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Preface

The precision medicine is defined as ”an emerging approach for disease treatment and prevention that
takes into account individual variability in genes, environment, and lifestyle for each person”.1 Genomic
technologies are rapidly developed, and allows us to investigate the condition in human cell by quanti-
fying the level of gene expression, measuring the mutation for a large number of gene, and so on. These
genomic data are frequently used for several types of cancer clinical researches such as the prognostic
model developments for cancer patient, and developments for novel and evolutional drug for establishing
the precision medicine.

In general, the genomic data contains a lot of genes while a number of patients is limited. In this
setting, the traditional statistical approach cannot work well because it generally requires much more pa-
tients than genes. To address this difficulty, researchers have been emphasizing the penalized regression
methods. Among them, the L1 (with or without L2) penalized regression, which select important genes
for prediction and simultaneously estimate the regression coefficients, is a typical and frequently used
penalized regression method in cancer clinical researches. This method shrinks all regression coefficients
toward zero, and automatically sets many of them to exactly zero, depending on the amount of regular-
ization employed. The penalized regression approach is useful for almost all kinds of cancer clinical
researches. However, several issues exist when we utilize the penalized regression model depending on
the types of researches and types of datasets used.

In this study, we clarify two focal types of clinical researches and the corresponding issues about
utilizing the L1 and L2 penalized regression method as follows:

Issue 1

In the past decade, researchers in oncology have sought to develop survival prediction models using
high-dimensional gene expression data. The least absolute shrinkage and selection operator (lasso) has
been widely used to select genes that truly correlated with a patient’s survival. The lasso selects genes
for prediction by shrinking a large number of coefficients of the candidate genes towards zero based on
a tuning parameter that is often determined by a cross validation (CV).

The CV method determines the value of the tuning parameter by considering the trade-off between
the number of true positives and false positives in selected genes, and so the possibility of (i) containing
false positives and (ii) identifying false negatives cannot be eliminated.
(Issue 1-1) We propose a method for estimating the false positive rate (FPR) for lasso estimates in a high-
dimensional Cox model. We performed a simulation study to examine the precision of the FPR estimate
by the proposed method. We applied the proposed method to real data and illustrated the identification
of false positive genes.
(Issue 1-2) The CV can pass over (or fail to identify) true positive genes (i.e. it identifies false negatives)
in certain instances, because the lasso tends to favor the development of a simple prediction model. We
attempt to monitor the identification of false negatives by developing a method for estimating the number
of true positive (TP) genes for a series of values of a tuning parameter that assumes a mixture distribution
for the lasso estimates. Using our developed method, we performed a simulation study to examine its
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precision in estimating the number of TP genes. Additionally, we applied our method to a real gene
expression dataset and found that it was able to identify genes correlated with survival that a CV method
was unable to detect.

Issue 2

The precision medicine is defined as ”an emerging approach for disease treatment and prevention that
takes into account individual variability in genes, environment, and lifestyle for each person”.1 Cancer is
a genomic disease, and so molecularly targeted agents (MTAs) for cancer recently developed are thought
to be that the dose-efficacy and dose-toxicity relationships differ depending on the gene mutation pattern.
The individualized optimal dose (IOD), which is defined as the maximal efficacious dose which can be
administered with clinically acceptable safety profile varying depending on the gene mutation patterns,
should be determined for MTAs for establishing the precision medicine. In addition, the genes which
determine the IOD for MTAs should be identified in early phase of developments. We propose a novel
dose-finding approach to identify the IOD for MTAs in phase I trials in oncology. An IOD determination
and gene selection are simultaneously performed based on the L1 and L2 penalized regression. Many
dose-finding approaches for MTAs in the available literature account for the non-monotonic patterns
for dose-efficacy and dose-toxicity relationships as well as correlations between efficacy and safety out-
comes, and we consider them by the penalized regression based on the multinomial distribution. The
dose-finding algorithm is based on the predictive values which are calculated by the estimated penalized
regression model. We compare the operating characteristics between the proposed and existing methods
by simulation studies under various scenarios.

This doctoral dissertation consists of six chapters. Chapter 1 provides a background of cancer prog-
nostic studies as well as the molecularly targeted agents related to the issue 1 and 2 in cancer clinical
researches, and an outline of the penalized regression model for the Cox proportional model and the
generalized regression model. The main topic of Chapter 2 is to propose a mixture distribution for the
lasso estimates to estimate the FPR in a high-dimensional Cox model. This chapter is based on Kaneko
et al (2012)2. In Chapter 3, we propose to monitor the identification of false negatives by developing a
method for estimating the number of true positive (TP) genes for a series of values of a tuning param-
eter by utilizing the proposed mixture distribution in Chapter 2. This chapter is based on Kaneko et al
(2014)3. In Chapter 4, the main concern is to propose an individualized dose-finding approach using the
penalized regression model with simultaneous gene selection in early phase developments of molecu-
larly targeted agents. This chapter is entirely based on Kaneko et al (In preparation)4. Finally, Chapter 5
discusses the issues relating this study and Chapter 6 presents the conclusions of this study.
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Chapter 1

Introduction

1.1 General background of this study

Cancer is a disease of which development is that cancer cells abnormally increase and invade surrounding
tissues and organs, and subsequently, through the blood and lymphatic vessel, spread to distant organs.5

Cancer is caused by several factors; tobacco, infectious organisms, and an unhealthy diet as factors
outside a body, and genetic mutations, hormones, and immune conditions as factors inside a body.5

Without proper treatments for controlling the cancer, it may result in severe condition including death.
Several types of treatments exist; surgery to remove cancer, radiation, and therapies based on drugs which
include chemotherapy, hormone therapy, and targeted therapy.5 It is known that a cancer is a disease of
genome, and many of the molecular lesions has its own genomic feature, some of which are in common
among multiple types.5

In Japan, cancer has been a leading cause of death since 1981.6 In 2014, 368,103 patients were dead
by cancer, and five leading sites in mortality are; lung, stomach, colon/rectum, pancreas, and liver for
both sexes; lung, stomach, colon/rectum, liver, and pancreas for males; and colon/rectum, lung, stomach,
pancreas, and breast for females.6

There have been a progress to fight against cancer in the past decades. According to the American
cancer society5, in America death rate by any cancer had increased by late of the 20th century because
the tobacco was taken by a lot of people (in 1991 at 215 cancer deaths per 100,000 persons at peak
time); however, from the peak time to 2012, the rate decreased by 23% (the decrease of more than 1.7
million cancer deaths). Death rates are declining for all four of the most common cancer types; lung,
colorectal, breast, and prostate.5 In Japan, the similar tendency has been shown in the same period. The
Cancer statistics in Japan 20156 reported that for males the age-adjusted rates of cancer mortality (all
ages) increased by around 1990 and reached a peak, and afterwards has been decreasing since late of the
20th century while for females it has been gradually decreasing since around 1970. The age-adjusted
rates of cancer mortality of both sexes gradually decreased since around 1960 to around 1990 and has
been clearly decreasing since late of the 20th century.6

Obviously, developments of the novel treatments for cancer in this decade have contributed to this
improvement in patients with cancers. Treatments are evaluated in human in a series of steps of clinical
trials; phase I, II, and III, before they are commercially available. Trials in early phases are exploratory
stage to evaluate the efficacy and the safety for candidate drugs and especially in cancer clinical trials to
determine the optimal dose for subsequent phases, with relatively small number of patients (or sometimes
healthy volunteers in clinical trials other than treatments for cancers) while the trials in later phase are to
confirm the efficacy and safety compared with the placebo or the active comparator with relatively large
number of patients. The target patient population of the drug in the trials is often based on the whole
population of patients with specific disease, for example an angiotensin II receptor blocker for patients
with hypertension. This approach was taken over to developments of treatments for cancers. However, it
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is known that successes rate of development based on this approach have been low.7 One report showed
that, since 1993 to 2004, only 13% of cancer drugs of which developments were initiated in phase I trials
were finally approved by the US Food and drug administration (FDA) as regulated products.8 Another
report showed that, since 2003 to 2011, only 10.5% of newly developed agents were finally approved by
the FDA and most of them failed in phase II trials.9 This low rate of the success drove the paradigm shift
from the traditional approach to developments for the treatments targeted to more specific population,
for example treatments targeted towards specific molecules which involves in cancer progression or
metastasis.7

The precision medicine is defined as ”an emerging approach for disease treatment and prevention
that takes into account individual variability in genes, environment, and lifestyle for each person”.1 The
benefit of the precision medicine would be seen in oncology at first because, as written above, a cancer
is a leading cause of death, the success rate in developments is low, cancer is a disease of genome, and
also the breakthrough treatments are still required for patients in severe conditions such as patients with
recurrent or metastatic cancers. The recent developments in oncology have been already along with
the paradigm of the precision medicine. The trastuzumab was developed for the treatment of breast
cancer and gastric cancer with over expression of HER2 gene. This drug was created based on the
knowledge that HER2 is possibly related to proliferation of cancer cells, and subsequent clinical trials
have been conducted in patients with over expression of HER2 genes.10 There is another example. The
Oncotype DX R© Recurrence Score R© is based on expression levels of 21 genes and approved by FDA
as diagnosis for predicting the chemotherapy benefits and likelihood of the recurrence for patients with
breast cancers.11 These kinds of approaches will further emerge in near future in the paradigm of the
precision medicine.

Recent developments of technologies in biology contributed to establishing the precision medicine.
The array-based hybridization assay, such as the DNA microarray, and more advanced technology in-
cluding the next generation sequencing allow us to acquire tens of thousands of genomic characteristics,
such as the expression levels of large number of genes or to genotype for multiple regions of a genome,
with high quality and much cheaper price than the past. These technologies facilitate to identify impor-
tant molecular targets of treatments as biomarkers, some of which have been already used for diagnosis.

There are two types of biomarkers as Simon12 reported. Prognostic markers are baseline measure-
ments that provide whether the patient probably survive long-term or not with either untreated or a stan-
dard treatment, which are utilized to determine whether any systematic treatment or any therapy beyond
the standard treatment is required or not. Predictive markers are baseline measurements that indicate
whether the patient is likely (or unlikely) to benefit from a specific drug or regimen. The use of these
biomarkers is potentially useful for establishing the precision medicine in oncology through develop-
ments of diagnosis (eg, identifying patients who had better prognosis or better treatment effect, adjusting
dose based on the biomarkers for “right dose for right patient”) and developments of the novel treatment,
such as molecularly targeted agents that inhibit the working of a specific molecule.

1.2 Statistical methods for establishing the precision medicine

The statistical challenges exist in analyses of genomic data. The genomic data consist of numbers of
genes from relatively fewer patients. The number of genes included in the statistical model vary depend-
ing on researches, but may be tens of thousands of genomic characteristics at most. Ordinal regression
model cannot be directly applied since the number of patients much exceeds the number of genes in most
cases. Sometimes researchers could pick up limited numbers of candidate genes (e.g., 4 or 5) for analy-
ses based on the prior knowledge. However, the predictive biomarkers are identified by using the models
with an interaction between treatment and candidate biomarkers. So, if researchers want to explore the
predictive biomarkers, they suffer from number of covariates of genes and interactions, and the statistical
challenge still remains even though the genes have been already picked up.
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Several researchers addressed this challenge. A simple approach such as the univariate regression
method was proposed in the early era of genomic data analyses. Subsequently, more advanced and so-
phisticated approaches based on the dimension reduction or penalized regressions were proposed.13–20

Bovelstad et al21 systematically compared the operating characteristics between these methods which
included univariate regression method, forward stepwise selection methods, principal components re-
gression (refer to Hastie et al.13), supervised principal components regression14,15, partial least squares
regression16, ridge regression which is L2 penalized regression17, and least absolute shrinkage and se-
lection operator (lasso) which is L1 penalized regression18,19, based on large number of gene expression
data from cancer patients as well as their survival times. They found that the prediction ability of univari-
ate and forward stepwise selection was much worse than the one of the other advanced and sophisticated
methods, and the ridge regression was the best method in terms of prediction. One drawback of the ridge
regression approach is to include all genes (eg, tens of thousands) in the model. In many studies, how-
ever, to identify a small subset of the genes is one of the most important objective. The ridge regression
does not have a property of gene selection. Genes identified by the statistical methods are subsequently
investigated further in order to obtain a mechanistic understanding from biological point of view. With
these purposes considered, they concluded the lasso is one of the most interesting methods in genomic
data analyses in cancer clinical researches with acceptable level of decrease in prediction ability.21 More
recently, Zou et al20 proposed the L1 and L2 penalized regression called as the elastic net which is the
most promising extensions of the lasso, and has the same property of the lasso based on the L1 penalty
and a more favorable property for correlated covariates than the lasso. From these points, in this paper,
we focus on the penalized regression methods of the lasso and the elastic net in the rest of the paper.

