し、その後減少した(図 3.2b)。これは光触媒によって生成した OH ラジカルによって基質が水酸化され、一時的に構造が安定化し、吸光度が上昇したものと考えられる。図 3.2d では、オルト異性体の吸収も、不活性雰囲気下で最初に 2 時間まで増加し、その後減少した。しかし、メタおよびパラ異性体は、6 時間までの光照射で芳香環は経時的に減少した。3 つすべての異性体の波長 195 nm のスペクトルは、最初から一次反応速度によって減少した(図 3.2f)。興味深いことに、窒素雰囲気では、オルトおよびメタのトリフルオロメチル安息香酸異性体の芳香族性が 6 時間照射後も保持されていた(図 3.2b、3.2d)。

図 3.2 種々の条件の反応に伴う種々の波長の吸光度比の変化((a) 254 nm; Ga₂O₃/Air、(b) 254 nm; Ga₂O₃/N₂、(c) 223 nm; Ga₂O₃/Air、(d) 223 nm; Ga₂O₃/N₂、(e) 195 nm; Ga₂O₃/air、および(f) 195 nm; Ga₂O₃/N₂)

空気雰囲気中のトリフルオロメチル安息香酸各異性体の反応に伴う吸光度変化の結果は、 いくつかの二重結合特性を有するほとんどの中間生成物が最初の2時間以内に完全に分解 したことを示唆している。一方、不活性窒素雰囲気下でのオルト、メタおよびパラ異性体 の分解には顕著な違いがあった。

3.3.2 脱フッ素反応

様々な条件下でのトリフルオロメチル安息香酸異性体の光分解で放出されるフッ化物イオンの時間ごとの生成を図 3.3 に、関連する一次速度定数を表 3.1 に示す。

図 3.3 種々の条件におけるフッ化物イオンの生成量((a)Ga₂O₃/O₂、(b)Ga₂O₃/N₂)

空気酸素条件下で、オルト異性体の脱フッ素化収率は1時間の照明後に60%、6時間後に71%(図3.3a)に達した。脱フッ素化の収率はオルト(71%)~メタ(68%)>パラ(59%)の順序で低下した。遊離フッ化物イオンの生成速度もオルト、メタ、パラの順序で減少し(表3.1)、オルトおよびメタのTFMBA 異性体の分解の間に差があることを示している。おそらくカルボキシル基が金属酸化物光触媒の正に帯電した表面の方に配向し、伝導帯電子によるオルトおよびメタ位でのトリフルオロメチル基の還元をより起こり易くすると考えられる。一方、パラ異性体中のトリフルオロメチル基はカルボキシル基から離れているので、触媒表面上でトリフルオロメチル安息香酸の還元反応とO2の還元と競合しなければならなかったため、還元的な脱フッ素反応率が低かった。

表	3.1	脱フッ素化	との反応速度:	定数(hr-∩)およびフ	ッ化物イ	オンの	生成率(%	6)
---	-----	-------	---------	---------	-------	------	-----	-------	----

反応速度定数 (hr-1)	Ortho	Meta	Para
Ga ₂ O ₃ / N ₂	0.52 ± 0.05	0.43 ± 0.00	0.97 ± 0.09
Ga ₂ O ₃ / air	2.09 ± 0.17	1.91 ± 0.08	1.68 ± 0.04
脱フッ素収率 (%)	Ortho	Meta	Para
Ga ₂ O ₃ / N ₂	87	49	92
Ga ₂ O ₃ / air	71	68	59

254 nm の UVC 照射後、不活性窒素雰囲気でのトリフルオロメチル安息香酸異性体の脱フッ素反応速度は、空気雰囲気よりも遅く、パラ>>オルト>メタの順に減少した。6 時間後、窒素雰囲気でのパラ異性体の脱フッ素収率(約 92%)は、メタ異性体よりも大きかった(表 3.1)。酸素が溶液中に存在しない場合には、伝導帯上の電子は溶存酸素によって捕捉されないので、パラ異性体への還元反応が容易になり、トリフルオロメチル基の脱フッ素化が進行した。

3.3.3 分解反応における OH ラジカルの効果

各トリフルオロメチル安息香酸異性体の Ga2O3 光分解における・OH ラジカルの役割を評価するために、光照射後の溶液に塩化鉄(III)を一定量(0.20 M)加え、フェノール系の中間生成物の検出を行った。図 3.4 に示されるように、558 nm での変換されたパラ異性体の吸光度は著しく増加したが、オルトおよびメタ異性体はこの波長での増加はわずかであった。このような 4-トリフルオロメチル安息香酸の吸光度の大きな変化は、これら2つの異性体が表面に近づくときの立体障害のために、光触媒の表面上でヒドロキシル化生成物を生成することによる。これらの結果および図 3.2b、3.2d、3.2f に示された結果は、パラ異性体への OH ラジカル攻撃がオルトおよびメタ系と比較して促進されることを示している。本呈 色反応は、すべてのフェノール系の中間生成物を検出できるものではないが、フェノール系の中間生成物の存在する可能性を示している。また、以降の ESI TOF-MS の結果より全ての中間生成物なにする可能性を示していることが確認されている。そのため、異なった方法でこの中間生成物を確認した結果、ヒドロキシル化反応の進行の程度が異なっていることが考えられる。

図 3.4 呈色反応によって生じたフェノール系中間生成物の可視吸収の吸光度比の反応時 間による変化

3.3.4 反応溶液の pH 変化

図 3.5 は、反応溶液の空気および窒素雰囲気での光分解過程中の pH の変化を示す。 空 気平衡条件下では、異性体溶液の pH は反応前にはそれぞれ異なっていたが、6 時間の UVC 照射後にはほぼ同じ程度に減少した(図 3.5a)。不活性窒素雰囲気下では、オルトおよびメタ 異性体溶液の初期 pH はほぼ同一であるが、パラ異性体溶液の pH はわずかに高かった(図 3.5b)。しかしながら、6 時間の光照射後オルト異性体とパラ異性体の pH はほぼ同一(pH = 3.9)になり、メタ異性体の pH は約 2 倍高く(pH = 4.1)、光反応後に反対の傾向が認められ た。

図 3.5 空気酸素および窒素雰囲気での光分解反応に伴う pH 値の変化((a)Ga₂O₃/O₂、(b)Ga₂O₃/N₂)

3.3.5 脱フッ素、開環反応および反応溶液の pH の関係

窒素雰囲気では、図 3.6 a および 3.6b に示されているように、トリフルオロメチル安息 香酸の脱フッ素化および分解プロセス中に生じる pH 変化の両方が芳香環の消失と相関し た。したがって、開環は脱フッ素化および pH の低下と並行して起こったと考えられる。す なわち、•OH ラジカルがベンゼン環の分解に消費され、脱フッ素化反応がさらに促進され た。

図 3.6 芳香環の消失に伴うフッ化物イオンの生成および pH 値との関係((a) 芳香環の消失 とフッ化物イオン生成、(b)芳香環の消失と pH 値)

3.3.6 生成物の質量分析

反応生成物の質量スペクトルの測定結果を図 3.7a~d に示す。これは、3 つの異性体の主 質量スペクトルピーク m/z = 189 および、ヒドロキシル化された TFMBA の m/z = 205 の強度経時変化を示したものである。図 3.7a および 3.7c は、空気平衡条件下での m/z = 189 および m/z = 205 種のシグナルの質量スペクトル変化を、また不活性窒素条件下で得 られた結果を図 3.7b、3.7d に示す。

空気雰囲気では、パラおよびメタ異性体の m/z =189 における親ピークは、わずか1時間の UVC 照射後に実質的に消失したが、オルト異性体に対応するピークの強度は、6時間の 照射後でも一定のままであった(図 3.7a)。パラ異性体のより弱い m/z =205 質量シグナル は、1時間後に消失した。オルト異性体およびメタ異性体のシグナルは3時間の照射後消滅した(図 3.7c)。

不活性窒素雰囲気では、m/z =189 の TFMBA 異性体の強度は照射時間と共に徐々に減少し、オルトおよびパラのピークは6時間後にほぼ消失した。一方、6時間後のメタ異性体のm/z =189のピーク強度は、初期の60%ほどになった。

不活性 N₂ 雰囲気での図 3.7d に示される m/z = 205 のヒドロキシル化 TFMBA の質量ピーク強度が照射時間と共に増加し、メタ異性体はその強度の減少がなく、オルトおよびパラ異性体は 1 時間後にその強度が減少した。これらの結果は、特にメタ異性体に関して、 不活性条件下でのヒドロキシル化中間生成物の生成を強く示唆している。

これまでのパラ TFMBA 異性体の脱フッ素化収率が最も高かったために、次に不活性条件下で反応の進行に伴う質量スペクトルの変化をより詳細に調べた。この異性体の Ga_2O_3 光分解からの TOF-MS 結果を図 3.8 に示す。経時的に強度が増加した m/z = 181(図 3.8a)、 m/z = 137(図 3.8b)、m/z = 165(図 3.8c)および m/z = 121(図 3.8d)での結果を示す。すべ てがトリフルオロメチル官能基を含有する中間生成物であると考えられる。

図 3.7 種々の条件におけるm/z=205 と 189 の強度の変化((a)および(c)は Ga₂O₃/O₂系、(b)および(d)は Ga₂O₃/N₂系).

図 3.8 パラ異性体の光分解によって生成した中間生成物生成物の質量スペクトルの相対的 な強度の時間変化.

3.3.7 生成物の¹⁹F-NMR 分析

最も脱フッ素率が大であったパラ体の¹⁹F-NMR 測定結果を、図 3.12 に示す。実験条件が 異なるため、並行して議論することは困難であるが、分解中間生成物から生成したフッ化 物イオンを確認した(図 3.12(c)参照)。-75 ppm 付近の強いピークは、内部標準であるトリフ ルオロ酢酸のシグナルである。

図 3.12. パラ異性体の¹⁹F-NMR の結果

-60 ppm 付近のピークは親化合物であり、光照射時間と共にその強度は減少した。-130 ppm 付近のピークはフッ化物イオンであり、照射時間と共にその強度が増加した。48 時間 後のピークはトリフルオロメチルベンゼン(-64 ppm)および 4-トリフルオロメチルサリチル 酸(-65 ppm)であると考えられる。

3.3.7 反応機構の考察

各トリフルオロメチル安息香酸の光分解中にいくつかの機構的段階の推論を行うために、 Gaussian 09 ソフトウェア[3]を使用して、3 つの異性体の各原子の部分電荷と電子密度を計 算した。その結果を表 3.2 に示す。触媒の表面上に生成された・OH ラジカルの寿命は非常 に短いため、吸着された基質のみが触媒表面上のこれらの種と反応する。•OH ラジカルは、 最も高い電子密度の部分を攻撃し、ヒドロキシル化中間生成物を生成するか、もしくは水 素を引き抜く。対照的に、基質の負の電荷を有する部分は、酸化ガリウム光触媒の正電荷 表面に吸着し、励起電子または正孔による酸化または還元反応が起こる。

これらの異性体のフッ素原子の電子密度と部分電荷の両方に大きな違いはなった。それ にもかかわらず、最も大きな負の電荷はカルボキシル基中の2つの酸素の電荷であり、そ のため3つの異性体はこれらのカルボキシル官能基を介して正電荷を帯びた触媒表面に近 づく傾向がある。また、その時に光触媒表面で生成された・OH ラジカルによる基質の水酸 化反応がおこるものと考えられ、位置異性体の立体構造の違いにより水酸化反応の進行が 異なる。パラ異性体が最も水酸化されやすく、オルトおよびメタ異性体ではカルボニル基 の付近にトリフルオロメチル基が存在するため、その反応が進行しづらい。これらの違い を模式図(図 3.9)に示す。

これまでの研究[4-13]から、空気平衡条件下または不活性窒素雰囲気下で行われた光触媒 反応を要約した。

(I)の反応について、UVC 光により TFMBA はヘテロリシス、ホモリシスおよび光イオン 化を起こす。酸化ガリウムは光により電化分離が起こり正孔と励起電子が生成する。それ たにより基質が酸化および還元される。また、正孔は水を酸化し、OH ラジカルを生成す る。このラジカルにより基質は水酸化される。

(II)の反応について、((1)、(4)、(7)、(8)の反応は(I)と同様である)酸素が光により一重項酸素になり、それが基質を酸化する。また、励起電子により酸素分子が還元されスーパーオキシドアニオンが生成する。これとプロトンが反応し、ヒドロペルオキシラジカルが生成する。このラジカルが基質を酸化する。

62

表 3.2 量子計算による3つの位置異性体の電荷および電子密度

	Partial charge					Electron density			
	C_1	0.7724	O9	-0.5977	C1	5.2276	O9	8.5977	
	C_2	-0.0379	O ₁₀	-0.7369	C ₂	6.0378	O ₁₀	8.7369	
	C ₃	-0.1639	F11	-0.4175	C ₃	6.1639	F11	9.4175	
ortho	C_4	-0.1598	F ₁₂	-0.4154	C ₄	6.1598	F ₁₂	9.4154	
	C_5	-0.1962	F ₁₃	-0.3997	C5	6.1961	F ₁₃	9.3997	
	C ₆	-0.1851			C ₆	6.1851			
	C_7	-0.1828			C_7	6.1828			
	C_8	1.1682			C_8	4.8318			
	C_1	0.8335	O9	-0.6249	C1	5.1665	O9	8.6249	
	C ₂	-0.1894	O ₁₀	-0.7626	C ₂	6.1894	O ₁₀	8.7626	
	C3	-0.0684	F11	-0.4191	C3	6.0684	F11	9.4191	
	C4	-0.2238	F12	-0.4113	C4	6.2238	F ₁₂	9.4113	
meta	C5	-0.1078	F13	-0.4113	C ₅	6.1078	F13	9.4113	
	C ₆	-0.2434			C ₆	6.2434			
	C ₇	-0.1175			C7	6.1175			
	C_8	1.1391			C_8	4.8609			
	C_1	0.8299	O9	-0.6199	C_1	5.1701	O9	8.6199	
	C ₂	-0.1432	O ₁₀	-0.7592	C ₂	6.1432	O ₁₀	8.7592	
	C ₃	-0.1627	F11	-0.4137	C3	6.1627	F ₁₁	9.4137	
	C4	-0.1633	F ₁₂	-0.4040	C ₄	6.1633	F ₁₂	9.4040	
para	C_5	-0.1702	F ₁₃	-0.4138	C5	6.1702	F ₁₃	9.4138	
	C_6	-0.1654			C ₆	6.1654			
	C_7	-0.1499			C ₇	6.1499			
	C_8	1.1355			C_8	4.8645			

図 3.9. 各位置異性体の触媒表面での・0H ラジカルによる水酸化反応の模式図

Ga2O3 /N2 system (I)

TFMBA	+	hv_{254nm}	-	heterolysis, homolysis, photoionization	(1)
Ga ₂ O ₃	+	$hv_{254 nm}$	-	$e^{-} + h^{+}$	(2)
TFMBA	+	e ⁻	-	reduced intermediates	(3)
TFMBA	+	h^+	-	oxidized intermediates	(4)
H ₂ O	+	h^+	-	$\bullet OH + H^+$	(5)
TFMBA	+	•OH	-	hydroxylated intermediates	(6)

Ga2O3 /air system (II)

TFMBA	+	$hv_{254 nm}$	-	heterolysis, homolysis, photoionization	(1)
O ₂	+	$hv_{254\ nm}$	-	$^{1}O_{2}$	(2)
TFMBA	+	$^{1}O_{2}$	-	oxidized intermediates	(3)
Ga ₂ O ₃	+	$hv_{254 nm}$	-	$e^{-} + h^{+}$	(4)
TFMBA	+	h^+	-	oxidized intermediates	(5)
O ₂	+	e ⁻	-	O2 ^{•-}	(6)
TFMBA	+	e ⁻	-	reduced intermediates	(7)
H ₂ O	+	h^+	-	$\bullet OH + H^+$	(8)
$O_2^{\bullet -}$	+	H^{+}	-	•OOH	(9)
TFMBA	+	•OH	-	hydroxylated intermediates	(10)
TFMBA	+	•OOH	-	Peroxidized intermediates	(11)

TOF-MS 測定によって同定された、これらの中間生成物の生成過程を説明するために 4-トリフルオロメチル安息香酸の光触媒分解への Norrish 型反応[14、15]の検討により考えら れた反応機構を図 3.10 に示す。図中の Ga₂O₃の表示は光触媒反応であることを示し、hv は 光化学反応であることを示しており、分子量(MW)および UV、NMR の表記がある中間生 成物はそれぞれ TOF-MS および紫外可視吸光高度計、NMR の結果より同定された中間生 成物を示す。また、図中の「defluorination」と示された反応は全て光触媒反応により、生成 した励起電子による還元反応でのフッ化物イオンの生成である。

最初に、基質を・OH ラジカルによりヒドロキシル化し(Process1)、続いて、Norrish型1 反応を介してカルボキシル基のα炭素を開裂させて、中間生成物1が生成する。

続いて、末端のカルボニル基で Norrish-2 型反応が起こり(Process 2)、中間生成物1が脱 カルボニル化され、それによって m/z=181の中間生成物種が生成し、これは脱カルボキシ ル化により分子量138の種を生じる(m/z=137)。さらなる反応は、最終的には CO₂、H₂O お よび F⁻イオンへの完全な無機化につながる。

別の Norrish-2 型反応が起こり(Process 3)、これは中間生成物1のカルボニル基のβ開裂 を起こし分子量166(m/z=165)の中間生成物を生じる。その後脱カルボニル化が起こり、分 子量122(m/z=121)を有する中間生成物を生成し、そして最終的には完全無機化される。

また、メタ異性体の分解過程は、紫外可視吸光光度計の測定結果より 254 nm の吸光度が 上昇していることが確認できた。そのため、光化学反応またはヒドロキシル化ではない光 触媒反応により生成した中間生成物がその波長の光を吸収し、励起状態になり、その後、 開裂反応が起こり、その分解が進行する。その反応の模式図を図 3.11 に示す。

65

図 3.10. 酸化ガリウム光触媒および窒素雰囲気での 4-トリフルオロメチル安息香酸の光 分解反応機構

図 3.11. メタ異性体の分解反応機構

3.4 結論

本研究は、空気および不活性窒素雰囲気での UVC 光照射による酸化ガリウム懸濁液中 のトリフルオロメチル安息香酸の3つの位置異性体の分解について検討し、パラ異性体が 不活性窒素雰囲気で最大の分解率を示した。さらに、反応過程では OH ラジカルが脱フッ 素化および分解に大きな役割を果たしていることを確認した。脱フッ素化およびベンゼン 環の開環は、全分解過程における主要な段階であり、これに関しての反応機構を提案した。

参考文献

- [1] Wesp, E. F.; Brode, W. R., J. Am. Chem. Soc., 1934, 56 1037
- [2] 泉美治;小川雅彌;加藤俊二;塩川二朗;芝哲夫,第2版 機器分析のてびき IR, NMR, UV データ集,化学同人,1996
- [3] Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004
- [4] Chen, C.; Zhao, W.; Lei, P.; Zhao, J.; Serpone, N., Chem. Eur. J., 2004, 10, 1956
- [5] Zhao, W.; Chen, C.; Ma, W.; Zhao, J.; Wang, D.; Hidaka, H.; Serpone, N., Chem. Eur. J., 2003, 9, 3292
- [6] Chen, C.; Zhao, W.; Li, J.; Zhao, J.; Hidaka, H.; Serpone, N., Environ. Sci. Technol., 2002, 36, 3604
- [7] Zhao, W.; Chen, C.; Li, X.; Zhao, J.; Hidaka, H.; Serpone, N., J. Phys. Chem. B, 2002, 106, 5022
- [8] Chen, C.; Li, X.; Ma, W.; Zhao, J.; Hidaka, H.; Serpone, N., J. Phys. Chem. B, 2002, 106, 318
- [9] Zhang, T.; Oyama, T.; Horikoshi, S.; Hidaka, H.; Zhao, J.; Serpone, N., Solar Energy Mater. Solar Cells, 2002, 73, 287
- [10] Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N., New J. Chem., 2000, 24, 93
- [11] Liu, G.; Li, X. Z.; Zhao, J.; Hidaka, H.; Serpone, N., Environ. Sci. Technol., 2000, 34, 3982

