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Chapter 1

Introduction

In this thesis, we study deformation quantization of locally symmetric Kähler manifolds and Einstein
metrics derived from gauge curvature on a quantized locally symmetric Kähler manifolds.

Locally symmetric Kähler manifolds include an important class of Kähler manifolds. We have
discovered a way to construct noncommutative products on locally symmetric Kähler manifolds.

Einstein manifold is an important object in Riemannian geometry. We have found that the
Einstein metric is related to the gauge curvature of the quantized R4

Deformation quantization is a quantization that defines a noncommutative product on the func-
tion algebra C∞ (M) of a symplectic manifold or Poisson manifold M . Deformation quantizations
were introduced by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer [3] as a method to quantize
spaces. After [3], several ways of deformation quantization were proposed [8, 9, 20, ?]. Specifically,
the existence of deformation quantization is proved by [8, 9, 26] when the manifold is a symplectic
manifold and proved by [20] when it is a Poisson manifold. In particular, deformation quantizations
of Kähler manifolds were provided in [6, 7, 22, 23]. The deformation quantization with separation of
variables is one of the methods to construct noncommutative Kähler manifolds given by Karabegov
[75, 41, 16]. Star products on the fuzzy CPN which is a typical Kähler manifold are investigated
in [1, 2, 12, 13, 18, 28]. A deformation quantization of the hyperbolic plane which is also a Kähler
manifold was provided in [4, 28].

In gauge theories, the Yang-Mills equation of the non-Abelian gauge theory is important in
particle physics, and there is the Instanton equation as a method for obtaining its exact solution.
The Yang Mills equation is a differential equation that appears in gauge theory. You can con-
struct algebraically a solution called instanton solution with ADHM construction method. There
is a method called ADHM construction [77] method as a method for obtaining a solution of the
instanton equation. Nekrasov and Schwarz [38] discovered noncommutative ADHM equations and
constructed noncommutative instantons using the ADHM construction . This work initiated the
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study of noncommutative ADHM instantons, and at present there is a large body of works on this
problem [38]. Later, several noncommutative instanton solutions were created using the ADHM
construction method [?, ?, ?, ?, ?, 39, ?, ?, 66, ?, ?, ?, ?, ?]. After those achievements, research on
noncommutative instanton solutions advanced. For example, it was shown that the instanton num-
ber is equal to the dimension of the vector space that appears in the ADHM construction method
[78, 89, 86, 87, 88]. This discovery is a generalization of the proposition that a natural number called
an instanton number is equal to a topological invariant called a Pontryagin number in gauge theory
on a commutative space.

The noncommutative U(1) instanton solutions are written in an operator form acting on a Fock
space. The Fock space is defined by Heisenberg algebra generated by noncommutative complex
coordinates. For example, in [29], the Fock representation for noncommutative CPN is constructed.
There is a dictionary between the linear operators acting on the Fock space and usual functions [40].

It has been known that there is a close relationship between noncommutative geometry and string
theory. Especially since Seiberg and Witten clarified this relationship in 1999 [34], great progress has
been made in research. The Seiberg-Witten transformation is the relationship between the gauge
curvature on a commutative space and the gauge curvature on a noncommutative space.

The original Seiberg-Witten map is a map from noncommutative gauge fields to commutative
gauge fields with a background B-field [34]. On the other hand, it has been interpreted in [35, 33, 36]
as a map from a noncommutative gauge field to a Kähler metric. It has been conjectured in [42, 43]
that noncommutative U(1) gauge theory is the fundamental description of Kähler gravity at all scales
including the Planck scale and provides a quantum gravity description such as quantum gravitational
foams. Recently it was shown in [44, 45, 46] that the electromagnetism in noncommutative spacetime
can be realized as a theory of gravity, and the symplectization of spacetime geometry is the origin
of gravity. Such picture is called emergent gravity and it proposes a candidate of the origin of
spacetime. See also related works in Refs. [55, 52, 54, 47, 53, 48, 49, 50, 51]. As a bottom-up
approach of the emergent gravity formulated in [56], the Eguchi-Hanson metric [57, 58] in four-
dimensional Euclidean gravity is used to construct anti-self-dual symplectic U(1) gauge fields, and
U(1) gauge fields corresponding to the Nekrasov-Schwarz instanton [38] are reproduced by the reverse
process [59]. As a top-down approach of the emergent gravity, the U(1) instanton found by Braden
and Nekrasov [60] derives a corresponding gravitational metric.

Based on the above, this thesis aims to clarify the following. In the previous studies, the corre-
spondence between Hermitian-Einstein metric and anti-selfdual 2 form based on the Seiberg-Witten
map was shown as a concrete example [59]. When considering Eguchi-Hanson’s metric as Hermitian-
Einstein metric, it was shown that an anti-self-dual two-form satisfying the second kind of Abel
differential equation was derived [59]. If so, it is natural to see if the correspondence between them is
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more general. As a result of our research, it has been clarified that when the anti-self dual condition
is imposed on the two forms corresponding to the gauge curvature, the metric derived by the cor-
respondence becomes the Hermitian-Einstein metric. This result is a generalization of the previous
research. We also gave results for the opposite of this proposition. We have shown that when the
metric is Hermitian-Einstein metric and the two forms corresponding to the gauge curvature are
asymptotically zero, the two forms are anti-selfdual.

Previous studies have shown the existence and construction of the deformation quantizations
with separation of variables of the Kähler manifold [41]. Noncommutative products were obtained
explicitly in complex projective spaces, complex hyperbolic spaces and so on. But in other cases it is
not so easy. We succeeded in finding a recurrence formula that determines noncommutative products
under the locally symmetric condition. By using this method, in addition to rederiving noncommuta-
tive products of complex projective spaces and complex hyperbolic spaces, we can specifically obtain
noncommutative products of compact Riemann surfaces with arbitrary genus.

The organization of this thesis is as follows. In Chapter 2, we first explain complex manifolds
and Hermitian manifolds. The structure required for manifolds in deformation quantization, which
is the center of this paper, is a Poisson structure, not a complex structure.

In Section ??, we explain deformation quantization motivated by quantum mechanics, which is
one of the basis of modern physics. In deformation quantization, a Poisson structure is required for a
manifold as described above. To explain the Poisson structure in more detail, the Poisson algebra is
an algebra whose elements are functions on manifolds. It is known that the algebra has deformation
quantization based on the definition derived from the relationship between classical mechanics and
quantum mechanics. A particularly famous algebraic structure is the Moyal product.

In Chapter ??, main subject is gauge theory. Gauge theory is a theory of physics and explains
various phenomena in this universe. In the standard model, there are gauge fields whose gauge groups
are U (1) , SU (2), and SU (3), which explain electromagnetics, neutrino observation, nuclear physics,
etc. In mathematics, after defining the Yang-Mills connection, the curvature can be considered in
the same way as the Levi-Civita connection in Riemannian geometry, and the curvature is called the
gauge curvature.

It is known that gauge theory can be developed even on the noncommutative manifold constructed
in the previous chapter. It is mathematically known that topological invariants can be constructed in
gauge theory, but such things have also been studied in noncommutative manifolds. It is important
to specifically find solutions to equations that appear in the gauge theory. In general, it is naturally
difficult to find all solutions, but it is known that some special solutions are derived algebraically.
They are the local minimum points found by completing the action squarely, and are called instanton
solutions. The algebraic construction method is called the ADHM construction method, and has
recently attracted attention in the study of integrable systems. We explain that this construction
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method can also be applied to noncommutative manifolds.
Gauge theories on noncommutative manifolds are considered to be physically meaningful, and

their relation to gauge theories on ordinary commutative manifolds has also been investigated. Specif-
ically, there are research results that two forms corresponding to gauge fields are anti-selfdual when
Eguchi-Hanson metric is assumed as the metric [59]. Eguchi-Hanson metric is an important example
of Kähler-Einstein metric called gravitational instanton.

In Chapter 4 we will explain the relationship between gauge curvature and metric we found. If the
two forms corresponding to the gauge curvature are anti-selfdual in that relationship, the Hermitian
metric derived from that relationship is always Einstein metric. Naturally, the Eguchi-Hanson metric
described above is an example of this. In addition, we specifically constructed Hermitian-Einstein
metrics using the ADHM construction method described above.

In addition, we study the inverse of this proposition. In other words, it is a question of what kind
of property the two forms corresponding to the gauge curvature have when the two forms implies
Hermitian-Einstein metric. The partial answer is given. If we impose an asymptotic boundary
condition on two forms corresponding to gauge curvature after imposing that it is Hermitian-Einstein
metric, the two forms should be anti-selfdual.

In Chapter ??, we will explain in more detail of the deformation quantization of the Kähler man-
ifold that is mentioned a little in Chapter 2. The deformation quantization of the Kähler manifold
mainly dealt with in this paper is the deformation quantizations with separation of variables given by
Karabegov. In addition to conditions to be Hermitian manifolds, Kähler manifolds have a function
called Kähler potential, and noncommutative products can be determined by using their properties.
In fact, in previous researches, deformation quantizations with separation of variables of important
Kähler manifolds such as complex projective space and complex hyperbolic space has been obtained
[27]. The complex projective space and the complex hyperbolic space have common properties. Both
are manifolds called Riemannian symmetric spaces. They give a family of basic Riemannian man-
ifolds, including constant curvature spaces, projective spaces, Grassmann manifolds, and compact
Lie groups. One of the properties of Riemann symmetric space is that the covariant derivative of
Riemann curvature is zero. This property itself is called locally symmetric.

In Chapter 10, we gave a better construction method for deformation quantizations with sepa-
ration of variables of locally symmetric Kähler manifolds. However, even if this better method is
used, a noncommutative product is not necessarily explicitly obtained. Since the recurrence formula
appears there, it can be difficult to find a solution as in a differential equation. However, in the
case of the recurrence formula, it is possible to obtain the first few terms. It can be said that it is
sufficient in the approximate calculation when the Planck constant is small.

Specific results obtained by using this better method are as follows. Compact complex one-
dimensional manifolds are called compact Riemann surfaces and are important objects in complex
analytics and algebraic geometry, but their noncommutative products have been completely deter-
mined. The same noncommutative product was derived again in the complex projective space derived
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in the previous study [27]. It is not obvious whether it is possible to find a recurrence solution for
complex Grassmann manifolds. Other locally symmetric Kähler manifolds will be left for further
study.

In this thesis, we use the Einstein summation convention over repeated indices.
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Chapter 2

Review of the deformation quantization

The deformation quantization required for this paper is briefly reviewed in this chapter.

2.1 Complex manifold

The definitions of complex manifolds, Hermitian manifolds, etc. are given below, which also serve as
fixed notations.

A complex manifold is a manifold with an atlas of charts to the open unit disk in Cn on which
you can consider holomorphic functions. The definition of complex manifold is given below.

Definition 2.1 (Complex manifold). Assume that M is a Hausdorff space and {Uλ}λ∈Λ are open
covers of M . M is a complex manifold if the homeomorphism

φλ : Uλ −→ φλ (Uλ) ⊂ Cn

exists and φα ◦ (φβ)
−1 is a biholomorphism for any α, β ∈ Λ.

As similar to the Riemannian manifolds in Riemannian geometry we study Hermitian manifolds
equipped Hermitian metrics in the complex geometry.

Definition 2.2 (Hermitian metric and Hermitian manifold). Assume thatM is a complex manifold,
p ∈M , and z1, · · · , zn are local holomorphic coordinates of M . If ∂

∂zk
, ∂
∂z̄l

are defined as

∂

∂zk
:=

1

2

∂

∂xk
− i

2

∂

∂yk
∈ TpM ⊗R C,

∂

∂z̄l
:=

1

2

∂

∂xl
+

i

2

∂

∂yl
∈ TpM ⊗R C

where zk = xk + iyk, ∂
∂xk ,

∂
∂yl

∈ Γ (TM) then T ′pM and T ′′pM are define as

T ′pM ⊕ T ′′pM := TpM ⊗R C = spanC

[
∂

∂z1
, · · · , ∂

∂zn
,
∂

∂z̄1
, · · · , ∂

∂z̄n

]
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where

T ′M := spanC

[
∂

∂z1
, · · · , ∂

∂zn

]
, T ′′M := spanC

[
∂

∂z̄1
, · · · , ∂

∂z̄n

]
.

A map h : T ′pM × T ′′pM → C is called Hermitian metric if

1. h (x, y + az) = h (x, y) + ah (x, z),

2. h (ax+ w, z) = āh (x, z) + h (w, z),

3. h (x, x̄) = 0 =⇒ x = 0,

4. x 6= 0 =⇒ h (x, x̄) > 0,

where x,w ∈ T ′pM , z, y ∈ T ′′pM and a ∈ C. h (y, x) is defined as h (y, x) := h (x, y). The complex
manifold with Hermitian metric (M,h) is called Hermitian manifold. Components hk,l̄ (z) is defined
as

hk,l̄ (z) := h

(
∂

∂zk
,
∂

∂z̄k

)
.

As a special case of Hermitian manifolds, Kähler manifold is introduced in the context of sym-
plectic geometry.

Definition 2.3 (Kähler manifold). Assume that M is a Hermitian manifold and hkl̄ is a Hermitian
metric. Kähler form ω is defined as

ω :=

√
−1

2

∑
k,l

hkl̄ (z) dz
k ∧ dz̄l.

M is called a Kähler manifold if
dω = 0.

Hamilton vector fields appearing in symplectic geometry, Poisson geometry and analytical me-
chanics are defined in the same way.

Definition 2.4 (Hamiltonian vector field). Assume thatM is a Kähler manifold, f ∈ C∞ (M) , X, Y
are vectors fields on M and ω is a Kähler form. The interior product is defined as

(iXω) (Y ) := 2ω (X,Y ) ,

and Hamiltonian vector field Xf is defined by

iXf
ω = df.
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2.2 Deformation quantization

Since algebras of functions on manifolds are transformed into noncommutative algebras in noncom-
mutative geometry, we review algebraic structures here.

Definition 2.5 (Associative algebra). Let K be a field. For ∀a, b ∈ A, and ∀λ ∈ K an associative
algebra (A,+, · ) on the field K is defined as follows.

1. (A,+) is a vector space over a field K.

2. (A,+, · ) is a ring.

3. λ (a · b) = (λa) · b = a · (λb).

Example 2.6. (C∞ (Rn) ,+, · ) is an associative algebra with the following definition of + and · .

1. If f, g ∈ C∞ (Rn) then the addition + : C∞ (Rn)× C∞ (Rn) −→ C∞ (Rn) is defined as

(f + g) (x) := f (x) + g (x) .

2. If f, g ∈ C∞ (Rn) then the multiplication · : C∞ (Rn)× C∞ (Rn) −→ C∞ (Rn) is defined as

(f · g) (x) := f (x) · g (x) .

Definition 2.7 (Lie algebra). Let (g,+) be a vector space over a field K. (g,+, {· , ·}) is called a
Lie algebra if

1. {· , ·} : A×A −→ A is a bilinear map,

2. {a, b} = −{b, a} (∀a, b ∈ g) ,

3. {a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} = 0 (∀a, b, c ∈ g).

If a function algebra has a Poisson structure defined below, the differentiable manifold is called
a Poisson manifold.

Definition 2.8 (Poisson algebra). Let (A,+, {· , ·}) be a Lie algebra and (A,+, · ) be a commu-
tative algebra. (A,+, · , {· , ·}) is called a Poisson algebra if

{a, (b · c)} = {a, b} · c+ b · {a, c} , for ∀a, b, c ∈ A.

Example 2.9. Let M be a Kähler manifold and (C∞ (M) ,+, · ) is a Poisson algebra if

{f, g} := −ω (Xf , Xg) for ∀f, g ∈ C∞ (M) .
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Using above definitions, deformation quantization is introduced as follows. In the following, C [[x]]
is a set of formal power series of x.

Definition 2.10. [Deformation quantization] Assume that (A,+, · , {· , ·}) is a Poisson algebra
and f, g, h ∈ A. (A, ∗) is called a deformation quantization if

1. ∗ : A [[~]]×A [[~]] −→ A [[~]] is a bilinear map, a ~-bilinear map and f ∗ (g ∗ h) = (f ∗ g) ∗ h.

2. If f ∗ g =
∑∞

r=0Cr (f, g) ~r then C0 (f, g) = f · g, and

(2.2.1) C1 (f, g) =
1

2
{f, g} .

where Ck is a bidifferential operator.

In particular, if we consider Poisson algebra consisting of functional algebra of Poisson manifold
as A, deformation quantization can be regarded as noncommutative geometry of Poisson manifold.

Example 2.11. For f, g ∈ C∞ (R4) [[~]], the product ∗ : {C∞ (R4) [[~]]}2 −→ C∞ (R4) [[~]] is defined
as

f (x) ∗ g (x) := f (x) exp

(
i

2

←−
∂µθ

µν
−→
∂ν

)
g (x) ,

where θµν ∈ R and θµν = −θνµ. This is called Moyal product.

Remark 2.12. Sometimes, in addition to Definition ??, the following conditions may be added. If
f ∗ g =

∑∞
r=0Cr (f, g) ~r then

1. Cr (f, g) (x) =
∑

IJ aIJ (x) ∂If (x) ∂Jg (x) where I := (i1, · · · , in) , ∂I := ∂i11 · · · ∂inn

2. Cr (f, g) (x) = (−1)r Cr (g, f) (x)

3. 1 ∗ f = f ∗ 1 = f.

2.3 Deformation quantizations with separation of variables

We summarize deformation quantization for Kähler manifolds. In particular we focus on Karabegov’s
deformation quantization for Kähler manifolds [75, 41]. He showed that there exists deformation
quantization for arbitrary Kähler manifolds, and his method is called deformation quantization with
separation of variables. Note that (??) is replaced by

(2.3.1) C1(f, g)− C1(g, f) = {f, g},

in Karabegov’s deformation quantization.
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Definition 2.13 (A star product with separation of variables). Let ∗ be a star product on a Kähler
manifold as a Poisson manifold. The ∗ is called a star product with separation of variables on a
Kähler manifold when

a ∗ f = af(2.3.2)

for an arbitrary holomorphic function a and

f ∗ b = fb(2.3.3)

for an arbitrary anti-holomorphic function b.

The detail of how to construct the deformation quantization with separation of variables is re-
viewed in Chapter ??. Here we see an example of ∗-product in C2. The star product on C2 constructed
by Karabegov’s deformation quantization is given as

f ∗ g =
∞∑
n=0

∑
k1,··· ,kn, l1,··· ,ln

ζk1 · · · ζkn
n!

δk1l1 · · · δknln
(
∂k̄1 · · · ∂k̄nf

)
(∂l1 · · · ∂lng) ,(2.3.4)

where ζi(i = 1 · · · dimCM) are noncommutative parameters. In Chapter 4 we made Ricci-flat metrics
from (anti-)self-dual two-forms on a noncommutative manifold.

2.4 Fock space representation of C2

In this section we construct Fock representation of C2. For Karabegov’s deformation quantization
all noncommutative Kähler manifolds have Fock representation [40, 76]. Here we make the Fock
representation of C2 by using ∗-product (??).

Consider a noncommutative algebra (C∞ (C2) [[~]] , ∗) led by (??) in Section ??. The star product
induces a Heisenberg algebra[

zk, z̄l
]
∗ = −ζkδkl,

[
zk, zl

]
∗ = 0,

[
z̄k, z̄l

]
∗ = 0,(2.4.1)

where [x, y]∗ := x ∗ y − y ∗ x. We represent it by creation and annihilation operators given by

ak :=
z̄k√
ζk
, a†k :=

zk√
ζk
,

then [
ak, a

†
l

]
∗
= δkl,

[
a†k, a

†
l

]
∗
= 0, [ak, al]∗ = 0.
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In the following ζ1 = ζ2 = ζ > 0 is assumed.

Note that the choice of a noncommutative parameter has the freedom associated with a choice of
a background two-form [34]. Here the ζ in (6.1) is regarded as the only noncommutative parameter.

The algebra F on C is defined as follows. The Fock space H is a linear space spanned by the
bases generated by acting a†l ’s on |0, 0〉 :

1√
m1!m2!

(
a†1

)m1

∗
∗
(
a†2

)m2

∗
|0, 0〉 = |m1,m2〉 ,(2.4.2)

where m1 and m2 are positive integers and (a)m∗ stands for

m︷ ︸︸ ︷
a ∗ · · · ∗ a. The ground state |0, 0〉 satisfies

al |0, 0〉 = 0, ∀ l. Here, we define the basis of a dual vector space by acting al’s on 〈0, 0| as

1√
n1!n2!

