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Abstract

This thesis defines closed finite-dimensional quantum systems that contain complex

transitions between states as complex quantum networks, and theoretically investigates

quantum dynamics on those systems, as well as presenting a method to experimentally

simulate such quantum dynamics using systems under a periodic drive. First, from the

perspective of quantum computation, whether complex quantum networks are useful to

implement quantum spatial search algorithms is investigated. Specifically, the continuous-

time spatial search algorithm using a tight-binding Hamiltonian is analyzed, where the

correlation between the structural characteristics of the Hamiltonian and the time evo-

lution of the search algorithm is investigated. In addition, to experimentally simulate

the time evolution generated by the tight-binding Hamiltonian holding complex network

structure, a method using an array of optical waveguides or a many-body quantum spins

system is proposed. In particular, the thesis shows that complex quantum networks ap-

pear in the effective Floquet Hamiltonian of periodically driven systems. The following

paragraphs are the outline of each Chapter of the thesis.

In Chapter 1, namely the Introduction, the background of the research and the sig-

nificance of the thesis are described. Recent developments in the technology of quantum

engineering and control have made it possible to manipulate single qubits such as single

atoms, ions, and superconducting qubits with high precision, as well as allowing to control

interactions between individual qubits to create artificial many-body systems. Such tech-

nology is indispensable for the realization of quantum computers or quantum simulators,

and thus the method to engineer a high-dimensional quantum many-body system while

controlling it with high fidelity has become an important issue. Thanks to these tech-

nologies, there is a growing interest on engineering and investigating quantum systems

that are beyond simple lattice or regular structures, such as structures with random-

ness and long-range interactions. Such systems are called complex quantum networks,

and some research areas to explore novel physical phenomena in these systems or ex-

ploring the application of these systems to quantum information processing tasks have
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opened up. On this background, this thesis analyzes the usefulness of complex quantum

networks for the quantum search algorithm, which is one of the most fundamental and

important quantum information processing tasks. The quantum search algorithm is an

algorithm intended to run on quantum processors, that detects a marked state among N

states by time-evolving a single particle on the N dimensional Hilbert space. This thesis

analyzes the time evolution of the quantum search algorithm on two specific models of

complex networks and derives the time complexity of the algorithm. The analysis leads

to providing new perspective to understand quantum dynamics on complex structures.

In addition, the thesis proposes a method to experimentally simulate the dynamics on

complex quantum networks with current technologies available in the labs. By using a

coupled optical waveguide system or a many-body spin system subject to periodic drive

(constraint by a time-periodic Hamiltonian), the thesis shows that an effective Floquet

Hamiltonian having complex network structure can be derived.

Chapter 2 summarizes the preliminaries on quantum mechanics and graph theory,

which will be necessary to explain the analysis and results in this thesis. A closed, finite-

dimensional quantum systems are featured, where some Hamiltonian systems including

the tight-binding Hamiltonian, many-body spin Hamiltonians, and time-periodic Hamil-

tonians are introduced. Graph theory and complex network science are outlined in the

later part of the chapter, with descriptions of general methods of analyzing complex net-

works. Finally, the introduced quantum systems and network science are combined, which

makes the discussion of this thesis unique.

Chapter 3 puts together the main results of the thesis. This chapter investigates the

quantum spatial search algorithm on complex quantum networks. First, an introduction

on the unstructured search problem and the Grover’s algorithm that solves such problem

is provided. Next the spatial search algorithm is introduced, which uses a tight-binding

Hamiltonian for the construction of the algorithm. The tight-binding Hamiltonian is a

type of Hamiltonian that generates a continuous-time evolution where a single particle

hops between the states on the Hilbert space. The specific Hamiltonians treated in this

thesis are conditioned to satisfy the small-world property or the scale-free property de-

fined in the context of complex network science. When the matrix representation of the

Hamiltonian contains a large number non-zero off-diagonal entries, this corresponds to

the small-world property. When the sum of each row of the Hamiltonian matrix satisfies

a power law distribution, this corresponds to the scale-free property. To derive the time
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complexity of the search algorithm using such Hamiltonians, the eigenstates and eigen-

values of the matrices are mainly analyzed using numerical calculation. The correlation

between the time evolution of the search algorithm and the structure of the Hamiltonian

can be investigated from this analysis. The obtained results tells us that in the case

of the Hamiltonian holding the small-world property, when the amount of non-zero off-

diagonal matrix elements exceeds a threshold, the efficiency where the particle diffuses

and interfere with itself significantly increases, leading to the availability of a fast search

algorithm. From the other case where the Hamiltonian holds the scale-free property, it

was discovered that the time complexity of the search algorithm has a strong correlation

with the closeness centrality of the underlying scale-free network. These results suggest

that complex quantum networks holding the small-world property are particularly useful

for quantum search algorithms. In addition, the analysis using the scale-free complex

quantum networks revealed a new property of the quantum search algorithm.

Chapter 4 proposes and theoretically investigates a method to simulate quantum dy-

namics in complex quantum networks using time-periodic Floquet systems. First a system

where optical waveguides are evanescently coupled to each other in a linear chain, with

a single photon or two-photon state input is considered. The optical waveguides are pe-

riodically modulated with respect to the propagation direction, such that the coupling

constant between the waveguides changes periodically during the propagation of the pho-

tons. The Floquet theory is used to derive the effective time-independent Hamiltonian

of the single period of the modulation. The obtained effective Hamiltonian matrix con-

tains non-zero off-diagonal entries which matches with the properties of random graphs.

Additionally, towards the actual experimental implementation, a photonic system that

generates single-photon and two-photon states with high-efficiency is proposed. As the

second type of physical system, a many-body spin system under the time-crystalline

phase is considered. Here, the time-crystalline phase refers to a non-equilibrium steady

state where the spin-1/2 many-body localized Ising chain is time-periodically subject to a

transversal magnetic field. After properly adjusting the strength of the transversal mag-

netic field, the effective Hamiltonian is derived using the Floquet theory, which results to

a Hamiltonian matrix satisfying the scale-free property. These analysis shows that quan-

tum dynamics on complex quantum networks can be simulated using quantum systems

under time-periodic drives.

Chapter 5 is the summary and conclusions of the thesis.

iii



Acknowledgements

I would like to first thank my supervisor Associate Professor Kaoru Sanaka, who

has supported me for six years, starting from my undergraduate course. Prof. Sanaka

has always encouraged me to pursue my own research interest, and provided the best

environment for me to proceed my study. I thank him with all my heart for the continuous

help and discussions, as well as giving me a lot of opportunities to explore different things

during the Ph.D course. I could definitely not complete this work without Prof. Sanaka’s

support.

I thank Prof. Kae Nemoto at National Institute of Informatics (NII) with all my

heart. Prof. Nemoto has gave me all the support she could provide during my Ph.D

course. Although I was not officially belonged to NII, Kae has always treated me as her

true student and protected me, allowed me to visit the NII QIST group anytime, and

always gave me critical and encouraging advice on my study. I also thank Dr. William J.

Munro, group leader at NTT Basic Research Laboratories (BRL) with all my heart. Bill

has provided me a lot of help during all of the time of my Ph.D course, and he has drove

the motivation on my study. Bill has always marked my paper drafts with clear advice,

and even allowed me to use the server in his group for my study. Without Kae and Bill’s

support, I could never continue my research this far. Kae and Bill are the best people

I’ve ever met in my life and I genuinely respect them.

I thank Prof. Yasser Omar and Dr. Bruno Coutinho at Instituto de Telecomunicações,

Lisbon. We have met in a Winter School at Austria in 2017, and from then we have started

our collaboration. Yasser and Bruno has constantly gave me the opportunities to discuss

and provided great advice on our work, even though we were living far away from Lisbon

to Tokyo. Yasser has also invited me to stay in his lab for two weeks, during my first year

of my Ph.D. The experience I had during the stay was one of the most valuable experience

in my life, and I cannot thank him enough for his support.

I thank all of the members of Sanaka lab at Tokyo University of Science. The time

with my colleagues was such a precious time. I especially thank Tsubakiyama Takaho,

Satoshi Kobayashi, Ryo Nozaki, Haruka Terashima, Satoshi Kubo, and Yoshiro Sato for

their support, and for their continuous effort to conduct the experiment in the lab. The

actual experimental of the two-photon state generation scheme described in the thesis

iv



was conducted by these colleagues. The author of this thesis has only contributed on the

theoretical part of the work. The work could never been completed without their effort

and patience on conducting the experiment. Especially, Haruka Terashima has obtained

the experimental results showed in the published journal article, and Yoshiro Sato has

conducted the experiment in the published video of the article. I also thank again to

Tsubakiyama Takaho, Kei Yasuno and Satoshi Kobayashi who gave me a lot of support

and an enjoyable time during my study.

I thank all of the members of the NII QIST Kae Nemoto group. I would like to

thank Shojun Nakayama, Emi Yukawa, Shane Dooley, Li Yu, Michael Hanks, Jaeha Lee,

Zeliang Xiang, Fumiaki Matsuoka, Katsuya Furusho, Yusuke Hama, Nicolo Piparo, Marta

P. Estarellas, Claude Gravel and Akitada Sakurai for a lot of interesting discussions and

advice to my work. I also thank Yukiko Sanaka, secretary in the QIST group for her help.

I thank Victor Bastidas in NTT BRL for the helpful and fun discussions on our study.

The way he explains things were always super clear and interesting, which stimulated my

motivation. I also thank Benjamin Renoust for the great support on the complex network

science side of our work. I would never been so intrigued by the depth of complex network

science without the discussions with him. I thank again to Marta P. Estarellas for the

discussions on our time crystal work. Her passion on the scientific research has also

drove my research motivation. Having a lot of discussions and beer with these great

researches has broaden my sight and stimulated me so much. Especially, our work on the

simulation of complex quantum networks using time crystals were completed by the great

contribution from Marta, Victor, and Benjamin.

I thank Prof. Tetsuro Nikuni, Prof. Eiji Tokunaga, Prof. Jaw-Shen Tsai, Prof.

Noboru Watanabe, Prof. Kae Nemoto, and Prof. Kaoru Sanaka for reviewing my thesis.

They have spent a lot of time and effort to accurately understand and review my work,

which I thank with all my heart.

Finally, I thank my parents with all my heart for the understanding on the path I

took, and allowing me to pursue to the direction that I wanted to go. Definitely I could

never come this far without their understanding and support.

v



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 From Quantum mechanics to complex networks 6

2.1 Quantum systems, quantum states and linear operators . . . . . . . . . . . 6

2.2 Observables and measurements . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Hamiltonian and the time evolution operator . . . . . . . . . . . . . . . . . 9

2.4 Time-periodic Hamiltonians and effective Hamiltonians . . . . . . . . . . . 11

2.5 Qubit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Examples of Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 The tight-binding Hamiltonian . . . . . . . . . . . . . . . . . . . . 19

2.6.2 The spin chain Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Introduction to graph theory and complex network science . . . . . . . . . 23

2.8 Essential concepts of complex networks . . . . . . . . . . . . . . . . . . . . 31

2.9 Writing arbitrary Hamiltonians as tight-binding models and their interpre-

tation as networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Quantum spatial search on complex networks 48

3.1 Formalization of unstructured search problem . . . . . . . . . . . . . . . . 48

3.2 Quantum algorithm to solve the unstructured

search problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Introduction and literature review of the spatial search algorithms . . . . . 55

3.4 What this thesis tackles in the field of spatial search . . . . . . . . . . . . . 62

3.5 Preliminaries of the spatial search algorithm . . . . . . . . . . . . . . . . . 64

3.5.1 Definitions of the spatial search algorithm by continuous-time quan-

tum walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



CONTENTS

3.5.2 Spatial search on the complete graph: analytical approach . . . . . 67

3.5.3 Spatial search on a general graph . . . . . . . . . . . . . . . . . . . 69

3.5.4 Numerical method to analyze spatial search . . . . . . . . . . . . . 72

3.6 Spatial search on the long-range percolation model . . . . . . . . . . . . . 77

3.6.1 Defining the LRP model . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6.2 Time complexity of the spatial search on the LRP model . . . . . . 78

3.6.3 Average degree of the LRP model at the critical connectivity . . . . 81

3.7 Spatial search on the Scale-free network . . . . . . . . . . . . . . . . . . . . 86

3.7.1 Definition of the Bollobás scale-free network . . . . . . . . . . . . . 87

3.7.2 The distribution and the scaling of the search time . . . . . . . . . 89

3.7.3 Correlations with network measures . . . . . . . . . . . . . . . . . . 94

3.7.4 Limitation of the search algorithm on complex networks and trans-

lation to a state transfer protocol . . . . . . . . . . . . . . . . . . . 98

3.8 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Simulation of complex quantum networks using driven quantum sys-

tems 104

4.1 Simulating complex network structures with effective Floquet Hamiltonians 104

4.2 Simulating random networks with periodically

modulated optical waveguides . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.1 Single or two-photon state propagating through an coupled waveg-

uide array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.2 Periodically modulated waveguide array and it’s effective Hamiltonian109

4.2.3 Preparation of the two photon source as the input state of the

waveguide array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 Simulating scale-free networks with time crystals . . . . . . . . . . . . . . . 118

4.3.1 Discrete time crystals in spin systems . . . . . . . . . . . . . . . . . 119

4.3.2 Appearance of scale-free networks in the time crystalline system

with a small error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Conclusions 124

vii



List of Figures

2.1 The schematic picture of periodic drive and Floquet theory. . . . . . . . . . 11

2.2 The Bloch sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 The schematic picture of the tight-binding Hamiltonian. . . . . . . . . . . 19

2.4 Illustration of an spin chain model. . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Example of an graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Degree and degree distribution of a graph. . . . . . . . . . . . . . . . . . . 26

2.7 Shortest path of a graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Diameter of a graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Clustering coefficient of a node. . . . . . . . . . . . . . . . . . . . . . . . . 29
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Chapter 1

Introduction

1.1 Introduction

The technology to engineer and manipulate quantum systems is progressing rapidly. In

2019, Google has announced an achievement of quantum supremacy by developing a

54-qubit (53 of them functioning) quantum processor using superconducting circuits [1].

This means that they can control 53 quantum bits (i.e. 53 artificially created two level

systems) individually, create interactions among them, and read out their states with high

precision. This is a surprisingly high level of technological achievement, and represents the

current level of quantum technology modern humanity can access. Considering the fragile

nature of quantum systems and the unwanted crosstalk between individual qubits [2], it is

not hard to imagine how much the experimentalists have struggled to achieve the result.

Historically, control of quantum systems were done on collective, ensemble systems. A

typical experiment is the observation of nuclear magnetic resonance (NMR) [3]. NMR is a

phenomena where nuclei of an atom or molecule responds to the magnetic field applied on

the system. Early experiments were conducted using liquid state molecules [4, 5], where

thousands of molecules are contained in the system. Collective phenomena is observed

from such ensemble system, and the ability to control the interaction between the nuclei

is limited. A better degree of control on the individual nuclei is possible in solid state

systems such as the nitrogen vacancy center [6], since the atoms are fixed in certain

positions up to phononic vibrations. However, if one is aiming to use these systems as

quantum computational purposes, the limitation on the controllability of the interaction

as well as the decoherence effect due to the collective phenomena is the bottleneck.
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1.1. INTRODUCTION

A quantum system promising for quantum simulation and computation purposes were

developed thanks to the invention of methods to trap charged molecules in space using

electric fields. Such systems are called as ion trapped systems, and the quadrupole trap-

ping method known as the Paul trap [7] is one of the most commonly used method in

the current quantum simulation platform. Ions can be isolated in space, which allows one

to read out the spin state of a single ion. The ability is not limited to merely isolation,

but the dipole interactions between ions can be controlled as well, and the time evolution

of the spin states can be precisely driven by the external magnetic field [8]. The great

stability and controllability led to intriguing quantum simulation experiments [9].

We can say that now the quantum technology has entered the era where one can

control single qubits and many-body system composed of tens of qubits with a very high

precision. The ultimate goal is to scale up the number of qubits up to order of millions or

billions. Such level of technology is necessary in order to build a fault-tolerant quantum

computer. Additionally, one is getting more freedom on how to interact the qubits, which

can beyond nearest neighbour or lattice structures. This includes distance dependent

long-range interaction [9], or coupling several qubits non-trivially by placing them in a

random manner [10]. With such examples, we are able to create a network of qubits.

However, why would creating a quantum matter beyond regular structures be inter-

esting? Since quantum error correction and quantum computation can be in principle

achieved with an isolated two-dimensional lattice structure of qubits [11], why do we even

need to care about network structures?

The motivation to think about networks can be stimulated by looking at various clas-

sical systems around us. For example, consider the power grid, which is an interconnected

system to deliver electricity from the power plants to consumers. After the electricity is

produced at the power plant, it goes through a series of stations and finally gets down

to houses. This is one type of network, when we think of the power plants, stations and

houses as elements, and treat the transmission lines as the links (interaction) between

the elements. The structure of the network is not a lattice-like structure, and it must be

in a pretty complex, cascading structure where the power plants are in the center of the

network while the houses are at the endpoints. Such complex structured network is built

in this way since the delivery can be efficient [12], as well as robust to certain failure of

stations or transmission lines [13].

The power grid is just one example of complex networks. There are numerous com-
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1.1. INTRODUCTION

plex structured networks around us, including social, technological or biological systems.

Some instances are the Internet, World Wide Web, transportation system such as airline

networks, protein-protein interaction network, etc. A well established field that map these

real-world systems as networks to analyze their structural properties is known as complex

network science. A seminal paper in this field discovered that many instances of these

real-world network share a common property called as the scale-free property. The scale-

free property is defined by the degree distribution of the network (i.e. distribution of the

number of neighbours of each node) following the power law function P (k) ∝ k−β, β > 0.

This means that few hub nodes have large number of neighbours, while most other nodes

have small number of neighbours. The power stations corresponds to the hub nodes in

the previous example. Complex network science has been also successful on analyzing

different types of dynamics on networks, such as random walks, spreading of disease or

spreading of information [14–17].

Now one may ask whether there are any complex quantum networks. We shall define

a quantum network as a quantum system (either open or closed) which consists of a set

of discrete elements defined in a quantum regime (e.g. qubits, basis states, quantum

repeaters, or any subspace of the system) and a set of relations between the elements

(e.g. qubit-qubit interaction, transition between states, communication channels, or any

relation between the subspaces). A complex quantum network is a quantum network whose

relation between elements are beyond regular structures, such as containing randomness

or scale-free property, and so on. Can we find in the nature, or engineer any kind of

complex quantum network? If we engineer a quantum system in a complex network

structure, is it robust to failures? Can quantum information efficiently be delivered on a

complex network?

So far, to the best of our knowledge, a large scale complex quantum network has

not been found in the nature, or at least no natural quantum system has been treated

as a large-scale complex network. Although, there is a growing interest in engineering

complex quantum networks or discovering ideas to utilize them for quantum information

processing tasks, both theoretically and experimentally. Some example of the theoreti-

cal work involved constructing computational algorithms such as a community detection

algorithm [18] or a quantum version of the PageRank algorithm [19]. Closed quantum

dynamics are also explored on certain types of complex networks [20, 21], as well as

entanglement routing problem on complex networks [22]. Research in the direction of
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engineering complex quantum networks includes systems using photonic waveguides [23],

coupled nitrogen vacancy centers [10], and periodically driven systems [24]. Another in-

teresting observation is the high efficiency energy transport happening in photosynthetic

systems [25]. This system is a small network composed of 14 chlorophylls where each

of them can be treated as a two level system. The chlorophylls are interacting to each

other, allowing transfer of excitation created from the energy absorbed from the incident

photon. Although the system typically lives at room temperature, it has been shown

that quantum nature is responsible for the energy transfer due to the high energy scale

of photons. An even more surprising observation is that the energy transfer is enhanced

by the existence of phononic environmental noise.

This thesis aims to contribute to understand coherent dynamics on complex quantum

networks, as well as discussing some methods to simulate such dynamics on quantum

systems that are accessible with current technology. Specifically, we consider single par-

ticle quantum walks and quantum spatial search algorithm on two examples of complex

network models. Quantum walks, known as the quantum analog of random walks, is es-

sentially a time evolution of quantum particles hopping around the nodes of a network. As

quantum particles are allow to form superposition states, quantum walks have been often

used to construct quantum algorithms. One application of quantum walk is the spatial

search algorithm, where one aims to search for a marked node in the network [26]. We

especially consider the spatial search algorithm which uses the continuous-time evolution

obeying the Schrödinger’s equation, constrained by a tight-binding Hamiltonian where a

network structure is imprinted in it. We examine this spatial search algorithm on network

models known as the long-range percolation model and the Bollobás scale-free network.

The former has a small-world property while the latter has a scale-free property, which

are both crucially important features that appear in real-world complex networks. To

the best of our knowledge, the spatial search algorithm has been never analyzed on these

class of complex networks. The thesis provides a novel insight whether complex quantum

networks are useful for spatial search algorithm, by investigating the correlation between

the network’s property and the time complexity of the spatial search algorithm.

The thesis also proposes and investigates a method to simulate the closed quantum

dynamics on complex quantum networks, using periodically driven systems available with

current experimental technologies. Instead of considering to create complex interactions

between qubits, we rather focus on the transitions between basis states spanning the
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Hilbert space. We introduce a simple idea to view arbitrary finite-dimensional Hailto-

nians as adjacency matrices of networks. Based on this idea, first we consider a system

consists of an array of coupled optical waveguides. We show that although the waveg-

uides are nearest-neighbour coupled spatially in a one-dimensional line, when the coupling

constants are periodically modulated one can obtain a effective time-independent Hamil-

tonian showing a random graph-like complex network structure. Secondly we consider

a many body spin system in a time-crystalline phase. We show that the transitions be-

tween the many body states satisfies the scale-free property when a small imperfection is

introduced in the system.

This thesis contributes towards exploration of quantum dynamics and quantum al-

gorithmic application of complex structured quantum systems, as well as presenting a

method to simulate those dynamics effectively using periodically driven systems.

The rest of the thesis is structured as follows. Chapter 2 summarizes the preliminaries

of quantum mechanics and graph (network) theory which will be necessary to explain

the results presented in the later chapters. The idea of interpreting arbitrary finite-

dimensional Hamiltonians as networks is also introduced here. Chapter 3 puts together

the analysis of the quantum walk and spatial search algorithm on complex networks. We

start by reviewing the literature of spatial search algorithms, clarify the aim of the thesis,

and present the results. Chapter 4 discusses the method to simulate quantum dynamics

on complex quantum networks using periodically driven systems. Chapter 5 is the overall

summary of the thesis.
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Chapter 2

From Quantum mechanics to

complex networks

2.1 Quantum systems, quantum states and linear op-

erators

A quantum system is a space or set of objects which obey the laws of quantum mechanics.

Basic examples can be electron systems, atomic systems, or photonic systems. Typically, a

quantum system is not defined on the object itself, but rather defined on certain degrees

of freedom of the object; e.g. position and momentum of an electron, spin degrees of

freedom of a bound electron, energy levels (orbits of electrons) of an atom, number and

frequency of photons, etc. One usually focuses on certain degrees of freedom of the object

to restrict the space where to consider its dynamics or property, which allows the problem

to be tracktable. This restriction defines the property of the space where the quantum

system is defined.

The space defining the quantum system is a complete, complex inner product space,

which is known as the Hilbert space. This is a complex vector space, where any complex

vector defined on such space corresponds to a state of the quantum system. A state

represents the values of the degrees of freedom of the quantum system in the form of

complex state vector.

From now on, let us introduce a mathematical formulation of quantum systems. Here

we consider a N -dimensional (finite dimensional) Hilbert space H. This is a complex

vector space CN , which means that the space is spanned by N mutually orthogonal
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vectors, and the linear combination of the vectors is written using complex, continuous

value coefficients. Specifically we write the state, or the vector defined on H, using the

Dirac notation such as |ψ⟩. This is the ket vector

|ψ⟩ = (a1, a2, . . . , aN)T (2.1)

where each component ai ∈ C is the complex, continuous value coefficient of each degrees

of freedom. A bra vector is defined as

⟨ϕ| = (b1, b2, . . . , bN), (2.2)

and the inner product of two vectors |ψ⟩ and |ϕ⟩ can be written using the bra and ket

vector such as1

⟨ϕ|ψ⟩ =
N∑
i

aibi. (2.3)

The complex conjugate of a ket vector |ψ⟩ can be represented by a bra vector as

⟨ψ| = (a∗1, a
∗
2, . . . , a

∗
N), (2.4)

and the norm of |ψ⟩ is defined as

||ψ|| =
√

⟨ψ|ψ⟩ =

√√√√ N∑
i

|ai|2. (2.5)

The normalization condition of a vector is
∑N

i |ai|2 = 1.

In Eq. (2.1), we have defined the state vector as a N × 1 matrix form. However, the

state vector can be also written as follows using set of orthonormal basis states, such as

|ψ⟩ =
N∑
i=1

ai|i⟩. (2.6)

As the Hilbert space is defined as a vector space, the entire space can be spanned by

choosing a certain set of N basis states {|1⟩, . . . , |i⟩, . . . , |N⟩}. They are mutually orthog-

onal and normalized such that ⟨i|j⟩ = δij. This gives the N × 1 matrix form of the basis

1We represent the complex conjugate of a complex number using the superscript ∗, such that when
z = x+ iy, its complex conjugate is z∗ = x− iy.
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state |i⟩ to be

|i⟩ = (0, . . . , 1, . . . , 0)T , (2.7)

where the entries are all zero except for the i-th entry. Eq. (2.6) means that the vector

|ψ⟩ is written as the linear combination or the superposition of the basis states. Such

representation is useful to clarify which set of basis states one is using to write down the

state.

A linear operator on the Hilbert space can be represented using two vectors |ψ⟩, |ϕ⟩ ∈
H, as |ϕ⟩⟨ψ|. The linear operator is defined as the transformation acting on an arbitrary

state |χ⟩ ∈ H,

|ϕ⟩⟨ψ||χ⟩ = ⟨ψ|χ⟩|ϕ⟩ ∈ H. (2.8)

|ϕ⟩⟨ψ| maps a state |χ⟩ to another state which is a vector |ϕ⟩ multiplied by the inner

product ⟨ψ|χ⟩. The matrix form of |ϕ⟩⟨ψ| is

|ϕ⟩⟨ψ| =


b1a

∗
1 . . . b1a

∗
N

...
. . .

...

bNa
∗
1 . . . bNa

∗
N

 . (2.9)

As further introduction will follow in the later sections, physical quantities (observables),

unitary operators or projectors will be represented by such linear operators.

2.2 Observables and measurements

In the previous section we have defined how a quantum system and its states are repre-

sented, as well as introducing a basic notation of the transformation of the states. While

states mathematically describes how the physical object exists, in order for us to learn

something from the system, we need to make a measurement on an observable of the

quantum system. An observable A ∈ H is defined as an Hermitian operator on H. An

Hermitian operator is an operator satisfying A = A†. The measurement outcome of the

observable A is given by its eigenvalues λ. The Hermite property of A gives the condition

that all eigenvalues λ are real, which is an important assumption for the observable to

be physically achievable. When the dimension of A is N , there will be N − l possible

outcomes where l is the number of degeneracy in the eigenvalues. The outcome will be

determined by the Born rule, such that when the observable A is measured while the state
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of the system is |ψ⟩, the probability that the outcome x being λ is given by

Pr(x = λ | |ψ⟩) = ⟨ψ|Pλ|ψ⟩. (2.10)

Here, Pλ is the projector (projection operator) to eigenvalue λ of A. The projector has

the property Pλ = P †
λ = P 2

λ and the completeness
∑

λ∈σ(A) Pλ = 1.

When the eigenvalue λ of A has degeneracy of l, the corresponding eigenspace has

dimension l. Therefore, one can take l orthonormal eigenbasis {|λi⟩}li=1 and write the

projection on this eigenspace as Pλ =
∑l

i=1 |λi⟩⟨λi|. Using this, Eq. (2.10) will be

Pr(x = λ | |ψ⟩) =
l∑

i=1

|⟨λi|ψ⟩|2. (2.11)

When λ has no degeneracy, Eq. (2.10) will be reduced to

Pr(x = λ | |ψ⟩) = ⟨ψ|λi⟩⟨λi|ψ⟩ = |⟨λi|ψ⟩|2, (2.12)

which is the basis measurement, in the basis of the eigenspace of observable A. The

eigenvalue decomposition of A is given by

A =
N∑
i=1

λi|λi⟩⟨λi|. (2.13)

2.3 Hamiltonian and the time evolution operator

Now we consider a specific type of transformation on H, which is the time evolution.