- [12] Borrow, H. D.; Canle, M. L.; Santaballa, J. A.; Steeken, S., J. Photochem. Photobiol. B, 2002, 67, 71
- [13] Samsono, Y. N., J. Atmos. Chem., 2007, 56, 127
- [14] Norrish, R. G. W.; Bamford, C. H., Nature, 1936, 138, 1016
- [15] Norrish, R. G. W.; Bamford, C. H., Nature, 1937, 140, 195

第4章 農薬フィプロニルの TiO2 および Ga2O3 光触媒による脱フッ素反応

4.1 研究背景および目的

最年、国内で使用される農薬(殺虫剤も含む総称)の数と量の増加は、大量使用による環 境汚染のために、その対策が重要な課題となっている。殺虫剤は、害虫を駆除、行動の抑 制のために、農業、公衆衛生、および工業用途で使用されており、例えばゴキブリやシロ アリの防除など、家庭用および商業用の用途にも需要がある。これまで最も一般的に使用 されている殺虫剤は有機リン酸エステル、カルバミン酸エステルおよびピレスロイドであ った。米国では殺虫剤使用のほとんどの割合をトウモロコシと綿に対する使用で占めてい る[1]。環境中に残留した農薬は、元の殺虫剤よりもさらに有毒になる可能性があり、様々 な場所で光分解残留物が確認されており、問題となっている[2]。例えば、比較的新規の農 薬(殺虫剤)であるフェニルピラゾール系殺虫剤の1つである含フッ素農薬フィプロニルは 自然分解などで様々な有害な中間生成物ができることが報告されている。それらの構造式 は図4.1に示され、以降の文章中でのローマ数字は図中のそれぞれの数字で示された構造に 対応する。殺虫剤フィプロニルの主な生物代謝物[3]、代謝物フィプロニルスルホン(I)、お よびフィプロニルスルフィド(V)は他の主な環境代謝産物(光生成物)と同様に、淡水無脊椎 動物に対してより毒性が高い。 デススルフィニル(III)は、親化合物であるフィプロニルより も哺乳動物に対して約9~10倍急性毒性が高い[4、5]。これらの半減期は、フィプロニルを フィプロニル-スルホン(I)に変換する好気性土壌中で数週間から、土壌の性質によってはフ ィプロニル-デスルフィニル(III)が劣化するまでの数年間に及ぶ可能性がある(図4.1)[1、6]。 フェニルピラゾール構造の殺虫剤フィプロニル[3]の作用機構は、昆虫が抵抗性を示した

リンモルビフリール構造の報知剤ノイブロール[3]の作用機構は、鹿虫が抵抗性を示した リン酸エステル系およびカルバメート系に基づく旧来の殺虫剤の殺虫作用とは生化学的経 路が異なるため、比較的新しい世代の殺虫剤である。そのためフィプニルは様々な昆虫を 駆除するために使用されており、粒状芝製品、種子処理剤、局所用ペットケア製品、ジェ ルベイト、液体殺シロアリ剤などにも使用されている。日本では、フィプロニルは、稲作 における吸い虫、コナジラミ、ウンカ類、およびナタコロウシス・メディナリスの防除の ために、イネの苗箱用途で広く使用されている[2]。フィプロニルおよびその代謝産物は、 米国中では低濃度ではあるが都市部および農業地域のいくつかの水域で検出されており、 最高濃度はルイジアナで記録されている一方、フィプロニルスルホン(I)、フィプロニルス ルフィド(V)、フィプロニル・デスルフィニル(III)、およびフィプロニル-アミド(II)代謝産 物は、カリフォルニア州コロラド州およびルイジアナ州で検出されており、主に農業での 表流水に由来すると考えられている[1]。フィプロニルの国内都市での使用はかなり多く、 検出された化合物はフィプロニルとその分解代謝物が約半分を占めている。そしてミツバ チは特にこの有毒な殺虫剤の影響を受けており、ミツバチが採餌しているときは本農薬の 使用を行わないことが推奨されている[7]。また、フィプロニルは経口摂取(自己中毒)した ときには、ヒトにも有毒であり、嘔吐、興奮、発作を引き起こす[8]。

図 4.1 自然環境中において、フィプロニルより生成される中間生成物

様々な条件および光分解でのフィプロニルから生成する中間生成物が報告されている。 フィプロニルの種々の土壌(ローム、シルトローム、粘土ローム、砂)に対する300 nm以上の 波長の自然光の照射に関する研究[9、10]から、殺虫剤フィプロニルの光分解において5つ の主要な代謝産物(5-アミノ-3-シアノ-1-[2, 6-ジクロロ-4-(トリフルオロメチル)フェニ ル] -4-(トリフルオロメチル)スルホニルピラゾール(I)、5-アミノ-3-カルバモイル-1-[2, 6-ジクロロ-4-(トリフルオロメチル)フェニル]-4-[(トリフルオロメチル)スルフィニル]ピ ラゾール(II)、5-アミノ-3-シアノ-1-[2, 6-ジクロロ-4-(トリフルオロメチル)フェニ ル]-4-(トリフルオロメチル)ピラゾール(III)、5-アミノ-3-シアノ-1-[2, 6-ジクロロ-4-(ト リフルオロメチル)ピラゾール-4-スルホン酸(IV)、および5-アミノ-3-シアノ -1-[2, 6-ジクロロ-4-(トリフルオロメチル)チオ]ピラ ゾール(V))が同定された。また加水分解、光分解、酸化、還元などの異なる分解経路が提案
されている[11]。これらの研究は、環境条件自然光下でフィプロニルが光化学的に分解して フィプロニル-デススルフィニル誘導体になることを示した[12]。主な副生成物としてフィ プロニル-デスルフィニル(III)、フィプロニル-デトリフルオロ-メチルスルフィニル、フィプ ロニル-スルホン(I)、および少量のフィプロニル-スルフィド(V)を生成した。マウスにおけ るフィプロニルの代謝は、フィプロニル-スルホン(I)のみをもたらした。脱スルフィニル 化および脱トリフルオロメチルスルフィニル化はジラジカル中間生成物を介して起こった。 Bobéとその共同研究者[11]はまた、太陽シミュレータを使用して、乾いた土壌を含むメタノ ール性水分散液に対して光照射を行い、光生成物(II~IV)が生成することを確認した。一方、 3つの異なる土壌表面でのフィプロニルの光分解では、光生成物(III)のみが生成することを 明らかにした。Ngimたちによる後の研究[13]は、波長300 nm以上の光照射により水性媒体 中で、光分解によりフィプロニルから5種類のフィプロニル誘導体(IV)すべてが生成するこ とを報告した。

フィプロニル-デススルフィニル誘導体(III)に加えて、Ravetonとその共同研究者[14]は、 フィプロニルのエタノール性水性媒体への光照射(波長290~350 nm)において、フィプロニ ル構造からピラゾール環が開裂し、種々の置換フェニルピラゾールおよびアニリンを含む 多数の中間生成物が生成されることを報告した。光生成物(III)は、UV光および太陽光の両 方の下で比較的安定であり、芳香環の置換において生じる変化は限られていた。この中間 生成物は分解したフィプロニルの量に対して約30~55 %まで生成した。著者らは、フィプ ロニルの光分解において2つの異なる経路が作用していると推論した。ピラゾール環の4位 での脱硫酸化は、フィプロニル-デススルフィニル誘導体(III)および4-置換基の異なる中間 生成物をもたらす。ピラゾール環の開裂およびアニリンの形成をもたらした。フィプロニ ル殺虫剤およびその代謝産物に関する上記の光分解研究は全て、野外の環境条件下または 太陽光線照射下、あるいは疑似太陽光による照射または実験室条件下のいずれかで行われ た。光源はキセノンまたはハロゲンランプが用いられ、すべての場合において290~300 nm 以上の波長の光が使用された。

フィプロニルは、その毒性のために、特にミツバチの殺害に関して、問題のある農薬で あり、その使用は欧州連合で禁止されている[15、16]。海洋生態系では、フィプロニルは水 生生物(例えばエビ)に特に有害であり、河川生態系ではカエルの卵巣に濃縮され、その結果 生殖機能に影響を及ぼす[17]。それは無脊椎動物や水生無脊椎動物にも有毒である[18]。他 の過フッ素化生成物と同様に、環境中のフィプロニルの分解物は、元の物質よりも毒性の 高い光分解生成物または副生成物になる[19]。

72

Fipronil (m/z = 437)

{5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(1R,S)-trifluoromethyl)- sulfinyl]-1H-pyrazole-3-carbonitrile}

本研究では、フィプロニルの分解・脱フッ素反応による無機化を目指して、光触媒反応 を、無触媒窒素系、無触媒酸素系、酸化チタン窒素系、酸化チタン酸素系、酸化ガリウム 窒素系、酸化ガリウム酸素系で行った。さらに、分解中間生成物の発がん毒性に関してエ イムズ試験による検査を行った。

4.2 実験方法

4.2.1 試薬

殺虫剤フィプロニル(和光純薬工業より購入した、純度 99.4 %)を実験に使用した。β-酸化 ガリウム(和光純薬工業)は使用前に電気炉(600 ℃)で熱処理した。二酸化チタンは Degssa P25 を用いた。

4.2.2 光触媒反応および分析方法

フィプロニル 0.0437 g L⁻¹を含有する 0.10 mM に相当するフィプロニルの溶液を調整した。しかし、フィプロニルの溶解度が pH 5 で 0.0019 g L⁻¹、 pH 9 で 0.0024 g L⁻¹ であり、試薬の多くは水溶媒中に溶解しなかった。フィプロニル懸濁液(100 mL)を含有する密閉した 115 mL の石英円筒形光反応器に、条件に応じて β -Ga₂O₃ または TiO₂(0.050 g)を加えた。反応液を低圧水銀ランプ(東芝ライティングアンドテクノロジー社、GL20-A 滅菌ランプ、最大発光波長 254 nm、光強度約 10.4 mW cm⁻²)で照射した。また還元型実験の時は、反応液を光照射の 30 分間前に窒素ガスで脱気した。また比較の酸化雰囲気の実験では、反応液を空気(酸素)で飽和した。反応装置内はファンにより温度を約 25°Cに維持した。反応液の遠心分離後、Advantec 0.2 mm フィルターによる濾過によって触媒を除去した後に種々の分析を行った。フッ化物、塩化物、硝酸塩および硫酸塩アニオンの定量分析は、TSK Gel Super IC-AZ カラム(i.d. 4.6 mm×15 cm)を使用した Tosoh Ion Chromatograph Model IC-2001(イオンクロマトグラフィー)によって行った。この溶離液は 1.1 mM の Na₂CO₃ と 7.5 mM の NaHCO₃の混合水溶液からなり、流速は 0.8 mL min⁻¹であった。検出は、40°Cに維持したカラムで動作する伝導度検出器で行った。フッ化物イオンの量は、フッ化ナトリウムの標準溶液を用い

た検量線で検定した。アンモニウムイオンの量は JASCO HPLC クロマトグラフで分析した。 標準カラムはカチオン分析のための IC Y-521、溶離液は 4 mM の HNO3 水溶液である。流 速は 1.0 mL min⁻¹であり、カラムは約 40 ℃に維持され、検出器は伝導度検出器である。生 成されたイオンの収率は、完全分解時の理論値に基づいた。反応の進行に伴うフィプロニ ル中の芳香環の減少は、JASCO V-570 分光光度計を用いた吸収分光法、および中間生成物 は ESI+飛行時間型質量分析法(ESI+/TOF-MS)(エレクトロスプレーイオン化(ESI+)の針電 E: 2000 V、検出電E: 2500 V、分解試料の気化温度: 100 ℃、オリフィス1 の気化温度: 80 ℃、リングレンズ電E: 15 V、オリフィス1: 80 V、オリフィス2 の電E: 1 V)により測 定した。

4.2.3 エイムズ試験による変異原性試験

エイムズ変異原性試験は、反応前の基質(55 %アセトンと45 %水の混合溶液中0.50 mM)および光分解後の中間生成物について、サルモネラチフィムリウムTA-98株(フレームシフト型)およびTA-100株(塩基対置換型)[20-22]を用いて行った。エイムズ試験は、変異を引き起こす化学物質を検出する方法である。それぞれの菌株を37℃で10~11時間激しく振とうして独立に培養し、各菌株の濃度が一定の懸濁液を調製した。分散液(0.10 mL)を37℃で20分間、事前培養した後、軟寒天溶液のアリコート(2 mL)を最小グルコースプレート上に加え、続いて37℃で48時間以上培養した。培養後、復帰突然変異体のコロニー数をコロニーカウンターで評価した。S9という用語は、9000 rpmで遠心分離した後の均質化したラット肝臓からなる上清を示す。様々な薬物代謝酵素がこの画分に集められた。酵素群は共酵素を必要とするので、ラット肝臓S9を試験したアリコート(S9mixと表示)に加えた。追加されたとき+S9mix、非追加のものは-S9mixと表示した。一般に、DNAに直接結合したニトロ基または化合物(例えば、エポキシド)を有する化合物は、-S9mixで正の応答を生じさせるが、アミノ基または芳香族基を有する化合物は、通常+S9mixによって検出される。

4.2.4 量子化学計算

フィプロニルの原子の電子密度と電荷を、Gaussian 09ソフトウェアのhf/6-31g*の設定で 計算し最適化し、構造中の電子密度および電荷を求めた。

4.3 結果と考察

4.3.1 フィプロニルの光化学および酸化ガリウム光触媒による分解

還元性(N₂)および酸化性(空気 O₂)の雰囲気条件および光触媒 β-Ga₂O₃の存在または非存 在下での光反応におけるフィプロニルの芳香環の吸光光度の変化を図 4.2a~4.2d に示す。 さらに(Abs)_t/(Abs)₀として表される波長 260 nm における吸光度比の反応時間に対する変化 を図 4.2e に示す。吸光度は通常の可溶性の化合物とは異なり、光照射時間が 6 時間までそ の吸光度が増加し、その後、減少し始めた。24 時間の照射後、触媒の非存在下(図 4.2b)および存在下(図 4.2d)の空気飽和酸化条件下の系について、波長 260 nm の吸光度がほぼ0になった(図 4.2e)。酸化条件(空気)かつ Ga₂O₃の存在下では、吸光度は光照射の1時間後に最大値まで増加し、2 時間以内に最小値まで減少した。これらの結果は、酸化的条件がフェニルピラゾール骨格構造の完全な分解を引き起こしたことを示している。一方、N₂ 還元雰囲気では、24 時間の照射後の波長 260 nm の吸光度の著しい減少は認められなかった。この吸光度の挙動は、フェニルピラゾール構造の特定の位置での光加水分解[23-32]により、疎水性のフィプロニル(約 5%のみが水に溶解した反応液)が光分解とともに競争的に可溶化し、親水性基質に変換されたためと考えられる。

様々な条件下((a) Ga₂O₃/N₂、(b) 無触媒/N₂、(c) Ga₂O₃/O₂および(d) 無触媒/O₂)でのフィプ ロニルの光分解における脱硫黄化、脱フッ化物、脱塩素化および脱アミノ化による無機イ オン収率の時間変化を図 4.3 にまとめた。還元的な無触媒/N₂条件では、脱硫黄化が最も重 要なプロセス(図 4.3a)であり、続いて脱フッ素化、脱塩素化および脱アミノ化が起こった。 無機イオンの生成率は Ga₂O₃ / N₂系で SO₄²⁻ (45%) > F⁻ (32%) > Cl⁻ (19%) > NH₄⁺ (7%) > NO₃⁻ (6%)の順であった。一方、触媒の非存在下(図 4.3b)では、各無機イオンの収率は低かった (SO₄²⁻ (33%) > F⁻ (23%) > Cl⁻ (15%) > NH₄⁺ (1.5%) > NO₃⁻ (0%))。明らかに、フィプロニル殺 虫剤は酸素が存在しない条件では分解が進行しないことが判った。

一方、空気平衡酸化条件では、脱スルホン化、脱フッ素化、脱塩素化および脱アミノ化反応は、図 4.3c および図 4.3d に示すように、Ga₂O₃ 光触媒の存在下で特に大きかった。空気酸素系(O₂)では、SO₄²⁻ (51%) > F⁻ (33%) > Cl⁻ (20%) > NH4 +(10%) > NO3-(~2%)であったのに対して、Ga₂O₃/O₂条件では、SO₄²⁻ (79%) > F⁻ (44%) > Cl⁻ (33%)~NO₃⁻ (34%) > NH4⁺ (15%)であった。比較のために行った、TiO₂/O₂系での無機イオン収量は、光照射の 6 時間後(図 4.3f)で、SO₄²⁻ (74%) > F-(38%) ~ Cl⁻ (36%) > NO₃⁻ (20%) > NH4⁺ (15%)であった。TiO₂ / N₂条件(図 4.3e)では、対応する収率は低かった(SO₄²⁻ (32%) > F⁻ (18%) ~ Cl⁻ (16%) > NH4⁺ (8.5%) > NO₃⁻ (2.8%))。

酸化雰囲気 (Ga₂O₃/O₂、TiO₂/O₂ および空気 O₂)および還元条件(Ga₂O₃/N₂、TiO₂/N₂ と不 活性窒素雰囲気下 N₂)での結果を比較するために、硫酸、フッ化物、塩化物、硝酸塩および アンモニウムの各イオンの収率を図 4.4a に示す。全てのイオンの最大収率はいずれの場合 も、Ga₂O₃ および TiO₂ 光触媒系の酸化条件下で最大であり、光触媒が重要な役割を果たし ていることが判明した。一方、還元性 N₂雰囲気条件(無光触媒)の場合、収率が最も低かっ た。

図 4.2. 光触媒を含まない N₂(a)および空気 O₂(b)雰囲気中の水性媒体中のフィプロニルの 吸光度の照射時間変化。(c)と(d)は窒素または酸素雰囲気で、Ga₂O₃ を添加したものを示す。 (e)様々な条件下での光反応におけるフィプロニルの初期吸光度(260 nm)に対する、各照射時 間での吸光度比。

図 4.3. フィプロニル(0.10 mM)の窒素雰囲気または空気酸素雰囲気での光化学反応(b、d)、 Ga₂O₃ および光化学反応(a、c)、TiO₂ および光化学反応(e、f)による硫酸塩、フッ化物、塩化 物、硝酸塩、およびアンモニウムの各イオンの生成。

光触媒がフィプロニルの光分解において重要な役割を果たすことは、無触媒の空気平 衡雰囲気および還元性 N₂ 雰囲気条件からの収率が大きく異なっているという結果によっ て確認された。注目すべきは、図 4.4d に示された硝酸塩イオン生成の結果であり、硝酸 イオンは、酸素分子の存在の有無にかかわらず、光触媒の存在下でのみ生成した。硫酸 塩、フッ化物、塩化物、硝酸塩およびアンモニウムイオンの収率を表 4.1 に示す。

図 4.4. 窒素または空気酸素雰囲気、無触媒、Ga₂O₃ または TiO₂.の存在下でのフィプロニル からの(a)硫酸塩、(b)フッ化物、(c)塩化物、(d)硝酸塩および(e)アンモニウムの各イオンの生 成。

表 4.1. フィプロニル反応液の様々な条件下での光照射(6 時間)後に生成した無機イオンの 収率(%)。

	条	収率					
	触媒	雰囲気	F⁻	SO 4 ²⁻	Cl⁻	NO ₃ ⁻	\mathbf{NH}_4^+
O NH ₂ CI	Ga ₂ O ₃	N ₂	32	45	19	6	7
F ₃ C N CF ₃	Ga ₂ O ₃	Air	44	79	33	34	15
	TiO ₂	N ₂	18	32	16	2.8	8.5
	TiO ₂	Air	38	74	36	20	15
	無	N ₂	23	33	15		1.5
	無	Air	33	51	20	~ 2	10

4.3.2 生成物の質量分析

自然光および擬似太陽光UVA / UVB照射による、フィプロニル殺虫剤およびその5つの 光生成物の活性毒性が既に報告されている。そのため本実験での光照射で生成する中間生 成物を同定し、毒性を調べることが不可欠である。そのため、O2酸化条件下での光照射0時 間および6時間後の反応液を、飛行時間型質量分析計(TOF-MS)を用いて測定した。その結 果を図4.5に示す。フィプロニルのスペクトルは、供給元の報告書では、純度99.4%を記載 にもかかわらず、光照射前の懸濁液おいてm/z = 500を超えるいくつかの不明な不純物のピ ークが観測されたが、その存在はUVC照射0.5時間後には検出されなかった。

