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Chapter 1

Introduction

In classical multivariate analysis, one of the representative classification methods is lin-
ear discriminant analysis (LDA). LDA is a generalization of Fisher’s linear discriminant
rule. The original dichotomous discriminant rule was developed by Fisher [13]. LDA is
widely applied to practical situations. In order to quantitatively evaluate the degree of
its classification accuracy, we need to investigate misclassification probability. Even in
the problem of estimating the misclassification probability of LDA, it is too complicated
to directly estimate, so the research that approximate with a simple expression has been
conducted. For a review of these results, see, e.g., Okamoto [30, 31], Lachenbruch [26],
and Siotani [37]. Because it is difficult to introduce all these studies, we introduce two
representative approximations in Chapter 2.

By the way, the most of theoretical properties of LDA is derived under the following
assumptions.

• Large sample framework:Sample size is much larger than dimension.

• Multivariate normality:Both training data and test data are random samples from
multivariate normal population.

• Homogeneity of covariance matrices(homoscedasticity):The population covariance
matrices of each group are all the same.

But, they do not necessarily conform to the data observed in recent years. For exam-
ple, the data set has become increasingly larger in dimension p than total sample size in
many applications such as genome projects (Xing et al. [44]), text categorization (Yang
and Pederson [46]), image retrieval (Rui et al. [34]), and customer relationship manage-
ment (Ng and Liu [28]). However, the recent increase of dimensionality of data poses a
severe problem to many existing classical multivariate statistical methods with respect
to efficiency and effectiveness, because many classical multivariate statistical theories are
based on large sample framework. It becomes essential to revise the classical multivariate
statistical theory in order to make them useful in wide range of relations between p and
n and to extend multivariate statistical theory in high-dimensional situations. For high-
dimensional data classification problem, due to the small number of samples and large
number of variables, classical LDA has poor performance corresponding to the singularity
and instability of the sample covariance matrix. Several efficient methods for this problem
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have been proposed. When Σ1 = Σ2, Saranadasa [35] considered the approach based on
one way MANOVA problem. Bickel and Levina [7] considered using diagonal linear dis-
crminant rule. Srivastava [39] considered using the Moore-Penrose inverse matrix. Hyodo
et al. [23] considered the modified W-rule. When Σ1 ̸= Σ2, Dudoit et al. [12] considered
using the inverse matrix defined by only diagonal elements of each group sample covari-
ance matrix. Aoshima and Yata [2] proposed a quadoratic classifier and showed that the
classifier has misclassification rates which are no more than a prespecified value. Hall et
al. [18] and Marron et al. [27] considered distance weighted classifiers. Hall et al. [18, 19]
and Chan and Hall [9] considered distance based classifiers. Recentry, Aoshima and Yata
[3] discussed a scale adjusted-type distance-based classifier given by Chan and Hall [9].
In this discrimination rule, it is essential to unbiased-estimate the Euclidean norm of the
population mean difference, so we call it the Euclidean distance rule.

In this paper, we focus on the estimation of Euclidean distance rule’s misclassification
probability. Aoshima and Yata [3] proved the consistency and asymptotic normality of
the discriminant function which is used for this discrimination rule. Using their asymp-
totic normality and Chen and Qin’s estimator (See, Chen and Qin [10]), we can propose
an estimator of the misclassification probability. This estimator has consistency under
certain assumptions, however the estimator has a large bias if the assumptions dose not
hold. In Chapter 3, we introduce the existing theoretical properties of Euclidean distance
discrimination function and we will be described in details of this point. Since practical
use in a wider range is the object of this paper, we aim to construct new estimator of the
misclassification probability under a relaxed mathematical assumption as much as possi-
ble. We deal with the estimation of the misclassification probability in the two-sample
problem in Chapter 4 and the estimation of the misclassification probability in the k-
sample problem in Chapter 5, respectively. In Chapter 4, we propose a Lachenbruch type
approximation of the misclassification probability and constructe a plug-in type estimator
and showed its consistency. In Chapter 5, by extending the asymptotic normality of the
discriminant function in two samples to multiple samples, we provide an approximation
of misclassification probability based on multinormal distribution.

The discrimination accuracy of Euclidean distance rule which is dealt with in Chap-
ters 4 and 5 depends on the magnitude of the square Euclidean norm of the population
mean difference. In Chapter 6, we propose an interval estimation method of the square
Euclidean norm of the population mean difference.
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Chapter 2

Classical linear discriminant analysis

2.1 Construction of discriminant rules

We treat the problem of classifying a p×1 observation vector x as coming from one of two
populations G1 and G2. We consider the pure decision case. It is make an assignment of
an entity with feature vector x to one of the groups. Let r(x) denote an allocation rule
formed for this purpose, where r(x) = i implies that an entity with feature vector x is
to be assigned to the i-th group Gi, i ∈ {1, 2}. Under the mixture model approach to
discriminant analysis, it is assumed that the entity has been drawn from the two groups
G1 and G2 in proportions π1 and π2, respectively, where

2∑
i=1

πi = 1, 0 < π1, π2 < 1.

Let cij denote the cost of allocation when an entity from Gj is allocated to group Πi,
where cij = 0 for i = j that is zero cost for a correct allocation. Then expected loss for
the rule r(x) is

R(r) = e(2|1)π1c21 + e(1|2)π2c12,

where

e(2|1) = Pr (r(x) = 2|x ∼ G1) and e(1|2) = Pr (r(x) = 1|x ∼ G2).

Here, e(i|j) for i ̸= j is called the misclassification probability. An optimal rule of alloca-
tion can be defined by taking it to be the one that minimizes the risk R(r) at each value
x of the feature vector (see, e.g., Anderson [1]). The rule that minimizes the risk R(r) is
said to be a Bayes rule. Under a multivariate normal model for the group-conditional dis-
tributions of the feature vector x on entity, it is assumed that x ∼ Np(µi,Σ), i ∈ {1, 2}.
Then the i-th group-conditional density f(x|µi,Σ) is given by

f(x|µi,Σ) =
1√

2π|Σ|1/2
exp

{
−(x− µi)

⊤Σ−1(x− µi)

2

}
.
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Therefore, R(r) can be expressed as

R(r) =π1c21

∫
R2

f(x|µ1,Σ)dx+ π2c12

∫
R1

f(x|µ2,Σ)dx

=

∫
R2

{π1c21f(x|µ1,Σ)− π2c12f(x|µ2,Σ)}dx+ π2c12.

In this setting, the optimal or Bayes rule r0 assigns an entity with feature vector x to G1

if

R1 : log
f(x|µ1,Σ)

f(x|µ2,Σ)
≥ log

π2c12
π1c21

.

Otherwise, the entity is assigned to Π2 if

R2 : log
f(x|µ1,Σ)

f(x|µ2,Σ)
< log

π2c12
π1c21

.

When we assume that π1 = π2 and c12 = c21, the optimal or Bayes rule r0 is given by

r0(x) =

 1, L0 ≥ 0,

2, L0 < 0,

where
L0 = (µ1 − µ2)

⊤Σ−1{x− 1
2
(µ1 + µ2)}.

The misclassification probability resulting from this rule is the same for observations from
either population, and it is Φ(−∆Σ−1/2), where Φ(·) denotes a cumulative distribution
function of the standard normal distribution and ∆2

Σ−1 = (µ1 −µ2)
⊤Σ−1(µ1 −µ2) is the

Mahalanobis squared distance between the two populations. So, risk for Bayes rule r0 is
given by

R(r0) = Φ

(
−1

2
∆Σ−1

)
.

However, in practical use, µ1, µ2 and Σ are generally taken to be unknown and must be
estimated from the available training data xij, j ∈ {1, 2, . . . , ni} as given by Gi, i ∈ {1, 2}.
With the estimative approach to discriminant analysis, the Bayes rule r0 is estimated
simply by plugging in estimate (µ1,µ2,Σ), such as the maximum likelihood estimate,
for (µ1,µ2,Σ) in the group-conditional densities. The maximum likelihood estimates of
µi, i = 1, 2 and Σ computed from the training data are given by the sample mean xi and

the sample covariance matrix Σ̂, respectively, where

xi =
1

ni

ni∑
j=1

xij, i = 1, 2

and

Σ̂ =
1

n

2∑
i=1

ni∑
j=1

(xij − xi)(xij − xi)
⊤.
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Here, n = n1 + n2. In the subsequent work, we follow the usual practice of estimating Σ
by the unbiased estimator

S =
n

n− 2
Σ̂,

With the parameter sets (µ1,µ2,Σ) estimated as above, the plug-in sample version r̂0 is
given by

r̂0(x) =

 1, L ≥ 0,

2, L < 0,

where

L = (x1 − x2)
⊤S−1{x− 1

2
(x1 + x2)}.

This method is called linear discriminant rule (LDR). It is essentially the same as Fisher’s
linear discriminant analysis (See, Fisher [13]) without the explicit adoption of a normal
population. In addition, it should be noted that the statistics L is obtained by replacing
unknown parameters in the Bayes rule L0 with their consistent estimators. Thus, LDR
has Bayes risk consistent rule. Namely, the conditional risk for W converges in probability
to one of the Bayes rule R(r0), as p :fix and n1, n2 → ∞. Altogether, LDR has a good
property in large sample case.

2.2 Error rate of discriminant rule

We adopt the misclassification probability as a standard of discrimination performance.
The misclassification probability means that the probability of misclassifying x into
G2 (G1) when it actually belongs to G1 (G2).

Definition 2.2.1 (The misclassification probability of LDR). Let x1j ∼ N (µ1,Σ), x2j′ ∼
N (µ2,Σ) for j ∈ {1, 2, . . . , n1}, j′ ∈ {1, 2, . . . , n2}, and x,x11,x12, . . . ,x1n1 ,x21,x22, . . . ,x2n2

be mutually independent. The misclassification probabilities of LDR are defined by

e(2|1) = Pr(L < 0) when x ∼ N (µ1,Σ),

e(1|2) = Pr(L > 0) when x ∼ N (µ2,Σ).

It is generally difficult to obtain an explicit expression for the misclassification proba-
bility. So, there are many works for asymptotic properties of misclassification probability
for LDR. The asymptotic properties under a framework such that n1 and n2 are large and
p is fixed has been studied. Okamoto [30, 31] obtained an asymptotic expansion for the
distribution of L up to terms of O(n−2). Siotani and Wang [38] extended their results to
terms of O(n−3). Since e(1|2) can be obtained from same logic of e(2|1), we treat only
discuss e(2|1). The following theorem gives the asymptotic expansion of misclassification
probability.

Theorem 2.2.1 (Okamoto [30, 31]). Let x,x1j ∼ N (µ1,Σ), x2j′ ∼ N (µ2,Σ) for j ∈
{1, 2, . . . , n1}, j′ ∈ {1, 2, . . . , n2}, and x,x11,x12, . . . ,x1n1 ,x21,x22, . . . ,x2n2 be mutually
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independent. We assume that n1 = O(n2) and n2 = O(n1) as n1 → ∞, n2 → ∞. Then it
holds that

e(2|1) =Φ(−∆Σ−1/2) +
ϕ(−∆Σ−1/2)

4

[
1

4n1∆Σ−1

{∆2
Σ−1 + 12(p− 1)}

+
1

4n2∆Σ−1

{∆2
Σ−1 − 4(p− 1)}+ 1

n− 2
(p− 1)∆Σ−1

]
as n1 → ∞, n2 → ∞, where ϕ(·) denotes a probability density function of the standard
normal distribution.

The asymptotic expansion in Theorem 2.2.1 contains an unknown parameter ∆Σ−1 .
As a simple method, we use the sample Mahalanobis distance

∆̂Σ−1 =
√

(x1 − x2)⊤S−1(x1 − x2)

as the estimator of ∆Σ−1 . However, Φ(−∆̂Σ−1/2) has a bias. In fact,

E{Φ(−∆̂Σ−1/2)} =Φ(∆Σ−1/2) + ϕ(−∆Σ−1/2)

[
n

n1n2

{
∆Σ−1 − 4(p− 1)

∆Σ−1

}
+

∆Σ−1{∆2
Σ−1 − 4(2p+ 1)}
2(n− 2)

]
+O(n−2).

By combining this result with Theorem 2.2.1, we obtain

e(2|1)− E{Φ(−∆̂Σ−1/2)} =ϕ(−∆Σ−1/2)

[
n

n1n2

{
∆Σ−1 − 4(p− 1)

∆Σ−1

}
+

∆Σ−1{∆2
Σ−1 − 4(2p+ 1)}
2(n− 2)

]
+O(n−2). (2.1)

Also, we note that

E

[
nϕ(−∆̂Σ−1/2)

n1n2

{
∆̂Σ−1 − 4(p− 1)

∆̂Σ−1

}
+

ϕ(−∆̂Σ−1/2)∆̂Σ−1{∆̂2
Σ−1 − 4(2p+ 1)}

2(n− 2)

]

=
nϕ(−∆Σ−1/2)

n1n2

{
∆Σ−1 − 4(p− 1)

∆Σ−1

}
+

ϕ(−∆Σ−1/2)∆Σ−1{∆2
Σ−1 − 4(2p+ 1)}

2(n− 2)
+ o(n−1).

(2.2)

From (2.1) and (2.2), we can obtain an estimator of e(2|1):

ê(2|1) =Φ(−∆̂Σ−1/2) +
nϕ(−∆̂Σ−1/2)

n1n2

{
∆̂Σ−1 − 4(p− 1)

∆̂Σ−1

}

+
ϕ(−∆̂Σ−1/2)∆̂Σ−1{∆̂2

Σ−1 − 4(2p+ 1)}
2(n− 2)

.

This estimator is second-order unbiased estimator of e(2|1) i.e., E(ê(2|1)) = e(2|1) +
o(n−1).
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The asymptotic properties under a framework that n1, n2 and p are all large (but
p < n− 2) have also been studied (see, e.g., Lachenbruch [26], Raudys [33] and Fujikoshi
and Seo [15]). In addition, Fujikoshi [14] gave an explicit formula of error bounds for
asymptotic approximation of EPMC for LDA. Lachenbruch [26] proposed an approxima-
tion

e(2|1) ≈ Φ{−var(L)−1/2E(L)}.
Note that

E(L) =
n− 2

2(m− p)

{
∆2

Σ−1 +
(n1 − n2)p

n1n2

}
(m > 1),

var(L) =
(n− 2)2(n− 3)

m(m− 1)(m− 3)

{
∆2

Σ−1 +
np

n1n2

}
(m > 3),

where m = n − p − 2. Fujikoshi [14] obtained error bounds for this approximation to
e(2|1).
Theorem 2.2.2 (Fujikoshi [14]). Let x,x1j ∼ N (µ1,Σ), x2j′ ∼ N (µ2,Σ) for j ∈
{1, 2, . . . , n1}, j′ ∈ {1, 2, . . . , n2}, and x,x11,x12, . . . ,x1n1 ,x21,x22, . . . ,x2n2 be mutually
independent. If m > 7, then it holds that

|e(2|1)− Φ{−var(L)−1/2E(L)}| ≤ b,

where

b = β2,0var(L)
−1v1 + β2,2var(L)

−2v2 + β2,1var(L)
−3/2(v1v2)

1/2.

Here, β2,0 = 0.121, β2,1 = 0.2 and β2,2 = 0.5 and

v1 =
(n− 2)2

2m(m− 1)(m− 3)

[
∆4

Σ−1

m− 1
+

2(n− 3)∆2
Σ−1

mn2

{
1 +

n1 − n2

(m− 1)n1

}
+
2(n− 3)p

n1n2

{
1

m
+

(n1 − n2)
2

2(m− 1)n1n2

}]
,

v2 =
2(n− 3)(n− 2)4

m(m− 1)2(m− 3)2

[
1

m

{
1 +

8(m− 4)

(m− 5)(m− 7)

}
×

{
p− 1

m

(
∆2

Σ−1 +
pn

n1n2

)2

+
n(n− 5)

n1n2

(
2∆2

Σ−1 +
pn

n1n2

)}

+
4(n− 3)(m− 4)

m(m− 5)(m− 7)

(
∆2

Σ−1 +
pn

n1n2

)2
]
.

We get the following corollary from error bound.

Corollary 2.2.1. Let c and d be fixed constants which satisfy c, d ∈ (0, 1). We assume
p = ⌊cn⌋ and n1 = ⌊dn⌋. Then as n → ∞, it holds that

e(2|1) = Φ{−var(L)−1/2E(L)}+O(n−1).

We assume p is fixed positive integer and n1 = ⌊dn⌋. Then as n → ∞, it holds that

e(2|1) = Φ{−var(L)−1/2E(L)}+O(n−1).

From Corollary 2.2.1, we understand that Lachenbruch’s approximation is valid not
only in the conventional large sample frame work but also in high-dimensional framework.
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Chapter 3

High-dimensional discriminant
analysis

3.1 Statistical model in high-dimensional settings

In traditional multivariate analysis, the theory is developed assuming some or all of the
following conditions.