〈0, 0| (a1)n1

∗ ∗ (a2)n2

∗ = 〈n1, n2| ,

where 〈0, 0| satisfies 〈0, 0| a†l = 0, ∀ l. Then we define a set of linear operators as

F := spanC (|m1,m2〉 〈n1, n2| ;m1,m2, n1, n2 = 0, 1, 2, · · · )(2.4.3)

where (|m1,m2〉 〈n1, n2|) |k1, k2〉 = δk1n1δk2n2 |m1,m2〉 and 〈k1, k2| (|m1,m2〉 〈n1, n2|) = δk1m1δk2m2 〈n1, n2|.
The product on F is defined as

(|j1, j2〉 〈k1, k2|) ◦ (|m1,m2〉 〈n1, n2|) := δk1m1δk2m2 |j1, j2〉 〈n1, n2| ,

so, F is an algebra.
There is a one to one correspondence between F and some subalgebra of C∞ (C2). For arbitrary

noncommutative Kähler manifold obtained by deformation quantization with separation of variables
[41], we can find the similar correspondence [40]. The following is the simplest example of the
correspondence.

Definition 2.14. (Twisted Fock representation). The linear map ι : F −→ C∞ (C2) is defined as

ι (|m1,m2〉 〈n1, n2|) = e(m1,m2,n1,n2) :=
zm1
1 zm2

2 e−
z1z̄1+z2z̄2

ζ z̄n1
1 z̄

n2
2√

m1!m2!n1!n2!
(√

ζ
)m1+m2+n1+n2

,(2.4.4)

especially ι (|0, 0〉 〈0, 0|) = e(0,0,0,0) = e−
z1z̄1+z2z̄2

ζ .
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Proposition 2.15. Let ι (F) be defined by

ι (F) := spanC
(
e(m1,m2,n1,n2);m1,m2, n1, n2 = 0, 1, 2, · · ·

)
.(2.4.5)

Then {ι (F) , ∗} is an algebra where ∗ is in (??).

Proof. After a little algebra, one can deduce the following identity

e(k1,k2,l1,l2) ∗ e(m1,m2,n1,n2) = δl1m1δl2m2e(k1,k2,n1,n2).(2.4.6)

Details are given in [40].

The identity (6.6) derives the following fact.

Proposition 2.16. The algebras (F , ◦) and {ι (F) , ∗} are isomorphic.
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Chapter 3

Gauge theory and D-brane

In this chapter, we will review the gauge theories derived from D-branes. First, we will review the
gauge theory on a normal flat spacetime. In particular, a special solution called an instanton solution
that can be obtained algebraically is mentioned. After that, we will explain the gauge theory on the
noncommutative space mentioned in Chapter 2. Next, we will explain the relationship between the
gauge field on the commutative space and the gauge field on the noncommutative space suggested
by the theory of physics, and further explain the Einstein metric suggested from there. Finally, the
concrete configuration of the instanton solution on the noncommutative space is described.

3.1 Gauge theory

Assume that g = TeG is a Lie algebra associated with a Lie group G, A := Aµdx
µ is a g valued

1-form on R4.
Gauge theories originate in physics, especially electromagnetism. F defined below is a field corre-

sponding to an electric field/magnetic field in electromagnetism, i.e. G = U (1), and A corresponds to
what is called a vector potential. Assume that A is a gauge potential on R4. F := dA−iA∧A is called
the field-strength form. And Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] = i [Dµ, Dν ] where F = Fµνdx

µ ∧ dxν .
In electromagnetism, following corresponds to Gauss’s law for magnetic fields and Faraday’s law

for electromagnetic induction.

Proposition 3.1. The following formula is called Bianchi identity.

dAF := dF − i [A,F ] = 0

Proof.

dF − i [A,F ] = −idA ∧ A+ iA ∧ dA− iA ∧ dA− A ∧ A ∧ A+ idA ∧ A+ A ∧ A ∧ A = 0

13



Definition 3.2. εµναβ is called Levi-Civita symbol and defined by:

εµναβ =


+1 if (µ, ν, α, β) is an even permutation of (1, 2, 3, 4)

−1 if (µ, ν, α, β) is an odd permutation of (1, 2, 3, 4)

0 otherwise

.

For F = Fµνdx
µ ∧ dxν , Hodge star operator ? in R4 is defined by:

?F :=
1

2
εµναβF

αβdxµ ∧ dxν .

Definition 3.3. The action of the gauge theory SYM is defined as

SYM :=

∫
R4

{
−1

2
tr (F ∧ ?F )

}
.

Like other classical physics, the equation of motion for gauge theory can be expressed as a solution
of variational problems.

Proposition 3.4. Let G be a semisimple Lie group and g be the Lie algebra of G. We denote T j as
a basis of g such that [

T a, T b
]
= fa

bcT
c, B

(
T k, T l

)
=
δkl
2
,

where B (·, ·) is a Killing form, and we put

L := −1

2
tr (FµνF

µν) .

From the Euler-Lagrange equation for SYM :

∂L
∂Ad

σ

− ∂

∂xρ
∂L

∂ (∂ρAd
σ)

= 0

the following equation is obtained.

DρFρσ := ∂ρFρσ + [Aρ, Fρσ] = 0.
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Proof. At first we express L by Aa
µ as

L = −1

4
F a
µνF

µνa

= −1

4
gµκgνλF a

µνF
a
κλ

= −1

4
gµκgνλ

(
∂µA

a
ν − ∂νA

a
µ − fa

bcA
b
µA

c
ν

) (
∂κA

a
λ − ∂λA

a
κ − fa

bcA
b
κA

c
λ

)
where

Fµν = iT aF a
µν , Aκ = iT aAa

κ, gµν = δµν .

Then
∂L
∂Ad

σ

− ∂

∂xρ
∂L

∂ (∂ρAd
σ)

= ∂ρFρσ + [Aρ, Fρσ] = 0.

This equation is called Yang-Mills equations. The law of minimum action and Bianchi identity
holds in electromagnetism. From these equations , we obtain Maxwell’s equations.

Assume that F is the curvature or field-strength form. We denote the elements of Hodge dual of
F by F̃µν := 1

2
εµναβF

αβ.
It is not easy to find all solutions to variational problems, but some special solutions are known

to be found algebraically. There is a special solution in gauge theory, called instanton.

Definition 3.5. F is decomposed into selfdual 2-form and anti-selfdual 2-form as F = F+ + F−,
where F± = 1

2
(F ± ?F ). If F = F+ or equivalently

(3.1.1) F− = 0

we call the corresponding gauge potential anti-instanton. Similarly, for F+ = 0 we call the gauge
potential instanton.

Proposition 3.6. The Hodge dual of F satisfies Yang-Mills equations:[
Dρ, F̃ρσ

]
= ∂ρF̃ρσ +

[
Aρ, F̃ρσ

]
= 0.

Proof. Jacobi identity (for ρ 6= σ, ρ 6= τ, σ 6= τ) is

[Dρ, [Dσ, Dτ ]] + [Dσ, [Dτ , Dρ]] + [Dτ , [Dρ, Dσ]] = 0

and this is same as the main equation.

15



Corollary 3.7. An anti-instanton is a solution of Yang-Mills equations. In other words

Fµν = F̃µν =⇒ ∂ρFρσ + [Aρ, Fρσ] = 0.

The instanton equation is derived from the action as follows. The action of the gauge theory SYM

is

SYM =

∫
R4

{
−1

2
tr (F ∧ ?F )

}
= −1

2

∫
R4

{
tr
((
F+ + F−

)
∧ ?
(
F+ + F−

))}
= −1

2

∫
R4

{
tr
(∣∣F+

∣∣2 + ∣∣F−∣∣2)}
where we use F+ ∧ F− = 0. So we find that the condition F+ = 0 or F− = 0 minimize SYM .

3.2 Gauge theory in noncommutative R4

The even-dimensional Euclidean space is a trivial Poisson manifold, and there is a Moyal product as
an example of the deformation quantization defined there. Here, we simply replace multiplication
that appeared in gauge theory with noncommutative products.

Moyal product introduced in Example ?? is defined as follows. For f, g ∈ C∞ (R4) [[~]] the
product ∗ : {C∞ (R4) [[~]]}2 −→ C∞ (R4) [[~]] is

f (x) ∗ g (x) := f (x) exp

(
i

2

←−
∂µθ

µν
−→
∂ν

)
g (x) ,

where θµν ∈ R and θµν = −θνµ. And the product derived from the Moyal product is also defined for
A.

Definition 3.8. Let A
(l)
µ dxµ be a g valued 1-form on R4 and Aµ :=

∑∞
l=0A

(l)
µ ~l.

Aµ ∗ Aν :=
∞∑

l,m,n=0

~l+m+n

l!
A(m)

µ

(←→
∆
)l
A(n)

µ ,

where
←→
∆ := i

2
∂µθ

µν∂ν . We define curvature two form by

F̂ :=
1

2
F̂µνdx

µ ∧ dxν = dA− iA ∧ ∗A,

where A ∧ ∗A := 1
2
(Aµ ∗ Aν) dx

µ ∧ dxν .
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3.3 Noncommutative instanton solutions

In this section, we briefly review instanton solutions in noncommutative R4. As mentioned ear-
lier, the instanton solution is a solution of gauge theory. In a commutative space, linear algebraic
derivation of instanton solutions is known[77]. The following introduces a generalized version of the
noncommutative space.

Assume that τk (k = 1, 2, 3) are Pauli matrices :

τ1 :=

(
0 1
1 0

)
, τ2 :=

(
0 −i
i 0

)
, τ3 :=

(
1 0
0 −1

)
.

We denote σk and σ̄l as the matrices defined as

(σ1, σ2, σ3, σ4) := (−iτ1,−iτ2,−iτ3, id) , (σ̄1, σ̄2, σ̄3, σ̄4) := (iτ1, iτ2, iτ3, id) .

And σ̄µν is defined as

σ̄µν :=
1

4
(σ̄µσν − σ̄νσµ) .

Definition 3.9. Dirac operators DA, D̄A are defined as

DA := σµDµ, D̄A := σ̄µD†µ,

and
Dµ ∗ f := ∂µf + Aµ ∗ f.

The instanton equation (??) is rewritten as

Pµν,ρτF
ρτ = 0,

where

Pµν,ρτ :=
1

4
(δµρδντ − δνρδµτ + εµνρτ ) .

We replace this F ρτ by F̂ ρτ , then the noncommutative version of the instanton equation is given as

Pµν,ρτ F̂
ρτ = 0. (l = 0, 1, 2, · · · )

The solution of this equation A
(l)
τ is called a smooth noncommutative deformed (SNCD) instanton.

From the instanton solution of commutative R4 the asymptotic behavior of the commutative instanton
A

(0)
µ is given by

A(0)
µ = gdg−1 +O′

(
|x|−2

)
, gdg−1 = O′

(
|x|−1

)
17



Let us define I (q) and C
(l)
στ as

I (q) :=
{
(p;m,n) ∈ Z3 | p+m+ n = q, p,m, n ≥ 0,m 6= q, n 6= q

}
,

C(l)
στ :=

∑
(p;l,m)∈I(n+1)

~p+m+n

p!

{
A(m)

σ

(←→
∆
)p
A(n)

τ − A(m)
τ

(←→
∆
)p
A(n)

σ

}
.

Then the instanton equation is equivalent to

P µν,ρτ
(
∂ρA

(l)
τ − ∂τA

(l)
ρ + i

[
A(0)

ρ , A(l)
τ

]
+ i
[
A(l)

ρ , A
(0)
τ

]
+ C(l)

στ

)
= 0. (l = 0, 1, 2, · · · )

Using the facts
A(0)

µ = gdg−1 +O′
(
|x|−2

)
and

gdg−1 = O′
(
|x|−1

)
,

we conclude

(3.3.1) C(1)
ρτ = O′

(
x−4
)
.

We impose the following condition for A(l)

A− A(0) = D∗A(0)B, A(l) = D∗A(0)B
(l),

where (
D∗A(0)

)µν
ρ
Bµν := δνρD

(0)µBµν − δµρD
(0)νBµν .

From (??) ∣∣B(1)
∣∣ < O′

(
|x|−2

)
and ∣∣A(1)

∣∣ < O′
(
|x|−3

)
are derived.

Fact 3.10. As shown in [80], if D̄A ∗ ψ̄i = 0

ψ̄ = O′
(
|x|−3

)
.

Theorem 3.11. The order of the smooth noncommutative deformed instantons is given by∣∣A(l)
∣∣ < O′

(
|x|−3+ε) .
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This theorem is proved in [83].

Proposition 3.12. Assume that

T µ :=
1

2

∫
R4

d4xxµ ∗ ψ̄† ∗ ψ̄ + ψ̄† ∗ ψ̄ ∗ xµ.

If D̄A ∗ ψ̄ = 0 then
2 [T µ, T ν ]+ = tr

(
S†Sσ̄µν

)
− 2iθµν+

where

D̄A∗ := σ̄µD†µ, ψ̃ :=t ψ̄σ2 = −g
−1Sx†

|x|4
+O′

(
|x|−4

)
and

[T µ, T ν ]+ := P µν,ρτ [Tρ, Tτ ] , θµν+ := P µν,ρτθρτ ,

with

Pµν,ρτ :=
1

4
(δµρδντ − δνρδµτ + εµνρτ ) .

This proposition is proved in [83].

Definition 3.13. For
∆A := Dµ ∗Dµ

and the Green function
∑∞

k=0G
(k)
A (x, y) ~k is defined by

∆A ∗GA (x, y) = δ (x− y) .

Proposition 3.14. Assume that

S† =

(
I
J†

)
, T µσ̄µ =

(
−B2 −B1

B†1 −B†2

)
.

If
2 [T µ, T ν ]+ = tr

(
S†Sσ̄µν

)
− 2iθµν+

then [
B1, B

†
1

]
+
[
B2, B

†
2

]
+ II† − J†J = − [z1, z̄1]∗ − [z2, z̄2]∗ ,

[B1, B2] + IJ = − [z1, z2]∗ .

These equations are called ADHM equations [77].
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These ADHM equations are the same as those given by Nekrasov and Schwarz [38]. This propo-
sition is proved in [83].

Theorem 3.15. [38] Assume B1, B2 ∈ Ck×k, I ∈ Ck×n, J ∈ Cn×k satisfy conditions[
B1, B

†
1

]
+
[
B2, B

†
2

]
+ II† − J†J = − [z1, z̄1]∗ − [z2, z̄2]∗

[B1, B2] + IJ = − [z1, z2]∗

and Ψ : Cn → Ck ⊕ Ck ⊕ Cn satisfy condition

D† ∗Ψ = 0, Ψ† ∗Ψ = 1 (a, b = 1, · · · , n)

where

D† :=
(

τ
σ†

)
, τ = (B2 − z2, B1 − z1, I) , σ

† =
(
−B†1 + z̄1, −B†2 + z̄2, J

†
)
.

Then
Aµ = iΨ† ∗ ∂µΨ

is an instanton.

Proof. What is needed is an anti-self duality of the gauge curvature. The gauge curvature F is

F = dA− iA ∧ ∗A = i
{
d
(
Ψ† ∗ dΨ

)}
+ i
(
Ψ† ∗ dΨ

)
∧ ∗
(
Ψ† ∗ dΨ

)
= i
(
dΨ† ∧ ∗dΨ

)
− i
(
dΨ† ∗Ψ ∗Ψ† ∧ ∗dΨ

)
= i
{
dΨ† ∗

(
1−Ψ ∗Ψ†

)
∧ ∗dΨ

}
.

Then Ψ ∗Ψ† = Q, where

Q := 1−D ∗
(
D† ∗ D

)−1 ∗ D†,
because Q2 = Q, D† ∗Q = 0. Hence

F = i
(
dΨ†

)
∗ D ∗

(
D† ∗ D

)−1 ∗ D† ∧ ∗dΨ = iΨ† ∗ (dD) ∗
(
D† ∗ D

)−1 ∧ ∗
(
dD†

)
∗Ψ

and

∂

∂zµ
D† = 1√

2
(−σ̄µ 0) ,

∂

∂zµ
D =

1√
2

(
−σµ
0

)
(−σ̄µ 0) , D† ∗ D =

(
� 0
0 �

)
, � = τ ∗ τ † = σ† ∗ σ.

Hence we find that this Aµ is an instanton.
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3.4 Noncommutative U(1) gauge theory on the Fock repre-

sentation of C2

In this section, we summarize notations for U(1) gauge theory on the Fock representation of C2 of
noncommutative C2 introduced in Section ??.

U(1) gauge connection in the noncommutative space is defined as follows (see for example [66]).

Definition 3.16. Rescaled coordinates of C2 are defined as

∂̂zl :=
z̄l
ζl
.

This acts on H as a linear operator.

Using ∂̂zl , ∂̂z̄m , let us introduce covariant derivatives and the gauge curvature as follows.

Definition 3.17. Covariant derivatives for a scalar field in fundamental representation φ ∈ F on
noncommutative C2 are defined as

∇̂zlφ̂ :=
[
∂̂zl , φ̂

]
∗
+ Âzl ∗ φ̂ = −φ̂ ∗ ∂̂zl + D̂zl ∗ φ̂

where we define a local gauge field Âzl ∈ F and

D̂zl := ∂̂zl + Âzl .

The gauge curvature is defined as

F̂zlz̄m : = i
[
∇̂zl , ∇̂z̄m

]
∗
= − iδlm

ζl
+ i
[
D̂zl , D̂z̄m

]
∗
,(3.4.1)

F̂zlzm : = i
[
∇̂zl , ∇̂zm

]
∗
= i
[
D̂zl , D̂zm

]
∗
,

F̂z̄lz̄m : = i
[
∇̂z̄l , ∇̂z̄m

]
∗
= i
[
D̂z̄l , D̂z̄m

]
∗
.

3.5 Noncommutative U (1) instanton in the Fock space

In Section ??, we make a short review of the method to make a U(1) instanton solution in [66] and
multi instanton solutions in [39].
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In noncommutative R4, Nekrasov and Schwarz found how to construct instanton gauge fields
[38] by using the ADHM construction [77]. Their work has encouraged studies of noncommutative
ADHM instantons. (See, for example, [39, 78, ?, ?, ?, 66, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. ) Another
method to construct noncommutative instantons as smooth deformations of commutative instantons
was provided in [80, 81, 82]. The correspondence between the smooth deformation and the ADHM
construction are discussed in [83]. On the other hand, there exist instanton solutions which are
not smoothly connected to commutative instantons. The commutative limit of the noncommutative
instantons are discussed in [?, ?, 85].

Noncommutative instantons are labeled by topological charge called instanton numbers. The
topological number of the noncommutative instanton is studied in [78, 86, 87, 88, 89]. It is shown
that the topological number coincides with the dimension of a vector space appearing in the ADHM
construction. In [87], this identification is shown when the noncommutative parameter is self-dual for
a U(N) gauge theory. In [88], the equivalence is shown with no restrictions on the noncommutative
parameters, but a noncommutative version of the Osborn’s identity (Corrigan’s identity) is assumed.
In [85] the final version of the proof was announced.

In Definition 44, a covariant derivative and gauge curvature are given as follows. Covariant

derivatives for scalar field φ ∈ F on noncommutative C2 are defined as ∇̂zlφ̂ :=
[
∂̂zl , φ̂

]
+ Âzlφ̂ =

−φ̂∂̂zl + D̂zlφ̂ where we define a local gauge field Âzl ∈ F and D̂zl := ∂̂zl + Âzl . The gauge curvature

is defined as F̂zlz̄m := i
[
∇̂zl , ∇̂z̄m

]
= − δlm

ζl
+ i
[
D̂zl , D̂z̄m

]
.

Using this notation, we introduce the ADHM construction in the following.

3.5.1 Noncommutative ADHM construction

Definition 3.18. Let B1, B2 ∈ Ck×k, I ∈ Ck×N , J ∈ CN×k be matrices satisfying

µC :=
[
B1, B

†
2

]
+ IJ = 0, µR :=

[
B1, B

†
1

]
+
[
B2, B

†
2

]
+ II† − J†J = (ζ1 + ζ2)Ek.(3.5.1)

These equations are called the deformed ADHM equations. Here ζ1, ζ2 are noncommutative param-
eter in (6.1).