TOF-MFによって同定された中間生成物の構造式を図4.6に示す。以降の本文中に出てくるローマ数字は図4.6における構造式を示している。光照射0時間(照射開始前)において、同定することはできなかったがm/z = 459および461ならびにm/z < 110での重要なピークが認められなかった。フィプロニルはm/z=437 [M]で同定され、さらに重要なことに、質量ピークm/z=455でのフィプロニルアミド(化合物II)が同定された。m/z=389の質量ピークはフィプロニル-脱スルフィニル(化合物III)に起因する(図4.4参照)。UVC照射の0.5時間後、後者の質量ピーク(およびm/z=391)が優勢になり、フィプロニルからS=O基が失われて(III)が得られ、5-アミノ-4-[(トリフルオロメチル)スルホニル]-1H-ピラゾール-3-オール(VI;m/z=231 [M])、5-アミノ-4-[(トリフルオロメチル)-スルフィニル] -1H-ピラゾール-1,3-

ジオール(VII; m/z=231 [M])、2, 6-ジクロロ-4-(トリフルオロメチル))フェノール(VIII; m/z=231 [M])、4-[(トリフルオロ-メチル)スルホニル]-1H-ピラゾール-1, 3-ジオール(IX; m/z = 231 [M-H])、5-アミノ-4-[(トリフルオロメチル)-スルホニル]ピラゾリジン-3-オール(X; m/z=231[MH])のような構造と一致するm/z=231の重要な質量ピークとともに、フィプロニルについての質量強度が減少した。さらに、光照射0.5~6時間後に見られるm/z = 215の小さな質量ピークは、1,3-ジクロロ-5-(トリフルオロメチル)ベンゼン(XI; m/z = 215 [M])か、5-アミノ-4-[(トリフルオロメチル)スルフィニル]-1H-ピラゾール-3-オール(XII; m/z = 215 [M])に起因する。6時間までの著しいm/z = 201の質量シグナルは、4- [(トリフルオロメチル)スルフィニル] -1H-ピラゾール-1-オール(XIII; m/z = 201 [M+H])に起因する可能性が高い。最初は見られなかったが、6時間までのさらなる照射時にm/z=59に有意な強度があり、6時間までの照射で最も強いピークとなり、24時間の照射後でも見られた。このピークはイソチオシアン酸(XIV; m/z=59 [M])と考えられる。

最後に、24時間の光照射後、認められたマススペクトルはm/z <100でのみであり、フェ ニル-ピラゾール骨格構造の完全な分解を確認した。

図 4.5. フィプロニル反応液の光照射(酸化ガリウム触媒および空気酸化雰囲気、照射時間 0、6時間)による分解生成物の TOF-MS スペクトル

図 4.6.フィプロニル反応溶液の光分解(空気酸化雰囲気)生成物のTOF-MS測定により同定した中間生成物

4.3.3 反応機構

4.3.3.1 光化学分解反応

本研究では、フィプロニルの光分解の詳細な機構解析を行うものではないが、現在まで に得られた知見のみで、様々な可能性を推測することができる。フィプロニルの直接光照 射は基底状態を一重項状態へ励起し、項間交差して最終的に三重項状態を生ずる。次に、 三重項状態または一重項状態のいずれかが、(i)ホモリシス、(ii)へテロポリシス、および(iii) 光イオン化の様々な過程(図 4.7)を経る。

図 4.7. 光照射による励起状態からの反応

その結果、水媒体中においてフィプロニルが直接光分解が起こる。ホモリシスによる中間 生成物は、水と酸素と反応してより分解された中間生成物につながる2つのラジカルを生 成するが、ヘテロリシスは水分子と反応する陽イオンおよび陰イオン種を生成する。光イ オン化過程による水和電子および陽イオンラジカルの生成はまた、水および酸素と反応し、 さらなる分解中間生成物をもたらす。さらに、酸素の存在下での光照射では、三重項状態 の基質と三重項状態の酸素分子の相互作用の結果として一重項酸素 ¹O₂ が生成され、その 一重項酸素が基質を分解すると仮定することができる。以上の反応を下記にまとめる(反応 1~4)。

(FP)o	+	hv	\rightarrow	¹ (FP)	(1)
¹ (FP)	\rightarrow	³ (F	P)		(2)
³ (FP)	+	$^{3}O_{2}$	\rightarrow	${}^{1}O_{2} + (FP)_{o}$	(3)
(FP)o	+	$^{1}O_{2}$	\rightarrow	¹ (FP:O ₂)	(4)

フィプロニルが、[4+2]付加物の形成を介して、4-アミノ-7-[2,6-ジクロロ-4-(トリフルオロ メチル)フェニル]-5-[(トリフルオロメチル)スルフィニル]-2,3-ジオキサ-1,7-ジアザビシクロ [2.2.1] ヘプト-5-エン-6-カルボニトリル(XV)(図 4.8 参照)を生成する。(XV)の生成の証拠はないが、得られたデータから一重項酸素の関与は排除出来ない。

図 4.8. (XV)

フィプロニルが光照射された場合の、反応経路は、特に光触媒の Ga₂O₃ よび TiO₂ が存在し ない場合の光化学的加水分解過程である。文献には多くの例がある[23-33]。例えば、トリ フルオロメチル置換化合物は加水分解を受けることが知られており、-CF₃ 加水分解の最終 生成物は3 モル当量のフッ化物イオンの生成後にカルボン酸に分解される。おそらく、水 分子による求核攻撃の後にフッ化アシルへの互変異性化およびアシルフルオライドの最終 的な加水分解がカルボン酸を生成する[23]。

また各原子の電荷は、どの原子が金属酸化物の表面に吸着する可能性が最も高く、水との反応点(加水分解)になるかを推測するのに役立つため、フィプロニルの原子の電子密度 と電荷を、Gaussian 09 ソフトウェアを使用して、hf/6-31g*の設定で計算し構造を最適化した。各原子上の電子密度は、OH ラジカルが基質分子内における高い電子密度を有する原子 位置を攻撃することが容易であることを示す。

電子密度および電荷の理論計算からフィプロニル中のすべての原子(表 4.2)の最大の正電荷を有する原子と水分子の負の双極子末端との間で起こる加水分解反応の位置に関する知見を得ることができた。スルホニル硫黄原子(S-19; 1.22)と共に、3 つの炭素原子は(トリフルオロメチル基の C-4(2.02)および C-21(0.98)およびニトリル基-C=N に結合した C-17(0.76))は、比較的大きな正電荷を帯びている。したがって、水分子の双極子の負の末端は C-4、C-21 および S-19 位置で相互作用し、フィプロニルを水酸化し、より親水的にする。同時に、フッ化物イオンが放出され、炭素は最終的にカルボン酸に変換される[23]。次に可能性のある加水分解反応は、ピラゾール環に結合したニトリル基の炭素 C-17 で起こる。これは、フィプロニルアミド(II)におけるアミド基の形成のための反応である。

表 4.2. 量子計算で得られたフィプロニルの電荷および電子密度(構造中の水素原子は省略した)。

No.	Atom	Electron density	Charge	No.	Atom	Electron density	Charge
1	F	9.393	-0.3931	14	N	6.834	0.1662
2	F	9.344	-0.3438	15	C	5.523	0.4773
3	F	9.392	-0.3922	16	C	6.718	-0.7178
4	C	3.979	2.0209	17	С	5.252	0.7585
5	C	7.403	-1.4032	18	N	7.904	-0.9037
6	C	5.164	-0.1245	19	S	14.783	1.2169
7	C	6.080	-0.1218	20	0	8.858	-0.8577
8	C	6.087	-0.0949	21	C	5.087	0.9839
9	C	6.149	-0.1492	22	F	9.381	-0.3809
10	C	6.139	-0.1386	23	F	9.354	-0.3566
11	Cl	16.729	0.2707	24	F	9.352	-0.3623
12	Cl	16.309	0.2730	25	С	6.548	-0.5483
13	Ν	7.234	-0.0971	26	Ν	7.369	-0.3687

4.3.3.2 酸化ガリウムまたは酸化チタンによる光触媒反応

酸化ガリウム光触媒による反応は、よく調べられた光触媒、TiO₂上で起こる還元および 酸化反応と関連付けられるが、さらに他の新しい反応経路が考えられる。図 4.9a および図 4.9b は、バンドギャップが 4.8~5.0eV である光触媒 Ga₂O₃の波長 254 nm による光励起時 に起こる簡略化した反応機構を示す。酸化ガリウムに光照射すると、価電子帯の正孔によ って水が酸化されて OH ラジカルが生成し、同時に伝導帯に励起電子が生成する。フィプ ロニル構造に励起電子が結合した後、脱ハロゲン化が起こり、フッ化物イオンと塩化物イ オンが生成するが、・OH ラジカルは、電子密度が最も高い位置を攻撃する。そして光照射 と共に S-19(表 4.2)において脱スルホン化(硫酸イオン)が起こり、フィプロニル-デススルフ ィニル(III)が生成する(質量スペクトル結果、図 4.5; m/z = 389)。そしてアミノ官能基の N-18(7.90)でヒドロキシルアミン(HO-NH₂)を生じ、それは NO₃に酸化されるかまたはアンモ ニウムイオンに還元される。ピラゾール環の N-13(電子密度: 7.23、表 4.2)およびニトリル 基の N-26(電子密度:7.37、表 4.2)も OH ラジカルの潜在的な標的となる。

フィプロニルの励起状態は 1,3(FP)励起状態から酸化ガリウムの伝導帯への電子移動、 またはこの金属酸化物のバンドギャップ内の欠陥準位までの電子移動を受ける可能性があ る。それによって、Zhao らによって以前に報告された[34]TiO₂の存在下での染料の自己分 解と類似の方法で、水によって攻撃され、フィプロニルラジカルカチオン(FP)・⁺を形成する (反応 5、6)。

Photoreductive N₂ atmosphere

Photooxidative air O₂ atmosphere

図 4.9. 波長 254 nm の光照射によるフィプロニルの光酸化および光還元反応の模式図

窒素雰囲気条件での Ga₂O₃存在、非存在下の反応の違いを示す図 4.3a および図 4.3b の結 果は以下のように説明される。硫酸イオンは、脱ハロゲンおよび脱アミノ化反応と同様に、 触媒の存在下により多く生成する。硝酸イオンは、Ga₂O₃の存在下でのみ生成し、光励起に よる触媒の活性化に続き・OH ラジカルの生成がその反応に重要な役割を示す。酸化ガリウ ムが存在しない場合、NO₃イオンの生成は、基本的に無酸素状態および空気酸素状態(O₂の 存在)下では生成しなかった(図 4.3b と図 4.3d)。さらに、後の 2 つの図に示される脱スルホ ン化による硫酸イオン、脱ハロゲン化によるハロゲンイオンおよびアンモニウムイオン生 成の結果はまた、フィプロニルの一重項または三重項励起状態のホモリシス後に酸素およ び水分子の関与を示す。触媒の存在下での OH ラジカルの関与(図 4.3a と図 4.3c を比較)は、 Ga₂O₃/N₂系よりも Ga₂O₃/O₂系での硝酸塩イオン生成の程度が大きいことと、硫酸塩、フ ッ化物塩化物およびアンモニウムイオン収率が比較的多かった事によるものと考えられる。

比較した 4 つの異なる条件下で、フィプロニルの分解に関しての経路は単一ではなく、 一重項/三重項励起状態のホモリシス、ヘテロリシスおよび光イオン化、光化学的加水分解、 金属酸化物が存在する場合の光触媒過程などの種々の反応経路があると考えられる。

4.3.4 エイムズ試験による変異原性試験の結果

環境汚染物質の光分解過程では、生成した中間生成物または最終生成物が最初の汚染物 質と比較して毒性または突然変異誘発性を有していない、または低いことの確認が重要で あり必要である。しかし、光分解過程からの生成物の突然変異誘発活性に関する研究は少 ない。中間生成物が毒性も変異原性もないことを確認するために、本研究では、エイムズ 試験を用いて、S9mix(+S9mix)を含む場合と含まない場合(-S9mix)のTA-98およびTA-100株 を用いて殺虫剤フィプロニルの変異原性活性を評価した。フィプロニル(0.50 mM)の試験は、 アセトン(55%)と水(45%)の混合溶液中で行った。

フィプロニル殺虫剤の光分解から生じる中間生成物および生成物の変異原活性の結果 を図4.10に示す。0、3および24時間の各照射時間について、プレートあたり0、0.005、0.0125、 および0.025 µmolの添加量を、4つの棒で示す。各試験のバックグラウンドレベルは17~27 の復帰突然変異体の間で変化したが、同一の実験条件下で陽性対照の4-ニトロキノリン-N-オキシドおよびベンゾ [a] ピレンの添加量が増加するにつれて復帰突然変異コロニー の数が直線的に増加することを確認した。このことは、試験系の妥当性を示している。

他の試験では、コロニー選択を繰り返した結果、感度が向上してバックグラウンドレベルが低下した。TA-100株の-S9mixのバックグラウンド(図4.10c)は一般に約151のバックグラウンドレベルを示したので、突然変異誘発性試験結果はわずかに低かったが、これらの条件下で問題はない。

照射3時の後のTA-98株(-S9mix)のデータは、初期値18(図4.10a)の約2倍の復帰コロニー 数を示した。一般に20前後の細菌細胞コロニーの数の変動は、実験誤差であると考えられ る。TA-98株を用いた場合、バックグラウンドレベル(+S9mix)は24であった(図4.10b)。40の 復帰突然変異体コロニーの数は、この試験では比較的小さいとみなされる。しかし、その 数が100~200であれば、突然変異誘発性はある。

TA-100株の出発試薬の細胞毒性は、高い濃度で強いことが確認された。TA-98株の細菌 細胞コロニー(バックグラウンドレベルは18、図4.10a)は、照射前の初期サンプルの標準塩 基の照射時間の増加と共にわずかに増加した。10、25および50 μLの添加量にかかわらず、 光分解されたフィプロニル溶液の突然変異誘発活性は示されなかった。TA-100株を用いた 場合(図4.10d)、バックグラウンドレベル(+S9mix)は132であった。初期溶液の細菌細胞コロ ニーの数は、25 μL添加量の場合において、この値の付近であった。UV照射後の、コロニー 数は初期溶液中の数と比較して比較的低かった。コロニー数は照射時間の増加とともに 徐々に増加する傾向があった。しかし、照射した溶液は、比較的低い値を示した。したが って、比較的長い光照射時間の後でも、フィプロニルの光分解による中間生成物および生 成物の突然変異誘発活性はなかったものと考える。

88

図 4.10. β-Ga₂O₃ によるアセトン(55%)と水(45%)の混合溶液中のフィプロニル(0.50 mM)の 光分解溶液における TA-98 および TA-100 株の変異原活性。0、3 および 24 時間の各照射時 間について、0、0.005、0.0125 および 0.025µmol/プレートの投与量を示すために 4 本の棒を 示めした。点線は各背景の平均レベルを意味する。

4.4 結論

自然環境における自然光または人工光による殺虫剤フィプロニルの分解に関する以前の研究で 5 つ以上の光生成物または代謝物(化合物、I-V;図 4.1)に分解されることが示された[1-6、9-13]。これらは元の殺虫剤よりも毒性が高いと考えられている。本研究は、フィプロニルの光分解が、光照射(254 nm)により、光触媒の非存在下で光化学的に、光触媒(β-Ga₂O₃および TiO₂)の存在下で光触媒的に、窒素脱気および空気酸素条件下で達成されることを示した。脱スルホン化、脱フッ素化、脱塩素化および脱アミノ化反応が比較的短時間に進行することが、SO4²⁻、F-、Cl-、NO₃および NH4⁺イオンの生成によって確認された。条件によっては硝酸イオンが生成しないこともあった。フィプロニルの光化学的分解によるこれらのイオンの生成の程度は、還元条件(窒素脱気)と比較して酸化条件(空気平衡)下で大きかった。TiO₂光触媒が存在する還元条件下(TiO₂/N₂の場合、表 4.1 参照)では、イオンの生成の

程度は、フィプロニルの直接光分解と変わらなかった。対照的に Ga₂O₃ が存在する条件 (Ga₂O₃ / N₂の場合)では、TiO₂ / N₂に対して生成するイオンは、それぞれ脱スルホン化およ び脱フッ素化の場合、約 41%および 78%大きかった。比較すると、酸化条件下で、Ga₂O₃ および TiO₂ 光触媒による脱スルホン化、脱フッ素化および脱塩素化は、大きいバンドギャ ップの Ga₂O₃ 光触媒がフィプロニルの脱窒素(NO₃ および NH₄⁺イオンの生成)を除いて、約 2.5 倍優れていた。光触媒として酸化ガリウムは、UVB/UVA 紫外線によって電荷分離する TiO₂ とは異なり、その反応のために UVC 紫外線を必要とするが、分解反応に関してより良 い結果が得られた。

これまでに得られた知見に基づいて、分解は、フィプロニルの一重項/三重項励起状態からのホモリシス、ヘテロリシスおよび光イオン化ならびに光化学的加水分解を含むいくつかの複雑な経路によって起こり、光触媒的に酸化ガリウムまたは二酸化チタンのナノ粒子の存在によって光触媒分解が起こることを証明した。励起されたフィプロニル由来の一重項酸素の役割は、実験結果によってその影響を排除することはできなかった。質量スペクトルデータから、イソチオシアノン酸であると同定された m/z = 59 の中間生成物と共に、かなり短い時間(約 30 分)でフィプロニル - デススルフィニルおよびフィプロニルアミドが生成することが明らかになった。反応原材料のフィプロニルおよび中間生成物はエイムズ試験により、突然変異誘発活性が無いことを確認した。

参考文献

- Insecticides, United States Environmental Protection Agency; see http://www.epa.gov/caddis/ ssr_ins_int.html.
- [2] Kumar, R.; Singh, B., Bull. Environ. Contam. Toxicol., 2013, 90, 482
- [3] Moffat, A. S., Science, 1993, 261, 550
- [4] Fipronil technical fact sheet, National Pesticide Information Center, Oregon State University, Corvallis, OR, USA.
- [5] Saini, S.; Rani, M.; Kumari, B., Environ. Monit. Assess., 2014, 186, 69
- [6] Gunasekara, A. S.; Troung, T., Environmental Monitoring Branch, Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA, USA, March 5, 2007
- [7] Hamon, N.; Shaw, R.; Yang, H., Worldwide development of Fipronil insecticide, Proceedings Beltwide Cotton Conference, Nashville, TN, USA, 2, 1996, 759
- [8] Mohamed, F.; Senarathna, L.; Percy, A.; Abeyewardene, M.; Eaglesham, G.; Cheng, R.; Azher, S.; Hittarage, A. Dissanayake, W.; Sheriff, M. H. R., Davies, W.; Buckley, N.; Eddleston, M., J. Toxicol. Clin. Toxicol., 2004, 42, 955
- [9] Britt E. Erickson, Chem. Engin. News, American Chemical Society, vol. 91(29), 2013 July 22, 21
- [10] Chem. Engin. News, American Chemical Society, 91(34), 2013, August 26 20