1.3 Cancer prognostic studies

Establishing prognoses of clinical outcomes on the basis of gene expression data is often performed
in this decade.22–25 In cancer clinical researches, not only the prediction of response to treatment but
also the prediction of time to such events, e.g., overall survival (OS) and relapse-free survival (RFS)
are investigated.26 To precisely predict such outcomes, we need to identify the genes that are highly
correlated with them and are called the outcome-predictive genes. This is difficult, however, because
the number of genes p in the high-dimensional gene expression data exceeds the number of patients n.
Several researchers have attempted to identify the outcome-predictive genes in the n < p data settings
by using traditional statistical methods, but the accuracy of the prediction based on the genes identified
in this way is not very satisfactory. For example, van’t Veer et al23 and Van de Vijver et al24 analyzed
the gene expression profiles of 78 lymph node-negative breast cancer patients in order to establish gene
signatures related to the risk of distant metastasis. Using a “three-step supervised classification method”,
they identified 70 genes that categorize patients into “good” and “bad” prognostic groups. Wang et al25

also analyzed the gene expression profiles of 115 patients for the same purpose. They identified 76 genes
by using the univariate regression of Cox’s proportional hazard regression analysis27, which evaluates
the relationship between the level of expression and the distant-metastasis-free survival for each gene.
Notably, both studies had only 3 genes in common. Furthermore, the predictive performance based on
both gene signatures drastically decreased when applied to other data sets.28 Thus, the problem lies in
the difficulty of precise identification of the outcome-predictive genes in high-dimensional data.
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Table 1.1: Cancer clinical researches for gene expression data
van’t Veer et al23 Wang et al25

Objective To select the outcome-predictive genes
and develop the prediction model

Number of patients 78 115
Number of genes 5,000 17,819

Method Correlation Univariate Cox model
Number of selected genes 70 76

Number of selected genes in common for both studies 3

1.3.1 The L1 penalized regression

Researchers have been emphasizing the penalized regression methods. Among them, the least absolute
shrinkage and selection operator (lasso), which selects the outcome-predictive genes and simultane-
ously estimates the regression coefficients in the Cox regression model, is a typical penalized regression
method.18,19 This method shrinks all regression coefficients toward zero, and automatically sets many of
them to exactly zero, depending on the amount of regularization employed. This can be useful, in partic-
ular, in high-dimensional data, and the prediction performance for gene expression data have been widely
studied by many researchers by using this method.21,29,30 Several researchers showed that the lasso out-
performs the simple variable selection methods such as the univariate Cox regression analysis,21,31 with
respect to the accuracy of prediction.

The lasso shrinks most of the coefficients towards zero exactly by adding L1 norm to the Cox log
partial likelihood, and the amount of shrinkage is dependent on the tuning parameter. The value of
the tuning parameter is often determined by a cross-validation (CV), which maximizes the out-of-data
prediction accuracy.32
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Figure 1.1: A result applying the lasso to the gene expression dataset published by Rosenwald et al22. n:
a number of patients, p: a number of genes

Several researchers have investigated the operating characteristics of the lasso. Goeman33 used the
lasso to analyze a publicly available gene expression dataset, obtained from the articles of van’t Veer et
al.23 and van de Vijver et al.24 in which a 70-gene signature for prediction of metastasis-free survival in
breast cancer patients had been established. This data included 295 patients with 4,919 genes that were
prescreened from 24,885 genes based on the quality criteria in van’t Veer et al.23. The lasso selected 16
genes with which to develop a prediction model of overall survival when using the tuning parameter that
was determined using a CV. Goeman33 also conducted ridge regression using all 4,919 genes to develop a
model by adding L2 norm to the Cox log partial likelihood. The prediction accuracy of the lasso and ridge
regression were compared, and the ridge regression with 4,919 genes slightly outperformed the lasso
with 16 genes. Goeman33 suggested that the lasso potentially passes over genes that are correlated with
survival in order to develop a simple prediction model. Bøvelstad et al.21 reached the same conclusion
in a review of the survival prediction methods available for analyzing breast cancer gene expression
datasets. Table 1.2 summarizes a typical result of gene selection by the lasso.

Table 1.2: Typical results of gene selection by the lasso

True condition The lasso
Select No select

Genes that are NOT correlated with survival False positive (FP) True negative (TN)
(none-outcome-predictive genes)

Genes that are truly correlated with survival True positive (TP) False negative (FN)
(outcome-predictive genes)

The CV method determines the value of the tuning parameter by considering the trade-off between
the number of true positives (TP) and false positives (FP), and so the possibility of identifying false
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negatives (FN) cannot be eliminated. To further investigate the operating characteristics of the lasso with
CV regarding the number of TP and FP, we conducted simulation studies with assuming typical analyses
of gene expression data (see Appendix A). The simulation study demonstrated that the lasso possibly fail
to identify true set of the TP with including a lot of number of FP.

One solution for correctly identifying outcome-predictive genes is at first to monitor the number of
TP in several values of the tuning parameter and determine its final value, and subsequently remove the
FP. For issue 1, we proposed methods to achieve this objective.

1.3.2 Objective of this study (Issue 1)

(Issue 1-1) We proposed a method for estimating the false positive rate (FPR) for lasso estimates in a
high-dimensional Cox model. We performed a simulation study to examine the precision of the FPR
estimate by the proposed method. We applied the proposed method to real data and illustrated the
identification of false positive genes.
(Issue 1-2) We developed a method for estimating the number of TP for a series of values of the tuning
parameter. We assumed a mixture distribution for the lasso estimates developed in the Issue 1-1, and
these could be used to estimate the number of TP and FP. It is possible to generate the solution path that
includes the lasso estimates for a series of values of the tuning parameter using the methods developed by
Goeman33. Here, we proposed an algorithm to sequentially fit the mixture distribution for this solution
path, and we used a simulation study to test the precision of the algorithm when estimating the number of
TP. We further demonstrated the proposed algorithm using a well-known diffuse large B-cell lymphoma
(DLBCL) dataset comprising overall survival of 240 DLBCL patients and gene expression data of 7,399
genes.22
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1.4 Clinical developments for novel molecularly targeted agents

1.4.1 Molecularly targeted agents and dose-finding

Developments of molecularly targeted agents (MTAs) for cancer which inhibit the working of a specific
molecule (e.g., small molecules or monoclonal antibodies) has been initiated in an effort to move toward
the precision medicine, which is an emerging approach for disease treatment and prevention that takes
into account individual variability in genes, environment, and lifestyle for each person.1 The phase I trials
for MTAs have been conducted to find the optimal dose which is used for later phase of developments for
overall population.34–38,40 To establish the precision medicine, the individualized optimal dose (IOD),
which is defined as the maximal efficacious dose which can be administered with clinically acceptable
safety profile varying depending on the patients’ characteristics, should be determined for MTAs in phase
I trials. In addition, the patients’ characteristics which determine the IOD for MTAs should be identified
in early phase of developments for further researches.

1.4.2 Motivating example

One motivating example is a dose-finding trial for the IOD of a novel MTA in patients with locally
advanced or metastatic solid tumors, which was reported in Guo et al.39 Five genes (genes considered in
the trial were the NTRK1 gene, NTRK2 gene, NTRK3 gene, ROS1 gene, and ALK gene) which had been
considered that the benefit and risk of the treatment would differ depending whether the gene mutation
occur or not. The mutation status of each of the five target genes was coded as positive or negative which
was measured by using the next-generation sequencing40. The efficacy and toxicity outcome for each
patient are evaluated on the graded scale based on the National Cancer Institute Common Terminology
Criteria for Adverse Events and the Response Evaluation Criteria In Solid Tumors, respectively. Five
doses are evaluated. For this trial, the most simple approach to model the dose-efficacy and dose-safety
relationships is to include dose and genes as covariates for main terms and dose by genes as covariates for
interaction term in the dose-toxicity and dose-efficacy models. However, the model cannot work well in
many times because of small sample size in contrast to a lot of number of covariates caused by including
genes in main terms and gene by treatment in interaction terms. Moreover, genes could be moderately or
highly correlated.

1.4.3 The L1 and L2 penalized regression

Zou et al20 proposed the L1 and L2 penalized regression, which is called as the elastic net, by adding L2
norm to the penalty function of the lasso. The lasso sometimes select only one covariate from correlated
covariates or all covariates with very small values of estimates. In addition, highly correlated covariates
may yield the unstable regularization path of the lasso estimates. The form of the penalty based on both
the L1 and L2 can address the problems of the lasso as reported in Friedman et al.41 The L2 penalized
regression, which is called as the ridge regression17, is known to shrink the coefficients of correlated
covariates towards each other. From a Bayesian point of view, the ridge penalty shows the good property
in case that many covariates exist in the model, and all have non-zero coefficients as drawn from a normal
distribution with mean = 0 as prior distribution. The lasso estimates are considered as the posterior
mode with a Laplace prior, which expects many coefficients to be shrunken to exactly zero, and a small
subset of estimates to be nonzero (ie, the lasso has the property of the gene selection while the ridge
regression does not have). The ratio of amounts of L1 and L2 penalties are determined by the mixing-
control parameter in the elastic net. When the mixing-control parameter suggests to use both L1 and L2
penalties, the elastic net performs like the lasso, but removes any drawbacks caused by highly correlated
covariates. This property is much useful in the setting of this issue 2 because the model utilized includes
multiple mutations of moderately or highly correlated genes as well as both main and interaction terms
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in the model which may result in high correlation in the model. (However, note that the elastic net has
more challenges in choosing the values of the two tuning parameters and the mixing-control parameter
appropriately while only one tuning parameter exist in the lasso.)

1.4.4 Objective of this study (Issue 2)

We proposed a novel dose-finding approach to identify the IOD for MTAs in phase I trials in oncol-
ogy. We utilize the L1 and L2 penalized regression, which is one of the most frequently used penalized
regression in analyses of the high-dimensional data and so called as the elastic net20, and the IOD de-
termination and gene selection are simultaneously performed based on the elastic net. For each binary
efficacy and toxicity outcome, we assume the logistic model with including dose and quadratic form of
dose, and gene effect as covariates in main term, and dose by gene effect as covariates in interaction term.
The quadratic form of dose in the model is incorporated to account for the non-monotonic patterns for
dose-efficacy and dose-toxicity relationships as Cai et al.42 The estimation of the coefficients for efficacy
and toxicity outcome are performed separately and based on the frequentist approach by maximizing
the penalized log-likelihood. The dose-finding algorithm is based on the predictive values which are
calculated by the estimated penalized regression model. Many dose-finding approaches for MTAs in the
available literature take account into correlations between efficacy and toxicity outcomes, and we also
consider them based on the multinomial distribution for bivariate joint binary probability of efficacy and
toxicity outcome as Sato et al36. We implement the simulation studies, and compare the operating char-
acteristics between the proposed method and the method of Wages and Tait38 with executing the elastic
net only once at the end of the trial.
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Chapter 2

Gene selection using a high-dimensional
regression model with gene expression
data in cancer prognostic studies

2.1 Introduction

In this chapter, we developed a method for estimating the proportion of FP genes, i.e., false positive rate
(FPR), among the total identified genes. Specifically, the FPR is calculated using a mixture distribution
based on the coefficients estimated by the lasso. We formulate the mixture distribution by considering
the features of the lasso. By identifying the FP genes using the proposed method and excluding them
from the Cox model, we are able to improve the prediction accuracy of the model. The accuracy of the
FPR estimated by the proposed method is examined by simulation studies. We present the illustration of
the proposed method using a well-known data set containing gene expressions from patients with diffuse
large B-cell lymphoma (DLBCL) along with their survival time.22

2.2 Method

Cox proportional hazard model
Consider a sample of size n from which the relationship between the timing of an event and gene expres-
sion levels x1, . . . , xp of p genes need to be estimated. Due to censoring, for i = 1, . . . , n, the ith datum
in the patient is denoted by (ti, δi, xi1, . . . , xip), where δi is the censor indicator and ti is the event time if
δi = 1 or censored time if δi = 0, and xi = (xi1, . . . , xip)T is the vector of the gene expression levels of p
genes for the ith patient. The Cox proportional hazard model is the most popular method to evaluate the
relationship between gene expression and survival outcomes.27 The hazard function of an event at time
t for a patient i with the gene expression levels xi is given by

h(t|x) = h0(t) exp
(
xT

i β
)

(2.1)

where β = (β1, . . . , βp)T is a parameter vector and h0(t) is the baseline hazard, which is the hazard for
the respective individual when all variable values are equal to zero. In the general setting with n > p, the
coefficients are estimated by maximizing Cox’s log partial likelihood as follows:

l(β) =
n∑

i=1
δi

⎡⎢⎢⎢⎢⎢⎢⎢⎣xT
i β − log

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

r∈R(ti)
exp

(
xT

r β
)⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2.2)
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where R(ti) is the risk set that contains the patients whose survival time or censored time is at least ti.

The lasso
Tibshirani18,19 introduced a novel parameter estimating method that simultaneously executes parameter
estimation and variable selection by adding the L1 norm to log likelihood function. The penalized log-
likelihood function lp of the lasso in the Cox’s proportional hazard model is as follows:

lp(β) = l(β) − λ
p∑

j=1
|β j| (2.3)

where λ is the tuning parameter, which determines the amount of shrinkage, and l(β) is the Cox’s log par-
tial likelihood. The parameters are estimated by maximizing Equation (2.3). In this study, the parameters
were estimated using the efficient gradient ascent algorithm.33

When performing the lasso, we need to determine the value of λ, which affects the lasso estimates.
As the value of λ increases, the number of the selected genes monotonically decreases. The optimal
value is often determined by the cross-validation log partial likelihood32. The K-fold cross-validated log
partial likelihood is given by

CV(λ) =
K∑

k=1

{
l
(
β̂(−k)

)
− l(−k)

(
β̂(−k)

)}
(2.4)

where l(−k)
(
β̂
)

is the log partial likelihood when the k-th fold is left out, and β̂(−k) is the estimate of
β obtained by the lasso when the k-th fold is left out. The optimal tuning parameter λ is obtained by
maximizing CV(λ). The number of folds to execute the above-mentioned cross validation is often set to
5 (or 10), considering the computational feasibility.