Let Ek ∈ Ck×k be a unit matrix. We put β1, β2 ∈ Ck×k, τ ∈ Ck×(2k+1), σ ∈ C(2k+1)×k,D ∈
C(2k+1)×2k as

βj :=
Bj√
ζj
, τ := (B2 − z2Ek, B1 − z1Ek, I) , σ := (−B1 + z1Ek, B2 − z2Ek, I)

T

D† :=

(
τ
σ†

)
=

(
B2 − z2 B1 − z1 I

−B†1 + z̄1 B†2 − z̄2 J†

)
.
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The first step of the ADHM construction is solving the deformed ADHM equations (??).
The second step of the ADHM construction is solving the equation D† ∗Ψ = 0, Ψ† ∗Ψ = 1.
The third step of the ADHM construction is constructing gauge field Â as Âzl := Ψ†∗∂zlΨ , Âz̄l :=

Ψ† ∗ ∂z̄lΨ where Ψ is a solution of the equations in the second step.

Then the curvature tensor F̃zlz̄m constructed from Âzl , Âz̄m is self-dual that means F̃zlz̄m is an
instanton curvature tensor.

For the U(1) case, this construction process can be expressed more explicitly.
Assume

Ψ :=

 ψ+

ψ−
ξ

 =


√
ζ2

(
β†2 − a2

)
v

√
ζ1

(
β†1 − a1

)
v

ξ

(3.5.2)

∆̂ := ζ1

(
β1 − a†1

)(
β†1 − a1

)
+ ζ2

(
β2 − a†2

)(
β†2 − a2

)
,(3.5.3)

where ξ ∈ F , v ∈ Ck ⊗F . F is defined in (6.3), and
(
β†l − al

)
v :=

(
β†l ⊗ id− Ek ⊗ al

)
v, where id

is an identity mapping.
A vector space H is defined using (6.2) as

H := spanC (|0, 0〉 , |1, 0〉 , |0, 1〉 , |1, 1〉 , |2, 2〉 · · · ) .

Definition 3.19. A linear operators P on H is defined as

P := I†

(
exp

∑
α

β†αa
†
α

)
|0, 0〉G−1 〈0, 0|

(
exp

∑
α

βαaα

)
I,

where

G := 〈0, 0|

(
exp

∑
α

βαaα

)
II†

(
exp

∑
α

β†αa
†
α

)
|0, 0〉 .

Fact 3.20. This linear operator is a projection operator, i. e. , PP = P .

A proposition below is true.

Proposition 3.21 (N. Nekrasov and A. S. Schwarz [38]). Let Ψ, ∆̂v, ξ be ones given above in (??).
Then,

D†Ψ = 0, Ψ† ∗Ψ = 1 ⇐⇒ ∆̂v + Iξ = 0, v†∆̂v + ξ†ξ = 1.
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Lemma 3.22 (N. Nekrasov and A. S. Schwarz [38]). The operator S which satisfies SS† = id, S†S =
id− P exists. Let Λ be id+ I†∆̂−1I. If we put

ξ = Λ−1/2S†, v = −∆̂−1Iξ(3.5.4)

then

∆̂v + Iξ = 0, v†∆̂v + ξ†ξ = 1.(3.5.5)

This lemma means, if we find Λ−1/2 and ∆̂−1, then we can find a solution.

We define operators ∂̂zl and D̂zl on H in Section 6 as

∂̂zl :=
z̄l
ζl
, D̂zl := ∂̂zl + Âzl .

Noncommutative U (1) instanton curvature in the Fock space is also defined as

F̃zlz̄m := i
[
∂̂z̄m , Âzl

]
∗
− i
[
∂̂zl , Âzm̄

]
∗
+ i
[
Âl, Âm̄

]
∗
.

Using D̂zl , F̃ is rewritten as

F̃zlz̄m = i
[
D̂zl , D̂z̄m

]
∗
+

iδlm
ζl
.(3.5.6)

Assume Âzl := Ψ† ∗ ∂zlΨ, Âz̄l := Ψ† ∗ ∂z̄lΨ then

D̂zl = − 1

ζl
Ψ†z̄lΨ, D̂z̄l = − 1

ζl
Ψ†zlΨ.

Direct calculations derive the following results.

Theorem 3.23 (N. Nekrasov and A. S. Schwarz [38]). If Λ := id+I†∆̂−1I, ξ = Λ−1/2S†, v = −∆̂−1Iξ
then

D̂zl = − 1√
ζl
SΛ−1/2alΛ

1/2S†, D̂z̄l =
1√
ζl
SΛ1/2a†lΛ

−1/2S†.
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Theorem 3.24 (N. Nekrasov and A. S. Schwarz [38]). If F̃−zk z̄l is given by (??) and D̂zl , D̂z̄l are
defined in Theorem ??, then

F̃−z1z̄1 [k] =
i

ζ1
− i

ζ1
SΛ−

1
2a1Λ

1
2S†SΛ

1
2a†1Λ

− 1
2S† +

i

ζ1
SΛ

1
2a†1Λ

− 1
2S†SΛ−

1
2a1Λ

1
2S†,

F̃−z2z̄2 [k] =
i

ζ2
− i

ζ2
SΛ−

1
2a2Λ

1
2S†SΛ

1
2a†2Λ

− 1
2S† +

i

ζ2
SΛ

1
2a†2Λ

− 1
2S†SΛ−

1
2a2Λ

1
2S†,

F̃−z1z̄2 [k] = − i√
ζ1ζ2

SΛ−
1
2a1Λ

1
2S†SΛ

1
2a†2Λ

− 1
2S† +

i√
ζ1ζ2

SΛ
1
2a†2Λ

− 1
2S†SΛ−

1
2a1Λ

1
2S†,

F̃−z2z̄1 [k] = − i√
ζ1ζ2

SΛ−
1
2a2Λ

1
2S†SΛ

1
2a†1Λ

− 1
2S† +

i√
ζ1ζ2

SΛ
1
2a†1Λ

− 1
2S†SΛ−

1
2a2Λ

1
2S†.

This curvature is an instanton curvature.

3.5.2 U(1) k-instanton in the noncommutative C2

In this section we summarize U(1) multi-instanton solutions on C2 in [39]. For simplicity, let us
assume ζ1 = ζ2 =: ζ.

Definition 3.25. Noncommutative instanton curvature in the noncommutative C2 is defined as

F̂−C [k] =

(
F̂−z1z̄1 [k] F̂−z1z̄2 [k]

−F̂−z2z̄1 [k] −F̂−z1z̄1 [k]

)
:=

 ι
(
F̃−z1z̄1 [k]

)
ι
(
F̃−z1z̄2 [k]

)
ι
(
−F̃−z2z̄1 [k]

)
ι
(
−F̃−z1z̄1 [k]

) 
where ι is defined in Definition 42.

We choose

B1 =
k−1∑
l=1

√
2lζele

†
l+1, B2 =, 0 , I =

√
2kζek, J = 0

as a solution of the deformed ADHM equations (??). Here

e†l =
(
δ1,l δ2,l · · · δk−1,l δk,l

)
.

In this case, the operator S† in Lemma ?? is given by

S† =
∞∑

n1=0

|n1 + k, 0〉 〈n1, 0|+
∞∑

n1=0

∞∑
n2=1

|n1, n2〉 〈n1, n2| .(3.5.7)
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From Theorem ?? and (??), a U(1) k-instanton curvature in the noncommutative C2 is obtained
as follows.

F̃−z1z̄1 [k] =
i

ζ
− i

ζ

∞∑
n2=0

|0, n2〉 〈0, n2| (d1 (0, n2; k))
2

− i

ζ

∞∑
n1=1

∞∑
n2=0

|n1, n2〉 〈n1, n2|
{
(d1 (n1, n2; k))

2 − (d1 (n1 − 1, n2; k))
2} ,(3.5.8)

F̃−z2z̄2 [k] = −F̃−z1z̄1 [k]

(3.5.9)

F̃−z1z̄2 [k] = − i

ζ
|k − 1, 1〉 〈0, 0| d1 (k − 1, 1; k) d2 (0, 0; k)

(3.5.10)

− i

ζ

k−1∑
n1=1

|n1 + k − 1, 1〉 〈n1, 0| {d1 (n1 + k − 1, 1; k) d2 (n1, 0; k)− d1 (n1 − 1, 0; k) d2 (n1 − 1, 0; k)}

− i

ζ

∞∑
n1=1

∞∑
n2=1

|n1 − 1, n2 + 1〉 〈n1, n2|

× {d1 (n1 − 1, n2 + 1; k) d2 (n1, n2; k)− d1 (n1 − 1, n2; k) d2 (n1 − 1, n2; k)}

F̃−z2z̄1 [k] = F̃−z1z̄2 [k]
† ,

(3.5.11)

where d1 (n1, n2; k) and d2 (n1, n2; k) are given by.

d1 (n1, 0; k) =
√
n1 + k + 1

√
Λ (n1 + k + 1, 0)

Λ (n1 + k, 0)
,

d1 (n1, n2; k) =
√
n1 + 1

√
Λ (n1 + 1, n2)

Λ (n1, n2)
,(3.5.12)

d2 (n1, 0; k) =

√
Λ (n1 + k, 1)

Λ (n1 + k, 0)
,

d2 (n1, n2; k) =
√
n2 + 1

√
Λ (n1, n2 + 1)

Λ (n1, n2)
.(3.5.13)
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Here

Λ [k] (n1, n2) =
wk [k] (n1, n2)

wk [k] (n1, n2)− 2kwk−1 [k] (n1, n2)
,

and

wn [k] (n1, n2) =
n∑

l=0

{
n!

l!

(n1 − n2 + k + l)!

(n1 − n2 − k)!

2(n−l)

(n− l)!

(n2 + (n− l))!

n2!

}
.

Next we change these curvature operators into functions on C2 using the isomorphism (6.4).

F̂−z1z̄1 [k] :=ι
(
F̃−z1z̄1 [k]

)
(3.5.14)

=
i

ζ
− i

ζ

∞∑
n2=0

zn2
2 e−

z1z̄1+z2z̄2
ζ z̄n2

2

n2!ζn2
(d1 (0, n2; k))

2

− i

ζ

∞∑
n1=1

∞∑
n2=0

zn1
1 z

n2
2 e−

z1z̄1+z2z̄2
ζ z̄n1

1 z̄
n2
2

n1!n2!ζn1+n2

{
(d1 (n1, n2; k))

2 − (d1 (n1 − 1, n2; k))
2} ,

F̂−z2z̄2 [k] :=ι
(
F̃−z2z̄2 [k]

)
= −F̂−z1z̄1 [k] ,(3.5.15)

F̂−z1z̄2 [k] :=ι
(
F̃−z1z̄2 [k]

)
=− i

ζ

zk−11 z2e
− z1z̄1+z2z̄2

ζ√
(k − 1)!

(√
ζ
)k d1 (k − 1, 1; k) d2 (0, 0; k) ,(3.5.16)

− i

ζ

k−1∑
n1=1

zn1+k−1
1 z2e

− z1z̄1+z2z̄2
ζ z̄n1

1√
(n1 + k − 1)!n1!

(√
ζ
)2n1+k

× {d1 (n1 + k − 1, 1; k) d2 (n1, 0; k)− d1 (n1 − 1, 0; k) d2 (n1 − 1, 0; k)}

− i

ζ

∞∑
n1=1

∞∑
n2=1

zn1−1
1 zn2+1

2 e−
z1z̄1+z2z̄2

ζ z̄n1
1 z̄

n2
2√

(n1 − 1)! (n2 + 1)!n1!n2!
(√

ζ
)2n1+2n2

× {d1 (n1 − 1, n2 + 1; k) d2 (n1, n2; k)− d1 (n1 − 1, n2; k) d2 (n1 − 1, n2; k)} ,

F̂−z2z̄1 [k] =ι
(
F̃−z2z̄1 [k]

)
= −F̂−z1z̄2 [k],(3.5.17)

where a is a complex conjugate of a.
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In order to obtain Ricci-flat metrics in Section 6.3 and Section 6.4, we need the first three terms

of the expansion for F̂−C [k] in
√

1
ζ
.

F̂−z1z̄1 [k] =
i

ζ
− iz2z̄2

ζ2
(d1 (0, 1; k))

2 − iz1z̄1
ζ2

{
(d1 (1, 0; k))

2 − (d1 (0, 0; k))
2}

+ i
z1z̄1z2z̄2
ζ3

(d1 (0, 1; k))
2 + i

(z2z̄2)
2

ζ3
(d1 (0, 1; k))

2 + i
(z1z̄1)

2

ζ3
{
(d1 (1, 0; k))

2 − (d1 (0, 0; k))
2}

+ i
z1z̄1z2z̄2
ζ3

{
(d1 (1, 0; k))

2 − (d1 (0, 0; k))
2}+O

(
ζ−4
)
,

(3.5.18)

d1 (0, 0; k) =

√
(k + 1)Λ (k + 1, 0)

Λ (k, 0)
, d1 (1, 0; k) =

√
(k + 2)Λ (k + 2, 0)

Λ (k + 1, 0)
, d1 (0, 1; k) =

√
Λ (1, 1)

Λ (0, 1)
,

and

F̂−z1z̄2 [k] =− i

ζ
(√

ζ
)k zk−11 z2√

(k − 1)!

(
1− z1z̄1

ζ
− z2z̄2

ζ
+O

(
ζ−2
))

d1 (k − 1, 1; k) d2 (0, 0; k)

− i

ζ
(√

ζ
)k k−1∑

n1=1

zn1+k−1
1 z2z̄

n1
1√

(n1 + k − 1)!n1!ζn1

(
1− z1z̄1

ζ
− z2z̄2

ζ
+O

(
ζ−2
))

(3.5.19)

× {d1 (n1 + k − 1, 1; k) d2 (n1, 0; k)− d1 (n1 − 1, 0; k) d2 (n1 − 1, 0; k)}

− i

ζ

∞∑
n1=1

∞∑
n2=1

zn1−1
1 zn2+1

2 z̄n1
1 z̄

n2
2√

(n1 − 1)! (n2 + 1)!n1!n2!ζn1+n2

(
1− z1z̄1

ζ
− z2z̄2

ζ
+O

(
ζ−2
))

× {d1 (n1 − 1, n2 + 1; k) d2 (n1, n2; k)− d1 (n1 − 1, n2; k) d2 (n1 − 1, n2; k)} .

It is useful to distinguish the cases for k = 1 and k > 1.

k = 1 ⇒ F̂−z1z̄2 [1] =− iz2
ζ3/2

(
1− z1z̄1

ζ
− z2z̄2

ζ

)
d1 (0, 1; 1) d2 (0, 0; 1) +O

(
ζ−3
)
.(3.5.20)

k > 1 ⇒ F̂−z1z̄2 [k] = − izk−11 z2

ζ
(√

ζ
)k√

(k − 1)!

(
1− z1z̄1

ζ
− z2z̄2

ζ

)
d1 (k − 1, 1; k) d2 (0, 0; k)

− izk1z2z̄1√
k!ζ2

(√
ζ
)k {d1 (k, 1; k) d2 (1, 0; k)− d1 (0, 0; k) d2 (0, 0; k)}

− iz22 z̄1z̄2√
2!ζ3

{d1 (0, 2; k) d2 (1, 1; k)− d1 (0, 1; k) d2 (0, 1; k)}+O
(
ζ−4
)
.(3.5.21)
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Functions Λ, d1, d2 for k = 1 are useful for Subsection 6.4 :

Λ [1] (n1, n2) =
ω1 (n1, n2)

ω1 (n1, n2)− 2ω0 (n1, n2)
=

2 + n1 + n2

n1 + n2

,

d1 (n1, 0; 1) =
√
n1 + 2

√
Λ [1] (n1 + 2, 0)

Λ [1] (n1 + 1, 0)
=

√
(4 + n1) (1 + n1)

(3 + n1)
,

d1 (n1, n2; 1) =
√
n1 + 1

√
Λ [1] (n1 + 1, n2)

Λ [1] (n1, n2)
=

√
(n1 + 1) (3 + n1 + n2) (n1 + n2)

(1 + n1 + n2) (2 + n1 + n2)
,

d2 (n1, 0; 1) =

{
Λ [1] (n1 + 1, 1)

Λ [1] (n1 + 1, 0)

} 1
2

=

√
(n1 + 4) (n1 + 1)

(n1 + 2) (n1 + 3)
,

d2 (n1, n2; 1) =

√
(n2 + 1)Λ [1] (n1, n2 + 1)

Λ [1] (n1, n2)
=

√
(n2 + 1) (n1 + n2) (3 + n1 + n2)

(n1 + n2 + 1) (2 + n1 + n2)
.

3.6 Seiberg-Witten map

The purpose in this section is to derive a relational expression between F and F̂ that can be derived
by assuming commutability between gauge transformation and quantization. This section is based on
[34]. Here we define gauge transformations on normal commutative space and gauge transformations
on noncommutative space. Let G be a gauge group and g be the Lie algebra of G.

Definition 3.26. The gauge transformations δλ are defined as

δλAk := ∂kλ+ i [λ,Ak] ,

δλFkl := i [λ, Fkl] ,

where λ and A are g valued scalar field and gauge field on gauge group G, respectively. The gauge
transformations of noncommutative U (N) gauge theory δ̂λ̂ are defined as

δ̂λ̂Âk := ∂kλ̂+ iλ̂ ∗ Âk − iÂk ∗ λ̂
δ̂λ̂F̂kl := iλ̂ ∗ F̂kl − iF̂kl ∗ λ̂

where F̂kl := ∂kÂl − ∂lÂk − iÂk ∗ Âl + iÂl ∗ Âk. Âk and the gauge parameter field λ̂ takes values in
(C∞ (R4) [[~]] , ∗) tensored with N ×N hermitian matrices, for some N .

The reason why Newtonian mechanics is sufficient in daily life is that Planck’s constant is suffi-
ciently small. Similarly, a case where the noncommutative parameter θ is small is considered.
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Remark 3.27. From the above gauge transformation we find that

δ̂λ̂Âi = ∂iλ̂− θkl∂kλ̂∂lÂk +O
(
θ2
)
,

δ̂λ̂F̂ij = −θkl∂kλ̂∂lF̂ij +O
(
θ2
)
,

and F̂ij = ∂iÂj − ∂jÂi + θkl∂kÂi∂lÂj +O (θ2).

From the consistency of physical picture of D-brane theory discussed in Section ?? the following
assumption is naturally obtained

(3.6.1) Â (A) + δ̂λ̂Â (A) = Â (A+ δλA) .

This assumption means that there is a map Â, λ̂ from commutative gauge theory to noncommu-
tative gauge theory, and gauge transformations for commutative gauge theory and noncommutative
gauge theory are compatible.

Proposition 3.28. Assume A′ (A) := Â−A, λ′ (λ,A) := λ̂ (λ,A)− λ. Expanding (??) in powers of
θ, we find that we need

(3.6.2) A′k (A+ δλA)− A′k (A)− ∂kλ
′ − i [λ′, Ak]− i [λ,A′k] =

−θij

2
(∂iλ∂jAk + ∂jAk∂iλ) +O

(
θ2
)
.

This proposition is proved in [34] in P28.

Proposition 3.29. If

Âk (A) = Ak −
θij

4
{Ai, ∂jAk + Fjk}+O

(
θ2
)
,

λ̂ (λ,A) = λ+
θkl

4
{∂kλ,Al}+O

(
θ2
)
,

where {Aj, ∂kAl} := Aj · ∂kAl + ∂kAl · Aj as matrix products, then these are the solutions of (3.1).
Hence

F̂ij = Fij +
θkl

4
(2 {Fik, Fjl} − {Ak, DlFij + ∂lFij}) +O

(
θ2
)
.

This proposition is also proved in [34] in P28.
The following lemma is used here for the next proposition, so it is described here.

Lemma 3.30.

δθkl
∂

∂θkl
(f ∗ g) = δθkl

∂f

∂xk
∗ ∂g

∂xl

at θ = 0.

30



This lemma is also proved in [34] in P29.

Proposition 3.31. Assume that δÂk (θ) , δλ̂ (θ) , δF̂ij (θ) are defined as

δÂk (θ) := δθkl
∂

∂θkl
Âk (θ) , δλ̂ (θ) := δθkl

∂

∂θkl
λ̂ (θ) , δF̂ij (θ) := δθkl

∂

∂θkl
F̂ij (θ) .