- [11] Bobé, A.; Meallier, P.; Cooper, J. F.; Coste, C. M.; Agric. J., Food Chem. 1998, 46, 2834
- [12] Hainzl D.; Casida, J. E., Proc. Natl. Acad. Sci. USA, 1996, 93, 12764
- [13] Ngim, K. K.; Mabury, S. A.; Crosby, D. G.; J. Agric. Food Chem., 2000 48, 4661
- [14] Raveton, M.; Aajoud, A.; Willison, J. C.; Aouadi, H.; Tissut, M.; Ravanel, P., Environ. Sci. Technol., 2006, 40, 4151
- [15] https://www.chemistryworld.com/news/eu-to-ban-fipronil/6397.article
- [16] https://www.ft.com/content/4c4abfb0-59ba-11e8-bdb7-f6677d2e1ce8
- [17] Reynaud, S.; Worms, I. A. M.; Veyrenc, S.; Portier, J.; Maitre, A.; Miaud, C.; Raveton, M., Environ. Pollut. 2012, 161, 206
- [18] Mize, S. V.; Porter, S. D.; Demcheck, D. K.; USA, Environ. Pollut. 2008, 152, 491
- [19] Gill, K. K.; Dumka, V. K.; Environ. Toxicol. Pharmacol. 2013, 36, 1113
- [20] Misaki, K.; Hisamatsu, Y.; Suzuki, H.; Takamura-Enya, T., Mutagenesis, 2008, 23, 359
- [21] Takamura-Enya, T.; Kawanishi, M.; Yagi, T.; Hisamatsu, Y., Chem.- Asian J., 2007, 2, 1174
- [22] Takamura-Enya, T.; Suzuki, H.; Hisamatsu, Y., Mutagenesis, 2006, 21, 399
- [23] Jackson, D. A.; Mabury, S. A., Environ. Toxicol. Chem., 2009, 28, 1866
- [24] Pinna, M. V.; Pusino, A., Chemosphere, 2011, 82, 817
- [25] (a) Calza, P.; Pelizzetti, E.; Minero, C., J. Appl. Electrochem., 2005, 35, 665
 (b) Calza, P.; Minero, C.; Pelizzetti, E., Environ. Sci. Technol., 1997, 31, 2198
- [26] Zamy, C.; Mazellier, P.; Legube, B., Water Res., 2004, 38, 2305
- [27] Haley, M. F.; Yates, K., J. Org. Chem., 1987, 52, 1817
- [28] Peijnenburg, W. J. O. M.; de Beer, K. O. M.; de Haan, M. W. A.; den Hollander, H. A.; Stegeman, M. H. L.; Verboom, H., Environ. Sci. Technol., 1992, 26, 2116
- [29] Harir, M.; Frommberger, M.; Gaspar, A.; Martens, D.; Kettrup, A.; El Azzouzi, M.; Ph. Schmitt-Kopplin, Anal. Bioanal. Chem., 2007, 389, 1459
- [30] Méallier, P., Phototransformation of pesticides in aqueous solutions, in "The Handbook of Environmental Chemistry", P. Boule, Ed., vol. 2, Part L, chapter 9, pp 242-263, Springer-Verlag, Berlin, Heidelberg, Germany, 1999
- [31] Dulin, D.; Drossman, H.; Mill, T., Environ. Sci. Technol., 1986, 20, 72
- [32] Halladjai, S.; Boulkamh, A.; Richard, C., The Online J. Sci. Technol., 2012, 2(4) 24
- [33] Burrows, H. D.; Canle L, M.; Santaballa, J. A.; Steenken, S., J. Photochem. Photobiol. B:Biol., 2002, 67, 71
- [34] (a) Chen, C.; Zhao, W.; Lei, P.; Zhao, J.; Serpone, N., Chemistry Europ. J., 2004, 10, 1956
 (b) Zhao, W.; Chen, C.; Ma, W.; Zhao, J.; Wang, D.; Hidaka, H.; Serpone, N., Chemistry Europ. J., 2003, 9, 3292
 - (c) Chen, C.; Zhao, W.; Li, J.; Zhao, J.; Hidaka, H.; Serpone, N., Environ. Sci. Technol., 2002, 36,

3604

(d) Zhao, W.; Chen, C.; Li, X.; Zhao, J.; Hidaka, H.; Serpone, N., J. Phys. Chem. B, **2002**, *106*, 5022

(e) Chen, C.; Li, X.; Ma, W.; Zhao, J.; Hidaka, H.; Serpone, N., J. Phys. Chem. B, 2002, 106, 318

(f) Zhang, T.; Oyama, T.; Horikoshi, S.; Hidaka, H.; Zhao, J.; Serpone, N., Solar Energy Mater. Solar Cells, **2002**, *73*, 287

(g) Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N., New J. Chem., 2000, 24, 93

(h) Liu, G.; Li, X. Z.; Zhao, J.; Hidaka, H.; Serpone, N., Environ. Sci. Technol., 2000, 34, 3982

(i) Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N., J. Phys. Chem. B, 1998, 102, 5845

第5章 水/有機混合溶媒中でのフィプロニルの光脱フッ素反応

5.1 研究背景および目的

前章で述べてあるようにフィプロニルの光分解に関する実験結果から、N2脱気(不活性 雰囲気)および空気酸素状態(O2)でフィプロニルは、無触媒系では光化学的に水溶液中でも 部分的であるが分解し、バンドギャップの大きなβ-Ga2O3(ca. 4.8 eV)およびTiO2の存在下で 光触媒的に分解が行われた。しかしながら、他の物質と比較して、疎水性フィプロニルの 脱フッ素化は高いものではなかった[1]。フィプロニルの脱フッ素化反応の改善は、触媒の 存在下で生成されたOHラジカルによるフィプロニルへの攻撃に起因する空気酸素条件下 で起こった。これは、ヒドロキシル化を介してフィプロニルを疎水性化合物から親水性化 合物に変換し、水相中での溶解および触媒表面への吸着を促進したためである。水溶媒中 の光照射0時間における質量スペクトル測定は、459および461に質量ピークを示し、110よ り低いm/zでいくつかのピークを示した。フィプロニルはm/z=437と、2つの光生成物m/z= 455(フィプロニル-アミド)および389(フィプロニル-デススルフィニル)(図5.1A参照)の可溶 化したフィプロニル中間生成物の存在を確認した。UVC照射後、可能性のある5つの生成物 に起因するm/z=231に質量ピークが観察された(図5.1B)。他の質量ピーク(m/z=215および 201)が生じた。照射の24時間後のm/z=59に強い質量ピークはイソチオシアナート酸による ものであった。

本研究では、フィプロニルのGa₂O₃光触媒および光化学分解が、水/有機混合溶媒を用 いて促進され得るかどうかを検討した。混合溶媒は疎水性のフィプロニルの溶解を増加さ せ、光触媒への吸着を促進する。触媒への吸着は効率的な還元および酸化反応が触媒表面 で起こるために必要である[2-10]。さらに、このような有機溶媒は、光照射されたGa₂O₃光 触媒の存在で犠牲電子供与剤(正孔捕捉剤[11、12])として作用する。加えて、これらの有機 溶媒は、触媒表面の還元反応をさらに促進し、水性媒体中で起こるものと比較して、脱フ ッ素化および脱塩素化プロセスの収率を向上させるはずである。以上のような目的のため に実験を行った。

93

図 5.1. UVC 光(254 nm)照射下、水性媒中でのフィプロニル殺虫剤の Ga₂O₃ 光触媒的および光化学的分解による中間生成物。(A)フィプロニルの光生成物、(B) m / z = 231 の中間生成物。

5.2 実験方法

5.2.1 試薬

殺虫剤フィプロニルは、トロントリサーチケミカル社(純度 98.0%)の物を使用した。β-酸化ガリウム(β-Ga₂O₃)、エタノール(EtOH)、メタノール(MeOH)、テトラヒドロフラン(THF)、 1,4-ジオキサン(Dioxane)およびエチレングリコール(EG)は和光純薬工業より購入した。

5.2.2 光触媒による分解反応

フィプロニルの水への溶解性は極めて低い(水中での溶解度:pH 5.0 で 0.0024 gL⁻¹;pH 9 で 0.0022 gL⁻¹;メタノール中での溶解度、137.5 gL⁻¹[13])ので、各種有機溶媒を用いて基質 を溶解した。フィプロニル 0.0437 gL⁻¹を含む有機溶媒 EtOH、MeOH、THF、ジオキサンお よび EG を種々の割合(有機溶媒含量は 10、25 および 50 体積%)で水と混合しフィプロニル の水溶液(不溶部分を含めた濃度は 0.10 mM)を調製した。

分解実験は以下のように行った。100 mLのフィプロニル懸濁液および必要に応じて β-Ga₂O₃を加えた密閉した 115mLの石英円筒形光反応容器に、2 つの低圧水銀ランプ(東芝ラ イティングアンドテクノロジー社、GL20-A 滅菌ランプ)を用いて光照射を行った。不活性 雰囲気下での実験のため、光照射の前に、反応液を窒素ガスで 30 分間脱気した。酸化雰囲 気条件の場合は懸濁液を空気で飽和した。懸濁液中の Ga₂O₃の添加量は(0.50 g L⁻¹)である。 生成物の分析は、遠心分離の後、Advantec の 0.2μm フィルターを用いた濾過よって触媒を 除去した後に行った。

5.2.3 反応生成物の分析

光照射に伴うフィプロニル中の芳香族部分の変化は、Jasco V-570 分光光度計を用いて 分析した。フッ化物、塩化物、硝酸塩および硫酸塩の陰イオンの定量分析は、TSK Gel Super IC-AZ カラム(内径 4.6 mm×15 cm)を使用して Tosoh Ion Chromatograph Model IC-2001 によっ て行った。溶離液は、1.1 mM の Na₂CO₃ と 7.5 mM の NaHCO₃ との混合溶液を用い、流速 は 0.8 mL min⁻¹である。カラムの温度は 40°Cに維持され、伝導度検出器を用いた。フッ化 物イオンの量は、フッ化ナトリウムの標準溶液で得られた検量線を用いて決定した。陽イ オンについては、標準カラム(IC Y-521)を用いた JASCO HPLC クロマトグラフでアンモニ ウムイオンの量を分析した。溶離液は 4 mM の HNO₃ 溶液である。流速は 1.0 mL min⁻¹であ り、検出器は約 40°Cに維持されたカラムで操作される伝導度検出器である。フィプロニル から反応で無機化されたフッ素、塩素、硫黄および窒素官能基の収率は、完全分解におけ る理論値に基づいた。

さらに陰イオンモード(ESI-/TOF-MS)でのエレクトロスプレー飛行時間型質量分析を用いて、生成した中間生成物を同定した。エレクトロスプレーイオン化のための針電圧は-2000 V であった。検出電圧は 2500 V であり、試料の気化温度は 50 ℃、オリフィス 1 の気 化温度は 80 ℃、 リングレンズ電圧は-15 V、オリフィス 1 は-40 V、オリフィス 2 は-7 V である。

5.3 結果と考察

5.3.1 水/混合溶媒に使用する有機溶媒の選択

疎水性フィプロニルを溶解するために使用する、有機溶媒は次の条件を満たさなければ ならない。(i)光源の波長 254 nm の紫外光吸収がない。(ii)無機イオンの分析に影響を与え る窒素または硫黄を分子構造中に含有しない。(iii)フッ化物の測定を妨害しない。(iv)水と の混和性がある。これらの条件により、アセトン、テトラクロロエチレン、キシレンおよ びベンゼンは除外した。ギ酸、酢酸、クロロホルム、アセトニトリル、ジメチルスルホキ シドおよび四塩化炭素も、HPLC分析の支障があるため除外した。上記条件を満たした EtOH、 MeOH、THF、ジオキサンおよび EG を、フィプロニルの溶解のために選択した。 表 5.1. 有機溶媒 EtOH、MeOH、THF、ジオキサンおよび EG が 10、25 および 50 体積%の 水混合溶媒中のフィプロニルの溶解度。

溶媒	有機溶媒濃度(vol. %)	溶解度(mmol L ⁻¹)		
	50	0.090		
EtOH	25	0.051		
	10	0.005		
	50	0.086		
MeOH	25	0.031		
	10	0.010		
THF	50	0.086		
	25	0.039		
	10	0.010		
	50	0.100		
Dioxane	25	0.087		
	10	0.011		
	50	0.059		
EG	25	0.015		
	10	0.008		

表 5.1 のデータは純エタノール中で完全に溶解したフィプロニルの吸光度から求めた 10、25 および 50 体積%の水混合溶媒におけるフィプロニルの溶解度比を示す。50 体積% の水/ジオキサン混合溶媒中での溶解度は 0.10 mM で最も大きく、その溶解度の順序は、濃 度にかかわらずおおよそジオキサン> EtOH > THF~MeOH > EG であった。

5.3.2 水/エタノール混合溶媒を用いた反応による無機イオン生成

水/エタノール混合溶媒かつ不活性窒素雰囲気下、254 nm 光照射の3 時間後のフィプロ ニルの分解により生成したフッ化物、塩化物、スルホン酸塩、硝酸塩およびアンモニウム の各イオンの収率(%)と混合溶媒中のエタノール含有量との関係を図 5.2a に示す。比較の ために行った空気飽和中(Ga₂O₃ / O₂)の収率を図 5.2b に示す。

不活性雰囲気でのフィプロニルの脱スルホン収率は、エタノール濃度が増加するにつれ て増加し、水性エタノール媒体が約40体積%で最大収率(約55%)を達成し(図5.2a)、50体 積%を超えると急激に減少した。純粋なエタノール中では、脱スルホン化収率は10%未満 に低下した。同一の条件下で、塩化物イオンの生成収率は、エタノール濃度の増加に伴っ て増加し、純エタノール中で最大収率~70%に達した。対照的に、フッ化物イオンの生成 は、エタノールの添加により、最初は微増し、その後、添加量がさらに増加すると多少減 少した。脱フッ素収率は、純水中および純アルコール中で約20%であった。フィプロニル の窒素官能基は、主にアンモニア(NH4⁺)に変換され、その収率はエタノール濃度と共に増 加した。

図 5.2.還元性窒素雰囲気下(a)および空気平衡下(b)での、フィプロニル(0.1 mM)の光触媒無機 化反応収率のエタノール濃度依存性

一方、空気平衡状態(図 5.2b)下では、硝酸イオンを除く全ての無機イオンの収率は、不 活性窒素雰囲気下よりも相対的に低かった。NH4⁺イオンの生成は、エタノール含量が高く なるにつれて徐々に増加し、NO3⁻の収率は純粋な水溶媒での結果が最も多く、エタノール の添加で微量に減少した。脱スルホン化の程度は、純粋な水溶媒中で最大であったが、エ タノール濃度の増加とともに減少した。純粋なエタノール中で SO4²⁻の収率は 3%未満であ った。CI-イオンの生成は 50 体積%の混合溶媒中で最大の収率を示した。50 体積%のエタノ ールでは、脱フッ素化の程度は比較的一定であり、さらにエタノール含量が高くなるとわ ずかに増加した。

不活性窒素条件(図 5.2a)において、CIおよび NH4⁺イオンの生成はエタノール濃度とと もに増加し、塩化物イオン(またフッ化物イオン)は光還元によって生成した。エタノールは Ga₂O₃ 光触媒の存在下で犠牲電子供与体として作用した。エタノール量の増加に伴ってフ ッ化物イオンの収率が相対的にほとんど変化しないのは、TiO₂ のように触媒表面へのフッ 化物の吸着によるものと考えられる[14]。不活性窒素条件下での NH4⁺イオンの供給源は、 アミノ基である可能性が最も高く、ピラゾール環の分解で 2 つの窒素が、次いでフィプロ ニルでニトリル官能基がその生成に用いられる。しかしながら、このような不活性条件は、 図 5.2 結果によって実証されるように、硝酸イオンを生成するのには不利である。

図 5.3 は、窒素脱気した(a)Ga₂O₃ / N₂および(b)N₂雰囲気中と空気酸素条件(c)Ga₂O₃ / O₂および(d)空気雰囲気条件での、光照射の 3 時間後に光触媒および光化学反応で生成したフッ化物、塩化物、硫酸、硝酸およびアンモニウムの各イオンの相対量を比較したものである。

97

図 5.3. 種々の水/有機混合溶媒(10、25 および 50 体積%)中でのフィプロニルの UVC 照射 3 時間後のフッ化物、塩化物、硫酸塩、硝酸塩ならびにアンモニウムの各イオンの収率。(a)酸 化ガリウム窒素雰囲気系、(b)窒素雰囲気、(c)酸化ガリウム空気酸素雰囲気、(d)空気酸素雰囲 気。混合溶媒は EtOH、MeOH、THF、ジオキサンおよび EG。白のヒストグラム(ロ)、スラッ シュのヒストグラム(20)および格子のヒストグラム(20)は、それぞれ、混合溶媒中の有機溶媒 の 10、25 および 50 体積%用いた場合の収率を指す。図中の黒い双方向矢印は、溶媒以外が 同様の条件下での 3 時間の UVC 照射後の収率%を表す。

光触媒反応系(Ga₂O₃ / N₂、Ga₂O₃ / O₂)および光化学反応系(N₂および空気 O₂)の実験結果 を比較すると、フッ化物イオンの生成率はGa₂O₃ / N₂および光化学 N₂系において、最大収 率はそれぞれ 32%および 40%であった。両方の場合において、脱フッ素化の程度は、水媒 体中よりも混合媒体中でかなり大きかった。不活性条件下で、フィプロニルの光触媒およ び光化学脱フッ素反応は、有機溶媒の濃度が 10 から 50 体積%に増加するにつれて増加し、 THF 混合溶媒(50 体積%)中での脱フッ素反応(収率約 40%)が最も良好であった。Ga₂O₃ / O₂ 光触媒および無触媒 O₂の場合、収率は水性媒体よりも混合溶媒中では比較的低くかった (図 5.3)。フィプロニルは 1,4-ジオキサンよりも THF 媒体中での溶解度が低い(表 5.1)が、フ ッ化物の生成は、前の水性/THF 媒体でより効果的であった。EG 溶媒中での F⁻の低い収率 は、フィプロニルの低い溶解度のためである。全体として、収率は、混合媒体中の有機溶 媒の濃度 50 体積%までの増加と共に、増加する傾向があった。

不活性窒素条件下(Ga₂O₃ / N₂)では、混合溶媒中の Cl イオンの生成(図 5.3)も大きくなる 傾向にあり、最も脱塩素反応が進行した条件であった。その次に光触媒が存在しない条件 (無触媒/N₂)の収率が続いた。触媒が存在しない N₂ 系は水溶媒系よりも 40%大きかった。 さらに、有機溶媒の種類にかかわらず、空気酸素(Ga₂O₃ / O₂ および O₂)条件下よりも不活性 (Ga₂O₃ / N₂ および N₂)条件下での収率がかなり大きかった。エタノール混合溶媒中の塩化物 イオンの生成は、他の混合溶媒中よりも顕著であった。EtOH 以外の場合、有機溶媒の量が 増加するにつれて、小さな変動で塩化物の収率が増加する傾向があった。また、不活性条 件での混合媒体中の脱塩素化は、水溶媒中よりもかなり高かったが、空気酸素条件下では、 混合溶媒中のフィプロニルの脱塩素の程度は、水性媒体に対してかなり低くなった。

SO4²⁻イオンの生成率は、不活性(N₂)条件での光化学反応よりも光触媒性 Ga₂O₃/N₂系(図 3-3-3)で大きかった。純粋な水溶媒中のフィプロニルの脱スルホン化と比較して、硫酸イオ ンの生成は、少なくとも Ga₂O₃/N₂と混合溶媒媒体中ではやや大きく、不活性(N₂)および空 気酸素条件では、その生成が多かった。対照的に、Ga₂O₃/O₂を用いたフィプロニルの光触 媒脱スルホン化は、水溶媒中よりも混合媒体中でかなり低かった。

硝酸塩イオンの生成は、すべての条件においてほとんど認められなかった(図 5.3)。フィ プロニル中の窒素の大部分は NH4⁺イオンに変換され、収率は Ga₂O₃/N₂系において特に高 かった。不活性窒素雰囲気では、混合溶媒中のフィプロニル中の窒素原子の NH4⁺イオンへ の光触媒および光化学的脱窒化反応は、水性媒体中よりも比較的高かったが、空気平衡条 件では、光触媒および光化学反応による脱窒素反応の両方が水溶媒系より少なかった。

99

5.3.3 水/THF 混合溶媒中(還元性雰囲気)での光反応生成物の質量分析

脱フッ素反応は 50 体積%の水/THF 混合溶液を用いた場合、最も顕著であったので、負 イオンモードで飛行時間型質量分析(TOF-MS / ESI)により中間生成物を調べた。

不活性窒素条件(Ga₂O₃/N₂)下、フィプロニルの酸化ガリウム光触媒分解からの0、0.5 お よび3時間光照射後の生成物の質量スペクトルを図5.4 に示す。比較のために無触媒不活 性窒素雰囲気下(光照射3時間)での質量スペクトルを示す。光照射0時には、溶液中に、フ ィプロニルアミドもフィプロニル-デススルフィニルも観察されなかった。質量ピークm/z =437が親ピークであるフィプロニルであると推定される。有意なピークがm/z=435、235、 219、218、62 および60 で認められた。218 の質量ピークは、二重荷電フィプロニルに起因 する。219 の質量ピークは、光照射0時だけでなく照射3時間までで最も強い質量ピーク であった。219 シグナルは中間生成物Iに帰属される。235 の質量ピークは中間生成物Iの 水酸化された生成物(中間生成物II)である(図5.5参照)。光照射0.5時間では、m/z=219 お よび212 に2 つの主要なピークが観察され、後者のピークは中間生成物 III に起因する。3 時間の光照射後、219 および212 の質量シグナルと、m/zが200 未満の質量ピークが認めら れた。溶媒カチオンラジカルも生成されており[15、16]、分解反応に関与していたと考えら れる。