• The population distribution is a multivariate normal distribution.

• All population covariance matrices are equal.

In fact, there is no guarantee that high-dimensional data follows a multivariate normal
distribution, it is difficult problem to ascertain that. Furthermore, the homogeneity of
the population covariance matrix is said to be a severe assumption as the dimension in-
creases. From the above it can be said that discussing under the assumption of traditional
multivariate analysis is unrealistic in high-dimensional data analysis.

After this chapter, we will discuss the theory under the following statistical model
which relax these unrealistic assumptions. Assuming fixed i ∈ {1, 2, . . . , k}, we let

x = Σ
1/2
i z+ µi.

We further assume that

∀i∈{1,2,...,k}, j∈{1,2,...,ni} xij = Σ
1/2
i zij + µi.

Here, Σi is positive-semi-definite, and the random vectors

z, z11, z12, . . . , z1n1 , z21, z22, . . . , z2n2 , . . . , zk1, zk2, . . . , zknk

are independent and identically distributed (i.i.d.) random vectors such that E(z) = 0
and var(z) = Ip.
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3.2 Some properties of scale adjusted-type distance-

based classifier

Recentry, Aoshima and Yata [3] discussed a scale adjusted-type distance-based classifier
given by Chan and Hall [9]. They introduced the following discriminant rule: one classifies
an individual into G1 if W > 0 and into G2 otherwise, where

W = {2x− (x1 + x2)}⊤ (x1 − x2) +
tr(S1)

n1

− tr(S2)

n2

. (3.1)

Note that (3.1) can be expressed as

W =

{
∥x− x2∥2 −

tr(S2)

n2

}
−
{
∥x− x1∥2 −

tr(S1)

n1

}
.

Then

E(W ) =

{
∥µ1 − µ2∥2 when x ∼ G1,

−∥µ1 − µ2∥2 when x ∼ G2.

Aoshima and Yata [3] developed a scale adjusted-type distance-based classifier that
can ensure high accuracy in misclassification rates under some assumptions.

Theorem 3.2.1 (Aoshima and Yata [3]). We assume the following conditions:

• (µ1 − µ2)
⊤Σi(µ1 − µ2)/∥µ1 − µ2∥4 = o(1) as p → ∞ for i ∈ {1, 2},

• maxj∈{1,2} tr(Σ
2
j)/(ni∥µ1−µ2∥4) = o(1) as p → ∞ either when ni is fixed or ni → ∞

for i ∈ {1, 2}.

Then, we have as p → ∞ that

W

∥µ1 − µ2∥2
=

(−1)i−1

2
+ op(1)

when x ∼ Gi for i ∈ {1, 2}. Also, we have as p → ∞ that e(2|1) = o(1) and e(1|2) = o(1).

However, these methods are not sufficient methods.

Theorem 3.2.2 (Aoshima and Yata [3]). Let

δi = 2

[
tr(Σ2

i )/ni + tr(Σ1Σ2)/ni′ +
2∑

ℓ=1

tr(Σ2
1)/{2nℓ(nℓ − 1)}

]1/2
for i ̸= i′, i, i′ ∈ {1, 2}. We assume the following conditions:

• The fourth moments of each variable in z are uniformuly bounded, E(z2qz
2
s) = 1 and

E(zqzsztzu) = 0 for all q ̸= s, t, u.
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• The fourth moments of each variable in zij are uniformuly bounded, E(z2ijqz
2
ijs) = 1

and E(zijqzijszijtziju) = 0 for all q ̸= s, t, u.

• tr(Σ4
i )/{tr(Σ2

i )}2 = o(1) and tr(Σ1Σ2)/tr(Σ
2
i ) ∈ (0,∞) as p → ∞ for i ∈ {1, 2},

• (µ1 −µ2)
⊤Σi(µ1 −µ2)/δ

2
i = o(1) as p → ∞, n1 → ∞, and n2 → ∞ for i ∈ {1, 2}.

Here, for function f(·), “f(p) ∈ (0,∞) as p → ∞” implies lim infp→∞ f(p) > 0 and
lim supp→∞ f(p) < ∞. Then, we have as p → ∞, n1 → ∞, and n2 → ∞ that

(W − ∥µ1 − µ2∥2)/δ1 ⇝ N (0, 1) when x ∼ G1,

(W + ∥µ1 − µ2∥2)/δ2 ⇝ N (0, 1) when x ∼ G2.

Also, we have as p → ∞, n1 → ∞, and n2 → ∞ that

e(2|1) = Φ(−∥µ1 − µ2∥2/δ1) + o(1) and e(1|2) = Φ(−∥µ1 − µ2∥2/δ2) + o(1).
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Chapter 4

Estimation of misclassification
probability for two-class in
high-dimensional data

In this chapter, we consider a discriminant problem that allocates a given object x to one
of two populations, G1 and G2 in high-dimensional data. Here x is a continuous random
vector (such as an observation vector) represented by a set of features (x1, x2, . . . , xp).
We assume a training data set (x11, x12, . . . ,x1n1 , x21, x22, . . . ,x2n2), where xℓj is a p-
dimensional continuous observation vector from the ℓ-th population Gℓ, and we calculate

∀ℓ∈{1,2} xℓ =
1

nℓ

nℓ∑
j=1

xℓj, Sℓ =
1

nℓ − 1

nℓ∑
j=1

(xℓj − xℓ)(xℓj − xℓ)
⊤.

We use the following Euclidean distance discriminant function used in Chan and Hall [9]
and Aoshima and Yata [3]:

W = ∥x− x2∥2 − ∥x− x1∥2 −
tr(S2)

n2

+
tr(S1)

n1

(4.1)

And we also use a distance discriminant rule that assigns a new observation x to G1

if W > 0, and to G2 otherwise. We propose a consistent and asymptotically unbiased
estimator of misclassification probability, and compare the MSEs of the estimator that
we introduce and the estimator based on leave-one-out cross-validation (CV) in numerical
experiment.

4.1 Statistical model

Assuming fixed g, g′ ∈ {1, 2} and g′ ̸= g, we let x = Σ1/2
g z + µg. We further as-

sume that ∀ℓ∈{1,2}, j∈{1,2,...,nℓ} xℓj = Σ
1/2
ℓ zℓj + µℓ. Here, Σℓ is positive-semi-definite.

The random vectors z, z11,z12,. . .,z1n1 , z21,z22,. . .,z2n2 are independent and identically
distributed (i.i.d.) random vectors such that E(z) = 0 and var(z) = Ip. We denote
z = (z1, z2, . . . , zp)

⊤, and consider two cases, (C1) and (C2), as follows.
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(C1) E(z4i ) = κ4 + 3 < ∞, E(z2i1z
2
i2
) = 1, and E(zi1zi2zi3zi4) = 0 (i1 ̸= i2, i3, i4).

(C2) z1, z2, . . . , zp are mutually independent, and E(z4i ) = κ4 + 3 < ∞.

The condition (C1) means that each {zi}pi=1 has a kind of pseudo-independence among
its components. Obviously, if (C2) holds, then (C1) is trivially true. Note that (C1) and
(C2) include multivariate normal populations.

4.2 Normal approximation of misclassification prob-

ability

In this section, we consider the normal approximation of the misclassification probability.
It is given by

e(g′|g) ≈ Φ (−µ/σg) . (4.2)

Lemma 4.2.1 (Watanabe, Hyodo, Yamada, and Seo [43]). µ and σ2
g can be written as

µ = E{(−1)g+1W} = δ⊤δ and

σ2
g = var(W ) = 4

{
δ⊤Σgδ +

1

ng

tr(Σ2
g) +

1

n′
g

tr(Σ1Σ2) +
1

n′
g

δ⊤Σg′δ

}
+ 2

2∑
ℓ=1

1

nℓ(nℓ − 1)
tr(Σ2

ℓ)

respectively, where δ = µ1 − µ2.

Proof. Let y = x − µg and yℓj = xℓj − µℓ for ℓ ∈ {g, g′}. Then, (−1)g+1W can be

expressed as (−1)g+1W = δ⊤δ +W1 +W2, where

W1 =2(−1)g+1δ⊤y + 2(yg − yg′)
⊤y,

W2 =2(−1)gδ⊤yg′ +
1

ng′(ng′ − 1)

ng′∑
j1,j2=1, j1 ̸=j2

y⊤
g′j1yg′j2

− 1

ng(ng − 1)

ng∑
j1,j2=1, j1 ̸=j2

y⊤
gj1

ygj2 .

Here, yℓ = xℓ − µℓ. Since E(W1) = E(W2) = 0, we obtain µ = E{(−1)g+1W} = δ⊤δ.
Since it can be shown that

var (W1) = 4

{
δ⊤Σgδ +

1

ng

tr(Σ2
g) +

1

ng′
tr(Σ1Σ2)

}
,

var (W2) = 2

{
1

ng(ng − 1)
tr(Σ2

g) +
1

ng′(ng′ − 1)
tr(Σ2

g′) +
2

ng′
δ⊤Σg′δ

}
,

and cov(W1,W2) = 0, we also obtain the variance of W .
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The normal approximation is justified under some assumptions. For each ℓ ∈ {1, 2}, let
nℓ be a function of p, i.e., nℓ = nℓ(p). For any ℓ ∈ {1, 2}, let δ⊤Σℓδ and tr{(Σ1/2

ℓ δδ⊤Σ
1/2
ℓ )⊙

(Σ
1/2
ℓ δδ⊤Σ

1/2
ℓ )} be a function of p. For any ℓ, ℓ′, r ∈ {1, 2}, let tr{(ΣℓΣℓ′)

r} be a function
of p. Then we use the following conditions:

(A0) For all ℓ ∈ {1, 2}, limp→∞ nℓ(p) = ∞,

(A1) For all ℓ ∈ {1, 2}, tr(Σ4
ℓ)/
{
tr(Σ2

ℓ)
}2

= o(1), tr(Σ1Σ2)/tr(Σ
2
ℓ) ∈ (0,∞),

(A2) δ⊤Σg′δ = o(ng′σ
2
g),

(A3) δ⊤Σgδ = o(δ2g),

(A4) tr{(Σ1/2
g δδ⊤Σ1/2

g )⊙ (Σ1/2
g δδ⊤Σ1/2

g )} = o(σ4
g).

Here, “A⊙B” denotes Hadamard product of same size matrices A and B. For a function
f(·), “f(p) ∈ (0,∞) as p → ∞” implies lim infp→∞ f(p) > 0 and lim supp→∞ f(p) < ∞. In

practical use, the assumption tr(Σ4
ℓ)/
{
tr(Σ2

ℓ)
}2

= o(1) in (A1) is often not appropriate.
This assumption can be called as the non strongly spiked eigenvalue (NSSE) model in
Aoshima and Yata [5]. However, it is natural to assume the strongly spiked eigenvalue
(SSE) model for microarray data analysis. When NSSE assumption is not satisfied, we
recommend a data transformation technique which is proposed in Aoshima and Yata [5].
This transformation reduce the discussion under SSE model to the discussion under NSSE
model.

The following theorem represents the asymptotic normality of (−1)g+1W .

Theorem 4.2.1 (Watanabe, Hyodo, Yamada, and Seo [43]). We assume (A0)–(A2).
Then (i) and (ii) hold.

(i) Under (C1) and (A3), {(−1)g+1W − µ}/δg ⇝ N (0, 1) as p → ∞.

(ii) Under (C2) and (A4), {(−1)g+1W − µ}/σg ⇝ N (0, 1) as p → ∞.

Here, ⇝ denotes that the convergence in distribution.

Proof. Statement (i) has been demonstrated by Aoshima and Yata [3], and we prove
statement (ii).

Under conditions (C2) and (A0)–(A2), W2 in the proof of Lemma 4.3.1 is negli-
gible. Thus {(−1)g+1W − µ}/σg =

∑p
i=1 ϵi + op(1), where ϵi = 2{(−1)g+1δ + (yg −

yg′)}⊤Σ1/2
g eizi/σg. Defining F0 = σ{y1,y2} and Fi−1 = σ{y1,y2, z1, z2, . . . , zi−1} (2 ≤ i),

it is straightforward to show that E(ϵi) = 0 and E(ϵi|Fi−1) = 0, where σ{S} means σ-field
of sets on Ω generated from S. Thus, ϵi is a martingale difference sequence. To show
the asymptotic normality of

∑p
i=1 ϵi, we adapt the martingale difference central-limit the-

orem (see Shiryaev [36] or Hall and Heyde [17]). Now let σ2
g·i = E(ϵ2i |Fi−1). To apply

the martingale central-limit theorem, we need to show that (a):
∑p

i=1 σ
2
g·i = 1+ op(1) and

(b):
∑p

i=1 E(ϵ
4
i ) = o(1).
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To show (a), we evaluate σ2
g·i = 4[{(−1)g+1δ + (yg − yg′)}⊤Σ1/2

g ei]
2/σ2

g , and

p∑
i=1

σ2
g·i =

4

σ2
g

{
δ⊤Σgδ + 2(−1)g+1R1 +R2

}
.

Here, R1 = δ⊤Σg(yg − yg′) and R2 = (yg − yg′)
⊤Σg(yg − yg′). Since E(R1) = 0 and

E(R2) = tr(Σ2
g)/ng + tr(ΣgΣg′)/ng′ , we obtain

E

(
p∑

i=1

σ2
g·i

)
=

4

σ2
g

{
δ⊤Σgδ +

1

ng

tr(Σ2
g) +

1

ng′
tr(Σ1Σ2)

}
= 1 + o(1).

To check (a), we need to show that var(R1) = o(σ4
g) and var(R2) = o(σ4

g). These variances
are given as follows:

var(R1) = O

(
1

ng

√
tr(Σ4

g)δ
⊤Σgδ +

1

ng′

√
tr{(ΣgΣg′)2}δ⊤Σgδ

)
,

var(R2) = O

(
1

n2
g

tr(Σ4
g) +

1

n2
g′
tr{(ΣgΣg′)

2}

)
.

Hence, under (A1), var(R1) = o(σ4
g) and var(R2) = o(σ4

g). Thus, under (A1), (a) holds.
To show (b), we decompose ϵi into the sum of three parts, ϵi = 2{(−1)g+1ϵ1i + ϵi2 −

ϵi3}/σg, where ϵi1 = δ⊤Σ
1/2
g eizi, ϵi2 = y⊤

g Σ
1/2
g eizi, and ϵi3 = y⊤

g′Σ
1/2
g eizi. Then, we need to

show that
∑p

i=1 E(ϵ
4
iℓ) = o(σ4

g) for ℓ ∈ {1, 2, 3}. These expectations are given as follows:

p∑
i=1

E(ϵ4i1) = O
(
tr{(Σ1/2

g δδ⊤Σ1/2
g )⊙ (Σ1/2

g δδ⊤Σ1/2
g )}

)
,

p∑
i=1

E(ϵ4i2) = O

(
1

n2
g

tr(Σ4
g)

)
,

p∑
i=1

E(ϵ4i3) = O

(
1

n2
g′
tr{(ΣgΣg′)

2}

)
.

Thus,
∑p

i=1 E(ϵ
4
i1) = o(σ4

g) under (A4). Also, under (A1),
∑p

i=1 E(ϵ
4
i2) = o(σ4

g) and∑p
i=1 E(ϵ

4
i3) = o(σ4

g). These results complete the proof.

Note that under (A2) and (A3), σg = δg+o(δg). Thus we obtain the following corollary.

Corollary 4.2.1. Under (C1) and (A0)–(A3), {(−1)g+1W−µ}/σg ⇝ N (0, 1) as p → ∞.

From Theorem 4.2.1 and Corollary 4.2.1, we propose the following proposition. This
result represents the accuracy of approximation (4.2).

Proposition 4.2.1. We assume (A0)–(A2) and µ/σg = O(1). Then (i) and (ii) hold.

(i) e(g′|g)− Φ (−µ/δg) =

{
o(1) under (C1) and (A3).

O(1) under (C2) and (A4).
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(ii) e(g′|g)− Φ (−µ/σg) =

{
o(1) under (C1) and (A3).

o(1) under (C2) and (A4).

Remark 4.2.1 (Watanabe, Hyodo, Yamada, and Seo [43]). We assume (C1) or (C2).
Under µ/σg → ∞, e(g′|g) = o(1).

From Remark 4.2.1, we assume a sufficient condition that guarantees a non-zero limit
value of the misclassification probability, i.e., µ/σg = O(1).

4.3 Estimator of misclassification probability

Based on Proposition 4.2.1, we approximate the misclassification probability as Φ(−µ/σg).
To estimate the unknown values in µ and σg, we apply unbiased estimators.