Then

δÂk (θ) = −1

4
δθkl

[
Âk ∗

(
∂lÂi + F̂li

)
+
(
∂lÂi + F̂li

)
∗ Âk

]
,

δλ̂ (θ) =
1

4
δθkl (∂kλ ∗ Al + Al ∗ ∂kλ) ,

δF̂ij (θ) =
1

4
δθkl

[
2F̂ik ∗ F̂jl + 2F̂jl ∗ F̂ik − Âk ∗

(
D̂lF̂ij + ∂lF̂ij

)
−
(
D̂lF̂ij + ∂lF̂ij

)
∗ Âk

]
.(3.6.3)

This proposition is also proved in [34] in P29.
The differential equation (??) can be solved explicitly for the important case of a rank one gauge

field with constant F̂ . In this case, the equation can be written

(3.6.4) δF̂ = −F̂ δθF̂ .

The solution with the boundary condition F̂ (θ = 0) = F for (??) is

(3.6.5) F̂ (x) =

(
1

1 + Fθ
F

)
(x) .

3.7 Dirac-Born-Infeld Action

The actual time evolution path followed by the system corresponds to the stationary point (usually
the minimum point) of actions. The stationary point of the action is given by a variation on the
action integral. This section is based on [34] and [?], so we use all symbols and notations as the same
ones in [34] and [?] .

3.7.1 Approximate theory when B is small

Definition 3.32. For slowly varying fields on a single Dp-brane, the effective Lagrangian is the
Dirac-Born-Infeld Lagrangian

LDBI :=
2π

gs (2πκ)
p+1
2

√
det (g + κ (F +B))
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and for slowly varying F̂ the effective Lagrangian of the noncommutative gauge fields is

L̂DBI := L
(
F̂
)
=

2π

Gs (2πκ)
p+1
2

√
det
(
G+ κF̂

)
where κ = 2πα′.

The following formula is easily obtained with d (detA) = tr (A−1dA) detA.

(3.7.1) ∂l det (G+ F )
1
2 =

1

2
det (G+ F )

1
2

(
1

G+ F

)
ji

∂lFij

Proposition 3.33. The following approximate expression can be considered.√
det (1 +M) = 1− 1

4
TrM2 − 1

8
TrM4 +

1

32

(
TrM2

)2
+O

(
M6
)

for antisymmetric M .

Proof. This equation can be derived using det (expA) = exp (trA).√
det (1 +M) = exp

[
Tr {log (1 +M)}

2

]
= exp

{
1

2
Tr

(
M − M2

2
+
M3

3
− M4

4
+
M5

5
+O

(
M6
))}

= exp

(
−Tr (M

2)

4
− Tr (M4)

8
+O

(
M6
))

= exp

(
−Tr (M

2)

4

)
exp

(
−Tr (M

4)

8
+O

(
M6
))

=

(
1− Tr (M2)

4
+

{Tr (M2)}2

32

)(
1− Tr (M4)

8

)
+O

(
M6
)
.

We consider the boundary conditions:

(3.7.2) G = g − κ2Bg−1B = (g − κB) g−1 (g + κB) ,

and

(3.7.3) θij = −κ2
(
(g + κB)−1B (g − κB)−1

)ij
.
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Proposition 3.34 ( N. Seiberg and E. Witten[34]). If

LDBI (F = 0) = L̂DBI

(
F̂ = 0

)
where L̂DBI and LDBI are as described above, then

Gs = gs

√
detG

det (g + κB)
= gs

1√
det
[{

(g + κB)−1 − 1
κ
θ
}
(g + κB)

] .
Proof. Since the boundary conditions (??) and (??),

(g + κB)−1 = G−1 +
1

κ
θ.

Approximations are made by ignore higher order terms of θ and B.

Remark 3.35. For small B and θ we obtained the following.

G = (g + κB) g−1 (g − κB) ,

θ = −κ2g−1Bg−1 +O
(
B3
)
,

Gs = gs

(
1− κ2

2
Tr
(
g−1B

)2
+O

(
B4
))

,

F̂ij = Fij + θkl (FikFjl − Ak∂lFij) +O
(
θ2
)
.

As a result of approximation ignoring higher order terms, L̂DBI can be approximated as follows
and approximated to LDBI .

Lemma 3.36 ( N. Seiberg and E. Witten[34]). L̂DBI is expressed as

(3.7.4) L̂DBI =
2π

gs (2πκ)
p+1
2

det (g + κF )
1
2

(
1 +

κ

2
Tr

1

g + κF
B

)
+O

(
B2
)
+ total derivative.
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Proof. First,

√
det
(
G+ κF̂

)
= gs(2πκ)

p+1
2

2π
L̂DBI is calculated with remark ??.√

det
(
G+ κF̂

)
=
√

det (G+ κ (Fij + θkl (FikFjl − Ak∂lFij) +O (θ2)))

=
√

det (G+ κF + κ (θkl (FikFjl − Ak∂lFij) +O (θ2)))

= det

{
(G+ κF )

1
2

(
1 + κ

(
1

G+ κF

)
ji

θkl (FikFjl − Ak∂lFij) +O
(
θ2
))}

= det (G+ κF )
1
2

(
1− κTr

(
1

G+ κF
FθF

)
+

1

2
TrθF +O

(
θ2
))

+ total derivative

= det (G+ κF )
1
2

(
1− 1

2κ
Tr

(
1

G+ κF
GθG

)
+O

(
θ2
))

+ total derivative

where we use TrGθ = 0.

By integrating both of (??) under the setting of zero at infinity, the two can be said to be
approximately equal.

Theorem 3.37 ( N. Seiberg and E. Witten[34]).∫
d4yL̂DBI =

∫
d4xLDBI +O

(
θ2
)
.

Proof. From Lemma ?? and

L̂DBI = LDBI + total derivative+O
(
θ2
)
,

and this derive the result.

3.7.2 Dirac-Born-Infeld Action and Seiberg-Witten map

For simplicity the gauge group is assumed to be U (1) from this point on.

Definition 3.38. The action is defined as the integral over the Lagrangian density in commutative
R4 and noncommutative R4.

S (g, gs, A,B) :=
2π

gs (2πκ)
p+1
2

∫
d4y
√
− det (g + κ (F +B)),

Ŝ (G,Gs, A, θ) :=
2π

Gs (2πκ)
p+1
2

∫
d4x

√
− det

(
G+ κF̂

)
.

κ, g, G, A, B, θ, gs, Gs are the same as those described above.
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As we saw before, if

S (g, gs, A,B) = Ŝ (G,Gs, A, θ) +O
(√

κ∂F
)

for F = F̂ = 0,

Gs = gs

√
detG

det (g + κB)
.

And if
G−1 = (g + κB)−1 g (g − κB)−1 , θ = −κ2 (g + κB)−1B (g − κB)−1 ,

then

(g + κB)−1 = G−1 +
1

κ
θ.

G,Gs are defined as

G = G− κΦ

Gs = gs

√
det (G + κΦ)

det (g + κB)
= Gs

√
det (g + κB)

detG

√
det (G + κΦ)

det (g + κB)
= Gs

√
det (G + κΦ)

detG
= Gs.

Proposition 3.39 ( N. Seiberg and E. Witten[34]).∫
d4x

√
− det

{
G + κ

(
Φ + F̂

)}
=

∫
d4y
√

det (1 + Fθ)
√
− det {G + κ (Φ + F )}+O (ls∂F ) ,

where F µν (x) :=
(

1
1+Fθ

F
)
µν

(x).

Proof. At first S (g, gs, A,B) = Ŝ (G,Gs, A, θ)+O (
√
κ∂F ). Because Gs = gs

√
det(G+κΦ)
det(g+κB)

, (g + κB)−1 =
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G−1 + 1
κ
θ and G = G + κΦ the left side is

S (g, gs, A,B) =
2π

gs (2πκ)
p+1
2

∫
d4y
√
− det (g + κ (F +B))

=
2π

Gs (2πκ)
p+1
2

∫
d4y
√

− det (g + κ (F +B))

√
detG

det (g + κB)

=
2π

Gs (2πκ)
p+1
2

∫
d4y
√

− det
{
1 + κF (g + κB)−1

}
detG

=
2π

Gs (2πκ)
p+1
2

∫
d4y

√
− det

{
G+ κF

(
G−1 +

1

κ
θ

)
G

}
=

2π

Gs (2πκ)
p+1
2

∫
d4y
√

− det {G + κΦ + κF + Fθ (G + κΦ)}

=
2π

Gs (2πκ)
p+1
2

∫
d4y
√

det (1 + Fθ)
√

− det {G + κ (Φ + F )}

where F µν (x) :=
(

1
1+Fθ

F
)
µν

(x) .

On the other side, the right hand side is

Ŝ (G,Gs, A, θ) :=
2π

Gs (2πκ)
p+1
2

∫
d4x

√
− det

(
G+ κF̂

)
=

2π

Gs (2πκ)
p+1
2

∫
d4x

√
− det

(
G + κΦ + κF̂

)
because Gs = Gs and G = G− κΦ.

3.8 Eguchi-Hanson metric and gauge theory

This section is based on [59]. As a summary of the results obtained in Section ??, it was found that
there is a correspondence between the commutative action and the noncommutative action such that∫

d4x

√
det
{
G + κ

(
Φ + F̂

)}
=

∫
d4y
√

det (1 + Fθ)
√
det {G + κ (Φ + F )}+O (ls∂F ) ,

and there is a correspondence between the gauge curvatures such that

F µν (x) :=

(
1

1 + Fθ
F

)
µν

(x) ,
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where κ = 2πα′ = 2πl2s and with the ordinary U (1) field strength defined by

Fµν (x) := ∂µAν (x)− ∂νAµ (x) .

By comparing both sides of this equation, it can be seen that the relationship between commutative
space and noncommutative space can be considered as follows.

F̂ =

(
1

1 + Fθ
F

)
, d4x = d4y

√
det (1 + Fθ),

where
yµ = xµ + θµνÂν .

This is consistent with (??). If G̃ is defined as G̃ := 1 + Fθ then∫
d4y
√
det (1 + Fθ)

√
det {G + κ (Φ + F )} =

∫
d4y
√
det G̃

√
det {G + κ (Φ + F )}.

The right hand side of this equation looks like integration based on Riemann measures with G̃. If
one identifies from the effective metric a gravitational metric defined by

G̃µν =
1

2
(δµν + g̃µν) .

Definition 3.40. Eguchi-Hanson metric is defined by

ds2 = g̃µνdx
µdxν =

{√
r4 + t4 (f (r) + 1) δµν

2r2
−

√
r4 + t4 (f (r)− 1)

(
η3η̄k

)
µν
T k

r4

}
dxµdxν

where t is a free parameter and

r2 = x21 + x22 + x23 + x24, f (r) = 1− t4

r4 + t4
, η3 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


T 1 = −x1x3 − x2x4, T 2 = x1x4 − x2x3, T 3 =

1

2

{(
x1
)2

+
(
x2
)2 − (x3)2 − (x4)2} ,

η̄1 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , η̄2 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , η̄3 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 .
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Theorem 3.41. Assume that g̃µν is Eguchi-Hanson metric. If

g̃µν = δµν + 2 (Fθ)µν

then

Fµν =
t4η̄kµνT

k

r6
√

1 + t4

r4

−

(√
1 + t4

r4
− 1

)2

η3µν

2
√

1 + t4

r4

, F̂µν =
4

r2

√
1 + t4

r4
− 1√

1 + t4

r4
+ 1

η̄kµνT
k

and F̂ is anti-selfdual.

This theorem is proved in [59].

Remark 3.42. If
g̃µν (x) = δµν + 2 (Fθ)µν

and

F̂ =
1

1 + Fθ
F

then

(3.8.1) g̃µν = δµν + 2

{
F̂
(
1− θF̂

)−1
θ

}
µν

=

{
2
(
1− F̂ θ

)−1}
µν

− δµν .
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Chapter 4

Transformation from Noncommutative gauge
curvature to Hermitian Ricci flat metric

4.1 Introduction of this chapter

In this chapter, a linear map from differential two-forms to symmetric two-tensors in two-dimensional
Hermitian manifolds introduced in [33] is studied. This mapping is a linear mapping from a differ-
ential two form to a symmetric two tensor on a two-dimensional Hermitian manifold, and illustrates
another aspect of the Seiberg-Witten transformation. The original Seiberg-Witten transformation
converts a gauge field on a noncommutative manifold into a gauge field on a commutative manifold
with a background B field. On the other hand, it has been interpreted in [35, 33, 36] as a map from
a noncommutative gauge field to a Kähler metric.

This chapter clarifies the mapping of [35, 33, 36]. This mapping converts the (anti) self-dual
two-form on C2 into a Hermitian-Einstein metric of a two-dimensional complex manifold. It might
be worth noting that it is enough for these two-forms to be defined as a symplectic structure on a
commutative manifold, although this map was developed in the context of Seiberg-Witten map in
noncommutative gauge theory. However, this correspondence between the self-dual 2-form and the
Hermitian-Einstein metric can be lifted into noncommutative space after quantization (canonical or
deformation) [37].

The second purpose of this chapter is to construct explicit examples of Hermite-Einstein metrics
from U(1) instantons on noncommutative space. U(1) instantons on noncommutative C2 were found
by Nekrasov and Schwarz [38]. We construct two forms from U(1) multi-instants on noncommu-
tative space given in the form of operators acting on Fock space in [39]. A Fock space is defined
by a Heisenberg algebra generated by a polynomial over a noncommutative manifold. There is a
correspondence between linear operators acting on Fock space and ordinary functions [40]. This

39



transformation can be applied to any noncommutative Kähler manifold obtained by deformation
quantization with separation of variables [41]. Concrete Hermitian-Einstein metrics are obtained by
transforming noncommutative instantons composed of linear operators into ordinary functions using
the transformation of [40].

Here we refer to some research related to the subject of this chapter. In [42, 43], noncommu-
tative U(1) gauge theory is a fundamental description of Kähler gravity at all scales, including the
Planck scale, and is speculated to emerge quantum gravity. Recently, [44, 45, 46] showed that elec-
tromagnetism in noncommutative space-time can be realized as a theory of gravity, and that the
symplectization of the space-time geometry is the origin of gravity. Such a picture is called emer-
gency gravity and suggests a candidate for the space-time origin. See also the related article in the
bibliography.[55, 52, 54, 47, 53, 48, 49, 50, 51] As a bottom-up approach to emergent gravity formu-
lated in [56], the Eguchi Hanson metric [57, 58] is used to construct an anti-self dual symplectic U(1)
gauge field. The U(1) gauge field [38] corresponding to the Nekrasov-Schwarz instanton is reproduced
by the reverse process [59]. As a top-down approach to emergent gravity, U(1) instantons discovered
by Braden and Nekrasov [60] derive corresponding gravity metrics.

This chapter is organized as follows: Section ?? provides some linear algebraic formulas for
self-duality. In Section 5, the correspondence between the self-dual two-form and the Hermitian-
Einstein metric is studied. In Section 6, the Hermite Einstein metric is explicitly constructed from
noncommutative U(1) instantons.

4.2 Self-duality

Definition 4.1 (Hodge star operator). An automorphism ? on the set of 4× 4 alternative matrices
is defined as

?




0 ω12 ω13 ω14

−ω12 0 ω23 ω24

−ω13 −ω23 0 ω34

−ω14 −ω24 −ω34 0


 :=


0 ω34 −ω24 ω23

−ω34 0 ω14 −ω13

ω24 −ω14 0 ω12

−ω23 ω13 −ω12 0

 ,

(i.e., ω12 ↔ ω34, ω13 ↔ ω42, ω14 ↔ ω23) .

In other words, ?ωkl is defined as

?ωkl =
1

2

4∑
m,n

εklmnωmn,

where εklmn is Levi-Civita symbol. The operator ? is called the Hodge star operation in Euclidean
R4.
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Definition 4.2 (Anti-self-dual matrix). A 4× 4 alternative matrix ω± is an (anti-)self-dual matrix
if

?ω± = ±ω±.(4.2.1)

An (anti-)self-dual matrix θ± is defined as

θ± :=


0 −θ 0 0
θ 0 0 0
0 0 0 ∓θ
0 0 ±θ 0

(4.2.2)

where θ is a real number. Note that ω± and θ∓ commute each other:

ω±θ∓ = θ∓ω±.(4.2.3)

Definition 4.3 (Matrix g±). Let E4 be the 4 × 4 unit matrix and ω± be a 4 × 4 (anti-)self-dual
matrix. Assume that det [E4 − ω±θ∓] 6= 0, then 4× 4 matrix g± is defined as

g± := 2
(
E4 − ω±θ∓

)−1 − E4.

like (??).

Remark 4.4. g± is a symmetric matrix because of (4.3) and it can be inverted to

ω± =
(
g± − E4

) (
g± + E4

)−1 (
θ∓
)−1

.

The Remark 4 allows us to regard g± as a metric tensor since it is symmetric and nondegenerate.

Lemma 4.5. For any 4× 4 (anti-)self-dual matrix ω±,

?ω± = ±ω± =⇒ det
[
g±
]
= 1.(4.2.4)

This lemma is proved by a direct calculation.

Definition 4.6. The map ιskew :
{
ωC ∈M2[C] | ω†C = −ωC

}
−→M4[R] is defined as

ιskew

[(
ωC11̄ ωC12̄
ωC21̄ ωC22̄

)]
=


0 2iωC11̄ ωC12̄ − ωC21̄ i (ωC12̄ + ωC21̄)

−2iωC11̄ 0 −i (ωC12̄ + ωC21̄) ωC12̄ − ωC21̄
−ωC12̄ + ωC21̄ i (ωC12̄ + ωC21̄) 0 2iωC22̄

−i (ωC12̄ + ωC21̄) −ωC12̄ + ωC21̄ −2iωC22̄ 0

 .

Note that ωC11̄ and ωC22̄ are pure imaginary.
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If the coordinate transformation on the coordinate neighborhood is z1 := x2 + ix1, z2 := x4 + ix3,
then the ιskew is the pull-back of a two-form. This means

2∑
k,l=1

ωCkl̄dzk ∧ dz̄l =
1

2

4∑
k,l=1

ωkldx
k ∧ dxl =

1

2

4∑
k,l=1

(ιskew [ωC])kl dx
k ∧ dxl.

The above ιskew is defined as satisfying this relation.

Remark 4.7. ιskew satisfies the following relation

det [ιskew [ωC]] = 16 (det [ωC])
2 .

Using this result, the following lemma can be deduced.

Lemma 4.8. Suppose that the anti-Hermitian matrix ωC satisfies ωC22̄ = −ωC11̄, i. e. trωC = 0.
Then the two-form ιskew[ωC] is anti-self-dual, i. e. ,

?

{
ιskew

[(
ωC11̄ ωC12̄
ωC21̄ ωC22̄

)]}
= −ιskew

[(
ωC11̄ ωC12̄
ωC21̄ ωC22̄

)]
.

4.3 Hermitian-Einstein metrics and (anti-)self-dual two-forms

In this section, we discuss how to make a Hermitian-Einstein metric from an anti-self-dual two-form.
Let us define a u (1)-valued two-form on R4 by

4∑
k,l=1

ωkldx
k ∧ dxl.

where ω is an alternative matrix (ω)kl := ωkl. If ω is an anti-self-dual matrix, then the two-form is
called anti-self-dual two-form.

Let M be a Hermitian manifold and h be its metric. As a well-known fact, Ricci curvature Rj̄k

for a Hermitian manifold (M,h,∇) with the Levi-Civita connection ∇ takes a simple form

Rj̄k = ∂j̄∂k log (det [h]) .(4.3.1)

See, for example, [61, 62]. Let λ be a cosmological constant. When h satisfies the Einstein’s equation.

Rk̄l = λhk̄l

then M is called an Einstein manifold. In this chapter we will focus on a Ricci flat manifold (i. e.
Rk̄l = 0 or λ = 0). We consider M as a real manifold with local coordinates xµ (µ = 1, 2, 3, 4).
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Definition 4.9. The map ιsym :
{
h ∈M2[C] | h† = h

}
−→M4[R] is defined as

ιsym

[(
h11̄ h12̄
h21̄ h22̄

)]
=


h11̄ 0 1

2
(h12̄ + h21̄)

1
2i
(h21̄ − h12̄)

0 h11̄ − 1
2i
(h21̄ − h12̄)

1
2
(h12̄ + h21̄)

1
2
(h12̄ + h21̄) − 1

2i
(h21̄ − h12̄) h22̄ 0

1
2i
(h21̄ − h12̄)

1
2
(h12̄ + h21̄) 0 h22̄

 .

where h is a matrix and (h)kl̄ := hkl̄.