Estimation of false positive rate (FPR)
In this section, we propose the method to estimate the FPR for a fixed value of λ determined by the cross
validation by assuming a mixture distribution for the lasso estimates. The mixture distribution is devel-
oped on the basis of the following 2 features of the lasso: (i) the lasso selects at most n variables, because
of the nature of the convex optimization problem when n < p,20,43 and (ii) in the Bayesian framework, the
lasso estimate is derived as the posterior mode under independent Laplace prior distribution as follows:

fL

(
β j; 0,

1
λ

)
=
λ

2
exp

(
−λ|β j|

)
(2.5)

where fL (y; a, b) = (2b)−1 exp (−|y − a|/b) is the probability density function of Laplace distribution with
location parameter a and scale parameter b.18 On the basis of these features of the lasso, the mixture
distribution is assumed to β̂ j for the fixed value of λ as follows:

f
(
β̂ j; π0, πc, τ, μc, σc

)
= n

p

{
π0 fL

(
β̂ j; 0, τ−1

)
+

∑C
c=1 πc fN

(
β̂ j; μc, σ

2
c
)}

+
(
1 − n

p

)
fL

(
β̂ j; 0, ε

)
(2.6)

where π0 and πc are mixed proportions
(
π0 +

∑C
c=1 πc = 1

)
; fN

(
·; μc, σ

2
c
)

is the probability density func-
tion of the normal distribution with mean μc (� 0) and variance σ2

c in component c; C is the number
of component, which is determined on the basis of any model evaluation criteria; and ε is the constant
value, which is boundlessly close to 0, e.g., ε = 10−8. The unknown parameters, π0, πc, τ, μc, and σc,
are estimated by maximizing the log-likelihood function of Equation (2.6).

The mixture distribution defined by Equation (2.6) is formulated on the basis of the following con-
cepts. Since the lasso selects at most n genes in the n < p setting, the coefficients for at least p − n
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genes are shrunken toward exactly zero; therefore, Equation (2.6) consists of 2 terms, i.e., n/p term and
1 − n/p term. In the n/p term, the C + 1 component mixture distribution comprising the Laplace and
normal distributions. Specifically, the Laplace distribution with location parameter 0 and scale parameter
τ−1, fL

(
β̂ j; 0, τ−1

)
, is assumed as the distribution of the non-outcome-predictive genes considering the

above-mentioned feature (ii) of the lasso, while the C-component (c = 1, . . . , C) normal distribution
with mean μc (� 0) and variance σ2

c is assumed as the distribution of the outcome-predictive genes. It
should be noted that normal distribution is a choice of convenience. Next, in the 1−n/p term, the Laplace
distribution with location parameter 0 and scale parameter ε is assumed as the distribution of the p − n
genes, considering the above-mentioned feature (i) of the lasso.

Using the estimated mixture distribution, we defined a FPR for a cut-off value ζ (> 0) as follows:
given the cut-off value ζ, the area under the Laplace distribution in the n/p term is the estimated propor-
tion of FP genes, and can be written as follows:

P̂FP = π̂0

[∫ −ζ
−∞ fL

(
u; 0, τ̂−1

)
du +

∫ +∞
ζ

fL
(
u; 0, τ̂−1

)
du

]
= 2π̂0

∫ +∞
ζ

fL
(
u; 0, τ̂−1

)
du (2.7)

Next, the estimated proportion of true positive (TP) genes for the cut-off value ζ is given by the following:

P̂TP =

C∑
c=1
π̂c

[∫ −ζ

−∞
fN

(
u; μ̂c, σ̂

2
c
)

du +
∫ +∞

ζ
fN

(
u; μ̂c, σ̂

2
c
)

du
]

(2.8)

Using equation (2.7) and equation (2.8), we obtain the FPR estimator for the cut-off value ζ as follows:

F̂PR(ζ) =
P̂FP

P̂TP + P̂FP
(2.9)

Based on the cut-off value ζ used, the estimated proportions of FP and TP genes and the corresponding
estimated FPR are found to vary. We determined a cut-off value based on the target FPR specified
in priori. Specifically, by sequentially changing ζ, we determined the cut-off value that allowed the
estimated FPR to be less than or equal to the target FPR. For example, if the target FPR was 0.05, we
used the minimum cut-off value that would make the estimated FPR ≤ 0.05.

2.3 Simulation study

Simulation setting
We performed simulation studies to examine the precision of the FPR estimated by the proposed method.
In the simulation studies, the number of patients n is set to 200. The number of genes p is set to
1,000, including the p1 (= 5, 30) outcome-predictive genes, i.e., TP genes. The coefficient for gene j
( j = 1, . . . , p) β j is set to 1.5 for the outcome-predictive genes ( j = 1, . . . , p1) and 0 for the non-
outcome-predictive genes ( j = p1 + 1, . . . , p). The number of component C is set to 1 throughout. We
may not be able to assume independence among genes, since the expression levels among the outcome-
predictive genes are likely to be correlated because of gene co-regulation. It may be reasonable to
assume that the expression levels among the non-outcome-predictive genes as well as those between the
outcome-predictive genes and the non-outcome-predictive genes are independent.44 The gene expression
levels for patient i, xi, are generated from the multivariate normal distribution with mean vector 0 and
covariance matrix Σ with variance 1, so that the correlation among the expression levels of the outcome-
predictive genes is 0.0, 0.2, or 0.5, and is constant among the outcome-predictive genes. The survival
time for patient i is generated on the basis of the exponential model as follows:

ti = − log(U)/ exp
(
xT

i β
)

(2.10)
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where U is the uniform random variable between 0 and 1.45 We set λ to 10−30 by 5 in the simulation
studies in order to evaluate the precision of the estimated FPR for various values of λ, although the
optimal value of λ is determined by cross validation in practice. The value of ζ is defined as the minimum
value among |β̂ j| (� 0) ( j = 1, . . . , p) in the simulation studies. The average value for true FPR, the
estimated numbers of both TP and FP genes, and the estimated FPR in 1,000 simulations are reported.

Simulation results
Table 2.1 shows that the average of the genes with β̂ j � 0 in the lasso, true FPR, and the estimated TP,
FP, and FPR for each design parameters in 1,000 simulations. According to Table 2.1, we found that
the accuracy of the estimated FPR varied depending on the value of λ. Specifically, the accuracy of the
estimated FPR was satisfactory for the values of λ = 10, 15, and 20, and it was slightly underestimated
for the values of λ = 25 and 30. The number of genes with β̂ j was relatively small for the larger value
of λ; therefore, the degree of underestimation observed in the simulation studies may be acceptable. For
instance, in case of ρ = 0.0, p1 = 5, and λ = 30, the average number of true and estimated FP genes were
1.3 (= 6.5× 0.198) and 1.0 (= 6.5× 0.146), respectively, and the difference between them was negligibly
small in practice. Furthermore, the values of ρ and p1 did not greatly impact the accuracy of the FPR
estimated.
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Table 2.1: Accuracy of the FPR estimated using the method proposed in the simulation studies: a number
of patients is 200 and a number of genes is 1,000

ρ p1 λ #
{
j; β̂ j � 0

}
True FPR, % F̂PR,% T̂P F̂P

0 5 10 126.2 96.0 96.0 5.0 121.1
15 69.2 92.7 92.6 5.1 64.1
20 31.0 83.5 82.9 5.2 25.8
25 12.4 57.4 53.4 5.5 6.9
30 6.5 19.8 14.6 5.4 1.1

30 10 106.7 71.7 71.4 30.3 76.5
15 72.1 57.7 56.8 30.6 41.5
20 57.8 50.0 44.0 32.0 25.8
25 42.5 44.4 32.5 28.5 14.1
30 28.2 36.9 27.9 20.2 8.0

0.2 5 10 122.7 95.9 95.9 5.0 117.6
15 65.4 92.3 92.2 5.1 60.3
20 27.8 81.5 80.7 5.2 22.5
25 10.3 48.6 43.8 5.5 4.8
30 5.7 10.1 6.8 5.2 0.5

30 10 64.1 52.8 52.0 30.5 33.6
15 32.1 6.4 5.0 30.4 1.7
20 30.0 0.1 0.1 30.0 0.0
25 30.0 0.0 0.0 30.0 0.0
30 30.0 0.0 0.0 30.0 0.0

0.5 5 10 119.3 95.8 95.8 5.0 114.2
15 62.5 91.9 91.8 5.1 57.4
20 25.4 79.7 78.8 5.2 20.2
25 9.2 42.6 36.4 5.5 3.6
30 5.4 6.5 3.3 5.2 0.2

30 10 59.8 49.5 48.5 30.5 29.3
15 31.1 3.4 2.1 30.4 0.7
20 30.0 0.0 0.0 30.0 0.0
25 30.0 0.0 0.0 30.0 0.0

　 　 30 30.0 0.0 0.0 30.0 0.0
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2.4 Application

We illustrated the exclusion of the FP genes from the genes selected by the lasso through the application
of the proposed method to a real data set comprising the overall survival in 240 DLBCL patients with the
expression of 7,399 genes.22 The survival times were observed in 138 patients, and the censored times,
in 102 patients. The median follow-up time was 3.9 years, and the median survival time was 2.8 years.

We divided the 240 patients into 2 groups; the training data comprised 160 patients, and the validation
data, 80 patients, as described by Rosenwald et al.22 We determined that the optimal value of λ was 27
by performing 5-fold cross validation, resulting in the selection of 12 genes as the outcome-predictive
genes. Table 2.2 shows the GenBank accession number, description, and coefficient estimate for each of
the 12 genes selected by the lasso.

Table 2.2: The GenBank accession numbers, descriptions, and coefficient estimates of 12 genes selected
by the lasso

GenBank accession Description β̂number
AA805575 Thyroxine-binding globulin precursor −0.1039
X00452 Major histocompatibility complex, class II, DQ alpha 1 −0.1026
LC 29222 − −0.0927
AF044323 COX15 homolog, cytochrome c oxidase assembly protein (yeast) 0.0167
L19872 Hydrocarbon receptor −0.0078
M20430 Major histocompatibility complex, class II, DR beta 5 −0.0076
K01171 Major histocompatibility complex, class II, DR alpha −0.0067
X59812 (R92015) Cytochrome P450, subfamily XXVIIA polypeptide −0.0028
M63438 Immunoglobulin kappa constant 0.0028
X82240 (AA729003) T-cell leukemia/lymphoma 1A −0.0017
X82240 (R97095) T-cell leukemia/lymphoma 1A −0.001
X59812 (H98765) Cytochrome P450, subfamily XXVIIA polypeptide −0.0002

Given the estimated coefficients β̂ j ( j = 1, . . . , 7, 399) , we assume that the 2 mixture distributions
with C = 1 and 2, and compared their fitness by using Akaike Information Criterion (AIC)46. AIC is
the most well known criterion for determining the number of components in the models. As a result,
we selected the value of C = 1 for simplicity of interpretation, although the AICs for C = 1 and 2
were almost same. Thus, we assumed the mixture distribution with C = 1, and obtained the following
estimated distribution (Figure 2.1):

fβ̂ j
= 160

7399

{
0.75 fL

(
β̂ j; 0, 0.0053

)
+ 0.25 fN

(
β̂ j;−0.10, 0.0064

)}
+7239

7399 fL
(
β̂ j; 0, 10−8

)
(2.11)

The mixed proportions of the Laplace and normal distributions in the n/p term were too small; therefore,
we enlarged the part including these distributions in Figure 2.1. In addition, according to the estimated
mixture distribution, the outcome-predictive genes that increase the risk of death, i.e., genes with β̂ j > 0,
were not found.
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Figure 2.1: The estimated mixture distribution assuming the lasso estimates in the DLBCL data; fL and
fN are the probability density functions of laplace and normal distributions, respectively. β̂ is the estimate
by the lasso and f (β̂) is the probability density of β̂. A magnified image of the distribution between the
β̂ values −0.3 and 0.1 is inserted.