Let ℓ, ℓ′ ∈ {1, 2} and ℓ ̸= ℓ′. Preliminarily, we introduce the unbiased estimators of µ,
tr(Σ1Σ2), tr(Σ

2
ℓ) and δ⊤Σℓδ as follows:

µ̂ =(x1 − x2)
⊤(x1 − x2)−

1

n1

tr(S1)−
1

n2

tr(S2),

̂tr(Σ1Σ2) =tr(S1S2),

t̂r(Σ2
ℓ) =

(nℓ − 1) [(nℓ − 1)(nℓ − 2)tr(S2
ℓ) + {tr(Sℓ)}2 − nℓKℓ]

nℓ(nℓ − 2)(nℓ − 3)
,

δ̂⊤Σℓδ =(xℓ − xℓ′)
⊤Sℓ(xℓ − xℓ′)−

2Uℓ

(nℓ − 1)(nℓ − 2)
− tr(S1S2)

nℓ′

+
2nℓKℓ − (nℓ − 1) {tr(Sℓ)}2 − (nℓ − 1)2tr(S2

ℓ)

nℓ(nℓ − 2)(nℓ − 3)
,

where

Kℓ =
1

nℓ − 1

nℓ∑
j=1

∥xℓj − xℓ∥2 and

Uℓ =(xℓ − xℓ′)
⊤

nℓ∑
j=1

(xℓj − xℓ)(xℓj − xℓ)
⊤(xℓj − xℓ).

The unbiased estimator µ̂ has been used in the L2 norm based on two-sample test (see for

example Chen and Qin [10] or Aoshima and Yata [2]). The unbiased estimator t̂r(Σ2
ℓ) was

proposed by Himeno and Yamada [20]. The unbiased estimator δ̂⊤Σℓδ is newly derived.
To show the consistency of the plug-in estimator based on the normal approximation, we
investigate the leading variance term of these estimators.

Lemma 4.3.1 (Watanabe, Hyodo, Yamada, and Seo [43]). We assume (C1) or (C2).
Then (i)–(iv) hold.

(i) Under (A0)–(A2), var (µ̂) = o(σ2
g),
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(ii) Under (A0) and (A1), var
(

̂tr(Σ1Σ2)
)
= o(n2

g′σ
4
g),

(iii) Under (A0) and (A1), var
(
t̂r(Σ2

ℓ)
)
= o(n2

ℓσ
4
ℓ ),

(iv) Under (A0) and (A1), var

(
δ̂⊤Σℓδ

)
= o(σ4

ℓ ).

Proof. (i) is obtained by Section 6.1 in Chen and Qin [10]. (iii) is obtained by Lemma
1 in Himeno and Yamada [20]. (ii) is obtained by same route as (iii). We present only

the proof of (iv). Let yℓj = xℓj − µℓ and yℓ′j = xℓ′j − µℓ′ . The statistic δ̂⊤Σℓδ can be

expressed as δ̂⊤Σℓδ =
∑12

α=1Aα, where

A1 =
1

nℓ(nℓ − 1)(nℓ − 2)

nℓ∑
j1,j2,j3=1

j1 ̸=j2,j2 ̸=j3,j3 ̸=j1

y⊤
ℓj1
yℓj2y

⊤
ℓj1
yℓj3 ,

A2 = − 1

nℓ(nℓ − 1)(nℓ − 2)(nℓ − 3)

nℓ∑
j1,j2,j3,j4=1
j1 ̸=j2 ̸=j3 ̸=j4
j3 ̸=j1 ̸=j4 ̸=j2

y⊤
ℓj1
yℓj2y

⊤
ℓj3
yℓj4 ,

A3 = − 2

nℓ(nℓ − 1)

nℓ∑
j1,j2=1
j1 ̸=j2

y⊤
ℓj1
yℓj2y

⊤
ℓj1
yℓ′ ,

A4 =
2

nℓ(nℓ − 1)(nℓ − 2)

nℓ∑
j1,j2,j3=1

j1 ̸=j2,j2 ̸=j3,j3 ̸=j1

y⊤
ℓj1
yℓj2y

⊤
ℓj3
yℓ′ ,

A5 =
2

nℓnℓ′(nℓ′ − 1)

nℓ∑
j1=1

nℓ′∑
j2,j3=1
j2 ̸=j3

y⊤
ℓj1
yℓ′j2y

⊤
ℓj1
yℓ′j3 ,

A6 = − 2

nℓ(nℓ − 1)nℓ′(nℓ′ − 1)

nℓ∑
j1,j2=1
j1 ̸=j2

nℓ′∑
j3,j4=1
j3 ̸=j4

y⊤
ℓj1
yℓ′j3y

⊤
ℓj2
yℓ′j4 ,

A7 =
2

nℓ(nℓ − 1)

nℓ∑
j1,j2=1
j1 ̸=j2

(µℓ − µℓ′)
⊤ yℓj1y

⊤
ℓj1
yℓj2 ,

A8 = − 2

nℓ(nℓ − 1)(nℓ − 2)

nℓ∑
j1,j2,j3=1

j1 ̸=j2,j2 ̸=j3,j3 ̸=j1

(µℓ − µℓ′)
⊤ yℓj1y

⊤
ℓj2
yℓj3 ,

A9 = − 2

nℓ

nℓ∑
j=1

(µℓ − µℓ′)
⊤ yℓjy

⊤
ℓjyℓ′ ,
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A10 =
2

nℓ(nℓ − 1)

nℓ∑
j1,j2=1
j1 ̸=j2

(µℓ − µℓ′)
⊤ yℓj1y

⊤
ℓj2
yℓ′ ,

A11 =
1

nℓ

nℓ∑
j=1

(µℓ − µℓ′)
⊤ yℓjy

⊤
ℓj (µℓ − µℓ′) ,

A12 = − 1

nℓ(nℓ − 1)

nℓ∑
j1,j2=1
j1 ̸=j2

(µℓ − µℓ′)
⊤ yℓj1y

⊤
ℓj2

(µℓ − µℓ′) .

The expectations of Aα are derived as E(Aα) = 0 (α ̸= 11) and E(A11) = δ⊤Σℓδ. The
variances of Aα are derived as follows:

var(A1) =O

(
{trΣ2

ℓ)}2

n3
ℓ

+
tr(Σ4

ℓ)

n2
ℓ

)
, var(A2) = O

(
{tr(Σ2

ℓ)}2

n4
ℓ

)
,

var(A3) =O

(
tr(Σ2

ℓ)tr(ΣℓΣℓ′)

n2
ℓnℓ′

+

√
tr(Σ4

ℓ)
√

tr{(ΣℓΣℓ′)2}
nℓnℓ′

)
,

var(A4) =O

(
tr(Σ2

ℓ)tr(ΣℓΣℓ′)

n3
ℓnℓ′

)
, var(A5) = O

(
{tr(ΣℓΣℓ′)}2

nℓn2
ℓ′

+
tr{(ΣℓΣℓ′)

2}
n2
ℓ′

)
,

var(A6) =O

(
{tr(ΣℓΣℓ′)}2

n2
ℓn

2
ℓ′

)
, var(A7) = O

(
tr(Σ2

ℓ)δ
⊤Σℓδ

n2
ℓ

+

√
tr(Σ4

ℓ)δ
⊤Σℓδ

nℓ

)
,

var(A8) =O

(
tr(Σ2

ℓ)δ
⊤Σℓδ

n3
ℓ

)
,

var(A9) =O

(
tr(ΣℓΣℓ′)δ

⊤Σℓδ

nℓnℓ′
+

√
tr{(ΣℓΣℓ′)2}δ⊤Σℓδ

nℓ′

)
,

var(A10) =O

(
tr(ΣℓΣℓ′)δ

⊤Σℓδ

n2
ℓnℓ′

)
, var(A11) = O

(
(δ⊤Σℓδ)

2

nℓ

)
,

var(A12) =O

(
(δ⊤Σℓδ)

2

n2
ℓ

)
.

Thus var(Aα) = o(σ4
g) for all α ∈ {1, 2, . . . , 12}.

These estimators provide the following estimator of σ2
g :

σ̂2
g =4

{
max(0, δ̂⊤Σgδ) +

1

ng

t̂r(Σ2
g) +

1

ng′

̂tr(Σ1Σ2) +
1

ng′
max(0, δ̂⊤Σg′δ)

}
+ 2

2∑
ℓ=1

1

nℓ(nℓ − 1)
t̂r(Σ2

ℓ).

Replacing the unknown values µ and σ2
g by their estimators, we propose ê(g′|g) = Φ (−µ̂/σ̂g).

The consistency of the estimator ê(g′|g) is demonstrated in the following proposition.
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Proposition 4.3.1 (Watanabe, Hyodo, Yamada, and Seo [43]). We assume (A0)–(A2)
and µ/σg = O(1). Then

ê(g′|g) =

{
e(g′|g) + op(1) under (C1) and (A3).

e(g′|g) + op(1) under (C2) and (A4).

Proof. We assume (C1) or (C2). From Lemma 4.3.1, under (A0)–(A2),

µ̂ = µ+ op(σg), (4.3)

̂tr(Σ1Σ2)

ng′
=

tr(Σ1Σ2)

ng′
+ op(σ

2
g),

t̂r(Σ2
g)

ng

=
tr(Σ2

g)

ng

+ op(σ
2
g). (4.4)

We also note that |max(0, δ̂⊤Σgδ) − δ⊤Σgδ| ≤ |δ̂⊤Σgδ − δ⊤Σgδ| a.s. From this result
and (iv) in Lemma 4.3.1, we get

E{(max(0, δ̂⊤Σgδ)− δ⊤Σgδ)
2} ≤ var(δ̂⊤Σgδ) = o(σ4

g).

Hence,

max(0, δ̂⊤Σgδ) = δ⊤Σgδ + op(σ
2
g). (4.5)

From (4.3), µ̂ = µ + op(σg). From (4.4) and (4.5), σ̂2
g = σ2

g + op(σ
2
g). Thus, under

(A0)–(A2),

ŵg = wg + op(wg), (4.6)

where wg = −µ/σg and ŵg = −µ̂/σ̂g.
We note that |e(g′|g)− Φ (ŵg)| ≤ |e(g′|g)− Φ (wg)|+|Φ (ŵg)− Φ (wg)|. From Proposi-

tion 4.2.1, |e(g′|g)− Φ (wg)| = o(1). Hence, it is sufficient to show that |Φ (ŵg)− Φ (wg)| =
op(1). From (4.6), we obtain ŵg = wg + op(1). By the continuous mapping theorem, we
then get |Φ (ŵg)− Φ (wg) | = op(1).

From |ê(g′|g)− e(g′|g)| < 1 and Proposition 4.3.1, we obtain the following corollary.

Corollary 4.3.1 (Watanabe, Hyodo, Yamada, and Seo [43]). We assume (A0)–(A2) and
µ/σg = O(1). Then

E{ê(g′|g)} =

{
e(g′|g) + o(1) under (C1) and (A3).

e(g′|g) + o(1) under (C2) and (A4).

4.4 Leave-one-out cross-validation method

In this section, we consider the leave-one-out CV method, which is popularly used for
estimating prediction errors in small samples. For j ∈ {1, 2, . . . , ng}, we consider the set

X(−j)
g = (xg1,xg2, . . . ,xgj−1,xgj+1, . . . ,xgng).

21



This set denotes the leave-one-out learning set, which is a collection of data with observa-
tion xgj removed. In a prediction problem, CV calculates the probability of misclassifying
a sample from all other observations in the sample. We define the discriminant function
by

W (−j)
g =

{
2xgj −

(
xg(−j) + xg′

)}⊤ (
xg(−j) − xg′

)
+

{
1

ng − 1
tr(Sg(−j))−

1

ng′
tr(Sg′)

}
,

where xg(−j) and Sg(−j) are calculated by the procedures in (4.1) using the learning set

X(−j)
g . The CV-based estimator is then given by

c(g′|g) = 1

ng

ng∑
j=1

I(W (−j)
g < 0),

where the function I(A) is the indicator function defined as

I(A) =

 1 if A is true,

0 if A is false.

By straightforward calculation, we obtain

E{c(g′|g)} =Pr(W (−1)
g < 0) and

var{c(g′|g)} =Pr(W (−1)
g < 0,W (−2)

g < 0)−
{
Pr(W (−1)

g < 0)
}2

+
1

ng

{
Pr(W (−1)

g < 0)− Pr(W (−1)
g < 0,W (−2)

g < 0)
}
.

Note that c(g′|g) is consistent when

Pr(W (−1)
g < 0)− Pr(Wg < 0) = o(1) and

Pr(W (−1)
g < 0,W (−2)

g < 0)−
{
Pr(W (−1)

g < 0)
}2

= o(1).

To confirm this statement in a high-dimensional setting, we must investigate the dis-
tribution of W

(−1)
g and the joint distribution of (W

(−1)
g ,W

(−2)
g )⊤. The joint asymptotic

normality of the random vector (W
(−1)
g ,W

(−2)
g )⊤ is given by the following lemmas:

Lemma 4.4.1 (Watanabe, Hyodo, Yamada, and Seo [43]). Under (C1) and (A0)–(A3),

(
(W (−1)

g − µ)/δg, (W (−2)
g − µ)/δg

)⊤ ⇝ N2(0, I2).

Proof. We assume (C1). Let k, k′ ∈ {1, 2} and k ̸= k′. Then we decompose W
(−k)
g − µ as
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W
(−k)
g1 +W

(−k)
g2 , where

W
(−k)
g1 =2

{
(−1)g+1δ − yg′ +

ng − 2

ng − 1
yg(−1,−2)

}⊤

ygk,

W
(−k)
g2 =

2

ng − 1
y⊤
g1yg2 −

2

ng − 1
y⊤
g(−1,−2)ygk′ + 2(−1)gδ⊤yg′

+
1

ng′(ng′ − 1)

ng′∑
j1,j2=1, j1 ̸=j2

y⊤
g′j1yg′j2

− 1

(ng − 1)(ng − 2)

ng∑
j1,j2=1, j1 ̸=j2, j1,j2 ̸=1,2

y⊤
gj1

ygj2 .

Then it holds that W
(−k)
g − µ = W

(−k)
g1 + op(σg) under (A0)–(A2).

For non-random constants c1 and c2, we define M = c1W
(−1)
g1 + c2W

(−2)
g1 . Then

{c1(W (−1)
g − µ) + c2(W

(−2)
g − µ)}/σg = M/σg + op(1).

The asymptotic normality of M would imply Lemma 4.4.1.

Especially, under (C1) and (A0)–(A3), M/σg =
∑ng+ng′−2

j=1 εj + op(1), where

εj =


2y⊤

gj+2(c1yg1 + c2yg2)

δg(ng − 1)
∀j ∈ {1, 2, . . . , ng − 2},

−
2y⊤

g′j−ng+2(c1yg1 + c2yg2)

δgng′
∀j ∈ {ng − 1, ng, . . . , ng + ng′ − 2}.

Define

Fj = σ{yg1, . . . ,ygj+2} (0 ≤ j ≤ ng − 2),

Fj = σ{yg1, . . . ,ygng ,yg′1, . . . ,yg′j−ng+2} (ng − 1 ≤ j).

Then it is straightforward to show that E(εj) = 0 and E(εj|Fj−1) = 0. To apply the
martingale central-limit theorem, we need to show that

ng+ng′−2∑
j=1

E(ε2j |Fj−1) = c21 + c22 + op(1),

ng+ng′−2∑
j=1

E(ε4j) = o(1). (4.7)

First, we check the first part in (4.7). Note that

ng+ng′−2∑
j=1

E(ε2j |Fj−1)− (c21 + c22) =
V1 + V2

δ2g
+ op(1),

where

V1 =
4(ng − 2)

(ng − 1)2
{
(c1yg1 + c2yg2)

⊤Σg(c1yg1 + c2yg2)− (c21 + c22)tr(Σ
2
g)
}
,

V2 =
4

ng′

{
(c1yg1 + c2yg2)

⊤Σg′(c1yg1 + c2yg2)− (c21 + c22)tr(ΣgΣg′)
}
.
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Under (A1),

var(V1) = O

(
tr(Σ4

g)

n2
g

)
= o(δ4g), var(V2) = O

(
tr{(ΣgΣg′)}2

n2
g′

)
= o(δ4g).

Thus, the first part of (4.7) holds.
Next, we show the second part of (4.7). Note that, under (A0),

E(ε4j) =


O

(
1

n2
g

)
∀j ∈ {1, 2, . . . , ng − 2}

O

(
1

n2
g′

)
∀j ∈ {ng − 1, ng, . . . , ng + ng′ − 2}.

Thus the second part of (4.7) holds. From these results, the proof is complete.

Lemma 4.4.2 (Watanabe, Hyodo, Yamada, and Seo [43]). Under (C2),(A0)–(A2), and
(A4), (

(W (−1)
g − µ)/σg, (W (−2)

g − µ)/σg

)⊤ ⇝ N2(0, I2).