Remark 4.10. Assume that h is a Hermitian metric. If the coordinate transformation on a coordinate
neighborhood is z1 := x2 + ix1, z2 := x4 + ix3, the ιsym is then the pull-back of the Hermitian metric
given by

2∑
k,l=1

hkl̄dzkdz̄l =
4∑

k,l=1

(ιsym [h])kl dx
kdxl.

Hence ιsym squares the determinant:

det [ιsym (h)] = (det [h])2.

A Hermitian metric made with ι−1sym will be used below.

Definition 4.11. If h̃ ∈ C∞ (U,M2[C]) and h̃† = h̃, then

h̃ > 0 in U ⇐⇒ ∀u ∈ U, h̃ (u) > 0

where h̃ (u) > 0 means that h̃ is positive definite as a Hermitian matrix.

Lemma 4.12. If h ∈ C∞ (U,M2[C]) is a Hermitian matrix with det [h] = 1 and h is positive
(negative) at ∃p ∈ U , then h is positive (negative) in U .

Proof. This follows from{
h ∈M2[C]

∣∣ h = h†, det [h] = 1
}

=

{(
a b
b̄ d

)
∈M2[C]

∣∣ a, d ∈ R, a > 0, d > 0, ad ≥ 1, |b| =
√
ad− 1

}
∐{(

a b
b̄ d

)
∈M2[C]

∣∣ a, d ∈ R, a < 0, d < 0, ad ≥ 1, |b| =
√
ad− 1

}
which means two spaces are disconnected.
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From the above discussions, the following theorem is obtained.

Theorem 4.13. Let ω± be an (anti-)self-dual two-form on an open neighborhood U , i. e. ?ω± =
±ω±, and

h± := ι−1sym

[
2
(
E4 − ω±θ∓

)−1 − E4

]
.(4.3.2)

Then h± gives a Ricci-flat Hermitian metric on U . So (U, h±) is a local realization of an Einstein
manifold.

Proof. Because of Lemma ??, if ?ω± = ±ω±, then

det
[
h±
]
= 1.(4.3.3)

Because of Lemma ?? and Remark 4, h± is a metric tensor. From equations (5.1) and (5.3), Rj̄k =
∂j̄∂k log (det [h

±]) = 0.

Local complex coordinates can be arranged in such a way that the Jacobians of the transition
functions on overlapping charts are one on all the overlaps. In that case, det[h±] is a globally defined
function and the Ricci-flat condition reduces to the Monge-Ampére equation [63]

(4.3.4) det[h±] = κ,

where the constant κ is related to the volume of a Kähler manifold that depends only on the Kähler
class. Therefore Theorem 5.2 implies that the self-duality for the two-form ω± is equivalent to the
Ricci-flat by the metric h± [?, ?].

4.4 Hermitian-Einstein metric from noncommutative instan-

ton on C2

In the previous section we found the way to construct a Hermitian-Einstein metric from an (anti-)self-
dual two-form. To construct the Hermitian-Einstein metric, we will employ the instanton curvature
on noncommutative C2 as the (anti-)self-dual two-form. There are many ways to obtain noncom-
mutative C2 (see [?, ?] for a review and references therein). We use the Fock representation of
noncommutative C2 given in [40], which is based on the Karabegov’s deformation quantization [41].
There is a simple dictionary between the Fock representation and ordinary functions. Using the
dictionary, the Hermitian-Einstein metric is expressed in terms of usual functions.
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In Section ?? we constructed Fock representation of noncommutative C2. We put ζ1 = ζ2 = ζ > 0.
Then the commutators of coordinates are[

zk, z̄l
]
∗ = −ζδkl,

[
zk, zl

]
∗ = 0,

[
z̄k, z̄l

]
∗ = 0,

where [x, y]∗ := x∗y−y∗x. The creation and annihilation operators are given by ak :=
z̄k√
ζ
, a†k :=

zk√
ζ
,

then [
ak, a

†
l

]
∗
= δkl,

[
a†k, a

†
l

]
∗
= 0, [ak, al]∗ = 0.

Remember that the algebra F on C is defined as follows. The Fock space H is a linear space
spanned by the bases generated by acting a†l ’s on |0, 0〉 :

1√
m1!m2!

(
a†1

)m1

∗
∗
(
a†2

)m2

∗
|0, 0〉 = |m1,m2〉 .

The ground state |0, 0〉 satisfies al |0, 0〉 = 0, ∀ l. The dual vector space was defined as

1√
n1!n2!

〈0, 0| (a1)n1

∗ ∗ (a2)n2

∗ = 〈n1, n2| ,

where 〈0, 0| satisfies 〈0, 0| a†l = 0, ∀ l. Using them, F := spanC (|m1,m2〉 〈n1, n2|). Recall that
(|m1,m2〉 〈n1, n2|) |k1, k2〉 = δk1n1δk2n2 |m1,m2〉 and 〈k1, k2| (|m1,m2〉 〈n1, n2|) = δk1m1δk2m2 〈n1, n2|.

There is a dictionary between F and some subalgebra of C∞ (C2). The following is an important
correspondence. Using the linear map ι : F −→ C∞ (C2),

ι (|m1,m2〉 〈n1, n2|) = e(m1,m2,n1,n2) :=
zm1
1 zm2

2 e−
z1z̄1+z2z̄2

ζ z̄n1
1 z̄

n2
2√

m1!m2!n1!n2!
(√

ζ
)m1+m2+n1+n2

,

especially ι (|0, 0〉 〈0, 0|) = e(0,0,0,0) = e−
z1z̄1+z2z̄2

ζ .
Let us consider ι (F) as

ι (F) := spanC
(
e(m1,m2,n1,n2);m1,m2, n1, n2 = 0, 1, 2, · · ·

)
.

As we saw in Section ?? {ι (F) , ∗} is an algebra where ∗ is in (??), and the algebras (F , ◦) and
{ι (F) , ∗} are isomorphic. This isomorphism ι is a “Fock space - function space” dictionary.
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4.5 Ricci-flat metrics from noncommutative k-instantons

In this section, we make Ricci-flat metrics on a local neighborhood from noncommutative instantons
on C2. As we saw in Section 5, (anti)-self-dual two-forms satisfying (4.1) derive Ricci-flat metrics.
Nekrasov and Schwarz found in [38] how to construct noncommutative instantons on C2 by using the
ADHM method and the general solutions for the U(1) gauge theory are given in [66]. We introduce
the commutation relation of complex coordinates as (6.1). As (anti)-self-dual two-forms in Section
5, we employ noncommutative instantons given in [39].

The general instanton solutions (see [39]) satisfy the (anti)-self-dual relation. An instanton cur-
vature tensor is described by

F̂−C [k] :=

(
F̂−z1z̄1 [k] F̂−z1z̄2 [k]

F̂−z2z̄1 [k] −F̂−z1z̄1 [k]

)
,

and satisfies (4.1):

?
(
ιskew

(
F̂−C [k]

))
= −ιskew

(
F̂−C [k]

)
.(4.5.1)

See Lemma ?? in Section 4. This fact leads to the following result.

Proposition 4.14. If F̂−C is a k-instanton curvature tensor of U(1) gauge theory on noncommutative
C2, and

h [k] :=ι−1sym

{
2
(
E4 − ιskew

(
F̂−C [k]

)
θ+
)−1

− E4

}
=

1

4
∣∣∣F̂−C [k]

∣∣∣ θ2 − 1

(
−4iF̂−z1z̄1 [k] θ − 2 −4iF̂−z1z̄2 [k] θ

−4iF̂−z2z̄1 [k] θ 4iF̂−z1z̄1 [k] θ − 2

)
−
(

1 0
0 1

)
,(4.5.2)

then h [k] is an Einstein (Ricci-flat) metric.

A concrete example of k-instanton curvature tensors is given in [39] and the curvature is written
by using linear operators on a Fock space. It is known from (6.4) and Proposition 6.2 how to translate
the operators into functions. (See also Subsection ?? and [40]. ) Then the k-instanton curvature
tensor is expressed by concrete elementary functions as follows:

F̂−z1z̄1 [k] =
i

ζ
− i

ζ

∞∑
n2=0

zn2
2 e−

z1z̄1+z2z̄2

ζ z̄n2
2

n2!ζn2
(d1 (0, n2; k))

2

− i

ζ

∞∑
n1=1

∞∑
n2=0

zn1
1 z

n2
2 e−

z1z̄1+z2z̄2

ζ z̄n1
1 z̄

n2
2

n1!n2!ζn1+n2

{
(d1 (n1, n2; k))

2 − (d1 (n1 − 1, n2; k))
2} ,
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F̂−z1z̄2 [k] = − i

ζ

zk−11 z2e
− z1z̄1+z2z̄2

ζ√
(k − 1)!

(√
ζ
)k d1 (k − 1, 1; k) d2 (0, 0; k)

− i

ζ

k−1∑
n1=1

zn1+k−1
1 z2e

− z1z̄1+z2z̄2

ζ z̄n1
1√

(n1 + k − 1)!n1!
(√

ζ
)2n1+k

{d1 (n1 + k − 1, 1; k) d2 (n1, 0; k)− d1 (n1 − 1, 0; k) d2 (n1 − 1, 0; k)}

− i

ζ

∞∑
n1=1

∞∑
n2=1

zn1−1
1 zn2+1

2 e−
z1z̄1+z2z̄2

ζ z̄n1
1 z̄

n2
2√

(n1 − 1)! (n2 + 1)!n1!n2!
(√

ζ
)2n1+2n2

× {d1 (n1 − 1, n2 + 1; k) d2 (n1, n2; k)− d1 (n1 − 1, n2; k) d2 (n1 − 1, n2; k)} ,

F̂−z1z̄2 [k] = −F̂−z2z̄1 [k]
† ,

where n2 6= 0 and

d1 (n1, 0; k) =
√
n1 + k + 1

√
Λ (n1 + k + 1, 0)

Λ (n1 + k, 0)
,

d1 (n1, n2; k) =
√
n1 + 1

√
Λ (n1 + 1, n2)

Λ (n1, n2)
,(4.5.3)

d2 (n1, 0; k) =

√
Λ (n1 + k, 1)

Λ (n1 + k, 0)
,

d2 (n1, n2; k) =
√
n2 + 1

√
Λ (n1, n2 + 1)

Λ (n1, n2)
.(4.5.4)

Here

Λ [k] (n1, n2) =
wk [k] (n1, n2)

wk [k] (n1, n2)− 2kwk−1 [k] (n1, n2)
,

and

wn [k] (n1, n2) =
n∑

l=0

{
n!

l!

(n1 − n2 + k + l)!

(n1 − n2 − k)!

2(n−l)

(n− l)!

(n2 + (n− l))!

n2!

}
.

Note that some notations are slightly changed from [39] and imaginary unit factor causes here. See
also Section ??.

Using these instanton curvatures, Hermitian-Einstein metrics can be constructed by concrete
elementary functions according to the Theorem 5.2.
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4.6 Einstein metric from finite N

The full noncommutative U (1) instanton solution is very complicated. For simplicity, let us consider
the ζ-expansion.

In the previous section, F̂− is represented by an infinite series

F̂− =
∞∑
n=1

(
1

ζ

)n
2

F̂−
(n

2 )
.(4.6.1)

The anti-self-dual condition ?F̂− = −F̂− implies

?F̂−
(n

2 )
= −F̂−

(n
2 )

(4.6.2)

for each n/2. Therefore it is possible to employ an arbitrary partial sum of (6.12) determined by a

subset S ⊂ 1

2
Z>0

F̂−S =
∑
n
2
∈S

(
1

ζ

)n
2

F̂−
(n

2 )
(4.6.3)

for the anti-self-dual two-form to construct a Hermitian-Einstein metric h without losing rigorousness.
1 In the following we consider

F̂−{N
2 }

:=

N/2∑
n=1/2

(
1

ζ

)n
2

F̂−
(n

2 )
.(4.6.4)

Example 4.15. First let us make the Ricci-flat metric h [k]{1} from F̂−C [k]{1}. The curvature tensor

in this case is F̂−C [k]{1} =

( i
ζ

0

0 − i
ζ

)
, and its determinant is det

[
F̂−C [k]{1}

]
= 1

ζ2
.

So the metric h [k]{1} is given by

h [k]{1} :=
1

4 det
[
F̂−C [k]{1}

]
θ2 − 1

(
−4iF̂−z1z̄1 [k]{1}θ − 2 −4iF̂−z1z̄2 [k]{1}θ

−4iF̂−z2z̄1 [k]{1}θ 4iF̂−z1z̄1 [k]{1}θ − 2

)
−
(

1 0
0 1

)

=
1

1− 4ζ−2θ2

(
1− 4ζ−1θ + 4ζ−2θ2 0

0 1 + 4ζ−1θ + 4ζ−2θ2

)
=

(
1−2ζ−1θ
1+2ζ−1θ

0

0 1+2ζ−1θ
1−2ζ−1θ

)
.

This corresponds to the Euclidean metric essentially.
1One may choose even more loose condition than (6.14). One can choose a different subset S for each F̂−

z1z̄1 , F̂
−
z1z̄2

to obtain a Hermitian-Einstein metric.
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Example 4.16. Let us make a Ricci-flat metric h [k]{2} from F̂−C [k]{2}. From (??),(??),

F̂−C [k]{2} =
i

ζ

[
1− z2z̄2

ζ
(d1 (0, 1; k))

2 − z1z̄1
ζ

{
(d1 (1, 0; k))

2 − (d1 (0, 0; k))
2}]( 1 0

0 −1

)
− id1 (k − 1, 1; k) d2 (0, 0; k)

ζ1+k/2
√

(k − 1)!

(
0 zk−11 z2

z̄k−11 z̄2 0

)
.

Then its determinant is

det
[
F̂−C [k]{2}

]
=

1

ζ2

[
1− z2z̄2

ζ
(d1 (0, 1; k))

2 − z1z̄1
ζ

{
(d1 (1, 0; k))

2 − (d1 (0, 0; k))
2}]2

+
{d1 (k − 1, 1; k)}2 {d2 (0, 0; k)}2 zk−11 z2z̄

k−1
1 z̄2

ζ2+k (k − 1)!
.

So the metric h [k]{2} is given by

h [k]{2} :=
1

4 det
[
F̂−C [k]{2}

]
θ2 − 1

(
−4iF̂−z1z̄1 [k]{2}θ − 2 −4iF̂−z1z̄2 [k]{2}θ

−4iF̂−z2z̄1 [k]{2}θ 4iF̂−z1z̄1 [k]{2}θ − 2

)
−
(

1 0
0 1

)
,

which can be calculated concretely though its expression becomes complex. To simplify this we
assume k > 3, then

h [k]{2} =

 2

1− 4 det
[
F̂−C [k]{2}

]
θ2

− 1


(

1 0
0 1

)
+

4iF̂−z1z̄1 [k]{2}θ

1− 4 det
[
F̂−C [k]{2}

]
θ2

(
1 0
0 −1

)

=

 2

1− 4θ2ζ−2
[
1− z2z̄2

ζ
(d1 (0, 1; k))

2 − z1z̄1
ζ

{
(d1 (1, 0; k))

2 − (d1 (0, 0; k))
2}]2 − 1


(

1 0
0 1

)

−
4θ
ζ

[
1− z2z̄2

ζ
(d1 (0, 1; k))

2 − z1z̄1
ζ

{
(d1 (1, 0; k))

2 − (d1 (0, 0; k))
2}]

1− 4θ2ζ−2
[
1− z2z̄2

ζ
(d1 (0, 1; k))

2 − z1z̄1
ζ

{
(d1 (1, 0; k))

2 − (d1 (0, 0; k))
2}]2

(
1 0
0 −1

)
.

In next section, we discuss a Hermitian-Einstein metric obtained from 1-instanton solution.

4.7 Hermitian-Einstein metric from a 1-instanton

For the simplest example of the Hermitian-Einstein metric given in the previous discussion, we
describe a Hermitian-Einstein metric obtained from a single noncommutative U(1) instanton. Now
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we pay attention to low order terms.

For k = 1, F̂−C [1] is

F̂−z1z̄1 [1] =
i

ζ
− iz2z̄2

ζ2
(d1 (0, 1; 1))

2 − iz1z̄1
ζ2

{
(d1 (1, 0; 1))

2 − (d1 (0, 0; 1))
2}+O

(
ζ−3
)

=
i

ζ
− 2i

3

z2z̄2
ζ2

− iz1z̄1
ζ2

{
5

2
− 4

3

}
+O

(
ζ−3
)
=

i

ζ
− i

6ζ2
(4z2z̄2 + 7z1z̄1) +O

(
ζ−3
)

F̂−z1z̄2 [1] = − iz2
ζ3/2

(
1− z1z̄1

ζ
− z2z̄2

ζ

)
d1 (0, 1; 1) d2 (0, 0; 1) +O

(
ζ−3
)

= − 2iz2
3ζ3/2

(
1− z1z̄1

ζ
− z2z̄2

ζ

)
+O

(
ζ−3
)

F̂−z2z̄1 [1] = − iz̄2
ζ3/2

(
1− z1z̄1

ζ
− z2z̄2

ζ

)
d1 (0, 1; 1) d2 (0, 0; 1) +O

(
ζ−3
)

= − 2iz̄2
3ζ3/2

(
1− z1z̄1

ζ
− z2z̄2

ζ

)
+O

(
ζ−3
)

from (??),(??). Then

det
[
F̂−C [1]{2}

]
=

4z2z̄2
9ζ5

(ζ − z1z̄1 − z2z̄2)
2 − 1

36ζ4
(6ζ − 7z1z̄1 − 4z2z̄2)

2(4.7.1)

From this 1-instaoton curvature, the Hermitian-Einstein metric is given as

h [1]{2} :=
1

4 det
[
F̂−C [1]

]
{2}
θ2 − 1

(
−4iF̂−z1z̄1 [1]{2} θ − 2 −4iF̂−z1z̄2 [1]{2} θ

−4iF̂−z2z̄1 [1]{2} θ 4iF̂−z1z̄1 [1]{2} θ − 2

)
−
(

1 0
0 1

)

=
4

1− 4
{

4z2z̄2
9ζ5

(ζ − z1z̄1 − z2z̄2)
2 − 1

36ζ4
(6ζ − 7z1z̄1 − 4z2z̄2)

2
}
θ2

×
{
1

2

(
1 0
0 1

)
+
θ

ζ

(
1 0
0 −1

)
+

2θ

3ζ3/2

(
0 z2
z̄2 0

)
+

θ

6ζ2

(
−4z2z̄2 − 7z1z̄1 0

0 4z2z̄2 + 7z1z̄1

)
+

2θ

3ζ5/2

(
0 −z2 (z1z̄1 + z2z̄2)

−z̄2 (z1z̄1 + z2z̄2) 0

)}
−
(

1 0
0 1

)
.

4.8 Instantons from Ricci-flat metrics

Next, we will think of a converse of the last Theorem. That means “Is the F̂ instanton if the metric
is Ricci flat?”.
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First g
(
F̂ (x)

)
needs to be a metric. Since the metric matrix is a symmetric matrix, therefore

g
(
F̂ (x)

)
should be a symmetric matrix, in which case a condition that is “fairly close” to an

anti-self-dual condition is derived.
Then we consider “asymptotic to zero”. In conclusion, imposing a Ricci flat condition on the

metric when F̂ (x) satisfies this condition leads to F̂ (x) being anti-self-dual.
An (anti-)self-dual matrix θ is defined as

θ :=


0 −θ 0 0
θ 0 0 0
0 0 0 −θ
0 0 θ 0

 ,(4.8.1)

where θ is a real number.

Definition 4.17. Let E4 be the 4 × 4 unit matrix and F̂ be a 4 × 4 alternating matrix. Assume

that Det
[
E4 − F̂ θ

]
6= 0, then 4× 4 matrix g is defined as

(4.8.2) g
(
F̂ (x)

)
:= 2

(
E4 − F̂ θ

)−1
− E4.

g should be a symmetric matrix because we assume g
(
F̂ (x)

)
is a metric.

Lemma 4.18. Assume that g
(
F̂ (x)

)
is a symmetric matrix. If g

(
F̂ (x)

)
= 2

(
E4 − F̂ θ

)−1
− E4

then,

F̂ =


0 F̂12 F̂13 F̂14

−F̂12 0 F̂14 −F̂13

−F̂13 −F̂14 0 F̂34

−F̂14 F̂13 −F̂34 0

 .