A continuous time evolution is generated by the Hamiltonian H ∈ H defined on the

quantum system. H is an Hermitian operator which constrains the energy of the system,

and is an observable whose outcome is the energy of the quantum system. The eigenvalue

decomposition can be written as

H =
N∑
i=1

Ei|Ei⟩⟨Ei|, (2.14)

where the eigenvalues Ei are especially called as the energy, and |Ei⟩ are especially called

as the energy eigenstate. Some examples of Hamiltonian systems will be introduced in
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the latter section.

A closed quantum system2 time-evolves according to the Schördinger’s equation

iℏ
d

dt
|ψ(t)⟩ = H|ψ(t)⟩, (2.15)

where |ψ(t)⟩ is the state at time t, H is the Hamiltonian and ℏ is the Planck constant.

ℏ ≈ 6.626× 10−34/2π [J · s] is a tiny quantity compared to the scale we care about in our

daily life, though is an important quantity that determines the typical scale where the

quantum effects appear. When H is time-independent (i.e. does not change it’s form or

parameters in time), one can solve the Schördinger’s equation to obtain

|ψ(t)⟩ = exp(−iHt/ℏ)|ψ(0)⟩, (2.16)

and define the time evolution operator

U(t; 0) ≡ exp(−iHt/ℏ). (2.17)

The time evolution of the state from time 0 to time t can be simply written as |ψ(t)⟩ =

U(t; 0)|ψ(0)⟩. This is an unitary transformation of the state vector and U(t; 0) is an

unitary operator, where the length of the vector is preserved at all times, ⟨ψ(t)|ψ(t)⟩ = 1.

An operator U is unitary when U †U = UU † = IH is satisfied. Applying an unitary

operator on a set of orthonormal basis states {|ϕi⟩}Ni=1 defines a new set of orthonormal

basis states {U |ϕi⟩}Ni=1. The orthonormality of {U |ϕi⟩}Ni=1 can be straightforwardly shown

as ⟨ϕi|U †U |ϕj⟩ = ⟨ϕi|ϕj⟩ = δij, given that U is unitary.

It is important to know that U(t; 0) and H share the same set of eigenvectors {|Ei⟩}Ni=1

such that

U(t; 0) = exp(−iHt/ℏ) = exp

(
−it/ℏ

N∑
i=1

Ei|Ei⟩⟨Ei|

)
(2.18)

=
N∑
i=1

exp(−iEit/ℏ)|Ei⟩⟨Ei|. (2.19)

We could bring
∑N

i=1 |Ei⟩⟨Ei| off the shoulder of the matrix exponential since it is a

2We defined a closed system as a quantum system whose Hamiltonian Hs describes the full dynam-
ics, and assume there exists no (or omit) interaction with a bath, which can be described by a bath
Hamiltonian Hb.

10
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diagonal matrix. The eigenvalues of U , which is λi = exp(−iEit/ℏ) lies on the unit cycle

in the complex plane.

2.4 Time-periodic Hamiltonians and effective Hamil-

tonians

Solving the Schrödinger’s equation when the Hamiltonian H was time-independent was

straightforward in the previous section. Now we consider the case of a time-dependent

Hamiltonian H(t). We will especially focus on an instance where H(t) is time-periodic

with a period of T = 2π/ω, such that H(t+T ) = H(t). For example, imagine a parameter

in the Hamiltonian is a time-periodic function f(t), illustrated in the left side of Figure 2.1.

Such time-periodic systems are sometimes called as driven systems. There are different

techniques to solve the Schrödinger’s equation in such situation for specific systems, such

as the rotating wave approximation for atom-light interaction systems, but here we focus

on a general approach using Floquet theory.

Figure 2.1: The schematic picture of periodic drive and Floquet theory. f(t) represents the time-periodic
parameter in a Hamiltonian, whose periodicity is f(t + T ) = f(t). Here we use Floquet theory in the
context of integrating the time-dependent Hamiltonian of the single period of the drive Ht0(t), and
obtaining the effective time-independent Hamiltonian Heff

t0 .

The essence of the Floquet theory is to view the time-dependent systems at periodic

times so that the time evolution becomes effectively a time evolution generated by a

time-independent Hamiltonian. The core lies in the definition of the Floquet operator,

F = U(T ; 0) = T exp

(
−i
∫ T

0

H(τ)dτ/ℏ
)
. (2.20)
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This is the unitary time evolution operator U(T ; 0) with a duration of one period, from

time t = 0 to t = T . The symbol T is the time ordering operator. Such time ordering is

necessary when the Hamiltonian at each time do not commute, such as [H(t1), H(t2)] =

H(t1)H(t2) − H(t2)H(t1) ̸= 0. Importantly, once we obtain U(T ; 0), the time evolved

state at periodic times nT , where n = 0, 1, 2, . . . , can be obtained from n multiplication

of U(T ; 0) such as

|ψ(nT )⟩ = U(nT ; 0)|ψ(0)⟩ = [U(T ; 0)]n|ψ(0)⟩. (2.21)

In the process of obtaining U(T ; 0), we integrated the action of H(t) within one period

which averaged the detail of the action within the period. Also, one can straightforwardly

shift the time duration (i.e. phase) of the integral by t0 < T and get

U(t0 + T ; t0) = T exp

(
−i
∫ t0+T

t0

H(τ)dτ/ℏ
)
. (2.22)

Note that U(t0 +T ; t0) and U(T ; 0) will have different values in their matrix entries when

the Hamiltonians at two times do not commute, [H(0), H(t0)] ̸= 0. Although, the Floquet

operators at different phases can be related by

U(t0 + T ; t0) = U(t0; 0)U(T ; 0)U †(t0, 0), (2.23)

which is equivalent to rotating the basis to write the unitary operator of one period.

To express the time evolved state at arbitrary time t, we need to explicitly include the

dynamics contributing from the time duration within the period, such as

|ψ(t)⟩ = U(t− t0 − nT ; t0 + nT )[U(t0 + T ; t0)]
nU(t0; 0)|ψ(0)⟩. (2.24)

The operators on both sides of [U(t0 + T ; t0)]
n is called as the micromotion or the kick

operator.

The Floquet operator F can be diagonalized and we can define a set of effective energy

eigenvalues and eigenstates. We write the eigenvalue decomposition as

F =
N∑
i=1

exp(−iλiT/ℏ)|λi⟩⟨λi|, (2.25)
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where in this case |λi⟩ is commonly called as Floquet states and λi is called as quasi ener-

gies. The term quasi emphasizes that these eigenvalues are not actual physical energies,

since the energy of the time-depending Hamiltonian may be not fixed at each instanta-

neous times. The quasi energies are bounded by −ℏω/2 ≤ λi ≤ ℏω/2, and the quasi

energies does not change with respect to the phase shift by t0 defined in Eq. (2.22).

An effective Hamiltonian Heff of one period (or n periods) can be defined as a Hermi-

tian operator satisfying the following equation,

F = U(T ; 0) = exp(−iHeffT/ℏ). (2.26)

This is an interpretation of the Floquet operator that the time evolution over one period

T is generated by an effective time-independent Hamiltonian (see the right side of Figure

2.1). F and Heff share the same Floquet states |λi⟩ as the eigenstates, the quasi energies

λi are the eigenvalues of Heff. From Eq. (2.23), we can get a phase shifted effective

Hamiltonian by,

Heff
t0

= U(t0; 0)Heff
0 U

†(t0, 0), (2.27)

The effective Hamiltonian can be conventionally obtained by taking the matrix logarithm

of the Floquet operator,

Heff =
iℏ
T

log(F). (2.28)

Although the perspective of the effective Hamiltonian only tells us the dynamics or

properties of the system at stroboscopic times of T, 2T, 3T, . . . , the effective Hamiltonian

and it’s eigenvalue decomposition tells us important and intuitive understanding of the

system in many cases. A comprehensive review on periodically driven systems and Floquet

theory can be found in [27].

2.5 Qubit system

Here we introduce the qubit system and its time evolution. A qubit system (or qubit)

is a quantum system defined on a two-dimensional Hilbert space, H2. This is a two-

dimensional complex vector space C2. We define the orthonormal basis of a qubit as

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
(2.29)
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and write the state of the qubit system as

|ψ⟩ = α|0⟩ + β|1⟩, |α|2 + |β|2 = 1. (2.30)

The basis states |0⟩, |1⟩ are often called as the computational basis. As a physical example,

a spin up and spin down states of a spin-1/2 particle {| ↑⟩, | ↓⟩} can form a computational

basis of the qubit. Another example is the polarization state of a single photon |H⟩, |V ⟩,
where H and V stands for horizontal and vertical polarization. The measurement of

the qubit |ψ⟩ in the basis {|0⟩, |1⟩} gives the output 0 with probability |α|2, and 1 with

probability |β|2. The equally balanced superpositon states of the computational basis

|ψ⟩ =
1√
2

(
|0⟩ + eiϕ|1⟩

)
(2.31)

with relative phases ϕ = 0 or ϕ = π are often defined as the plus and minus states

|+⟩ =
1√
2

(|0⟩ + |1⟩) =
1√
2

(
1

1

)
, (2.32)

|−⟩ =
1√
2

(|0⟩ − |1⟩) =
1√
2

(
1

−1

)
, (2.33)

for convenience.

A state of a qubit can be geometrically and intuitively represented using the Bloch

vector. Any qubit state can be represented using two real parameters 0 ≤ θ ≤ π and

0 ≤ ϕ < 2π as

|ψ⟩ = cos (θ/2)|0⟩ + eiϕ sin (θ/2)|1⟩. (2.34)

Such Bloch vector can be visualized as a vector pointing on the surface of a three dimen-

sional unit sphere. In the polar coordinates, an arbitrary point on the surface of the unit

sphere can be represented using the parameters θ, ϕ as in Figure 2.2 The unit sphere in

this context is called as the Bloch sphere.

As we have defined the representation of the state vector of a qubit, we shall consider

its unitary time evolution and some especially important unitary transformations on the

system. We define four unitary operators including the identity and the three Pauli x, y
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Figure 2.2: The Bloch sphere and Bloch vector representation of a qubit.

and z operators (or matrices) σx, σy, σz.

I =

(
1 0

0 1

)
, (2.35)

σx =

(
0 1

1 0

)
, (2.36)

σy =

(
0 −i
i 0

)
, (2.37)

σz =

(
1 0

0 −1

)
. (2.38)

The three Pauli operators satisfy σxσx = σyσy = σzσz = I, and the commutation relation

[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy. The computational basis {|0⟩, |1⟩} are

the two eigenstates of σz with eigenvalues ±1, and the plus and minus states {|+⟩, |−⟩}
are the two eigenstates of σx with eigenvalues ±1.

Let us consider the unitary time evolution operator generated by the Pauli matrices.

Assume that the Hamiltonian of the system is described as H = ℏωσk/2, where k = x, y, z.
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The time evolution operator can be written as,

U = e−itH/ℏ = e−iωtσk/2 (2.39)

= I +

(
−iωt

2
σk

)
+

1

2!

(
−iωt

2
σk

)2

+
1

3!

(
−iωt

2
σk

)3

+ . . . (2.40)

= I +

(
−iωt

2

)
σk +

1

2!

(
−iωt

2

)2

I +
1

3!

(
−iωt

2

)3

σk + . . . (2.41)

= cos (ωt/2)I− i sin (ωt/2)σk. (2.42)

Here we used that the Pauli matrices are unitary (σk)2 = I, and the series expansion of

sine and cosine functions. The above transformation corresponds to the rotation of the

Bloch vector around the axis k with an angle of ωt. Note that any Hamiltonian of a qubit

system can be written, and thus any rotation of the Bloch vector can be generated, in the

form H = aI + bσx + cσy + dσz.

Another important unitary operator in the context of quantum computation is the

Hadamard operator,

UH =
1√
2

(σx + σz) =
1√
2

(
1 1

1 −1

)
. (2.43)

When the Hadamard operator is applied on the computational basis states, an equally

balanced superpostion state,

UH |0⟩ =
1√
2

(|0⟩ + |1⟩), UH |1⟩ =
1√
2

(|0⟩ − |1⟩) (2.44)

is generated. Such states are often used as the initial state of quantum algorithms.

As the final part of this section, we define a composite system of qubits. When

the quantum system is composed of n qubits which are labeled as r = 1, 2, . . . , n, the

whole Hilbert space is constructed by the tensor product of individual qubits, such as

C2
1⊗C2

2⊗· · ·⊗C2
n = C2n . The dimension of the whole Hilbert space is 2n. The orthonormal

basis state are constructed from the tensor product of the computational basis states,

such as {|b1⟩⊗ |b2⟩⊗ · · ·⊗ |bn⟩}b1,...,bn=0,1. Note that the dimension of the system explodes

exponentially as the number of qubits increases. This limits us the ability to simulate

full quantum dynamics (i.e. follow the dynamics of all 2n complex amplitudes) using a

classical computer. The full information of the system, or the unitary matrices cannot be
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even fully stored in the computational memory as the system gets larger.

Let us consider the case of a two qubit system to show some examples. The system is

spanned by 22 = 4 basis states,

|01⟩|02⟩ =


1

0

0

0

 , |01⟩|12⟩ =


0

1

0

0

 , |11⟩|02⟩ =


0

0

1

0

 , |11⟩|12⟩ =


0

0

0

1

 .

(2.45)

Hereafter we omit to explicitly write the tensor product operation ⊗. Operators on such

system has to be a 22 × 22 matrix, which can be for example created from the tensor

product of Pauli matrices,

σx
1σ

x
2 =

(
0 1

1 0

)
⊗

(
0 1

1 0

)
=


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 . (2.46)

This means both qubits 1 and 2 are flipped around the x axis. For example, σx
1σ

x
2 |01⟩|02⟩ =

|11⟩|12⟩. This is a two qubit operation. When we want to flip only one spin (i.e. non-

trivially transform the subsystem), the untouched spin also has to be applied by the

identity operator. The resulting operator is a tensor product σx
1 I2, though in most cases

we will omit to write the identity operator such as

σx
1 I2 = σx

1 =

(
0 1

1 0

)
⊗

(
1 0

0 1

)
=


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 . (2.47)

With this operation, only the first spin is flipped such as σx
1 |01⟩|02⟩ = |11⟩|02⟩. This is a

single qubit operation.

When the Hilbert space is composed of two or more qubits, and important concept

called as the entanglement comes in3. Entanglement is defined on states of the system.

3Although the comprehensive discussion of entanglement has to be done using density matrices of
quantum states, here we only consider entanglement of pure states for a brief discussion.
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A quantum state is described to be entangled when the state cannot be decomposed into

tensor products of single qubit states. When the state can be otherwise decomposed, such

state is described as separable states. For example, the two qubit Bell state as follows is

an entangled state.

|ψ⟩ =
1√
2

(|01⟩|02⟩ + |11⟩|12⟩), (2.48)

while a state as follows is an example of separable state.

|ψ⟩ =
1

2
(|01⟩|02⟩+|01⟩|12⟩+|11⟩|02⟩+|11⟩|12⟩) =

1√
2

(|01⟩+|11⟩)⊗
1√
2

(|02⟩+|12⟩). (2.49)

Entanglement, which can be quantitatively evaluated using measures such as von Neu-

mann entropy, is a result of interactions between two subsystems. The interactions that

generates entanglement between qubits can be only induced from operators that are not

separable into single qubit operators (if the states are initially separable). For example,

unitary operations in Eq. (2.46) or (2.47) cannot entangle a two qubit state, as they are

tensor products of single qubit operations. An non-separable unitary operator such as the

Controlled-NOT gate,

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2.50)

can generate entanglement between qubits. This is a fundamental and important two

qubit operator for quantum computation, which induces interaction between qubits. In-

dicated from its name, this operator applies a NOT operation (i.e. bit flip) on the second

qubit, controlled by the state of the first qubit. The second qubit is flipped only if the first

qubit is in the |11⟩ state. We can show that the Controlled-NOT gate creates a entangled

state from a simple example:

CNOT (UH1|01⟩|02⟩) = CNOT

(
1√
2

(|01⟩ + |11⟩)|02⟩
)

=
1√
2

(|01⟩|02⟩ + |11⟩|12⟩). (2.51)

The sequence of operations CNOTUH1 is sometimes referred as the two qubit entangling

gate.
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2.6. EXAMPLES OF HAMILTONIAN SYSTEMS

2.6 Examples of Hamiltonian systems

In this section, some examples of quantum systems governed by Hamiltonians are intro-

duced, which includes the tight-binding model and spin chain models.

2.6.1 The tight-binding Hamiltonian

The tight-binding Hamiltonian describes the quantum system as a single particle hopping

between discrete sites. The physics behind this Hamiltonian is the tight-binding approx-

imation, which is typically a model to describe the state of an electron bound by the

periodic potential of a crystal, aiming to compute the band diagram of the system [28].

The state of the electron (particle) |ψ⟩ is written as the superposition of basis states |i⟩,
where |i⟩ describes the electron (particle) localized at the position of the atom (site) i.

The tight-binding Hamiltonian of the system with N sites can be written as

Htb =
N∑
i ̸=j

(Kij|i⟩⟨j| +Kji|j⟩⟨i|) +
N∑
i=1

Ei|i⟩⟨i|. (2.52)

Here, Kij is the transition (hopping) energy between sites i and j, and Ei is the on-site

energy of site i. Usually one has the condition Kji = K∗
ij, where the star (∗) represents the

complex conjugate, so that Htb is Hermitian. See Figure 2.3 for an intuitive illustration

describing the Hamiltonian.

Figure 2.3: The schematic picture of the tight-binding Hamiltonian defined in Eq. (2.52). Here a system
of N = 4 sites is illustrated. Ei represents the on-site energy of site i, while Kij is the transition (hopping)
energy between sites i and j. The time evolution in this system can be interpreted as a single particle
hopping between sites.

Recalling that each term |i⟩⟨j| is a tensor product, |i⟩ ⊗ ⟨j| = (0, . . . , 1i, . . . , 0)T ⊗
(0, . . . , 1j, . . . , 0) is a N×N matrix where the (i, j)-th entry is 1, while all other entries are

19



2.6. EXAMPLES OF HAMILTONIAN SYSTEMS

0. Therefore, the matrix form of the tight-binding Hamiltonian can be straightforwardly

written as

Htb =


E1 K12 . . . K1N

K21 E2
...

...
. . .

KN1 . . . EN

 . (2.53)

Each rows and columns corresponds to the basis states |i⟩ and ⟨j|. Mathematically, the

only requirement on the basis states is that they are orthonormal. Therefore, |i⟩ can be

an arbitrary basis state of the Hamiltonian, not limited to the situation where an electron

or a particle is localized at discrete sites. As a general understanding of the tight-binding

Hamiltonian, we can say that transitions (or flow of complex amplitudes) between states

|i⟩ and |j⟩ occurs with a rate proportional to Kij, while some fraction of the complex

amplitudes stays on the state |i⟩, only acquiring a global phase with a rate proportional

to Ei. The direct transition between states |i⟩, |j⟩ is only present when Kij ̸= 0. The

balance between |Ei − Ej| and Kij determines the fraction of the complex amplitude that

moves from |i⟩ to |j⟩.
The above matrix form and interpretation of the tight-binding Hamiltonian is simple

but powerful, since in principle any Hamiltonian defined on a N -dimensional Hilbert space

can be written in such N ×N matrix form.

2.6.2 The spin chain Hamiltonian

A many-body spin system can be described by a Hamiltonian composed of Pauli matrices.

Here we assume each particle of the many-body system only has the spin degrees of

freedom, and their position are static. We assume we do not have more than one particle

at each position, and the particles can only interact with each other via its spin degrees

of freedom.

The Ising model The basic example of a spin chain Hamiltonian of n spin-1/2 particles

is the Ising model, which can be written as

HIsing = −
n∑

r ̸=s

Jz
rsσ

z
rσ

z
s −

n∑
r=1

Bz
rσ

z
r . (2.54)
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2.6. EXAMPLES OF HAMILTONIAN SYSTEMS

σz
r is the 2 × 2 Pauli z matrix on spin r, Jz

rs is the strength of interaction between spins

r and s, while Bz
r is the strength of the magnetic field applied along the z axis onto

spin r. The term σz
rσ

z
s denotes the tensor product of n matrices, formally written as∏⊗

k=1,...,r−1 Ik ⊗ σz
r ⊗

∏⊗
l=r+1,...,s−1 Il ⊗ σz

s ⊗
∏⊗

m=s+1,...,n Im. The terms representing the

interaction between spins, σz
rσ

z
s , can be understood that the energy of the system will

change depending on the correlation between pair of spins. Here we represent the +1 and

−1 eigenstates of σz
r as | ↑⟩ and | ↓⟩, respectively. Figure 2.4 illustrates such system.

Figure 2.4: An illustration of an Ising spin chain model composed of 6 spins. The arrows going through
the spheres represent the direction of the spin magnetic moment, namely the state of the spin | ↑⟩, | ↓⟩.
Bz

rσ
z
r corresponds to the situation where a magnetic field Bz

r in the z-axis direction is applied on each
spin. Jz

rsσ
z
rσ

z
s represents the situation where spins r and s are interacting with energy Jz

rs.

Consider the expectation value of the energy of a state |⟨ψ|H|ψ⟩|. First, look at the

second term of Eq. (2.54), −
∑n

r=1B
z
rσ

z
r . By keeping in mind that |⟨ψ|σz

r |ψ⟩| ∈ [−1, 1],

we can easily see that the energy is lower as more number of the spins are pointing the

up direction | ↑⟩, since |⟨↑ |σz
r | ↑⟩| = 1. From the first term −

∑n
r ̸=s J

z
rsσ

z
rσ

z
s , we can see

that the energy is also dependent on the number of pair of spins that are pointing the

opposite direction, called as the domain walls. For example, |⟨↑r↑s |σz
rσ

z
s | ↑r↑s⟩| = 1,

while |⟨↑r↓s |σz
rσ

z
s | ↑r↓s⟩| = −1. The Ising model is classified as ferromagnetic when

Jz
rs > 0, and anti-ferromagnetic when Jz

rs < 0. The energy is lower as spins align to

the same direction | ↑↑↑↑ . . . ⟩ in the case of ferromagnetic, while spins pointing in the

opposite direction | ↑↓↑↓ . . . ⟩ leads to lower energy in the anti-ferromagnetic case. We

can consider the structure of the interaction in terms of which pair of r and s having

non-zero Jz
rs. Fundamental examples are nearest neighbour coupled or the d-dimensional

lattice settings, but complex interaction structures can be also considered, which changes

the energy landscape of the system.

Note that if we write the Ising Hamiltonian as a matrix form using the basis con-

structed by the product states of the eigenstates of σz
r , such as {| ↑↑↑ . . . ↑⟩, | ↑↑↑ . . . ↓
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⟩, . . . , | ↓↓↓ . . . ↓⟩}, the matrix will be diagonal.

The tilted-field Ising model The Ising model with an additional transversal magnetic

field g is often referred to as the tilted-field Ising model.

HTFI = −
n∑

r ̸=s

Jz
rsσ

z
rσ

z
s −

n∑
r=1

Bz
rσ

z
r − g

n∑
r=1

σx
r , (2.55)

where g is the strength of the magnetic field applied along the x axis. In the Ising model,

corresponding to g = 0, when the system is initialized in a state where all spins are

parallel to the z axis, the state essentially does not evolve with time as it is an eigenstate

of the Hamiltonian (which corresponds to the fact that the Hamiltonian is diagonal in

this basis). In contrast, when g > 0, the spins will rotate around the x axis, as well as

being effected by the σz terms. When the applied magnetic field Bz
r > 0 is disordered

such that Bz
r is a random variable in Bz

r ∈ [0,W ], the system can be in a localized phase

depending on W/g [29]. When the system is in the localized phase, the states will be

frozen in it’s initial state during the time evolution.

The XY model Another spin chain model that is well-studied in the literature is the

XY model (or the XX model). The Hamiltonian of this model can be written as

HXY = −
n∑

r ̸=s

JXY
rs (σx

rσ
x
s + σy

rσ
y
s ) −

n∑
r=1

Bz
rσ

z
r . (2.56)

As this Hamiltonian commute with σz, the number of excitations k (i.e. the number of

spin ups k) is conserved during the time evolution. As no transition occur between each

k-excitation subspaces, the Hamiltonian is block diagonal when it’s written in the basis

constructed by the product states of the eigenstates of σz
r . The k-th block in the matrix

is a square matrix with dimension nCk.

When k = 1, where the corresponding subspace often referred to as the single excita-

tion subspace, the XY model can be mapped to a tight-binding model using the Jordan-

Wigner transformation. Such transformation can be done by defining two spin-ladder
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operators

σ+
r = (σx

r + iσy
r )/2 (2.57)

σ−
r = (σx

r − iσy
r )/2. (2.58)

One can find that σz
r can be written in terms of the ladder operators as

σz
r = 2σ+

r σ
−
r − 1. (2.59)

Using these operators, the XY Hamiltonian in Eq. (2.56) can be written as

HXY = −2
n∑

r ̸=s

JXY
rs

(
σ+
r σ

−
s + σ−

r σ
+
s

)
−

n∑
r=1

Bz
r

(
2σ+

r σ
−
r − 1

)
. (2.60)

From this we can interpret the interaction term (the first sum) as the hopping rate, since

the term σ+
r σ

−
s annihilates one excitation from mode s and creates one excitation in mode

r (i.e. flips the s-th spin | ↑s⟩ → | ↓s⟩ while flipping the r-th spin | ↓r⟩ → | ↑r⟩). The

term σ+
r σ

−
r in the latter sum can be interpreted as the excitation number operator. As

the dimension of the single excitation subspace is nC1 = n, Eq. (2.60) can be straight

forwardly written as

HXY,k=1 = −2
n∑

r ̸=s

(
JXY
rs |r⟩⟨s| + |s⟩⟨r|

)
−

n∑
r=1

Bz
r (2|r⟩⟨r| − 1). (2.61)

|r⟩⟨s| projects the excitation from mode s to r, which corresponds to the transition be-

tween states |s⟩ (spin s is pointing up while all others are pointing down) and |r⟩.

2.7 Introduction to graph theory and complex net-

work science

In this section, we introduce the concept of graph theory and complex network science.

We define basic notations of graphs and networks, which will be followed by introductions

to some measures and methods to analyze graphs and networks.

Graph theory is a field in mathematics that deals with the relationship between discrete

elements. In this thesis, we use the term graph and network as mathematically equivalent
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objects. Although, the term graph is used to describe the object in a rather mathematical

context, while the term network is used in a more general situation to indicate any object

with some relationship or structure. A graphical example of a graph is shown in Figure 2.5.

Generally the dots in the figure are called as nodes or vertices, while the lines connecting

the nodes are called as edges or links. A graph is defined by the set of these nodes and

edges, that is represented by G(V,E). V is the set of nodes and E is the set of edges.

Graph theory mainly deals with the mathematical aspects of such object G(V,E). In

contrast, network theory or complex network science is a field that applies graph theory

to understand real-world systems. For example, consider the hyperlinks between the web

pages in the World Wide Web (WWW). Bunch of websites exist on the WWW, and

those websites are linked to each other so that the user can surf the web. If we take a

subset of the web pages and the hyperlinks connecting the pages within the subset, we

can map this as a network. The nodes are the web pages and the nodes are connected

by an edge when one web page has a hyperlink to another. Complex network science is

a field to analyze such networks mapped from the real-world systems. There are other

examples of networks which includes social networks (e.g. follower network in Facebook

or Twitter, transportation networks such as the flight between airports), technological

networks (e.g. the Internet, the configuration of processing units in a computer), biological

or chemical reaction networks (e.g. protein-protein interaction in living cells, connections

of the neurons in a brain), just to name a few. In fact any discrete system that has some

kind of interaction between each elements can be represented by a network, and graph

theory is applied to analyze the properties of networks.