Proof. Under (C2) and (A0)–(A2), the random variable M in proof of Lemma 4.4.1 can
be factorized as M/σg =

∑p
i=1 ξi, where

ξi =
2

σg

c1

{
(−1)g+1δ − yg′ +

ng − 2

ng − 1
ỹg

}⊤

Σ1/2
g eizgi1

+
2

σg

c2

{
(−1)g+1δ − yg′ +

ng − 2

ng − 1
ỹg

}⊤

Σ1/2
g eizgi2,

here zgi1 = e⊤
i zg1, zgi2 = e⊤

i zg2, and ỹg = yg(−1,−2). The asymptotic normality of M
would imply Lemma 4.4.2. Define

F0 = σ{yg′ , ỹg},
Fi−1 = σ{yg′ , ỹg, zg11, . . . , zg i−11, zg12, . . . , zg i−12} (2 ≤ i).

Thus, ξi is a martingale difference sequence. To apply the martingale central-limit theo-
rem, we need to show that

p∑
i=1

E(ξ2i |Fi−1) = c21 + c22 + op(1),

p∑
i=1

E(ξ4i ) = o(1). (4.8)

To this end, we show the first part of (4.8). Note that

p∑
i=1

E(ξ2i |Fi−1)− (c21 + c22) = 4(c21 + c22)
2(−1)g+1P1 + P2

σ2
g

+ op(1),
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where

P1 =δ⊤Σg

(
ng − 2

ng − 1
ỹg − yg′

)
,

P2 =

(
ng − 2

ng − 1
ỹg − yg′

)⊤

Σg

(
ng − 2

ng − 1
ỹg − yg′

)
−

{
tr(Σ2

g)

ng

+
tr(Σ1Σ2)

ng′

}
.

These variances are evaluated as

var(P1) = O


√

tr(Σ4
g)δ

⊤Σgδ

ng

+

√
tr{(ΣgΣg′)2}δ⊤Σgδ

ng′

 = o(σ4
g),

var(P2) = O

(
tr(Σ4

g)

n2
g

+
tr{(ΣgΣg′)

2}
n2
g′

)
= o(σ4

g).

Thus, under (A1), the first part of (4.8) holds.
We decompose ξi into the sum of three parts, ξi = 2{(−1)g+1ξ1i+(ng−2)/(ng−1)ξi2−

ξi3}/σg, where

ξi1 = δ⊤Σ1/2
g ei(c1zgi1 + c2zgi2), ξi2 = ỹ⊤

g Σ
1/2
g ei(c1zgi1 + c2zgi2),

ξi3 = y⊤
g′Σ

1/2
g ei(c1zgi1 + c2zgi2).

Then, we need to show that
∑p

i=1 E(ξ
4
iℓ) = o(σ4

g) for ℓ ∈ {1, 2, 3}. These expectations are
given as follows:

p∑
i=1

E(ξ4i1) = O
(
tr{(Σ1/2

g δδ⊤Σ1/2
g )⊙ (Σ1/2

g δδ⊤Σ1/2
g )}

)
,

p∑
i=1

E(ξ4i2) = O

(
tr(Σ4

g)

n2
g

)
,

p∑
i=1

E(ξ4i3) = O

(
tr{(ΣgΣg′)

2}
n2
g′

)
.

Thus, under (A4),
∑p

i=1 E(ξ
4
i1) = o(σ4

g). Also, under (A1),
∑p

i=1 E(ξ
4
i2) = o(σ4

g) and∑p
i=1 E(ξ

4
i2) = o(σ4

g). This proves the second part of (4.8). From these results, the proof
is complete.

From Lemmas 4.4.1 and 4.4.2, we obtain the following proposition.

Proposition 4.4.1 (Watanabe, Hyodo, Yamada, and Seo [43]). We assume (A0)–(A2),
and µ/σg = O(1). Then

c(g′|g) =

{
e(g′|g) + op(1) under (C1) and (A3),

e(g′|g) + op(1) under (C2) and (A4).
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4.5 Numerical experiment

In Monte Carlo simulations, we investigated the numerical performance of the approxima-

tion based on Proposition 4.2.1, and compared the consistencies of the estimators ê(2|1)
and c(2|1).

4.5.1 Accuracy of normal approximations

First, we investigate the accuracy of the normal approximations:

(I) : e(2|1) ≈ Φ (−µ/δ1) , (II) : e(2|1) ≈ Φ (−µ/σ1) .

Approximation (I) was proposed in Aoshima and Yata [3], and approximation (II) is
proposed in the Theorem 4.2.1 (ii). The asymptotic property of these approximations is
shown in (i) and (ii) of Proposition 4.2.1. The misclassification probability e(2|1) was
calculated in 100,000 replications of the Monte Carlo simulations. In each step, the data-
sets were generated as

∀j∈{1,...,n1} x1j = Σ
1/2
1 z1j + µ1, ∀j∈{1,...,n2} x2j = Σ

1/2
2 z2j + µ2,

where µ1 = 0. In µ2, the first ⌊
√

tr(Σ2
1)⌋ elements are

√
3n

−1/4
1 , and all other elements

are 0. Moreover,

Σ1 = B
(
0.3|i−j|)B, Σ2 = 1.2B

(
0.3|i−j|)B.

Here,

B = diag

((
1

2
+

1

p+ 1

) 1
2

,

(
1

2
+

2

p+ 1

) 1
2

, . . . ,

(
1

2
+

p

p+ 1

) 1
2

)
.

We considered the following four distributions of zgj = (zgij). Note that the fourth
moment of zgij exists.

(A)Standard normal distribution : zgij ∼ N (0, 1),

(B)Standardized chi− squared distribution with 10 degrees of freedom :

zgij = (ugij − 10)/
√
20 for ugij ∼ χ2

10,

(C)Standardized t distribution with 10 degrees of freedom :

zgij = ugij/
√
5/4 for ugij ∼ t10,

(D)Standardized skew normal distribution :

zgij = {1− 9/(5π)}−1/2 (ugij − 3/
√
5π) for ugij ∼ SN (3).

Setting p ∈ {50, 100, 200, 400, 800} and (n1, n2) ∈ {(20, 40), (30, 30), (40, 20), (40, 80),
(60, 60), (80, 40)}, we compared the e(2|1) values calculated by the simulation, approxi-
mation (I), and approximation (II). The results are shown in Table 4.1. Comparing the
tabulated approximations, we observe that in most cases, approximation (II) more closely
approaches e(2|1) than approximation (I). In addition, approximation (II) exhibits high
stability when we vary the population distribution.
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Table 4.1: Comparison of approximations
(n1, n2)

p (20,40) (30,30) (40,20) (40,80) (60,60) (80,40)

50 e(2|1) (A) 0.2071 0.2354 0.2696 0.2270 0.2529 0.2846
(B) 0.2057 0.2332 0.2686 0.2246 0.2530 0.2847
(C) 0.2025 0.2332 0.2685 0.2272 0.2507 0.2856
(D) 0.2038 0.2355 0.2678 0.2251 0.2555 0.2842

approx (I) 0.1212 0.1590 0.2117 0.1199 0.1579 0.2102
(II) 0.2072 0.2351 0.2682 0.2268 0.2542 0.2830

100 e(2|1) (A) 0.1908 0.2243 0.2616 0.2072 0.2385 0.2739
(B) 0.1898 0.2185 0.2598 0.2071 0.2360 0.2694
(C) 0.1915 0.2238 0.2584 0.2096 0.2369 0.2710
(D) 0.1884 0.2234 0.2623 0.2087 0.2386 0.2708

approx (I) 0.1283 0.1662 0.2186 0.1269 0.1651 0.2171
(II) 0.1922 0.2224 0.2595 0.2084 0.2382 0.2712

200 e(2|1) (A) 0.1689 0.2049 0.2478 0.1842 0.2178 0.2562
(B) 0.1685 0.2033 0.2439 0.1861 0.2151 0.2529
(C) 0.1686 0.2024 0.2456 0.1859 0.2154 0.2547
(D) 0.1695 0.2045 0.2451 0.1846 0.2162 0.2530

approx (I) 0.1218 0.1597 0.2123 0.1205 0.1585 0.2108
(II) 0.1709 0.2031 0.2439 0.1842 0.2162 0.2534

400 e(2|1) (A) 0.1634 0.1982 0.2393 0.1745 0.2092 0.2471
(B) 0.1623 0.1986 0.2427 0.1742 0.2061 0.2495
(C) 0.1641 0.1996 0.2402 0.1747 0.2079 0.2481
(D) 0.1624 0.1949 0.2438 0.1727 0.2072 0.2493

approx (I) 0.1286 0.1666 0.2189 0.1273 0.1654 0.2174
(II) 0.1639 0.1976 0.2412 0.1740 0.2075 0.2479

800 e(2|1) (A) 0.1468 0.1849 0.2299 0.1569 0.1893 0.2350
(B) 0.1492 0.1821 0.2289 0.1537 0.1909 0.2331
(C) 0.1500 0.1850 0.2299 0.1561 0.1927 0.2355
(D) 0.1490 0.1835 0.2296 0.1543 0.1905 0.2345

approx (I) 0.1220 0.1598 0.2125 0.1207 0.1587 0.2110
(II) 0.1484 0.1832 0.2293 0.1560 0.1908 0.2343
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4.5.2 Accuracy of the estimators

The MSEs of both estimators are listed in Table 4.2. In all cases, the estimator ê(2|1)
gives a smaller MSE than the estimator c(2|1). Based on these simulation experiments,

we therefore recommend estimator ê(2|1).

4.6 Conclusion

We proposed consistent and asymptotically unbiased estimators of misclassification prob-
abilities in high-dimensional settings. Our proposed estimator was obtained by using a
normal approximation of the misclassification probability. We confirmed the consistency
of the proposed estimator under variance heterogeneity and non-normality (Proposition
4.3.1). We also showed the consistency of an estimator based on the leave-one-out CV
method (Proposition 4.4.1). The MSEs of the two estimators were compared in numeri-
cal simulations. The estimator based on the normal approximation proved more accurate
than the estimator based on leave-one-out CV.
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Table 4.2: Comparison of MSE×103 of estimators
(n1, n2)

p (20,40) (30,30) (40,20) (40,80) (60,60) (80,40)

50 (A) ê(2|1) 3.961 3.600 4.413 1.982 1.768 2.130
c(2|1) 6.515 5.493 5.956 3.361 2.786 2.980

(B) ê(2|1) 3.939 3.636 4.394 1.996 1.784 2.127
c(2|1) 6.486 5.517 5.911 3.373 2.833 2.990

(C) ê(2|1) 4.024 3.637 4.435 2.012 1.819 2.132
c(2|1) 6.501 5.481 5.948 3.366 2.787 2.982

(D) ê(2|1) 3.939 3.569 4.432 1.985 1.776 2.120
c(2|1) 6.476 5.449 5.977 3.371 2.807 2.965

100 (A) ê(2|1) 3.748 3.555 4.459 1.963 1.786 2.156
c(2|1) 6.296 5.445 6.047 3.293 2.772 2.988

(B) ê(2|1) 3.786 3.520 4.448 1.982 1.803 2.177
c(2|1) 6.308 5.375 5.960 3.266 2.780 2.981

(C) ê(2|1) 3.758 3.665 4.464 1.984 1.802 2.163
c(2|1) 6.280 5.389 5.955 3.316 2.770 2.991

(D) ê(2|1) 3.796 3.556 4.388 1.984 1.777 2.163
c(2|1) 6.352 5.389 5.926 3.321 2.771 2.953

200 (A) ê(2|1) 3.453 3.337 4.264 1.842 1.690 2.105
c(2|1) 6.023 5.179 5.831 3.123 2.621 2.912

(B) ê(2|1) 3.376 3.509 4.303 1.885 1.730 2.120
c(2|1) 5.997 5.180 5.766 3.106 2.643 2.870

(C) ê(2|1) 3.432 3.365 4.327 1.852 1.707 2.109
c(2|1) 5.950 5.161 5.842 3.122 2.619 2.883

(D) ê(2|1) 3.431 3.374 4.275 1.866 1.718 2.120
c(2|1) 5.977 5.168 5.766 3.082 2.640 2.893

400 (A) ê(2|1) 3.703 3.274 4.346 1.781 1.696 2.155
c(2|1) 5.922 5.176 5.890 3.043 2.624 2.935

(B) ê(2|1) 3.283 3.279 4.270 1.793 1.714 2.150
c(2|1) 5.910 5.194 5.836 3.039 2.627 2.925

(C) ê(2|1) 3.273 3.285 4.263 1.776 1.708 2.121
c(2|1) 5.894 5.187 5.876 3.050 2.635 2.903

(D) ê(2|1) 3.312 3.359 4.406 1.785 1.706 2.138
c(2|1) 5.956 5.234 5.834 3.055 2.622 2.922

800 (A) ê(2|1) 2.972 3.034 4.118 1.616 1.620 2.079
c(2|1) 5.628 4.928 5.723 2.853 2.525 2.840

(B) ê(2|1) 2.961 3.106 4.124 1.638 1.627 2.090
c(2|1) 5.575 4.953 5.672 2.868 2.540 2.864

(C) ê(2|1) 2.917 3.053 4.117 1.620 1.603 2.083
c(2|1) 5.538 4.955 5.707 2.835 2.513 2.846

(D) ê(2|1) 2.927 3.060 4.128 1.618 1.607 2.092
c(2|1) 5.575 4.958 5.725 2.832 2.504 2.862
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Chapter 5

Estimation of misclassification
probability for multi-class in
high-dimensional data

In this chapter, we extend the contents of Chapter 4 to multiple groups G1, G2, . . . , Gk.
Training data set is extend to (x11,x12, . . . ,x1n1 ,x21,x22, . . . ,x2n2 , . . . ,xk1,xk2, . . . ,xknk

),
where xi1,xi2, . . . ,xini

is a p-dimensional random sample from the i-th population Gi. For
p ≤

∑k
i=1 ni − k, a natural extension of Fisher linear discriminant exists using multiple

discriminant analysis (See, Johnson and Wichern [24]). However, when p >
∑k

i=1 ni − k,
it cannot be used due to the singularity of pooled sample covariance matrix. In this case,
the Euclidean distance-based classifier is often used. Let x be test data generated from
one of the several populations G1, G2, . . . , Gk. The Euclidean distance-based discriminant
function is defined as

Wji = ∥x− xj∥2 − ∥x− xi∥2 −
tr(Sj)

nj

+
tr(Si)

ni

for i ̸= j, i, j ∈ {1, 2, . . . , k}, where Si and Sj are the sample covariance matrices．Using
this function, the classification rule for test data x is given by

x ∈ Rq ⇒ x ∼ Gq,

where the region Rq (q ∈ {1, 2, . . . , k}) is defined by

Rq = {x ∈ Rp ; Wjq > 0, j = 1, 2, . . . , k, j ̸= q},

where the notation “x ∼ Gℓ” means x generated from Gℓ. Then, the misclassification
probability of an observation from Gq is

eq = 1− Pr(x ∈ Rq|x ∼ Gq).

However, it is generally difficult to obtain an exact value for eq. In Chapter 4, we ob-
tained a plug-in estimator contained in the approximate value of eq for two-class classi-
fication. To extend that to multi-class, we show the asymptotic multivariate normality
for (W1q, . . . ,Wq−1q,Wq+1q, . . . ,Wkq)

⊤. By using this result, it is possible to construct an
approximation that is not the upper bound of eq. Further, we propose the plug-in type
estimator of misclassification probability of eq using asymptotic multivariate normality.
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5.1 Statistical model

For simplicity of notation, we only deal with e1. Then, q = 1 and j ∈ {2, 3, . . . , k}. As a
natural extension in the two-class classification, we assume that the data set is generated
by the following model:

x = Σ
1/2
1 z10 + µ1, ∀ℓ∈{1,2,...,k},t∈{1,2,...,nℓ} xℓt = Σ

1/2
ℓ zℓt + µℓ,

where e⊤
s zℓt are iid random variables s.t. fourth moment is bounded. Under this model,

the population mean vector and covariance matrix of xℓ1 are E(xℓ1) = µℓ and var(xℓ1) =
Σℓ, respectively. Let ∀i,i′∈{1,2,...,k} δii′ = µi − µi′ . The mean of Wj1, variance of Wj1, and
covariance of (Wj1,Wj′1) for j, j

′ ∈ {2, 3, . . . , k} are

µj = E(Wj1) = ∥µ1 − µj∥2 = ∥δ1j∥2,

σ2
j = var(Wj1) = 4

{
∆1j +

tr(Σ2
1)

n1

+
tr(Σ1Σj) + ∆j1

nj

}
+

2tr(Σ2
1)

n1(n1 − 1)

+
2tr(Σ2

j)

nj(nj − 1)
,

σjj′ = cov(Wj1,Wj′1) = 4

(
∆1jj′ +

tr(Σ2
1)

n1

)
,

respectively.Here, ∆i1i2 = ∥Σ1/2
i1

δi1i2∥2 and ∆i1i2i3 = δ⊤
i1i2

Σi1 δi1i3 for i1, i2, i3 ∈ N. µj

and σ2
j are the same as µ and σ2

g in Lemma 4.3.1.