This lemma is proved by a direct calculation. This means that if F̂12 + F̂34 = 0 then F̂ is an
anti-self-dual matrix. Now that the sufficient condition is“Ricci flat”, it is necessary to know how
the Ricci curvature is calculated by the gauge field. Before that, F̂C is defined same as Definition 39
for convenience.

F̂C (x) :=

(
F̂11̄ F̂12̄

F̂21̄ F̂22̄

)
= −1

2

(
iF̂12 −F̂13 + iF̂14

F̂13 + iF̂14 iF̂34

)
Then determinant of the metric matrix g

(
F̂ (x)

)
is calculated by the gauge field as below.
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Proposition 4.19. For above g, F̂ , F̂C,

Det
[
g
(
F̂ (x)

)]
= 1 + 8iθTr

[
F̂C (x)

]
− 32θ2

(
Tr
[
F̂C (x)

])2
+O

(
η3
)
.

The proof is given directly.

As is well known, the Ricci curvature is calculated from the determinant of the metric matrix.

Proposition 4.20. Suppose that the Hermitian matrix g(Definition 40) satisfies (6.18). Then its
Ricci curvature(5.1) is

Rj̄k (x) = θ∂j̄∂k

(
F̂12 + F̂34

)
+O

(
θ2
)
.

Proof.

Rj̄k (x) = ∂j̄∂k

[
log
{
Det

[
g
(
F̂ (x)

)]}]
= 2θi∂j̄∂kTr

[
F̂C (x)

]
− 8θ2∂j̄∂k

(
Tr
[
F̂C (x)

])2
− 16θ2Tr

[
F̂C (x)

]
∂j̄∂kTr

[
F̂C (x)

]
+ 16θ2

{(
∂j̄Tr

[
F̂C (x)

])(
∂kTr

[
F̂C (x)

])}
− 32iθ2Tr

[
F̂C (x)

]
∂j̄∂kTr

[
F̂C (x)

]
+O

(
θ3
)

In physics, “the field is almost zero at a far enough distance” is a natural setting.

Definition 4.21 (asymptotic to zero).“ f (z1, z2) is asymptotically zero” is defined as

lim
|z1|2+|z2|2→∞

f (z1, z2) = 0.

The following “Maximum principle” is a well-known fact in Harmonic analysis.

Lemma 4.22 (Maximum principle). Harmonic functions satisfy the following maximum principle:
if K is a nonempty compact subset of U , then f restricted to K attains its maximum and minimum
on the boundary of K. If U is connected, this means that f cannot have local maxima or minima,
other than the exceptional case where f is constant.

This lemma leads to the following corollary.

Corollary 4.23. Assume that f ∈ C∞ (C2,R). If f (z1, z2) is asymptotically zero and

∂j̄∂kf (z1, z2) = 0

then
f (z1, z2) = 0.
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Proof.
∆f (z1, z2) = ∂1̄∂1f (z1, z2) + ∂2̄∂2f (z1, z2) = 0.

Remark 4.24. Because g is a symmetric tenser

F̂ =


0 F̂12 F̂13 F̂14

−F̂12 0 F̂14 −F̂13

−F̂13 −F̂14 0 F̂34

−F̂14 F̂13 −F̂34 0


and F̂ij is asymptotically zero and ∂j̄∂k

(
F̂12 + F̂34

)
= 0 means

F̂12 = −F̂34.

Theorem 4.25. If F̂ij is asymptotically zero and Rj̄k (x) ≡ 0 (mod η2) then F̂ is an anti-self-dual
matrix.
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Chapter 5

Deformation quantization for a Kähler manifold

Until the previous chapter, we focused on noncommutative R4 as a flat Kähler manifold. From this
chapter, we consider noncommutative Kähler manifolds in general.

5.1 Karabegov’s deformation quantization

In this section, we review the deformation quantization with separation of variables to construct
noncommutative Kähler manifolds.

An N -dimensional Kähler manifold M is described by using a Kähler potential. Let Φ be a
Kähler potential and ω be a Kähler 2-form:

ω := igkl̄dz
k ∧ dz̄l, gkl̄ :=

∂2Φ

∂zk∂z̄l
.(5.1.1)

where zi, z̄i (i = 1, 2, . . . , N) are complex local coordinates.
The gk̄l is the inverse of the Kähler metric tensor gkl̄. That means gk̄lglm̄ = δk̄m̄. In the following, we
use

∂k =
∂

∂zk
, ∂k̄ =

∂

∂z̄k
.(5.1.2)

Deformation quantization is defined as follows.

Definition 5.1 (Deformation quantization). Deformation quantization of Poisson manifolds is de-

fined as follows. F is defined as a set of formal power series: F :=
{
f
∣∣∣ f =

∑
k fk~k, fk ∈ C∞ (M)

}
.

A star product is defined as

f ∗ g =
∑
k

Ck(f, g)~k(5.1.3)
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such that the product satisfies the following conditions.

1. (F ,+, ∗) is a (noncommutative) algebra.

2. Ck (·, ·) is a bidifferential operator.

3. C0 and C1 are defined as

C0(f, g) = fg,(5.1.4)

C1(f, g)− C1(g, f) = {f, g},(5.1.5)

where {f, g} is the Poisson bracket.

4. f ∗ 1 = 1 ∗ f = f .

Karabegov introduced a method to obtain a deformation quantization of a Kähler manifold in
[41]. His deformation quantization is called deformation quantizations with separation of variables.

Definition 5.2 (A star product with separation of variables). ∗ is called a star product with sepa-
ration of variables on a Kähler manifold when

a ∗ f = af(5.1.6)

for an arbitrary holomorphic function a and

f ∗ b = fb(5.1.7)

for an arbitrary anti-holomorphic function b.

We use
Dl̄ = g l̄k∂k = i{z̄l, ·}

and introduce
S :=

{
A | A =

∑
α

aαD
α, aα ∈ C∞ (M)

}
,

where α is a multi-index α = (α1, α2, . . . , αn). We also use the Einstein summation convention over
repeated multi-indices and aαD

α :=
∑

α aαD
α.

Example 5.3. C2

Remark 5.4. If Lf is defined as f ∗ g = Lfg then

Lf1 = f,
[
Lf , R∂l̄Φ

]
= 0

where Φ is a Kähler potential.
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Lemma 5.5. There are some useful formulae. Dl̄ satisfies the following equations.

[Dl̄, Dm̄] = 0 , [Dl̄, ∂m̄Φ] = δ l̄m̄, ∀l,m,(5.1.8)

where [A, B] = AB −BA .

Proof. The following follows from the Jacobi identity of Poisson brackets.[
Dl̄, Dm̄

]
f

= Dl̄Dm̄f −Dm̄Dl̄f

= i2
({
z̄l, {z̄m, f}

}
−
{
z̄m,

{
z̄l, f

}})
= −

({
z̄l, {z̄m, f}

}
+
{
z̄m,

{
f, z̄l

}})
=
{
f,
{
z̄l, z̄m

}}
= 0.

The following is proved by direct calculation.

[Dl̄, ∂m̄Φ]f

= Dl̄ (∂m̄Φ) f −Dl̄ (∂m̄Φ) f

=
(
g l̄k∂k∂m̄Φ

)
f

=
(
g l̄kgkm̄

)
f

= δ l̄m̄f.

Definition 5.6. A map from differential operators to formal polynomials is defined as

σ (A; ξ) :=
∑
α

aαξ
α,

where
A =

∑
α

aαD
α.

This map is called “twisted symbol”. It becomes easier to calculate commutators by using the
following theorem.
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Proposition 5.7 (Karabegov [41]). Let a(ξ) be a twisted symbol of an operator A. Then the twisted
symbol of the operator [A, ∂īΦ] is equal to ∂a/∂ξ

ī;

σ ([A, ∂īΦ]) =
∂

∂ξ ī
σ (A) .

Proof. This proposition follows from (9.8), i.e.

σ
(
[Dl̄, ∂īΦ]

)
= δ l̄ī.

Using above lemmas, one can construct a star product as a differential operator Lf such that
f ∗ g = Lfg.

Lemma 5.8 (Karabegov [41]). Assume that Bl̄ ∈ S. If

[Bl̄, ∂m̄Φ] = [Bm̄, ∂l̄Φ]

then the equation
[A, ∂m̄Φ] = Bl̄

is solvable.

Proof. Define a := σ (A) , bl̄ := σ (Bl̄) then the equation is equivalent to

∂a

∂ξ l̄
= bl̄.

If
∂bl̄
∂ξm̄

=
∂bm̄

∂ξ l̄

the equation is solvable. This condition is equivalent to

[A, ∂m̄Φ] = Bl̄.

Proposition 5.9 (Karabegov [41]). If B, B̃ ∈ S

[[∂l̄, B] , ∂m̄Φ] = [[∂m̄, B] , ∂l̄Φ]

where [B, ∂m̄Φ] =
[
∂m̄, B̃

]
.
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Proof. From the Jacobi identity

[[∂l̄, B] , ∂m̄Φ]

= − [[B, ∂m̄Φ] , ∂l̄]− [[∂m̄Φ, ∂l̄] , B]

=
[
∂l̄,
[
∂m̄, B̃

]]
+ [(∂l̄∂m̄Φ) , B]

= ∂l̄∂m̄B̃ + [(∂l̄∂m̄Φ) , B]

= ∂m̄∂l̄B̃ + [(∂m̄∂l̄Φ) , B]

= [[∂m̄, B] , ∂l̄Φ] .

Proposition 5.10 (Karabegov [41]). An operator Ãf =
∑∞

i=0 ~iAi ∈ S [[~]] exists and satisfies the
following. [

Ãf , z̄
l
]
= 0,

[
Ãf , R∂l̄Φ

]
= 0, Ãf1 = f, A0 = f

Proof. The condition
[
Ãf , R∂l̄Φ

]
= 0 leads to the following relation.

[A0, ∂l̄Φ] = 0

[A1, ∂l̄Φ] = [∂l̄, A0]

...

[An, ∂l̄Φ] = [∂l̄, An−1]

Then A0 = f is consistent and [Am, ∂l̄Φ] = [∂l̄, Am−1] is solvable.

Theorem 5.11. [Karabegov [41]]. For an arbitrary Kähler form ω, there exist a star product with
separation of variables ∗ and it is constructed as follows. Let f be an element of F and An ∈ S be a
differential operator whose coefficients depend on f i.e.

An = an,α(f)D
α, Dα =

n∏
i=1

(Dī)αi , (Dī) = gīl∂l,(5.1.9)

where α is an multi-index α = (α1, α2, . . . , αn). Then,

Lf =
∞∑
n=0

~nAn(5.1.10)

is uniquely determined such that it satisfies the following conditions.
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1. For R∂l̄Φ
= ∂l̄Φ + ~∂l̄, [

Lf , R∂l̄Φ

]
= 0 .(5.1.11)

2.

Lf1 = f ∗ 1 = f.(5.1.12)

Then the star products are given by

Lfg := f ∗ g,(5.1.13)

and the star products satisfy the associativity;

Lh(Lgf) = h ∗ (g ∗ f) = (h ∗ g) ∗ f = LLhgf.(5.1.14)

Recall that each two of Dī commute each other, so if a multi index α is fixed then the An is
uniquely determined. (9.12)-(9.14) imply that Lfg = f ∗ g gives deformation quantization.

We want to construct Lf . Before that, let us investigate Lz̄l . In fact, Lf can be composed of Lz̄l .

Lemma 5.12 (Karabegov [41]). Assume

Lz̄l =
∞∑
n=0

~nAn.

Then
A0 = z̄l, A1 = Dl̄.

Proof. Rewriting the associative property is as follows.

(f ∗ g) ∗ h = f ∗ (g ∗ h) ⇐⇒ Rh (Lfg) = Lf (Rhg)

In other words, the above equation can also be expressed using a commutator as

(f ∗ g) ∗ h = f ∗ (g ∗ h) ⇐⇒ [Lf , Rh] g = 0.

In particular, when f = z̄l and h = ∂m̄Φ, the following holds.

[Lz̄l , R∂m̄Φ] = 0

Since R∂m̄Φ = ∂m̄Φ + ~∂m̄ is known, the following holds for each ~.

(5.1.15) [A0, ∂m̄Φ] = 0, [A1, ∂m̄Φ] = [∂m̄, A0] , · · · , [An, ∂m̄Φ] = [∂m̄, An−1] .
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However, A0 = z̄l× by definition. If the polynomial a1 is defined by twisted symbol as a1 (ξ) :=
σ (A1, ξ), the above [A1, ∂m̄Φ] = [∂m̄, A0] is equal to

∂a1 (ξ)

∂ξm̄
= δ l̄m̄,

because
[
∂m̄, z̄

l
]
= δ l̄m̄. Considering the solution of the above equation, A1 = Dl̄.

As mentioned above, we show that Lf can be constructed from Lz̄l .

Theorem 5.13 (Karabegov [41]).

Lf =
∑
α

1

α!

(
∂

∂z̄

)α

f (Lz̄ − z̄)α

Proof. First, Af
α and Bα are defined as

Af
α :=

(
∂

∂z̄

)α

f, Bα :=
1

α!
(Lz̄ − z̄)α

and this theorem is proved if(∑
α

Af
αBα

)
1 = f,

[(∑
α

Af
αBα

)
, R∂l̄Φ

]
= 0

are proved.
(∑

αA
f
αBα

)
1 = f is easy because α 6= 0 =⇒ (Lz̄ − z̄)α 1 = 0. Next

[
Af

α, R∂l̄Φ

]
=

[(
∂

∂z̄

)α

f, ∂l̄Φ + ~∂l̄
]
= −~

(
∂

∂z̄

)α+(l̄)
f,

where α +
(
l̄
)
:= (α1, · · · , αl−1, αl + 1, αl+1, · · · , αn). Finally

[
Bα, R∂l̄Φ

]
is calculated from the equa-

tion
[(Lz̄m − z̄m) , ∂l̄Φ + ~∂l̄] = [−z̄m, ∂l̄Φ + ~∂l̄] = [−z̄m, ~∂l̄] = ~δm̄l̄ .

60



Then if αl 6= 0[
Bα, R∂l̄Φ

]
=

[
1

α!
(Lz̄ − z̄)α , ∂l̄Φ + ~∂l̄

]
=

[
1

α!

n∏
m=1

(Lz̄m − z̄m)αm , ∂l̄Φ + ~∂l̄

]

=
1

α!

n∑
i=1

{
i−1∏
m=1

(Lz̄m − z̄m)αm
[(
Lz̄i − z̄i

)αi , ∂l̄Φ + ~∂l̄
] n∏
m=i+1

(Lz̄m − z̄m)αm

}

=
1

α!

n∑
i=1

{
i−1∏
m=1

(Lz̄m − z̄m)αm

{
~αiδ

ī
l̄

(
Lz̄i − z̄i

)αi−1
} n∏

m=i+1

(Lz̄m − z̄m)αm

}

=
~(

α−
(
l̄
))
!
(Lz̄ − z̄)α−(l̄) ,

where α−
(
l̄
)
:= (α1, · · · , αl−1, αl − 1, αl+1, · · · , αn) and if αl = 0 then

[
Bα, R∂l̄Φ

]
= 0. Hence[(∑

α

Af
αBα

)
, R∂l̄Φ

]
=
∑
α

([
Af

α, R∂l̄Φ

]
Bα + Af

α

[
Bα, R∂l̄Φ

])
=
∑
α

(
−~
(
∂

∂z̄

)α+(l̄)
f × 1

α!
(Lz̄ − z̄)α +

(
∂

∂z̄

)α

f × ~(
α−

(
l̄
))
!
(Lz̄ − z̄)α−(l̄)

)
= 0.

5.2 Explicit Formulae for Noncommutative Deformations of

CPN

In this chapter, we construct star product specifically.
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5.2.1 Projective space

Projective space appears in all fields such as topology, differential geometry, and algebraic geometry.
Here we introduce the Fubini-Study metric, which is a Riemannian geometric aspect. This metric is
a Kähler metric.

Definition 5.14. Kähler potential Φ on CPN is defined as

Φ := log
(
1 + |z|2

)
where z1, z2 · · · zN are inhomogeneous coordinates of CPN . The Kähler metric is realized as

gij̄ = ∂i∂j̄Φ =

(
1 + |z|2

)
δij − zj z̄i(

1 + |z|2
)2 .

(
CPN , g

)
is called Projective space with the Fubini-Study metric.

Proposition 5.15 ( A. Sako, T. Suzuki and H. Umetsu [27] ). Assume

Lz̄l = z̄l + ~Dl̄ +
∞∑
n=2

~nAn

and

An =
n∑

m=2

a(n)m ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1

for
(
CPN , g

)
. Then

a
(n)
2 = a

(n−1)
2 = · · · = a

(2)
2 = 1

and
a(n)m = a

(n−1)
m−1 + (m− 1) a(n−1)m .

Proof. [An, ∂īΦ] = [∂l̄, Am−1] (??) leads to the relation. Left hand side is

[An, ∂īΦ]

=
n∑

m=2

a(n)m ∂j̄1Φ · · · ∂j̄m−1
Φ
[
Dj̄1 · · ·Dj̄m−1Dl̄, ∂īΦ

]
=

n−1∑
m=2

a
(n)
m+1

{
m∂j̄1Φ · · · ∂j̄m−1

Φ∂īΦD
j̄1 · · ·Dj̄m−1Dl̄ + δil∂j̄1Φ · · · ∂j̄mΦ∂īΦD

j̄1 · · ·Dj̄m−1

}
+ a

(n)
2

(
∂īΦD

l̄ + δil∂j̄ΦD
j̄
)

(5.2.1)
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and right hand side is

[∂l̄, Am−1]

=
n−1∑
m=2

a(n−1)m

[
∂ī, ∂j̄1Φ · · · ∂j̄m−1

ΦDj̄1 · · ·Dj̄m−1Dl̄
]

=
n−1∑
m=2

(
a(n−1)m +ma

(n−1)
m+1

){
m∂j̄1Φ · · · ∂j̄m−1

Φ∂īΦD
j̄1 · · ·Dj̄m−1Dl̄ + δil∂j̄1Φ · · · ∂j̄mΦ∂īΦD

j̄1 · · ·Dj̄m−1

}

+ a
(n−1)
2

(
∂īΦD

l̄ + δil∂j̄ΦD
j̄
)
.

(5.2.2)

Comparing (??) and (??) we get the results we want.

Remark 5.16. Stirling number of the second kind S (n,m) is defined as

S (n,m) = S (n− 1,m− 1) +mS (n− 1,m)

and

xn =
n∑

m=0

S (n,m)× x (x− 1) · · · (x−m+ 1) .

Then a
(n+1)
m+1 is a Stirling number of the second kind.

Example 5.17.

1 = S (0, 0) = S (1, 1) = S (2, 2) = · · ·
0 = S (1, 0) = S (2, 0) = S (3, 0) = · · ·
1 = S (1, 1) = S (2, 1) = S (3, 1) = · · ·
S (3, 2) = 3, S (4, 2) = 7, S (4, 3) = 6 · · ·

Proposition 5.18 ( A. Sako, T. Suzuki and H. Umetsu [27] ). Assume αm (t) :=
∑∞

n=m t
na

(n)
m then

Lz̄l = z̄l +
∞∑

m=1

αm (~) ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄

where α1 (t) := t.
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Proof.

Lz̄l = z̄l + ~Dl̄ +
∞∑
n=2

~nAn

= z̄l + ~Dl̄ +
∞∑
n=2

~n
n∑

m=2

a(n)m ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1

= z̄l + ~Dl̄ +
∞∑

m=2

(
∞∑

n=m

tna(n)m

)
∂j̄1Φ · · · ∂j̄m−1

ΦDj̄1 · · ·Dj̄m−1

= z̄l +
∞∑

m=1

αm (~) ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄.

Proposition 5.19 (A. Sako, T. Suzuki and H. Umetsu [27] ). Assume m ≥ 2 then

αm (t) :=
∞∑

n=m

tna(n)m = tm
m−1∏
n=1

1

1− nt
=

Γ (1−m+ t−1)

Γ (1 + t−1)
.

Proof. A recurrence formula of αm (t) can be derived from recurrence formula of a
(n)
m for m > 2.