From now on, we define the basic notations and measures in graph theory to describe

and analyze graphs.

Figure 2.5: An example of an undirected, unweighted graph with 4 nodes.
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Adjacency matrix Assume a graph G(V,E) consists of N nodes. A graph is uniquely

determined by defining an adjacency matrix AG. This is an N × N real matrix. The

N nodes have to be labeled such as {1, 2, 3, · · · , i, · · · , N} ∈ V to define the adjacency

matrix. An entry of the adjacency matrix Aij is,

Aij = 1 (2.62)

if nodes i and j are connected by an edge eij ∈ E, and

Aij = 0 (2.63)

if no edge directly connecting the nodes i and j exists. The adjacency matrix of the

example graph in Figure 2.5 is expressed as,

AG =


1 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

 . (2.64)

The adjacency matrix completely describes which nodes are connected and which nodes

are not. There are different classes of graphs that can be described in such matrix form.

The above example is an undirected, unweighted graph. Undirected stands for the case

where the edges do not have a direction, and the corresponding adjacency matrix is always

a symmetric matrix. Unweighted stands for the case where all the non-zero entries of AG

representing the connected nodes are identical (usually taken as 1). In contrast, if the

entries have different values, the graph is classified as weighted. In this thesis we will not

consider any directed graph, but weighted graphs will appear in the later sections.

Degree, degree distribution A degree ki is the number of edges that are connected to

node i. For unweighted graphs, it also denotes the number of neighbours of node i. Using

the adjacency matrix, degrees can be simply given by summing the rows or columns,

ki =
N∑
j=1

Aij. (2.65)
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See the left side of Figure 2.6 for an graphical example. If the degrees are identical for all i,

the graph is called as a regular graph, and otherwise a non-regular graph. Degrees are the

simplest but very important quantity which you may want to compute from the adjacency

matrix. The average degree ⟨k⟩ =
∑N

i ki/N is also commonly used to roughly know the

connectivity the graph. For large-scale complex networks, taking the distribution of the

degrees can capture the global property of the network. The degree distribution Pr(k) is

defined as the probability function to sample a degree k node from the network (see the

right side of Figure 2.6).

Figure 2.6: An example graph, its degree, and its degree distribution. k5 or k8 is the degree of node 5 or
8, which represents the number of neighbours (i.e. number of lines connected to that node). The degree
distribution on the right is measured by taking the histogram of the degree of all nodes in the network,
and normalizing it to make it as a probability distribution.

Graph spectrum The spectrum of the graph stands for the eigenvalues of the adjacency

matrix AG. Knowing the spectrum of a graph gives us a lot of information about the

graph, especially associated to the structure or dynamical processes on the graph. For

example, the gap between the largest and second largest eigenvalues of the adjacency

matrix gives the mixing time of a random walk process on the corresponding graph. The

eigenvectors of AG can also tell us the properties of the graph. One example is that

the eigenvector corresponding to the largest eigenvector (i.e. leading eigenvector) is the

stationary distribution of the corresponding Markov chain on the graph. The whole field

to analyze graphs using the spectrum is called as the spectral graph theory.

Laplacian matrix A Laplacian matrix LG is defines as,

LG = DG − AG. (2.66)
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DG is a diagonal matrix that contains the degree of each nodes as the diagonal entries,

such as

Dii = ki. (2.67)

The Laplacian matrix is especially helpful when analyzing some physical spreading dy-

namics on graphs. The eigenvalues of a Laplacian matrix is always 0 or positive. This

is relevant for Hamiltonians describing quantum systems. The eigenstate with eigenvalue

0 can be viewed as the ground state. There are cases where the 0 eigenvalues can be

degenerated. The multiplicity of 0 tells us the number of connected components. The

connected component is a subset of nodes that can be reached from one to another using

the edges.

Next, we introduce some important measures mainly used in the context of complex

network science.

Shortest path length, average path length A shortest path length (shortest path

distance) lij between a pair of nodes i, j is the minimum number of edges (steps) one

needs to reach from node i to node j. For example, in the graph shown in Figure 2.7,

the shortest path length from node 1 to 14 is l1,14 = 4. The average path length is the

average of lij over all possible pair of nodes4

⟨lij⟩ =
2

N(N − 1)

N∑
i=1

∑
i<j

lij. (2.69)

This quantity is often used to characterize how the network is compact compared to its

total number of nodes. Especially, a network is called as small-world when the average

path length scales about O(logN).

Diameter A diameter of a network is the maximum of the shortest path length, that

is

lmax = max
i,j

(lij). (2.70)

4The number of all possible pair of nodes can be given by(
N

2

)
=

N !

2!(N − 2)!
=
N(N − 1)

2
. (2.68)
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Figure 2.7: Shortest path of a graph. Here, the shortest path between nodes 1 and 14 is indicated as the
red path. The shortest path length l1,14 is measured by counting how many edges are contributing to
the shortest path.

The diameter is lmax = 5 in the example of Figure 2.8 (note that there are more than

one shortest paths where lij = 5). Compared to the average path length, the diameter

rather describes the abstract size the network. For example, the diameter of a
√
N ×

√
N

two-dimensional square lattice is 2
√
N (measured with Manhattan distance). For d-

dimensional lattice, it is dN1/d. Even if the network is not periodic or symmetric as a

lattice, if the diameter of a network scales as ∝ N1/de , one can say that the effective

dimension of the network is de. This measure is also used to describe how small-world

the network is.

Figure 2.8: Diameter of a graph. We can find that the diameter of this graph is lmax = 5 by checking the
shortest paths length between all pair of nodes, and finding the maxima. The red path {1, 2, 5, 9, 12, 16}
is just one instance of the path which has the maximum shortest path length; {1, 2, 5, 8, 13, 15} also has
the maximum shortest path length.

Clustering coefficient A (local) clustering coefficient Cli of a node i is defined as,

Cli =
2Ti

ki(ki − 1)
. (2.71)

Ti is the number of triangles that includes node i as one of its vertex. A triangle means that

three nodes i, j, k are mutually connected to each other by an edge. See Figure 2.9 where
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such triangle are indicated with colors. Cli is obtained by dividing Ti with the possible

number of triangles that can be formed using node i and its ki neighbours, 2/[ki(ki − 1)].

This means that when Cli = 1, a local fully connected graph (called as a clique) of ki + 1

nodes is created around node i. We can understand that Cli tells how much edges are

clustered around node i. The average clustering coefficient ⟨Cli⟩ =
∑N

i=1Cli/N is also

commonly used to measure the global property of the graph.

Figure 2.9: Clustering coefficient of a node. For example, the clustering coefficient of node 5 is computed
by counting the number of triangles that includes node 5 as one of its vertex, and dividing that value
with the number of possible triangles that can be created using node 5 when all its neighbours are fully
connected to each other (forming a locally complete graph).

Centrality measures A centrality Ci of a node i measures how much central in the

network the node i is. We can interpret this as how important the node i is for the whole

network. There are several types of centrality measures, where each centrality measure

represents the importance of a node from different aspects of the network structure or

process.

• The degree centrality of node i is defined as

Cd
i =

1

N − 1

N∑
j

Aij. (2.72)

This is simply the fraction of nodes which are connected to node i. A higher degree

node has a higher degree centrality, and it can influence the network more than the

lower degree nodes.
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• The closeness centrality of node i is defined as

Cc
i =

(∑N−1
j ̸=i lij

N − 1

)−1

, (2.73)

where lij is the shortest path length between nodes i, j. As this quantity sums the

shortest path lengths from node i to all other nodes, it represents how close the

node i is to all other nodes. A node with higher closeness centrality can reach to

other nodes is averagely short number of steps, and thus it can give more influence

to the dynamics on the network.

• The betweenness centrality of node i is defined as

Cb
i =

∑
k ̸=i ̸=j σkj(i)

σkj
, (2.74)

where σij is the number of shortest paths from node i to j, and σij(w) is the number

of shortest paths that goes through node w among them. This measures how often

the node i can be visited while moving from nodes k to j using the shortest paths.

This measures how importance a node is as a relay point, since one may need to

re-route a lot of number of paths when a node with high betweenness centrality is

deleted from the network.

• The eigenvector centrality of node i is defined as

Ce
i = vi, where AG|λk⟩ = λk|λk⟩ =

N∑
i

vi|i⟩. (2.75)

This is simply the component on node i of the eigenvector of the graph adjacency

matrix. λk is usually chosen to be the largest eigenvalue. Eigenvector centrality

measures how many important nodes are connected to node i. In many cases the

eigenvector centrality is measured using the leading eigenvector |λ1⟩, the eigenvector

corresponding to the largest eigenvalue of the adjacency matrix.

• The random walk closeness centrality of node i is defined as

Crc
i =

(∑
j H(j, i)

N

)−1

, (2.76)
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where H(j, i) is the first mean passage time from node i to node j. The first mean

passage time is the average time of a random walker to reach node i for the first time,

starting from node j. This is another closeness centrality measure, although the

distance between nodes are measured as the time of a random walker to reach from

one node to the other, instead of the shortest path distances. This is a centrality

measure based on the random walk process on the network.

2.8 Essential concepts of complex networks

Here we introduce some important concepts and examples used in complex network sci-

ence. The central aim of complex network science is to create mathematical models that

can reproduce the properties or dynamics of real-world networks. Numerous models have

been proposed and analyzed in the literature, although most of the models are based on

the basic concepts that will be explained in this section. We will first explain the Erdös-

Rényi random graph, which is the seminal network model that plays a role as the basic

building block of complex network science. After that we explain two common concept

in complex networks, which are the small-world property and the scale-free property.

Erdös-Rényi random graph The Erdös-Rényi random graph (ER graph) is a prob-

abilistic model to generate a network whose connections between nodes are random. A

ER graph consists of N nodes is defined as follows:

• An ER graph G(N, p) is a graph where each pair of N labeled nodes are connected

with probability p. [30]

To generate such graph, first we start with N disconnected nodes, and for each pair of

nodes i, j, sample a random number xij from a uniform distribution. If xij > p, we draw

an edge between that pair of nodes.

As an more intuitive explanation, assume a graph with 8 disconnected nodes (see left

side of Figure 2.10). Choose any pair of node and flip a coin. If the result is heads, draw

an edge between that pair of node, and do not draw an edge if the result is tails. This

corresponds to the case of p = 0.5 in Figure 2.10. Repeat this coin toss for all possible

pair of nodes. As the number of possible pairs is 8(8−1)/2 = 28, you need to toss the coin

28 times. After this process is done, you obtain one instance of the ER graph, G(8, 0.5)

(right side of Figure 2.10).
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Figure 2.10: Schematic illustration of the process of generating an Erdös-Rényi random graph.

Let us list up some properties of the ER graph. First, the expectation value of the

degree of node i is ⟨ki⟩ = p(N − 1). The expected total number of edges in the network

is L = pN(N − 1)/2. This is equal to multiplying p to the total number of edges in a

complete graph, N(N−1)/2. The degree distribution P (k) of the ER graph is a binomial

distribution, which can be derived by asking the probability that a node i has k edges.

The probability where k of the node’s edges are present is pk. The probability where the

remaining N − 1 − k edges are missing is (1 − p)N−1−k. Since there are(
N − 1

k

)
(2.77)

possible ways to select k edges from the N − 1 potential edges, P (k) is given by,

P (k) =

(
N − 1

k

)
pk(1 − p)N−1−k. (2.78)

When ⟨k⟩ ≪ N , meaning that the network is sparse, the binomial distribution is well

approximated by the Poisson distribution,

P (k) = e−⟨k⟩ ⟨k⟩k

k!
. (2.79)

The spectral properties of the ER graph is also interesting to investigate. The dis-
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tribution of the eigenvalues λi of the adjacency matrix of a ER graph AER is known

to follow the semi-circle law, as shown in Figure 2.11(a). This distribution (histogram)

is computed by obtaining all eigenvalues λi satisfying AER|λi⟩ = λi|λi⟩, and taking the

distribution P (λi = λ). The eigenvalues are distributed in a half-circular distribution,

centered at 0 which resembles the name semi-circle law. We also see an isolated large

eigenvalue apart from the semi-circle. The size of the gap between the semi-circle bulk and

Figure 2.11: (a) The spectral distribution (histogram) of the ER graph. The distribution follows the
semi-circle law, which means that the bulk of the spectrum is distributed in a shape of a half-circle. Note
that there is one eigenvalue separated from the bulk, which is the largest eigenvalue. (b) Components of
the leading eigenvector (i.e. eigenvector corresponding to the largest eigenvalue) |λ1⟩ of the ER graph.
One can see that the components are taking random values, centered at 0, and the range of fluctuations is
around 1/

√
N , indicated with the red line. Both of the plots are obtained using a graph of G(1024, 0.05).

the largest eigenvalue depends on the average degree, which indicates the connectivity of

the graph. Additionally, the leading eigenvector of the adjacency matrix (the eigenvector

corresponding to the largest eigenvalue of the matrix) has randomly distributed compo-

nents around 0. See Figure 2.11(b), where the components cj of the leading eigenvector

|λ1⟩ =
∑N

j=1 cj|j⟩ is plotted. These properties essentially tells that the ER graph has a

pure random structure. The ER graph is generally used as a reference model to compare

with different types of complex networks or real world networks. It is useful to consider

how much the network of interest is different or similar to the ER graph. If the network

has different properties from the ER graph, that indicates there are some special structure

in the network (i.e. meaning that the network is not purely random).

Small-world property In many real-world complex networks, a property called as

the small-world property is often observed. The small-world property is defined by the
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diameter of the network satisfying a logarithmic growth according to the size of the

network, ld ∼ logN . Here N is the total number of nodes in the network. This means

that the diameter of the network grows very slowly compared to the size of the network,

and thus one can reach from one node to another in relatively short steps, when the

shortest path is known.

We can analytically derive that the ER graph has the small-world property. Consider

one node i in the graph and count the expected number of nodes that is within distance

(step) l from the node i. Obviously the number of nodes corresponding to l = 0 is 1 (node

i itself). The number or nodes corresponding to l = 1 is ⟨k⟩ in average, since node i has

⟨k⟩ neighbours in average. The number of nodes corresponding to l = 2 is ⟨k⟩2 in average,

since the ⟨k⟩ neighbours of node i have ⟨k⟩ neighbours in average. In this way, the sum

of the number of nodes within distance l can be roughly calculated as

N(l) ≈ 1 + ⟨k⟩ + ⟨k⟩2 + · · · + ⟨k⟩l =
⟨k⟩l+1 − 1

⟨k⟩ − 1
. (2.80)

Here, as we assume the network has finite number of nodes, l must be upper bounded by

the diameter of the network l ≤ lmax. Additionally, N(l) must not exceed N , since the

total number of nodes in the network is N . Combining these two conditions, we can set

that N(lmax) ≈ N . Then from Eq. (2.80), we get

⟨k⟩lmax+1 − 1

⟨k⟩ − 1
≈ N. (2.81)

Assuming that ⟨k⟩ ≫ 1,
⟨k⟩lmax+1 − 1

⟨k⟩ − 1
≈ ⟨k⟩lmax ≈ N. (2.82)

Taking the logarithm, we get the expression of the diameter lmax of the ER graph as,

lmax ≈ logN

log ⟨k⟩
, (2.83)

which satisfies the definition of the small-world property.

On the other hand, regular lattices are not small world as the diameter grows as ld ≈
N1/d, where d is the dimension of the lattice. This can be easily understood by imagining

a d-dimensional square lattice with the length of each sides being N1/d. Importantly,

lattices cannot satisfy the small-world property except the limit of infinite dimension,
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d → ∞. There are network models that explores the transition from non-small-world to

small-world networks by adjusting the parameter to generate the network, such as the

Watts-Strogatz model and the long-range percolation model. We will further introduce

the the latter model in the next Chapter, as we analyze the quantum search algorithm on

that model.

Scale-free networks Another important property that appears in the real-world com-

plex networks is the scale-free property. This property is defined as the network’s degree

distribution following a power law function of the form

P (k) ∝ k−β. (2.84)

The exponent β is a real positive number, which determines the concentration of edges

on certain nodes of the network. Figure 2.12 shows the visualization of an example of

the scale-free network, while the power law degree distribution is plotted in Figure 2.13,

together with a binomial distribution for comparison. Looking at the visualization of

the network together with the degree distribution, the power law distribution can be

interpreted intuitively as, (i) most of the nodes has small degree indicated from the small

k side of the distribution, and (ii) there exists few nodes that has significantly large degree

indicated from the long tail of the distribution. The largest degree node in the network

is called as the hub, or sometimes call the set of large degree nodes as hubs. Scale-free

networks are especially important class of networks in complex network science, since it

has been discovered that the scale-free property is observed in many instances of real-

world networks, such as the World-Wide-Web, airline network or the actor collaboration

network [31], etc.

We shall look at the basic properties of scale-free networks, which can be derived from

the degree distribution P (k) ∝ k−β. We set the total number of nodes in the network

as N . Let us first estimate the size of the largest hub, namely the largest degree kmax

of the network. This is also called as the natural cutoff of P (k). In order to provide

easier explanation of the calculation, first we consider a calculation using the exponential

distribution,

P (k) = ce−βk. (2.85)

We set the minimum degree kmin (in principle this is kmin ≥ 1 as we consider a connected
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Figure 2.12: Visualization of a scale-free network. The network consists of N = 200 nodes, and the
degree distribution follows P (k) ∝ k−3. A network generation model known as the Bollobás model (will
be explained in Section 3.7) is used to generate the graph. The sizes of the nodes are proportional to
its closeness centrality. The red node in the center has the largest degree in the network, which we call
as the hub node. The edges connected to the hub node is draw in red, and the neighbours are the blue
nodes. The common property of scale-free networks is the existence of the hub, while majority of the
nodes have small degree (see the black nodes on the perimeter).

Figure 2.13: The Power law (blue) and binomial (red) distribution plotted together as a comparison, in
linear scale (left) and logarithmic scale (right).
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component5) and give the normalization condition∫ ∞

kmin

P (k)dk = 1 (2.86)[
−ce−βk/β

]∞
kmin

= 1 (2.87)

ce−βkmin/β = 1. (2.88)

This gives c = βeβkmin . To estimate kmax, we consider that the probability to find a node

larger than kmax is 1/N (as small as maybe finding one node from the network), such as∫ ∞

kmax

P (k)dk =
1

N
. (2.89)

This leads to the equation,

βeβkmin
e−βkmax

β
=

1

N
(2.90)

eβ(kmin−kmax) =
1

N
(2.91)

kmax = kmin +
lnN

β
. (2.92)

This means that kmax is not greatly different from kmin since lnN is a slowly growing

function of N . To apply the same calculation with a power law function

P (k) = ck−β, (2.93)

first consider the normalization condition∫ ∞

kmin

P (k)dk = 1 (2.94)

which leads to

c = (β − 1)kβ−1
min . (2.95)

Hence by substituting

P (k) = (β − 1)kβ−1
mink

−β (2.96)

5A connected component is a subset of nodes that are connected by a path. If no path exists between
two nodes, they belong to different connected components.
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into Eq. (2.89), we get

kmax = kminN
1

β−1 . (2.97)

This means that kmax of scale-free networks can be magnitudes of order larger that kmin,

since the growth is polynomial to N . For example when β = 3, kmax ∼
√
N .

Next we will look at the n-th moment of the degree distribution, ⟨kn⟩. n = 1 is the

average, n = 2 is the variance and n = 3 corresponds to the skewness, which tells us how

symmetric the distribution is around ⟨k⟩. The n-th moment of the power law distribution

is

⟨kn⟩ =

∫ kmax

kmin

knP (k)dk =

∫ kmax

kmin

ckn−βdk = c
kn−β+1
max − kn−β+1

min

n− β + 1
. (2.98)

We have seen from Eq. (2.97) that kmax increases polynomially with the network size,

while kmin is usually fixed. Therefore in the large N limit, the behaviour of ⟨kn⟩ is

dominated by the behaviour of kn−β+1
max . We can consider this by dividing into two cases.

• When n − β + 1 ≤ 0, kn−β+1
max converges to zero as N increases. Therefore, the

moments satisfying n ≤ β − 1 are finite.

• When n−β+1 > 0, kn−β+1
max goes to infinity as N increases. Therefore, the moments

satisfying n > β − 1 diverge.

This result tells us that the distribution qualitatively changes at β = 3. When β ≥ 3,

moments of n = 1 and n = 2 is finite, but otherwise when β < 3, moments of n = 2 or

greater diverges. The divergence of ⟨k2⟩, the variance, gives a strong implication that when

a node is randomly chosen, one cannot identify the typical range of value the degree will

take, since the variance goes to infinity. This is a critically different property compared

to the ER graph which has the binomial degree distribution.

It is also known that scale-free networks has an ultra-small-world property. The aver-

age shortest path distances in a scale-free network has been shown to be [32],

⟨l⟩ ∼



const. β = 2

ln (lnN) 2 < β < 3

lnN
ln (lnN)

β = 3

lnN β > 3

. (2.99)

As β → ∞ corresponds to the Poisson distribution, scale-free networks satisfy the small-
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world property at any β.

Finally we shall look at the spectral properties of scale-free networks. Figure 2.14

shows the distribution of the eigenvalues of the adjacency matrix of a scale-free network.

To compute the eigenvalues numerically, we used a network generation model known as

the Bollobás model and generated the adjacency matrix. We will dig in to detail of the

Bollobás model in Section 3.7 of Chapter 3, and at this point we just mention that this

model is one of the commonly used mathematical network model that generates a scale-

free network with adjustable value of β. The distribution of the scal-free network displays

a heavy tailed distribution, tailed on both positive and negative λ. This is very different

from the ER graph which obeyed the semi-circle law. The spectral distribution for the

scale-free network follows a power law distribution excluding the λ in the vicinity of zero.

Figure 2.14: Spectral distribution of the Bollobás scale-free network. All of the eigenvalues of the adja-
cency matrix of a network with size N = 5000 and degree distribution exponent β = 3 is computed to
obtain the distribution. The spectral distribution follows a power law function in the region excluding
the eigenvalues close to zero.
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2.9 Writing arbitrary Hamiltonians as tight-binding

models and their interpretation as networks

In this final section of the current chapter, we introduce the core idea used in this thesis.

The idea can be summarized into three components:

1. Take an arbitrary Hamiltonian defined on a N -dimensional Hilbert space. Choose

a certain basis set {|i⟩} and write the Hamiltonian as a N ×N matrix.

2. Interpret the matrix as an adjacency matrix of a weighted, undirected graph of N

nodes.

3. Once the Hamiltonian is interpreted as a graph, the quantum system can be analyzed

using the language from graph theory and complex network science. Moreover, one

can work in the other way around and use a complex network as a tight-binding

Hamiltonian, discussing its properties as a quantum system.

Figure 2.15 shows the diagrammatic explanation of this approach.

This idea is motivated by the work by Bastidas et al. [24] and Roy et al. [29] where

they considered certain types of quantum systems and analyzed those systems using some

concepts from graph theory and network science. Specifically, Bastidas et al. [24] discussed

the properties of ergodic and localized quantum systems using the connectivity and degree

distribution of graphs. Roy et al. [29] discussed localized-to-thermal transition of quantum

spin systems using percolation of graphs. In this thesis, the idea is extended to especially

bring the concepts of complex network science into quantum physics. Using the rest of

this section, we will show the detailed explanation of the above idea with some examples.

Let us explain the first step to write . As introduced in Section 2.6.1, tight-binding

Hamiltonians are matrices displaying transitions between all states of the Hilbert space.

One can for example write a spin Hamiltonian in a tight-binding form by choosing a

certain set of orthonormal basis states {|i⟩}. By doing this, we are essentially translating

the interactions between the spins into transitions between states. The selection of the

set of basis states {|i⟩} is very important as it changes the form of the matrix and thus

the structure of the transitions between states. For example, the energy eigenstate can

be one choice to represent the spin Hamiltonian as a tight-binding matrix form. Trivially,

the matrix will be diagonal and we cannot see transitions between states. However, this is
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Figure 2.15: The approach to interpret and analyze Hamiltonian systems as graphs. (a) Assume we have
a spin Hamiltonian we would like to analyze. (b) Select a certain set of basis set. (c) Once the basis
set is fixed, the spin Hamiltonian can be written in a matrix form, which is the form of tight-binding
Hamiltonians. (d) We can use the matrix form of the matrix as the adjacency matrix of a graph. By
interpreting the quantum system as a graph is such way, we can use tools from graph theory and network
science to analyze the system.

still an important basis to choose in some cases, such as applying additional perturbation

to the system.

Let’s take the tilted-field Ising model without the magnetic field in the z-direction as

an example, where the spin Hamiltonian is

HTFI = −J
n−1∑
r=1

σz
rσ

z
r+1 − g

n∑
r=1

σx
r . (2.100)
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Here σz
r and σx

r are the Pauli operators on the r-th spin, J is the strength of the Ising

interaction, and g is the strength of the external magnetic field in the x-direction. We

assume nearest-neighbour one-dimensional interaction of n spins. Now let us write this

spin Hamiltonian in the tight-binding Hamiltonian matrix form. An non-trivial and in-

teresting choice of basis in this case will be the product states of the eigenstates of σz
r .

We denote the eigenstates as σz
r | ↑⟩ = (+1)| ↑⟩ and σz

r | ↓⟩ = (−1)| ↓⟩. The set of N = 2n

basis states can be written as {|S1⟩⊗|S2⟩⊗· · ·⊗|Sn⟩}S1,...,Sn=↑,↓. As these are n-bit binary

numbers | ↑ . . . ↑↑↑⟩, | ↑ . . . ↑↑↓⟩, | ↑ . . . ↑↓↑⟩, . . . , | ↓ . . . ↓↓↓⟩, we label these states with

the decimal numbers as |1⟩, |2⟩, . . . , |i⟩, . . . , |N −1⟩, |N⟩ in the ascending order. Using the

matrix form of Pauli operators and their tensor product operations defined in Section 2.5,

we can write HTFI as the tight-binding Hamiltonian matrix,

H tb
TFI =

N∑
i=1

Ei|i⟩⟨i| +
N∑
i ̸=j

Kij (|i⟩⟨j| + |j⟩⟨i|) =


E1 K12 . . . K1N

K21 E2
...

...
. . .

KN1 . . . EN

 . (2.101)

In the left side of Figure 2.16, we have shown the matrix elements of HTFI as a color

map, with n = 5 spins, J = 1.0, and g = 3. This is a 25 × 25 = 32 × 32 matrix. The

terms −Jσz
rσ

z
r+1 in Eq. (2.100) contribute to the diagonal elements Ei, while the terms

−gσx
r in Eq. (2.100) contribute to the off-diagonal elements Kij. This perspective clearly

shows that the matrix is diagonal when g = 0, and when g > 0 certain entries of of the

off-diagonals becomes non-zero. The non-zero g can be viewed as a perturbation applied

to the system.

Now let us interpret the matrix as the adjacency matrix of a undirected, weighted

graph. At this point, we only focus at the off-diagonal elements Kij and omit the diagonal

elements Ei. We take the absolute value of the elements, |Kij|, in the case when the

entries are complex numbers. This will be good enough to see what kind of transitions

the perturbation is generating. The graph corresponding to the matrix is shown on the

right side of Figure 2.16. The nodes are each basis states {|S1S2 . . . Sn⟩}S1,...,Sn=↑,↓, and the

edges between nodes are drawn if Kij ̸= 0. Therefore, the existence of the edge between

pair of nodes means that transitions occur between the two states. As we have placed the

nodes in specific positions in Figure 2.16, we can see that the graph has the structure of

a 5-dimensional hypercube. In a hypercube, nodes that are apart by Hamming distance
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Figure 2.16: Hamiltonian matrix of the TFI model of Eq. (2.100) with n = 5 spins (left), and its graph
representation (right). The entries (Htb

TFI)ij of the matrix is represented by the colormap. The graph
on the right is drawn by assigning the nodes to each basis states |i⟩ and taking the non-zero off-diagonal
entries (Htb

TFI)ij as the edge connecting the nodes i and j.

one6 are connected to each other. This corresponds to the physical perspective that the

term g
∑n

r=1 σ
x
r can only flip one spin at a time, as this is a sum of local spin flips.