 Ga_2O_3 / O_2 系および空気雰囲気(O_2)下での 50 体積%の水/THF 混合溶媒中のフィプロニ ルの 3 時間の 254 nm UVC 照射後に観測された質量スペクトルを図 5.6 に示す。光触媒お よび光化学的酸化条件の両方で観察された最も強い質量ピークは、m/z=219 であった。ま た、光触媒反応系では他に質量ピークが m/z=329、235、131、103 および 62 で中間生成物 が認められた。一方、光化学反応系では、2 つの質量ピーク m/z=235 および 62 が検出さ れた。明らかに、空気酸素条件下では、光触媒および光化学的分解反応における中間生成 物の数は不活性窒素雰囲気下の場合よりも少なかった。

図 5.4. 0、0.5、3 時間光照射後の Ga₂O₃の存在、還元(窒素)条件での生成物の TOF-MS スペクトル。実験条件:低圧水銀ランプ:光強度、10.4 mW cm⁻²。Ga₂O₃の 0.050 g。初期濃度、0.10 mM、50 体積%の水/THF 混合溶媒。同じ還元条件 Ga₂O₃の非存在下での 3 時間照射後の TOF-MS スペクトルも示す。

図 5.5. 窒素間雰囲気下での水/THF 混合溶媒中での UVC 照射によるフィプロニルの Ga₂O₃ 光触媒および光化学的分解によって生成した中間生成物。

図 5.6. Ga₂O₃の存在下または非存在下での酸化的空気酸素条件下での3時間 UVC 照射後の生成物の TOF-MS スペクトル。実験条件:低圧水銀ランプ:光強度、10.4 mW cm⁻²。Ga₂O₃: 0.050g。初期濃度、水/THF 混合溶媒(50 体積%)中 0.10 mM

5.3.4 反応機構

フィプロニルのGa2O3光触媒および光化学分解反応の模式図を図5.7に示す。

図 5.7.フィプロニルの光触媒的および光化学的分解反応の説明図

フィプロニル試薬(R)は、窒素雰囲気下および空気平衡雰囲気下で、光化学反応(1)~(4) で表されるように、光触媒無しで直接光分解(ホモリシス、ヘテロリシス、および光イオン 化[17]が起こる。しかし、フィプロニルの直接光分解プロセスによる無機化(フッ化物、塩 化物、硫酸塩、アンモニウムおよび硝酸塩各イオンの生成)は困難である。

R–X	+	hv	\rightarrow	R*	\rightarrow	R • +	X•	Homolysis	(1)
					\rightarrow	R^+ +	X^{-}	Heterolysis	(2)
					\rightarrow	R- +	X^+	Heterolysis	(3)
					\rightarrow	$R - X^{+ \bullet}$	+ e ⁻	Photoionization	(4)

空気酸素条件下では、酸素分子が式(1)~(4)の反応と相互作用して、様々なオキシおよびペルオキシ種を生成する。水から直接 OH ラジカルを生成するには波長 185 nm の光照射を必要とするため波長 254 nm の光照射では OH ラジカルを生成しない[18]。

しかしながら、Ga₂O₃光触媒条件では、波長 254nm 光照射で光触媒の電荷分離が起こり、 その結果、次の反応(5)~(15)が起こる。

$Ga_2O_3 + hv \rightarrow h^+ + e^-$	Activation	(5)
$R-X + e^- \rightarrow R^+ + X^-$	Dehalogenation	(6)
$R-H + h^+ \rightarrow R^- + H^+$	Deprotonation	(7)
$R + e^- \rightarrow R^-$	Electron scavenging	(8)
$O_2 + e^- \rightarrow O_2^{-}$	Formation of superoxide radica	ıls (9)
$R + h^+ \rightarrow R^{+}$	Hole scavenging	(10)
$H_2O + h^+ \rightarrow H^+ + \bullet OH$	Generation of •OH radicals	(11)
$R + \bullet OH \rightarrow R^{+\bullet} + OH^-$	Oxidation	(12)
$R-H + \bullet OH \rightarrow R-OH + \bullet H$	Hydroxylation	(13)
$S + h^+ \rightarrow S^{+ \bullet}$	Solvent as hole scavenger	(14)
$S + \bullet OH \rightarrow S^{+\bullet} + H_2O$	Oxidation of solvent by •OH	(15)

Ga₂O₃光触媒の表面に還元性の励起電子(e⁻)および酸化性の正孔(h⁺)が生成した後、還元および酸化の両方の反応が起こる。

不活性窒素雰囲気で、フィプロニル構造への電子の直接結合反応と競合する酸素分子がない場合、脱フッ素化および脱塩素化が進行する。フィプロニルは価電子帯の正孔(h⁺)によって酸化されるか、または水の酸化によって生成した OH ラジカルによって攻撃され、様々な中間生成物になる。さらに、溶媒ラジカルカチオン(式(14)、(15))もまた、フィプロニル構造の分解に寄与する可能性がある。空気平衡状態では、伝導帯の励起電子と酸素分子の相互作用によりスーパーオキシドラジカルアニオン(式(9))を生じる。特に脱フッ素化および脱塩素化が式(9)のためにある程度妨げられるが、完全には阻害されない。

5.4 結論

固体触媒反応においては基質の触媒表面への吸着が必要条件である。純粋な水溶媒中で は、光触媒および疎水性フィプロニル基質の両方が不溶性であるため、光触媒表面への基 質の吸着が著しく妨げられる。しかし本研究における実験の結果、脱フッ素化、脱塩素化、 脱スルホン化および脱窒による部分分解が起こることが判明した。疎水性フィプロニルが 水/有機混合溶媒(10、25 および 50 体積%)に溶解し、触媒への吸着が促進された。さらに水 溶媒中で起こる光触媒分解や光化学分解と比較して、水/有機混合溶媒中でのフィプロニル の Ga₂O₃ 光触媒および光化学脱フッ素化、脱塩素化、脱スルホン化および脱窒等の収率が 特に不活性窒素雰囲気下で増大した。

参考文献

- [1] Hidaka, H.; Tsukamoto, T.; Mitsutsuka, Y.; Takamura, T.; Serpone, N., New J. Chem., 2014, 38, 3939
- [2] Zhao, J.; Wu, T.; Wu, K.; Oikawa, K.; Hidaka, H.; Serpone, N., Environ. Sci. Technol., 1998, 32, 2394
- [3] Horikoshi, S.; Minami, D.; Ito, S.; Sakai, H.; Kitamoto, D.; Abe, M.; Serpone, N., J. Photochem. Photobiol. A: Chem., 2011, 217, 141
- [4] Hidaka, H.; Honjo, H.; Horikoshi, S.; Serpone, N., Catal. Commun., 2006, 7, 331
- [5] Serpone, N.; Martin, J.; Horikoshi, S.; Hidaka, H.; J. Photochem. Photobiol. A: Chem., 2005, 170, 51
- [6] Horikoshi, S.; Hojo, F.; Hidaka, H.; Serpone, N., Environ. Sci. Technol. 2004, 38, 2198
- [7] Hidaka, H.; Honjou, H.; Horikoshi, S.; Serpone, N., New J. Chem., 2003, 27, 1371
- [8] G. Liu, X.Z. Li, J. Zhao, H. Hidaka, N. Serpone, Environ. Sci. Technol., 2000, 34, 3982
- [9] Zhang, F.; Zhao, J.; Shen, T.; Hidaka, H.; Pelizzetti, E.; N. Serpone, Appl. Catal. B: Environ., 1998, 15, 147
- [10] Taghizadech, A.; Lawrence, M. F.; Serpone, N.; Proc. Electrochemical Society Meeting, Montreal, Canada, May 1997.
- [11] Tan, T.; Beydoun, D.; Amal, R., J. Photochem. Photobiol. A: Chem., 2003, 159, 273
- [12] Guzman, F.; Chuang, S. S. C.; Yang, C., Ind. Eng. Chem. Res., 2013, 52, 61
- [13] EPA Report on "New Chemical Fipronil in/on Corn RACs. Evaluation of residue data and analytical methods"; see http://www.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-129121_7-Jun-94_39.pdf (accessed January 2015)
- [14] Minero, C.; Pelizzetti, E.; Terzian, R.; Serpone, N., Langmuir, 1994, 10, 692
- [15] Yamazaki, S.; Yamabe, N.; Nagano, S.; Fukuda, A., J. Photochem. Photobiol. A: Chem., 2007, 185, 150
- [16] Mehrvar, M.; Anderson, W. A.; Moo-Young, M., Intern. J. Photoenergy, 2000, 2, 67
- [17] Burrows, H. D.; Canle, M.; Santaballa, J. A.; Steenken, S., J. Photochem. Photobiol. B: Biol., 2002, 67, 71
- [18] Gonzalez, M. G.; Oliveros, E.; Wörner, M.; Braun, A. M., J. Photochem. Photobiol. C: Photochem. Rev., 2004, 5, 225

第6章 農薬フルベンジアミドの脱フッ素反応

6.1 研究背景および目的

含フッ素農薬フルベンジアミド(ベンゼンジカルボアミドアミド)は、野菜、茶、果物などに被害をあたえる蛾に対して高い殺虫活性があり、アジア、南北アメリカ、およびアフリカの多くの国で一般的に使用されている。この殺虫剤を散布することにより害虫による悪影響が無くなるため、様々な果物(例:モモ、リンゴ、スイカ、洋ナシ、柿)、様々な野菜(例:大豆、アーモンド、ピーナッツ、綿、レタス、トマト、ニンジン、キャベツ、タマネギとじゃがいも)を含む 200 以上の作物の収穫量が増加する。残留農薬の安全性評価において、この殺虫剤の1日当たりの許容摂取量(ADI)は、米国では 0.024 mg kg⁻¹day⁻¹、オーストラリアでは 0.010 mg kg⁻¹day⁻¹、そして残留農薬に関する FAO / WHO 合同会議(JMPR)の規格によると 0.020 mg kg⁻¹day⁻¹ である。米国環境保護庁は近年、フルベンジアミドがさまざまな環境中の水生動物など様々な生物に非常に有害なため、その使用を禁止した[1、2]。

Flubendiamide

水性溶媒中で人工光照射を受けた複合金属酸化物[3]と、様々な pH の土壌条件下で太陽光 線照射を受けたフルベンジアミドの光分解に関する研究が報告されている[4]。Fenoll とそ の共同研究者らは、人工光(300-460 nm)照射下で、二成分系酸化物(ZnO と TiO₂)と三成分系 酸化物(Zn₂TiO₄ と Zn TiO₃)の水性懸濁液中でのフルベンジアミドの光分解を検討した。彼ら は、電子受容体(Na₂S₂O₈)と共に ZnO および TiO₂を添加すると、光分解的に他の金属酸化物 と比較して、この殺虫剤の分解速度が高くなることを示した。また、分解過程においてデ スヨードフルベンジミド中間生成物を同定した[3]。

Das と Mukherjee[4]は、土壌条件下でフルベンジアミドをペトリ皿上および土壌上で薄膜 として UV 光と太陽光を照射した。フルベンジアミドの残留物は、紫外線下で半減期 t_{1/2}= 7.0 と 9.1 日、太陽光下でそれぞれ 12.0 と 19.1 日で消失した。しかし、異なる pH 条件下の 水性媒体中では、フルベンジアミド残留物が 250 日を超えて水中に持続し、約半減期が約 251 から 301 日であり、pH 4.0(t_{1/2} = 251 days)の水中で分解がより速く起こり、pH 9.2(t_{1/2} = 274 days)および pH 7.0(t_{1/2} = 301 days)が続いた。

活性汚泥処理は通常、微生物によって環境汚染物質を無害化浄化するが、フッ素化合物

の強い C-F 結合を切断することはできない。環境汚染物質を分解するための光触媒技術は、 フッ素化合物の分解に向けて積極的に研究されてきた。光触媒が TiO₂の場合、C-F 結合の 開裂はかなり困難であることが知られている。一方、C-F 結合を持つ環境汚染物質である ペルフルオロオクタン酸(PFOA)が、不活性窒素雰囲気で、波長 254 nm の光照射で酸化ガ リウム(β-Ga₂O₃)の存在下で分解することが報告され、他の有機化合物の分解に対しても酸 化チタンより効果的であることなどが報告されている[5-8]。この方法がより PFOA の分解 に対してより有効であることが実証された。しかしながら、TiO₂(アナターゼ;バンドギャ ップ 3.2 eV;吸収端、387 nm)よりも大きい(4.8~5.0 eV)バンドギャップをもつ Ga₂O₃は、 還元的(伝導帯電子)および酸化的(価電子帯正孔)電荷担体を生成するためにより短い波長 の光(例えば 254 nm)を必要とする。

本研究は、種々の農薬無害化処理に関する我々の系統的研究の例として、フルベンジア ミドの Ga2O3 光触媒および光化学分解反応を検討した。含フッ素農薬(殺虫剤)フルベンジア ミドの光分解および光触媒分解を UVC 光および窒素雰囲気系、UVC 光および空気酸素雰 囲気系、UVC 光および光触媒酸化ガリウムおよび窒素雰囲気系、UVC 光および光触媒酸 化ガリウムおよび酸素雰囲気系で行った。各条件下で照射時間ごとの中間生成物および無 機イオンを分析し、分解機構を考察した。また、光触媒分解反応より生成した分解中間生 成物の毒性(発がん性)を確認するためにエイムズ試験を行い、その毒性の有無を調査した。 さらに、各条件での分解反応およびその機構を検討した。

6.2 実験方法

6.2.1 試薬

ネオニコチノイド系殺虫剤フルベンジアミド(N-[2-メチル-4-[1-(トリフルオロメチル)-1,2,2,2-テトラフルオロエチル]フェニル]-N'-[1,1-ジメチル-2-(メチルスルホニル)エチル]-3-ヨード-1,2-ベンゼンジカルボアミド)、β-酸化ガリウム(β-Ga₂O₃)は和光純薬から購入した。他のすべての化学物質は試薬級のものを用いた。

6.2.2 光分解および分析

6.2.2.1 光反応実験

水溶媒中に殺虫剤フルベンジアミド(68.2 mg L⁻¹)を加えたが、不溶性のため、その大部分 は溶解しなかった。そのためすべて溶解した場合の濃度が 0.10 mM になるように調整した。 115 mL の石英円筒形光反応器に 100 mL のフルベンジアミド懸濁液を加え、必要に応じて 50 mg の β -Ga₂O₃ を加えた。続いて、懸濁液を低圧水銀灯(東芝ライティング&テクノロジ ー社、GL 20-A 滅菌ランプ、長さ約 60 cm、波長 254 nm での光強度は 10.4 mW cm⁻²(Topcon Corp. UVR-2))で照射した。還元型実験では、UVC 照射の前に、反応液を窒素ガスで、30 分間脱気した。酸素雰囲気実験では溶液に反応の全時間空気をバブリングした。懸濁液中
に $Ga_2O_3 \ge 0.50 g L^{-1}$ 加えた。光照射後、反応液を遠心分離し、アドバンテック $0.2 \mu m$ フィルターを通して触媒を濾過し除去した。

6.2.2.2 不溶成分の分析

反応物と不溶性中間生成物を分析するため、同じ体積のメタノールを光照射後の溶液に 添加し、不溶性物質を混合溶媒に溶解させ、濃度が 0.05 mM(MeOH、50 体積%)の溶液を調 整し、紫外可視分光光度計および TOF-MS によって分析した。

6.2.3 生成物の分析

フッ化物、ヨウ化物、硝酸塩および硫酸塩アニオンの定量分析は分析カラムとして TSK Gel Super IC-AZ カラム(内径 4.6 mm x 15 cm)を用いてイオンクロマトグラフィーTosoh Ion Chromatograph Model IC-2001 により行った。溶離液(流速は 0.8 mL / min)は、3.2 mM の Na₂CO₃ と 1.9 mM の NaHCO₃ の混合水溶液である。フッ化物イオンの量は、Merck の NaF の標準溶液による検量線を使用して定量した。NH₄⁺イオンの量を JASCO HPLC で分析し た。標準カラムは陽イオン分析用の IC Y-521 であり、溶離液(流速は 1.0 mL / min)は 4mM の HNO₃ 水溶液であった。

6.2.4 エイムズ試験による変異原性試験

エイムズ変異原性試験は、変異原因の可能性がある化学物質を検出するための方法であ る。試験は、サルモネラチフィムリウム TA-98 株(フレームシフト型)、TA-100 株(塩基対 置換型)および YG-1024 株(アミノ部分の分析)のを用いて、脱ハロゲン化および分解後の初 期基質および中間生成物(55%アセトンおよび 45%水の混合溶液中で試薬濃度 0.50 mM)に ついて実施した[9-11]。試料を 37℃で 10~11 時間激しく振とうすることによって株を独立 して培養し、固定濃度の各株を含有する懸濁溶液を調製した。分散液(0.10 mL)を 37℃で 20 分間、事前培養した後、2 mL アリコートの軟寒天溶液を最小グルコースプレートに添加し、 続いてこれを 37℃で 48 時間以上培養した。培養後、復帰突然変異体のコロニー数をコロ ニーカウンターで評価した。S9 は、9,000 rpm での遠心分離後の均質化されたラット肝臓か らなる上清を意味する。この画分中に様々な薬物代謝酵素を集めた。酵素群は補酵素を必 要とするので、ラット肝臓 S9 を試験一定分量に添加した(S9mix と表示)。S9 を追加しとき には+S9mix と表示し、追加していないものは-S9mix と表記した。一般に、ニトロ基を有 する化合物または DNA に直接結合した化合物(例えば、エポキシド)は S9 混合物なしで陽 性を示すが、アミノまたは芳香族基を有する化合物は通常 S9 混合物の添加により活性化さ れる。

6.2.5 量子化学計算

フルベンジアミド中の各原子のフロンティア電子密度および部分電荷を、Gaussian 09 ソ フトウェアの hf / 3-31g *の設定を用いて計算および最適化した。各原子の電子密度は、分 子内で最も高い電子密度を持つ位置を OH ラジカルが攻撃する可能性を示唆している。各 原子について計算された電荷は、どの原子が金属酸化物の表面に吸着する可能性が最も高 いかを推測するのに役立つ。

6.3 結果と考察

6.3.1 反応進行に伴うフルベンジアミド内の芳香環の消失

Ga₂O₃によるフルベンジアミドの光分解を次の4つの条件下で行った。(1) Ga₂O₃を含ま ない不活性N₂雰囲気下、(2) Ga₂O₃を含まない空気酸素雰囲気下、(3) Ga₂O₃の存在および 不活性N₂雰囲気、(4) Ga₂O₃の存在下、空気酸素雰囲気下である。活性酸素種および価電子 帯の正孔および伝導帯の励起電子による分解の時間経過を、水溶媒およびメタノール/水混 合溶媒の両方において調べた。以下の反応は、この殺虫剤を分解するために4つの条件下 で起こる反応をまとめた[12-22]。

<u>N₂ system (1)</u>

Flubendiamide	+	$hv_{254\ nm}$	-	heterolysis, homolysis, photoionization	(1)
<u>Air system (2)</u>					
Flubendiamide	+	hv_{254nm}	-	heterolysis, homolysis, photoionization	(1)

O_2	+	$hv_{254\ nm}$	-	¹ O ₂	(2)
Flubendiamide	+	$^{1}O_{2}$	-	oxidative intermediates	(3)

Ga₂O₃ /N₂ system (3)

Flubendiamide	+	$hv_{254 nm}$	-	heterolysis, homolysis, photoionization	(1)
Ga ₂ O ₃	+	$hv_{254 nm}$	-	$e^- + h^+$	(2)
Flubendiamide	+	e	-	reduced intermediates	(3)
Flubendiamide	+	h^+	-	oxidized intermediates	(4)
H_2O	+	h^+	-	• OH + H^+	(5)
Flubendiamide	+	•OH	-	hydroxylated intermediates	(6)

Ga2O3 /air system (4)

Flubendiamide	+	$hv_{254 \text{ nm}}$	-	heterolysis, homolysis, photoionization	(1)
O ₂	+	$hv_{254 nm}$	-	$^{1}O_{2}$	(2)