αm (t) = t {αm−1 (t) + (m− 1)αm (t)}

Hence

αm (t) = tm−2
m−1∏
n=2

1

1− nt
× α2 (t)

where

α2 (t) =
∞∑
n=2

tna
(n)
2 =

∞∑
n=2

tn =
t2

1− t
.

As a result

αm (t) = tm
m−1∏
n=1

1

1− nt
=

Γ (1−m+ t−1)

Γ (1 + t−1)
.

Theorem 5.20 ( A. Sako, T. Suzuki and H. Umetsu [27] ). Using Proposition ??, for CPN , Lz̄l = z̄l∗
is given by

Lz̄l = z̄l +
∞∑

m=1

Γ (1−m+ t−1)

Γ (1 + t−1)
∂j̄1Φ · · · ∂j̄m−1

ΦDj̄1 · · ·Dj̄m−1Dl̄,
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then zi ∗ zj = zizj, zi ∗ z̄j = ziz̄j, z̄i ∗ z̄j = z̄iz̄j and

z̄i∗zj = z̄izj+
~
(
1 + |z|2

)2
z̄izj

|z|2 2F1

(
1, 2; 1− 1

~
;− |z|2

)
+~
(
δij −

2z̄izj

|z|2

)(
1 + |z|2

)
2F1

(
1, 1; 1− 1

~
;− |z|2

)
where 2F1 (a1, a2; b; z) is a hypergeometric function.

5.2.2 Hyperbolic space

Definition 5.21. The open subset of CN

CHN :=
{
z ∈ CN | |z|2 < 1

}
and the Kähler metric

gij̄ := ∂i∂j̄Φ

is called hyperbolic space or Poincaré disk model
(
CHN , g

)
where

Φ :=

(
1− |z|2

)
δij + z̄izj(

1− |z|2
)2 .

Proposition 5.22 ( A. Sako, T. Suzuki and H. Umetsu [27] ). Assume

Lz̄l = z̄l + tDl̄ +
∞∑
n=2

tnBn

and

Bn =
n∑

m=2

(−1)n−1 b(n)m ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1

for
(
CHN , g

)
. Then

b
(n)
2 = b

(n−1)
2 = · · · = b

(2)
2 = 1

and
b(n)m = b

(n−1)
m−1 + (m− 1) b(n−1)m ,

hence

Lz̄l = z̄l +
∞∑

m=1

βm (t) ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄,

where

βm (t) =
Γ (t−1)

Γ (n+ t−1)
.
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It is possible to take a slightly different method as follows.

Proposition 5.23 ( A. Sako, T. Suzuki and H. Umetsu [27] ). For CPN

Lf =
∞∑
n=0

cn (t) gj1k̄1 · · · gjnk̄n
(
Dj1 · · ·Djnf

)
Dk̄1 · · ·Dk̄n

where

cn (t) =
Γ (1− n+ 1/t)

n!Γ (1 + 1/t)
=
αn (t)

n!

Proof. From associativity

0 =
[
Lf , R∂l̄Φ

]
=
∞∑
n=0

[n {1− t (n− 1)} cn (t)− tcn−1 (t)] gj1k̄1gl̄i · · · gjn−1k̄n−1

(
DlDj1 · · ·Djn−1f

)
Dk̄1 · · ·Dk̄n−1 .

Hence if
n {1− t (n− 1)} cn (t)− tcn−1 (t) = 0

then

cn (t) =
Γ (1− n+ 1/t)

n!Γ (1 + 1/t)
.

Corollary 5.24 ( A. Sako, T. Suzuki and H. Umetsu [27] ). For CHN

Lf =
∞∑
n=0

cn (t) gj1k̄1 · · · gjnk̄n
(
Dj1 · · ·Djnf

)
Dk̄1 · · ·Dk̄n

where

cn (t) =
Γ (1/t)

n!Γ (n+ 1/t)
=
βn (t)

n!
.

This method will lead to later results.

66



Chapter 6

Deformation quantization with separation of
variables for a locally symmetric Kähler manifold

In this chapter, explicit formulas to obtain star products on locally symmetric Kähler manifolds are
constructed. A method of Karabegov in Chapter 2 and Chapter ?? is used for the constructing.

6.1 Deformation quantization with separation of variables

for a locally symmetric Kähler manifold

At first we list notations used in this chapter. Let M be a N -dimensional Kähler manifold, ∂i :=
∂

∂zi
, ∂ī :=

∂

∂z̄i
(i = 1, . . . , N) be tangent vector fields on a coordinate chart U ⊂M with its local coor-

dinates
(
z1, · · · , zN , z̄1, · · · , z̄N

)
, dzi, dz̄i be cotangent vector fields on U and Y µ1···µkµ̄1···µ̄m

ν1···νlν̄1···ν̄n∂µ1⊗
· · · ⊗ ∂µk

⊗ ∂µ̄1 ⊗ · · · ⊗ ∂µ̄m ⊗ dzν1 ⊗ · · · ⊗ dzνl ⊗ dz̄ν̄1 ⊗ · · · ⊗ dz̄ν̄n

∈ Γ
[
(T 1,0M)

⊗k ⊗ (T 0,1M)
⊗m ⊗

{
(T 1,0M)

∗}⊗l ⊗ {(T 0,1M)
∗}⊗n]

be a ((k,m) , (l, n))-tensor field.
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The classical style of covariant derivative ∇i := ∇∂i acts on coefficients of tensor fields as

∇iY
µ1···µkµ̄1···µ̄m

ν1···νlν̄1···ν̄n

= ∂iY
µ1···µkµ̄1···µ̄m

ν1···νlν̄1···ν̄n

+
k∑

q=1

Γ
µq

iρq
Y µ1µ2···ρq ···µkµ̄1···µ̄m

ν1···νlν̄1···ν̄n +
m∑
q=1

Γ
µ̄q

iρ̄q
Y µ1···µkµ̄1µ̄2···ρ̄q ···µ̄m

ν1···νlν̄1···ν̄n

−
l∑

q=1

Γ
σq

iνq
Y µ1···µkµ̄1···µ̄m

ν1ν2···σq ···νlν̄1···ν̄n −
n∑

q=1

Γ
σ̄q

iν̄q
Y µ1···µkµ̄1···µ̄m

ν1···νlν̄1ν̄2···σ̄q ···ν̄n

where Γi
jk is the Christoffel symbol.

The Riemannian curvature of a Hermitian manifold M is defined as

Rij̄k
l = ∂iΓ

l
j̄k − ∂j̄Γ

l
ik + Γn

j̄kΓ
l
in − Γn

ikΓ
l
j̄n.

For Hermitian manifolds, the Christoffel symbols are given as

Γl
jk = glq̄

∂gjq̄
∂zk

.

The Riemannian curvature of a Hermitian manifold M is obtained as

Rij̄kl̄ = −
∂2gj̄i
∂zk∂z̄l

+ gpq̄
∂giq̄
∂zk

∂gj̄p
∂z̄l

.

On a Kähler manifold, its metric is described by using Kähler potential Φ as (9.1). Then its Rie-
mannian curvature is given by

(6.1.1) Rij̄kl̄ = − ∂4Φ

∂zi∂z̄j∂zk∂z̄l
+ gpq̄

∂3Φ

∂zi∂z̄q∂zk
∂3Φ

∂zp∂z̄j∂z̄l
.

(See [61] P157. )

Operators D ~αn and D
~β∗
n are defined by using Dk = gkm̄∂m̄ and Dj̄ = gj̄l∂l as

D ~αn := Dαn
1Dαn

2 · · ·Dαn
N , D

~βn := Dβ1Dβ2 · · ·DβN

where

Dαk :=
(
Dk
)αk , Dβj :=

(
Dj̄
)βj

,

and ~αn and ~β∗n are N -dimensional vectors whose summation of their all elements are set to be n;

~αn ∈

{
(γn1 , γ

n
2 , · · · , γnN) ∈ ZN

∣∣∣ N∑
k=1

γnk = n

}
, ~β∗n ∈

{
(γn1 , γ

n
2 , · · · , γnN)

∗ ∈ ZN
∣∣∣ N∑

k=1

γnk = n

}
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i. e.

~αn := (αn
1 , α

n
2 , · · · , αn

N) , |~αn| :=
N∑
k=1

αn
k = n

~β∗n := (βn
1 , β

n
2 , · · · , βn

N)
∗ , | ~β∗n| :=

N∑
k=1

βn
k = n.

For ~αn /∈ ZN
≥0 we define D ~αn := 0.

For example, D(1,2,3) = D1 (D2)
2
(D3)

3
, D(2,4,0)∗ =

(
D1̄
)2 (

D2̄
)4

and D(5,−2,3) = 0 for a 3-
dimensional manifolds case with n = 6.

~ei is used as a N -dimensional vector

~ei = (δ1i, δ2i, · · · , δNi).(6.1.2)

From here to the end of this section, we make up recurrence relations to construct explicit
expressions of star products on locally symmetric Kähler manifolds.

A Riemannian(Kähler) manifold (M, g) is called a locally symmetric Riemannian(Kähler) man-
ifold when ∇mRijk

l = 0 (∀i, j, k, l,m). Only locally symmetric Kähler manifolds are studied in this
article.

We assume that a star product with separation of variables for smooth functions f and g on a
locally symmetric Kähler manifold M has a form

(6.1.3) Lfg = f ∗ g =
∞∑
n=0

∑
~αn

~β∗
n

T n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
ng
)
,

where T n
~αn

~β∗
n
are covariantly constants. If ~αn /∈ ZN

≥0 or ~βn /∈ ZN
≥0 then we define T n

~αn
~β∗
n
:= 0.

∑
~αn

~β∗
n

is

defined by the summation over all ~α∗n and ~β∗n satisfying
∣∣ ~α∗n∣∣ = ∣∣∣ ~β∗n∣∣∣ = n. In brief,

n =
∣∣ ~α∗n∣∣ := N∑

i=1

αn
i , n =

∣∣∣ ~β∗n∣∣∣ := N∑
i=1

βn
i ,

∑
~αn

~β∗
n

:=
∑

| ~αn|=| ~β∗
n|=n

.

Proposition 6.1. For the star product on a locally symmetric Kähler manifold M as (10.3), T 0
~α0

~β∗
0

and T 1
~ei, ~ej

are given as

T 0
~α0

~β∗
0
= 1, T 1

~ei, ~ej
= ~gij̄.

69



Proof. From (10.3), the star product for smooth functions f and g on M is given as

Lfg = T 0
~α0

~β∗
0
fg +

∑
~α1

~β∗
1

T 1
~α1

~β∗
1

(
D ~α1f

) (
D

~β∗
1g
)
+
∞∑
n=2

∑
~αn

~β∗
n

T n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
ng
)
.

T 0
~α0

~β∗
0

= 1 is trivial. C1(f, g) is expressed as

C1(f, g) =
∑
~α1

~β∗
1

T 1
~α1

~β∗
1

(
D ~α1f

) (
D

~β∗
1g
)
.

By the definition of the deformation quantization (9.5) the first term is related to the Poisson bracket:

~
n∑

i,j=1

gij̄
(
∂f

∂zi
∂g

∂z̄j
− ∂g

∂z̄j
∂f

∂zi

)
=
∑
~α1

~β∗
1

(T 1
~α1

~β∗
1
(gα1m̄∂m̄f)

(
gβ̄1l∂lg

)
− T 1

~α1
~β∗
1
(gα1m̄∂m̄g)

(
gβ̄1l∂lf

)
).

Then T 1
~ei, ~ej

= ~gij̄ is shown.

The purpose of remained part of this section is to replace the recurrence relations as differential
equations by those of algebraic equations. We need to calculate [Lf , ∂īΦ·] and [Lf , ∂ī] in (9.11).

Proposition 6.2. Let f and g be smooth functions on a locally symmetric Kähler manifold Mand
Lf be a left star product by f given as (10.3). Then

σ ([Lf , ∂īΦ]) =
∂σ (Lf )

∂ξ ī

=

{ ∑∞
n=0

∑
~αn

~β∗
n
βn
i T

n
~αn

~β∗
n

(
D ~αnf

) (
ξ1̄

βn
1 · · · ξ īβ

n
i −1 · · · ξN̄ βn

N

)
(βi 6= 0)

0 (βn
i = 0)

,

or equivalently,

[Lf , ∂īΦ] g =

{ ∑∞
n=0

∑
~αn

~β∗
n
βn
i T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n−~eig

)
(βi 6= 0)

0 (βn
i = 0)

.(6.1.4)

Proof. By Proposition 9.2,

σ ([Lf , ∂īΦ·]) =
∂σ (Lf )

∂ξ ī
=

∂

∂ξ ī

∞∑
n=0

∑
~αn

~β∗
n

T n
~αn

~β∗
n

(
D ~αnf

) (
ξ
~β∗
n

)
.

70



ξ
~β∗
n is explicitly written by ξ

~β∗
n = ξ1̄

βn
1 ξ2̄

βn
2 · · · ξN̄

βn
N , then

σ ([Lf , ∂īΦ·])

=

{ ∑∞
n=0

∑
~αn

~β∗
n
βn
i T

n
~αn

~β∗
n

(
D ~αnf

) (
ξ1̄

βn
1 · · · ξ īβ

n
i −1 · · · ξN̄ βn

N

)
(βi 6= 0)

0 (βi = 0)
.

The following formulas are given in [28].

Fact 6.3. For smooth functions f and g on a locally symmetric Kähler manifold, the following
formulas are given.

∇j̄1 · · ·∇j̄nf = gl1j̄1 · · · glnj̄nD
l1 · · ·Dlnf

∇k1 · · ·∇kng = gm̄1k1 · · · gm̄nknD
m̄1 · · ·Dm̄ng

Dl1 · · ·Dlnf = gl1j̄1 · · · glnj̄n∇j̄1 · · · ∇j̄nf

Dm̄1 · · ·Dm̄ng = gm̄1k1 · · · gm̄nkn∇k1 · · · ∇kng.

Fact 10.3 derives the following lemma.

Lemma 6.4. Let f and g be smooth functions on a locally symmetric Kähler manifold M . Let Lf

be a left star product by f given as (10.3). Then,

[Lf , ~∂ī]g

= ~
∞∑
n=0

∑
~αn

~β∗
n

N∑
k=1

∑
~αn

~β∗
n

βn
k (β

n
k − 1)

2
Rρ̄

k̄k̄
ī T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n+ ~eρ− ~ekg

)

+ ~
∞∑
n=0

N−1∑
k=1

N−k∑
l=1

∑
~αn

~β∗
n

βn
kβ

n
k+lRρ̄

k+lk̄
ī T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n+ ~eρ− ~ekg

)

− ~
∞∑
n=1

∑
~αn−1

~β∗
n−1

N∑
d=1

gīdT
n−1
~αn−1

~β∗
n−1

(
D ~αn−1+ ~edf

) (
D

~β∗
n−1g

)
.
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Proof. We can calculate [Lf , ~∂ī]g straightforwardly.

[Lf , ~∂ī]g =~[Lf ,∇ī]g

=~
∞∑
n=0

∑
~αn

~β∗
n

T n
~αn

~β∗
n

{(
D1
)αn

1 · · ·
(
DN
)αn

N f
}[(

D1̄
)βn

1 · · ·
(
DN̄
)βn

N

,∇ī

]
g

− ~
∞∑
n=0

∑
~αn

~β∗
n

T n
~αn

~β∗
n

{
∇ī

(
D1
)αn

1 · · ·
(
DN
)αn

N f
}{(

D1̄
)βn

1 · · ·
(
DN̄
)βn

N

g

}
.(6.1.5)

From Fact 10.3, the second term of (10.5) becomes

~
∞∑
n=0

∑
~αn

~β∗
n

T n
~αn

~β∗
n

{
∇ī

(
D1
)αn

1 · · ·
(
DN
)αn

N f
}{(

D1̄
)βn

1 · · ·
(
DN̄
)βn

N

g

}

= ~
∞∑
n=1

N∑
d=1

∑
~αn−1

~β∗
n−1

gīdT
n−1
~αn−1

~β∗
n−1

(
D ~αn−1+ ~edf

) (
D

~β∗
n−1g

)
.(6.1.6)

To calculate the first term of (10.5) we calculate
[
D

~β∗
n ,∇ī

]
g :[(

D1̄
)βn

1 · · ·
(
DN̄
)βn

N

,∇ī

]
g

=

{[(
D1̄
)βn

1

,∇ī

]{(
D2̄
)βn

2 · · ·
(
DN̄
)βn

N

}
+ · · ·+

{(
D1̄
)βn

1 · · ·
(
DN−1

)βn
N−1

}[(
DN̄
)βn

N

,∇ī

]}
g.

For these terms, we evaluate
(6.1.7)[
(Dā)

βn
a ,∇ī

] (
Da+1

)βn
a+1 · · ·

(
DN̄
)βn

N

g =

βn
a∑

m=1

(Dā)
m−1

[Dā,∇ī] (D
ā)

βn
a−m

(
Da+1

)βn
a+1 · · ·

(
DN̄
)βn

N

g

by cases, Case1 βn
a = 1, Ace2 βn

a > 1 and
∑N

k=a+1 β
n
k > 0, and Cave3 βn

a > 1 and
∑N

k=a+1 β
n
k = 0.
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Case1. If βn
a = 1 the last line of (10.7) is written as[
(Dā)

βn
a ,∇ī

] (
Da+1

)βn
a+1 · · ·

(
DN̄
)βn

N

g

=
N∑

j=a+1

βn
j∑

nj=1

Rī
āj̄

c̄ D
c̄
(
Da+1

)βn
a+1 · · ·

(
Dj̄
)βn

j −1 · · ·
(
DN̄
)βn

N

g

=
N∑

j=a+1

βn
j β

n
aRī

āj̄
c̄ D

c̄ (Dā)
βn
a−1
(
Da+1

)βn
a+1 · · ·

(
Dj̄
)βn

j −1 · · ·
(
DN̄
)βn

N

g.(6.1.8)

Recall that (Dj̄)n = 0 for negative n by definition.

Case2. If βn
a > 1 and

∑N
k=a+1 β

n
k > 0, by using Fact 10.3, we obtain (10.7) as

βn
a∑

m=1

(Dā)
m−1

[Dā,∇ī] (D
ā)

βn
a−m

(
Da+1

)βn
a+1 · · ·

(
DN̄
)βn

N

g(6.1.9)

=

βn
a∑

m=1

(Dā)
m−1

gābgāka,1 · · · gāka,βna−m [∇b,∇ī]∇ka,1 · · · ∇ka,βna−m

(
Da+1

)βn
a+1 · · ·

(
DN̄
)βn

N

g

=

βn
a∑

m=1

βn
a−m∑
na=1

(Dā)
m−1

Rī
āā

c̄ D
c̄ (Dā)

βn
a−m

(
Da+1

)βn
a+1 · · ·

(
DN̄
)βn

N

g

+

βn
a∑

m=1

N∑
j=a+1

∑
~αn

~β∗
n

βn
j Rī

āj̄
c̄ D

c̄ (Dā)
m
(
Da+1

)βn
a+1 · · ·

(
Dj̄
)βn

j −1 · · ·
(
DN̄
)βn

N

g.(6.1.10)

Here, we used

(6.1.11) [∇i,∇j]∇k1 · · ·∇kmf = −
m∑

n=1

Rijkn
l ∇k1 · · ·∇kn−1∇l∇kn+1 · · ·∇kmf.

for m ≥ 1.