5.2 Normal approximation of misclassification prob-

ability

To obtain asymptotic normality, we make asymptotic frameworks for some parameters.
Let nj, tr(Σ1Σj), tr{(Σ1Σj)

2}, tr{(Σ1/2
1 δ1jδ

⊤
1jΣ

1/2
1 ) ⊙ (Σ

1/2
1 δ1jδ

⊤
1jΣ

1/2
1 )}, tr(Σ2

1), tr(Σ
4
1),

tr(Σ2
j) and ∆1j be functions of p for j ∈ {2, 3, . . . , k}. Then, we assume (B1)–(B3).

(B1) min{n1, n2, . . . , nk} → ∞ and nj/n1 ∈ (0,∞).

(B2) tr(Σ1Σj)/{tr(Σ2
1)}2 ∈ (0,∞), ∆j1/∆1j ∈ (0,∞), {tr(Σ2

j)}2/{tr(Σ2
1)}2 ∈ (0,∞).

(B3) tr(Σ4
1) = o({tr(Σ2

1)}2),
√

tr{(Σ1Σj)2} = o(tr(Σ1Σj)),

tr{(Σ1/2
1 δ1jδ

⊤
1jΣ

1/2
1 )⊙ (Σ

1/2
1 δ1jδ

⊤
1jΣ

1/2
1 )} = o(∆1j),

where for a function f(·),“f(p) ∈ (0,∞) as p → ∞” implies lim infp→∞ f(p) > 0,
lim supp→∞ f(p) < ∞.

We consider the standardized Euclidean discriminant functions as follows:

Tj =
Wj1 − µj

σj

, for j ∈ {2, 3, . . . , k}.

We show the asymptotic normality of T = (T2, T3, . . . , Tk)
⊤. Then, mean vector E(T ) =

0 and cov(T ) = (ρjj′) =: R, where ρjj′ = σjj′/(σjσj′). The multivariate asymptotic
normality of T is given by the following theorem.
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Theorem 5.2.1 (Watanabe, Hyodo, and Seo [42]). Under (B1)–(B3), T ⇝ Nk−1(0, limp→∞R).

Proof. From Cramér–Wold theorem(See, Cramér and Wold [11]), it is sufficient to show

β⊤T ⇝ N (0, limp→∞ β⊤Rβ) for any k − 1 dimensional nonrandom vector β =
(β1, β2, . . . , βk−1)

⊤ ∈ Rk−1/{0}. We define

ϵs = 2
k∑

j=2

βjσ
−1
j (δ⊤

1jΣ
1/2
1 es + z⊤1 Σ1es − z⊤j Σ

1/2
j Σ

1/2
1 es)zs,

where zs = e⊤
s z10 and zi = n−1

i

∑ni

t=1 zit for i ∈ {1, 2, . . . , k}. Under (B1) and (B2), β⊤T =∑p
s=1 ϵs + op(1). Let F0 = σ{z1, z2, . . . , zk} and Fs−1 = σ{z1, z2, . . . , zk, z1, z2, . . . , zs−1}

for s ≥ 2. Then, (ϵs) is a martingale difference sequence. Under (B1) and (B2), there
exists limp→∞ β⊤Rβ(∈ (0,∞)). Let σ2 = limp→∞ β⊤Rβ. Also, under (B1) and (B3),

p∑
s=1

E(ϵ2s|Fs−1) = σ2 + op(1),

p∑
s=1

E(ϵ4s) = o(1).

Applying the martingale central limit theorem(See, Hall and Heyde [17]), we prove asymp-
totic normality of β⊤T .

5.3 Estimator of misclassification probability

Using Theorem 5.2.1, we propose the asymptotic approximation of misclassification prob-
ability as follows:

ẽ1 = 1− F (r,R) , (5.1)

where F (r,R) =
∫
D(2π)

−(k−1)/2|R|−1/2e−w⊤R−1w/2dw. Here,

D = {w ∈ Rk−1 ; e⊤
1 w + r1, e

⊤
2 w + r2, . . . , e

⊤
k−1w + rk−1 > 0}

and r = (µ2/σ2, µ3/σ3, . . . , µk/σk)
⊤.

The approximation (5.1) includes the unknown values ∥δ1j∥2, tr(Σ1Σj), tr(Σ
2
i ), ∆1j,
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∆j1 and ∆1jj′ . We prepare unbiased estimators of these unknown values as follows:

µ̂j = ∥x1 − xj∥2 −
tr(S1)

n1

− tr(Sj)

nj

, ̂tr(Σ1Σj) = tr(S1Sj),

t̂r(Σ2
i ) =

(ni − 1)[(ni − 1)(ni − 2)tr(S2
i ) + {tr(Si)}2 − niKi]

ni(ni − 2)(ni − 3)
,

∆̂1j = V1jj −
2U1j

(n1 − 1)(n1 − 2)
− tr(S1Sj)

n1

+
2n1K1 − (n1 − 1) {tr(S1)}2 − (n1 − 1)2tr(S2

1)

n1(n1 − 2)(n1 − 3)
,

∆̂j1 = Vj11 −
2Uj1

(nj − 1)(nj − 2)
− tr(SjS1)

nj

+
2njKj − (nj − 1) {tr(Sj)}2 − (nj − 1)2tr(S2

j)

nj(nj − 2)(nj − 3)
,

∆̂1jj′ = V1jj′ −
U1j + U1j′

(n1 − 1)(n1 − 2)

+
2n1K1 − (n1 − 1) {tr(S1)}2 − (n1 − 1)2tr(S2

1)

n1(n1 − 2)(n1 − 3)
,

where for i1, i2, i3 ∈ {1, 2, . . . , k},

Ki1 =
1

ni1 − 1

ni1∑
t=1

∥xi1t − xi1∥2,

Vi1i2i3 = (xi1 − xi2)
⊤Si1(xi1 − xi3),

Ui1i2 = (xi1 − xi2)
⊤

ni1∑
t=1

(xi1t − xi1)(xi1t − xi1)
⊤(xi1t − xi1).

µ̂j, ̂tr(Σ1Σj), t̂r(Σ2
i ), ∆̂1j, and ∆̂j1 are the same as the estimators in the section

4.3. The unbiased estimator ∆̂1jj′ is newly obtained in this section. However, some
estimators do not always take appropriate values. We note that ∆1j,∆1j′ ,∆j1 > 0 and
∆1jj′ ∈ [−

√
∆1j∆1j′ ,

√
∆1j∆1j′ ]. We truncate estimators of these parameters so that

they take appropriate values. Thus, we obtain ∆̃1j = max{0, ∆̂1j}, ∆̃1j′ = max{0, ∆̂1j′},
∆̃j1 = max{0, ∆̂j1}, and

∆̃1jj′ = min

{√
∆̃1j∆̃1j′ ,max

{
∆̂1jj′ ,−

√
∆̃1j∆̃1j′

}}
.

We estimate σ2
j and σjj′ using the following estimators:

σ̂2
j = 4

(
∆̃1j +

t̂r(Σ2
1)

n1

+
̂tr(Σ1Σj) + ∆̃j1

nj

)
+ 2

∑
i∈{1,j}

t̂r(Σ2
i )

ni(ni − 1)
,

σ̂jj′ = 4

(
∆̃1jj′ +

t̂r(Σ2
1)

n1

)
.
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Let ρ̂jj′ = σ̂jj′/(σ̂jσ̂j′). Replacing the unknown value ρjj′ in R, we obtain the estimator

R̂ = (ρ̂jj′). We note that the matrix R̂ is always a positive matrix. Moreover, we estimate
r: r̂ = (µ̂2/σ̂2, µ̂3/σ̂3, . . . , µ̂k/σ̂k)

⊤. By substituting each estimator of unknown value in
(5.1), we obtain the estimator of misclassification probability as follows:

ê1 = 1− F
(
r̂, R̂

)
. (5.2)

5.4 Numerical experiment

We compare the approximation accuracy of the method based on (5.1) and the method
proposed by previous research, and compare the MSE of the plug-in estimator ê1 and the
estimator based on the leave-one-out CV method. For simplicity, we treat the discrimi-
nation problem among three groups.

5.4.1 Accuracy of normal approximations

We investigate the accuracy of the asymptotic approximations

(MI) : e1 ≈ ẽ1, (MII) : e1 ≈
3∑

j=2

Φ

(
−∥δ1j∥2

δj

)
,

where the approximation (MI) represents our proposed method based on (5.1), and the
approximation (MII) represents the method proposed by Aoshima and Yata [3]. (MI) is
derived by using the asymptotic multivariate normality for (W21,W31, . . . ,Wk1)

⊤ which
is obtained Theorem 5.2.1. (MII) is the approximation of the upper bound of e1 by
combining the asymptotic normality of Wij and Boole’s inequality. This approximation is
valid under some regularity conditions. Note that (MI) approximates e1 directly, whereas
(MII) approximates the upper bound of e1.

The misclassification probability e1 is calculated via Monte Carlo simulation with
100,000 replications.
For the distribution of zit = (ziℓt), we set the following two distributions:

(D1) ziℓt ∼ N (0, 1),

(D2) ziℓt = uiℓt/
√

5/4 for uiℓt ∼ t10.

Note that (D1) and (D2) satisfy our moment condition. The structure of the covariance
matrix is set with the following:

Σ1 =
(
0.3|i−j|) , Σ2 = 1.2

(
0.3|i−j|) , Σ3 = 2.4

(
0.3|i−j|) .

We set the mean vectors as following two cases:

(M1) µ1 = 0, µ2 =
(√

30/p,
√

30/p, . . . ,
√

30/p
)⊤

, µ3 = −µ2,

(M2) µ1 = 0, µ2 = (−1, 1,−1, 1, . . . ,−1, 1, 0, . . . , 0)⊤ , µ3 = −µ2.
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Here, in (M2), the number of non-zero elements in µ2 and µ3 is ⌈{tr(Σ2
1)}1/2/2⌉. The

dimensions and sample sizes are chosen as follows:

p = 100, 250, 500, 1000; (n1, n2, n3) = (20, 40, 60), (40, 80, 120), (60, 120, 180).

Then, we compare the true value e1, the approximation (MI) and the approximation
(MII) on these settings. By comparing the approximations in Table 5.1, it is seen that
approximation (MI) is closer to the true value e1 than (MII) is for all cases. In Table 5.2,
(MI) and (MII) are close to true value e1 when the sample size is relatively small, and
(MI) is closer to the true value than (MII) when the sample size is relatively large. In
situations where the dimension p is large and sample size n is small, (MII) is close to the
true value e1 and is a conservative approximation.

5.4.2 Accuracy of estimators

We investigate the MSE of the estimator ê1 on the same settings. For comparison, we
consider the leave-one-out cross-validation method CV , which is a popular method for
estimating prediction errors for small samples. The MSEs of the estimators CV and ê1
are given in Tables 5.3-5.6. These tables show that ê1 has smaller MSEs than CV does for
all cases. Moreover, it can be confirmed that the MSE of our estimator is not influenced
even if the distribution of ziℓt is a t distribution.

35



Table 5.1: Comparison of approximations when (M1)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)

100 e1 (D1) 0.0663 0.0552 0.0508
(D2) 0.0662 0.0543 0.0515

approx (MI) 0.0683 0.0557 0.0516
(MII) 0.0000 0.0000 0.0000

250 e1 (D1) 0.0998 0.0702 0.0627
(D2) 0.0984 0.0721 0.0627

approx (MI) 0.1007 0.0718 0.0623
(MII) 0.0034 0.0000 0.0000

500 e1 (D1) 0.1489 0.0979 0.0795
(D2) 0.1469 0.0977 0.0796

approx (MI) 0.1499 0.0983 0.0799
(MII) 0.0377 0.0032 0.0003

1000 e1 (D1) 0.2217 0.1474 0.1134
(D2) 0.2217 0.1464 0.1134

approx (MI) 0.2229 0.1472 0.1146
(MII) 0.1414 0.0367 0.0104

Table 5.2: Comparison of approximations when (M2)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)

100 e1 (D1) 0.3598 0.2854 0.2482
(D2) 0.3573 0.2879 0.2459

approx (MI) 0.3642 0.2909 0.2500
(MII) 0.3517 0.1855 0.1043

250 e1 (D1) 0.3433 0.2629 0.2125
(D2) 0.3460 0.2604 0.2150

approx (MI) 0.3485 0.2626 0.2135
(MII) 0.3772 0.2093 0.1235

500 e1 (D1) 0.3225 0.2313 0.1750
(D2) 0.3232 0.2303 0.1753

approx (MI) 0.3258 0.2307 0.1770
(MII) 0.3672 0.1998 0.1158

1000 e1 (D1) 0.3183 0.2175 0.1613
(D2) 0.3171 0.2169 0.1633

approx (MI) 0.3201 0.2190 0.1617
(MII) 0.3773 0.2094 0.1236
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Table 5.3: Comparison of MSEs when (M1) and (D1)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)

100 ê1 0.0016 0.0007 0.0004
CV 0.0032 0.0013 0.0008

250 ê1 0.0022 0.0008 0.0005
CV 0.0044 0.0017 0.0010

500 ê1 0.0030 0.0011 0.0006
CV 0.0060 0.0022 0.0012

1000 ê1 0.0040 0.0015 0.0008
CV 0.0078 0.0030 0.0016

Table 5.4: Comparison of MSEs when (M1) and (D2)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)

100 ê1 0.0016 0.0007 0.0004
CV 0.0031 0.0013 0.0008

250 ê1 0.0022 0.0008 0.0005
CV 0.0044 0.0016 0.0010

500 ê1 0.0030 0.0011 0.0006
CV 0.0060 0.0021 0.0012

1000 ê1 0.0041 0.0015 0.0008
CV 0.0078 0.0030 0.0016

Table 5.5: Comparison of MSEs when (M2) and (D1)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)

100 ê1 0.0042 0.0022 0.0014
CV 0.0091 0.0041 0.0026

250 ê1 0.0042 0.0021 0.0012
CV 0.0090 0.0038 0.0023

500 ê1 0.0041 0.0019 0.0011
CV 0.0087 0.0036 0.0020

1000 ê1 0.0042 0.0017 0.0010
CV 0.0088 0.0035 0.0019
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Table 5.6: Comparison of MSEs when (M2) and (D2)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)

100 ê1 0.0042 0.0022 0.0014
CV 0.0091 0.0041 0.0026

250 ê1 0.0042 0.0021 0.0013
CV 0.0090 0.0039 0.0023

500 ê1 0.0041 0.0019 0.0011
CV 0.0088 0.0036 0.0020

1000 ê1 0.0042 0.0017 0.0010
CV 0.0088 0.0035 0.0019

5.5 Conclusion

We showed the asymptotic multivariate normality for several Euclidean distance-based
discriminant functions under high-dimensional settings. Our theoretical results have been
established under variance heterogeneity and nonnormality. Further, using asymptotic
multivariate normality, we proposed a new estimator of misclassification probability of
Euclidean distance-based discriminant rule. We confirmed that proposed estimators have
good performances in high-dimensional situations through numerical simulations.
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Chapter 6

Simultaneous confidence interval for
paired mean vectors

In Chapter 4-5, we considered the Euclidean distance-based classifier in high-dimensional
data. The accuracy of its classifier depends on the Euclidean distance between the mean
vectors of the populations. As a research related to Euclidean distance in recent years,
Bai and Saranadasa [6] considered the two-sample test with equal covariance matrices,
and proposed an estimator based on the squared Euclidean norm instead of T 2 statistics.
Nishiyama et al. [29] proposed a test procedure for linear hypotheses of a set of mean
vectors from k ≥ 2 normal populations. Chen and Qin [10] also derived a test for the two-
sample problem without assuming normality. Besides, various alternative approaches for
the two-sample test have been proposed; see, e.g., [8, 16, 32, 40, 41]. In addition, k-sample
significance tests for high-dimensional mean vectors have been studied in [21, 45].

Previous studies focused on testing whether the gth population mean vector µg and the
hth population mean vector µh are the same or not. However, interval estimation for ∥µg−
µh∥2 has not been widely studied. In discriminant analysis based on Euclidean distance, it
is important in terms of discrimination accuracy to investigate Euclidean distance between
the mean vectors. Accordingly, in this Chapter, we consider simultaneous confidence
interval for paired mean vectors in high-dimensional data. To derive it, we show the
asymptotic distribution of the quadratic form in a set of sample mean vectors, and get
an approximate confidence interval for ∥µg − µh∥2.