Table 2.3 shows that the estimated numbers of FP and TP genes and the corresponding estimated
FPR for various cut-off values. The estimated FPR was less than 5.0% for the cut-off value ζ > 0.03,
indicating that 3 genes might be TP genes, although the FPR might be underestimated according to the
results of the simulation studies. In order to determine 9 genes that were most likely to be FP genes,
we calculated the AICs of all possible models consisting of 3 genes selected among 12 genes, i.e., 220
models in total. The model including 3 genes with β̂ values of −0.1039,−0.1026, and −0.0927 for
AA805575, X00452, and LC 29222 showed the lowest AIC, and therefore, the remaining 9 genes were
considered as FP genes.
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Table 2.3: The estimated numbers of TP and FP genes and the estimated FPR for the cut-off values from
0.0001 to 0.05

cut-off ζ #
{
j; |β̂ j| > ζ

}
F̂P T̂P F̂PR, %

0.0001 12 8.96 3.04 74.6
0.0005 11 8.05 2.95 73.2
0.001 10 7.13 2.87 71.3
0.005 7 3.76 3.24 53.7
0.01 4 1.24 2.76 30.9
0.02 3 0.19 2.81 6.3
0.03 3 0.03 2.97 1.0
0.04 3 0.00 3.00 0.0
0.05 3 0.00 3.00 0.0

Gene Set Enrichment Analysis
As an alternative method for the exclusion of the FP genes from the genes selected by the lasso, we used
the Gene Set Enrichment Analysis (GSEA),47 a computational method that assesses whether an a priori
defined set of genes shows statistically significant relevance to survival time. The set of genes to be
assessed by GSEA is generally defined based on the functional/biological relevance of gene expression
profiles, such as genes encoding products in a metabolic pathway, located in the same cytogenetic band,
or sharing the same Gene Ontology (GO) category. In this study, for the application of the GSEA to
the DLBCL data, we identified 1,454 sets of genes based on the GO categories. Of these, 53 gene
sets included at least 1 of the 12 genes selected by the lasso method. It should be noted that 5 genes
(e.g., M20430, AA805575, M63438, LC 29222, and L19872) were not included in any of the gene
sets. For this study, we implemented the modified GSEA for survival time proposed by Lee et al.48

Table 2.4 shows 38 gene sets with false discovery rate (FDR) < 0.50 estimated by the modified GSEA.
According to Table 2.4, the gene sets, including AF044323 and K01171, showed lower P-value and FDR,
and therefore, we determined these genes as TP genes, and the remaining 10 genes were conveniently
considered FP genes.
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Table 2.4: Gene sets with FDR < 0.5 in the GSEA
Gene Set P-value FDR The genes included

in the gene set
BIOSYNTHETIC PROCESS <0.001 <0.001 AF044323
CELLULAR BIOSYNTHETIC PROCESS <0.001 <0.001 AF044323
MITOCHONDRIAL PART 0.002 0.035 AF044323
MITOCHONDRION 0.005 0.066 AF044323
MITOCHONDRIAL ENVELOPE 0.008 0.085 AF044323
CYTOPLASMIC PART 0.014 0.093 AF044323, K01171
LYTIC VACUOLE 0.014 0.093 K01171
LYSOSOME 0.014 0.093 K01171
VACUOLE 0.022 0.103 K01171
CELLULAR COMPONENT ASSEMBLY 0.025 0.103 AF044323
PROTEIN METABOLIC PROCESS 0.028 0.103 AF044323
CELLULAR MACROMOLECULE METABOLIC 0.028 0.103 AF044323
PROCESS
SECONDARY METABOLIC PROCESS 0.029 0.103 AF044323
PIGMENT BIOSYNTHETIC PROCESS 0.029 0.103 AF044323
PIGMENT METABOLIC PROCESS 0.029 0.103 AF044323
CELLULAR PROTEIN METABOLIC PROCESS 0.034 0.109 AF044323
MITOCHONDRIAL MEMBRANE 0.035 0.109 AF044323
CYTOPLASM 0.039 0.115 AF044323, K01171
HEME BIOSYNTHETIC PROCESS 0.047 0.125 AF044323
HEME METABOLIC PROCESS 0.047 0.125 AF044323
HETEROCYCLE METABOLIC PROCESS 0.067 0.169 AF044323
MACROMOLECULAR COMPLEX ASSEMBLY 0.082 0.198 AF044323
COFACTOR BIOSYNTHETIC PROCESS 0.106 0.244 AF044323
PROTEIN COMPLEX ASSEMBLY 0.111 0.245 AF044323
COFACTOR METABOLIC PROCESS 0.134 0.284 AF044323
MITOCHONDRIAL INNER MEMBRANE 0.143 0.292 AF044323
RECEPTOR ACTIVITY 0.184 0.349 X00452
MULTICELLULAR ORGANISMAL DEVELOPMENT 0.191 0.349 X82240
TRANSMEMBRANE RECEPTOR ACTIVITY 0.191 0.349 X00452
ORGANELLE INNER MEMBRANE 0.200 0.349 AF044323
CELLULAR PROTEIN COMPLEX ASSEMBLY 0.209 0.349 AF044323
ENVELOPE 0.217 0.349 AF044323
ORGANELLE ENVELOPE 0.217 0.349 AF044323
ORGANELLE PART 0.324 0.467 AF044323
INTRACELLULAR ORGANELLE PART 0.324 0.467 AF044323
INORGANIC CATION TRANSMEMBRANE 0.324 0.467 AF044323
TRANSPORTER ACTIVITY
MITOCHONDRIAL MEMBRANE PART 0.326 0.467 AF044323
CYTOCHROME C OXIDASE ACTIVITY 0.356 0.497 AF044323

Prediction accuracy
We demonstrated that the 9 genes identified did not impact the survival outcome by comparing the pre-
diction accuracy between the models consisting of the aforementioned 3 and all 12 genes. Furthermore,
we also compared the prediction accuracy between the models by which 3 TP genes were identified by
the proposed method and 2 TP genes were identified by the GSEA. For the validation data including 80
patients, the following 3 criteria were calculated: P-value for the log-rank test, P-value for the prognostic
index, and deviance. The 80 patients were categorized into 2 groups by the boundary of the median of
prognostic index η̂i = xT

i β; the “better” and “worse” prognostic groups. The Kaplan-Meier curves be-
tween the 2 groups were compared by the log-rank test. Next, we calculated the P-value for the parameter
αmultiplied by the prognostic index η̂i in the Cox proportional hazard model h(ti|x) = h0(t) exp (αη̂i). Fi-
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nally, the deviance was calculated by −2
{
l(validation)

(
β̂training

)
− l(validation) (0)

}
where l(validation)

(
β̂training

)
and l(validation) (0) are the Cox log partial-likelihood function for the estimated coefficients by using train-
ing data and zero vector 0, respectively. For each criterion, the smaller value suggests better prediction
accuracy. The values of the 3 indices for the 3 models−the proposed method that identified 3 TP genes,
the lasso method that identified 12 genes, and the GSEA that identified 2 TP genes−are shown in Table
2.5. As shown in Table 2.5, the values of the 3 indices between the models that identified 3 and 12 TP
genes are almost the same. Furthermore, the prediction accuracy of the proposed method was found to
be better than that of the GSEA. Thus, by using the proposed method, we are able to exclude the genes
that are not likely to impact the survival outcome.

Table 2.5: Three criteria for model evaluation
Model with 3 genes Model with 2 genes

Criteria identified by the Model with 12 genes identified by the
proposed method GSEA

P-value of 0.002 0.007 0.246the log-rank test
P-value of 0.002 0.002 0.120the prognostic index
Deviance −8.942 −9.072 −1.967

2.5 Summary

In this study, we developed a method to estimate FPR by assuming the mixture distribution comprising
the Laplace and normal distributions on the lasso estimates. In practice, we identified the outcome-
predictive genes by performing the lasso, and subsequently, removing the FP genes using the proposed
method.

Although the penalized regression analyses including the lasso are attractive in the high-dimensional
gene expression data, it is difficult to identify the outcome-predictive genes without FP genes by using
these methods. Utilizing the proposed method, we can validate the results of the lasso, and identify the
outcome-predictive genes more precisely. The assumed mixture distribution was formulated considering
the 2 features of the lasso, although it may be a “somewhat complex” distribution. The validity of this
assumption was demonstrated through the simulation studies. Specifically, the accuracy of the FPR
estimated by the proposed method was satisfactory in many cases. The accuracy was slightly decreased
for the larger value of tuning parameter λ, but the underestimation of FPR may be acceptable in practice,
as discussed in the Simulation section.
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Chapter 3

Developing a survival prediction model
with enhancing the lasso approach on gene
expression data

3.1 Introduction

Here, we proposed an algorithm to sequentially fit the mixture distribution for this solution path, and
we used a simulation study to test the precision of the algorithm when estimating the number of TP.
We further demonstrated the proposed algorithm using a well-known diffuse large B-cell lymphoma
(DLBCL) dataset comprising overall survival of 240 DLBCL patients and gene expression data of 7,399
genes.22

3.2 Method

3.2.1 Solution path of the lasso estimates

Goeman33 introduced a method to calculate the solution path of the lasso estimates as a function of λ,
β̂(λ), which is based on the algorithm developed by Park and Hastie.49 The method maximizes lp(β, λ)
at a fixed λ based on a combination of gradient ascent optimization with the Newton-Raphson algorithm.
β̂(λ) are calculated for λ0 > . . . > λk > . . . > λz > 0 successively, starting from λ0 = max j ∂l/∂β j|β j=0

(which gives β̂(λ0) = 0 because the value has zero gradients). λz is chosen arbitrarily, but is often set
to 0.05 × λ0 in analyses of gene expression data.50 The lasso estimates at a current step are set to initial
values for calculation of the subsequent step. Step length Δk = λk − λk+1 is the minimum decrement to
change the number of selected genes m(k)

(
= #

{
j; β̂ j (λk) � 0

})
, i.e. only one gene is newly selected or

excluded from λk to λk+1.

3.2.2 Proposed algorithm for monitoring TP

We propose an algorithm to sequentially fit the mixture distribution in Equation (2.6) to the solution path
of the lasso estimates.2 In this algorithm, we assumed that the number of TP changed when the newly
selected or excluded gene from λk to λk+1 was truly correlated to survival, based on the maximum log-
likelihood of Equation (2.6). First, we approximated P̂FP ≈ π̂0 and P̂T P ≈ ∑C

c=1 π̂c in Equations (2.7) and
(2.8) by assuming a suitably small cut-off value ζ (≈ 0). We then obtained π̂0 = F̂P/m and π̂c = T̂ Pc/m
(c = 1, . . . ,C) from Equations (2.7) and (2.8), respectively, where T̂ Pc is an estimate of the number of
TP in component c. For k = 0, . . . , z, the proposed algorithm was as follows.
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Step 1
Step 1.1: In this step, we assumed that the newly selected or excluded gene from λk to λk+1 was FP. π0
denotes the proportion of FP, and is set as

π(k+1)
0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F̂P

(k)
+1

m(k+1) if m(k+1) = m(k) + 1
F̂P

(k)−1
m(k+1) if m(k+1) = m(k) − 1

For the other components, c (c = 1, . . . ,C), set π(k+1)
c = T̂ P

(k)
c /m(k+1).

Step 1.2: Given β̂(λk+1) and π(k+1)
0 , . . . , π(k+1)

C , calculate the maximum log-likelihood of Equation (2.6),
L(k+1)

0 .
Step 2
Step 2.1: Set c = 1
Step 2.2: In this step, we assumed that the newly selected or excluded gene from λk to λk+1 was TP. For
the component c, set

π(k+1)
c =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T̂ P

(k)
c +1

m(k+1) if m(k+1) = m(k) + 1
T̂ P

(k)
c −1

m(k+1) if m(k+1) = m(k) − 1

For the other components, set π(k+1)
0 = F̂P

(k)
/m(k+1) and π(k+1)

d = T̂ P
(k)
d /m(k+1) (d = 1, . . . ,C; d � c)

Step 2.3: Given β̂(λk+1) and π(k+1)
0 , . . . , π(k+1)

C , calculate the maximum log-likelihood of Equation (2.6),
L(k+1)

c .
Step 2.4: Set c = c + 1. Repeat Step 2.2 and 2.3 until c = C

Step 3: In this step, we determined whether the newly selected or excluded gene from λk to λk+1 was
TP or FP based on the maximum log-likelihood which was calculated in Step 1.2 and 2.3. If L(k+1)

0 was
the largest in L(k+1)

c (c = 0, . . . ,C), we assumed that the newly selected or excluded gene was FP; if not,
we assumed that it was TP. Therefore, calculate Cmax = arg max

c∈{0,1, ...,C}
L(k+1)

c . If Cmax = 0, update F̂P
(k)

as

follows:

F̂P
(k+1)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩F̂P
(k)
+ 1 if m(k+1) = m(k) + 1

F̂P
(k) − 1 if m(k+1) = m(k) − 1

If Cmax > 0, update T̂ P
(k)
Cmax as follows:

T̂ P
(k+1)
Cmax =

⎧⎪⎪⎪⎨⎪⎪⎪⎩T̂ P
(k)
Cmax + 1 if m(k+1) = m(k) + 1

T̂ P
(k)
Cmax − 1 if m(k+1) = m(k) − 1

Here, calculate the estimated TP at k + 1 by T̂ P
(k+1)
=

∑C
c=1 T̂ P

(k+1)
c .
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3.3 Simulation study

We performed a simulation study to examine the precision of our estimated TP. In this study, the number
of patients, n, was set to 200. The number of genes, p, was set to 1,000, which included the p1 (= 5 or 30)
outcome-predictive genes that are randomly chosen from p genes in each simulation. The coefficient for
gene j ( j = 1, . . . , p), β j, was set to 1.5 for the p1 outcome-predictive genes and 0 for the remaining
p− p1 none-outcome-predictive genes. We set λz to 5, and the number of components, C, to 1 throughout
(although C was determined using a model selection criterion in practice). The gene expression levels for
patient i, xi, were generated from the multivariate normal distribution with mean vector 0 and covariance
matrix Σ so that the variance was 1 and the correlation ρ(xik, xil) = 0 or 0.5|k−l| .51 The survival time for
patient i was generated based on the exponential model ti = − log(U)/ exp

(
xT

i β
)

where U is the uniform
random variable between 0 and 1.45 In order to evaluate the precision of the estimated TP for various
values of λ, we report a number of selected genes, including true TP, and estimated TP and FP, for λk
(k = 5, 10, 50, 100, 150).
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Table 3.1: Accuracy of the estimated number of true positives (TP) obtained using the proposed algorithm
in the simulation study. Average of a tuning parameter (λ), number of selected genes

(
#
{
j; β̂ j (λ) � 0

})
in the lasso, true number of true positives (True T P), estimated number of TP (T̂ P), and false positives
(F̂P) are reported at λk (k = 5, 10, 50, 100, 150) of the solution path.