Although this is a simple example, the graph viewpoint gives us insight of the structure

and dynamics of the system in a graphical way.

We shall consider a slightly more complicated example to see the power of this graph

interpretation of Hamiltonians. We consider the tilted-filed Ising model with a disordered

magnetic field in the z-direction. The Hamiltonian takes the same form

HTFI = −J
n−1∑
r=1

σz
rσ

z
r+1 −

n∑
r=1

Brσ
z
r − g

n∑
r=1

σx
r , (2.102)

where Br is a random variable within the interval Br ∈ [0,W ]. When the strength of

the disorder of the magnetic field W is large enough, the system will be in a localized

phase. In the localized phase, all of the eigenstates of the Hamiltonian are exponentially

localized at certain configuration state |S1S2 . . . Sn⟩. Therefore, almost no transition can

occur between the states and the initial state is almost frozen during the time evolution.

It has been shown that when W > 2J + g/2, the Hamiltonian Eq. (2.102) will be in such

localized phase [29]. Here we aim to see this localized phase from the graph interpretation

6Hamming distance is the necessary number of bit (spin) flips to change a bit string to another. For
example, the Hamming distance between states | ↑↑↑↑↑⟩ and | ↓↑↓↑↑⟩ is 2 as you need to flip the first and
third spins.
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of the Hamiltonian.

Let’s consider writing the above spin Hamiltonian in the tight-binding Hamiltonian

matrix from. By choosing the same basis set from the first example {|S1 . . . Sn⟩}S1,...,Sn=↑,↓,

we can soon find out that the difference compared to the first example is only in the

diagonal entries of the matrix. This is because the new term
∑n

r=1Brσ
z
r only contributes

to the diagonal entries, Ei. If we directly interpret the matrix as an adjacency matrix, the

graph will look exactly the same as the one in Figure 2.16. However, the key to understand

the localized phase lies in the balance between the strength of the diagonal disorder W

and the off-diagonal transitions g. To see the signature of the localized phase from the

graph, we must take the diagonal entries into account in some way when representing the

Hamiltonian as a graph.

The resonance rule To this end, we introduce the resonance rule, which is originally

introduced by Roy et al. [29], in order to make use of the diagonal entries in the graph.

We define a following rule when drawing the graph from the tight-binding Hamiltonian

matrix:

• For all pair of nodes |i⟩ and |j⟩, draw an unweighted edge with only if |Ej−Ei| < |Kij|
is satisfied. Otherwise, do not draw an edge between nodes |i⟩ and |j⟩.

Specifically, we initially prepare a N ×N adjacency matrix A, with all of its entries being

0. For each matrix element Aij, we refer to the tight-binding Hamiltonian matrix and

calculate if |Ej − Ei| < |Kij| is satisfied. If the inequality is satisfied, we put Aij = 1 in

the adjacency matrix. If the inequality is not satisfied, we keep the entry as Aij = 0. We

do this for all pairs of i and j, except for the diagonals Aii and we keep them as Aii = 0.

As a result we get an unweighted adjacency matrix and the corresponding unweighted

graph. See Figure 2.17 for the illustrative explanation.

Let us give the physical intuition of this resonance rule by considering a simple two-

level system. We define the two level Hamiltonian (2 × 2 matrix) as,

H2L = E1|1⟩⟨1| + E2|2⟩⟨2| +K(|1⟩⟨2| + |2⟩⟨1|). (2.103)

We can compute the eigenvalues of this system as E± = {E1+E2±
√

(E1 − E2)2 + 4K2}/2.

Define the energy gap of the avoided crossing ∆ ≡ E+−E− =
√

(E1 − E2)2 + 4K2. When

we initialize the system in one of the levels, the probability to find the system in the other
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Figure 2.17: Applying the resonance rule on the tight-binding Hamiltonian to obtain the adjacency matrix
of a graph. Given a Hamiltonian matrix Htb, one asks if the condition |Ej −Ei| < |Kij | is satisfied for all
pair of states, and if true draw an edge between the nodes i and j (set Aij = 1).

level is

P (t) =
4K2

∆2
sin2 (

∆t

2
) =

1

1 +
(E1−E2

2K

)2 sin2 (
∆t

2
). (2.104)

From the above equation, we can see that |E1 −E2| is acting as a potential barrier. When

|E1−E2| ≪ 1, the complex amplitude fully bounce back and forth between the states. As

|E1−E2| increases, the greater fraction of the complex amplitudes stays on its initial state,

which is the sign of localization. The resonance rule asks the relation between |E1 − E2|
and K, and picks up the transitions in the system where sufficiently large fraction of the

complex amplitudes that moves from one site to the other (for this two level system, the

fraction greater than 4/5). See Figure 2.18 which illustrates the two cases, |E1 − E2| < K

and |E1 − E2| ≥ K. The resonance rule cuts out the transitions in the condition of

|E1 − E2| ≥ K when drawing the graph representation of the system.

As the resonance rule filters out the major transitions in the system and eliminates the

narrow bandwidth transitions, the resulting graph we get after applying the rule will depict

the abstract dynamics of the system. This allows us to understand the system intuitively.

We now go back to Eq. (2.102) and apply the resonance rule on the disordered tilted-filed

Ising Hamiltonian matrix. To show an example, we set the parameters as J = 1, g = 2.1

and W = 4.6, which satisfies W > 2J + g/2 where the system is in the localized phase.

After the resonance rule on the Hamiltonian matrix with these parameters is applied, the

unweighted adjacency matrix ATFI and the corresponding graph is plotted in Figure 2.19.

We see a sparse graph, which means there are not many major transitions in the system
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Figure 2.18: The resonance rule illustrated for a two level system.

compared to the no-disorder case. This is a sign of the localization, visualized as a graph.

The complex amplitudes will tend to stay on its initial site or mostly travel around inside

a small subspaces of the system (for example, see that nodes 12, 10, 26 is forming a small

connected component, as well as node 32 being isolated).

As we have seen using two examples, the Hamiltonian matrix and graph interpretation

of the system gives us intuitive insight about the dynamics of the system. Now we are

interested in examples where the Hamiltonian matrix or the graph has the structure of

complex networks, such as small-world or scale-free properties. The tilted-field Ising model

without disorder showed a hypercube which is a regular, highly symmetric structure.

When the disorder was present, randomness came in, chopping out some transitions from

the hypercube graph. Can we find a complex structures that are beyond regular or purely

random? In this thesis we name such complex structures as complex quantum networks,

and aim to explore dynamics on such systems, as well as exploring the possibility to realize

them experimentally using current technologies available in the labs.

We can naturally think of two directions. Take a Hamiltonian of a physically realizable

quantum system, write it in the tight-binding form, interpret it as a graph, and ask if we

can find complex network structure. The other direction is the other way around. Take

an adjacency matrix of a complex network, interpret it as a tight-binding Hamiltonian,

analyze the quantum dynamics on that quantum system, and ask if we can see interesting
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Figure 2.19: Resonance rule applied adjacency matrix ATFI (left) and the corresponding graph (right) of
the disordered TFI model. The matrix entries of the adjacency matrix (ATFI)ij is shown as the colormap
in the left side. Note that here the adjacency matrix is unweighted; the entries are either 1 or 0. When
the graph is visualized (right) from (ATFI)ij , we can see that the connections are sparse compared to
the no-disorder case, Figure 2.16, which is the sign of localization of states.

physics from it. We explore both directions in this thesis. We will start by exploring the

latter direction in the next chapter.
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Chapter 3

Quantum spatial search on complex

networks

In this chapter, the problem known as the spatial search is explored. Spatial search is

a problem to find a (k) marked node(s) among N nodes of the network using quantum

dynamics. This is a good candidate to explore quantum dynamics on quantum systems

holding complex network structures. Let us define and describe the problem with more

detail, starting from the following section.

3.1 Formalization of unstructured search problem

Searching is one of the most fundamental computational problem. Search problem is a

task to find one (or multiple) marked element(s) among N elements in the database as fast

as possible. One can imagine a situation that you have a phone book where set of names

and their phone numbers of N people are listed. You are given a piece of paper with a

phone number written on it, and asked to find the name of the person corresponding to

that number. Here we assume the database (list) is unstructured; e.g. the phone numbers

are not correlated or ordered according to any rule. This means that when you refer to

one number, you cannot gain any additional information about the other numbers1. The

best you can do in this situation will be the brute-force search. The solver has to scan

the list one by one from the top to bottom until one hits the target phone number. If

you are lucky, you may find the target at the top, but in the worst case, you may find it

1As an example if the list is ordered, which is one type of data structure, one can know that the
answer is in the upper or lower side of the observed number. One can perform binary search in this case
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at the bottom, which is purely random at each trial. By defining the time consumed to

scan one phone number as 1, the average time to find the target will be N/2.

A mathematically formal definition of such search problem is the evaluation of a black

box function. Assume a function f(x) : {1, 2, · · · , N} → {0, 1} satisfying

f(x) =

1, if x = w

0, if x ̸= w
. (3.1)

This function returns 1 if only one specific integer w is the input, while 0 is returned for

any other integer. The solver’s task is to identify the integer w which returns 1. The

solver can input one integer x and obtain an output 0 or 1 at each time step. As the

average time to obtain the output 1 and identify the integer w is N/2, the time complexity

(or more precisely the query complexity) is O(N)2.

3.2 Quantum algorithm to solve the unstructured

search problem

We now consider solving the unstructured search problem using a quantum system. First

we must translate the unstructured search problem to the quantum setting. See Figure 3.1

which shows the correspondence between the setting of classical an quantum search. In

the classical search, a black box function is given, and the solver input an integer (or a bit

string) x ∈ {1, 2, . . . , w, . . . , N} to get an outcome value 0 or 1. In the quantum search, a

black box unitary operator is given instead of the black box function. More precisely, the

function f(x) is used to construct the black box unitary operator (this will be defined later

in this Section). The solver input a quantum state into the unitary operator instead of an

integer x. When the size of the database is N , the quantum state will be a N -dimensional

vector, and the unitary operator is a N ×N matrix. The quantum state is written as the

linear combination of N basis states |x⟩ ∈ {|1⟩, |2⟩, . . . , |w⟩, . . . , |N⟩}. The state is input

to the black box and the unitary operator is applied on the state, transformed to a final

state. The solver has to conduct a measurement on the state in the {|x⟩} basis to obtain

the outcome. The time complexity of the quantum search will be evaluated by how many

2In computational complexity theory, one is usually interested in the order or scaling of the leading
term of the time to solve the problem. The constant factor is omitted, and the dependence on the problem
size N is represented using the big-O notation, O(f(N)).
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times, or how much long the black box unitary has to be used in order to identify w from

the outcome measurement.

Figure 3.1: The problem definition of the classical and quantum search. In the classical case, the solver
inputs a scalar value among N possible values into a black box function, which outputs a scalar value 0
or 1. Correspondingly, in the quantum case the solver inputs a N -dimensional quantum state (vector)
into a black box where a unitary transformation is applied on the state. The solver has to measure the
resulting state to obtain a single scalar value. For both classical and quantum, the solver aims to evaluate
the black box function or unitary with the minimal use of the black box.

The first quantum algorithm that achieve to solve the unstructured problem with a

time complexity of O(
√
N) was the Grover’s algorithm [33]. Such time complexity is

a quadratic improvement over the classical brute-force searching, O(N). This quantum

algorithm utilizes the nature of the superposition and interference of quantum states to

solve the unstructured search problem.

Let us construct the Grover’s algorithm. Define the dimension of the search space

(i.e. size of the database) to be N . We encode the search space in a n qubit system,

such that N := 2n, and define a set of N basis states {|x⟩} = {|a1a2 . . . an⟩}a1,...,an=0,1 =

{|0 . . . 000⟩, |0 . . . 001⟩, . . . , |w⟩, . . . , |1 . . . 11⟩}. The state |w⟩ corresponds to the state en-

coding the target integer w. We call this state as the marked state, or the target state

hereafter. As in the previous section, assume that the problem is to identify the integer

w satisfying the function f(x) : {0, 1}n → {0, 1} defined in Eq. (3.1). Here the variable

x is represented in the binary form {0, 1}n. The algorithm is defined by the following

protocol:
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1. Prepare a n + 1 qubit state |0⟩⊗n|1⟩, where the first part |0⟩⊗n corresponds to the

search space {|x⟩}, and the latter qubit |0⟩ is an ancilla.

2. Apply the Hadamard operator U⊗n+1
H on n+ 1 qubits, where

U⊗n+1
H =

1√
2

(
1 1

1 −1

)⊗n+1

. (3.2)

3. Apply the oracle operator Uf on n+ 1 qubits. Uf is defined as

Uf |x⟩|b⟩ = |x⟩|b⊕ f(x)⟩.3 (3.3)

This operator corresponds to the black box unitary operator.

4. Apply the Grover’s diffusion operator Df on the first n qubits, where Df is defined

as

Df = −I + 2U⊗n
H |0n⟩⟨0n|U⊗n

H =


−1 + 2

N
2
N

. . . 2
N

2
N

−1 + 2
N

...
...

. . . 2
N

2
N

. . . 2
N

−1 + 2
N

 . (3.4)

5. Repeat 3. and 4. for ⌊(π/4)
√
N⌋ times.

6. Measure the first n qubits in the computational basis and examine the n bit string

outcome xm.

Grover showed that after this protocol the probability of xm being the integer w is Pw ≥
1 − 1/N . As the probability of the measurement outcome being w is almost unity after

calling the black-box function f(x) for O(
√
N) times, one can identify w with almost

unity probability, which corresponds to the succession of the search algorithm.

We shall consider the analysis of the protocol and the meaning of each operators

Uf and Df in order to understand how the algorithm works. We focus on the unitary

evolution of the n + 1 qubit state. The initial state of the system is defined in the Step

3The symbol ⊕ represents the exclusive or operation on a binary number. Therefore, the qubit |b⟩ is
flipped only if f(x) = 1, such that |0⊕ 0⟩ = |0⟩, |1⊕ 0⟩ = |1⟩, |0⊕ 1⟩ = |1⟩ and |1⊕ 1⟩ = |0⟩.
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1 of the protocol described in the previous paragraph as |ϕ1⟩ = |0⟩⊗n|1⟩. This is a state

with n qubits in the 0 state, with an additional qubit in the 1 state is attached. First

consider the state of the qubits after Step 2, which can be calculated as

|ϕ2⟩ = U⊗n+1
H |0⟩⊗n|1⟩ =

1√
N

∑
x∈{0,1}n

|x⟩ ⊗ 1√
2

(|0⟩ − |1⟩) (3.5)

=

(
1√
N
|w⟩ +

√
N − 1

N
|w⊥⟩

)
⊗ 1√

2
(|0⟩ − |1⟩). (3.6)

In the first line, the Hadamard operator created the uniform superposition state of all

qubits. In the second line, the n qubit state is separated using the marked state |w⟩ and

|w⊥⟩ =
∑

x ̸=w |x⟩/
√
N − 1 which is the state spanning the subspace excluding the marked

state. Now consider the state after the Step 3,

|ϕ3⟩ = Uf |ϕ2⟩ =

(
1√
N
|w⟩ +

√
N − 1

N
|w⊥⟩

)
⊗ 1√

2
(|0 ⊕ f(x)⟩ − |1 ⊕ f(x)⟩) (3.7)

=
1√
N
|w⟩ ⊗ 1√

2
(|1⟩ − |0⟩) +

√
N − 1

N
|w⊥⟩ ⊗

1√
2

(|0⟩ − |1⟩) (3.8)

=

(
− 1√

N
|w⟩ +

√
N − 1

N
|w⊥⟩

)
⊗ 1√

2
(|0⟩ − |1⟩). (3.9)

In the first line, we can see that the operator Uf is only acting on the ancilla qubit. Since

f(x) takes the value 1 only if the attached n-qubit state is |w⟩, and takes the value 0

otherwise, the ancilla qubit is flipped only when x = w (second line). Form the third

line, notice that finally the action of operator Uf is to flip the phase factor in front of

the marked state. If we view the search space consisting of n spins as a two dimensional

space spanned by the states |w⟩ and |w⊥⟩, the transformation by Uf can be illustrated

as in panel (b) of Figure 3.2. Next we consider the state after Step 4. Noting that the

Grover’s diffusion operator can be written as Df = −I + 2|ϕ2⟩⟨ϕ2|, we get

|ϕ4⟩ = Df |ϕ3⟩ = (−I + 2|ϕ2⟩⟨ϕ2|)|ϕ3⟩ ⊗
1√
2

(|0⟩ − |1⟩) (3.10)

= −|ϕ3⟩ + 2⟨ϕ2|ϕ3⟩|ϕ2⟩ ⊗
1√
2

(|0⟩ − |1⟩). (3.11)

The transformation by Df can be illustrated as in panel (c) of Figure 3.2. The vector
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|ϕ3⟩ is reflected against the vector |ϕ2⟩. Now we see that the resulting vector |ϕ4⟩ is closer

to the marked state |w⟩. The operator Df can be also interpreted as a operator to mix

amplitudes between all pair of computational basis states, which can be understood from

the matrix representation in Eq. (3.4).

Figure 3.2: Each step of the Grover’s algorithm (defined in main text) illustrated as a vector rotation in a
two-dimensional space spanned by |w⟩ and |w⊥⟩. |w⟩ is the marked state and |w⊥⟩ =

∑
x ̸=w |x⟩/

√
N − 1

spans the rest of the space. The red vector |ϕk⟩ is the state of the n qubits after step k. (a) The uniform
superposition state of N = 2n basis states. (b) After the oracle operator Uf is applied, the vector is
reflected against the axis |w⊥⟩. (c) After the diffusion operator is applied, the vector is reflected against
the vector |ϕ2⟩ in the previous Step 2.

The sequential application of the operators Uf andDf to the state is the single iteration

of the Grover’s algorithm. This iteration is repeated to gradually rotate the state towards

the marked state |w⟩. Defining the inner product ⟨ϕ2|w⊥⟩ ≡ cos θ =
√
N − 1/N , the

angle between the states |w⊥⟩ and |ϕ2⟩ is θ. After applying the operators Uf and Df to

the state |ϕ2⟩, now the angle between the resulting state |ϕ4⟩ and |w⊥⟩ is increased to 3θ.

We can see that the angle is increased by 2θ at each iteration. Therefore, the state of the

system after k iterations can be represented as

|ϕ⟩ = sin ((2k + 1)θ)|w⟩ + cos ((2k + 1)θ)|w⊥⟩. (3.12)

The key of the Grover’s algorithm is to measure the state |ϕ⟩ in the computational basis

when the probability Pw = |⟨w|ϕ⟩|2 = sin2 ((2k + 1)θ) is maximized (i.e. when the prob-

ability that the outcome of the measurement being w is maximized). This is achieved

when sin2 (π/2) = 1, which gives the optimal number of iterations k = π/4θ − 1/2. One

note is that k has to be an integer, and thus we write k = π/4θ − δ, where 0 ≤ δ < 1.
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Substituting this into Pw = sin2 ((2k + 1)θ), we get

Pw = sin2 ((π/2) + (−2δ + 1)θ) (3.13)

= cos2 ((−2δ + 1)θ) (3.14)

≥ cos2 θ = (N − 1)/N = 1 − 1/N. (3.15)

This proves the probability of the success of the Grover’s algorithm, Pw ≥ 1 − 1/N . If

we consider N ≫ 1 such that θ ≈ sin θ = 1/
√
N , the optimal number of iteration is

k = ⌊(π/4)
√
N⌋, as provided in the step 5 of the protocol.

An intuitive understanding of the Grover’s algorithm is that, (i) the quantum state

of the system is initialized as a uniform superposition state, (ii) the state is transformed

to a state that is localized on the marked state |w⟩ after using the black box unitary for

O(
√
N) times, (iii) and the measurement conducted on such localized state identifies the

number w with almost probability 1. See Figure 3.3 which illustrates such transformation

of the sate. Unlike the classical search, we can view that the integers x is processed in

parallel as a quantum superposition state. However as we can only obtain one information

(outcome) from the measurement of the state, the unitary transformation amplifies the

probability of measuring the outcome we are aiming to get.

Figure 3.3: Illustration of the state transformation in the Grover’s algorithm. Repetitively applying
the black box unitary operator for O(

√
N) times on the uniformly superposed initial state, the state is

transformed to a localized state on the marked state |w⟩. By measuring the final state in the {|x⟩} basis,
the solver can identify the index of the marked state with probability approximately equal to 1.

Importantly, the Grover’s algorithm is not the only construction of the algorithm to

solve the unstructured search problem. An alternative construction of the algorithm is

known as the spatial search algorithm, which will be introduced in the following sections.
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3.3 Introduction and literature review of the spatial

search algorithms

Origin of the spatial search problem The spatial search problem is an alternative de-

scription of the unstructured search problem, which adds a restriction to the unstructured

search (see Figure 3.4). The restriction added to the problem is the spatial configuration

of the database, which gives constraint on how one can explore the search space. In the

Grover’s algorithm, the unitary operator Df applied on the states was just constructed

mathematically as an operator to rotate the state towards the marked state. However, is

this operator physically realizable when the database is embedded in some physical space?

If one considers some motion in a physical space, the space has certain constraints in the

degrees of freedom. This can be imprinted as the locality of the unitary operator, for

example a situation where a particle is moving on a spatial space such as a d-dimensional

grid. Here the particle is constrained to move locally between nearest-neighbouring sites

at each step.

Figure 3.4: Spatial search is originally formalized as the variation of Grover’s algorithm where some
physical restrictions are considered during the unitary transformation. An example of such restriction
can be the locality of the unitary operation, or equivalently the spatial configuration of the data.

To give a concrete example, imagine a two-dimensional square lattice of size
√
N×

√
N

and hence there are N lattice points in total. Assume each of these lattice points holds

one piece of data. Formally, we label the lattice points with the basis states {|i⟩} =

{1, 2, . . . , N}. We again assume we have a black-box function f(x) : {1, 2, · · · , N} →
{0, 1} satisfying Eq. (3.1), and consider the task to identify the integer w. Assume we

place one particle on one of the lattice points. The particle has the freedom to move to

the neighbouring lattice points (up, down, left, or right) at each time step, and allowed to

call the black-box function which flips the phase of the coefficient on |w⟩ [see Eq. (3.1)].

In this situation, the way the particle can explore the search space will be restricted by
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the lattice structure, as illustrated in Figure 3.5. In the unitary operator perspective, the

Grover’s diffusion operator Df defined in Eq. (3.4) has to be replaced to another unitary

operator allowing only local hopping. This is because Df allows the particle to hop to

every single site with equal weight in a single time step (which can be seen from the fact

that all off-diagonal entries of Eq. (3.4) is non-zero). Given such spatial constraint, how

would the time complexity change compared to the original Grover’s algorithm?

Figure 3.5: Benioff’s problem illustrated as a situation to find a marked state |w⟩ on the two-dimensional
lattice using a quantum particle hopping locally between adjacent sites.

The first work that considered such search problem was by Benioff [34] in 2002. Benioff

considered the situation where the database is embedded in the two-dimensional lattice,

and considered a quantum particle (stated as quantum robot in the original paper) that

is allowed to make local moves to the adjacent lattice site at each time step. The state of

the quantum robot is represented by the linear combination of the N position basis state.

Utilizing the nature of of quantum mechanics, the initial state of the quantum robot is

prepared as the uniform superposition state of all positions, |s⟩ =
∑N

i=1 |i⟩/
√
N . This

corresponds to the initial Hadamard operator applied to all of the qubits in the Grover’s

algorithm. The local move to the adjacent four sites is done by applying a unitary operator

Dloc =
∑

x,y |x+1⟩⟨x|+ |x−1⟩⟨x|+ |y+1⟩⟨y|+ |y−1⟩⟨y|. This corresponds to the diffusion

operator Df in the Grover’s algorithm, although in this case the diffusion is limited to

the adjacent four states. After the local move, the oracle operator is applied, which flips

the phase of the position state |w⟩ corresponding to the marked state. Now the question

is the time complexity of this algorithm. How many time steps of the above iteration is

required in order to measure the marked state with approximately probability 1?

Benioff stated that the time complexity of this algorithm is O(N), which is no better

than the classical brute-force search. This suggests that on a physical, locally distributed

database, a quantum search algorithm cannot achieve the quantum speedup of O(
√
N),

the optimal search time that was achieved by the Grover’s algorithm. The intuitive reason
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for this is the slow diffusion of the complex amplitudes on the two-dimensional lattice.

On a two-dimensional lattice, it would take O(
√
N) time steps for the quantum robot to

diffuse over the lattice and interfere with each other to simulate the Grover’s diffusion

operator Df (application of Dloc for O(
√
N) times, while the Oracle operator is also

applied between each Dloc). This comes from the fact that the size of the square lattice

consists of N lattice points is
√
N ×

√
N , and the robot is restricted only to move to the

adjacent box at each step. As we need O(
√
N) iterations of the above process to amplify

the complex amplitude of the marked state, the total time complexity is [O(
√
N) oracle

operations] × [O(
√
N)] time steps for the diffusion] which results to O(N).

At a glance, the above explanation is reasonable. The reason for the slowdown against

Grover’s algorithm is due to the locality of the unitary operator. This also clarifies that

the Grover ’s algorithm is not considering any physical setting of the database, and the

algorithm is considered on a search space with no restriction. The Grover’s algorithm is

assuming a global operation where the particle can explore the whole Hilbert space in one

step. Such operation is physically unrealistic as N grows larger, the Benioff’s problem

raised this fact.

Further investigation on Benioff’s problem After the seminal work by Benioff,

different authors have investigated the problem of quantum search on the locally constraint

search space (namely the spatial search). Remarkably, Benioff’s result was re-considered

and improved by Aaronson and Ambainis [35] in 2003. They proposed a clever quantum

query algorithm to solve spatial search on an arbitrary undirected graph, not limiting to

the two-dimensional lattice. Moreover, they mathematically formalized the physics of the

database in terms of local unitary operators. The main results derived from the proposed

algorithm was that they could find a marked node with optimal time O(
√
N) for a cubic

lattice of dimension three or higher, and O(
√
N log5/2N) for a two-dimensional square

lattice. This showed that with some effort a search faster than the classical algorithm

can be still achieved on a local database. Their essential idea was to divide the lattice

into sub-squares. For instance, consider dividing the two-dimensional lattice into
√
N

sub-squares. The quantum robot placed at the edge of the lattice can travel to any

sub-square within time steps of 2
√
N steps. Within the sub-region the robot classically

searches for the marked node locally which takes O(
√
N) steps. If the marked node exists

in the searched sub-square, the phase of the state of the robot is flipped. Subsequently,

the robot travels back to its initial position within 2
√
N steps. At this point, a total of
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5
√
N time steps at most are consumed. Now, if we assume such local searching process

using a uniform super position state of the robot and apply the Grover’s algorithm, the

total complexity is O(N1/4) × 5
√
N = O(N3/4). The first term O(N1/4) comes from the

square root of O(
√
N), the time complexity of the Grover’s algorithm on

√
N sub-squares.

For the two-dimensional square lattice, Aaronson and Ambainis found a lower bound of

the time complexity to be O(
√
N log5/2N) by dividing the lattice into N1/3 sub-squares.

After this, in 2005, Ambainis, Kempe and Rivosh [36] gave an algorithm based on

discrete-time quantum walk on d-dimensional lattices (known as AKR algorithm) which

achieves optimal search O(
√
N) when d ≥ 3 and O(

√
N logN) for d = 2. This generalized

the previous algorithm by Aaronson and Ambainis using the framework of discrete-time

quantum walk. In 2004, Childs and Goldstone [26] proposed an analogous continuous-

time quantum walk algorithm to solve the spatial search. The difference of Childs and

Goldstone’s algorithm from the previous work (including the Grover’s algorithm) was

that their unitary operation is the continuous time-evolution operator generated by an

Hamiltonian, instead of a consecutive application of unitary operators. Their algorithm

achieved to search with optimal time O(
√
N) for d ≥ 5, and O(

√
N log3/2N) for d = 4,

but no faster than classical for d ≤ 3. The continuous-time quantum walk framework

given by Childs and Goldstone was simple that this paper led to a various study that

investigate the time complexity of the search on different types of graphs. Essentially, the

search by continuous-time quantum walk can be analyzed on any graph if the adjacency

matrix of the graph is given. The hardness of the analysis of the search time complexity

comes down to the hardness of analyzing the eigenstate and eigenvalue structure of the

graph, which has strong connection to spectral graph theory.