Flubendiamide	+	1 O ₂	→ oxidized intermediates	(3)
Ga ₂ O ₃	+	$hv_{254\ nm}$	\rightarrow e ⁻ + h ⁺	(4)
Flubendiamide	+	h^+	→ oxidized intermediates	(5)
O ₂	+	e	→ • O ₂ -	(6)
Flubendiamide	+	e	→ reduced intermediates	(7)
H ₂ O	+	h^+	\rightarrow • OH + H ⁺	(8)
•O ₂ -	+	H^{+}	→ •OOH	(9)
Flubendiamide	+	• OH	→ hydroxylated intermediates	(10)
Flubendiamide	+	• OOH	Peroxidized intermediates	(11)

条件(1)でフルベンジアミドは、ヘテロリシスまたはホモリシス開裂および光イオン化のい ずれかの反応で分解する。条件(2)では、上記に加えて、活性酸素種¹O₂が生成され化合物 がこの活性酸素主で酸化分解される。条件(3)Ga₂O₃/N₂系で UVC 照射により、伝導帯上で の励起電子および価電子帯で正孔が生成し、それらはフルベンジアミドの還元的および酸 化的分解を起こす。また、水性媒体中で価電子帯の正孔が OH ラジカルを生成する。それ は構造中に存在する芳香環をヒドロキシル化して基質を酸化する。条件(4)では、スーパー オキサドラジカルアニオン(・O₂)を生成し、フルベンジアミドを酸化することができるヒ ドロペルオキシラジカル・OOH を生成する。

4 つの条件で UVC 照射を受けたフルベンジアミドの UV 吸収スペクトルを図 6.1 に示 す。フルベンジアミドのメタノール溶液中での極大ピークは約 231 nm に生じた。しかしフ ルベンジアミド基質は水にほとんど不溶であるため、光照射 0 時間で、水溶媒で吸収スペ クトルは観測されなかった。しかしながら、照射時間が増加するにつれて少なくとも条件 (1) - (3)において、2 つの吸収帯が 200 および 230 nm に現れ始めた。これは、光生成した OH ラジカルによるフルベンジアミド構造中の芳香環のヒドロキシル化の結果として、不 溶性基質の可溶化に起因すると考えられる。条件(4)の場合、単一の吸収帯が最大 200 nm 付 近に現れた。芳香環の吸収帯は通常 200~250 nm の範囲で観察されるので、この吸収は芳 香環由来ではない。

図 6.2 は、4 つの条件下でのこの化合物を光分解したときに観測された、各照射時間にお ける 231 nm での吸光度を示す。吸光度は、触媒の有無にかかわらず、不活性 N₂条件下で 照射時間の増加と共に直線的に増加した。72 時間後、無触媒/N₂系の吸光度(0.58)は、 Ga₂O₃/N₂系の吸光度(0.47)よりも大きかった。同様に触媒が無い、無触媒/空気 O₂(0.22)系の 吸光度は Ga₂O₃/ air O₂系(0.03)の吸光度より高かった。

110

図 6.1 酸化ガリウム光触媒による空気酸素または窒素雰囲気でのフルベンジアミド溶液 (0.1 mM)の分解に伴う吸光度変化

図 6.2 空気酸素または窒素雰囲気中のフルベンジアミド溶液の無触媒(a)または酸化ガリウム触媒(b)反応に伴う吸光度(波長 231 nm)の変化

興味深いことに、空気酸素雰囲気条件下かつ触媒の存在下および非存在下では、吸光度は 増加し、その後、光照射すると吸光度が減少した。さらに、無触媒/空気 O₂系の最大吸光度 は、全ての照射時間において Ga₂O₃/空気 O₂系の場合よりも大きかった。分解反応は、基質 の可溶化に続いて、芳香環の開環が起こり、フルベンジアミドの芳香族性が失われると推 測される。条件(2)と比較して Ga₂O₃/空気 O₂条件(4)での 231 nm におけるより吸光度が比 較的低いのは、分解反応に影響を及ぼし得るいくつかの活性酸素種の存在により、速い可 溶化および分解が起こったと考えられる。

実際に分解が起こることを確認するために、光照射後にメタノール(50 体積%メタノール /水混合溶媒、基質濃度 0.05 mM)を加え、基質を完全に可溶化させた状態で分析を行った。 72 時間まで UVC 照射を行った。その時のフルベンジアミドの時間に対する吸収スペクト ル変化を図 6.3 に示す。

メタノール/水混合溶媒での、4 つの条件の下でフルベンジアミドの光分解の結果から、 最初に観察された 231 nm の吸収帯(図 6.4 参照)は、照射時間とともに減少した。酸素雰囲 気条件下で、殺虫剤の分解は、条件(2)無触媒/空気 O₂ および条件(4)Ga₂O₃/空気の場合の反 応速度は 0 次であった。72 時間の UVC 照射後に後者は約 90 %の分解を達成し、前者につ いては 75 %の分解を達成した。しかしながら、不活性条件下では、分解の程度は著しく少 なく、条件(1)無触媒/N₂ および条件(3)Ga₂O₃/N₂ 条件の両方について約 43 %であった。条件 (3)および(4)と無触媒条件(1)および(2)との比較では、明らかに、Ga₂O₃ 光分解反応が無触媒 反応よりも全体的に速いことを示している。さらに、触媒の存在下および無触媒、不活性 窒素雰囲気下で起こる反応を比較すると、72 時間の照射後の分解の程度は同じであっても、 Ga₂O₃ 系はより速い分解速度を示した。

図 6.3 酸化ガリウム光触媒による空気酸素または窒素雰囲気でのフルベンジアミド溶液 (0.1 mM)の分解後に、等量のエタノールを加えて基質が可溶化した溶液(0.05 mM; エタノー ル 50 体積%)の吸光度変化

図 6.4 波長 231 nm での空気酸素または窒素雰囲気中のフルベンジアミド溶液の無触媒 (a)または酸化ガリウム触媒(b)による分解後に等量のエタノールを加えて基質が可溶化した 溶液(0.05 mM; エタノール 50 体積%)での吸光度の変化

6.3.2 フルベンジアミドの無機化

フルベンジアミドの光分解により生成したフッ化物、硫酸塩、硝酸塩、ヨウ化物、およびアンモニウムイオンの時間に対する生成量を図 6.5 に、72 時間の UVC 照射後の各無機 イオンの収率を表 6.1 に示す。

図 6.5 種々の条件におけるフッ化物イオン(a)、硫酸イオン(b)、硝酸イオン(c)、ヨウ化物 イオン(d)およびアンモニウムイオンの生成

表 6.1 フルベンジアミド溶液の種々の条件での光分解による無機イオンの生成率

	条	件	収率						
HNY O CF3 S CF3	光触媒	雰囲気	F⁻ (%)	SO4 ²⁻ (%)	I⁻ (%)	NO ₃ ⁻ (%)	NH4 ⁺ (%)		
	Ga ₂ O ₃	N ₂	12	9	22	0	26		
	Ga ₂ O ₃	Air	37	88	0	14	86		
	無	N ₂	15	9	39	0	11		
	無	Air	28	14	10	1	49		

不活性窒素条件下 Ga2O3 が存在しない状態でもフッ化物イオンが生成したことから、直接 UVC 照射によって C-F 結合の開裂が光分解的に引き起こされた可能性があると推測され る。無触媒窒素系では、最終的な脱フッ素化収率は、約15%であった。無触媒空気系にお けるフッ化物イオンの収率は、72時間のUVC照射の終了時における無触媒/N2系に対する よりもほぼ2倍大きかった(約28%)。可溶化とベンゼン環の開環の両方が一重項酸素種に よって付随して引き起こされたと考えられる。触媒の存在下では、Ga2O3/N2 系におけるフ ッ化物の収率は12%であり、これは無触媒/N2系の場合とほぼ同じであった。それゆえ、OH ラジカル、価電子帯の正孔および伝導帯の励起電子による脱フッ素化は効果的ではないと 思われる。条件(3)を用いたとき、水溶性フッ素化物質の脱フッ素化は、不活性窒素雰囲気 下でも効果的である。しかしながら、フルベンジアミドは水に不溶であるので、この基質 と親水性触媒の表面との接触は、不活性条件下で生成された・OH ラジカルによる可溶化が 不十分であった。Ga2O3/空気系の場合、脱フッ素化収率は 37%であり、Ga2O3/N2系の場合 よりもほぼ3倍大きかった。空気酸素雰囲気下では、分子状酸素による電子捕捉を介して スーパーオキシドラジカルアニオンを生成し、最終的に活性酸素種•OOH を生成すること で、可溶化と脱フッ素化の両方が促進されたと考えられる。溶存酸素は励起電子を消費す るので、Ga2O3/空気系は他の3つの系と比較して予想される大きな脱フッ素化反応を示さ なかった。それにもかかわらず、脱フッ素化収率は、N2≒Ga2O3/N2<空気<Ga2O3/空気の順 で増加した。

フルベンジアミドの Ga₂O₃ 光分解において生成される硫酸イオンの量と比較すると、特に空気酸素条件下で、UVC 照射のみによって光分解的に少量の硫酸イオンが生成した。 Ga₂O₃/N₂系における硫酸イオンの収率は、無触媒/N₂系におけるものとほぼ同じであった。 スルホニル基を硫酸イオンに変換するのに、OH ラジカルおよび価電子帯の正孔が重要で はないことは明らかである。一方、72時間のUVC 照射後の他の3つの系での収率(条件1、 2 および3についてそれぞれ9、14 および9%)と比較して、Ga2O3/空気系が最も高い硫酸 イオン(約88%)収率を示した。スーパーオキシドラジカルアニオンから誘導された OOH ラジカルが硫酸イオンの発生に大部分を占めていると推論される。72時間後の最終収率は、 N2=Ga2O3/N2<空気<Ga2O3/空気の順に増加した。我々の以前の研究[23]で同一の条件下で 行われたフィプロニル(スルホニル基も含む)の光分解では、Ga2O3/空気系におけるフィプ ロニルの硫酸塩収率は24時間の UVC 照射後に93%であった。フルベンジアミドの硫酸イ オン収率は、24時間後にわずか57%であった。この違いは、おそらく触媒表面上へのスル ホニル基の配向によるものである。フィプロニル中の硫黄原子に隣接するトリフルオロメ チル部分は負に荷電しているので容易に触媒表面に向かって配向したので、硫黄原子は酸 化をもたらす・OOH ラジカルによって容易に攻撃される。一方、フルベンジアミド中の硫 黄原子は R-SO2-Me として存在し、隣接基は電子求引性基ではない。

照射時間と共に生成したヨウ化物の最大収率を図 6.5d に示す。Ga₂O₃/空気系は、ヨウ化 物イオンが間接的にヨウ素酸に変換された可能性があると考えられ、全照射期間を通して ヨウ化物イオンは生成しなかった。254 nm の光照射が C-I 結合を切断する可能性があるこ とは一般的に知られている[24]。C-I 結合の開裂の程度は、空気酸素を含む両方の条件で高 かった。いずれにせよ、72 時間後のフルベンジアミドの光分解中に生成したヨウ化物の収 率は、Ga₂O₃/空気(0%)<空気(10%)<Ga₂O₃/N₂ (22%)<N₂ (39%)の順序で増加した。

フルベンジアミド中のアミド基は、アンモニウムイオンまたは硝酸イオンのいずれかに 変換される。無触媒窒素系および Ga₂O₃/N₂ 系の両方の系で硝酸イオンは生成しなかった。 72 時間の UVC 光照射の後でも、このフルベンジアミド中のアミド基から硝酸イオンを生 成することができた活性酸素種はなかった。Ga₂O₃/空気系で 72 時間後に硝酸イオンは最大 14%であった。一方、アンモニウムイオンに関しては、無触媒/N₂ 系の収率は約 10%であっ た。したがって、UVC と H₂O の相互作用は、このフルベンジアミド中のアミド結合からの アンモニウムイオンの生成の要因となり得る。無触媒/空気系についてのアンモニウム収率 は 48%であった。一重項酸素とアミド結合との間の反応ではアンモニウムイオンを生成し 得なかったので、酸化分解はアンモニウムイオンを生成するのに重要であった。Ga₂O₃/N₂ 系では、UVC 照射で 72 時間後のアンモニウムイオン収率は 26%であった。•OH ラジカル、 価電子帯の正孔、伝導帯の電子は、フルベンジアミドの可溶化において一重項酸素よりも アンモニウムイオンの生成に有効ではなかった。Ga₂O₃/空気系での 72 時間後の NH₄⁺の収 率は 85%であった。

6.3.3 量子計算

フルベンジアミド構造中の各原子の部分電荷および電子密度を、水溶媒中で最適化された hf/3-21g を有する GAUSIAN-09 ソフトウェア[25]を用いて計算した。結果を表 6.2 および 6.3 に示す。各原子の番号を図 6.6 に示す。電子密度の推測的最適立体図を図 6.7 に示す。

部分電荷は、どの原子が Ga₂O₃ 触媒の表面に吸着しやすいかを推論するために用いられる。 従って、負に帯電した原子(F、N、およびO)は、ヒドロキシル化金属酸化物表面に向かっ て配向していると予想される。特に、最大の負に荷電した原子は、アミド基の2個のN原 子(N-24 およびN-40)と、付随する酸素 O-27 および O-38 ならびにスルホニル基中の O-55 と O-56 の 2 個の酸素である。これらの原子は、表面ヒドロキシル基の部分の正電荷を帯び た水素と相互作用すると考えられる。

図 6.6. 量子計算の結果を示すために番号付けしたフルベンジアミド構造

図 6.7. 量子計算の結果から推測される電荷を色で示したフルベンジアミドの構造式(赤は 負、青は正電荷を帯びている)

1	С	-0.17936	16	F	-0.37563	31	С	-0.23969	46	Н	0.225608
2	С	-0.13695	17	F	-0.37229	32	Н	0.299247	47	С	-0.55919
3	С	-0.22893	18	F	-0.37756	33	С	-0.43973	48	Н	0.227834
4	С	-0.23342	19	F	-0.37071	34	С	-0.17876	49	Н	0.218062
5	С	0.331659	20	С	-0.58638	35	Н	0.293466	50	Н	0.247074
6	С	-0.07044	21	Н	0.237291	36	Н	0.298739	51	С	-0.85515
7	Н	0.296331	22	Н	0.235766	37	С	0.878806	52	Н	0.357143
8	Н	0.297942	23	Н	0.240608	38	0	-0.64677	53	Н	0.330782
9	Н	0.314352	24	Ν	-1.03285	39	Ι	0.317396	54	S	1.694971
10	С	-0.02914	25	Н	0.404233	40	Ν	-0.8718	55	0	-0.75973
11	С	1.260598	26	С	0.92593	41	Н	0.38567	56	0	-0.74652
12	С	1.261092	27	0	-0.64706	42	С	0.062914	57	С	-0.98809
13	F	-0.37248	28	С	-0.14805	43	С	-0.58699	58	Н	0.304371
14	F	-0.37489	29	С	-0.19419	44	Н	0.241315	59	Н	0.302065
15	F	-0.37639	30	С	-0.06655	45	Н	0.239886	60	Н	0.314547

表 6.2. 水溶液中のフルベンジアミドの電荷

表 6.3. 水溶液中のフルベンジアミドの電子密度

1	С	6.17935	16	F	9.37562	31	С	6.23970	46	Н	0.77439
2	С	6.13695	17	F	9.37228	32	Н	0.70076	47	С	6.55919
3	С	6.22892	18	F	9.37757	33	С	6.43972	48	Н	0.77217
4	С	6.23341	19	F	9.37072	34	С	6.17878	49	Н	0.78194
5	С	5.66834	20	С	6.58639	35	Н	0.70653	50	Н	0.75293
6	С	6.07043	21	Н	0.76271	36	Н	0.70126	51	С	6.85515
7	Н	0.70367	22	Н	0.76424	37	С	5.12120	52	Н	0.64286
8	Н	0.70206	23	Н	0.75939	38	0	8.64678	53	Н	0.66922
9	Н	0.68565	24	Ν	8.03285	39	Ι	52.68258	54	S	14.30503
10	С	6.02913	25	Н	0.59577	40	N	7.87181	55	0	8.75972
11	С	4.73941	26	С	5.07408	41	Н	0.61433	56	0	8.74652
12	С	4.73891	27	0	8.64707	42	С	5.93708	57	С	6.98810
13	F	9.37248	28	С	6.14803	43	С	6.58700	58	Н	0.69563
14	F	9.37490	29	С	6.19418	44	Н	0.75869	59	Н	0.69794
15	F	9.37639	30	С	6.06655	45	Н	0.760114	60	Н	0.68545

最も高い電子密度を有するこれらの官能基または原子は、活性酸素種(ROS)および一重項酸素によって攻撃される可能性が最も高い。金属酸化物触媒の表面上に生成されたラジカル種は非常に短命であり(例えば、水性媒体中の・OHラジカルについてはマイクロ秒領域)、 それらが金属酸化物表面上にない基質と相互作用することはない。したがって、¹O₂、・OH または・OOHラジカルなどの寿命の短い求電子種は、固体の表面に最も近く高い電子密度 を示すものと相互作用する。無触媒/空気系では、一重項酸素が殺虫剤の酸化を引き起こす 主な酸化剤である。Ga₂O₃/空気系では、NH₄⁺イオンの収率は、6時間のUVC照射までは硫酸 イオンのそれよりも大きかった。

6.3.4 エイムズ試験による変異原性試験の結果

環境汚染物質処理のための光分解反応において、結果として生じる中間生成物および最 終生成物が初期汚染物質基質と違い毒性または変異原性がないことを確認することが不可 欠である。これまで光分解反応からの生成物の変異原性活性に関する研究は、ほとんどな い。したがって、本研究では、中間生成物が無毒かつ変異原性がないことを検証するため にエイムズ試験を実施した。殺虫剤フルベンジアミドの突然変異誘発活性を、3つの株 TA-98、TA-100 および YG-1024 を用いて評価した。特に、フルベンジアミド(0.50 mM)につい ての分析は、アセトン(55%)と水(45%)の混合溶液中で行われた。1、2、3、6 および 24 時 間の UVC 照射後のフルベンジアミドの光分解の中間生成物について行われたエイムズ試 験の結果を図 6.8 に報告する。各分析のバックグラウンドレベルは 27~30 復帰体の間で変 化したが、同一の実験条件下での復帰体コロニーの数は陽性対照4-ニトロキノリン-N -オキシドおよびベンゾ[α]ピレンの濃度の増加と共に直線的に増加することを確認した。 これらの知見は、分析の妥当性を示している。分析の妥当性はまた、使用した陽性対照、 4-ニトロキノリン-N-オキシドを用いて得られた復帰突然変異コロニーの数の用量依存 性によっても確認された。他の分析では、コロニー選択を繰り返すと、感度が向上してバ ックグラウンドレベルが低下した。TA-100株の-S9mixのバックグラウンドは一般に約104 のバックグラウンドレベルを示すので(図 6.8c)、変異原性試験データはわずかに低かった が、これらの条件下では問題はない。TA-98 株を用いた場合、バックグラウンドレベル(+ S9mix)は 30 であった(図 6.8b)。この試験では、復帰突然変異コロニー数 40 は比較的少な いと見なされる。しかし、数が100から200であれば、変異原性活性がないと認識される。 TA-98 および TA-100 株についての変異原活性もまた、β-Ga₂O₃ を用いたフルベンジアミド の光分解溶液(0.50 mM)について評価した(図 6.8)。0、1、2、3、6 および 24 時間の各照射 時間について、プレート当たり 0、0.005、0.0125 および 0.025 mmol/plate の添加量を示すた めに4本の棒グラフで示した。

図 6.8. Ga₂O₃ 粒子による混合溶液またはアセトン(55%)と水(45%)中のフルベンジアミド (0.50 mM)の光分解溶液中の TA-98、TA-100 および TA-1024 株の変異原活性。0.1、2、3、6 お よび 24 時間の各照射時間について、プレート当たり 0、0.005、0.0125 および 0.025 µmol の 負荷を示すために 4 本の棒が示されている。点線は各背景の平均レベルを意味する。