p1 ρ k λ #
{
j; β̂ j (λ) � 0

}
True T P T̂ P F̂P

30 0 5 47.0 5.0 4.4 2.9 2.2
10 40.8 10.1 8.0 5.8 4.3
50 22.9 48.6 25.6 28.5 20.1

100 12.6 86.7 29.9 32.1 54.7
150 8.6 124.5 30.0 30.7 93.9

0.5 5 48.6 5.0 4.1 2.8 2.2
10 42.1 10.0 7.5 5.8 4.2
50 23.5 48.1 25.2 31.9 16.3

100 12.4 84.9 29.9 35.3 49.6
150 8.4 121.2 30.0 31.6 89.6

5 0 5 66.9 5.0 5.0 3.0 2.0
10 26.3 10.4 5.0 5.2 5.2
50 17.2 50.1 5.0 5.2 44.9

100 12.7 93.9 5.0 5.0 88.9
150 9.8 128.4 5.0 5.0 123.4

0.5 5 66.8 5.0 5.0 3.0 2.0
10 26.5 10.3 5.0 5.2 5.1
50 16.9 49.5 5.0 5.1 44.4

100 12.4 92.1 5.0 5.0 87.1
　 150 9.6 125.2 5.0 5.0 120.2

Table 3.1 shows the average of λ, a number of selected genes, true TP, and estimated TP and FP,
through 1,000 repeats. We observed that the precision of estimated TP varied depending on the value of
both p1 and k. When p1 = 5, the precision of the estimates was sufficient for k = 10, 50, 100, and 150,
while TP was slightly underestimated for k = 5. However, when p1 = 30, the precision of the estimates
was sufficient for k = 5, 10, and 150, while TP was overestimated for k = 50 and 100. For example,
when p1 = 30, ρ = 0.5, and k = 100, the average number of true and estimated TP were 29.9 and 35.3,
respectively. The values of ρ did not greatly affect the accuracy of the estimated TP.
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3.4 Application

To illustrate how our proposed algorithm could be used to determine λ, we applied it to the DLBCL
dataset, comprising survival of 240 DLBCL patients and gene expression data from 7,399 genes22. In the
gene expression data from the 240 patients, we identified 434 genes with complete sets of gene expression
values; all other genes had missing expression values, with an average of 24.7 missing values per gene.
Here, we used 0.0 as the missing expression value for descriptive purposes. Similar to Rosenwald22,
we divided the data in two: training data consisting of 160 patients and validation data consisting of 80
patients.

For the training data, we obtained the solution path of the lasso estimates, β̂(λk) (k = 0, 1, . . . , z).
λ0 = 72.5 was calculated as described in subsection 2.2. We set λz = 3.625 (= 0.05 × λ0) according to
Simon, et al.50.

We applied our proposed algorithm to the obtained solution path. We assumed three mixture dis-
tributions on the lasso estimates with C = 1, 2, or 3, and compared their goodness of fit for the β̂(λk)
(k = 0, 1, . . . , z) by the Akaike information criterion (AIC). As a result, we chose C = 1 because it had
the best AIC for all λk (k = 0, 1, . . . , z).
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Figure 3.1: Trace plot of number of selected genes and estimated number of true positives (TP) produced
by applying the proposed algorithm to the training data from the diffuse large B-cell lymphoma (DLBCL)
dataset. We determined λ = 7.19 (log10 = 0.86) as the optimum λ based on the estimated number of TP.
Using cross validation (CV), we determined λ = 27 (log10 = 1.43) as the optimum λ.

Figure 3.1 shows the estimated number of TP in a series of values of λ. We found that the lasso
selected at most 42 TP, with the number of selected genes at 96, when λ = 7.19 (= 0.86 as log10).
Therefore, we selected λ = 7.19 as the optimum λ, and the estimated mixture distribution for the value
of λ was as follows:

f
(
β̂ j(7.19)

)
=

160
7399

{
0.57 × fL

(
β̂ j(7.19); 0, 0.11

)
+ 0.43 × fN

(
β̂ j(7.19); 0.03, 0.112

)}
+

7239
7399

fL
(
β̂ j(7.19); 0, 10−8

)
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In order to identify the 42 TP from the 96 selected genes, we arranged the 96 in descending order of
|β̂ j|, and identified the first 42 listed genes with a cut-off value ζ = 0.084. Subsequently, the model that
included these 42 genes is identified as the ”42 TP-model”.

In comparison to the 42 TP-model, we performed CV. On the basis of 5-folds CV, 12 genes were
selected with λ = 27 (= 1.43 as log10). Subsequently, the model including these 12 genes is identified as
the “CV-model”. Notably, both the 42 TP-model with 42 genes and the CV-model with 12 genes selected
4 genes in common. Table 3.2 shows the GenBank accession number and description for each of the 4
genes selected by both these models.

We compared the prediction accuracy of the 42 TP-model and the CV-model using validation data
consisting of 80 patients. For this data, we calculated 3 values that served as comparison criteria: p-
values for the log-rank test and prognostic index, and the deviance. The 80 patients were categorized
into 2 groups, the “better” and “worse” prognostic groups, using the boundary of the median of prog-
nostic index η̂i = xT

i β. The Kaplan-Meier curves between the 2 groups were compared with a log-
rank test. Next, we calculated the P-value for the parameter α multiplied by the prognostic index η̂i
in the Cox proportional hazard model h(ti|x) = h0(t) exp (αη̂i). Finally, the deviance was calculated
by −2

{
l(validation)

(
β̂training

)
− l(validation) (0)

}
where l(validation)

(
β̂training

)
and l(validation) (0) are the Cox log

partial-likelihood function for the estimated coefficients by using the training data and zero vector 0,
respectively. For each criterion, the lower value suggested better prediction accuracy.

Table 3.3 shows the values of the 3 criteria for each model. We found that the values of all 3 criteria
for the 42 TP-model were lower than those for the CV-model, suggesting that the model based on the
proposed method was more accurate. Therefore, by using our proposed algorithm, we determined λ and
were able to select important genes, likely to be correlated with survival, which the CV was unable to
select.
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Table 3.2: GenBank accession numbers and descriptions for 4 genes selected by both CV and the model
including the 42 genes identified by the algorithm that we developed

GenBank accession number Description
X82240 (AA729003) T-cell leukemia/lymphoma 1A

AA805575 Thyroxine-binding globulin precursor
LC 29222 -

X59812(H98765) Cytochrome P450, subfamily XXVIIA polypeptide

Table 3.3: Values of the comparison criteria for the model including 12 genes determined by CV (CV-
model) and the model including the 42 genes identified by our developed algorithm (42 TP-model)

Criteria CV-model 42 TP-model
P-value of the log-rank test 0.007 <0.001

P-value for the prognostic index 0.002 <0.001
Deviance −9.079 −11.297
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3.5 Summary

In this study, we proposed an algorithm for estimating the number of TP on the solution path of lasso
estimates. Monitoring and determining the number of TP for a series of values λ is important because
it can increase the probability of uncovering all outcome-predictive genes. The number of TP should be
estimated with appropriate accuracy. To confirm the accuracy of our TP, we conducted a simulation study
using a typical gene expression dataset. We found that the precision of our algorithm for estimating the
number of TP was adequate, although an overestimation occurred with some values of λ. However, the
overestimation occurred when the true number of TP was saturated, and so it may not cause a problem
by passing over genes that truly correlated with survival.
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Chapter 4

An individualized dose-finding approach
using the penalized regression for gene
mutation patterns in phase I trials for
molecularly targeted agents

4.1 Introduction

In this chapter, we propose a novel dose-finding approach to identify the IOD for MTAs in phase I
trials in oncology. We utilize the L1 and L2 penalized regression, and the IOD determination and gene
selection are simultaneously performed based on the elastic net. For each binary efficacy and toxicity
outcome, we assume the logistic model with including dose and quadratic form of dose, and gene effect
as covariates in main term, and dose by gene effect as covariates in interaction term. The quadratic
form of dose in the model is incorporated to account for the non-monotonic patterns for dose-efficacy
and dose-toxicity relationships as Cai et al.42 The estimation of the coefficients for efficacy and toxicity
outcome are performed separately and based on the frequentist approach by maximizing the penalized
log-likelihood. The dose-finding algorithm is based on the predictive values which are calculated by
the estimated penalized regression model. Many dose-finding approaches for MTAs in the available
literature take into account correlations between efficacy and toxicity outcomes, and we also consider
them based on the multinomial distribution for bivariate joint binary probability of efficacy and toxicity
outcome as Sato et al.36 We implement the simulation studies, and compare the operating characteristics
between the proposed method and the method of Wages and Tait38 with executing the elastic net only
once at the end of the trial.

4.2 Method

Notations for data
Let YEi and YTi denote a binary efficacy and toxicity outcomes for the ith (i = 1, . . . , n) entered patient,
respectively. YEi (or YTi) = 1 indicates that efficacy (or toxicity) is observed, and YEi (or YTi) = 0 indicates
otherwise. The gene mutation pattern for ith patient is denoted as xi = (xi1, . . . , xip)T , where xi j = 1 if
jth gene of ith patient has any mutation, xi j = −1 otherwise, and p is a total number of genes. The dose
for ith patient is denoted as di. One dose from dose set D = (z1, . . . , zK) where zk (k = 1, . . . , K) is
actual dose is assigned for each patient when entering the trial. In this paper, we define the standardized
dose as z′k = log(zk) − K−1 ∑K

l=1 log(zl) with the corresponding standardized dose set D′ = (z′1, . . . , z
′
K)

as Sato et al36, and utilize it as value of dose.
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Model 1: L1 and L2 penalized regression model separately applied for efficacy and toxicity out-
comes based on the binomial distribution
The logistic model is widely used for binary outcomes for evaluating the relationship between efficacy
(or toxicity) outcomes and covariates (i.e., gene mutation patterns and dose). The logit of probability to
observe efficacy (or toxicity) for ith patient with di and xi is modeled by

logit(Pr(Yqi = 1|di, xi)) = ηq(di, xi) = b0q + α1qdi + α2qd2
i +

p∑
j=1
β jqxi j +

p∑
j=1
γ jqdixi j (q = E,T ) (4.1)

where b0q, αq = (α1q, α2q), βq = (β1q, . . . , βpq), γq = (γ1q, . . . , γpq) are regression coefficients of the
model and a total number of parameters is 2p + 3 for each value of q. We denote ηqi = ηq(di, xi) in the
following paper. As Cai et al.42, we assume non-monotonic patterns of dose-toxicity and dose-efficacy
relationships by adding quadratic term of dose in an ordinal linear model. In the general setting where
the number of patient when the (n+ 1) th patient entered exceeds total number of regression coefficients,
the regression coefficients can be estimated by maximizing the log likelihood function for the equation
(4.1) on the binary distribution as follows:

lbinary(b0q,αq,βq,γq|di, xi) =
1
n

n∑
i=1

(
Yqiηqi − log

(
1 + exp(ηqi)

))
(4.2)

This cannot work in case of n < 2p + 3, and it frequently happens in the Phase I trials.
In the L1 and L2 penalized regression model, the regression coefficients are estimated by maximizing

the following penalized log-likelihood function:

lbinary,pen(b0q,αq,βq,γq, λ|di, xi) = lbinary(b0q,αq,βq,γq|di, xi) − λρc(αq,βq,γq) (4.3)

where λ is the tuning parameter which determines the amount of shrinkage and ρc(αq,βq,γq) is the
penalty term. There are several approaches for ρ(αq,βq,γq). The least absolute shrinkage and selection
operator (lasso)18 has a good property to simultaneously estimate regression coefficients and select im-
portant genes, and is frequently used in cancer prediction studies. However, the model we proposed has a
problem of multicollinearity due to moderate to high correlations among biomarkers as well as between
main and interaction terms, and the lasso may suffer from these problems. The elastic-net20 can deal
with this problem and in this paper, we utilized the elastic net approach, and ρc(αq,βq,γq) is given by:

ρ(αq,βq,γq) =
∑2

j=1 wq,1, j
{

1
2 (1 − c)α2

jq + c|α jq|
}
+

∑p
j=1 wq,2, j

{
1
2 (1 − c)β2

jq + c|β jq|
}

+
∑p

j=1 wq,3, j
{

1
2 (1 − c)γ2

jq + c|γ jq|
}

(4.4)

where c is the mixing-control parameter which controls proportions of penalty of L1 and L2 norm, and
wq, ., j (0 ≤ wq, ., j ≤ 1) are separate shrinkage parameters for each parameter of αq, βq, and γq. The
regression coefficients are estimated by maximizing the penalized log-likelihood function for efficacy and
toxicity outcomes separately, and we utilized the coordinate descent algorithm developed by Friedman
et al.41, which is implemented by R package glmnet.

In order to determine the optimal c and λ, the m-fold cross validation is performed.41 The data for n
patients is divided into m-folds. The lth dataset (l = 1, . . . , m) out of the m divided datasets is used as
the training dataset, and the remaining m − 1 dataset is used as the test dataset. The deviation of the test
dataset is calculated based on coefficients estimated by the training dataset. This step is repeated for m
times for all lth (= 1, . . . , m) datasets. Average values of the deviation is calculated given (c, λ) value.
In this paper, m = n is used, which is equal to the leave-one-out cross validation (LOOCV). The LOOCV
is repeated for several values of c and λ, and the combination of (c, λ) which gives the best value of the
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deviation can be determined. In the R package glmnet, λ values where the number of non-zero estimates
of coefficients changes in series of values of λ are automatically used for the LOOCV while we have to
provide the list of c values. We have to avoid to set c = 1, which results in L1 penalized regression, for
dealing with the multicollinearity, and c = 0, which results in L2 penalized regression, because there is
no ability to select genes; we used c = {0.1, 0.3, 0.5, 0.7, 0.9} throughout this paper.