List of works on the spatial search algorithm and the general goal of the

analysis Let us list up some results from the various work dealing with the spatial

search algorithms using quantum walks, and summarize the general goal of this field.

The main topic of the seminal papers by Ambainis, Kempe and Rivosh [36] or Childs

and Goldstone [26] were to analyze the search complexity for d-dimensional lattices. Build-

ing up on these work, searching quickly on periodic lattices is one of the big topics in the

field. Their essential results are listed in Table 3.1. Essentially, using discrete-time quan-

tum walk, optimal search is achieved when d > 2 (O(
√
N logN)), and using continuous-

time quantum walk, optimal search is achieved when d > 4 (O(
√
N log3/2N)). d = 2 and

d = 4 seem to be the critical dimensions where the discrete or continuous-time algorithms
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can perform optimally or not. Whether one can construct an algorithm to speed up the

search at these critical dimensions to O(
√
N) is an open question.

Table 3.1: List of the time complexities of the spatial search algorithms on d-dimensional
lattices using quantum walk.

d Discrete-time [36] Continuous-time [26]

≥ 5 O(
√
N) O(

√
N)

4 O(
√
N) O(

√
N log3/2N)

3 O(
√
N) O(N)

2 O(
√
N logN) O(N2/ log3N)

The the best speedup achieved on the d = 2 lattice so far is a algorithm proposed

by Tulsi [37], achieving the complexity of O(
√
N logN). In Tulsi’s method, an ancilla

qubit is attached to the Hilbert space of the database, which boosts the success prob-

ability (probability to measure the marked state after the unitary operations) up to a

constant. The complexity O(
√
N logN) given by AKR algorithm is actually composed of

two elements; O(
√
N logN) time steps to localize the state on the marked state, and the

probability to measure the marked state, that is O(1/
√

logN). The total time complexity

is derived by multiplying the time steps with the inverse of the success probability, that

gives O(
√
N logN). Such multiplication is necessary, since to obtain the correct result

one needs to repeat the algorithm at least 1/P times when the probability of success is

P . As Tulsi’s method boosts the success probability to O(1), the total time complexity

improves.

Observing from Table 3.1, the critical dimension to achieve optimal search for the

continuous-time algorithm is d > 4, which is higher than the discrete-time case. The

reason of such difference comes from the dispersion relation of the Hamiltonian or the

unitary operator representing the d-dimensional lattice. The Hamiltonian used in Childs

and Goldstone algorithm is based on the tight-binding Hamiltonian of a single electron

bounded on a d-dimensional periodic lattice crystal (this will be formally introduced in

Section 3.5.1). One can show that since the dispersion relation ω(k) of a cubic lattice is

quadratic, the energy separation between the ground and first excited state is E(k)−E0 ∼
|k|2 ∼ N−2/d. The optimality of the spatial search can be roughly predicted by comparing

this with the energy separation of the perturbed Hamiltonian, ∆E = N−1/2. The critical
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dimension is d > 4 since the ratio ∆E/N−2/d goes to 0 as N → ∞. This shows that the

larger energy separation between the ground and first excited state of the tight-binding

Hamiltonian is a important factor that determines optimal search.

Such critical dimension reduces to d > 2 when the lattice has a linear dispersion rela-

tion, since E(k)−E0 ∼ N−1/d. The unitary operator used in the discrete-time algorithm

shows this linear dispersion relation due to the internal degree of freedom of the quantum

walker [36]. Childs and Goldstone has soon utilized this fact in their later work [38], by

using the Dirac Hamiltonian for the continuous-time search algorithm, which possesses

a linear dispersion relation due to the internal spin degree of freedom. Their method

allowed to search optimally for d ≥ 3 and O(
√
N logN) for d = 2. This direction led

to the work by Foulger, Gnutzmann and Tanner [39], who considered a continuous-time

algorithm on a hexagonal (graphene) lattice instead of a cubic lattice. A hexagonal lattice

(d = 2) naturally possesses a linear dispersion relation near the K point, thus allowed to

search with complexity O(
√
N log3/2N) without requiring the internal degree of freedom

of the quantum walker. Afterwards, Childs and Ge [40] generalized the search on hexag-

onal lattice by discussing how to configure the lattice topology to give a linear dispersion

relation on the lattice. However, despite all the challenges, no algorithm have been found

that searches optimally on d = 2 dimensional lattices. Additionally, there is no proof

to say searching optimally on a two-dimensional lattices is impossible. This is still and

interesting open question in this field.

Another direction in the field of spatial search is to explore what kind of graphs other

from lattices can achieve optimal search. For example, Childs and Goldstone [26] proved

that optimal search by continuous-time quantum walk is possible on the complete graph

and the hypercube4. Janmark, Meyer and Wong [41] analyzed the search on strongly

regular graphs, and derived that the search is optimal for known classes of strongly reg-

ular graphs. Their result indicated that unlike complete graph or hypercube, a global

symmetry of the graph is not a necessary condition for optimal search. Novo et al. [42]

developed a systematic method to reduce the dimension of the graph’s adjacency ma-

trix, which helps when analyzing the spatial search or more generally, continuous-time

quantum walk on graphs. They applied their method on star graphs, complete bipartite

graphs, and complete graph with broken links, where all graphs achieved optimal search.

Meyer and Wong [43] analyzed the search on a joint complete graph (two complete graphs

4A hypercube of 2n = N nodes is a regular graph whose degrees are n. The edges are connected
between nodes whose hamming distance is 1.
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joint by a single edge) and a simplex of complete graphs (a simplex with each vertex re-

placed by a complete graph). The former graph possessed optimal search while the latter

did not. This result gave a counter example to the intuition that high connectivity of

the graph is one indicator for optimal search; there are examples where graphs with low

connectivity may possess optimal search. Chakraborty et al. [44] analyzed the search on

Erdös-Rényi random graphs. This is a probabilistic graph model where an edges between

every pair of nodes exists with a constant probability p independent of all other edges.

Chakraborty et al. proved a powerful lemma indicating that a certain large gap in the

eigenvalues of the graph (which means the need of certain large connectivity) is a sufficient

condition for optimal search. Their analysis clearly proved that a very high connectivity

like a complete graph is unnecessary, and we can cut links from the complete graph up

to a threshold value while keeping the fast speed of the search.

Given a lot of instances of graphs that possess optimal search, the ultimate goal for

spatial search on arbitrary graphs is to find out and formulate the necessary and sufficient

condition of the graph for optimal search. In other words, we want to formulate the success

criteria of spatial search. We want a criteria such that when we give a particular instance

of graph, the criteria determines whether it possesses optimal search or not with some

systematic analysis. However, finding this criteria still seems to be a challenging path.

Moving toward spatial search on heterogeneous graphs Still few, but some work

moved toward exploring inhomogeneous or non-regular graphs where to analyze the spatial

search algorithm. Such graphs are different from lattices or highly symmetric graphs

mentioned above due to the unequivalence of the nodes. Therefore, the dynamics of the

quantum walker can be complex and different depending on which node in the graph

is marked. Agliari et al. [45] explored spatial search on fractal structures such as the

Sierpinski gasket and the Cayley tree. They studied how the transition in the eigenstates

of the Hamiltonian depends on the marked node. Berry and Wang [46] studied spatial

search using the discrete-time algorithm on the Cayley tree, and examined the relation

between centrality measures of the graph and the time complexity of the spatial search.

Philipp et al. [47] examined the continuous-time algorithm on balanced trees, and derived

that the search performance changes depending whether the marked node is towards the

root or the leaves of the graph. Glos et al. [48] examined how the inhomogeneity of a

random graph causes variation to the optimal measurement time of the search algorithm.

This thesis is especially focusing the interest on this direction; how the spatial search
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algorithm behaves on a complex and non-regular structure.

3.4 What this thesis tackles in the field of spatial

search

Based on the review of the field in the previous section, here we explain the motivation

and aim of this thesis’ analysis. Our aim and its analysis on the spatial search problem

is composed of two individual parts.

Part 1: Spatial search on the long-range percolation

graph

In this part, we approach to the spatial search problem from the perspective of connectivity

of the graph, and examine explicitly how the time complexity of the search changes

depending on the connectivity. We consider the spatial search algorithm using continuous-

time quantum walk (CG algorithm) on a graph known as the long-range percolation (LRP)

model.

The LRP model [49–51] is a probabilistic graph generation model where we initially

have periodic lattice points (say a two-dimensional square lattice), and generate edges

between lattice points i and j with probability pij = |i − j|−α. Here, |i − j| is the

Euclidean distance between the lattice points and α ≥ 0 is a constant taking real value.

As the probability pij is defined as a decaying function of the Euclidean distance between

the lattice points, the non-nearest neighbour will be more likely to be added between

spatially close lattice points (see Figure 3.10.

Our motivation of analyzing spatial search on the LRP model is to first discuss the

effect of connectivity of the graph on the spatial search algorithm. This was also discussed

in the work by Chakraborty et al. [44] using the Erdös-Rényi random graph, but the LRP

model considers more of a physically realistic situation as the probability to generate long-

renge edges decays with the distance of the nodes. Distance-decaying functions naturally

arise in the nature such as the coulomb interaction. On the other hand, the Erdös-Rényi

random graph generates edges between nodes with a constant probability. We analyze

the search by gradually changing the connectivity of the graph from a periodic lattice (a
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local structure) to a fully connected graph (non-local structure).

We will show that there exists a threshold connectivity where the time complexity

of the search switches from optimal O(
√
N) to non-optimal. This threshold will be rep-

resented by a critical value of the exponent α = αc. We will also examine some graph

properties of the LRP model such as average degree, diameter and clustering coefficient,

which we will discuss some relation between these properties and the time complexity of

the search. From the analytical calculation of the average degree, we will show that the

LRP model has a improved connectivity threshold over the Erdös-Rényi random graph.

Part 2: Spatial search on the Bollobás scale-free network

In the second part we explore how the time complexity of the spatial search algorithm

behaves in a real-world complex network structure. Although the spatial search on various

graphs have been investigated in the literature, spatial search on complex networks or

real world networks have been almost never unexplored, to the best of our knowledge.

Complex networks are important class of graphs as they represent the common structures

that appears in the social and natural system. We go beyond lattice or regular structures,

and analyze the spatial search algorithm on a scale-free network, which is one of the most

important class of complex networks.

We select a probabilistic network generation model known as the Bollobás model

[52, 53] where to analyze the spatial search algorithm. This model essentially simulates

the preferential attachment rule to generate a network with power-law degree distribution

P (k) ∝ k−β. (3.16)

Here, k is the degree of a node while β > 2 is a real constant value. This degree distribution

represents that most nodes in the network have small degree, while some few nodes has

very large degree (corresponding to the tail of the power-law distribution). We call the

node having the largest degree as the hub node.

We will first show that the speed of the spatial search will greatly depend on the

properties of the marked node. These properties can be for example the degree, shortest

path distance from the hub, or some centrality measures. This is a critically different

result compared to periodic lattices, since all nodes are equivalent due the translational

symmetry, and they all share the common property. We analyze the distribution of the
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search time which is well fit to a multimode log-normal distribution.

To characterize the relation between the network structure and the performance of the

search, we examine the correlation between some centrality measures of the network and

the time complexity of the spatial search. We find a strong correlation to the eigenvector

centrality and closeness centrality. We also show how our results are different from the

classical random walk process to search for a marked node, which has high correlation to

the degree centrality. These observations cannot be seen from purely random graphs [44],

and this is another critical difference from the previous studies. We also point out one

advantage of using a scale-free network for the spatial search, which is that one can

perform the search starting from a localized initial state instead of a global superposition

state conventionally used in the spatial search and Grover’s algorithm. Taking advantage

of this fact, one can naturally translate the spatial search to a efficient state transfer

protocol between the hub node and another arbitrary node.

These results indicate that the hub node in the scale-free network plays a crucial role

on the quantum dynamics, and the distance measures of the network is one important

factor that determines the time complexity of the spatial search algorithm.

3.5 Preliminaries of the spatial search algorithm

3.5.1 Definitions of the spatial search algorithm by continuous-

time quantum walk

Here we start by formally defining the spatial search algorithm we are going to examine.

The comparison with the Grover’s algorithm explained in Section 3.2 is summarized in

Figure 3.6. The essential difference between the Grover’s algorithm and the spatial search

algorithm we analyze here is that the latter uses a continuous-time evolution during the

algorithm, as well as having more freedom in defining the diffusion operator corresponding

to Df defined in Section 3.2, Eq. (3.4).

Define G(V,E) as a graph with a set of nodes V = {1, 2, . . . , i, . . . , N} and a set

of edges E. We consider an N -dimensional Hilbert space spanned by the basis states

{|1⟩, |2⟩, . . . , |i⟩, . . . , |N⟩}, and assign each states to the N nodes of the graph G(V,E).

We will call these states as node basis states. We view that each state corresponds to the

situation where a quantum walker or a single excitation is localized at node i. Quantum
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walk is a coherent quantum dynamics where quantum particle(s) hop between the nodes

of graph. We define the state of the quantum walker at time t using the node basis states

as

|ψ(t)⟩ =
N∑
i=1

ci(t)|i⟩ (3.17)

with the complex amplitudes ci(t) constrained such that
∑N

i=1 |ci(t)|
2 = 1.

Figure 3.6: Correspondence between the Grover’s algorithm and the spatial search algorithm.

In order to search for a single marked node which we label as |w⟩, we define a search

Hamiltonian that gives constraint to the system and generates the time evolution of the

quantum walker. Following Childs and Goldstone’s [26] definition, the search Hamiltonian
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is defined as

Hs = −γA− ϵw|w⟩⟨w| (3.18)

= −γ
N∑
i,j

Aij (|i⟩⟨j| + |j⟩⟨i|) − ϵw|w⟩⟨w|. (3.19)

Here, A is the adjacency matrix of graph G(V,E) whose entries are defined as Aij = Aji =

1 if nodes i and j are connected by an edge eij ∈ E, and Aij = 0 if no edge exists between

i and j. The real value constant γ ≥ 0 globally controls the transition energy between

the node basis states. ϵw > 0 is the on site energy on node w. With some appropriate

balance of the parameters γ and ϵw (we fix ϵw = 1 in most cases), the adjacency matrix

term causes the complex amplitudes of the quantum walker to diffuse over the graph,

while the projection |w⟩⟨w| term causes the amplitude to accumulate and localize on the

marked node w. This term corresponds to the Oracle part of the search algorithm.

In some cases, the adjacency matrix term can be instead replaced by the Laplacian

matrix L of the graph. Here, L is defined as L = A − D, where D =
∑N

i=1 ki|i⟩⟨i| is

a diagonal matrix with its diagonal entries Dii corresponding to the degree of node i,

ki =
∑N

j=1Aij. For the dynamics of the quantum walk, the diagonal terms acts as the

on-site energy of the tight-binding Hamiltonian. If the graph is regular (i.e. all nodes

have equal degree ki = k), these diagonal terms only affects the global phase of the state

since D = kI. If the graph is non-regular, these on-site energies can affect the dynamics

non-trivially.

Now we consider the unitary time evolution of the system which is given by the

Schrödinger equation,

iℏ
d

dt
|ψ(t)⟩ = Hs|ψ(t)⟩. (3.20)

Assume that we make a measurement in the node basis at a time t, the probability of

getting the outcome |w⟩ (in other words the probability to measure the quantum walker

on node w) is P (t) = |⟨w| exp (−iHt/ℏ)|ψ(0)⟩|2. The goal of the spatial search algorithm

is to maximize P (t) (make P (t) as close as possible to 1) with shortest t possible. Such

manipulation of the measurement probability can be achieved by properly adjusting the

the parameters γ and ϵ, and this will be further explained in the following sections.

The time complexity of the spatial search algorithm or the “search time” T , in units of

ϵw, is evaluated by finding the shortest time t = τ that maximizes P (t). As one can find
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the quantum walker on node w with probability P (τ) at the optimal measurement time τ ,

the algorithm can identify the marked node with success probability P (τ). This concept

of success probability is very fundamental for quantum algorithms and has to be always

taken into account since measurements in quantum systems are always probabilistic. The

simple way to take the success probability into account of the time complexity of the

search algorithm, is to consider the repetition of algorithm for 1/P (τ) times. For example

if P (τ) = 1/3, we need to repeat the algorithm from the beginning for 3 times (or more) to

confirm that the outcome is the correct marked state |w⟩. Therefore, the time complexity

of the search T is finally determined as T = τ/P (τ).

3.5.2 Spatial search on the complete graph: analytical approach

As we defined the spatial search algorithm by continuous-time quantum walk in the pre-

vious section, in this section we will explain the basic mechanism of how the algorithm

actually works. We will explain that with a proper choice of parameters γ and ϵw (defined

in Eq. (3.19) in the previous section), one can manipulate the quantum walker to localize

on the marked node with high probability P (τ). We will assume that the graph where

the spatial search is considered is a complete graph (fully connected graph), in order to

make some analogy with the Grover’s algorithm, and to also make the calculation simple.

This explanation of the search on the complete graph is based the original paper by Child

and Goldstone [26].

Assume that graph G(V,E) is a complete graph (see left panel of Figure 3.7), where

the adjacency matrix Acomp is

Acomp =


0 1 . . . 1

1 0 . . .
...

... . . .
. . . 1

1 . . . 1 0

 . (3.21)

The matrix entries are all ones except the diagonals are all zeros. Let us define a state

|s⟩ =
∑

i=1 |i⟩/
√
N , which is a uniform superposition of all node basis states. Using |s⟩,

Acomp can be written as

Acomp = N |s⟩⟨s| − I. (3.22)

Observe that Acomp has a similar form as the Grover’s diffusion operator Df in Eq. (3.4).
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Now we plug Acomp into the search Hamiltonian Eq. (3.19), which gives

Hs = −γN |s⟩⟨s| + γI− ϵw|w⟩⟨w|. (3.23)

The term including the identity will only change the global phase under the time evolution,

so we can remove that term (in other words, we re-scale the energy by subtracting γI). If

we choose γ = 1/N and ϵw = 1, Eq. (3.23) will become

Hs = −|s⟩⟨s| − |w⟩⟨w|. (3.24)

Note that the states |s⟩ and |w⟩ has an overlap of |⟨s|w⟩| = 1/
√
N . If we instead rewrite

this Hamiltonian in the mutually orthogonal basis |r⟩ =
∑N

i ̸=w |i⟩/(
√
N − 1) and |w⟩, the

Hamiltonian becomes

Hs = −
(

1

N
+ 1

)
|r⟩⟨r| −

√
N − 1

N
|r⟩⟨w| −

√
N − 1

N
|w⟩⟨r| −

(
1 − 1

N

)
|w⟩⟨w|. (3.25)

Assuming N ≫ 1, the above Hamiltonian can be simplified as

Hs = −

(
1 1√

N
1√
N

1

)
, (3.26)

written in a 2 × 2 matrix form. This means that we have reduced the complete graph of

N nodes into simplified graph of 2 nodes (see right panel of Figure 3.7). Such reduction

is possible since the dynamics inside the N − 1 nodes excluding w is equivalent. As the

complex amplitudes travel between the node w and the rest with the equal rate γ, we can

still capture the time evolution of the system from the reduced graph.

From the matrix Eq. (3.26), now we can see that the two energy levels corresponding

to the eigenstates of |r⟩⟨r| + |w⟩⟨w| are degenerated (up to 1/N), and a perturbation is

applied which splits the eigenstates. The time evolution under this situation drives the

oscillation between the two levels |r⟩ and |w⟩. Diagonalizing Hs we can obtain the new

eigenstates,

|E0⟩ = (|w⟩ + |r⟩)/
√

2, (3.27)

|E1⟩ = (|w⟩ − |r⟩)/
√

2, (3.28)
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Figure 3.7: Complete graph of 8 nodes (left) and its reduction to a graph of two nodes (right). As the
dynamics on the nodes except the marked node |w⟩ is equivalent, one can reduce the nodes into a single
node |r⟩.

up to terms of order 1/N . We defined the energy eigenstates and eigenvalues of Hs as

Hs|E0,1⟩ = E0,1|E0,1⟩. We define and compute the energy gap between the two energies as

∆E ≡ E1 −E0 = 2/
√
N . When N ≫ 1, we can assume that uniform superposition state

|s⟩ is close enough to |r⟩ as the overlap is |⟨s|w⟩| =
√

1 − 1/N . Therefore, if we prepare

the initial state as |s⟩ and let the system evolve under the action of the Hamiltonian Hs,

the state will approximately rotate to |w⟩ after time t = π/∆E = π
√
N/2. It is important

that we are preparing the initial state |s⟩ instead of |r⟩, since the person who executes

the search algorithm does not know the marked state |w⟩ in advance (i.e. it is impossible

to prepare |r⟩ without knowing the answer of the search in advance).

Now we derived that the system constraint by the Hamiltonian Hs rotates between

the states |s⟩ and |w⟩ if we prepare the initial state at |s⟩. The probability to measure

the marked state P (t) = |⟨w| exp (−iHt/ℏ)|ψ(0)⟩|2 oscillates between 1/N and 1 − 1/N

with period π
√
N . If we measure the quantum walker at time τ = π

√
N/2, the state |w⟩

will be measured with probability 1 − 1/N ∼ 1, hence the time complexity of the search

is π
√
N/2 which is the optimal order O(

√
N).

3.5.3 Spatial search on a general graph

In the previous section, we have considered how the dynamics of the spatial search algo-

rithm is determined by analyzing the eigenvectors of the search Hamiltonian Hs. The key

feature of the Hamiltonian lies in the equation

Hs = −γN |s⟩⟨s| − |w⟩⟨w|. (3.29)
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Here we set ϵw = 1 and omitted γI from Eq. (3.23). We can learn from this Hamiltonian

that state |s⟩ is the ground state of the diffusion part of the Hamiltonian −Acomp (in

other words, the ground state of Hs is close to |s⟩ when γN ≫ 1). On the other hand,

state |w⟩ is the ground state of Oracle term |w⟩⟨w| (the ground state of Hs is close

to |w⟩ when γN ≪ 1). All other eigenstates (excited states) are degenerated for both

Acomp and |w⟩⟨w|. Due to this isolated ground states of Acomp and |w⟩⟨w|, when γ is

set to γN = 1 which equally mixes the two ground states, an isolated two-dimensional

subspace is created in the form of Eqs. (3.27) and (3.28). In other words, an avoided

crossing between the two lowest energy eigenstates, with a energy gap of δE = 2
√
N ,

were formed. Now, if we assume a general graph besides the complete graph in Hs, would

the same situation hold? The answer to this question lies in the spectral property of the

graph, especially how well separated the ground state and the excited states are.

Let’s consider an adjacency matrix of a connected, undirected graph Ag. This matrix

can be decomposed by their eigenvectors and eigenvalues, as Ag =
∑N

l=1 λl|λl⟩. The

eigenvalues are ordered such that λ1 > λ2 ≥ λ3 ≥ · · · ≥ λN . The search Hamiltonian can

be written as

Hs = −γλ1|λ1⟩⟨λ1| − γ
N∑
l=2

λl|λl⟩⟨λl| − |w⟩⟨w|. (3.30)

Here we again set ϵw = 1, and separated the l = 1 term (the leading eigenvector term)

and the rest (l ≥ 2). When we set γ = 1/λ1,

Hs = −|λ1⟩⟨λ1| −
N∑
l=2

λl
λ1

|λl⟩⟨λl| − |w⟩⟨w| (3.31)

≡ −|λ1⟩⟨λ1| − |w̃⟩⟨w̃|. (3.32)

Here we defined the last term as

|w̃⟩⟨w̃| ≡
N∑
l=2

λl
λ1

|λl⟩⟨λl| + |w⟩⟨w|. (3.33)

We have written the Hamiltonian in the similar fashion as Eq. (3.24), although the latter

term got a correction due to the higher energy levels. From Eq. (3.32), we can see that

if we start the dynamics from the initial state |λ1⟩, the state will rotate to |w̃⟩ with time

t = |⟨λ1|w⟩|, since |⟨λl|λm⟩| = δlm.
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Recalling the case of the complete graph, the eigenvalues of Acomp is λ1 = N − 1

while λl≥2 = −1. Therefore, the ratio λl/λ1 quickly approaches to 0 as N → ∞. And

thus |w̃⟩ = |w⟩, which matches Eq. (3.24). From this treatment, we can see that all

graphs whose eigenvalue ratio λl≥2/λ1 converging to 0 in the N → ∞ limit can achieve

optimal search. This means that the graph has to have a large spectral gap, which

generally requires the graph to be highly connected. In the other extreme case where the

eigenvalue ratio is λl≥2/λ1 → 1 as N → ∞, the search algorithm would not work as the

dynamics starting from |λ1⟩ highly leaks out to the higher energy levels through |w⟩.
In the intermediate region of 0 < (λl≥2/λ1) < 1, the dynamics will be non-trivial

depending on the actual structure of the eigenstates |λl⟩. We need to know the full

spectrum and eigenstates in order to exactly know the dynamics, but we can still extract

important information from Eq. (3.32). Let us write the two lowest energy eigenstates of

Eq. (3.32) as

|E0⟩ = (|w̃⟩ + |λ1,w̄⟩)/
√

2, (3.34)

|E1⟩ = (|w̃⟩ − |λ1,w̄⟩)/
√

2, (3.35)

where |λ1,w̄⟩ is a state that approximately achieves |⟨w̃|λ1,w̄⟩| = 0. We assume |⟨w|λ1⟩| is

small (up to order of 1/
√
N) so that |λ1,w̄⟩ is very close to |λ1⟩ as N → ∞. By considering

the characteristic equation Hs|E0,1⟩ = (−Ag/λ1−|w⟩⟨w|)|E0,1⟩ = E0,1|E0,1⟩, we can derive

that

∆E = E1 − E0 = 2|⟨λ1|w⟩⟨w|w̃⟩|. (3.36)

We can extract important information from Eq. (3.36).

1. By starting the dynamics from |λ1⟩, the state will rotate to |w̃⟩ with time τ =

π/∆E = π/2|⟨λ1|w⟩⟨w|w̃⟩|, which is the necessary length of time evolution that

maximizes P (τ).

2. The success probability is P (τ) = |⟨w|w̃⟩|2.

The first point tells us that τ will depend on the w-th component of the leading eigenvector

of Ag, which can be different depending on w. If the graph is regular, |λ1⟩ is always

uniform vector |s⟩, which gives |⟨s|w⟩| = 1/
√
N independent of N . For non-regular

graphs (including complex networks we are going to deal with), the components are non-
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uniform. The second point tells us that the success probability will depend on how much

the dynamics can stay within the two dimensional subspace spanned by |λ1⟩ and |w⟩.
It is important to note that there are cases where γ = 1/λ1 is not the optimal choice

to obtain the best time complexity for the given graph. From our observations from

some numerical analysis in the later sections, the optimal value of γ that maximizes

P (τ) (without increasing τ substantially) tends to take a value smaller than 1/λ1 as the

connectivity of the graph decreases. This is probably because γ also has a role to suppress

the higher energy level terms (the second term of Eq. (3.30)).

In summary, we can clearly see that the dynamics and time complexity of the spatial

algorithm crucially depends on the structure of the energy eigenspace of the graph. Op-

timal search can be achieved on graphs whose largest and second largest eigenvalues of

the adjacency matrix are well separated. In terms of the difficulty of the analysis, eigen-

vectors and eigenvlaues of some simple graphs can be obtained analytically, but generally

this is a difficult problem especially when the graph is a complex network. One needs to

use numerical diagonalization or simulations of the quantum walk dynamics in order to

obtain the time complexity of the algorithm.