6.1 Statistical model

To give an approximate interval estimator, asymptotic normality is established under
some conditions. For g ∈ {1, 2, . . . , k}, let µg and Σg be the mean vector and covariance
matrix, respectively, of the gth population. Let µ = vec(µ1,µ2, . . . ,µk) be the unknown
pk×1 vector of k ≥ 2 mean vectors corresponding to the k group. Additionally, let A be a
known p× p symmetric semi-positive definite matrix, and let V = (vij) be a known k× k
symmetric semi-positive definite matrix. Let xg1,xg2, . . . ,xgng be random observations
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from the gth population, and let

x = (x⊤
1 ,x

⊤
2 , . . . ,x

⊤
k )

⊤, xg =
1

ng

ng∑
i=1

xgi, Sg =
1

ng − 1

ng∑
i=1

(xgi − xg)(xgi − xg)
⊤.

We consider the random variable

T = x⊤(V ⊗A)x−
k∑

g=1

vgg
ng

tr(ASg),

where “A⊗B” denotes Kronecker product of matrices A and B.

Remark 6.1.1. The random variable T can be adapted to various hypothesis testing
problems, as follows.

(a) If we set k = 2, v11 = v22 = 1, v12 = v21 = −1 and A = I, then T can be used to
test H : µ1 = µ2 vs. A : µ1 ̸= µ2. This statistic is used in Chen and Qin [10].

(b) If we set vgg = ng(1 − ng/n) for g ∈ {1, 2, . . . , k}, vgh = −ngnh/n for g ̸= h, g, h ∈
{1, 2, . . . , k}, and A = I, then T can be used to test H : µ1 = µ2 = · · · = µk vs.
A : ¬H. Here, n = n1+n2+ · · ·+nk. This statistic is used by Yamada and Himeno
[45].

(c) If we set V = (βiβj) and A = I, then T is used for linear hypotheses of a set of

mean vectors H :
∑k

g=1 βgµg = 0 vs. A :
∑k

g=1 βgµg ̸= 0, where β1, β2, . . . , βk are
some real constants.

Let n1, n2, . . . , nk, tr{(AΣgAΣh)
2} and tr(AΣgAΣh) for g, h ∈ {1, 2, . . . , k} be func-

tions of p. We derive the asymptotic distribution of T under the assumptions listed
below.

(E1) The random vector xgi follows the model defined, for all i ∈ {1, 2, . . . , ng} and
g ∈ {1, 2, . . . , k}, by

xgi = RgiΣ
1/2
g zgi + µg, (6.1)

where Rgi is a non-negative random variable, and zgi is a p-dimensional random
vector. In addition, Rgi and zgi satisfy the following conditions:

(i) For all g ∈ {1, 2, . . . , k}, Rg1, Rg2, . . . , Rgng are identically distributed.

(ii) For all g ∈ {1, 2, . . . , k}, zg1, zg2, . . . , zgng are identically distributed.

(iii) R11, R12, . . . , R1n1 , . . . , Rk1, Rk2, . . . , Rknk
, z11, z12, . . . , z1n1 , . . . , zk1, zk2, . . . , zknk

are
mutually independent.

(iv) The jth element of zgi (denoted as zgij) has E(zgij) = 0, E(z2gij) = 1, and E(z4gij) is
uniformly bounded with respect to p.

(v) E(R2
gi) = 1, and E(R4

gi) is uniformly bounded with respect to p.
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(vi) For r ∈ {2, 3, 4}, define

Mg(j1, j2, . . . , jr ; α1, α2, . . . , αr) = E

(
r∏

ℓ=1

zαℓ
gijℓ

)

where αℓ ∈ {1, 2, 3}, α1+α2+· · ·+αr ≤ 4 whenever j1, j2, . . . , jr are distinct indices.
Then Mg(j1, j2, . . . , jr ; α1, α2, . . . , αr) = 0 except Mg(·, · ; 2, 2). Also, Mg(·, · ; 2, 2)
is uniformly bounded with respect to p.

(E2) min(p, n1, n2, . . . , nk) → ∞ as p → ∞.

(E3) For all g, h ∈ {1, 2, . . . , k}, tr{(AΣgAΣh)
2}/{tr(AΣgAΣh)}2 = o(1) as p → ∞.

(E3’) For all g ∈ {1, 2, . . . , k}, tr(Σ4
g)/{tr(Σ2

g)}2 = o(1) as p → ∞.

From the following remark, it can be understood that the moment condition (E1)
includes some of the special cases used in previous studies. We also note that condition
(E1) covers the class of elliptical distributions.

Remark 6.1.2. The moment condition (E1) includes the following special cases.

(a) If we set Rgi = 1 a.s. and Mg(·, · ; 2, 2) = 1 in (E1), we get the moment condition
used by Chen and Qin [10].

(b) Let R̃gi be a non-negative random variable and let ugi be a random vector distributed
uniformly on the surface of a unit sphere in Rp. Here, R̃gi and ugi are independent.
Then xgi = µg + R̃giΣ

1/2
g ugi has an elliptical distribution. We set zgi =

√
pugi and

Rgi = R̃gi/{E(R̃2
gi)}1/2 in (E1). Then

E(zgij) = 0, E(z2gij) = 1,

E(zgij1zgij2zgij3zgij4) =
p2

p(p+ 2)
([j1 = j2][j3 = j4] + [j1 = j3][j2 = j4]

+ [j1 = j4][j2 = j3])

< [j1 = j2][j3 = j4] + [j1 = j3][j2 = j4] + [j1 = j4][j2 = j3].

Here, [·] denotes the Iverson bracket. If E(R̃4
gi)/{E(R̃2

gi)}2 = O(1), then (E1) holds.
Thus (E1) includes elliptical distributions. In the case of a multivariate normal
distribution, E(R̃2

gi) = p, E(R̃4
gi) = p(p+ 2).

The asymptotic frameworks p ≍ ng, ln(p) = o(n
1/3
g ), and ng = O(pη), η > 1/2 are used

by Bai and Saranadasa [6], Cai et al. [8], and Srivastava et al. [40], respectively. However,
under these assumptions, the relationship between p and ng is restricted. Condition (E2)
is more flexible than these assumptions. Condition (E3) is used as an assumption to
derive general results, and condition (E3’) is used for interval estimation. In the following
remarks, we introduce the some covariance matrices satisfying condition (E3’).

Remark 6.1.3. The covariance matrices in (a), (b), and (c) satisfy condition (E3’).
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(a) The covariance matrix Σg is a symmetric matrix whose non-zero elements are ar-
ranged uniformly near the diagonal such that σg,ij = 0 if |i − j| > q. Then
tr(Σ2

g) = O(pq) and tr(Σ4
g) = O(pq3). If the σ2

g,ijs are uniformly bounded away
from infinity and zero and the half-band width is q = O(pγ) for some γ ∈ [0, 1),
then (E3’) holds.

(b) The covariance matrix Σg = (σg,iσg,jρ
|i−j|
g ) where σ2

g,ℓ = var(xgiℓ) is the marginal
variance for ℓ ∈ {1, 2, . . . , p}. If the σ2

g,ℓs are uniformly bounded away from infinity
and zero, (E3’) is satisfied.

(c) Let λg,i = O(pη) for all i ∈ {1, 2, . . . , ι} and λg,i = O(1) for all i ∈ {ι+1, ι+2, . . . , p}
be the eigenvalues of Σg. Here, ι is an unknown and positive fixed integer. If
η < 1/2, then (E3’) is satisfied.

In any case, it is desirable that the covariance matrix Σg should be sparse. If it is not
appropriate to assume sparsity in the covariance matrix Σg, then please check two-sample
tests of Aoshima and Yata [4].

Under (E1), the expectation and variance of T are obtained as follows:

E(T ) = µ⊤(V ⊗A)µ,

σ2 = var(T ) =
k∑

g=1

2v2ggtr{(AΣg)
2}

ng(ng − 1)
+

k∑
g=2

g−1∑
h=1

4v2ghtr(AΣgAΣh)

ngnh

+ 4µ⊤(V ⊗A)

{
k∑

g=1

1

ng

(ege
⊤
g )⊗Σg

}
(V ⊗A)µ.

We state below that the asymptotic normality of the Chen-Qin-type test statistic T
holds under (E1)–(E3) in a form that is weaker than the conditions considered previously.

Theorem 6.1.1 (Hyodo, Watanabe, and Seo [22]). Under Assumptions (E1)–(E3), {T −
µ⊤(V ⊗A)µ}/σ ⇝ N (0, 1) as p → ∞.

Proof. For all i ∈ {1, 2, . . . , ng} and g ∈ {1, 2, . . . , k}, let ygi = xgi−µg, yg =
∑ng

i=1 ygi/ng,
n(0) = 0, and n(g) = n1+n2+ · · ·+ng. For each i ∈ {n(g−1)+1, n(g−1)+2, . . . , n(g)},
define

εi =
2

σng(ng − 1)
y⊤
gi−n(g−1)Aagi−n(g−1),

where

agi = vgg

i−1∑
j=1

ygj + 1(g − 1)(ng − 1)

g−1∑
h=1

vghyh + (ng − 1)
k∑

h=1

vghµh.

Here, 1(x) denotes the indicator function with 1(x) = 0 if x ≤ 0 and 1(x) = 1 if x > 0.
Then

T − µ⊤(V ⊗A)µ

σ
=

n(k)∑
i=1

εi.
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Let F0 = {∅,Ω} and, for all i ∈ {n(g − 1) + 1, n(g − 1) + 2, . . . , n(g)},
Fi = σ{y11,y12, . . . ,y1n1 , . . . ,yg1,yg2, . . . ,ygi−n(g−1)}. Then F0 ⊆ F1 ⊆ · · · ⊆ F∞ and
E (εi|Fi−1) = 0. We show the asymptotic normality of ε1 + ε2 + · · · + εn(k) by adapting
the martingale-difference Central Limit Theorem; see, e.g., Hall and Heyde [17]. To apply
this theorem, it is necessary to check the following two conditions under (E1)–(E3):

(I):

n(k)∑
i=1

E(ε2i |Fi−1) = 1 + op(1), (II):

n(k)∑
i=1

E(ε4i ) = o(1).

To check (I), we first write the sum of the conditional expectations as B1 + · · ·+ B7,
where

B1 =
k∑

g=1

4v2gg
σ2n2

g(ng − 1)2

ng∑
i=1

(ng − i)[y⊤
giAΣgAygi − tr{(AΣg)

2}],

B2 =
k∑

g=1

8v2gg
σ2n2

g(ng − 1)2

ng∑
i=2

i−1∑
j=1

(ng − i)y⊤
giAΣgAygj,

B3 =
k∑

g=2

g−1∑
h=1

8vggvgh
σ2n2

g(ng − 1)

ng∑
i=1

(ng − i)y⊤
giAΣgAyh,

B4 =
k∑

g=1

8vgg
σ2n2

g(ng − 1)

ng∑
i=1

(ng − i)y⊤
giAΣgA

(
k∑

h=1

vghµh

)
,

B5 =
k∑

g=2

g−1∑
h=1

4v2gh
σ2ng

{
y⊤
hAΣgAyh −

tr(AΣgAΣh)

nh

}
,

B6 =
k∑

g=3

g−1∑
h=2

h−1∑
ℓ=1

8vghvgℓ
σ2ng

y⊤
hAΣgAyℓ,

B7 =
k∑

g=2

g−1∑
h=1

8vgh
σ2ng

y⊤
hAΣgA

(
k∑

h=1

vghµh

)
.

Using Hölder’s inequality, we find

E


n(k)∑
i=1

E(ε2i |Fi−1)− 1


2 ≤ 7

7∑
i=1

E(B2
i ).
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The proof of (I) is complete upon noting that under (E1)–(E3), we have

E(B2
1) = O

(
k∑

g=1

n−1
g

)
, E(B2

2) = O

[
k∑

g=1

tr{(AΣg)
4}

[tr{(AΣg)2}]2

]
,

E(B2
3) = O

[
k∑

g=2

g−1∑
h=1

√
tr{(AΣg)4}tr{(AΣgAΣh)2}
tr{(AΣg)2}tr(AΣgAΣh)

]
,

E(B2
4) = O

[
k∑

g=1

√
tr{(AΣg)4}

tr{(AΣg)2}

]
,

E(B2
5) = O

[
k∑

g=2

g−1∑
h=1

tr{(AΣgAΣh)
2}

{tr(AΣgAΣh)}2

]
,

E(B2
6) = O

[
k∑

g=3

g−1∑
h=2

h−1∑
ℓ=1

√
tr{(AΣgAΣh)2}tr{(AΣgAΣℓ)2}
tr(AΣgAΣh)tr(AΣgAΣℓ)

]
,

E(B2
7) = O

[
k∑

g=2

g−1∑
h=1

√
tr{(AΣgAΣh)2}
tr(AΣgAΣh)

]
.

To check (II), define

ε
(1)
i =

2vggy
⊤
gi−n(g−1)A

∑i−n(g−1)−1
j=1 ygj

σng(ng − 1)
, ε

(2)
i =

21(g − 1)y⊤
gi−n(g−1)A

∑g−1
h=1 vghyh

σng

,

ε
(3)
i =

2y⊤
gi−n(g−1)A

∑k
h=1 vghµh

σng

.

Using Hölder’s inequality, we find

n(k)∑
i=1

E(ε4i ) =
k∑

g=1

n(g)∑
i=n(g−1)+1

E


(

3∑
j=1

ε
(j)
i

)4
 ≤

k∑
g=1

n(g)∑
i=n(g−1)+1

E

(
33

3∑
j=1

ε
(j)4

i

)

= 33
k∑

g=1

3∑
j=1

n(g)∑
i=n(g−1)+1

E
(
ε
(j)4

i

)
.

Under (E1)–(E3),
∑n(g)

i=n(g−1)+1 E(ε
(j)4

i ) = O(n−1
g ) for j ∈ {1, 2, 3}. Thus, the proof of (II)

is complete.

We obtain the asymptotic result for interval estimation as a special case of Theorem
6.1.1. In fact, if V = (eg − eh)(eg − eh)

⊤ and A = I in Theorem 6.1.1, we obtain the
following corollary.

Corollary 6.1.1 (Hyodo, Watanabe, and Seo [22]). Define δgh = ∥µg − µh∥2, δ̂gh =
∥xg − xh∥2 − tr(Sg)/ng − tr(Sh)/nh, and

σgh = 2

√
tr(Σ2

g)

2ng(ng − 1)
+

tr(Σ2
h)

2nh(nh − 1)
+

tr(ΣgΣh)

ngnh

+
∆gh

ng

+
∆hg

nh

,
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where ∆gh = (µg−µh)
⊤Σg(µg−µh). Then, under (E1), (E2) and (E3’), (δ̂gh−δgh)/σgh ⇝

N (0, 1) as p → ∞.

Remark 6.1.4. Assuming that δgh = 0 in Corollary 6.1.1 (i.e., µg = µh), we obtain
the same result as Chen and Qin [10]. They also showed the asymptotic normality of

δ̂gh under ∆gh = o[tr{(Σg +Σh)
2}/(ng + nh)]. Not only does our result not require this

assumption but it also relaxes the assumptions about the moments of zgi in (6.1). If we
assume ∆gh = o[tr{(Σg+Σh)

2}/(ng+nh)] as reported by Chen and Qin [10], the term ∆gh

in σgh can be ignored. However, this assumption implies a local alternative hypothesis for
testing H : µg = µh vs. A : µg ̸= µh in their paper, and it is not appropriate to use it in
interval estimation. Therefore, in our results, no assumptions are made regarding µg and
µh.

6.2 Confidence interval for ∥µg − µh∥2

In this section, we construct an approximate confidence interval for δgh based on the
asymptotic results in Theorem 6.1.1. To derive a confidence interval for δgh, it is necessary
to prepare some estimators. We introduce the unbiased estimators of tr(ΣgΣh) and tr(Σ2

g)
as follows:

̂tr(ΣgΣh) = tr(SgSh),

t̂r(Σ2
g) =

ng − 1

ng(ng − 2)(ng − 3)
[(ng − 1)(ng − 2)tr(S2

g) + {tr(Sg)}2 − ngKg],

where

Kg =
1

ng − 1

ng∑
j=1

∥xgj − xg∥4.

These estimates are used for testing H : µg = µh vs A : µg ̸= µh. The unbiased esti-

mator t̂r(Σ2
g) was proposed by Himeno and Yamada [20]. In addition to these estimators,

it is necessary to have an estimator of ∆gh for the interval estimation of ∥µg − µh∥2. To
this end, we propose the following unbiased estimator of ∆gh:

∆̂gh =
(ng − 2)Vgh − 2Ugh

(ng − 1)(ng − 2)
− tr(SgSh)

nh

+
2ngKg − (ng − 1){tr(Sg)}2 − (ng − 1)2tr(S2

g)

ng(ng − 2)(ng − 3)
,

where

Vgh =

ng∑
j=1

{(xg − xh)
⊤(xgj − xg)}2, Ugh =

ng∑
j=1

(xg − xh)
⊤(xgj − xg)(xgj − xg)

⊤(xgj − xg).