Fundamentally the objective of the Phase I trial for MTAs is to determine the optimal dose for later
phase of developments. Ideally, wq, 1, 1 should be 0 so that the term α1q remains in any cases of (c, λ).
Moreover in case that all other estimates than b0q and α1q are zero, the proposed method can seem the
ordinal logistic regression model with including only intercept and dose effect. However, in the setting
with few patients with several numbers of genes we often face complete or quasi-complete separation
problem in logistic regression, and obtain infinite or unrealistically large estimates. Therefore we need a
little amount of shrinkage on wq, 1, 1, and it is small enough for estimates to be non-zero. As far as we
know, there is no universally acceptable method to determine the value of wq, ., j. In this paper, we set
0.1 for wq, ., j and 1 for others.

Model 2: The L1 and L2 penalized regression model for the multinomial distribution
Let Yi be a 4 category multinomial variable, and Yi is derived by YEi and YTi as Yi = 1 if YEi = 0 and YTi

= 0, Yi = 2 if YEi = 0 and YTi = 1, Yi = 3 if YEi = 1 and YTi = 0, and Yi = 4 if YEi = 1 and YTi = 1. As in
Zhu et al.52, the Yi with ηgi (g = 1, 2, 3, 4) is modeled by

Pr(Yi = g|di, xi) =
exp(ηgi)∑4
l=1 exp(ηli)

, (g = 1, 2, 3, 4) (4.5)

In the general setting, parameters are estimated by maximizing the following log-likelihood function
based on the multinomial distribution:

lmulti(b0,α,β,γ |di, xi) =
1
n

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
4∑

g=1
I(Yi = g)ηgi − log

⎛⎜⎜⎜⎜⎜⎜⎝
4∑

l=1
I(Yi = l)ηli

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (4.6)

where b0 = (b01, . . . , b04), α = (α1, . . . , α4), β = (β1, . . . , β4), γ = (γ1, . . . , γ4). The penalized
log-likelihood function based on the multinomial distribution is given by

lbinary,multi(b0,α,β,γ, λ|di, xi) = lmulti(b0,α,β,γ |di, xi) − λρc(α,β,γ) (4.7)

where like the model 1, ρc has a form of the elastic net penalty and given by

ρ(α,β,γ) =
∑4

g=1[
∑2

j=1 wg,1, j
{

1
2 (1 − c)α2

jg + c|α jg|
}
+

∑p
j=1 wg,2, j

{
1
2 (1 − c)β2

jg + c|β jg|
}

+
∑p

j=1 wg,3, j
{

1
2 (1 − c)γ2

jg + c|γ jg|
}
] (4.8)

The optimal (c, λ) value is determined based on the LOOCV, and wg, ., . are set in the same way as the
Model 1.

Dose-finding algorithm
For estimation in the Model 1, two or more observations for each category (0 or 1) for both toxicity and
efficacy outcomes needed for estimating parameters by the coordinate descent method in R package glm-
net. We utilize the LOOCV and to keep this condition for all divided datasets, three or more observations
for each category (0 or 1) for both toxicity and efficacy outcomes needed. Similarly, for estimation in the
Model 2, three or more for each category for both toxicity and efficacy outcomes needed.

Before starting the dose-finding algorithm based on the model 1 and 2, we incorporate the Run-in
period at an early stage of the trial wherein the first cohort of patients are treated with the lowest dose
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and the dose is escalated by the continual reassessment method for the toxicity outcome.53 In this study,
a cohort consisted of three patients. The Run-in period continues while the number of patients is less
than N1 patients, and in this paper we utilize N1 = 21 as Guo et al.39 After the Run-in period, we initiate
the Model-based dose-finding period. If we observe 3 or more observations for each category (0 or 1) for
both toxicity and efficacy outcomes, we use Model 1. Nevertheless, if we observe 3 or more observations
for each category of Y , we use Model 2. In this paper, we set the cohort size of the model-based dose-
finding period to 1 as Guo et al.39 Note that more number of patients per cohort can also be used; in that
case, different doses are assigned to each patient based on the gene mutation patterns.

We define the clinically accepted toxicity probability (φT ). Given the gene mutation patterns of (n+1)
th patient, predictive probabilities to observe efficacy and toxicity outcomes which are functions of the
given gene mutation patterns and doses are calculated based on the model and estimated parameters.
The optimal dose is determined as a dose with a maximal efficacy predictive probability where toxicity
predictive probability is equal to or less than φT , and is assigned to (n+1) th patient. If there is no optimal
dose for (n + 1) th patient, then another patient is enrolled. If we cannot enroll patients nskip times in a
row, the study is terminated.

We apply this algorithm until the maximal sample size (Nmax) is reached or the study is terminated.
Then we calculate the predictive probabilities for all gene mutation patterns and determine the IOD in
the same way as determining the optimal dose in the model-based dose-finding period.

Gene selection method
The model which determined the IOD is also used for performing gene selection. We term the genes
which determines the dose-efficacy and dose-toxicity relationships as “DEDT-related genes”. The main
and interaction terms have different means for the MTAs. The DEDT-related genes in main term are
considered as the prognostic biomarker which determine the prognosis of the patient with the given
gene mutation pattern while the DEDT-related genes in interaction term are considered as the predictive
biomarker which can predict the efficacy and (or) toxicity of dose of the MTAs for the patient with the
given gene mutation pattern. Therefore, we perform the selection of genes for main and interaction term
separately and both.

If one of β̂ jq (q = E, T ) when the model 1 used ( β̂ jg (g = 1, 2, 3, 4) when the model 2 is used) is
not equal to 0, the j th gene is selected as the DEDT-related genes as main term. If one of γ̂ jq (q = E, T )
( γ̂ jg (g = 1, 2, 3, 4)) is not equal to 0, the j th gene is selected as the DEDT-related genes as interaction
term. If one of j th gene of either main or interaction term is selected as the DEDT-related genes, then
the j th gene is selected as the DEDT-related genes for either main or interaction term.
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4.3 Simulation study

Simulation setting
We implemented simulation studies to compare the accuracy of IOD determination and gene selec-
tion of the proposed method with the method proposed by Wages and Tait.38 We considered the dose
set D = {1, 2, 3, 4, 5, 6} with six actual doses. Given these actual doses, standardized doses were
D′ = {−1.097, −0.403, 0.002, 0.290, 0.513, 0.695}. The starting dose was set as the lowest dose.
We considered the number of genes p = 4 or 8. To generate xi, at first we generated p length vector of
random values, x′i , from p multivariate normal distribution Np(0, Σ) where Σ = [σkl] (k, l = 1, . . . , p),
and set σkl = 1 (k = l), σkl = 0.5 (k � l). Then xi j was generated by sign(x′i j) where sign(x′i j) = 1
if x′i j ≥ 0 and sign(x′i j) = −1 otherwise. We simulated and investigated seven different scenarios with
respect to the true probabilities of efficacy and toxicity for the standardized doses depending on the gene
mutation patterns (Table 4.1). The number of DEDT-related genes for main and interaction term is 1 or
2 depending on the simulation scenario. The DEDT depending on dose and the gene mutation patterns
are shown in Figure 4.1 and 4.2. Each simulation consisted of 1,000 trials.

In both methods, we set the maximum sample size Nmax to 60, and the clinically accepted toxicity
probability (φT ) to 0.3. For the proposed method, in Run-in period, we used the (0.01, 0.08, 0.15, 0.22,
0.29, 0.36) for prior toxicity probability to implement the CRM. The nskip is set to 10.

In this study, we utilized the method by Wages and Tait38 as comparator. In their study, the monotonic
dose-toxicity relationship is considered in the setting of MTA developments, and was modeled by using
the power model based on one skeleton. We set the skeleton values from the lowest to the highest
doses as (0.01, 0.08, 0.15, 0.22, 0.29, 0.36) as Wages and Tait.38 In contrast, the non-monotonic dose-
efficacy relationship is considered and was modeled by using the class of power models including several
skeletons that could be seen in MTAs developments as the typical dose-efficacy relationship. We set the
eleven sets of skeleton values from the lowest to the highest doses as 1: (0.60, 0.50, 0.40, 0.30, 0.20,
0.10), 2: (0.50, 0.60, 0.50, 0.40, 0.30, 0.20), 3: (0.40, 0.50, 0.60, 0.50, 0.40, 0.30), 4: (0.30, 0.40, 0.50,
0.60, 0.50, 0.40), 5: (0.20, 0.30, 0.40, 0.50, 0.60, 0.50), 6: (0.10, 0.20, 0.30, 0.40, 0.50, 0.60), 7: (0.20,
0.30, 0.40, 0.50, 0.60, 0.60), 8: (0.30, 0.40, 0.50, 0.60, 0.60, 0.60), 9: (0.40, 0.50, 0.60, 0.60, 0.60, 0.60),
10: (0.50, 0.60, 0.60, 0.60, 0.60, 0.60), 11: (0.60, 0.60, 0.60, 0.60, 0.60, 0.60), which were used in the
simulation study conducted in the original paper.38 The sample size for adaptive randomization phase
was set to 16. The trial is terminated by safety reason when the lower 95% confidential interval of the
posterior probability of the lowest dose exceeds the φT . We don’t utilize the interim trial termination
due to futility to be the same condition as the proposed method. It is not comparable with our proposed
method to recommend only one dose for overall population estimated by the original method of Wages
and Tait.38 Therefore, as our proposed method, we implemented the elastic net for IOD determination
at the end of each trial conducted based on the method of Wages and Tait.38 The gene selection is also
implemented in the same manner as ours. We term this method as the WT-ELNET method.

We compare two kinds of evaluation criteria between the proposed and the WT-ELNET method. One
is a correct recommendation rate of IOD for each gene mutation patterns, and also the average of them
within all gene mutation patterns. The other is the proportion of correctly (or incorrectly) selected genes
among DEDT (or none DEDT) genes, termed as P-CSG (or P-ISG).
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Figure 4.1: Simulation scenarios 1-5: The dotted and solid line are the dose-efficacy and dose-toxicity
curves, respectively. A curve with circle and diamond are for x1 = 1 and x1 = −1, respectively. The
optimal dose for x1 = 1 and x1 = −1 are indicated by enclosing the dose level in a dotted and solid
square, respectively. For scenario 5, the gene does not influence the dose-efficacy and dose-toxicity
relationships.
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Figure 4.2: Simulation scenarios 6 and 7: The dotted and solid line are the dose-efficacy and dose-
toxicity curves, respectively. A curve with circle, square, and diamond are for (x1, x2) = (+1,+1),
(x1, x2) = (+1,−1) or (x1, x2) = (−1,+1), and (x1, x2) = (−1,−1), respectively. The optimal dose for
(x1, x2) = (+1,+1), (x1, x2) = (+1,−1) or (x1, x2) = (−1,+1), and (x1, x2) = (−1,−1) are indicated by
enclosing the dose level in a dotted, dashed, and solid square, respectively.
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Table 4.1: The data generation model for dose-efficacy and dose-toxicity in each simulation scenario.
Scenario Model

1 logit(Pr(YTi = 1|di, xi)) = −2.5 + 2di + xi1 + ui
logit(Pr(YEi = 1|di, xi)) = −1.5 + di + 0.5xi1 + ui

2 logit(Pr(YTi = 1|di, xi)) = −0.5 + di + 1.5xi1 + ui
logit(Pr(YEi = 1|di, xi)) = 2di + xi1 + ui

3 logit(Pr(YTi = 1|di, xi)) = −2.3 + 4di + 2xi1 − 3xi1di + ui
logit(Pr(YEi = 1|di, xi)) = −0.8 + 3di − d2

i + xi1 − 3xi1di + ui
4 logit(Pr(YTi = 1|di, xi)) = −1.4 + 2di − d2

i + 0.8xi1 − 1xi1di + ui
logit(Pr(YEi = 1|di, xi)) = di − 2d2

i + 0.2xi1 + 0.7xi1di + ui
5 logit(Pr(YTi = 1|di, xi)) = −1 + 3di − d2

i + ui
logit(Pr(YTi = 1|di, xi)) = 0.25di − 2d2

i + ui
6 logit(Pr(YTi = 1|di, xi)) = −2.5 + 2di + 0.5xi1 + 0.5xi2 + ui

logit(Pr(YEi = 1|di, xi)) = −1.5 + di + 0.25xi1 + 0.25xi2 + ui
7 logit(Pr(YTi = 1|di, xi)) = −2.3 + 4di + xi1 + xi2 − 1.5xi1di − 1.5xi2di + ui

logit(Pr(YEi = 1|di, xi)) = −0.8 + 3di − d2
i + 0.5xi1 + 0.5xi2 − 1.5xi1di − 1.5xi2di + ui

ui ∼ N(0, 0.5) induces correlations between efficacy and toxicity outcomes.
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Simulation result
Table 4.2 to 4.5 illustrated simulation results for each simulation scenario in terms of the recommenda-
tion rates with p = 4 and 8, respectively. In scenarios, the average of a correct recommendation rate of
our proposed method is up to 0.61 and higher compared with the WT-ELNET method. Especially when
patients with one gene mutation pattern do not have the IOD while others have (e.g., scenario 2), the
proposed method is significantly better than the WT-ELNET in terms of the average of a correct recom-
mendation rate of the IOD. In scenario where genes do not determine the dose-efficacy and dose-toxicity
relationships (e.g., scenario 5), it seems that the proposed and WT-ELNET method are comparable. We
also calculate the recommendation rate when one recommendation dose is determined by the original
WT method, and found that the recommendation rate is 0.72, suggesting that it might be better than the
proposed method. However, this values can be obtained only if we absolutely know that no genes affect
the dose-efficacy and dose-toxicity relationships and also do not perform the IOD determination, and
it may not be comparable between the proposed and the original WT method. It seems that a number
of genes which do not influence the dose-efficacy and dose-toxicity relationships does not influence the
correct recommendation rate of IOD significantly.