TA-100株の出発試薬の細胞毒性が高濃度でより強いことが確認された。TA-98株の細菌細胞コロニー(バックグラウンドレベル、27;図6.8a)は、照射前の初期サンプルの標準に対して照射時間の増加と共にわずかに増加した。10、25および50mLの添加量にかかわらず、 光分解フルベンジアミド溶液の変異原活性は示されなかった。TA-100株を用いた場合、バックグラウンドレベル(+S9mix)は100であった(図6.8d)。最初の溶液に対する細菌細胞コ ロニーの数は、25 mLの添加量の場合に、この値の付近に現れた。様々なUV照射時間の 後、コロニーの数は最初の溶液での数と比較して少なかった。コロニーの数は照射時間の 増加と共に徐々に増加する傾向があった。しかしながら、照射された溶液は依然として比 較的低い値を示した。YG-1024 株は、アミノ基を含む物質の変異原性に対する高い感受性 を示している。YG-1024(+S9 混合物)についての結果もまた陰性であった(図 6.8 e および 6.8 f)。その結果、比較的長いUVC照射時間の後でも、フルベンジアミドの光分解からの中 間生成物および生成物の変異原活性がないことを確認した。

6.4 結論

含フッ素農薬(殺虫剤)として広く使用されている難分解性フルベンジアミドは、UVC 光 照射した Ga₂O₃の存在下で容易に分解した。比較のために、Ga₂O₃の存在下および無触媒で 空気(酸素)雰囲気および窒素ガス雰囲気でも光触媒実験を行った。空気雰囲気 Ga₂O₃によ る無機イオンの収率は、Г(0%) < NO₃⁻(14%) < F⁻(37%) < NH₄⁺(86%) ~ SO₄²⁻(88%)の順 で増加した。脱ヨウ素化は、Ga₂O₃/N₂系で 22.0%、Ga₂O₃/空気系で 0%となった。構造中 の二つの芳香族基の開環反応はかなり急速に進行した。ヒドロキシル化芳香族中間生成物 は Ga₂O₃/N₂系で生成した。フルベンジアミドの吸着挙動を、量子計算で得られた部分電荷 によって評価し、活性酸素種(例えば、OH ラジカルおよび一重項酸素)の攻撃位置を推測し た。さらに光分解生成物は変異原活性がないことが判明した。

参考文献

- [1] https://www.epa.gov/ingredients-used-pesticide-products/flubendiamide-notice-intent-canceland-other-supporting
- [2] Erickson, B, Chem. & Engin. News, 2016, March, 7
- [3] Fenoll, J; Vela, N.; Garrido, I.; Navarro, G.; Perez-Lucas, G.; Navarro, S., Photochem. Photobiol., 2015, 91, 1088
- [4] Das, S. K.; Mukherjee, I., Bull. Environ. Contam. Toxicol., 2011, 87, 292
- [5] Zhao, B.; Lu, M.; Zhou, L., J. Environ. Sci. (China), 2012, 24, 774
- [6] Seshadri, H.; Sasidha, P.; Sinha P. K., J. Environ. Waste Managem., 2013, 11, 244
- [7] Hou, Y.; Wang, X.; Wu, L.; Ding, Z.; Fu, X., Environ. Sci. Technol., 2006, 40, 5799
- [8] Li, X.; Zhen, X.; Meng, S.; Xian, J.; Shao, Y.; Fu, X.; Li, D., Environ. Sci. Technol. 2013, 47, 9911
- [9] Misaki, K.; Hisamatsu, Y.; Suzuki, H.; Takamura-Enya, T., Mutagenesis, 2008, 23, 339
- [10] Takamura-Enya, T.; Kawanishi M.; Yagi, T.; Hisamatsu, Y., Chem.-Asian J., 2007, 2, 1174
- [11] Takamura-Enya, T.; Suzuki, H.; Hisamatsu, Y., Mutagenesis, 2006, 21, 399
- [12] Borrow, H. D.; Canle, M. L.; Santaballa, J. A.; Steeken, S., J. Photochem. Photobiol. B, 2002,

67, 71

- [13] Samsonoc, Y. N., J. Atmos. Chem., 2007, 56, 127
- [14] Chen, C.; Zhao, W.; Lei P.; Zhao, J.; Serpone, N., Chem.-Eur. J., 2004, 10, 1956
- [15] Zhao, W.; Chen, C.; Ma, W.; Zhao, J.; Wang, D.; Hidaka, H.; Serpone, N., Chem.-Eur. J. 2003, 9, 3292
- [16] Chen, C.; Zhao, W.; Li, J.; Zhao, J.; Hidaka, H.; Serpone, N., Environ. Sci. Technol., 2002, 36, 3604
- [17] Zhao, W.; Chen, C.; Li, X.; Zhao, J.; Hidaka, H.; Serpone, N., J. Phys. Chem. B, 2002, 106, 5022
- [18] Chen, C.; Li, X.; Ma, W.; Zhao, J.; Hidaka, H.; Serpone N., J. Phys. Chem. B, 2002, 106, 318
- [19] Zhang, T.; Oyama, T.; Horikoshi, S.; Hidaka, H.; Zhao, J.; Serpone, N., Solar Energy Mater. Solar Cells, 2002, 73, 287
- [20] Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N., New J. Chem., 2000, 24, 93
- [21] Liu, G.; Li, X. Z.; Zhao, J.; Hidaka, H.; Serpone, N., Environ. Sci. Technol., 2000, 34, 3982
- [22] Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N., J. Phys. Chem. B, 1998, 102, 5845
- [23] Hidaka, H.; Tsukamoto, T.; Mitsutsuka, Y.; Takamura, T.; Serpone, N., New J. Chem., 2014, 38, 3939
- [24] Saiz-Lopez, A.; Saunders, R. W.; Joseph, D. M.; Ashworth S. H.; Plane J. M. C., Atmos. Chem. Phys., 2004, 4, 1443
- [25] Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

第7章 Ga₂O₃での分解機構との比較のための TiO₂を用いた医薬品 で汚染される環境水の浄化法

7.1.研究背景および目的

近年、世界のいたるところで下水処理場、地表および地下水中に、抗炎症薬、鎮痛薬、ベタブロック剤、脂質調整剤、抗生物質、抗てんかん薬、エストロゲン、抗癌剤および避妊薬などの医薬品の残留物が検出されている[1-4]。従来の下水処理場はこれらの医薬品を完全に分解除去することができず、それらが環境中に排出され、水環境に蓄積する。そのため、このような有害有機物の効果的な分解処理技術が求められている。

高度酸化技術(AOP)は、微生物による生分解が困難な化合物の分解または無機化のための最 も一般的な方法の1つである。TiO2は、光触媒作用があり、安価で、無毒であり、化学処理および 光腐食に対して安定であるn型半導体である。触媒作用によって反応性が高いヒドロキシルラジカ ル(・OH)が生成され、それが化合物の分解に効果があることが知られている[5-9]。廃水処理にお けるこのような光触媒の利用の目的は、環境残留性有機物質の分解および最終的な無機化作用 による浄化作用である。これまでの研究でTiO2およびO3による光触媒分解は水処理反応を向上 させること、またその最適な条件調べられた[10-19]。また光エネルギーのコスト削減の対策として 太陽光を利用する方法も検討された。

本研究では、前章までで得られた農薬などの還元的な無機化分解の結果での分解反応機構の 違いや類似点を明確化するために従来から用いられている酸化チタン光触媒および酸化条件で の実験を行たった。分解対象物は親水性化合物である抗炎症薬および鎮痛薬ジクロフェナクおよ びクロフィブリン酸(コレステロール低下薬クロフィブラートの代謝産物)、疎水性化合物であるエチ ニルエストラジオール(経口避妊薬)とインドメタシン(発熱、痛み、こわばり、腫れを軽減するための 処方薬として一般的に使用される非ステロイド系抗炎症薬)などの医薬品の光触媒酸化分解およ び無機化について検討した。実験室規模で光源として水銀灯を使用して、オゾンの存在下、TiO2 懸濁液中で分解を行った。さらに屋外での環境汚染水の浄化の実用化を目指し、稼働に必要な 電力を同じ太陽エネルギーでまかなう処理プラントを試作し、大量の分解実験を行った[20-24]。

7.2. 実験方法

7.2.1 試薬

使用した光触媒 TiO₂は、Degussa P-25(表面積約 53 m² g⁻¹;平均直径、約 30 nm;組成;アナタ ーゼ 87 %およびルチル 13 %)であった。試薬等級のジクロフェナクナトリウムおよびクロフィブリン 酸は東京化成工業株式会社から購入し、エチニルエストラジオールは和光純薬から購入した。オ ゾンは放電による発生装置(EcoDesign ED-OG-S1)を用いて純酸素ガスから調製した。他のすべ ての化学物質は試薬特級を使用した。

7.2.2 光分解実験

全有機炭素(TOC)分析は島津 TOC-5000A 分析装置で行った。イオン種のクロマトグラフ分析 は、Shodex IC カラムを備えた JASCO イオンクロマトグラフで行った。室内実験では、Pyrex ガラス 容器に基質溶液(500 mL)および TiO2を添加し、続いて 75 W の Toshiba SHL-100 UVQ 2 高圧水 銀ランプ(360 nm の波長の光強度 3 mW cm⁻²)で光照射した。太陽光実験では、反応装置、ポン プ、スターラー、オゾン発生器、光強度計、そしてコンピューターの電力はすべて太陽電池 Sharp NE70H で供給した。

反応の違いを調べるために、溶液を以下の条件で実験を行った。酸化チタンの添加量は 1 g /L である。(i)UV/TiO₂/O₂ 系;二酸化チタンを基質の水溶液中に懸濁させ、紫外線照射前に酸素 ガスで飽和した。(ii)UV/O₃系;光照射中、溶液を O₃ガスでバブリングした。(iii)UV/TiO₂/O₃系;O₃ ガスは、一定のUV光(または太陽光)照射下 TiO₂ 懸濁液中にバブリングによって供給した。また それぞれの実験前に、分散液を最初に約 10 分間超音波処理して均一な分散液にした後、スター ラーで撹拌して、均一な反応混合物を調整した。

全ての実験において、分解反応の間、懸濁液を一定の時間間隔でサンプル溶液を採取した。 芳香環の分解率は、JASCO V-570、紫外可視分光計を用いて芳香族部分の UV 吸収を測定す ることによって分析した。無機化については、溶液中の TOC(全有機炭素)を測定した。これらの分 析は、遠心分離後、0.2µm PTFE フィルターを通して TiO2 粒子を濾過した後に行った。水中のオ ゾン濃度は、ヨードメトリー分析によって測定した。オゾン濃度は室内実験では 15 ppm、太陽実験 では6ppmであり、全体を通してO3の流れを一定に保った。

7.3. 結果と考察

7.3.1 親水性医薬品の分解

ジクロフェナクの場合:水溶液中のジクロフェナクの酸化分解は、上記の3つの異なる(i-iii)手順によって行われた。方法(I)ではジクロフェナク濃度の減少は2時間の光照射後に約43%であったが、図7.1aより方法(ii)および(iii)におけるオゾンは基質を急速に分解した。最低の反応速度は、UV/TiO₂/O₂系で現れた(方法(i))。そのためオゾンの存在は反応速度を著しく高めた。TOCの変化を図7.1bに示す。ジクロフェナクは、UV/TiO₂/O₂系による2時間の照射後にTOCが36%減少し無機化したが、UV/O₃系(方法ii)はTOCをより減少させた(2時間後に約42%の収率)。対照的に、UV/TiO₂/O₃法(iii)は、2時間の照射期間後に、ジクロフェナク医薬のほぼ完全な無機化(約92%)を達成した。その結果、UV/TiO₂/O₃系の条件が最も効果的であった。

ジクロフェナクの CO₂ への無機化は、様々な中間生成物の生成を経て進行した。塩化物の生成は溶液中の CI-イオン濃度を分析し確認した。図 7.2a に示すように、CI-イオン濃度は UV/O3 および UV/TiO₂/O3 法を使用すると急激に増加した。実験結果は、脱塩素反応が塩素化芳香族物質の分解および無機化反応における最初の過程であることを示唆している。塩化物イオンの生成は、芳香環の開環により開始されたジクロフェナクの分解と一致した。図 7.2bおよび図 7.2cに示すように、ジクロフェナク中の有機窒素が硝酸イオンおよびアンモニウムイオンの両方を生成することは、塩化物の生成よりも幾分遅かった。結果から紫外光、オゾンおよび TiO₂ 触媒でジクロフェナクを最も分解できることが確認された。また、以上の結果を下表にまとめた。

表 7.1 バイアル瓶によるジクロフェナクの各分析結果

条	条件						公砚玄
光触媒	雰囲気	Cl⁻(%)	NO ₃ ⁻ (%)	NH4 ⁺ (%)	C/C ₀ (%)	TOC(全有機炭素)(%)	刀件平
TiO ₂	O ₃	100	20	53	0	8	92
無	O ₃	100	15	48	0	52	48
TiO ₂	O ₂	21	0	8	57	65	35

図 7.1 光触媒分解によるジクロフェナク(初濃度 1.0 mM)の(a)濃度変化および(b)TOC 濃度の変化((a)における一次反応速度定数はそれぞれ $k = 0.24 \pm 0.01 \text{ min}^{-1}$ (UV/TiO₂/O₃)、0.069 ± 0.005 min⁻¹ (UV/O₃)および 0.0047 ± 0.0002 min⁻¹ (UV/TiO₂/O₂)。(b)においては $k = 0.024 \text{ min}^{-1}$ (UV/TiO₂/O₃)、0.036 min⁻¹ (UV/O₃; incomplete TOC decay)および 0.000046 min⁻¹ (UV/TiO₂/O₂))。

図 7.2 種々の条件によるジクロフェナク(1 mM)の分解によって生成した無機イオン(a)Cl⁻、 (b)NH₄⁺および(c)NO₃⁻((a)における一次反応速度定数はそれぞれ $k = 0.14 \pm 0.04$ min⁻¹ (UV/TiO₂/O₃)、0.056±0.008 min⁻¹ (UV/O₃)および 0.0021±0.0001 min⁻¹ (UV/TiO₂/O₂、(b)の場合 k = 0.053 min⁻¹ (UV/TiO₂/O₃)、0.067 min⁻¹ (UV/O₃)および 0.24 min⁻¹ (UV/TiO₂/O₂)、(c) の場 合は $k = 0.092 \pm 0.011$ min⁻¹ (UV/TiO₂/O₃)。

クロフィブリン酸の場合:図 7.3aに示すように、クロフィブリン酸の酸化分解についてもジクロフェ ナクの結果と同様の傾向が見られた。UV/O3、UV/TiO2/O2および UV/TiO2/O3によるクロフィブリン 酸の光無機化は、図 7.3b(TOC)および 7.3c(塩化物イオン生成)に示されている。また、以上の結 果を表 7.2 にまとめた。実験結果は、UV/O3 処理または UV/TiO2/O2 のいずれと比較しても、 UV/TiO2/O3の組み合わせは基質の著しい無機化反応を示している。

以上の結果から、UV/TiO₂/O₃法は、水中環境においてこれら2つの親水性の難分解の医薬品 を素早く無機化し無害化させる優れた方法であることが証明された。

図 7.1~7.3 に示された結果は、下記の反応 1~10 に従って OH ラジカル種が生成することを 示している。強力な酸化剤は、さまざまな有機化合物の電子密度の高い部分を攻撃し、基質を分 解する。また•OH ラジカルの生成は、O3 の存在でより効果的になる傾向がある[19]。

$TiO_2 + hv \rightarrow e_{cb} + h_{vb}$	(1)
$h_{vb}{}^+ \hspace{0.1 in} + \hspace{0.1 in} H_2O \hspace{0.1 in} \rightarrow \hspace{0.1 in} {}^{\bullet}OH \hspace{0.1 in} + \hspace{0.1 in} H^+$	(2)
$e_{cb}^{-} + O_2(O_3) \rightarrow O_2^{-\bullet}(O_3^{-\bullet})$	(3)
$O_2^{-\bullet} + O_3 \rightarrow O_3^{-\bullet} + O_2$	(4)
$O_3^{-\bullet} + H^+ \rightarrow HO_3^{\bullet}$	(5)
$HO_3^{\bullet} \rightarrow O_2 + {}^{\bullet}OH$	(6)
$\bullet OH + O_3 \rightarrow O_2 + HO_2 \bullet$	(7)
$O_2^{-\bullet} + H^+ \rightarrow HO_2^{\bullet}$	(8)
$2HO_2^{\bullet} \rightarrow H_2O_2 + O_2$	(9)
$O_2^{-\bullet} + H_2O_2 \rightarrow \bullet OH + OH^- + O_2$	(10)

続いて、TiO₂ 表面上に生成された強力な酸化剤である OH ラジカル種は、芳香環のよう な高い電子密度を有する部分を攻撃し、ヒドロキシル化芳香族中間生成物を生成する。その後、 さらなる光照射によって芳香環を開裂させてアルデヒドまたはカルボン酸誘導体を生成した。最終 的に CO₂ ガスが発生し、分解水溶液中のTOCは時間とともに減衰した。

図 7.3 光分解によるクロフィブリン酸(0.10-0.13 mM)の(a)濃度、(b)TOC および(c)塩化物イオン濃度の変化 ((b) における一次反応速度定数はそれぞれ $k = 0.14 \text{ min}^{-1}$ (UV/TiO₂/O₃)、0.010 min⁻¹ (UV/O₃)および 0.018 min⁻¹ (UV/TiO₂/O₂)、(c)における一次反応速度定数はそれぞれ $k = 0.065 \text{ min}^{-1}$ (UV/TiO₂/O₃)、0.34 min⁻¹ (UV/O₃)および 0.044 min⁻¹ (UV/TiO₂/O₂))。

表 7.2 バイアル瓶によるクロフィブリン酸の各分析結果

条	件	収率				
光触媒	雰囲気	CI⁻(%)	C/C ₀ (%)	TOC(全有機炭素)(%)	刀阱쑤	
TiO2	O ₃	100	0	6	94	
無	O ₃	100	0	8	92	
TiO2	O ₂	100	8	36	54	

7.3.2 疎水性医薬品の分解

疎水性エチニルエストラジオール溶液の分解も3つの異なる酸化反応によって行った。エチニ ルエストラジオール(296 mg)を500 mlのイオン交換水に添加した。基質が水に可溶であれば、そ の濃度は1 mMのエチニルエストラジオール溶液になる。しかしながら、実際には、分散液中のそ の濃度はかなり低かった(TOCの結果より約10 ppm)。図7.4aは、光照射時間に対する濃度の 変化を示しており、濃度はオゾンバブリングの直後に急速に増加した。ベンゼン環がヒドロキシル 化されると、エチニルエストラジオールは親水性(水溶性)になり、その結果溶液中のTOCも増加し た。ヒドロキシル化中間生成物は、TOF-MSによる反応物溶液の分析で同定された。TOCは、ヒ ドロキシル化の際に増加し、そして酸化的無機化作用により、CO2の生成によって減少した。親水 性中間生成物は親水性 TiO2の表面に吸着し、酸化が進行した。TOC の増減は、UV/TiO2/O3系 が速かった。エチニルエストラジオールの無機化における TiO2 光触媒の効果を確認するために、 オゾンバブリングを分散液中、2時間UV照射下で続け、その後 TiO2を添加し、UV照射を続けた。 図7.4bに示すように、溶液中に存在するTOCは、TiO2の添加後、6時間の照射で急速に減少し て消滅した。

インドメタシンを含有する水溶液(500 mL)に対して UV/TiO₂/O₃ 処理を行った。 図 7.5 に示される ようにエチニルエストラジオールにおいて観察された結果と同様の傾向が見られた。インドメタシン の脱塩素反応は CI-イオンの生成によって確認した。このような TiO₂ 光触媒酸化では、溶液中の 有機基質が触媒の表面に吸着し、生成されたOHラジカルがこれらの水に不溶な有機基質を酸 化的に分解した。

このような疎水性有機物でも、オゾンとTiO2光触媒を併用することにより分解が達成された。

図 7.4 エチニルエストラジオールの光照射に伴う(a)濃度および(b)TOCの変化((b)において、光照射 2 時間後に TiO₂を加えた)。

図 7.5 疎水性化合物インドメタシンの光分解による(a)濃度、(b)TOC の変化および(c)塩化物イオンの生成(一次反応速度定数は(a) k = 0.012 ± 0.002 min⁻¹ および(c) k = 0.030 ± 0.006 min⁻¹)

7.3.3 太陽光反応装置による実験

室内実験の結果によって、最も効率的であることが証明された UV/TiO₂/O₃ の組み合わせを用いて、自然光によるジクロフェナクおよびクロフィブリン酸の無機化を検討した。0.10~0.13 mM の 濃度の反応溶液 300 L を使用し、実験は、図 7.6、7.7 に示すように直列に接続された120個のパイレックスガラス管(内径 1.76 cm、長さ 145 cm、総面積 3.1 m²)からなる光反応器を用いて行った。反応物分散液は、比較的高い流速(7.5 L min⁻¹)で循環した。