We also investigate the order in probability of these estimators under (E1), (E2), and
(E3’).

Theorem 6.2.1 (Hyodo, Watanabe, and Seo [22]). Under (E1) and (E2), we have

t̂r(Σ2
g) = tr(Σ2

g) + op(n
2
gσ

2
gh) and ̂tr(ΣgΣh) = tr(ΣgΣh) + op(ngnhσ

2
gh) as p → ∞. If

(E3’) also holds, then ∆̂gh = ∆gh + op(ngσ
2
gh) as p → ∞.
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Proof. We rewrite t̂r(Σ2
g) = C1 + C2 + C3, where

C1 =
1

ng(ng − 1)

ng∑
i,j=1

i ̸=j

(y⊤
giygj)

2,

C2 = − 2

ng(ng − 1)(ng − 2)

ng∑
i,j,k=1

i̸=j,j ̸=k,k ̸=i

y⊤
giygjy

⊤
giygk,

C3 =
1

ng(ng − 1)(ng − 2)(ng − 3)

ng∑
i,j,k,ℓ=1

i ̸=j ̸=k ̸=ℓ,k ̸=i̸=ℓ ̸=j

y⊤
giygjy

⊤
gkygℓ.

Under (E1) and (E2), the variances of Ci for i = {1, 2, 3} are evaluated as follows:

var(C1) = O

[
{tr(Σ2

g)}2

ng

]
= O(n3

gσ
4
gh) = o(n4

gσ
4
gh),

var(C2) = O

[
{tr(Σ2

g)}2

n2
g

]
= O(n2

gσ
4
gh) = o(n4

gσ
4
gh),

var(C3) = O

[
{tr(Σ2

g)}2

n4
g

]
= O(σ4

gh) = o(n4
gσ

4
gh).

Thus we get t̂r(Σ2
g) = tr(Σ2

g) + op(n
2
gσ

2
gh) under (E1) and (E2).

Furthermore, we rewrite ̂tr(ΣgΣh) = D1 +D2 +D3 +D4, where

D1 =
1

ngnh

ng∑
j=1

nh∑
k=1

(y⊤
gjyhk)

2, D2 = − 1

ngnh(nh − 1)

ng∑
j=1

nh∑
k,ℓ=1
k ̸=ℓ

y⊤
gjyhky

⊤
gjyhℓ,

D3 = − 1

ngnh(ng − 1)

nh∑
j=1

ng∑
k,ℓ=1
k ̸=ℓ

y⊤
gjyhℓy

⊤
gkyhℓ,

D4 =
1

ng(ng − 1)nh(nh − 1)

ng∑
j,k=1
j ̸=k

nh∑
ℓ,m=1
ℓ ̸=m

y⊤
gjyhℓy

⊤
gkyhm.
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Under (E1) and (E2), we find

var(D1) = O

[
ng + nh

ngnh

{tr(ΣgΣh)}2
]
= o(n2

gn
2
hσ

4
gh),

var(D2) = O

[
1

n2
h

{tr(ΣgΣh)}2
]
= o(n2

gn
2
hσ

4
gh),

var(D3) = O

[
1

n2
g

{tr(ΣgΣh)}2
]
= o(n2

gn
2
hσ

4
gh),

var(D4) = O

[
1

n2
gn

2
h

{tr(ΣgΣh)}2
]
= o(n2

gn
2
hσ

4
gh).

Thus we get ̂tr(ΣgΣh) = tr(ΣgΣh) + op(ngnhσ
2
gh) under (E1) and (E2).

Finally, we rewrite ∆̂gh = E1 + E2 + · · ·+ E12, where

E1 =
1

ng(ng − 1)(ng − 2)

ng∑
j,k,ℓ=1

j ̸=k,k ̸=ℓ,ℓ ̸=j

y⊤
gjygky

⊤
gjygℓ,

E2 = − 1

ng(ng − 1)(ng − 2)(ng − 3)

ng∑
j,k,ℓ,m=1
j ̸=k ̸=ℓ ̸=m
ℓ ̸=j ̸=m̸=k

y⊤
gjygky

⊤
gℓygm,

E3 = − 2

ngnh(ng − 1)

ng∑
j,k=1
j ̸=k

nh∑
ℓ=1

y⊤
gjygky

⊤
gjyhℓ,

E4 =
2

ngnh(ng − 1)(ng − 2)

ng∑
j,k,ℓ=1

j ̸=k,k ̸=ℓ,ℓ ̸=j

nh∑
m=1

y⊤
gjygky

⊤
gℓyhm,

E5 =
1

ngnh(nh − 1)

ng∑
j=1

nh∑
k,ℓ=1
k ̸=ℓ

y⊤
gjyhjy

⊤
gjyhℓ,

E6 = − 2

ng(ng − 1)nh(nh − 1)

ng∑
j,k=1
j ̸=k

nh∑
ℓ,m=1
ℓ̸=m

y⊤
gjyhℓy

⊤
gkyhm,

E7 =
2

ng(ng − 1)

ng∑
j,k=1
j ̸=k

δ⊤
ghygjy

⊤
gjygk,

E8 = − 2

ng(ng − 1)(ng − 2)

ng∑
j,k,ℓ=1

j ̸=k,k ̸=ℓ,ℓ ̸=j

δ⊤
ghygjy

⊤
gkygℓ,
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E9 = − 2

ngnh

ng∑
j=1

nh∑
k=1

δ⊤
ghygjy

⊤
gjyhj, E10 =

2

ngnh(ng − 1)

ng∑
j,k=1
j ̸=k

nh∑
ℓ=1

δ⊤
ghygjy

⊤
gkyhℓ,

E11 =
1

ng

ng∑
j=1

(δ⊤
ghygjy

⊤
gjδgh − δ⊤

ghΣgδgh), E12 = − 1

ng(ng − 1)

ng∑
j,k=1
j ̸=k

δ⊤
ghygjy

⊤
gkδgh.

Under (E1), (E2) and (E3’), we find

var(E1) = O

[
{tr(Σ2

g)}2

n3
g

+
tr(Σ4

g)

n2
g

]
= o(n2

gσ
4
gh),

var(E2) = O

[
{tr(Σ2

g)}2

n4
g

]
= o(n2

gσ
4
gh),

var(E3) = O

[
tr(Σ2

g)tr(ΣgΣh)

n2
gnh

+
{tr(Σ4

g)}1/2{tr(ΣgΣh)
2}1/2

ngnh

]
= o(n2

gσ
4
gh),

var(E4) = O

{
tr(Σ2

g)tr(ΣgΣh)

n3
gnh

}
= o(n2

gσ
4
gh),

var(E5) = O

[
{tr(ΣgΣh)}2

ngn2
h

+
tr{(ΣgΣh)

2}
n2
h

]
= o(n2

gσ
4
gh),

var(E6) = O

[
{tr(ΣgΣh)}2

n2
gn

2
h

]
= o(n2

gσ
4
gh),

var(E7) = O

[
∆ghtr(Σ

2
g)

n2
g

+
∆gh{tr(Σ4

g)}1/2

ng

]
= o(n2

gσ
4
gh),

var(E8) = O

{
∆ghtr(Σ

2
g)

n3
g

}
= o(n2

gσ
4
gh),

var(E9) = O

[
∆ghtr(ΣgΣh)

ngnh

+
∆gh{tr(ΣgΣh)

2}1/2

nh

]
= o(n2

gσ
4
gh),

var(E10) = O

{
∆ghtr(ΣgΣh)

n2
gnh

}
= o(n2

gσ
4
gh), var(E11) = O

(
∆2

gh

ng

)
= o(n2

gσ
4
gh),

var(E12) = O

(
∆2

gh

n2
g

)
= o(n2

gσ
4
gh).

With the above result, the proof is complete.

First, we estimate the asymptotic standard deviation σgh. Before deriving the estima-
tor of σgh, we describe the risk of using the estimator cqgh obtained by Chen and Qin [10]
to estimate σgh directly. The estimator cqgh was introduced by Chen and Qin [10] to test
for the equality of the population mean vectors. We have

cqgh = 2

√√√√ t̃r(Σ2
g)

2ng(ng − 1)
+

t̃r(Σ2
h)

2nh(nh − 1)
+

˜tr(ΣgΣh)

ngnh

,

48



where, for each ℓ ∈ {g, h},

t̃r(Σ2
ℓ) =

1

nℓ(nℓ − 1)
tr

{
nℓ∑
i̸=j

(xℓi − xℓ(i,j))x
⊤
ℓi(xℓj − xℓ(i,j))x

⊤
ℓj

}
,

˜tr(ΣgΣh) =
1

ngnh

tr

{
ng∑
i=1

nh∑
j=1

(xgi − xg(i))x
⊤
gi(xhj − xh(j))x

⊤
hj

}
.

Here, xℓ(i,j) is ℓth sample mean after excluding xℓi and xℓj, and xℓ(i) is the ℓth sample
mean without xℓi. Note that cqgh is a ratio-consistent estimator of σgh under µg = µh,
(E1), (E2) and (E3’). However, this estimator is not suitable for the following reasons.

Let Tcq = (δ̂gh− δgh)/cqgh and zα/2 denote the upper α/2 quantile of the standard normal
distribution. Under assumptions (E1), (E2) and (E3’),

P = Pr(−zα/2 ≤ Tcq ≤ zα/2) = 1− 2Φ(−σ̃ghzα/2/σgh) + o(1) (6.2)

as p → ∞. Here,

σ̃gh = 2

√
tr(Σ2

g)

2ng(ng − 1)
+

tr(Σ2
h)

2nh(nh − 1)
+

tr(ΣgΣh)

ngnh

.

However, it is not suitable to use cqgh because P generally does not converge to 1 − α.
To clarify this point, we consider the following four cases:

(a1): ng∆gh/tr(Σ
2
g) = o(1), nh∆hg/tr(Σ

2
h) = o(1);

(a2): ng∆gh/tr(Σ
2
g) = O(1), nh∆hg/tr(Σ

2
h) = o(1);

(a3): ng∆gh/tr(Σ
2
g) = o(1), nh∆hg/tr(Σ

2
h) = O(1);

(a4): ng∆gh/tr(Σ
2
g) → ∞ or nh∆hg/tr(Σ

2
h) → ∞.

We assume (E1), (E2) and (E3’). Then,

P =


1− α + o(1) as p → ∞ under (a1),

1− α +O(1) as p → ∞ under (a2) or (a3),

o(1) as p → ∞ under (a4),

i.e., P has a bias except for situation (a1) close to the null hypothesis µg = µh. Based
on the key estimators that we introduced in Theorem 6.2.1, we propose the following
estimator for σgh:

σ̂gh = 2

√√√√ t̂r(Σ2
g)

2ng(ng − 1)
+

t̂r(Σ2
h)

2nh(nh − 1)
+

̂tr(ΣgΣh)

ngnh

+max

(
0,

∆̂gh

ng

+
∆̂hg

nh

)
.

Using Theorem 6.2.1, under (E1), (E2) and (E3’), we get the following ratio consistency:

σ̂gh = σgh{1 + op(1)}. (6.3)
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Next, we establish the asymptotic normality of the Studentized statistic defined by

Ts =
δ̂gh − δgh

σ̂gh

.

From Slutsky’s theorem, (6.3) and Corollary 6.1.1, we obtain the asymptotic distribution
of the Studentized statistic Ts in the following corollary.

Corollary 6.2.1 (Hyodo, Watanabe, and Seo [22]). Under assumptions (E1), (E2), and
(E3’), Ts ⇝ N (0, 1) as p → ∞.

From Corollary 6.2.1, under assumptions (E1), (E2), and (E3’), we have

Pr
(
−zα/2 ≤ Ts ≤ zα/2

)
= 1− α + o(1) (6.4)

as p → ∞. Comparing (6.2) and (6.4), it is clear that Ts should be used for confidence
intervals rather than Tcq.

Finally, after applying the Bonferroni inequality and Corollary 6.2.1, we propose the
approximate simultaneous confidence intervals:

∀g,h∈{1,...,k} with g < h CIgh = (max(δ̂gh − Lgh, 0), δ̂gh + Lgh) (6.5)

where Lgh = σ̂ghzα/{k(k−1)}. The asymptotic coverage probability is given in the following
theorem.

Theorem 6.2.2 (Hyodo, Watanabe, and Seo [22]). Under assumptions (E1),(E2), and
(E3’), as p → ∞, Pr(∀g<h∈{1,...,k} δgh ∈ CIgh) ≥ 1− α.

Proof. Combining the Bonferroni inequality and Corollary 6.2.1, we get

Pr(∀g<h∈{1,...,k} δgh ∈ CIgh) ≥ 1−
k∑

g<h

{
1− Pr

(
−zα/{k(k−1)} ≤ Ts ≤ zα/{k(k−1)}

)}
= 1− α + o(1).

6.3 Numerical experiment

In this section, we investigate the performance of the proposed approximate confidence
interval (6.5). To concentrate on confirming the approximate accuracy of the asymptotic
distribution derived in Corollary 6.2.1, we conduct a numerical experiment with k = 2.

6.3.1 Empirical coverage probability

In this subsection, we investigate the empirical coverage probability of our confidence
interval under various distributions. The data were generated from the model defined, for
all i ∈ {1, . . . , ng} and g ∈ {1, 2}, by

xgi = Σ1/2
g zgi + µg, (6.6)
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where

µ1 = (n1 + n2)p
−1/2(10, . . . , 10)⊤, µ2 = −µ1, Σ1 = B(0.3|i−j|)B, Σ2 = 1.2Σ1.

Here,

B = diag

((
0.5 +

1

p+ 1

)1/2

,

(
0.5 +

2

p+ 1

)1/2

, . . . ,

(
0.5 +

p

p+ 1

)1/2
)
.

The random vector zgj = (zgij) in (6.6) is generated from either one of the following
distributions:

(P1) zgi ∼ Np(0, Ip);

(P2) zgij = (ugij − 10)/
√
20 for ugij ∼ χ2

10;

(P3) zgi =
√

4/5ugi for ugi ∼ Tp(10,0, Ip);

(P4) zgi =
{
Ip − 2

π(1+p)
11⊤

}−1/2 {
ugi −

√
2

π(p+1)
1
}

for ugi ∼ SN p(0, Ip,1).

In the setting (P3), we use the standardized multivariate t variable for zgi. In the setting
(P4), we set the standardized multivariate skew normal variable for zgi. Note that settings
(P1)–(P4) all satisfy E(zgi) = 0 and var(zgi) = Ip, and that settings (P1)–(P3) satisfy the
moment condition (E1). The values of n1, n2, and p are chosen as follows:

Dimension: p ∈ {32, 64, 128, 256, 512}

Balanced sample: (n1, n2) ∈ {(16, 16), (32, 32), (64, 64), (128, 128), (256, 256)}

Unbalanced sample: (n1, n2) ∈ {(20, 12), (40, 24), (80, 48), (160, 96), (320, 192)}

Unbalanced sample: (n1, n2) ∈ {(12, 20), (24, 40), (48, 80), (96, 160), (192, 320)}

In each case, we computed the empirical coverage probability based on 105 replications.
The results are listed in Tables 6.1–6.12.