Table 4.6 and 4.7 illustrated operating characteristics of gene selection for each simulation scenario
with p = 4 and 8, respectively. When p = 4, The average P-CSG is high up to 0.91 and at least 0.48 in the
proposed method, and higher compared with the WT-ELNET method in almost all scenarios. However,
in the same time, the relatively high P-ISG were observed up to 0.63 for the proposed method, and equal
to or a bit higher than the WT-ELNET method. For each main and interaction term, we found that the
P-CSG in main terms is higher than the one in interaction term for both the proposed and the WT-ELNET
method. The same results were shown when p = 8, but the values of both P-CSG and P-ISG for all, main,
and interaction term a bit decrease compared with p = 4.
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Table 4.2: The recommendation rates for the IOD for the proposed and the method proposed proposed
by Wages and Tait38 with implementing the elastic net (WT-ELNET) for scenario 1-5 when p = 4

Scenario
The proposed method The WT-ELNET method

Overall x1 Early Overall x1 Early
−1 +1 Termination −1 +1 Termination

1 0.49 0.74 0.25 0 0.33 0.52 0.13 0
2 0.62 0.42 0.81 0.11 0.42 0.30 0.55 0.03
3 0.37 0.46 0.28 0.01 0.26 0.13 0.38 0
4 0.27 0.28 0.25 0.01 0.24 0.19 0.29 0
5 0.50 NA NA 0.01 0.32 NA NA 0

Table 4.3: The recommendation rates for the IOD for the proposed and the method proposed proposed
by Wages and Tait38 with implementing the elastic net (WT-ELNET) for scenario 6 and 7 when p = 4

Sce- The proposed method The WT-ELNET method
na- Over- (x1, x2) Early Over- (x1, x2) Early
rio all −1 −1 +1 +1 Termi- all −1 −1 +1 +1 Termi-

−1 +1 −1 +1 nation −1 +1 −1 +1 nation
6 0.50 0.73 0.55 0.54 0.19 0 0.36 0.52 0.40 0.42 0.12 0
7 0.33 0.51 0.32 0.32 0.19 0.01 0.21 0.16 0.19 0.20 0.30 0
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Table 4.4: The recommendation rates for the IOD for the proposed and the method proposed proposed
by Wages and Tait38 with implementing the elastic net (WT-ELNET) for scenario 1-5 when p = 8

Scenario
The proposed method The WT-ELNET method

Overall x1 Early Overall x1 Early
−1 +1 Termination −1 +1 Termination

1 0.45 0.71 0.20 0 0.31 0.51 0.11 0
2 0.54 0.34 0.74 0.11 0.40 0.31 0.50 0.04
3 0.33 0.42 0.24 0.01 0.25 0.12 0.38 0
4 0.26 0.30 0.23 0 0.22 0.20 0.25 0
5 0.48 NA NA 0.01 0.33 NA NA 　 0

Table 4.5: The recommendation rates for the IOD for the proposed and the method proposed proposed
by Wages and Tait38 with implementing the elastic net (WT-ELNET) for scenario 6 and 7 when p = 8

Sce- The proposed method The WT-ELNET method
na- Over- (x1, x2) Early Over- (x1, x2) Early
rio all −1 −1 +1 +1 Termi- all −1 −1 +1 +1 Termi-

−1 +1 −1 +1 nation −1 +1 −1 +1 nation
6 0.50 0.69 0.56 0.55 0.18 0 0.37 0.52 0.43 0.44 0.10 0
7 0.31 0.47 0.31 0.30 0.14 0.01 0.18 0.14 0.17 0.18 0.24 0
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Table 4.6: The operating characteristics in terms of gene selection for the proposed and the method
proposed proposed by Wages and Tait38 with implementing the elastic net (WT-ELNET) when p = 4

Scenario
The proposed method The WT-ELNET method

P-CSG P-ISG P-CSG P-ISG
O M I O M I O M I O M I

1 0.90 0.90 NA 0.42 0.56 0.32 0.79 0.79 NA 0.38 0.53 0.27
2 0.92 0.92 NA 0.56 0.59 0.54 0.96 0.96 NA 0.61 0.56 0.66
3 0.73 0.93 0.54 0.50 0.62 0.39 0.77 0.98 0.55 0.57 0.68 0.45
4 0.47 0.67 0.27 0.37 0.50 0.24 0.57 0.84 0.30 0.42 0.57 0.26
5 NA NA NA 0.22 0.37 0.08 NA NA NA 0.30 0.42 0.17
6 0.71 0.71 NA 0.40 0.54 0.33 0.65 0.65 NA 0.36 0.53 0.27
7 0.64 0.80 0.48 0.52 0.63 0.48 0.73 0.92 0.53 0.61 0.75 0.48

P-CSG (or P-ISG): The proportion of correctly (or incorrectly) selected genes among DEDT (or none
DEDT)-related genes, O: Overall, M: Main term, I: Interaction term

Table 4.7: The operating characteristics in terms of gene selection for the proposed and the method
proposed proposed by Wages and Tait38 with implementing the elastic net (WT-ELNET) when p = 8

Scenario
The proposed method The WT-ELNET method

P-CSG P-ISG P-CSG P-ISG
O M I O M I O M I O M I

1 0.85 0.85 NA 0.36 0.50 0.25 0.80 0.80 NA 0.34 0.51 0.20
2 0.91 0.92 NA 0.46 0.50 0.41 0.94 0.94 NA 0.50 0.46 0.53
3 0.68 0.91 0.45 0.38 0.50 0.26 0.72 0.98 0.47 0.44 0.58 0.30
4 0.38 0.57 0.19 0.27 0.39 0.15 0.49 0.80 0.17 0.31 0.49 0.14
5 NA NA NA 0.17 0.31 0.04 NA NA NA 0.22 0.36 0.09
6 0.65 0.65 NA 0.34 0.47 0.24 0.62 0.62 NA 0.32 0.48 0.20
7 0.56 0.75 0.37 0.40 0.53 0.27 0.63 0.90 0.36 0.47 0.64 0.30

P-CSG (or P-ISG): The proportion of correctly (or incorrectly) selected genes among DEDT (or none
DEDT)-related genes, O: Overall, M: Main term, I: Interaction term
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4.4 Summary

In this study, we proposed a novel dose-finding approach to find the individualized optimal dose for
single MTA in phase I trial. The proposed method utilized the L1 and L2 penalized regression model
to estimate the parameters of the model and perform gene selection with a large number of covariates
of genes in main terms and genes by dose effect in an interaction term. The proposed method selects
the individualized optimal dose for future patients based on the predictive probability of the toxicity and
efficacy outcome of the estimated penalized regression model. The simulation studies demonstrated that
the operating characteristics in the proposed method were more favorable than those of the WT-ELNET
method especially when the IOD for the one type of gene mutation pattern does not exist while the IODs
for others exist (e.g., scenario 2 in simulation studies). These situations can occur such as gefitinib which
shows significantly better progression free survival for non-small cell lung cancer patients with EGFR
mutation than the standard treatment while not for patients without EGFR mutation.54 In such a case, the
ordinal dose-finding approach without considering gene mutation patterns does not work well because
it does not allow us to increase dose or mistakenly terminates a trial due to high toxicity and/or low
efficacy probability observed in only subpopulation with one type of gene mutation pattern. Therefore,
our proposed method is useful especially for developments of MTAs.
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Chapter 5

Discussion

5.1 Gene selection using a high-dimensional regression model with gene
expression data in cancer prognostic studies

In this study, we developed a method to estimate FPR by assuming the mixture distribution comprising
the Laplace and normal distributions on the lasso estimates. In practice, we identified the outcome-
predictive genes by performing the lasso, and subsequently, removing the FP genes using the proposed
method.

Although the penalized regression analyses including the lasso are attractive in the high-dimensional
gene expression data, it is difficult to identify the outcome-predictive genes without FP genes by using
these methods. Utilizing the proposed method, we can validate the results of the lasso, and identify the
outcome-predictive genes more precisely. The assumed mixture distribution was formulated considering
the 2 features of the lasso, although it may be a “somewhat complex” distribution. The validity of this
assumption was demonstrated through the simulation studies. Specifically, the accuracy of the FPR
estimated by the proposed method was satisfactory in many cases. The accuracy was slightly decreased
for the larger value of tuning parameter λ, but the underestimation of FPR may be acceptable in practice,
as discussed in the Simulation section.

In the section on Application to the DLBCL Data, the utility of the proposed method was illustrated.
We were able to eliminate the FP genes from the genes selected by the lasso with λ = 27, and improved
the accuracy of prediction of the model. We further identified the TP genes and examined the predic-
tion accuracy of overall survival based on them, using the proposed method and GSEA. Both methods
identified no TP genes in common. The prediction accuracy using the 3 genes identified by the proposed
method outperformed that using the 2 genes identified by the GSEA. The GSEA introduced by the Sub-
ramanian et al.47 evaluates gene expression data at the level of gene sets. The gene sets are defined based
on prior biological knowledge, e.g., published information about biochemical pathways or coexpression
in previous experiments. In contrast, the proposed method evaluates gene expression data at the level of
genes and does not use prior biological knowledge when identifying the outcome-predictive genes.

Some variants of the lasso and penalized regression methods are used, e.g., smoothly clipped absolute
deviation penalty (SCAD)55, adaptive lasso56,57, elastic net20, and ridge regression17, but of these, we
chose the lasso in this study, because of our concerns regarding the high possibility of missing the true
positives for the SCAD and adaptive Lasso, the difficulty in choosing 2 penalties for the elastic net, and
the absence of any property to select genes for ridge regression.29

The determination of the value of the tuning parameter λ is required when performing the lasso. The
value of λ is frequently determined on the basis of the cross validation that evaluates the adequacy of the
model, as explained in the Methods section. By utilizing the proposed method, we could also determine
the value of λ by considering not only the prediction accuracy but also the FPR.
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5.2 Developing a survival prediction model with enhancing the lasso ap-
proach on gene expression data

In this study, we proposed an algorithm for estimating the number of TP on the solution path of lasso
estimates. Monitoring and determining the number of TP for a series of values λ is important because
it can increase the probability of uncovering all outcome-predictive genes. The number of TP should be
estimated with appropriate accuracy. To confirm the accuracy of our TP, we conducted a simulation study
using a typical gene expression dataset. We found that the precision of our algorithm for estimating the
number of TP was adequate, although an overestimation occurred with some values of λ. However, the
overestimation occurred when the true number of TP was saturated, and so it may not cause a problem
by passing over genes that truly correlated with survival. In the simulation study where p1 = 30 and ρ =
0.5, the maximum average estimated number of TP was 35.3 at λ = 12.4. Using this λ to select TP, an
average selection of 29.9 TP within 30 outcome-predictive genes can be made, with the number of TP
genes that are passed over being negligible in practice.

The data that have been provided in Table 2 showed that the number of false positives increased,
while the number of true positives increased and then plateaued as the tuning parameter decreased. To
decrease the number of FP identified while maintaining an adequate number of TP, we should determine
the value of λ by monitoring both the number of TP and the false positive rate (= FP/(TP + FP)) in the
proposed method.

Additionally, our proposed algorithm was applied to DLBCL data. We determined the value of the
tuning parameter based on the maximum number of estimated TP uncovered by the algorithm. We
identified 42 TP genes among 96 selected genes based on the ranking of the absolute values of the lasso
estimates. We can also identify TP based on model evaluation criteria such as AIC among all possible
combinations of 42 genes from 96, i.e., 96C42 (> 1027) combinations in total; however, calculation of AIC
for all possible gene combinations is a distant approach. To evaluate the efficiency of the approach using
the ranking of the lasso estimates, we calculated the AIC for 10,000 randomly chosen models among all
the possible models and subsequently compared it with the AIC of our approach. From 10,000 models,
the AIC of 425 models (4.25 %) was better than that of our approach. This result indicated that our
ranking-based approach has a satisfactory performance in practice with respect to the identification of
42 genes. Although investigation of all possible gene combinations is ideal, our approach is a good
alternative.

In the application to DLBCL data, in comparison to a CV method by which 12 genes were identified,
we identified 42 TP genes with our algorithm, and we improved the prediction accuracy of the model.
In practice, some researchers might be satisfied with identifying a few promising genes, and would not
be unduly worried about passing over others. In such a situation, the CV would be preferable because
it developed the model to uncover a few genes with just a small loss of prediction accuracy. However,
genes that are selected by the lasso are often investigated with greater scrutiny by genetic researchers,
and so passing over outcome-predictive genes by the lasso could represent a major problem. Indeed, if
the lasso passes over outcome-predictive genes, some genetic research may not take place. Therefore,
when identifying all outcome-predictive genes is a priority, our proposed algorithm will be most useful.

43



5.3 An individualized dose-finding approach using the penalized regres-
sion for gene mutation patterns in phase I trials for molecularly tar-
geted agents

We proposed a novel dose-finding approach to find the individualized optimal dose for a MTA in phase I
trial. The proposed method utilized the L1 and L2 penalized regression model to estimate the parameters
of the model and perform gene selection with a large number of covariates of genes in main terms and
genes by dose effect in an interaction term. The proposed method selects the individualized optimal
dose for future patients based on the predictive probability of the toxicity and efficacy outcome of the
estimated penalized regression model.