3.5.4 Numerical method to analyze spatial search

In this section, we develop a numerical strategy to efficiently compute time complexity

of the spatial search algorithm. In principle, if all of the eigenvalues of the adjacency

matrix can be obtained analytically, we can derive the time complexity with some ana-

lytical calculations. However, this is a very rare case and especially for complex networks

analyzed in this thesis, we need to rely on numerical calculations. Additionally, we need

to run computations such as diagonalization and matrix exponentiations of large matrices

(dimensions up to order of 104) to obtain reliable results both in the perspective of sta-

tistical convergence of the network models, and the perspective of algorithm evaluation

(as we are interested in the scaling of the time complexity in the large N region). In the

following paragraphs, we will see step by step how we can numerically analyze the spatial

search algorithm for any graphs. At the end of the section, in Figure 3.9, the flow of the

analysis is summarized.

1. Optimization of γ Let’s assume that we have a search Hamiltonian Hs = −γAg −
|w⟩⟨w| we would like to analyze. We assume the adjacency matrix Ag is given, and we

72



3.5. PRELIMINARIES OF THE SPATIAL SEARCH ALGORITHM

have selected a certain node w to search for. First of all, we need to find the optimal

value of γ = γopt which equally mixes the ground states of Ag and w, and drive the

transition between the states |λ1⟩ and |w̃⟩ defined in Eq. (3.32). The optimization of γ is

necessary for the algorithm to run in a most efficient way, which means that setting γ to

an non-optimized value can lead to low success probability P (τ).

To understand how we can find the optimal γ, we will look at how the eingenvalues

and eigenstates of Hs depends on γ. See Figure 3.8. We have plotted some quantities

relevant to the dynamics of the spatial search against γ First, we can observe that ∆E ≡
E1 − E0, the energy gap between the first excited state and the ground state of Hs,

takes a curve which has a minimum at a certain value of γ. Remember that at γ = 0,

Hs = −|w⟩⟨w| and thus ∆E = 0 − (−1) = 1. Increasing γ from zero, the gap starts

to shrink, take a minima, and starts to open up where the effect of the term −|w⟩⟨w|
becomes negligible. Conclusions first, the point where ∆E takes the minimum value is

where the avoided crossing between the two lowest energy eigenstates is formed, and

thus this point corresponds to the optimal value γ = γopt. This is further supported

by looking at the quantities |⟨λ1|E1⟩|2 and |⟨λ1|E0⟩|2, the squared overlaps between the

leading eigenvector of Ag and the two lowest eigenstates of Hs. The quantities take

|⟨λ1|E0⟩|2 ≈ |⟨λ1|E1⟩|2 ≈ 0.5 where ∆E takes the minimum, indicating the equal mixture

of the eigenstates (i.e. formation of Hs = −|λ1⟩⟨λ1| − |w̃⟩⟨w̃|). It is also interesting to see

how the quantities |⟨w|E1⟩|2 and |⟨w|E0⟩|2 behave. Sum of these quantities indicates the

success probability P (τ), since this measures how much the state |w⟩ communicate with

only with |λ1⟩ and not with the higher energy levels.

Therefore, in order to find γopt, we need to compute two smallest eigenvalues of Hs

(which are in most cases the eigenvalues with the largest two magnitude), and mini-

mize against γ. This is actually computed numerically using the power method. In the

procedure of the optimization, we initialize γ at 1/λ1 (again λ1 is computed via power

method), and minimize ∆E by shifting γ by δγ = 0.01 × 1/λ1 at each step. As E0, E1 or

λ1 are eigenvalues with large magnitudes, they are rather easily computed that the other

eigenvalues that could be small in magnitude.

2. Computation of the evolution time τ Computing the necessary length of the

time evolution of the quantum walk τ is rather easy as τ is given by τ = π/∆E, derived

in the previous section.
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Figure 3.8: Energy gap ∆E, success probability |⟨w| exp (−iHt)|s|2, and squared overlaps plotted against
the parameter γ. The plot is created using an instance of the long-range percolation graph (defined in
Section 3.6.1) with size N = 1024 and α = 2. In the vicinity where ∆E takes the minimum, the success
probability (blue line) takes the peak value. We evaluate the algorithm by using this peak value as the
success probability, and use ∆E at this point to calculate the evolution time as τ = π/∆E.

3. Computation of the success probability P (τ) Finally we need to compute the

probability to measure the quantum walker on the node |w⟩ after the time evolution of

length τ , which is given by

P = |⟨w| exp (− i

ℏ
Hs

π

∆E
)|ψ(0)⟩|2. (3.37)

The direct computation of the matrix exponential is a burden as it requires diagonalization

of the matrix Hs. However, in our case, we just need to know the resulting state after

the time evolution |ψ(τ)⟩ = exp (− i
ℏHs

π
∆E

)|ψ(0)⟩, rather than the unitary operator itself.

We can use the efficient Chebyshev series expansion [54] in such occasion. The matrix

exponential is approximated with a polynomial function and multiplied to the initial state

vector simultaneously until sufficient accuracy is achieved. This method is especially

memory and time saving if Hs is sparse.
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An important factor we have left to discuss is the choice of the initial state |ψ(0)⟩.
The ideal choice is |λ1⟩, which is clear from the previous section. However, in realistic

experimental settings, preparing an eigenstate of a system accurately can be a hard task.

Some eigenstate may be composed of complex amplitudes and relative phases. In such

cases we can still run the algorithm using a initial state that has substantial overlap with

|λ1⟩. Let’s say the overlap approaches to a constant, |⟨ψ(0)|λ1⟩| → c, as N → ∞. Starting

the dynamics from such initial state, the success probability will be only decreased by a

constant factor compared to starting from the state |λ1⟩. On the other hand, an initial

state whose overlap with the leading eigenvector decreases as the growth of N is an poor

choice as the time complexity will get an additional factor which increases as N grows.

We think the numerical strategy developed in this section is universal for computing

the time complexity of the spatial search algorithm by continuous-time quantum walk on

any connected, undirected graph.
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Figure 3.9: Flowchart of the numerical calculation of the search time.
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3.6 Spatial search on the long-range percolation model

In this section, we will present our result on the analysis of the spatial search algorithm

on the long-range percolation (LRP) model. First, we will introduce the formal definition

of the LRP model, and then present the result on how the time complexity depends on

the parameter of the network model. We discuss the behaviour of the time complexity

against the change of connectivity of the graph. After that, we show some network

measures computed on the LRP model, and discuss some relation between the property

of the network and the optimality of the search.

3.6.1 Defining the LRP model

Here we introduce definition of the long-range percolation (LRP) model. Such model

was originally introduced by Schulman [49, 50], who considered the classical percolation

transition on this graph. Also, similar graph models are considered in the field of complex

network theory as a network to describe the small-world phenomena [55,56].

The model we consider here is a probabilistic graph generation model described as

follows. N nodes are placed on the cubic lattice points of Zd. As an example, if d = 2 we

consider the lattice points of a
√
N by

√
N square lattice, and if d = 1 this is a simple

line of length N . We assume the lattice to have toric or periodic boundary condition in

order to exclude effects that may come from the boundary of the lattice. An edge exists

between all pair of nodes i and j by a probability pij, independently of all other edges.

Here, we choose pij to be a power law decaying function

pij = |i− j|−α, (3.38)

where |i − j| is the Euclidean distance between the pair of nodes i and j, and α ≥ 0 is

a constant taking real value. The exponent α controls the decay speed and magnitude

of the probability function, and thus controls the connectivity (average of total number

of edges) of the graph. The feature of the form of pij is that the geometric layout our

the nodes are taken into account. Therefore, the graph will likely have edges if the nodes

are spatially close to each other, and an edge will rarely exist if they are spatially far

apart. We define the distance between the nearest-neighbour lattice points as |i− j| = 1.

This allows us to always generate nearest neighbour edges for any value of α, and put

additional long-range (non-nearest neighbour) edges on top of it. This setting also allows
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the graph to result as a simple lattice in the α → ∞ limit. The graph will be a complete

graph when α = 0, since pij = 1. As a note, if we choose pij to be a constant value

independent of the Euclidean distance between the nodes, this model is equivalent to the

Erdös-Rényi random graph. See Figure 3.10 for the schematic picture.

Figure 3.10: Schematic representation of the long-range percolation model. Assume a two-dimensional
square lattice, and long-range edges are added between pair of nodes i and j by probability pij = |i−j|−α,
which is a power-law decaying function depending on the Euclidean distance between the nodes.

Since pij in this form is scale invariant (i.e. does not include the system size N), we

expect the search time on this graph to be O(
√
N) in a certain region of α, which should

be 0 ≤ α ≤ αc. The scaling of the search time would grow with the increase of α, when

α > αc. Our primary goal is to determine αc, the critical point where the search time

switches from optimal to non-optimal.

3.6.2 Time complexity of the spatial search on the LRP model

In this section we will present the critical αc for the LRP model with d = 2 and d = 1. We

will show how αc is derived through the numerical calculations introduced in the previous

section.

We first clarify the setting of our analysis. The search Hamiltonian is constructed

using the Laplacian matrix of the LRP model,

Hs = −γLlrp(α) − |w⟩⟨w|. (3.39)

Llrp(α) depends on the connectivity exponent α defined in Eq. (3.38). Additionally,

as the graph is generated by a stochastic process, the graph will not be exactly same

at each trial of the generation. Therefore, when we compute the time complexity of

the search algorithm (τ and P (τ)), we compute 200 samples of them at each fixed α

and took the average. This consists of 20 samples of the graph, with 10 different nodes

chosen randomly as the marked node w. For each realization of the network, we follow the
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numerical analysis described in the previous section to optimize γ, compute τ and P (τ) =

|⟨w| exp (−iHsτ/ℏ)|ψ(0)⟩|2. τ is the necessary length of time-evolution under the action

of Hs (i.e. the optimal measurement time), and P (τ) is the success probability of the

algorithm. We evaluate the spatial search algorithm via these two quantities (details are

explained in Section 3.5.4). When computing P (τ), we choose the initial state of the time

evolution as the uniform superposition state over all nodes |ψ(0)⟩ = |s⟩ =
∑N

i=1 |i⟩/
√
N ,

as this state is the lowest energy eigenstate of Llrp.

Our result on the evolution time τ for d = 2 is shown in Figure 3.11. The figure shows

how τ depends on α for different system sizes N . We can see that the curves stays almost

flat between α = 0 ∼ 2. The evolution time grows dramatically (especially as N is larger)

after α ∼ 2.

Figure 3.11: The optimal measurement time τ plotted against α, on the d = 2 LRP model. The curves
with different colours correspond to different network sizes N . The optimal measurement time grows as
α increases, which is associated to lowering the connectivity of the graph.

In order to apply a quantitative analysis, we converted τ to another quantity we name

as the normalized energy gap, ∆Enorm = ∆E
√
N/2. The relation between the two is

∆Enorm = π
√
N/2τ , using τ = π/∆E. We define this quantity so that when the search

is optimal (i.e. ∆E = 2/
√
N), ∆Enorm = 1. Moreover as long as ∆E scales as N−1/2,

∆Enorm scales as a constant O(1). The plot of ∆Enorm against α is shown in Figure

3.12(a). Now the curves lives within [0, 1], and we can see a single intersecting point of

the curves with different system sizes.
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In Figure 3.12(b), we have shown the result on the success probability P (τ), plotted

against α. P (τ) naturally lives within [0, 1] from definition, and we can see a similar

behaviour as the normalized energy gap. A single intersecting point of the curves with

different system sizes exists in the plot as well.

Figure 3.12: (a) The normalized energy gap ∆E
√
N/2 = π

√
N/2τ and (b) the success probability P (τ)

plotted against α, on the d = 2 LRP model. The curves with different colours correspond to different
network sizes N . The data points represent the averaged values of 200 samples of computation, where
error bars are not shown for the visibility of the plots (see Figure 3.13). The curves intersect at α ≈ 2.4
for both plots. This indicates that at α = αc the spatial search is optimal, since the optimal measurement
time scales as τ ∝

√
N and the success probability P (τ) scales as a constant.

Let us explain the interpretation of the result. First of all, when α = 0, a complete

graph is generated using the LRP model. As derived in the previous section, the spatial

search on the complete graph achieves optimal search with τ = π
√
N/2 and P (τ) =

1 − 1/N . We can see this result is reproduced in Figure 3.12, at α = 0. When α is

increased from 0, the graph gradually loses edges, getting sparse. This is reflected in the

plots as the gradual decrease of the curves. However, interestingly, the curves of different

system sizes cross at one point, which is around α ≈ 2.4 for both ∆Enorm and P (τ). This

point is the critical αc where the scaling of the time complexity switches from optimal

to non-optimal. At α = αc ≈ 2.4, The scaling of ∆Enorm and P (τ) are constant as they

are fixed against the change of N . Therefore, we get τ = π
√
N/2∆Enorm = π

√
N/2cτ

and P (τ) = cP , where cτ , cP are constants, and thus the time complexity of the search is

T = τ/P (τ) = O(
√
N). On the other hand, in the region of α > αc, ∆Enorm and P (τ)

decreases as N grows. This suggests ∆Enorm = f(N) and P (τ) = g(N) where f(N), g(N)
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are decreasing functions of N . This straightforwardly suggests that the time complexity

is T = τ/P (τ) = O(
√
Nf−1(N)g−1(N)) which is slower than optimal. As the α → ∞

limit the graph is the simple square lattice, the time complexity in the region of α > αc

can be bounded by O(
√
N) < T ≤ O(N2/ log3N), referring to Table 3.1.

In Figure 3.13, we plotted ∆E,P (τ) and T = π/∆EP (τ) for N = 1024 with the

standard deviations of the data included as the error bars. We can see that the slope

of the energy gap and success probability (Figure 3.13(a) and 3.13(b)) maximizes in the

region of 2 < α < 4. The standard deviation is also larger in this region. The time

complexity T (Figure 3.13(c)) starts to increase sharply after α = 2. We can also see that

the quantities converges to the value for the simple square lattice (the blue dashed lines

in the plots) as α increases.

We have also obtained the critical αc for the LRP model with d = 1. The results

are shown in Figure 3.14(a) and 3.14(b). The plots of ∆Enorm and P (τ) shows the same

tendency as in the d = 2 case, where we see the intersecting point at α ≈ 1.3. It is

interesting that we could find that the critical αc actually exists, and their values are

slightly above the dimension of the underlying lattice, αc > d.

3.6.3 Average degree of the LRP model at the critical connec-

tivity

In this section, we discuss the structure and connectivity of the LRP model at αc, the

critical point where the optimal search is achieved. We will derive that the average degree

of the LRP model at αc scales as a constant, and compare our result with the case of the

spatial search on the Erdös-Rényi random graph.

Let us first compute the average degree of the LRP model with d = 2. We consider

how many long-range edges are actually added on the square lattice when the optimal

search was achieved. To compute the average degree (expectation value of the degree) of

node j, we sum up the edge existence probability function pij = |i− j|−α over all pair of

nodes as,

⟨kj⟩ =
N∑
i ̸=j

pij =
N∑
i ̸=j

|i− j|−α. (3.40)

We upper bound this sum by the integral of pij over a disk of radius
√

2N/2, which covers

the whole lattice. Replacing the Euclidean distance as r ≡ |i−j|, and writing the integral
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(a) (b)

(c)

Figure 3.13: (a) The energy gap ∆E, (b) success probability P (τ) and (c) total search time T = π/(∆EP )
plotted against α, on the d = 2 LRP model. The network size is N = 1024 for all plots. The data points
and their error bars are the average and standard deviation of the quantities obtained from 200 samples.
In each plot, the values computed from the complete graph and the two-dimensional square lattice is
indicated as the red solid line and the blue dashed line, respectively.
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Figure 3.14: (a) The normalized energy gap ∆E
√
N/2 = π

√
N/2τ and (b) the success probability P (τ)

plotted against α, on the d = 1 LRP model. The curves with different colours correspond to different
network sizes N . The data points represent the averaged values of 200 samples of computation, where
error bars are their standard deviation. The curves intersect at α ≈ 1.3 for both plots.

in polar coordinates, we can upper bound ⟨kj⟩ as

⟨kj⟩ < 4 +

∫ √
N/2

1

(
r−α
)
rdrdθ. (3.41)

We separated the contribution from r = 1 nodes into the first term of Eq. (3.41), since

the four nearest neighbour edges are generated with probability 1 in our setting. The

latter term counts the average number of long-range edges that are connected to node j.

When α ̸= 2, the integral can be solved as

⟨kj⟩ < 4 +

∫ √
N/2

1

(
r−α+1

)
drdθ (3.42)

= 4 + 2π

[
1

−α + 2
r−α+2

]√N/2

1

(3.43)

= 4 +
2π

−α + 2


(√

N

2

)−α+2

− 1

 . (3.44)
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When α = 2,

⟨kj⟩ < 4 +

∫ √
N/2

1

(
r−1
)
drdθ (3.45)

= 4 + 2π [log r]

√
N/2

1 (3.46)

= 4 + π (logN − log 2) . (3.47)

We can see from Eq. (3.44) that the leading term is N−α/2+1 when α ̸= 2, and from Eq.

(3.47) that the leading term is logN when α = 2. We are especially interested in the case

of α = αc ≈ 2.4, where we get from Eq. (3.44) as

⟨kj⟩ < 4 +
2π

α− 2

{
1 −

(
2

N

)α/2−1
}

(3.48)

= 4 + 5π

{
1 −

(
2

N

)0.2
}
. (3.49)

From this equation it is clear that the average degree grows with N , but slowly converges

to constant value as N → ∞.

The average degree for the LRP model with d = 1 can be straightforwardly computed

following the similar calculation as with d = 2. The average degree is upper bounded by

the integral,

⟨kj⟩ < 2 +

∫ N/2

1

(
r−α
)
dr, (3.50)

and we can show for α = αc ≈ 1.3, the average degree is

⟨kj⟩ < 2 +
2

α− 1

{
1 −

(
2

N

)α−1
}

(3.51)

= 2 +
20

3

{
1 −

(
2

N

)0.3
}
. (3.52)

The average degree again converges to a constant value.

This lets us conclude that O(
√
N) search time can be achieved on the d = 2 or d = 1

LRP model with a constant, or at least less than O(logN) average degree. To indicate

a specific value, the average degree calculated numerically by generating the LRP graph

with α = 2.4 and N = 1024 was ⟨kj⟩ = 13.5, which means 4 nearest neighbour edges plus
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9.5 long-range edges in average. Note that most of the long-range edges do not connect

far apart nodes going across the whole lattice.

The results also suggest that when one uses the LRP graph, independent of the choice

of d = 1 or d = 2, one can achieve the optimal search time of O(
√
N) with almost identical

scaling of average degree (just a constant factor difference between d = 1 and d = 2).

However, if we take into account the length of the edges, d = 1 will have more chance to

generate long-distance edges than d = 2, since the probability of generating an edge of

length r is proportional to r−α.

It is interesting to compare our results with the case of Erdös-Rényi random graph.

The spatial search by continuous-time quantum walk on the Erdös-Rényi random graph

has been analyzed by Chakraborty et al. [44]. This graph model corresponds to the case

where we set the edge generation probability pij to a function independent of the Euclidean

distance between the nodes. In [44], it was shown that optimal search is achieved as long

as pij ≥ pc = (log3/2N)/N . This tells us that the average degree of the graph at pij = pc

is ⟨kj⟩ = pc(N − 1) = (log3/2N)(N − 1)/N ≈ log3/2N . In contrast, we got a result that

on the LRP model, one can achieve optimal search with an average degree converging to

constant. Therefore, in principle, the LRP model requires less amount of edges (i.e. less

connectivity) in average than the Erdös-Rényi random graph in order to achieve optimal

search. This is an interesting observation, as the LRP model is a model that has constraint

by the Euclidean distance between the node, while the Erdös-Rényi random graph has

no such constraint, and connects any pair of nodes with equal probability. In terms of

graph measures, such difference of the models results the the difference in the clustering

coefficient of the graphs. See Figure 3.15(a) which compares how the average clustering

coefficient changes depending on the average degree of the two graphs. The LRP model

has a high clustering coefficient, resulting from the fact that the model generates edges

densely in local regions.

This comparison suggests that quantum search is more efficient when the quantum

walker explores the space within some local space densely, rather than exploring the entire

space sparsely. We can assume that when the quantum walker hops around in a local

region, it has more chance to come back to its initial node and cause more interference with

itself. As the interference of the complex amplitudes is the key feature of the quantum

search algorithm, the more interference of the quantum walker leads to a efficient spatial

search algorithm.

85



3.7. SPATIAL SEARCH ON THE SCALE-FREE NETWORK

Figure 3.15: Average clustering coefficient of the LRP model. (a) Comparison between the d = 2 LRP
model (blue dots) and the ER graph (red dots), plotted against the average degree of each graph. The
quantities are computed from networks of size N = 1024. (b) The average clustering coefficient of the
d = 2 LRP model, plotted against α. Interestingly, there is a local maximum around α = 3.5.

We also point out that when d < α < 2d, the LRP model has a diameter of logδN/d,

where δ−1 = log2(2d/α), which was derived by Biskup [57]. This means that the graph has

a small-world property in this region of α, a common and important feature of real-world

networks. Essentially, the small-world property in this context means that the long-range

edges added on the lattice creates shortcuts, such that one can reach from one node to

another in small (order of logN) number of steps. A simple lattice (α → ∞) is not

small-world as the diameter is the order of N1/d. It is clear that the fact that the graph

has small-world property is helping to speed up the search.

3.7 Spatial search on the Scale-free network

In this section we will present our results on the time complexity of the spatial search

algorithm on the Bollobás scale-free network. First we will introduce the definition and

the network generation process of the Bollobás scale-free network. Next we will show how

the spatial search algorithm behaves of such network, by considering the distribution and

the scaling of the search time. After that, we will present some results on the relations

between the network measures of the Bollobás scale-free network and the search time.
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3.7.1 Definition of the Bollobás scale-free network

Here, we will describe how the generation process of the Bollobás scale-free network. We

are following the process defined by Bollobas [52, 53], and the explanation is based on

such definitions.

The process of generating the network with N nodes is as follows. At the initial time

step u = 1, the network G{u=1} starts with a single node v′1 with one edge connecting

to itself. At every subsequent time step u ≥ 2, one node v′u having one outgoing edge

is added into G{u−1} and connects to one of the nodes in G{u} with its outgoing edge.

Defining the degree of node v′i at time u as du(v′i), the node to connect to is chosen by

the following probability distribution [52]

Pr(i = s) =

du−1(v
′
s)/(2u− 1) 1 ≤ s ≤ u− 1

1/(2u− 1) s = u.
(3.53)

This means that the probability for a node to be chosen is proportional to its degree,

which resembles the “preferential attachment”. After repeating the above process until a

cetain time step u = m (m ∈ N), the set of nodes v′1, v
′
2, · · · , v′m forms a single node v1.

The edges that were connecting the nodes within the set is converted to m self loops on

v1. The process of adding new nodes v′u is continued until time step u = 2m, and again

the the set of nodes v′m+1, · · · , v′2m forms another node v2. If m′ ≤ m nodes in the set of

nodes v′m+1, · · · , v′2m are connected to v1, they are converted to m′ edges between v1 and

v2. Following the rule described above, the process is repeated until time step uend = mN ,

which results as a network G{mN} with N nodes and mN edges. The obtained network

has a power law degree distribution P (k) ∝ k−β with exponent β = 3 [52]. In order to

change the value of β, we use the method introduced by Dorogovtsev et. al [58].

A more friendly word that would summarize the process above is, the richer gets richer.

In this model, a node and an edge is added one by one to the network until the number of

nodes reaches N . The node who existed earlier in the network will have higher probability

to acquire the edge due to the probability function Eq. (3.53), which tells that the nodes

who already have more edges than the others will have higher probability to get the new

edge. Therefore, a large number of edges will concentrate on the few nodes that existed

early in the generation process, while most other nodes will have limited number of edges.

From the construction described above, we have three control parameters when gen-

erating the network; the total number of nodes N , the parameter which controls the
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connectivity of the network m, and the degree distribution exponent β. The average

degree of the network is 2m, while the minimum degree is m and the largest degree is

∼ N1/(β−1). Note that we allow self loops and parallel edges between nodes in our network

in order to keep consistency, that is to fix the total number of edges to mN for every trial

of generating G{mN}. When converting G{mN} to the adjacency matrix A, the number of

self loops or parallel edges contributes to the weight of the diagonal or the off-diagonal

entries of A, respectively. The degree distribution and visualization of an instance of

G{mN} is shown in Figure 3.16.

Figure 3.16: Plot of the degree distribution of the Bollobás model. One instance of the network with
size N = 10000 and minimum degree m = 5 is generated, and the degree distribution was fit to a
power law function with P (k) ∝ k−2.9. The inset is a visualization of the network with parameters
N = 200, m = 2, β = 3.

The Bollobás scale-free network is one of the simplest mathematical model that gen-

erates a complex network with power-law degree distribution. The generated network

has no high clustering coefficient, community structure, or a self-similar structure, which

suggests that the connections are mostly random besides there are large degree hub nodes,

which makes crucial difference against the Erdös-Rényi random graph. We choose such

model to concentrate the analysis on how the power-law degree distribution affects the

spatial search.
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3.7.2 The distribution and the scaling of the search time

Now let us describe the results on the time complexity of the spatial algorithm on the

Bollobás scale-free network. The search Hamiltonian we use is

Hs = −γAsf (m,β) − |w⟩⟨w|, (3.54)

where Asf (m,β) is the adjacency matrix of the Bollobás scale-free network which depends

on the parameter m and β. As the graph is generated by a stochastic process, the graph

will not be exactly same at each trial of the generation. Therefore, we computed 1000

samples of networks at with a fixed m and β, chose randomly at least 400 nodes as the

marked node w for each sample, and computed the time complexity of the spatial search

algorithm. For each realization of the network, we follow the numerical analysis described

in Section 3.5.4 to optimize γ, compute τ and P (τ).

When P (τ) is computed, we choose the initial state of the time evolution as a state

where the quantum walker is fully localized on the largest degree node. We label this

state as |ψ(0)⟩ = |hub⟩. This is a initial state very different from the states usually

used in spatial search algorithms in other graphs, which is the uniform superposition

state |s⟩ =
∑N

i=1 |i⟩/
√
N . The reason for this can be understood by analyzing |λ1⟩,

the leading eigenvector of Asf . In Figure 3.17, we have plotted each components cw of

|λ1⟩ =
∑N

w=1 cw|w⟩, and the squared overlap between the eigenvector and the initial state

|⟨hub|λ1⟩|2 in the inset. It is clear that |λ1⟩ is localized around some nodes, which are

the large degree nodes. It has a dominantly large component on node 1, which is the

largest degree hub node. On the preferential attachment network, it was shown by Goh et

al. [59] that the components of |λ1⟩ is localized on the largest degree node, and ci varies

from 1/
√

2 to 1/(2
√
N). Our plot confirms this result by Goh et al.. We can see from the

inset that |⟨hub|λ1⟩|2 does not decrease as N increases, and tends to converge to a value

below 0.5. Therefore, we can conclude that our the localized state |hub⟩ has a substantial

overlap with the leading eigenvector, and it is a good state to choose as the initial state

of the dynamics.

Recalling Eq. (3.36), we derived that τ and P (τ) depend on the index of the marked

node w, when |λ1⟩ is not uniform. Therefore we need to take into account which node

in the network was marked when evaluating the search. To this end, we first analyze

and show the distribution of the search time T = τ/P (τ). We get the distribution by
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Figure 3.17: Plot of all of the components of the leading eigenvector |λ1⟩ of Bollobás model with network
parameters N = 1000, m = 10, β = 3. We can see that the components are strongly localized around
w = 1, which is the largest degree hub node. The inset shows the square of the component on the hub
|⟨hub|λ1⟩|2, plotted against the network size N . |⟨hub|λ1⟩|2 tends to converge to a value close to 0.5 as
the network size increases.

generating multiple samples of the Bollobás model with a fixed {N,m, β}, for each network

repetitively mark a random node, find γopt and compute T , and finally take the histogram

of T . We have excluded the largest degree hub node when randomly marking a node,

since we initialize the quantum walker on that node. Figure 3.18 shows the distribution

for three different values of β = 2.5, 3, 3.5, with fixed N = 10000 and m = 10. Note that

the distribution is taken in logarithmic scale. The main feature in this distribution is that

they have multiple peaks, meaning that there are classes of nodes that can be searched

faster or slower than each other. A good fit to the distributions was a sum of log-normal

functions in the form of

f(T ) =
∑
i

pig(T ;µi, σi), (3.55)

where

g(T ;µ, σ) =
1√

2πσT
exp

(
(lnT − µ)2

2σ2

)
. (3.56)

Therefore the distribution f(T ) is characterized by the mean values µi, standard de-

viations σi and the mixing parameters pi (constraint such that
∑

i pi = 1). For the
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(a) (b)

(c) (d)

Figure 3.18: Distributions of the search time T on the Bollobás model. The data is obtained from 1000
instances of the Bollobás model with network size N = 104 and minimum degree m = 10, as well as
randomly marking different nodes in the network. Plots from (a) to (c) corresponds to networks with
different degree distribution exponents, (a) β = 2.5, (b) β = 3, and (c) β = 3.5. Plot (d) corresponds to
the search time distribution of the LRP model as a comparison. The distribution tells us that the search
time is 1 ∼ 2 orders of magnitude different depending on which node in the network is marked. The
distribution from (a) to (c) is fit to a sum of log-normal function defined as Eq (3.55).

distributions with β = 2.5 and β = 3 we take up to i = 4, and for β = 3.5 we take up to

i = 3.