As it can be seen from Tables 6.1–6.12, when the sample sizes n1 and n2 or dimension
p are increased, the empirical coverage probability becomes very close to the nominal
confidence level. The coverage probability is smaller than the nominal confidence level
when p, n1, and n2 are small. However, the coverage probability approaches the nominal
confidence level if p is small, but n1 and n2 are large. The setting (P4) does not satisfy
(E1), but we see that for setting (P4) the approximation accuracy shows no sudden drops.
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Table 6.1: The empirical coverage probability when (P1)

(n1, n2)/p 32 64 128 256 512
(16, 16) 0.90 0.890 0.889 0.891 0.890 0.892

0.95 0.941 0.941 0.942 0.941 0.942
0.99 0.985 0.985 0.985 0.985 0.985

(32, 32) 0.90 0.895 0.893 0.894 0.895 0.896
0.95 0.945 0.945 0.945 0.945 0.946
0.99 0.987 0.988 0.988 0.987 0.988

(64, 64) 0.90 0.897 0.898 0.898 0.898 0.897
0.95 0.947 0.948 0.948 0.948 0.947
0.99 0.988 0.989 0.990 0.989 0.988

(128, 128) 0.90 0.900 0.900 0.897 0.899 0.899
0.95 0.949 0.950 0.948 0.949 0.949
0.99 0.990 0.990 0.989 0.989 0.990

(256, 256) 0.90 0.901 0.900 0.900 0.901 0.901
0.95 0.951 0.949 0.950 0.950 0.950
0.99 0.990 0.990 0.989 0.990 0.990

Table 6.2: The empirical coverage probability when (P2)

(n1, n2)/p 32 64 128 256 512
(16, 16) 0.90 0.889 0.889 0.890 0.889 0.891

0.95 0.940 0.940 0.941 0.941 0.941
0.99 0.985 0.984 0.985 0.985 0.984

(32, 32) 0.90 0.895 0.894 0.896 0.895 0.896
0.95 0.946 0.946 0.946 0.946 0.947
0.99 0.987 0.988 0.988 0.988 0.988

(64, 64) 0.90 0.900 0.897 0.898 0.897 0.899
0.95 0.949 0.948 0.949 0.948 0.949
0.99 0.989 0.989 0.989 0.989 0.989

(128, 128) 0.90 0.900 0.898 0.898 0.898 0.902
0.95 0.950 0.949 0.949 0.948 0.950
0.99 0.990 0.989 0.990 0.990 0.990

(256, 256) 0.90 0.900 0.899 0.901 0.903 0.901
0.95 0.950 0.950 0.950 0.951 0.950
0.99 0.989 0.990 0.990 0.990 0.990
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Table 6.3: The empirical coverage probability when (P3)

(n1, n2)/p 32 64 128 256 512
(16, 16) 0.90 0.890 0.890 0.891 0.890 0.890

0.95 0.941 0.941 0.942 0.940 0.942
0.99 0.986 0.986 0.985 0.986 0.986

(32, 32) 0.90 0.894 0.895 0.894 0.895 0.894
0.95 0.946 0.946 0.945 0.946 0.944
0.99 0.988 0.988 0.988 0.988 0.987

(64, 64) 0.90 0.899 0.897 0.898 0.897 0.897
0.95 0.949 0.947 0.948 0.948 0.948
0.99 0.990 0.989 0.989 0.989 0.989

(128, 128) 0.90 0.898 0.898 0.898 0.900 0.900
0.95 0.949 0.948 0.948 0.949 0.951
0.99 0.990 0.990 0.989 0.989 0.990

(256, 256) 0.90 0.899 0.899 0.900 0.899 0.900
0.95 0.950 0.949 0.950 0.951 0.950
0.99 0.990 0.990 0.990 0.990 0.990

Table 6.4: The empirical coverage probability when (P4)

(n1, n2)/p 32 64 128 256 512
(16, 16) 0.90 0.889 0.890 0.890 0.887 0.890

0.95 0.940 0.940 0.941 0.940 0.941
0.99 0.985 0.984 0.985 0.985 0.985

(32, 32) 0.90 0.895 0.894 0.895 0.896 0.895
0.95 0.946 0.945 0.945 0.946 0.946
0.99 0.988 0.989 0.987 0.987 0.988

(64, 64) 0.90 0.896 0.897 0.896 0.897 0.899
0.95 0.947 0.948 0.947 0.948 0.949
0.99 0.989 0.988 0.989 0.989 0.989

(128, 128) 0.90 0.898 0.896 0.897 0.899 0.898
0.95 0.949 0.947 0.948 0.950 0.949
0.99 0.989 0.989 0.990 0.990 0.989

(256, 256) 0.90 0.899 0.897 0.900 0.897 0.900
0.95 0.949 0.948 0.950 0.949 0.949
0.99 0.989 0.989 0.990 0.990 0.990
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Table 6.5: The empirical coverage probability when (P1)

(n1, n2)/p 32 64 128 256 512
(20, 12) 0.90 0.884 0.885 0.886 0.888 0.896

0.95 0.936 0.937 0.937 0.938 0.937
0.99 0.983 0.983 0.983 0.983 0.983

(40, 24) 0.90 0.894 0.893 0.894 0.893 0.893
0.95 0.944 0.944 0.944 0.944 0.943
0.99 0.986 0.987 0.989 0.986 0.987

(80, 48) 0.90 0.897 0.895 0.896 0.896 0.899
0.95 0.947 0.946 0.947 0.947 0.948
0.99 0.988 0.988 0.989 0.989 0.989

(160, 96) 0.90 0.897 0.899 0.897 0.898 0.897
0.95 0.948 0.949 0.948 0.948 0.948
0.99 0.990 0.989 0.989 0.989 0.990

(320, 192) 0.90 0.898 0.899 0.900 0.900 0.899
0.95 0.948 0.949 0.949 0.949 0.949
0.99 0.989 0.990 0.989 0.990 0.989

Table 6.6: The empirical coverage probability when (P2)

(n1, n2)/p 32 64 128 256 512
(20, 12) 0.90 0.887 0.887 0.884 0.885 0.884

0.95 0.938 0.938 0.937 0.937 0.936
0.99 0.984 0.983 0.982 0.982 0.983

(40, 24) 0.90 0.893 0.893 0.893 0.894 0.893
0.95 0.944 0.945 0.944 0.945 0.944
0.99 0.987 0.987 0.987 0.987 0.986

(80, 48) 0.90 0.896 0.897 0.897 0.896 0.897
0.95 0.947 0.947 0.948 0.947 0.947
0.99 0.989 0.988 0.989 0.989 0.989

(160, 96) 0.90 0.899 0.897 0.898 0.899 0.898
0.95 0.948 0.948 0.949 0.950 0.949
0.99 0.989 0.989 0.989 0.989 0.989

(320, 192) 0.90 0.900 0.900 0.899 0.897 0.899
0.95 0.950 0.949 0.950 0.949 0.950
0.99 0.989 0.989 0.990 0.989 0.990
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Table 6.7: The empirical coverage probability when (P3)

(n1, n2)/p 32 64 128 256 512
(20, 12) 0.90 0.887 0.887 0.887 0.887 0.887

0.95 0.939 0.939 0.938 0.939 0.939
0.99 0.984 0.984 0.984 0.984 0.984

(40, 24) 0.90 0.892 0.893 0.893 0.894 0.893
0.95 0.943 0.944 0.944 0.944 0.944
0.99 0.987 0.987 0.987 0.987 0.987

(80, 48) 0.90 0.897 0.898 0.896 0.896 0.896
0.95 0.948 0.947 0.946 0.947 0.947
0.99 0.989 0.989 0.988 0.988 0.988

(160, 96) 0.90 0.897 0.899 0.897 0.897 0.897
0.95 0.948 0.949 0.948 0.947 0.946
0.99 0.989 0.990 0.990 0.989 0.988

(320, 192) 0.90 0.900 0.900 0.899 0.900 0.899
0.95 0.950 0.950 0.949 0.949 0.950
0.99 0.990 0.990 0.990 0.990 0.989

Table 6.8: The empirical coverage probability when (P4)

(n1, n2)/p 32 64 128 256 512
(20, 12) 0.90 0.886 0.886 0.887 0.886 0.885

0.95 0.938 0.937 0.938 0.938 0.936
0.99 0.983 0.983 0.983 0.983 0.983

(40, 24) 0.90 0.893 0.892 0.894 0.894 0.893
0.95 0.944 0.943 0.944 0.945 0.944
0.99 0.987 0.986 0.987 0.987 0.987

(80, 48) 0.90 0.898 0.896 0.898 0.898 0.899
0.95 0.948 0.946 0.948 0.948 0.949
0.99 0.989 0.988 0.989 0.989 0.989

(160, 96) 0.90 0.897 0.899 0.899 0.899 0.898
0.95 0.948 0.949 0.949 0.949 0.949
0.99 0.989 0.989 0.989 0.990 0.989

(320, 192) 0.90 0.900 0.899 0.899 0.899 0.898
0.95 0.950 0.949 0.949 0.949 0.948
0.99 0.990 0.989 0.990 0.990 0.989
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Table 6.9: The empirical coverage probability when (P1)

(n1, n2)/p 32 64 128 256 512
(12, 20) 0.90 0.888 0.888 0.889 0.888 0.888

0.95 0.939 0.938 0.940 0.939 0.939
0.99 0.983 0.984 0.984 0.983 0.984

(24, 40) 0.90 0.894 0.893 0.894 0.894 0.893
0.95 0.945 0.945 0.945 0.945 0.944
0.99 0.987 0.987 0.987 0.987 0.987

(48, 80) 0.90 0.896 0.896 0.898 0.896 0.898
0.95 0.947 0.947 0.948 0.946 0.948
0.99 0.988 0.988 0.990 0.988 0.989

(96, 160) 0.90 0.899 0.898 0.898 0.899 0.899
0.95 0.949 0.949 0.948 0.949 0.950
0.99 0.989 0.989 0.989 0.990 0.990

(192, 320) 0.90 0.900 0.899 0.899 0.900 0.900
0.95 0.949 0.950 0.949 0.949 0.950
0.99 0.990 0.989 0.990 0.990 0.990

Table 6.10: The empirical coverage probability when (P2)

(n1, n2)/p 32 64 128 256 512
(12, 20) 0.90 0.887 0.889 0.889 0.889 0.887

0.95 0.938 0.941 0.940 0.939 0.938
0.99 0.984 0.984 0.985 0.984 0.983

(24, 40) 0.90 0.894 0.896 0.894 0.894 0.894
0.95 0.944 0.946 0.944 0.945 0.944
0.99 0.987 0.988 0.987 0.987 0.987

(48, 80) 0.90 0.897 0.898 0.897 0.896 0.898
0.95 0.947 0.948 0.947 0.947 0.948
0.99 0.988 0.988 0.988 0.989 0.989

(96, 160) 0.90 0.899 0.898 0.900 0.899 0.898
0.95 0.950 0.949 0.949 0.950 0.949
0.99 0.989 0.990 0.989 0.990 0.990

(192, 320) 0.90 0.899 0.899 0.900 0.899 0.900
0.95 0.948 0.949 0.950 0.950 0.950
0.99 0.989 0.990 0.990 0.990 0.990
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Table 6.11: The empirical coverage probability when (P3)

(n1, n2)/p 32 64 128 256 512
(12, 20) 0.90 0.890 0.888 0.889 0.889 0.889

0.95 0.940 0.940 0.940 0.941 0.940
0.99 0.985 0.985 0.985 0.985 0.984

(24, 40) 0.90 0.894 0.894 0.896 0.894 0.895
0.95 0.945 0.945 0.947 0.944 0.945
0.99 0.987 0.987 0.989 0.988 0.989

(48, 80) 0.90 0.896 0.897 0.897 0.898 0.899
0.95 0.948 0.948 0.947 0.949 0.950
0.99 0.989 0.989 0.988 0.989 0.990

(96, 160) 0.90 0.898 0.898 0.899 0.898 0.899
0.95 0.948 0.948 0.949 0.948 0.949
0.99 0.989 0.989 0.990 0.989 0.990

(192, 320) 0.90 0.899 0.898 0.900 0.899 0.900
0.95 0.949 0.949 0.950 0.950 0.950
0.99 0.990 0.989 0.990 0.990 0.990

Table 6.12: The empirical coverage probability when (P4)

(n1, n2)/p 32 64 128 256 512
(12, 20) 0.90 0.888 0.888 0.887 0.887 0.888

0.95 0.939 0.939 0.939 0.938 0.939
0.99 0.984 0.984 0.984 0.985 0.984

(24, 40) 0.90 0.894 0.894 0.895 0.893 0.894
0.95 0.945 0.945 0.945 0.945 0.944
0.99 0.987 0.987 0.988 0.987 0.987

(48, 80) 0.90 0.899 0.896 0.897 0.897 0.897
0.95 0.948 0.947 0.948 0.947 0.947
0.99 0.989 0.988 0.989 0.988 0.989

(96, 160) 0.90 0.899 0.897 0.898 0.898 0.900
0.95 0.949 0.948 0.949 0.948 0.950
0.99 0.989 0.989 0.990 0.989 0.989

(192, 320) 0.90 0.897 0.898 0.898 0.898 0.900
0.95 0.948 0.949 0.948 0.948 0.949
0.99 0.990 0.989 0.989 0.990 0.990
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6.3.2 Compare the empirical coverage probability

In this subsection, We compare the empirical coverage probability of the confidence
intervals described below under various situations and three different confidence levels
α ∈ {0.01, 0.05, 0.1}:

• CI1 = (max(δ̂12 − cq12zα/2, 0), δ̂12 + cq12zα/2).

• CI2 = (max(δ̂12 − σ̂12zα/2, 0), δ̂12 + σ̂12zα/2).

The confidence interval CI1 is based on test statistics for a two-sample test given by Chen
and Qin [10]. The confidence interval CI2 is our proposed method (6.5) with k = 2. These
asymptotic coverage probabilities are obtained by (6.2) and (6.4). For these simulations,
we set n1 = n2 = p for p ∈ {32, 64, 128, 256, 512}. The data were generated from the
following model:

x11, . . . ,x1n1

iid∼ Np(µ1,Σ1), x21, . . . ,x2n2

iid∼ Np(µ2,Σ2)

where

µ1 = p−η(
√
5, . . . ,

√
5)⊤, µ2 = 0, Σ1 = B(0.3|i−j|)B, Σ2 = 1.2Σ1.

Here, η ∈ {0.1, 0.2, . . . , 1.0}. To reflect the difference in variance for each component xgi,
we choose the covariance structure Σg that is a first-order autoregressive structure with
heterogeneous variances. The correlation between any two elements is equal to 0.3 for
adjacent elements, 0.32 for two elements separated by a third, and so on. The empiri-
cal coverage probabilities were calculated with 105 replications. The resulting coverage
probabilities for CI1 and CI2 intervals are presented in Figs. 1–5. These figures are
scatter plots of the coverage probability [vertical axis] versus each η [horizontal axis]. In
each graph, the circle (◦), black circle (•), square (□), black square (■), triangle (△), and
black triangle (▲) marks denote the empirical coverage probabilities of the 0.90 confidence
interval CI1, the 0.90 confidence interval CI2, the 0.95 confidence interval CI1, the 0.95
confidence interval CI2, the 0.99 confidence interval CI1, and the 0.99 confidence interval
CI2, respectively.

Note that a large η corresponds to a small ∥µ1 − µ2∥2 because ∥µ1 − µ2∥2 = 5p1−2η.
When ∥µ1−µ2∥2 is large, the empirical coverage probability of CI1 is much smaller than
the nominal confidence level, while that of CI2 is close to the nominal confidence level.
Overall, the empirical coverage probability of CI2 is close to the nominal confidence, but
it is somewhat conservative when ∥µ1 − µ2∥2 is relatively small.
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Figure 6.1: The empirical coverage probabilities when p = 32
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Figure 6.2: The empirical coverage probabilities when p = 64
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Figure 6.3: The empirical coverage probabilities when p = 128
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Figure 6.4: The empirical coverage probabilities when p = 256
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Figure 6.5: The empirical coverage probabilities when p = 512

6.3.3 Real data analysis

In this subsection, we use training data to compare the population means of the expres-
sion of four types of genes. Khan et al. [25] studied the expression of the following
four types of genes of childhood small round blue cell tumors (SRBCTs): (i) the Ew-
ing family of tumors (EWS, 23 cases); (ii) Burkitt lymphoma, a subset of non-Hodgkin
lymphoma (BL, 8 cases); (iii) neuroblastoma (NB, 12 cases); and (iv) rhabdomyosar-
coma (RMS, 21 cases). Contained in this dataset are gene expression profiles from both
tumor biopsy and cell line samples. The dataset contains the filtered dataset of 2308
gene expression profiles, as described by Khan et al. [25]; this dataset is available from
http://bioinf.ucd.ie/people/aedin/R/.

As a method of classifying microarray data, Aoshima and Yata [3] proposed the Eu-
clidean distance classifier. The accuracy of this classifier depends on the Euclidean dis-
tance of all pair-wise differences between the mean vectors of the populations. We con-
struct a simultaneous confidence interval for all differences of population mean vectors
∥µg−µh∥2 using our proposed method. The approximate simultaneous confidence interval
of 95% confidence was constructed as follows:

p−0.6∥µEWS − µBL∥2 : (4.2, 7.2), p−0.6∥µEWS − µNB∥2 : (2.4, 6.0),
p−0.6∥µEWS − µRMS∥2 : (2.2, 5.2), p−0.6∥µBL − µNB∥2 : (4.2, 5.2),
p−0.6∥µBL − µRMS∥2 : (5.2, 9.7), p−0.6∥µNB − µRMS∥2 : (2.1, 6.8).

From this result, we can see that the Euclidean norm of the difference vector of the two
mean vectors has a large value of about ∥µg − µh∥2 = O(p0.6).

6.4 Conclusion

We discussed the construction of confidence intervals for ∥µg −µh∥2 in high-dimensional
settings. Under the non-normal assumption and high-dimensional settings, we derived
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the asymptotic distribution of a quadratic form in the set of sample mean vectors, and
an unbiased estimator ∆gh. Using these methods, we obtained an approximate confi-
dence interval for ∥µg − µh∥2. The performance of this approximate confidence interval
was evaluated via simulation. It was confirmed that the coverage probability of the pro-
posed confidence interval is close to nominal even in some non-normal settings. Thus,
the proposed confidence interval is robust against departures from normality without im-
pairing the approximation accuracy. Furthermore, we applied the proposed method to a
microarray data set and evaluated ∥µg − µh∥2.
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