ポンプ、スターラー、O3発生機および PC の電力はすべて、太陽電池によって供給した。光源として太陽光を使用することは、ランニングコストを大幅に削減することができる。

光照射時溶液の温度は反応器の出口で測定し、約 45℃であった。太陽光の光強度(波長:360 nm)を、光強度計を用いて毎秒測定し、PC で積算してエネルギー値として求めた。太陽光の光強度は気象条件に依存するため、TOC の減少は、光照射時間ではなく溶液 1 L あたりの光反応器 に入射する累積太陽光エネルギー(kJ L⁻¹)として表した。例えば、晴れた日に、1 時間に 3 mW cm⁻²の照射によって、光反応器が 330 kJ のエネルギーを得た場合、300 L の溶液で 1.1 kJ L⁻¹の値となる。

TiO₂(1 g L⁻¹)およびオゾンによるジクロフェナクとクロフィブリン酸の太陽光による分解結果を図 7.8 に示す。大量(300 L)の反応液の完全な無機化は光照射約 3 時間後に達成された。

図 7.6 太陽光反応装置

図 7.7 屋上に設置した太陽光反応装置および太陽電池

図 7.8 太陽光反応装置による疎水性ジクロフェナクおよびクロフィブリン酸の光分解による(a)濃度、(b)TOC および(c)塩化物イオン濃度(初濃度、0.12-0.13 mM;体積、300 L)。

7.4. 結論

酸化ガリウム窒素雰囲気条件での分解実験反応時間と比較して酸化チタンオゾン条件では医薬品の無害化分解が非常に短時間で起こった。また、疎水性の化合物の分解実験では酸化ガリウム光触媒の疎水性農薬の分解と同様に基質の可溶化がその分解反応に重要な要素であった。 実験室での実験結果は、UV/TiO₂/O₃系が特に疎水性の化合物の分解および無機化に効率的であることが示された。屋外の太陽光による実験では大量(300 L)に汚染された溶液を、短い時間(3 hr)で二酸化炭素と無機イオンに完全に分解し無害化することに成功した。

参考文献

- [1] Buser, H. R.; Müller, M.; Theobald, N., Environtal Science & Technology 1998, 32, 188
- [2] Anderson, P. D.; D'Aco, V. J.; Shanahan, P.; Chapra., S. C.; Buzby, M. E.; Cunningham, V. L.;
 Duplessie, B. M.; Hayes, E. P.; Mastracco, F. J.; Jarke, P N.; Rader, J. C.; Samuelian, J. H.; Schwab,
 B. W., Environtal Science & Technology 2004, *38*, 838
- [3] Buser, H. R.; Poiger, T.; Müller, M.; Environtal Science & Technology 1999, 33 (15), 2529
- [4] Weigel, S.; Kallenbom, R.; Huhnerfuss, H., Chromatography Journal A 2004, 1023, 183
- [5] Serpone, N.; Pelizzetti E.; (Eds.), 1989. Photocatalysis: Fundamentals and Applications. Wiley, New York. vol. 3, 1989, Elsevier, Amsterdam.
- [6] Kamat, P.V.; Chemcal Reviews 1993, 93, 267
- [7] Herrmann, J. M.; Guillard, C.; Pichat, P., Catalysis Today 1993, 17, 7
- [8] Bahnemann, D.W.; Cunningham, J.; Fox, M. A.; Pelizzetti, E.; Serpone, N., Photocatalytic treatment of waters (Eds): G. Helz, R. Zepp, D. G. Crosby, 1994. Aquatic and Surface Chemistry, Lewis Publishers, Boca Raton, FL, 1994, 261
- [9] Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Chemical Reviews 1995, 95, 69
- [10] Oyama, T.; Yanagisawa, I.; Takeuchi, M.; Koike, T.; Serpone, N.; Hidaka, H., Applied CatalysisB: Environmental 2009, *91*, 242
- [11] Oyama, T.; Otsu, T.; Hidano, Y.; Koike, T.; Serpone, N.; Hidaka, H., Solar Energy 2011, 85, 938
- [12] Sanchez, L.; Peral, J.; Domenech, X.; Applied Catalysis B: Environmental 1998, 19 (7), 59
- [13] Kopf, P.; Gilbert, E., Journal of Photochemical Photobiology A: Chemistry 2000, 136, 163
- [14] Klare, M.; Waldner, G.; Bauer, R.; Jacobs, H.; Broekaert, J. A. C., Chemosphere 1999, 38, 2013
- [15] Ikehata, K.; Naghashkar, N. J.; El-Din, M. G., Ozone: Science & Engineering 2006, 28, 353
- [16] Tanaka, K.; Abe, K.; Sheng, C. Y.; Hisanaga, T., Environmental Science & Technology 1992, 26, 2534
- [17] Villasenor, J.; Reyes, P.; Pecchi, G., Catalysis Today 2002, 76, 121
- [18] Ohtani, B.; Zhang, S. W.; Nishimoto, S. I.; Kagiya, T., Journal of the Chemical Society Faraday

Transactions 1992, 88, 1049

- [19] Agustina, T. E.; Ang, H. M.; Vareek, V. K., Journal of Photochemistry Photobiology C: Reviews 2005, 6, 264
- [20] Blanco, J.; Fernandez, P.; Malato, S., Journal of Solar Energy Engineering 2007, 129, 4
- [21] Oyama, T.; Takeuchi, M.; Yanagisawa, I.; Koike, T.; Serpone, N.; Hidaka, H., Journal of Oleo Science 2010, 59, 673
- [22] Malato, S.; Blanco, J.; Vidal, A.; Richter, C., Applied Catalysis B: Environmtal 2002, 37 1
- [23] Bahnemann, D., Solar Energy 2004, 77, 445
- [24] Goswami, D. Y.; Lu, S. Vijiayaraghavan, S.; Tamm, G., J. Sol. Energy Eng., 2004, 76, 33

第8章 総括

第1章では、研究背景として水資源、様々な環境汚染物質およびその規制、それらの物 質の浄化方法を述べ、そして近年、盛んに合成および使用されている含フッ素化合物の特 性およびその環境汚染、また現在までの分解研究例を示し、それらの報告の中で比較的分 解効率の良い酸化ガリウムの最近の応用研究報告を示した。その後、一般的な光化学およ び光触媒化学の事柄について述べ、分解生成物の毒性評価方法や酸化ガリウムによる種々 の化合物の分解報告をまとめ、最後に本研究の目的および構成を記した。

第2章では、種々のフッ素化合物が UVC 照射および酸化ガリウム(β-Ga₂O₃)によって、 脱フッ素化および光分解されることを報告した。光照射時間と共にフッ素含有医薬品であ る Fluoxetine(FLX)および Fluvoxamine maleate(FOM)および他の基質の脱フッ素化率は増加 した。光照射の3時間および24時間後の脱フッ素率が基質の分子量(用いた化合物は4-フ ルオロ安息香酸、4-トリフルオロメチル-安息香酸、4-フルオロフェノール、2-クロロ-6-フ ルオロ安息香酸、3-クロロ-4-フルオロ安息香酸、4-クロロ-2-フルオロ安息香酸および 4-フ ルオロニトロベンゼン、2,6-ジニトロ-4-トリフルオロメチルベンゼンスルホン酸ナトリウ ム、フルオキセチン、マレイン酸フルボキサミン、フルアジナム、トリフルオロ酢酸、2,2,2-トリフルオロエタノール、およびパーフルオロオクタン酸(PFOA)である)との間に相関があ り、低分子量のフッ素化合物の脱フッ素率が高く、分子量が大きい化合物の脱フッ素分解 は困難である傾向にあった。脱フッ素反応のための光触媒量酸化ガリウムの最適量は、溶 液濃度 0.1 mM の溶液 100 mL に対して 50 mg であった。FLX の脱フッ素化の反応溶液にお ける最適 pH の値は無調整の6 であった。白金(1%)担持酸化ガリウムを用いた、窒素雰囲 気での反応ではフッ化物イオンの生成が増加し、基質の分解が促進した。FLX および 4-(ト リフルオロメチル)安息香酸の脱フッ素化および光分解による中間生成物は、エイムズ試験 により変異原性がないことを確認した。

第3章では、空気および不活性窒素雰囲気での UVC 照射による酸化ガリウム懸濁液中 のトリフルオロメチル安息香酸の3つの位置異性体の分解について検討した。酸素飽和雰 囲気では、3つの異性体の脱フッ素率がほぼ70%であった。パラ異性体は不活性窒素雰囲 気で最も分解率(約90%)が高かった。反対に、メタ異性体の脱フッ素率は約50%であった。 質量分析およびベンゼン環の消失の分析結果から、反応過程ではOH ラジカルが脱フッ素 化および分解に大きな役割を果たしていることを確認した。脱フッ素化およびベンゼン環 の開環は、全体的な分解過程における主要な段階であった。脱フッ素分解に関して反応機 構を考察し、光化学反応(Norrish 反応)および光触媒反応が相互に作用し、進行していると 結論した。

第4章では、疎水性含フッ素農薬フィプロニルの光分解が、光照射(UVC 254 nm)により、光触媒の非存在下で光化学的に、金属酸化物(β-Ga₂O₃および TiO₂)の存在下で光触媒的に、窒素脱気および空気飽和条件下で、達成されることを示した。生成した無機イオンの

136

分析結果(SQ²⁻、F、CI、NO3 および NH4⁺イオンの生成)によって、脱スルホン化、脱フッ 素化、脱塩素化および脱アミノ化反応が比較的短時間に進行することが確認された。不活 性窒素雰囲気などの条件によっては硝酸イオンが生成しないこともあった。フィプロニル の光化学的分解によるこれらの無機イオンの生成の程度は、還元条件(不活性窒素)と比較 して酸化条件(空気酸素)下で大きかった。TiO2 光触媒が存在する還元条件下(TiO2 / N2 の場 合)では、無機イオンの生成の程度は、フィプロニルの直接光分解(無触媒系)と変わらなか った。対照的に Ga2O3 が存在する条件(Ga2O3 / N2 の場合)では、TiO2 / N2 に対して生成する イオンは、それぞれ脱スルホン化および脱フッ素化の場合、約 41%および 78%大きかった。 結果を比較すると、酸化条件下で、Ga2O3 および TiO2 光触媒による脱スルホン化、脱フッ 素化および脱塩素化の進行は、大きいバンドギャップ(4.8 eV)を持つ Ga2O3 光触媒がフィプ ロニルの脱窒素(NO3 および NH4⁺イオンの生成)を除いて、約 2.5 倍効果的であった。光触 媒として酸化ガリウムは、UVB/UVA 紫外線によって活性化することができる TiO2 とは異 なり、活性化するために UVC 紫外線を必要とするが、分解反応に関してより良い結果が得 られた。

また、これまでに得られている知見に基づいて、この光分解反応は、フィプロニルの一 重項/三重項励起状態からのホモリシス、ヘテロリシスおよび光イオン化ならびに光化学的 加水分解を含むいくつかの複雑な経路によって起こり、光触媒的に酸化ガリウムまたは二 酸化チタンのナノ粒子の存在によって光触媒分解が起こることが考えられた。また励起さ れたフィプロニル由来の一重項酸素の役割が本分解反応に対してある程度の役割を果たし ている可能性がある。質量スペクトルデータは、イソチオシアノン酸であると同定された m/z=59の中間生成物と共に、かなり短い時間(約 30 分)でフィプロニル-デススルフィニル およびフィプロニルアミドが生成することを明らかにした。農薬フィプロニルおよび中間 生成物はエイムズ試験により、突然変異誘発活性が無いことを確認した。

第5章では、一般に固体触媒反応において、基質が触媒表面へ吸着することが必要条件であるが、純粋な水溶媒中では、殺虫剤フィプロニルが不溶性であるため、光触媒表面への基質の吸着が困難であり、光触媒分解反応が進行しづらい。そのような観点より、水/有機混合溶媒を用いてフッ素系農薬フィプロニルの光化学的および光触媒的分解実験を行った。この実験結果より、水/有機混合溶媒でも脱フッ素化、脱塩素化、脱スルホン化および脱窒による分解が起こることが判明した。疎水性フィプロニルが水/有機混合溶媒(10,25 および 50 体積%)に溶解し、触媒への吸着が促進され、さらに純粋な水溶媒中で起こる光触媒分解や光化学分解と比較して、水/有機混合溶媒中でのフィプロニルの Ga2O3 光触媒および光化学脱フッ素化、脱塩素化、脱スルホン化および脱窒等の収率が特に不活性窒素雰囲気で増加した。

第6章では、含フッ素農薬(殺虫剤)として広く使用されている難分解性フルベンジアミドをモデル化合物として、Ga2O3の存在下でUVC照射し分解実験を行った。光触媒効果の

比較のために、Ga₂O₃の存在下および無触媒で空気(酸素)雰囲気および窒素ガス雰囲気でも 光触媒分解実験を行った。空気雰囲気 Ga₂O₃による無機イオンの収率は、Γ(0%) < NO₃⁻ (14%) < F⁻(37%) < NH₄⁺(86%) ~ SO₄²⁻(88%)の順で増加し、脱ヨウ素化は、Ga₂O₃/N₂系で 22.0%、Ga₂O₃/空気系で0%となった。フルベンジアミド構造中の二つの芳香環の開環反 応はかなり急速に進行した。Ga₂O₃/N₂系において OH ラジカルによるヒドロキシル化芳香 族中間生成物が生成した。フルベンジアミドの吸着挙動は、量子計算で得られた部分電荷 によって評価され、活性酸素種(例えば、OH ラジカルおよび一重項酸素)の攻撃位置を推測 した。さらにエイムズ試験を行うことで、本分解反応より生成した光分解生成物は変異原 活性がないことが判明した。

第7章では、親水性(ジクロフェナクおよびクロフィブリン酸)および疎水性医薬品(エチニルエスト ラジオールおよびインドメタシン)による汚染水の分解を目的として、TiO2 光触媒分解実験を行っ た。O3 を併用した TiO2 光触媒による反応が特に疎水性の化合物の分解および無機化に効率的 であることが判明した。大量の汚染水の分解浄化の実用化を目指して反応に必要な光源さらにオ ゾン発生、反応液の循環ポンプのための電力をすべて太陽電池でまかなう太陽光反応装置のパ イロットプラントを試作した。装置を用いて大量の汚染水液(300 L)を、短い時間(3 時間)内に二酸 化炭素と無機イオンに完全に分解無害化することに成功した。

本研究から、光触媒として酸化ガリウムを用いる分解反応によって、耐光性、耐熱性、 対薬品性、生理活性などの性質を有する難分解性の含フッ素有有機化合物の分解無害化が 達成され、広く医薬品や農薬で汚染された水環境の改善に資する成果が得られた。また、 構造の異なる数種類のモデル化合物で脱フッ素反応の傾向を調査し、その分解傾向を解明 した。位置異性体であるモデル化合物の脱フッ素分解実験より、分解メカニズムを解明し た。種々の農薬の脱フッ素分解実験より、分解に関する基礎的な知見がえられ、効率的な 条件を見出した。また、太陽光パイロットプラントにおける光触媒分解により、大量の汚 染水の浄化の実用化の可能性を示した。

また、現在のところ酸化ガリウムは主に半導体材料や蛍光原材料、レーザーダイオード などとしての研究が盛んに行われているが、光触媒として用いた研究報告は多くなく、本 研究成果から、従来の酸化チタンなどの光触媒では困難であった含フッ素化合物の分解を 行うことができ、酸化ガリウムの光触媒としての有用性を示すことができ、その新たな応 用分野を開拓することに貢献した。

本研究で得られた、このような研究成果によって、酸化ガリウム光触媒によって含フッ 素有機物質で汚染された水環境の浄化法を提案するための土台が構築できたと確信してい る。最終的には農業用排水の排水機場や下水処理を行う浄水場等において酸化ガリウム光 触媒を用いた含フッ素農薬の分解処理設備および工程が開発される可能性があり(図8.1)。 それによりフッ素資源および水資源の循環利用に貢献できる。

今後、実用化に向けての研究課題は以下のようなに想定される。酸化ガリウムのバンド

138

ギャップが大きいのでよりバンドギャップの小さい触媒などを創生すること、疎水性難分 解有機フッ素化合物がさらに効果的に分解が進行する条件を調査すること、また有機フッ 素化合物の構造ごとの脱フッ素分解傾向を調べることなどが考えられる。

本研究の成果を踏まえて、今後、難分解性有害有機フッ素化合物の分解浄化の処理法が更に発展されものと期待される。

図 8.1. 酸化ガリウム光触媒による水処理の実用化のモデル

謝辞

本研究を行うにあたり、終始熱心なご指導、ご鞭撻を賜りました、明星大学名誉教授日 高久夫先生に心から感謝の意を表します。

本論文をまとめるにあたり、終始温かい激励とご配慮を賜りました、明星大学特別研究 員 大山俊之先生、明星大学教授 三塚義弘先生、中国科学院教授 超進才先生、パビア 大学教授 Nick Serpone 先生、明星大学講師 藤本崇先生、小池崇喜先生、神奈川工科大学 教授 高村岳樹先生に深く感謝の意を表します。

また、本論文をまとめるにあたり、種々の有益なご助言とご指導を頂きました東京理科 大学教授 工藤昭彦先生に心より感謝の意を表します。

最後に本研究を遂行するに際し、心強い支援をして頂いた家族および友人、関係諸氏に 心より厚く御礼申し上げます。

研究業績

主論文を構成する論文

- Photoassisted defluorination of fluorinated substrates and pharmaceuticals by a wide bandgap metal oxide in aqueous media Hisao Hidaka, <u>Tohru Tsukamoto</u>, Toshiyuki Oyama, Yoshihiro Mitsutsuka, Takeji Takamura and Nick Serpone Photochemical & Photobiological Sciences, vol. 12, Issue 5, pp.751-759 (2012 年 11 月) DOI: 10.1039/C2PP25358E
- Remediation of aquatic environments contaminated with hydrophilic and lipophilic pharmaceuticals by TiO₂-photoassisted ozonation
 Toshiyuki Oyama, Tomohiko Otsu, Yasuyuki Hidano, <u>Tohru Tsukamoto</u>, Nick Serpone, Hisao Hidaka
 Journal of Environmental Chemical Engineering, vol. 2, Issue 1, pp. 84-89 (2014 年
 3月)
 DOI: 10.1016/j.jece.2013.11.008
- 3. Photochemical and Ga_2O_3 -photoassisted decomposition of the insecticide Fipronil in aqueous media upon UVC radiation

Hisao Hidaka, <u>Tohru Tsukamoto</u>, Yoshihiro Mitsutsuka, Takeji Takamura and Nick Serpone

New Journal of Chemistry, vol. 38, Issue 8, pp. 3939-3952 (2014年6月) DOI: 10.1039/C4NJ00527A

4. Enhanced Ga_2O_3 -photocatalyzed and photochemical degradation of the Fipronil insecticide by UVC irradiation in mixed aqueous/organic media under an inert atmosphere

Hisao Hidaka, <u>Tohru Tsukamoto</u>, Yoshihiro Mitsutsuka, Toshiyuki Oyama andNick Serpone

Photochemical & Photobiological Sciences, vol. 14, Issue 5, pp. 919-928 (2015 年 2 月) DOI: 10.1039/C5PP00011D

5. Photoassisted degradation of trifluoromethylbenzoic acid isomers in aqueous media by Ga_2O_3 under UVC irradiation

<u>Tohru Tsukamoto</u>, Yoshihiro Mitsutsuka, Takashi Fujimoto and Jincai Zhao Research on Chemical Intermediates, Volume 45, Issue 9, pp 4607–4623 (2019 年 5 月). DOI: s11164-019-03852-x

6. Ga₂O₃-photoassisted and photolytic degradation of the Flubendiamide agrochemical in aqueous media under UVC irradiation

<u>Tohru Tsukamoto</u>, Yoshihiro Mitsutsuka and Takeji Takamura

Journal of Water and Environment Technology, Volume 17 Issue 5 Pages 345-358 (2019 年 8月)

DOI: 10.2965/jwet.19-024

参考論文

1. Ga₂O₃-photoassisted decomposition of insecticides

Hisao Hidaka, **Tohru Tsukamoto**

Gallium Oxide: Technology, Devices and Applications (Metal Oxides), pp. 419-437 (2018 年 10 月)