We understand that this multi-mode log-normal distribution results from the com-

bination of randomness of the network and the effect of the hub node. When we take

a distribution of the search time on the Erdös-Rényi random graph, or the LRP model

we see a single-mode log-normal distribution (see Figure 3.18(d)). Likewise, the connec-
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tions of the nodes in the Bollobás model is mostly random, meaning that there are no

characteristic structures such as communities or self-similarity, except the overall degree

distribution follows a power law. However, this power law degree distribution, or the

existence of the large degree hub node heavily influences the nodes around it, leading to

the multi-mode distribution. In fact, we find that the narrower modes µ3 and µ4 (and µ2

for β = 2.5) corresponds to the nodes that are directly connected to the largest degree

hub. We will discuss this further in the next section.

Next we evaluate the scaling of the parameters µi, σi, pi by examining their dependence

on N , specifically by fitting to the function ∝ N ξ. The obtained scaling exponents ξ are

shown in Table 3.2, as well as the plots of µi versus N are shown in Figure 3.19. We

find two features in our results. First, for all β, µ1 has ξ > 0.5 while µi≥2 has ξ < 0.5.

As ξ = 0.5 is the best known scaling of the spatial search algorithm, the scaling of µi≥2

being ξ < 0.5 has to be interpreted carefully, and we are not claiming here that a spatial

search faster than T ∝ N0.5 can be achieved. The search time evaluated here is the case

when the measurement of the quantum walker is done at the exact optimal time τ when

the probability P (τ) maximizes. In order to know the optimal time, one needs to know

in prior the properties of the marked node, or at least know that the node is in one the

modes of µi≥2 in order to make a reasonable guess of the measurement time. Therefore,

our result does not mean a search faster than N0.5 can be achieved for some nodes in the

Table 3.2: Exponent ξ of each parameters of the search time distribution fit to ∝ N ξ.
Obtained from networks with N = 2000 ∼ 10000, m = 10 and β = 2.5, 3, 3.5. const.
represents that the quantity is independent of N .

β = 2.5 β = 3 β = 3.5
µ1 0.731 ± 0.021 0.620 ± 0.024 0.681 ± 0.032
µ2 0.295 ± 0.010 0.254 ± 0.040 0.256 ± 0.027
µ3 0.253 ± 0.009 0.194 ± 0.014 0.172 ± 0.014
µ4 0.240 ± 0.006 0.155 ± 0.012 N/A
σ1 0.147 ± 0.026 0.180 ± 0.032 0.155 ± 0.029
σ2 −0.013 ± 0.005 −0.133 ± 0.035 const.
σ3 const. −0.016 ± 0.004 const.
σ4 const. const. N/A
p1 0.213 ± 0.018 0.211 ± 0.022 0.112 ± 0.030
p2 −0.132 ± 0.034 −1.65 ± 0.54 −0.942 ± 0.096
p3 −0.478 ± 0.043 −0.423 ± 0.061 −0.613 ± 0.057
p4 −0.847 ± 0.055 −0.920 ± 0.086 N/A
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(a) (b)

(c)

Figure 3.19: Scaling of the search time on the Bollobás model. The search time T is plotted against
the network size N , while the minimum degree is fixed to m = 10. The three figures corresponds to
different degree distribution exponents, (a) β = 2.5, (b) β = 3, and (c) β = 3.5. Each data labels
µ1, · · · , µ4 corresponds to the average values of the search time distribution fit to the multi-mode log-
normal function Eq. (3.55). The black solid line of N0.5 is drawn as a reference to compare with the
optimal search time.
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network, but rather means the quantum walker can be localized to those nodes quickly.

The second feature in our result is the agreement between the scaling of pi and the

property of the network. From Table 3.2, we see that pi≥2 decays as N grows. This

corresponds to the decay of the fraction of nodes those are neighbours the largest hub

node, N1/(β−1)/N . The result suggests that the modes µi≥2 corresponds to the nodes those

are neighbouring to the hub, or the nodes heavily influenced by the hub. This argument

is also supported by the change of the distributions depending on β (see Figure 3.18). As

β increases, edges will be less concentrated on the large degree nodes, letting the network

to become closer to a random graph. This effect is observed as the shrinking of the µi≥2

modes when β increases. We note that these scaling obtained from numerical simulations

are only guaranteed for N = 2000 ∼ 10000, the region where we executed the simulations.

As a conclusion of this section, the distribution of the search time T obtained by

marking different nodes in the network strictly reflects the structure of the network; the

combination randomness and scale-free property (i.e. existence of the hub) leads to a

multi-mode log-normal distribution of T . The existence of the hub allows the quantum

walker to localize on nodes that are neighbours of the hub especially fast.

3.7.3 Correlations with network measures

In this section, we interpret the search time T and the dynamics of the spatial search by

investigating some centrality measures of the network. This will bridge the knowledge in

complex network science and quantum dynamics. We investigate the correlation between

the search time and six different centrality measures: degree centrality, eigenvector cen-

trality [60], closeness centrality [61], betweenness centrality [62], random walk closeness

centrality [63] and random walk betweenness centrality [64]. The essential result we show

here is that the search time is dependent on how close the marked node is to all other

node in the network, in terms of shortest path distances.

The scatter plots where the search time T is plotted against different centrality mea-

sures are shown in Figure 3.20. Here we used one instance of the Bollobás scale-free

network with parameters N = 2000,m = 5, β = 3, and computed T for every single node

except the hub.. Figure 3.20(a) shows the case of degree centrality Cd
w =

∑N
j Awj/(N−1),

which measures the fraction of nodes that are connected to the node w. This plot tells

that when the marked node has large degree, the quantum walker will likely to be lo-

calized on that node quickly, but if the node has low degree, the search time is almost
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Figure 3.20: The correlation between the search time T and six different network centrality measures.
The data is obtained from a network with N = 2000,m = 5, β = 3. The definition of each centrality
measures are defined in the main text of this section. The data points are coloured according to the
shortest path distance between the hub and the marked node lhub,w, as well as the number of parallel
edges between the hub and the marked node ew. The clustering of the data points of different colours
tells us that the search time tends to be faster as the marked node is closer to the hub. The value r in
each plots represents the Pearson correlation coefficient. The best correlation is found in the eigenvector
centrality (b), followed by the closeness centrality (c). In panel (a), the classical search time, namely the
mean first passage time H(hub, w), is also plotted.

95



3.7. SPATIAL SEARCH ON THE SCALE-FREE NETWORK

independent of the degree. This feature is quite different from the case of classical random

walk, where the difference can be seen by comparing with the mean first passage time

H(hub, w) computed numerically and plotted in the same figure. The mean first passage

time H(i, j) is defined as the average time for the classical random walker to visit node

j for the first time, starting the walk from node i. We can interpret H(hub, w) as the

average time to search the marked node by starting the classical random walk from the

hub node. From Figure 3.20(a), we can confirm that the time it takes to search a node

using random walk is proportional to its degree, which was also confirmed in [65], as well

as revealing that the search using quantum walk clearly shows a different feature. The

result also shows indicates that typically on the Bollobaá network, the quantum search

is faster than searching by classical random walk, although there are some purple data

points exceeding the classical search time.

Figure 3.20(b) shows the case of eigenvector centrality Ce
w = |⟨λ1|w⟩|, which is a

centrality measure based on the leading eigenvector of the adjacency matrix. The plot

shows a high correlation as expected from Eq. (3.36). We also see a good correlation in

Figure 3.20(c) which shows the case of closeness centrality Cc
w = (N−1)/

∑N−1
j ̸=w lwj where

lwj is the shortest path distance between nodes w and j. This measure represents how

fast one can move from the node w to all other nodes using the shortest paths.

Figure 3.20(d) shows the betweenness centrality Cb
w =

∑
i ̸=w ̸=j σij(w)/σij, where σij

is the number of shortest paths from node i to j, and σij(w) is the number of shortest

paths that goes through node w among them. The random walk closeness centrality

Crc
w = N/

∑
j H(j, w) in Figure 3.20(e) is an alternative measure of the closeness centrality,

where path lengths between nodes are measured based on the random walk process. The

random walk betweenness centrality Crb
w in Figure 3.20(f) is an alternative measure of

betweenness centrality, where instead of counting only shortest paths, all paths contribute

to the measure with a certain weight. All three of these measures are correlated with the

search time in a similar way as the degree centrality.

The results presented in Figure 3.20 tells us that the quantum walk or the spatial

search is a dynamics relying on the shortest paths of the network, unlike classical random

walk. In the case of classical random walk, the walker chooses one neighbour randomly

at each time step, and thus it is natural to understand that a node having larger degree

will have higher probability to receive the walker, leading to shorter time of the search.

In contrast, since the quantum walker spreads to all of the neighbours as a superposition
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state, the length of shortest paths between the nodes determines the time for the complex

amplitudes to reach from a node to another, rather than the degrees. As indicated by the

high correlation to the closeness centrality Cc
w, if the marked node w is averagely close to

all other nodes (i.e. has high Cc
w), the quantum walker can localize on that node faster

since the complex amplitudes of the quantum walker can be collected from the whole

network with a shorter time.

The importance of the distances is emphasized by distinguishing the data points in

Figure 3.20 based on the shortest path distances between the hub node and the marked

node (see the legend of the figure). The data is well clustered depending on lhub,w. Espe-

cially when the marked node is adjacent to the hub (lhub,w = 1), these nodes have small

shortest path distances with the other nodes by going through the hub, leading to the

shortness of T .

We also examined the how the scaling of the search time T ∝ Nα depends on the

distance between the hub and the marked node lhub,w. We computed multiple samples

of Tw from network with parameters N = 2000 ∼ 10000,m = 5, β = 3 and took the

averaged of Tw for each lhub,w. The obtained scaling α is shown in Table 3.3. Although

we get large standard deviations of Tw since the factor determining the search time is not

only lhub,w, the scaling α roughly increases linearly as lhub,w grows. We assume this comes

from the ballistic spread of the quantum walker.

Table 3.3: Exponent α of the average search time T ∝ Nα for nodes with different
distances from the hub lhub,w. Networks with parameters N = 2000 ∼ 10000, m = 5,
β = 3 are used to obtain α.

lhub,w 1 2 3

α 0.120 ± 0.019 0.638 ± 0.122 1.127 ± 0.205

Note that the especially short T when the marked node is adjacent to the hub is not

due to the localized initial state of the quantum walker. The quantum walker does not

instantaneously hop from the hub to the marked node, but instead has to traverse the

entire network and acquire some phase to localize on the marked node. In fact, from Eq.

(3.36) we can see that the optimal evolution time τ = π/∆E is independent of the initial

state. The initial state determines the fraction of the complex amplitude that stays in the

two-dimensional subspace spanned by |E0⟩ and |E1⟩, and thus only affects the maximum

success probability P (τ).
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Although the high correlation between the search time and the eigenvector centrality

is expected from Eq. (3.36), there are small corrections from the factor |⟨w|w̃⟩|, which

is essentially the success probability P . In our results, we did not see a particularly

high correlation between the centrality measures and P . The best correlation we could

observe was with the eigenvector centrality, with correlation coefficient r = 0.363. The

distribution of the success probability taken over different nodes of the network is plotted

in Figure 3.21, where we observe a single mode distribution peaked around 0.4.

Figure 3.21: Distribution of the success probability P (τ) = |⟨w|ψ(τ)⟩|2, with network parameters N =
104, m = 10 and β = 3. The distribution is peaked around 0.4, with a long tail on the lower values.
The distribution suggests that there are some nodes who are very hard to localize (i.e. very low success
probability), but as we did not find a clear correlation between P and the six correlation measures
investigated in this Section, we could not make a conclusion about nodes having what kind of properties
are very hard to localize.

3.7.4 Limitation of the search algorithm on complex networks

and translation to a state transfer protocol

As we have shown in the previous sections that the search time T is actually different

depending on which node in the network is marked. This means that τ is different

depending on the marked node, and thus the optimal measurement time will be different.

This leads to a limitation when actually performing the search, because one will need the

information of the marked in in prior to performing the search algorithm. This actually

breaks the rule of the search problem, as the one who aims to search for the marked
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node must not have any information about the marked node before using the search

Hamiltonian.

However, we can think of some strategies to overcome this limitation. One is to

give restriction on which node to mark. If we restrict to choose the marked node from

the subset of nodes in the individual modes µi, we can make a reasonable guess of the

measurement time τ . This essentially restricts the space of the search.

Another strategy we can consider is to adjust the network parameters so that τ of

different modes are in harmonics. See Figure 3.22 for the conceptual explanation. For

example, let’s focus on the dominant modes τ1 and τ3 in the distribution. If we can adjust

the network parameters m and β and get τ1 = (2n − 1)τ3 where n = 1, 2, . . . , we can

measure at the time τ3 at which the oscillation of P (t) corresponding to the τ1 mode is

also maximized. Such adjustment is possible, as τ1 and τ3 can be changed by adjusting m.

See Figure 3.23, where we plotted the relation between τ1,3 and m, with other parameters

fixed at N = 104 and β = 3.

Figure 3.22: Measuring the final state at harmonic times to overcome the difference of the optimal
measurement time τ . The left panel shows the distribution of the optimal measurement time of the search
algorithm τ in logarithmic scale. As we have seen in Figure 3.18 that the search time T = τ/P follows a
multi-mode log-normal distribution, we see here that τ is also following a very similar distribution. The
right panel shows the schematic explanation of choosing the measurement time at τ1 = 9τ3, the moment
where the success probability P (t) maximizes for both modes.

One application of the spatial search algorithm on the Bollobás scale-free network is

to translate the algorithm into a state transfer protocol. A state transfer protocol is a

task to transfer a state, usually an arbitrary qubit state |ϕ⟩ = a| ↑⟩ + b| ↓⟩, between two

points in the Hilbert space with high fidelity. We can assume that the quantum walker has

a spin-1/2 internal degrees of freedom, and the internal degree of freedom is untouched

during the time evolution on the network. If we prepare the quantum walker localized on
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Figure 3.23: Logarithm of the optimal measurement time (the peaks τ1 and τ3 of the modes shown in
Figure 3.22 left panel) plotted against the minimum degree of the Bollobás network m. The network size
and the degree distribution exponent is fixed to N = 104 and β = 3, respectively. We can see that the
optimal measurement time of the two modes approach closer to each other as m is increased, indicating
the merging of the two modes. As the average degree of the network is 2m, increasing m will increase
the connectivity of the network.

the hub node, decide the target node w where to transfer the state, and then adjust the

parameters of the Hamiltonian Hs = −γAsf − ϵw|w⟩⟨w| in the same way we perform the

search algorithm, we can obtain the spin state at node w after time τ with probability

P (τ). Such protocol is useful as a short range quantum data bus in quantum computation

or communication settings.
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3.8 Conclusions and discussions

In this chapter, we have analyzed the spatial search algorithm by continuous-time quan-

tum walk on two types of complex networks, the long-range percolation (LRP) model and

the Bollobás scale-free network. We initially introduced the classical and quantum search

problem in a computer science perspective, and introduced the Grover’s algorithm, the

first quantum algorithm that runs on a quantum computer that solves the unstructured

search problem in time O(
√
N). We next introduced the spatial search algorithm as the

physically restricted version of the Grover’s algorithm. We reviewed the literature by

discussing the different challenges on the field, explained the aim of our analysis based on

such background. The brief summary of our aim was to analyze how the spatial search

algorithm behaves on complex networks, and explore whether we can see novel features

of the algorithm or find usefulness of quantum complex networks.

Next we began our analysis by starting from the basic calculation of the spatial search

algorithm on the complete graph. The calculation was extended to the case for searching

on arbitrary graphs, and we derived some relation between the eigenspace structure of the

graph’s adjacency matrix and the time complexity of the spatial search algorithm. The

explanation of our numerical calculation method to analyze the spatial search algorithm

followed. Next we moved on to our actual analysis and results of the spatial search

algorithm on the LRP model and the Bollobás scale-free network. The novel results from

our analysis can be summarized as follows.

1. On the LRP model, there is a threshold connectivity of the graph where the

search time switches from optimal to non-optimal. We have found that on the

LRP model with lattice dimensions d = 1, 2, there is a clear threshold connectivity, indi-

cated by the exponent α = αc, where the time complexity of the search algorithm switches

from O(
√
N) when α ≤ αc, to a slower time complexity O(

√
N) < T ≤ O(N2/ log3N).

The average degree of the graph converges to a constant as N → ∞. The existence of

αc was non-trivial and such finding of αc provides an interesting perspective to find the

general optimal condition of the spatial search algorithms. The result of αc also indicates

that the structure of the eigenspace of the LRP model changes at αc, which is also a novel

result.
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2. Having locally dense connections in the graph leads to efficient speedup of

the search. The characteristic of the LRP model is in its definition of the edge genera-

tion probability function, pij = |i− j|−α, where |i− j| is the Euclidean distance between

pair of nodes i, j. This rule allows the model to generate edges with relatively short length,

while limiting the chance to generate edges bridging large distance of the lattice to be low.

Therefore, edges are rather locally concentrated around each nodes. We have compared

our result against the case of the Erdös-Rényi random graph which generates edges of

any length with equal probability, and found that the LRP model requires less resource

(less number of edges in the large N region) to achieve optimal search. Interestingly, this

result suggests that having dense connections locally is a resource efficient way to achieve

optimal search rather than globally connecting random nodes.

3. The search time depends on the shortest path distances between the marked

node and the rest of the nodes in the network. From the analysis on the Bollobás

scale-free network, we have found there is a high correlation between the search time and

the closeness centrality of the marked node. The closeness centrality of a node is a network

measure which represents how much the node is close to all other nodes using the shortest

paths between the nodes. Results tell us that the more the node having high closeness

centrality, the more the node can be searched faster. This was purely a representation

of quantum effect, which we confirmed by examining the difference with the classical

random walk on the same network. The mean first passage time of the classical random

walk was proportional to the degree of the node, rather than the closeness centrality. This

observation could not have been possible if we have used regular graphs, since such graphs

will have identical centrality for all nodes.

4. Randomness of the connections in the network leads to a log-normal dis-

tribution of the search time We have analyzed the distribution of the search time

in a network, by repetitively marking different nodes in the network and computing the

search time. From the LRP model, we obtained a single log-normal distribution, while

from the Bollobás scale-free network we obtained a multimode log-normal distribution.

We understood that the log-normal distribution appears due to the randomness of the

networks. The scale-free network showed a multimode distribution due to the existence

of the dominant hub node. To the best of our knowledge, the distribution of the search

time was never examined before on any graphs (although statistical analysis of graphs are
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common strategy, such as measuring the distribution of eigenvalues), and we were able

to discuss an interesting relation between the structure of the network and the quantum

search.

5. Using networks whose leading eigenvector is localized, one can perform the

search algorithm from a localized initial state We have shown that the leading

eigenvector of the Bollobás scale-free network was a localized state around the hub node.

This led to the availability to perform the spatial search algorithm from an initial state

fully localized on the hub node. This can be helpful for experimental implementations of

the algorithm, since preparing a superposition state with a carefully manipulated relative

phase [66]. We can generally say that using a Hamiltonian whose leading eigenvector is a

localized state, one can perform the search from a localized initial state. A star graph is

another good instance of this.

We can conclude that the two complex network models we have analyzed is useful

to perform the spatial search algorithm, as we can achieve the search algorithm faster

than the classical algorithm. Although there are limitations in the case of Bollobás scale-

free network as the optimal measurement time is different depending on which mode of

the distribution the marked node belongs to. Nevertheless, it is possible to overcome

such limitation with an constant factor overhead in the time complexity, if we adjust the

network parameters so that the optimal measurement time of the different modes are

in harmonics. Finally, it is also important that the network structure in these complex

networks can be noisy in a sense that each of the edge does not need to be in a fixed

position, and only the statistical property of the network is important.
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Chapter 4

Simulation of complex quantum

networks using driven quantum

systems

4.1 Simulating complex network structures with ef-

fective Floquet Hamiltonians

In the previous chapter, we have shown that complex quantum networks are useful for

quantum search algorithm, and from these networks one can see fruitful dynamics corre-

lated with the network structure that cannot be observed from regular or lattice struc-

tures. Now the problem comes down to how to actually engineer such complex quantum

networks. The system needs to contain complex, non-regular and long-range transitions

between states in the Hilbert space. As we reviewed in the Chapter 1, the technologies to

manipulate and generate interactions between multiple single qubit systems are becom-

ing available in the labs. Few body systems with network-like, non-regular interaction

structures may be available using these technologies. However, this approach may come

to a bottleneck when we want to scale up the system to actually get a large-scale complex

network structure. Also, manipulating the interactions spatially can have limitations. For

example, superconducting qubits are usually placed on a planar two-dimensional surface,

limiting the ability to couple qubits those are spatially far apart.

In this chapter we present a strategy to simulate complex quantum networks using

driven quantum systems. We will use the term simulate rather than engineer, as we
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are going to create an effectively complex transition between the states via the effective

Hamiltonian of a time-periodic Floquet system, rather than engineering spatially complex

interactions. Based on Floquet theory, we look at the periodic times of the dynamics

generated by the time-periodic Hamiltonian H(t+ T ) = H(t), such that

U(T ; 0) = T exp

(
−i
∫ T

0

H(τ)dτ/ℏ
)

= exp(−iHeffT/ℏ), (4.1)

where T is the time ordering operator. Heff is the effective Hamiltonian where we find the

complex quantum network. Heff contains the effective transitions during one period of

the time evolution by H(t). As we will see in the two examples analyzed in the following

sections, Heff can have transition structures which has the properties of random graphs or

scale-free networks, when the system is driven with certain conditions. This is shown by

computing the matrix representation of Heff and viewing this as the adjacency matrix of a

network. The method of such analysis can be found in Sections 2.4 and 2.9 of Chapter 2.

The specific physical systems analyzed here to simulate the complex quantum networks

are the coupled optical waveguides and the time crystalline system. Some experimental

schemes for such systems are also shown to discuss the possibility of future experimental

realizations.

4.2 Simulating random networks with periodically

modulated optical waveguides

The first example we propose to simulate complex quantum networks is a photonic sys-

tem where photons propagate through an array of coupled optical waveguides. We will

show theoretically that by modulating the coupling constants between the waveguides

periodically in the propagation direction, this can be analyzed as a time-periodic Hamil-

tonian system. We analyze the corresponding system Hamiltonian using Floquet theory,

and show that the derived effective time-independent Hamiltonian will have a structure

similar to random graphs, when displayed in the tight-binding Hamiltonian matrix form.

To start the discussion, we will first consider a simple case where one photon propagates

through N statically coupled waveguides. This corresponds to a unitary time evolu-

tion generated by a N -dimensional time-independent tight-binding Hamiltonian with it’s

transition structure equal to the coupling constants between the waveguides. Next we
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will consider a case where two photons propagate through the same N statically cou-

pled waveguides, and show that his corresponds to a unitary time evolution generated

by a N(N + 1)/2-dimensional tight-binding Hamiltonian. Finally we add a drive to the

Hamiltonian by designing a periodically modulated waveguide array.

4.2.1 Single or two-photon state propagating through an cou-

pled waveguide array

First we introduce and define the quantum system we consider. We assume a system

composed of optical waveguides. A optical waveguide is a narrow (order of microns to sub-

microns) dielectric material whose refractive index is higher than the surrounding material.

When photons or classical laser is input to a waveguide, the light propagates through the

waveguide due to the total internal reflection. The loss of light during the propagation

is very low in a ideal waveguide, allowing to characterize the system as closed coherent

dynamics. Such device is typically fabricated by focusing a femtosecond pulse laser in

a silica glass medium which writes the waveguide structure. This utilizes the property

of the silica with germanium atoms doped, which changes it’s refractive index when an

ultraviolet pulse is focused. See [67, 68] for a review. When two waveguides are placed

next to each other orthogonal to the propagation direction, the light can tunnel through

between the waveguides. Such waveguides are stated as coupled waveguides. The origin

of the tunneling of light is the evanescent field that propagates outside the waveguide,

which decays exponentially after propagating for a distance about the wavelength of the

light. Therefore, the waveguides are strongly coupled when they are as close as the order

of the light wavelength.

Let’s consider the situation where a single mode photon propagates through an array

of N coupled waveguides. The Hamiltoinan of the system can be written as

Hwg =
N∑
i

Diâ
†
i âi +

N∑
i,j

Cij â
†
i âj. (4.2)

Here âi and â†i are the annihilation and creation operator of mode i (equivalently annihi-

lates/creates one photon in the propagation mode of waveguide i). Di is the propagation

constant and Ci,j is the coupling constant between waveguides i and j. As the system

can be considered as a closed system, the dynamics is unitary with the time evolution
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operator given by U(t) = exp(−iHwgt/ℏ).

First we consider a case where a single photon, initially injected into waveguide i,

propagates through the waveguide, which can be described by the time evolution of the

creation operator â†i . To obtain time evolution of â†i , we consider the Heisenberg equation

of motion,

∂â†i
∂z

=
n

c

∂â†i
∂t

= i
[
Hwg, â

†
i

]
= iDiâ

†
i + i

N∑
j

Cij â
†
j, (4.3)

where we used commutation relation of bosonic operators [ai, a
†
j] = aia

†
j − a†jai = δij and

[a†i , a
†
j] = [ai, aj] = 0 to obtain the final expression. We also used the phase velocity of the

light c/n = ∂z/∂t, where c is the speed of the light in vacuum, n is the effective refractive

index of the waveguides, z is the position of the photon in the propagation direction and

t is the time. Note that evolution of the photon along the spatial direction z corresponds

to the time evolution of the system. The solution of the equation is

â†i (z) =
N∑
j

(eizC)ij â
†
j(0) =

N∑
j

Uij â
†
j(0). (4.4)

Here, the coupling constants Cij can be viewed as the matrix elements of a N × N

symmetric matrix C. The diagonal entries of C is equal to the propagation constant

Cii = Di. Uij is the matrix elements of the unitary matrix eizC . Importantly, from Eq.

(4.4), the matrix −C is equivalent to a tight-binding Hamiltonian,

Htb = −C = −
N∑
i

Di|i⟩⟨i| −
N∑
i ̸=j

Cij(|i⟩⟨j| + |j⟩⟨i|). (4.5)

The basis states {|i⟩} corresponds to the single photon Fock states {|1⟩i}.