The simulation studies demonstrated that the operating characteristics in the proposed method were
more favorable than those of the WT-ELNET method especially when the IOD for the one type of gene
mutation pattern does not exist while the IODs for others exist (e.g., scenario 2 in simulation studies).
These situations could occur such as gefitinib which shows significantly better progression free survival
for non-small cell lung cancer patients with EGFR mutation than the standard treatment while not for pa-
tients without EGFR mutation.54 In such a case, the ordinal dose-finding approach without considering
gene mutation patterns does not work well because it does not allow us to increase dose for right patients
to the MTA treatment or mistakenly terminates a trial due to high toxicity and/or low efficacy probability
observed in only subpopulation with one type of gene mutation pattern. And also, if we cannot observe
the data for higher dose for subgroup of patients who show the high efficacy at higher doses, then we
cannot advance the developments of the novel and evolutional drugs for the subgroup of patients. Simu-
lation results demonstrated that our proposed method works well in such a situation, therefore it is useful
especially for developments of MTAs whose dose-efficacy and dose-toxicity relationships would differ
depending on the gene mutation patterns.

The favorable point of the proposed method is that we can perform both the IOD determination
and DEDT-related gene selection without observing several gene mutation patterns. In recent years, our
knowledge for genome in oncology much is advancing, and we found many genes related to a mechanism
of cancer. It is not difficult to anticipate that in near future, when we start developments for a novel
and evolutional drug for cancer, we have known tens or hundreds of genes which may influence the
dose-efficacy and dose-toxicity relationships, and we may have to consider them in the phase I trials.
The simulation results with p = 8 (256 gene mutation patterns) illustrated that our proposed method
perform well although some gene mutation patterns were not observed with limited number of patients
(60 patients). The L1 and L2 penalized regression model allows us to include any number of p into the
regression model regardless of size of n. It is expected that the proposed method might work when the
number of genes increase more than 8, but we have to investigate the operating characteristics further
when using it in practice.

The proposed method can identify DEDT-related genes with high P-CSG, but high P-ISG was ob-
served. In low sample size and high dimensional setting, it is known that the elastic net possibly include
false positive genes as well as true positive genes in the model. We thought that in early phase of devel-
opment, any risks to pass over the promising DEDT-related genes should be low because if we passed
over them then the further research for DEDT-related genes as well as MTAs would not occur and miss
the opportunities of developing the efficacious drug for patients in specific subpopulation with several
gene mutation patterns. We believe that the high P-ISG is acceptable because P-CSG is also high enough
to proceed the developments of MTAs.

Our proposed method can be extended so that it can account for the other types of efficacy and toxicity
outcomes as well as biomarkers. For example, the use of the proportional odds model for grading toxicity
outcome, instead of the ordinary logistic model we used, could be considered. However, this may cause
the problem in parameter estimations because the number of parameters increase as the number of grade
increase. Operating characteristics should be further investigated. For the covariates, the use of the
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gene expression data as continuous variable, instead of the gene mutation status as categorical variable
we used, can be considered. It may be useful when the over or under expression of genes could be
predictive for the treatment effect such as the trastuzumab for breast cancer patients with over expression
of the HER2 gene.10 Other high-dimensional analysis techniques can also be used. The extension of
the proposed method using the mixed penalized regression model for correlated efficacy and toxicity
outcomes within a patient is one of the most promising ones, and should be investigated further.
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Chapter 6

Conclusion

The issues of this study are concluded as follows:

6.1 Issue 1

The lasso allows us to efficiently select the outcome-predictive genes in the high-dimensional gene ex-
pression data, but the difficulty lies in the inclusion of the FP genes among the selected genes. We
proposed the mixture distribution for the lasso estimates. The use of the proposed method allows us to
eliminate these genes and improve the prediction accuracy of the Cox model. In addition, based on the
proposed mixture distribution, we developed a method for estimating the number of true positives for a
series of values of a tuning parameter in the lasso. We demonstrated the utility of the developed method
through a simulation study and an application to a real dataset. Our results indicated that our developed
method was useful for determining a value for the tuning parameter in the lasso, and reducing the prob-
ability of passing over genes that are truly correlated with survival.

6.2 Issue 2

We proposed a novel dose-finding approach to find the individualized optimal dose for single MTA in
phase I trial. The proposed method utilized the L1 and L2 penalized regression model to estimate the
parameters of the model and perform gene selection with a large number of covariates of genes in main
terms and genes by dose effect in an interaction term. Simulation results illustrated that our proposed
design has good operating characteristics, and indicated that our proposed method was useful for the
MTAs development when the genes could be related to the dose-efficacy and dose-toxicity relationships.

The results of this study contribute to establishing the precision medicine through efficient use of the
penalized regression model in cancer clinical researches.
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Appendix A

An additional simulation study

A.1 Simulation study for investigating the operating characteristics of the
lasso for Chapter 1

To further investigate the operating characteristics of the lasso regarding the number of true positive
(TP) and false positive (FP), we conducted simulation studies with assuming typical analyses of gene
expression data. The objective of this simulation study is to illustrate the number of TP and FP when we
utilize the lasso and determine the optimal value of the tuning parameter by the cross validation approach.

A.1.1 Simulation setting

In the typical analyses for gene expression data, the number of patients (n) is at most 200 while the num-
ber of genes (p) is more than 1,000. In this simulation study, we set n = 100, 200 and p = 1, 000, 5, 000.
For the number of outcome-predictive genes (p1), we set p1 = 5, 30. The true values of regression
coefficients (i.e., the amount of effect to survival time of the outcome-predictive genes) are β j = 1.5
( j = 1, 2, · · ·, p1), β j = 0 ( j = p1 + 1, · · ·, p) as Benner et al.29 The gene expression levels for patient
i, xi, are generated from the multivariate normal distribution with mean vector 0 and covariance matrix
Σ with variance 1, so that the correlation among the expression levels of the outcome-predictive genes
is 0.0, 0.2, or 0.5, and is constant among the outcome-predictive genes. The survival time for patient i is
generated on the basis of the exponential model as follows:

ti = − log(U)/ exp
(
xT

i β
)

(A.1)

where U is the uniform random variable between 0 and 1.45 We determine the value of λ by utilizing
the cross validation approach, and implement the lasso. The average value for true FPR, the estimated
numbers of both TP and FP genes, and the estimated FPR in 1,000 simulations are reported.
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Table A.1: Simulation results
p ρ p1 n #

{
j; β̂ j � 0

}
TP1 FP2 FPR3 λ

1000 0 5 100 43.7 5.0 38.7 88.3 10.5
200 71.0 5.0 66.0 92.8 14.8

30 100 13.0 4.9 8.1 58.9 24.4
200 76.7 27.4 49.3 60.4 16.5

0.2 5 100 47.5 5.0 42.5 89.2 9.4
200 72.9 5.0 67.9 93.0 14.3

30 100 65.1 30.0 35.1 53.4 5.0
200 142.2 30.0 112.2 78.8 5.2

0.5 5 100 49.6 5.0 44.6 89.7 8.8
200 75.1 5.0 70.1 93.2 13.7

30 100 69.1 30.0 39.1 56.4 3.9
200 141.7 30.0 111.7 78.8 4.7

5000 0 5 100 42.8 5.0 37.8 87.5 14.0
200 85.6 5.0 80.6 94.1 17.5

30 100 8.8 1.6 7.1 78.9 30.4
200 34.0 11.8 22.3 63.0 34.5

0.2 5 100 52.9 5.0 47.9 90.4 11.0
200 90.2 5.0 85.2 94.4 16.5

30 100 59.6 29.9 29.7 48.7 7.7
200 155.6 30.0 125.6 80.7 5.5

0.5 5 100 56.4 5.0 51.4 91.0 9.8
200 94.5 5.0 89.5 94.6 15.6

30 100 79.5 30.0 49.5 59.1 4.4
200 160.1 30.0 130.1 81.0 4.7

1. Number of selected outcome-predictive genes, True positive
2. Number of selected outcome-predictive genes, False positive
3. False positive rate
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A.1.2 Simulation results

In the lasso, the number of selected genes decrease as well as the number of TP and FP when the value
of λ become larger. The CV determine the optimal value of λ to select the most predictive model by
considering trade-off of the number of TP and FP. That is, the CV tries to make the value of λ larger to
decrease the number of FP as well make the value of λ smaller to increase the number of TP.

Table A.1 illustrated that in almost all cases the model determined by the CV contain some additional
genes (i.e., FP), and at most 141.7 genes averagely. We also found that the number of TP sometimes is
not equal to the true number of the outcome-predictive genes, and suggesting potentially miss them
especially in small sample size setting (e.g., only 4.9 genes out of 30 outcome-predictive genes were
selected when p = 1, 000, ρ = 0.0, n = 100; only 1.6 genes out of 30 outcome-predictive genes when
p = 5, 000, ρ = 0.0, and n = 100). Regarding the value of λ, we found that it varies depending on the
simulation scenario. However, the average FPR is consistently high through all simulation scenarios.
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A.2 Additional simulation results for Chapter 2

The simulation results in Chapter 2 illustrated that our proposed mixture distribution can estimate the
false positive rates well. We set the number of patients n is set to 200 and the number of genes p is set
to 1,000. In a typical gene expression data analyses, these numbers may differ depending on the datasets
and interest of researches. To investigate the operating characteristics of our proposed method further,
we also performed this additional simulation studies when a number of patients and genes differ. We set
n = 100, and p = 1, 000 and 5,000. We assume the same settings as chapter 2 for other parameters.

Table A.2 to A.4 illustrated that our proposed method can estimate FPR well in various settings of n
and p. This results support our findings in simulation studies in chapter 2.
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Table A.2: Accuracy of the FPR estimated using the method proposed in the simulation studies: a number
of patients is 100 and a number of genes is 1,000

ρ p1 λ #
{
j; β̂ j � 0

}
FPR ˆFPR

0 5 10 47.4 89.3 89.1
15 18.8 72.1 70.0
20 8.2 34.7 27.3
25 5.9 13.0 8.1
30 4.9 6.1 5.7

30 10 65.4 77.8 62.3
15 39.5 71.8 57.8
20 20.8 64.7 55.6
25 9.2 55.6 48.3
30 3.4 43.7 28.3

0.2 5 10 42.6 88.1 87.8
15 14.1 62.8 59.4
20 5.9 13.3 8.0
25 5.1 1.1 0.5
30 5.0 0.1 0.2

30 10 34.9 13.6 11.3
15 29.9 2.4 1.4
20 26.2 0.6 1.7
25 21.6 0.2 3.1
30 17.1 0.1 4.7

0.5 5 10 39.7 87.2 86.9
15 11.7 55.1 50.6
20 5.3 5.5 2.8
25 5.0 0.2 0.1
30 5.0 0.0 0.0

30 10 31.5 4.6 3.1
15 29.5 0.1 0.3
20 27.7 0.0 0.8
25 24.9 0.0 1.7
30 21.7 0.0 2.8
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Table A.3: Accuracy of the FPR estimated using the method proposed in the simulation studies: a number
of patients is 100 and a number of genes is 5,000

ρ p1 λ #
{
j; β̂ j � 0

}
FPR ˆFPR

0 5 10 66.0 92.4 92.3
15 35.6 85.6 85.0
20 15.9 65.9 62.4
25 8.7 37.6 30.6
30 6.1 22.7 17.4

30 10 79.4 90.9 72.9
15 56.9 89.1 71.8
20 34.8 86.7 70.4
25 17.6 83.1 68.6
30 7.0 77.6 60.4

0.2 5 10 59.4 91.5 91.3
15 26.4 80.4 79.5
20 8.7 38.2 31.6
25 5.4 6.2 3.3
30 5.1 1.0 0.5

30 10 44.7 32.2 30.1
15 32.1 9.1 6.4
20 26.8 3.0 2.9
25 21.6 1.0 3.2
30 17.0 0.4 5.0

0.5 5 10 55.7 91.0 90.8
15 21.8 76.2 74.8
20 6.6 20.9 14.6
25 5.1 0.9 0.4
30 5.0 0.0 0.0

30 10 35.1 14.1 12.0
15 29.6 0.3 0.5
20 27.8 0.0 0.8
25 24.9 0.0 1.6
30 21.6 0.0 3.0
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Table A.4: Accuracy of the FPR estimated using the method proposed in the simulation studies: a number
of patients is 200 and a number of genes is 5,000

ρ p1 λ #
{
j; β̂ j � 0

}
FPR ˆFPR

0 5 10 158.6 96.8 96.8
15 111.5 95.5 95.5
20 63.3 92.0 91.9
25 28.2 81.7 80.9
30 10.9 51.3 46.5

30 10 169.7 85.0 78.8
15 137.2 82.2 75.4
20 102.9 78.7 70.8
25 72.2 74.4 64.8
30 47.7 69.2 59.9

0.2 5 10 154.7 96.8 96.7
15 105.4 95.2 95.2
20 56.2 91.0 90.8
25 22.4 76.8 75.6
30 8.0 33.9 27.1

30 10 94.0 67.9 67.5
15 38.7 21.8 19.8
20 30.3 0.8 0.4
25 30.0 0.0 0.0
30 30.0 0.0 0.0

0.5 5 10 151.2 96.7 96.7
15 101.4 95.1 95.0
20 51.8 90.2 90.0
25 19.1 72.7 71.1
30 6.8 23.4 16.7

30 10 86.3 65.0 64.5
15 34.7 13.0 10.9
20 30.0 0.1 0.0
25 30.0 0.0 0.0
30 30.0 0.0 0.0
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