Next we consider a case where two indistinguishable photons propagate through the

waveguide array. To obtain the propagation of two photons initially injected into waveg-

uides i and j, we use Eq. (4.3) while replacing â†i by â†i â
†
j, which yields to

∂â†i â
†
j

∂z
= i
[
Hwg, â

†
i â

†
j

]
. (4.6)

For simplicity, if we consider the waveguides are coupled in a one dimensional chain with
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Figure 4.1: Graphical representation of the (a) single and (b) two-photon subspace of Eq. (4.2). The
waveguide array is assumed to be in a one-dimensional nearest-neighbour coupled configuration of N = 11
waveguides. The dimension of the single-photon and two-photon subspaces are N = 11 and Nb =
N(N + 1)/2 = 66, respectively. The black and red coloured edges between the nodes corresponds to
different coupling strength of the modes. (c) is the tight-binding Hamiltonian matrix plot of Eq. (4.8),
which corresponds to the subspace in panel (b). By assuming a periodically modulated waveguide array
introduced in Section 4.2.2, we simulate a periodic drive on the couplings as indicated in the box below
(c).

uniform coupling constants C0, we get

∂â†i â
†
j

∂z
= i(Di +Dj)â

†
i â

†
j + iC0

[
â†i â

†
j−1 + â†i â

†
j+1 + â†i−1â

†
j + â†i+1â

†
j

]
. (4.7)

In this two-photon situation, it is still possible to obtain a tight-binding form of the Hamil-

tonian by only focusing on the two-photon subspace of the whole Hamiltonian shown in

Eq. (4.2). We shall consider the subspace of the Hilbert space spanned by {|1⟩i|1⟩j, |2⟩l}.

Note that the photons are indistinguishable (photons commute) here. We take out from

Hwg the matrix elements according to this basis set (e.g. ⟨1|i⟨1|jHwg|1⟩k|1⟩l), and define

a tight-binding Hamiltonian matrix form, that can be conventionally written as

H
(2)
tb = −

Nb∑
r

Dr|r⟩⟨r| −
Nb∑
r ̸=s

Crs(|r⟩⟨s| + |s⟩⟨r|), (4.8)
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where r, s are the numbering of the two-photon Fock states, and Nb =
(
N
2

)
+ N =

N(N + 1)/2. Importantly, the dimension of the subsystem has grown to the order of

N2. We are effectively treating the two photon Fock states at 2 of the N sites as a

single particle at one of the Nb sites. The diagonal entries Dr = Di +Dj depends on the

propagation constants of the two waveguides where the pair of photons propagate. The off

diagonal entries Crs are equal to C0 or
√

2C0 depending on the coupled states. A graphical

representation of H
(2)
tb is shown in Figure 4.1. Panel (a) represents the one-dimensionally

coupled N waveguides (i.e. single photon subspace of Hwg), while panel (b) represents

the two photon subspace of Hwg, which is equivalent to H
(2)
tb . The matrix entries of H

(2)
tb

is also plotted in panel (c) with parameters set to N = 11, Di = D = 1, C0 = 1.

4.2.2 Periodically modulated waveguide array and it’s effective

Hamiltonian

The treatment of the Hamiltonian of a coupled waveguide array with a bi-photon input,

as discussed above, is already explored in the literature [69–71]. Now we move one step

forward by applying a time-periodic (i.e. periodic in propagating z-direction) drive on

the system to obtain a time periodic Hamiltonian in the form of

H
(2)
tb (z) = −

Nb∑
r

Dr|r⟩⟨r| −
Nb∑
r ̸=s

Crs(z)(|r⟩⟨s| + |s⟩⟨r|). (4.9)

Waveguides are static objects and in principle cannot dynamically modify their coupling

or propagation constants in time. However, as the distance in the z direction corresponds

to the time for the propagating photons, we can spatially modify the waveguides along the

z direction to let the photons feel the change of the coupling and propagation constants

in time.

We designed a N = 11, one-dimensional nearest-neighbour coupled, on-site static

disordered, periodically modulated waveguides as shown in Figure 4.2. The waveguides are

designed to oscillate in the y axis direction, as a function of y0 sin (iπ + ωz). i = 1, 2, . . . , N

is the index of the waveguide, while ω is the frequency of the drive. We shall consider

how the coupling constants Cij(z) would change. First, we fix the spacing between the

waveguides along the x axis direction to x0. We assume the waveguides are cylindrical

and calculate the distance between the center of the cylindrical waveguides, Lij(z). We
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Figure 4.2: Illustration of the periodically modulated optical waveguides. Each panel corresponds to (a)
the overall view, (b) the top view and (c) the side view. Two photons which are temporally indistin-
guishable are injected into arbitrary modes of the array. The spacing between adjacent waveguides in
the x-axis direction is fixed to x0, while the waveguides are periodically bent up to distance y0 in the
y-axis direction to periodically change their spacing in the y-axis direction. The actual distance between
the waveguides in the xy-plane is represented as Lij(z). This leads to a periodic change of the coupling
constant between the waveguides, as shown in Eq. (4.11).

can calculate that

Lij(z) =
√
x20 + y20 sin2 (iπ + ωz) =

√
x20 + y20 sin2 (ωz). (4.10)

The coupling constant is known to depend exponentially on the distance between the

waveguides [70], such as C ∼ Cde
−L/L0 . We substitute Eq. (4.10) and get

Cij(z) = Cd exp

(
−
√
x20 + y20 sin2 (ωz)/L0

)
. (4.11)

The coupling constant oscillates between Cd exp (−x0/L0) and Cd exp
(
−
√
x20 + y20/L0

)
with frequency 2ω. Given the coupling constants between the waveguides, the coupling

constants between the two-photon states represented as Crs(z) in Eq. (4.9) will be equal

to Cij(z) or
√

2Cij(z) depending on the photon number of the states (see the box below
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panel (c) of Figure 4.1).

The propagation constant must also depend on z as the direction of the propagation

mode varies with z. However we can replace it with a effective shift of the propagating

constant Di → Di −∆D. As all of the waveguides are modulated equally, we consider all

waveguides acquires a equal constant shift ∆D.

We also add a diagonal disorder into the Hamiltonian, in order to induce randomness

in the time evolution. This is modelled by setting Di for each waveguides as a random

number which fluctuates around the mean value with an range of W . The disorder is

physically modelled by the small radius differences among the waveguides, which changes

their propagation constants. We must note that changing the propagation constants (i.e.

the propagation modes) of each waveguides will induce changes is the coupling constants

as well. We may also need a multi-mode photon source as an input in order to couple

the photons to the slightly different propagation modes of each waveguide. This can lead

to a dephasing effect during the time-evolution, and thus the actual dynamics when this

situation is experimentally implemented can be different from the Hamiltonian of Eq.

(4.9). We leave this discussion as a future work, and at this point investigate how the

periodic coupling constant Cij(z) and the diagonal disorder Di can simulate dynamics on

complex quantum networks.

Figure 4.3: (a) The matrix plot of the effective Hamiltonian Heff and (b) the resonance-rule-applied
adjacency matrix A of the driven waveguide array with two-photon input. The dimension of the matrix
is 66.

Given these conditions, a numerical calculation was conducted to obtain the Floquet
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operator and the effective Hamiltonian Heff of one period of the Hamiltonian, as de-

fined in Eq. (4.1). The parameters are set to satisfy Cd exp (−x0/L0) = C0 = 1 and

Cd exp
(
−
√
x20 + y20/L0

)
= C0e

−2 = e−2, while Di = D+W with D = 1,W ∈ [−0.1, 0.1].

The frequency was set to a low frequency regime ω = 2π to obtain non-trivial effects [72].

Once the effective Hamiltonian was obtained, we interpret this as a graph and applied

the resonance rule |Dr − Ds| < |Crs| to draw the edges between the nodes. The effec-

tive Hamiltonian Heff and the adjacecy matrix A is shown in Figure 4.3. The graph

corresponding to A is visualized in Figure 4.4.

Figure 4.4: The graph visualization of the adjacency matrix plotted in Figure 4.3(b), which corresponds
to the driven waveguide array with two-photon input. The graph contains Nb = 66 nodes, and in panel
(a) the nodes are positioned according to the force-directed drawing method. In panel (b), the same
graph is plotted with a different positioning of the nodes, which is the same way took in Figure 4.1(b).
We can clearly see that the graph topology and connectivity has dramatically changed compared to the
undriven counterpart.

From the effective Hamiltonian and the graph, we can see that the structure con-

tains non-nearest neighbour hopping that were not present in the undriven counterpart

(Figure 4.1(c)). One can see from the effective Hamiltonian matrix plot (Figure 4.3(a))

that the original nearest neighbour entries are still present, but blurred, giving rise to

the non-local entries. The diagonal entries are also modified compared to the undriven

Hamiltonian. In order to visualize the major transitions in the effective Hamiltonian, the

resonance-condition-applied adjacency matrix A is obtained as Figure 4.3(b), with the

graph drawn in Figure 4.4. For the visualized graph in Figure 4.4(a), the nodes of the

graph is positioned based on the force-directed graph drawing method [73] in order to
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show that the graph is connected densely in certain regions (the positions of the nodes

and the length of the edges does not have any correspondence to the coupling strength

Crs). For the visualized graph in Figure 4.4(b), the nodes of the graph is positioned in the

same way as Figure 4.1(b). We can see that many nodes are connected densely (dynamics

are complex), while some nodes have small number of connections or some nodes are even

isolated.

These results clearly show the appearance of the non-local transitions. By computing

the degree of each nodes ks =
∑Nb

r Ars and obtaining the degree distribution from 30 real-

izations of of the disorder, an broad distribution was obtained (see Figure 4.5). Although

the Poisson distribution did not fit the result, we can still understand that the graph

has a random graph-like complex structure. The local peak in the distribution around

k = 3, 4 comes from the nearest-neighbour transitions. The results shows the potential

ability of coupled waveguides to simulate complex network structures by combining the

multi-photon state and the periodic modulation strategy.

Figure 4.5: The degree distribution of the graph in Figure 4.4. k is the degree of a node. The distribution
is taken from 30 realizations of the effective Hamiltonian using different disorder sequence of Di. We can
see a broad distribution, indicating that the graph has random connections.

Trade-off between the complex dynamics and the length of time evolution

Here we discuss why the non-nearest neighbour transitions appear in the driven system,

and also mention about the trade-off when realizing such transitions. First we point out

that in order to realize the non-nearest neighbour transitions and the complex dynamics,

one needs to drive the system in the low frequency regime. Such low frequency regime
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means that the driving frequency ω is comparable to the energy bandwidth (i.e. the

difference between the smallest and largest energy) of the undriven system. For example,

it was shown that driving a system with on-site disorder with a low frequency result

to chaotic dynamics [24]. In our calculation, we chose ω = 2π, which is comparable to

the bandwidth of the undriven waveguide Hamiltonian we considered. See Figure 4.6(a)

which compares the energy spectrum of the undriven and driven systems. Note that the

spectrum (quasi energies) of the driven system is bound by −ω/2 ≤ Ei ≤ ω/2. We

have observed the complex network structure using this value of ω, but as a consequence,

the energy bandwidth of the system has shrank. The undriven system has a bandwidth

around 8, from Figure 4.6(a). As the energy scale of the system has decreased by the

driving, the time scale of the system will increase. This means that one requires longer

length of time evolution in order to realize the complex dynamics.

(a) (b)

Figure 4.6: (a) The energy eigenvalues of the undriven waveguide and the quasi energies of the effective
Hamiltonian of the driven waveguide. (b) A diagram describing that a lower frequency drive generates
complex dynamics, while as a trade-off the necessary length of time evolution increases.

We can think this as the trade-off between the time scale of the system and the

realization of the complex dynamics. In Figure 4.6(b), the illustrative description of

this trade-off is shown. With a high frequency drive, the time to realize one period

of the effective Hamiltonian is shorter, but the resulting dynamics is simple (since the

high frequency limit corresponds to the undriven case). On the other hand, with a low
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frequency drive, the time to realize one period of the effective Hamiltonian is longer,

resulting to complex dynamics. We can interpret that the complex network structure is

captured from the low frequency driven system since the dynamics of a longer time scale

is averaged when obtaining the effective Hamiltonian.

4.2.3 Preparation of the two photon source as the input state

of the waveguide array

In the previous sections, we have investigated the effective Hamiltonian of the periodi-

cally modulated waveguide array, where single or two-photon states were injected. We

have seen that in the two-photon case, the dimension of the Hilbert space expands and

complex network structures can be observed by mapping the dynamics to the time evolu-

tion generated by the single-particle tight-binding Hamiltonian. In order to conduct such

experiment in the labs, an indistinguishable two-photon state has to be prepared with

high fidelity and rate. In this section we discuss the experimental method to generate

such two-photon state, and propose a scheme using the spontaneous parametric down

conversion (SPDC) from the non-linear crystal. The key feature of the two-photon source

is that (i) one can generate a polarization distinguishable two-photon state (ii) or select to

generate a polarization entangled state, (iii) the photons are frequency degenerated, (iv)

have high rate of emission and spectral bandwidth due to the usage of type-0 non-linear

crystal, (v) and free of postselection.

Such photon source can be used as a reliable two photon input state to observe the dy-

namics through the driven waveguide array. First of all, the two photons has to be highly

indistinguishable in order to simulate the complex dynamics including the interference of

the photons. If the photons are completely distinguishable, the output result we get is just

a joint probability of two independent photons propagating through a one-dimensional

waveguide array (i.e. no quantum interference occurs during the propagation). Further-

more, if we use the photon pair generated from a type-0 quasi-phase matched non-linear

crystal, the photons have a broad bandwidth in the frequency domain compared to other

types of non-linear crystals [74]. This potentially enables additional controllability on

the effective Hamiltonian of the system. If we prepare a spectrally non-degenerate, yet

partially overlapping photon pair and conduct a measurement that does not resolve the

frequency, we can simulate an open dynamics that has partial loss of coherence to the

environment. This can result to an effective Hamiltonian having different structure com-
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pared to the fully closed dynamics. Therefore, here we select to use the SPDC photons

from a type-0 periodically poled non-linear crystal, and propose a scheme to prepare a

two-photon state ready-to-use for the input state of the waveguide array.

To start explaining the scheme, let us first define the notations of the polarization

states of the photon,

|H⟩ =

(
1

0

)
, |V ⟩ =

(
0

1

)
, |D⟩ =

|H⟩ + |V ⟩√
2

, |A⟩ =
|H⟩ − |V ⟩√

2
. (4.12)

Each of them represent H : horizontal, V : vertical, D : diagonal, and A : anti-diagonal

polarization. The scheme of the photon source is shown in Figure 4.7. We use the

spontaneous parametric down-conversion (SPDC) process, where a pump photon is con-

verted to two lower energy photons while satisfying the energy conservation law ℏωpump =

ℏωsignal + ℏωidler. We must use a periodically-poled (pp) non-linear crystal since the con-

verted photons are emitted collinearly. To this end we use the ppKTP crystal. The scheme

is constructed by forming a interferometer including the ppKTP crystal, two half-wave

plates with angles set to 45◦ (HWP1) and 22.5◦ (HWP2).

The input photon is injected into the interferometer by passing through the polarizing

beam splitter (PBS). The H-component of the photon that passed through the PBS round

trips the interferometer in the clockwise direction [see Figure 4.7(a)]. This photon is

converted to the D state by the HWP2, and only the V component of the state contributes

to the SPDC conversion |V ⟩ → |V V ⟩ such that the state after the crystal is

|ψa⟩ = |V V ⟩. (4.13)

The down-converted photons are rotated by HWP1 [see Figure 4.7(b)] which leads to

|ψb⟩ = |HH⟩. (4.14)

The pump photon enters the crystal again after passing through HWP1. The V component

again contributes to the SPDC conversion, and will be superposed with the photon pair

generated in the first conversion [see Figure 4.7(c)],

|ψc⟩ ∝ |HH⟩ + eiϕ|V V ⟩, (4.15)
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Figure 4.7: The proposed experimental scheme to generate the two-photon state. Essentially, the in-
put photon is separated into two optical paths at the polarizing beam splitter (PBS), propagating the
interferometer in the clockwise and counter-clockwise direction. The input photon is converted to a
two-photon state via the ppKTP crystal, while their polarization are adjusted by the half-wave-plates
(HWP). DM stands for the dichroic mirror which reflects the photon around 800nm, and let through the
photon around 400nm.

where ϕ is the relative phase between the first and second conversion. ϕ can be adjusted

by tilting the HWP1, which changes the propagation length through the wave plate. This

state goes through HWP2, which will rotate H(V) states to D(A) states. The two photon

state after HWP2 is [see Figure 4.7(d)],

|ψd⟩ ∝ sin
ϕ

2
|HV ⟩ +

i√
2

cos
ϕ

2
(|HH⟩ + |V V ⟩) → |HV ⟩ (ϕ = π). (4.16)

The relative phase was set to ϕ = π to obtain the right hand side. This is a quantum

interference process corresponding to the reverse Hong-Ou-Mandel(HOM) interference in

the polarization basis [75]. After this state passes through PBS, the H and V photons are

deterministically separated into different spatial modes 1 and 2 as |ψe⟩ = |H⟩1|V ⟩2 [see

Figure 4.7(e)].

We can consider the V-component of the initial input photon reflected at the PBS in

117



4.3. SIMULATING SCALE-FREE NETWORKS WITH TIME CRYSTALS

a similar way discussed above. This time he photon round trips the interferometer in the

counter-clockwise direction [see Figure 4.7(f)]. After two down-conversion process and the

reverse HOM interference, the resulting state coming out from the PBS is |ψf⟩ = |V ⟩1|H⟩2.
If we initially input a D state into the interferometer, the process through the clockwise

and counter-clockwise direction will occur as a superposition, leading to the entangled

output state

|ψout⟩ ∝ |H⟩1|V ⟩2 + |V ⟩1|H⟩2. (4.17)

On the other hand, if we input the H or V polarized state, we can get a separable state

deterministically separated into different optical modes. Note that the round trip process

is necessary in order to obtain the photons in different modes deterministically.

The described two photon source can be injected into different waveguide modes by

coupling each spatial modes 1 and 2 after the PBS to the desired waveguide mode. The

unique and important point about this photon source is that the two photons are separated

into different optical modes with 100% probability, allowing to prepare various initial

states for the dynamics through the waveguides. This cannot be achieved if we use

a photon pair from single down-conversion from a ppKTP crystal, since the photons

propagate collinearly in a single optical mode having the same polarization. One can only

prepare a initial state where two photons are injected into a single waveguide, or otherwise

have to probabilistically separate the photons using a 50:50 beam splitter. Furthermore,

the ability to generate a polarization entangled state enables to prepare superposed initial

states. One can also use one of the paired photon to herald the single photon state.

4.3 Simulating scale-free networks with time crystals

The second example we propose to simulate dynamics on a complex quantum networks is

a many body spin system in a time-crystalline phase. This is a driven system where the

Hamiltonian of the system is periodically switched between a many-body localized Ising

interaction and the global transversal magnetic field. Such system shows discrete-time-

translational symmetry breaking, where the state of the system has different periodicity

compared to the periodicity of the Hamiltonian. This property is named as the time

crystal, analogous to the spatial crystal which breaks the spatial-translational symmetry.

Using Floquet theory, we compute the effective Hamiltonian of one period of the drive,

and analyze it’s structure when written in the tight-binding Hamiltonian matrix form.
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4.3. SIMULATING SCALE-FREE NETWORKS WITH TIME CRYSTALS

We will show that a complex network structure with a scale-free property emerges in such

effective Hamiltonian, due to the clustering of energies.

4.3.1 Discrete time crystals in spin systems

First we introduce the many-body spin system that is going to be analyzed in this section.

The system is known as the Discrete Time Crystal [76], where a one dimensional chain of

n spin-1/2 particles evolves under the action of a sequence of two different Hamiltonians,

H(t) =

H1 = ℏg (1 − ϵ)
∑n

l σ
x
l 0 < t < T1

H2 = ℏ
∑n

lm J
z
lmσ

z
l σ

z
m + ℏ

∑
lB

z
l σ

z
l T1 < t < T .

(4.18)

This is a time-dependent Hamiltonian with a period of T . Here σx
l , σ

y
l , σ

z
l are the Pauli

operators on the l-th spin, Jz
lm ≡ J0/|l −m|α is the long-range interaction between spins

l,m, and Bz
l ∈ [0,W ] is a random longitudinal field. The parameter g satisfies the

condition 2gT1 = π such that when ϵ = 0, the unitary U1 = exp (−iH1T1/ℏ) = Πn
l σ

x
l

becomes a global π pulse around the x-axis. ϵ ≪ 1 is present as a rotation error around

the x-axis. Note that this Hamiltonian is similar to the tilted-field Ising Hamiltonian

discussed in Section 2.9, where the difference is that the transversal magnetic field term

and the Ising interaction term are separated into a sequence. The Floquet operator of the

one period of drive is given by

Fϵ = Uϵ(T ; 0) = exp (−iH2T2/ℏ) exp (−iH1T1/ℏ). (4.19)

In order to understand the dynamics of the time crystal, we shall first set to ϵ = 0. We

initialize the state of the system in one of the eigenstate of H2 (states where spins are

parallel to the z-direction). Under the action of H1, all of the spins globally rotate with

an angle of π around the x-axis. Subsequently, under the action of H2, the state does not

change as the state after the action of H1 is still an eigenstate of H2. This is the state after

a single period of the drive. After another period of the drive, the state shall undergo

another π rotation and come back to its initial state. See Figure 4.8 which illustrates the

situation. Since it takes two periods to rotate for an angle of 2π and return to its initial

state, the state has a 2T periodicity. On the other hand, the time-periodic Hamiltonian

H(t) has a periodicity of T . Such difference of periodicity between the Hamiltonian and

the state corresponds to the name time crystal, since the system breaks the discrete-time-

119



4.3. SIMULATING SCALE-FREE NETWORKS WITH TIME CRYSTALS

translational symmetry.

Figure 4.8: Illustration of the two Hamiltonians of the time crystal defined in Eq. (4.18). Assuming that
the system is initialized in a state | ↑↑↑↑⟩, all of the spins flips around the x-axis under the action of H1.
Subsequently, H2 is applied, which does not change the state | ↓↓↓↓⟩.

Now if the rotation error ϵ is non-zero, the dynamics start to get more complex. As

the rotation around x-axis is imperfect, the H2 term can also non-trivially rotate the spins

around the z-axis. The rotation error ϵ essentially breaks the symmetry (the 2T response)

of the system, and may gradually break the periodicity of the state as the time evolves.

However, the H2 term acts as a correction of the rotation error, since it’s a many-body

localization Hamiltonian which keeps the spins to localize on its eigenstates. As each of

the eigenstate of H2 are exponentially localized on a certain configuration of the spins

|S1S2 . . . Sn⟩, the rotation error is exponentially suppressed. The 2T periodicity of the

time-evolution will be still present for a long time if ϵ is small due to the presence of H2.

In the next section, we will focus on this region where a small rotation error is present.

4.3.2 Appearance of scale-free networks in the time crystalline

system with a small error

Here we will show that with a small amount of error ϵ in the system, the symmetry of the

system will be broken which leads to the appearance of a scale-free network in the effective

Floquet Hamiltonian. We choose the parameters to be α = 1.51, J0(T − T1) = 0.06 with

a disorder strength W (T − T1) = π, which are similar values used in the experiment [76]

in the literature. We set the value of error to ϵ = 0.012 and calculated the effective
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Hamiltonian Heff
ϵ by taking the matrix logarithm of Eq. (4.19). Then we represent Heff

ϵ in

the tight-binding Hamiltonian matrix form using the basis set {|S1S2 . . . Sn⟩}S1,...,Sn=↑,↓.

The obtained Hamiltonian matrix and the resonance-rule-applied adjacency matrix with

n = 8 is shown in Figure 4.9.

(a) (b)

Figure 4.9: (a) The matrix plot of the effective Hamiltonian Heff
ϵ and (b) the resonance-rule-applied

adjacency matrix (black= 1, white= 0) of time crystal system with ϵ = 0.012 and n = 8.

From the adjacency matrix, the graph is visualized in Figure 4.10. The graph consists

of 28 = 256 nodes. Here, again the nodes of the graph is positioned based on the force-

directed graph drawing method [73]. The important result is found form the degree

distribution in Figure 4.11. The tail of the distribution has a good fit to the power law

function, indicating that the obtained graph is a scale-free network. This also means

that there are large degree hub nodes in the network. These nodes correspond to the

states (in σz basis) that has an energy close to other states, which means that the energy

levels are clustered at some regions. For example, the hub node in the graph of Figure

4.10 is | ↑↑↓↑↓↓↑↑⟩. The number of domain walls in this state is four, and there are

8C4 = 70 states which has the same number of domain walls. These states has similar

value of energies, and thus have a higher chance to have edges drawn between them by

the resonance-rule.
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Figure 4.10: The graph visualization of the adjacency matrix plotted in Figure 4.9(b), which corresponds
to the time crystal with n = 8 spins and the rotation error of ϵ = 0.012. The graph contains 2n = 256
nodes, and the nodes are positioned according to the force-directed drawing method. The isolated dimer
on the corner corresponds to the basis states where all spins are up or down. This indicates that these
states are robust against the rotation error, and the dynamics will stay inside this two-dimensional
subspace for a long time.

Figure 4.11: The degree distribution of the graph corresponding to resonance-rule-applied adjacency
matrix of the time crystalline system. (one instance with n = 8 shown in Figure 4.10). k is the degree of
a node and n is the number of spins in the system. The distribution is taken from 100 realizations of the
effective Hamiltonian using different disorder sequence of Bz

l for each n. We can see a broad distribution,
indicating that the graph has random connections. The tail of each plot is fit to a power law function,
indicating that the network has a scale-free property.
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4.4 Conclusions

In this chapter, we looked at two kinds of quantum system with periodic driving, and

utilized the graph interpretation of the Hamiltonians to simulate complex quantum net-

works. The first system was the periodically modulated waveguide array. We combined

two elements to simulate the complex quantum network in this system. One was to con-

sider a two-photon state as the input state, which allowed to extend the Hilbert space

in the order of square of the number of waveguides. The other was to utilize the effec-

tive Hamiltonian of the time-periodic system. By driving the system in a low frequency

regime, we could observe the appearance of non-local terms in the Hamiltonian. We also

showed the method to prepare a reliable two-photon source using spontaneous parametric

down conversion. The second system we focused was the many body spin system in the

time crystalline phase. Breaking of the symmetry of the system by intorducing a small

error in the rotation of the spins led to the appearance of scale-free network in the effective

Hamiltonian.
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Chapter 5

Conclusions

This thesis studied quantum dynamics and quantum search algorithm on complex quan-

tum networks, as well as providing some methods to simulate the dynamics in such system.

We defined complex quantum networks as closed finite-dimensional quantum systems that

contain complex transitions between levels. We especially focused on the transition struc-

ture of tight-binding Hamiltonians, and treated these Hamiltonians as complex quantum

networks when the matrix has certain properties, such as small-world or scale-free.

We analyzed the quantum search algorithm on complex quantum networks which

hold small-world or scale-free property. The main results was that during the network’s

transition from non-small-world to small world, there exists a clear threshold connectivity

of the graph where the search algorithm can be achieved quickly. From the analysis on

the scale-free network, a strong correlation between the network’s closeness centrality

measure and the time complexity of the search was observed. These results provided

new perspective on closed quantum dynamics, as well as showing that complex quantum

networks are useful for quantum search algorithm.

We have also suggested a method to simulate the dynamics on complex quantum

networks using periodically driven systems. When the system Hamiltonian is subject

to time-periodic drive with slow frequency, there were cases where the effective Floquet

Hamiltonian had complex network structures. The examples considered here was the

coupled waveguide system and the many-body spin system, but the idea to use the effec-

tive Hamiltonians of driven system as simulators for complex quantum network can be

potentially extended to many other systems.
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[57] M. Biskup, Rand. Struct. and Alg. 39, 2, 210–227 (2011).

[58] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. Lett. 85, 4633

(2000).

[59] K. I. Goh, B. Kahng, D. Kim, Phys. Rev. E 64, 051903 (2001).

[60] P. Bonacich, American Journal of Sociology 92 (5), 1170–1182 (1986).

[61] L. C. Freeman, Social networks, 1 (3), 215–239 (1979).

[62] L. C. Freeman, Sociometry 40, 35–41 (1977).

[63] S. White and P. Smyth, in Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining (Washington, D.C. 2003), 266

(2003).

[64] M. E. J. Newman, Social Networks, 27 (1), 39–54 (2005).

[65] J. D. Noh and H. Rieger, Phys. Rev. Lett. 92, 118701 (2004).

128



REFERENCES

[66] C. Godfrin, A. Ferhat, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer and

F. Balestro, Phys. Rev. Lett. 119, 187702 (2017).

[67] J. L. O’Brien, A. Furusawa, and J. Vučković, Nature Photonics 3, 687 (2009).
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