Case3. If
∑N

k=a+1 β
n
k = 0 the R. H. S of (10.7) is written as

(6.1.12)

βn
a∑

m=1

(Dā)
m−1

[Dā,∇ī] (D
ā)

βn
a−m g =

βn
a∑

m=1

βn
a−m∑
na=1

(Dā)
m−1

Rī
āā

c̄ D
c̄ (Dā)

βn
a−m−1 g.
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Putting Case 1,2 and 3 into a shape and recalling that M is a locally symmetric Kähler manifold,
(10.7) is rewritten as

βn
a (β

n
a − 1)

2
Rī

āā
c̄ D

c̄ (Dā)
βn
a−2
(
Da+1

)βn
a+1 · · ·

(
DN̄
)βn

N

g

+
N∑

j=a+1

βn
j β

n
aRī

āj̄
c̄ D

c̄ (Dā)
βn
a−1
(
Da+1

)βn
a+1 · · ·

(
Dj̄
)βn

j −1 · · ·
(
DN̄
)βn

N

g.(6.1.13)

Then we find that the first term of (10.5) is expressed as

~
∞∑
n=0

∑
~αn

~β∗
n

N∑
k=1

βn
k (β

n
k − 1)

2
Rc̄

k̄k̄
ī T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n+~ec−2 ~ekg

)

+ ~
∞∑
n=0

∑
~αn

~β∗
n

N∑
k=1

N−k∑
l=1

βn
kβ

n
k+lRc̄

k+lk̄
ī T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n+~ec− ~ek−~ek+lg

)
(6.1.14)

Finally , we get the result with substituting (10.6) and (10.14) into (10.5)

[Lf , ~∂ī]g = ~
∞∑
n=0

∑
~αn

~β∗
n

N∑
k=1

βn
k (β

n
k − 1)

2
Rc̄

k̄k̄
ī T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n+~ec−2 ~ekg

)

+ ~
∞∑
n=0

∑
~αn

~β∗
n

N∑
k=1

N−k∑
l=1

βn
kβ

n
k+lRc̄

k+lk̄
ī T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n+~ec− ~ek−~ek+lg

)

− ~
∞∑
n=0

∑
~αn

~β∗
n

N∑
d=1

gīdT
n
~αn

~β∗
n

(
D ~αn+ ~edf

) (
D

~β∗
ng
)
.

Theorem 6.5. When the star product with separation of variables for smooth functions f and g on
a locally symmetric Kähler manifold is given as

f ∗ g =
∞∑
n=0

∑
~αn

~β∗
n

T n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
ng
)
,
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these covariantly constants T n
~αn

~β∗
n
are determined by the following recurrence relations

∞∑
n=0

∑
~αn

~β∗
n

βn
i T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n−~eig

)
− ~

∞∑
n=0

∑
~αn

~β∗
n

gīdT
n
~αn

~β∗
n

(
D ~αn+ ~edf

) (
D

~β∗
ng
)

+ ~
∞∑
n=0

∑
~αn

~β∗
n

N∑
k=1

N∑
p=1

βn
k (β

n
k − 1)

2
Rp̄

k̄k̄
ī T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n+ ~ep−2 ~ekg

)

+ ~
∞∑
n=0

∑
~αn

~β∗
n

N∑
ρ=1

N−1∑
k=1

N−k∑
l=1

βn
kβ

n
k+lRρ̄

k+lk̄
ī T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n+ ~eρ− ~ek− ~ek+lg

)
= 0

Proof. 0 = [Lf , ∂īΦ + ~∂ī] g is the condition that determines the star product. [Lf , ∂īΦ] g and
[Lf , ~∂ī] g were calculated in Proposition 10.2 and 10.4.

Theorem 6.6. When the star product with separation of variables for smooth functions f and g on
a locally symmetric Kähler manifold is given as

f ∗ g =
∞∑
n=0

∑
~αn

~β∗
n

T n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
ng
)
,

these smooth functions T n
~αn

~β∗
n
, which are covariantly constants, are determined by the following re-

currence relations for ∀i :

N∑
d=1

~gīdT n−1
~αn− ~ed ~β∗

n−~ei

= βiT
n
~αn

~β∗
n
+

N∑
k=1

N∑
p=1

~ (βn
k − δkp − δik + 1) (βn

k − δkp − δik + 2)

2
Rp̄

k̄k̄
ī T

n
~αn

~β∗
n− ~ep+2 ~ek−~ei

+
N−1∑
k=1

N−k∑
l=1

N∑
p=1

~ (βn
k − δkp − δik + 1)

(
βn
k+l − δ(k+l),p − δi,(k+l) + 1

)
Rp̄

k+lk̄
ī T

n
~αn

~β∗
n− ~ep+ ~ek+ ~ek+l−~ei

.
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Proof. Changing the summation of Theorem 10.5,

~
∞∑
n=1

∑
~αn

~β∗
n

N∑
d=1

gīdT
n−1

~αn− ~ed ~β∗
n−~ei

(
D ~αnf

) (
D

~β∗
n−~eig

)

=
∞∑
n=0

∑
~αn

~β∗
n

βn
i T

n
~αn

~β∗
n

(
D ~αnf

) (
D

~β∗
n−~eig

)

+ ~
∞∑
n=0

N∑
k=1

N∑
p=1

∑
~αn

~β∗
n

(βn
k − δkp − δik + 1) (βn

k − δkp − δik + 2)

2
Rp̄

k̄k̄
ī

× T n
~αn

~β∗
n− ~ep+2 ~ek−~ei

(
D ~αnf

) (
D

~β∗
n−~eig

)
+ ~

∞∑
n=0

N−1∑
k=1

N−k∑
l=1

N∑
p=1

∑
~αn

~β∗
n

(βn
k − δkp − δik + 1)

(
βn
k+l − δ(k+l),p − δi,(k+l) + 1

)
Rp̄

k+lk̄
ī

× T n
~αn

~β∗
n− ~ep+ ~ek+ ~ek+l−~ei

(
D ~αnf

) (
D

~β∗
n−~eig

)
,

and this implies the theorem.

6.2 One and two dimensional cases

By using Theorem 10.6 we can provide explicit star products for locally symmetric Kähler manifolds.
In this section, an explicit expression of a star product of a one-dimensional locally symmetric Kähler
manifold is constructed as an example. A two-dimensional locally symmetric Kähler manifold is also
considered.

At first, we study an explicit expression of a star product of a one-dimensional locally symmetric
Kähler manifold. Formal discussions are given in [32], and star products are studied in [25]. Complex
surfaces with arbitrary genus are known as a example of such manifolds when we chose proper
coordinates and metrics. The Scalar curvature R is defined as

R = gij̄Rij̄ = Rl̄
j̄ l̄
j̄.

Proposition 6.7. Let M be a one-dimensional locally symmetric Kähler manifold (N = 1) and f
and g be smooth functions on M . The star product with separation of variables for f and g can be
described as

f ∗ g =
∞∑
n=0

[
(g11̄)

n

{
n−1∏
k=1

2~
2k + ~k (k − 1)R

}{(
g11̄

∂

∂z

)n

f

}{(
g11̄

∂

∂z̄

)n

g

}]
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where
R = R1̄

1̄1̄
1̄.

Proof. N = 1, i = 1 and

D ~αnf =

(
g11̄

∂

∂z

)n

f, D
~β∗
ng =

(
g11̄

∂

∂z̄

)n

g

are substituted in Theorem 10.5 , then we obtain

~
∞∑
n=1

g11̄T
n−1 (Dnf1)

(
Dn−1f2

)
=
∞∑
n=0

{
n+

~n (n− 1)

2
R1̄

1̄1̄
1̄

}
T n (Dnf1)

(
Dn−1f2

)
or equivalently, the recurrence relation of T n is given as

T n = g11̄

{
2~

2n+ ~n (n− 1)R

}
T n−1.

From Proposition 10.1 the first term T 1 is given as T 1 = ~g11̄. Then, T n is given as

T n =
(
g11̄
)n n−1∏

k=1

{
2~

2k + ~k (k − 1)R

}
.

Next, we discuss star products on general two-dimensional locally symmetric Kähler manifolds.
According to Proposition 10.1, for a two-dimensional locally symmetric Kähler manifoldM , T 1

~α1
~β∗
1

is given as (
T 1
(1,0),(1,0) T 1

(1,0),(0,1)

T 1
(0,1),(1,0) T 1

(0,1),(0,1)

)
= ~

(
g11̄ g12̄
g21̄ g22̄

)
.

Next, we estimate T 2
~α2

~β∗
2

.

Proposition 6.8. Let M be a two-dimensional locally symmetric Kähler manifold and f and g be
smooth functions on M . T 2

~α2
~β∗
2

given in (10.3) is obtained by T 2
(2,0),(2,0) T 2

(2,0),(1,1) T 2
(2,0),(0,2)

T 2
(1,1),(2,0) T 2

(1,1),(1,1) T 2
(1,1),(0,2)

T 2
(0,2),(2,0) T 2

(0,2),(1,1) T 2
(0,2),(0,2)


= ~2

 (g1̄1)
2 g1̄1g2̄1 (g2̄1)

2

2g1̄1g1̄2 g2̄1g1̄2 + g1̄1g2̄2 2g2̄1g2̄2
(g1̄2)

2 g2̄1g2̄2 (g2̄2)
2

 2 + ~R1̄
1̄1̄

1̄ ~R2̄
1̄1̄

1̄ ~R2̄
1̄1̄

2̄

~R1̄
21̄

1̄ 1 + ~R2̄
21̄

1̄ ~R2̄
21̄

2̄

~R1̄
2̄2̄

1̄ ~R2̄
2̄2̄

1̄ 2 + ~R2̄
2̄2̄

2̄

−1 .
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6.3 Deformation quantization for complex Grassmann man-

ifold

In this section, recurrence relations to obtain star products on complex Grassmann manifolds are
derived. Especially we calculate star products of CPN . Note that this star product is also equal to
the ones given in [5, 12, 28], and if we put some restriction our star product is also equal to the one
given in [1], as they are shown in [27, 21]. The equivalence is also discussed in [31, 32]. In addition,
recurrence relations to construct star products for G2,2 was derived. Deformation quantization of
Grassmann manifolds and flag manifolds were studied in [17, 10, 11, 24].

Complex Grassmann manifold Gp,q is defined as a set of the whole p dimensional part vector
space of p + q dimensional vector space V . The local coordinate can be defined in a similar way to
S. Kobayashi and K. Nomizu pp. 160-162[61].

Let U be an open subset of Gp,q . A chart (U, φ) is defined by

U :=

{
Y =

(
Y0
Y1

)
∈M (p+ q, p;C) ; |Y0| 6= 0

}
and

φ : U −→M (q, p;C)

where
φ (Y ) = Y1Y

−1
0 .

This is a holomorphic map of U onto an open subset of p× q-dimensional complex space.
In this section, capital letter indices A,B,C · · · mean aa′, bb′, cc′ · · · . In the inhomogeneous

coordinates zI := zii
′
, zĪ := z īī

′
, (i = 1, 2, · · · p, i′ = 1, 2, · · · q) , the Kähler potential of Gp,q is given

as

Φ = ln
∣∣Eq + Z†Z

∣∣ ,(6.3.1)

where Z = φ (Y ) = (zI) ∈ M (q, p;C) and Eq ∈ M (q, q;C) is the unite matrix. From (12.1), the
following facts are derived.

Fact 6.9. The Fubini-Study metric (gIJ̄) is

ds2 = 2gIJ̄dz
Idz̄J ,

where
gIJ̄ := gii′j̄j̄′ = ∂I∂J̄Φ = ajibi

′j′ , gIJ̄ := gii
′j̄j̄′ = aijbj′i′ .

with
aij = δij + zik

′
z̄jk

′
, bi′j′ = δi′j′ + z̄ki

′
zkj

′
.
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Fact 6.10. The curvature of a complex Grassmann manifold is

RĀ
C̄D̄

B̄ = gPC̄gQD̄RĀPQB̄ = −δab′ Cδba′ D − δba′ Cδab′ D,(6.3.2)

where

δab′ cd′ =

{
1 (a = c, b′ = d′)
0 (otherwise)

.

From these facts, we can derive the recurrence relations to determine star products on the Grass-
mann manifolds.

A function similar to the determinant is defined on the matrix space.

Definition 6.11. Let C = (Ck,l)1≤k≤n,1≤l≤n be a n×n matrix. We define | · |+ as a C-valued function
on M (n, n;C) such that

|C|+ :=
∑

σn∈Sn

n∏
k=1

Ck,σn(k).

Example 6.12. Here we show some examples. These suggest some properties like determinant.

1. ∣∣∣∣ c11 c12
c21 c22

∣∣∣∣+ = c11c22 + c12c21

2. ∣∣∣∣∣∣
c11 c12 c13
c21 c22 c23
c31 c32 c33

∣∣∣∣∣∣
+

= c11c22c33 + c11c23c32 + c12c21c33 + c12c23c31 + c13c21c32 + c13c22c31

= c11

∣∣∣∣ c22 c23
c32 c33

∣∣∣∣+ + c12

∣∣∣∣ c11 c13
c31 c33

∣∣∣∣+ + c13

∣∣∣∣ c11 c12
c21 c22

∣∣∣∣+
Remark 6.13. Similar to a determinant ∣∣tC∣∣+ = |C|+ ,

where tC is a transposed matrix of C.

The following is a proposition similar to cofactor expansion of a determinant.
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Proposition 6.14.

|C|+ =

∣∣∣∣∣∣∣∣∣∣∣

c11 · · · c1j · · · c1n
...

. . .
...

. . .
...

ci1 · · · cij · · · cin
...

. . .
...

. . .
...

cn1 · · · cnj · · · cnn

∣∣∣∣∣∣∣∣∣∣∣

+

=
n∑

j=1

cij

∣∣∣∣∣∣∣∣∣∣∣

c11 · · · ĉ1j · · · c1n
...

. . .
...

. . .
...

ĉi1 · · · ĉij · · · ĉin
...

. . .
...

. . .
...

cn1 · · · ˆcnj · · · cnn

∣∣∣∣∣∣∣∣∣∣∣

+

Proof. A proof for this function is similar to the case of determinants.

Definition 6.15. A matrix G ~αn, ~β∗
n is defined by using the Riemannian metrics on M . Its elements

are metrics on M and are located as follows. ~αn and ~βn are elements of ZN .

G ~αn, ~β∗
n =

 G̃11 · · · G̃1n
...

. . .
...

G̃n1 · · · G̃nn


where

G̃pq =: gpq̄

 1 · · · 1
...

. . .
...

1 · · · 1

 ∈M
(
αn
p , β

n
q ;C

)
i. e.

G ~αn, ~β∗
n =



g11̄ · · · g11̄ g1N̄ · · · g1N̄


αn
1

...
. . .

... · · · ...
. . .

...
g11̄ · · · g11̄ g1N̄ · · · g1N̄

...
. . .

...
...

gN 1̄ · · · gN 1̄ gNN̄ · · · gNN̄

αn
N

...
. . .

... · · · ...
. . .

...
gN 1̄ · · · gN 1̄ gNN̄ · · · gNN̄︸ ︷︷ ︸

βn
1

· · · ︸ ︷︷ ︸
βn
N

.

For example N = 2, ~α3 = (2, 1) , ~β∗3 = (1, 2)∗, then G ~α3, ~β∗
3 is determined as

G ~α3, ~β∗
3 =

 g11̄ g12̄ g12̄
g11̄ g12̄ g12̄
g21̄ g22̄ g22̄

 .
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From Proposition 12.3, we obtain the following corollary.

Corollary 6.16. For a matrix G ~αn, ~β∗
n,

∣∣∣G ~αn, ~β∗
n

∣∣∣+ =
N∑

J=1

βn
JgJ̄I

∣∣∣G ~αn− ~eI , ~β∗
n− ~eJ

∣∣∣+ =
N∑

K=1

αn
KgĪK

∣∣∣G ~αn− ~eK , ~β∗
n− ~eI

∣∣∣+ .
6.4 Deformation quantization for a complex projective space

In this subsection, we obtain concrete expression of star products on CPN . A complex projective
space CPN is a Grassmann manifold G1,N by definition.

Proposition 6.17. Let M be a complex projective space and f and g be smooth functions on M .
The recurrence relation of T n

~αn
~β∗
n
given in (10.3) is

(6.4.1) T n
~αn

~β∗
n
=

N∑
d=1

~gīd
(1 + ~− ~n) βn

i

T n−1
~αn− ~ed ~β∗

n−~ei
.

Proof. The curvature (12.2) is substituted for Theorem 10.6, and the following is proved.

N∑
d=1

~gīdT n−1
~αn− ~ed ~β∗

n−~ei

= βiT
n
~αn

~β∗
n
+

N∑
k=1

N∑
p=1

~ (βn
k − δkp − δik + 1) (βn

k − δkp − δik + 2)

2
Rp̄

k̄k̄
ī T

n
~αn

~β∗
n− ~ep+2 ~ek−~ei

+
N−1∑
k=1

N−k∑
l=1

N∑
p=1

~ (βn
k − δkp − δik + 1)

(
βn
k+l − δ(k+l),p − δi,(k+l) + 1

)
Rp̄

k+lk̄
ī T

n
~αn

~β∗
n− ~ep+ ~ek+ ~ek+l−~ei

.

We also use
Rp̄

k+lk̄
ī = −δp,k+lδi,k̄ − δi,k+lδp,k̄, Rp̄

k̄k̄
ī = −δp,k̄δi,k̄ − δi,k̄δp,k̄,
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then the above is rewritten as

N∑
d=1

~gīdT n−1
~αn− ~ed ~β∗

n−~ei

= βiT
n
~αn

~β∗
n
−

N∑
k=1

N∑
p=1

~ (βn
k − δkp − δik + 1) (βn

k − δkp − δik + 2)
(
δp,k̄δi,k̄ + δi,k̄δp,k̄

)
2

T n
~αn

~β∗
n− ~ep+2 ~ek−~ei

−
N−1∑
k=1

N−k∑
l=1

N∑
p=1

~ (βn
k − δkp − δik + 1)

(
βn
k+l − δ(k+l),p − δi,(k+l) + 1

)
×
(
δp,k+lδi,k̄ + δi,k+lδp,k̄

)
T n

~αn
~β∗
n− ~ep+ ~ek+ ~ek+l−~ei

.

The theorem follows from this.

Theorem 6.18. Let f and g be smooth functions on a projective space CPN . A star product with
separation of variables on a projective space CPN is given as

f ∗ g = f · g +
∞∑
n=1

∑
~αn

~β∗
n

∣∣∣G ~αn, ~β∗
n

∣∣∣+{ n∏
k=0

~
(1 + ~− ~k)αn

k !β
n
k !

}(
D ~αnf

) (
D

~β∗
ng
)
.(6.4.2)

Proof. We show that

T n
~αn

~β∗
n
=
∣∣∣G ~αn, ~β∗

n

∣∣∣+{ n∏
k=0

~
(1 + ~− ~k)αn

k !β
n
k !

}
satisfies (12.3). The R. H. S of (12.3) for this case is given as

N∑
d=1

~gīd
(1 + ~− ~n) βn

i

T n−1
~αn− ~ed ~β∗

n−~ei
=

N∑
d=1

gīdα
n
d

∣∣∣G ~αn− ~ed, ~β∗
n−~ei

∣∣∣+ ~
(1 + ~− ~n)

n−1∏
k=0

~
(1 + ~− ~k)αn

k !β
n
k !
.

Using Corollary 12.4, R. H. S. of the above is rewritten as∣∣∣G ~αn, ~β∗
n

∣∣∣+ n∏
k=0

~
(1 + ~− ~k)αn

k !β
n
k !
.

This shows the given T n
~αn

~β∗
n
satisfies the recurrence relation (12.3).
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Fact 6.19. Let f and g be smooth functions on a projective space CPN . A star product on a
projective space CPN is given in [28] as

f ∗̃g =
∞∑
n=0

Γ(1− n+ 1/~)gj̄1k1 · · · gj̄nkn
n!Γ(1 + 1/~)

(
∇j̄1 · · ·∇j̄nf

)
(∇k1 · · ·∇kng)

=
∞∑
n=0

Γ(1− n+ 1/~)
n!Γ(1 + 1/~)

(
Dk1 · · ·Dknf

)
(∇k1 · · ·∇kng)

=
∞∑
n=0

Γ(1− n+ 1/~)gm̄1k1 · · · gm̄nkn

n!Γ(1 + 1/~)
(
Dk1 · · ·Dknf

)
(Dm̄1 · · ·Dm̄ng) .(6.4.3)

As mentioned in Section 2, the star product with separation of variables is uniquely determined.
This fact means (12.4) coincides with (12.5). This coincidence is easily checked from Definition 60.

6.5 Deformation quantization for a G2,2

In this subsection, we derive the recurrence relation to obtain concrete expression of star products
on a Grassmann manifold G2,2. The inhomogeneous coordinates are z11

′
, z12

′
, z21

′
and z22

′
. To decide

the order of coordinates is useful in order to calculate the finite sum. We set the order:11′ < 12′ <
21′ < 22′. In this subsection, j is used as “Not i”. That means that if i = 1 then j = 2 and if i = 2
then j = 1. For example, if I = ii′ = 11′, then ij′ = 12′, ji′ = 21′, J = 22′. If I = ii′ = 12′, then
ij′ = 11′, ji′ = 22′, J = 21′. A finite sum is defined as

4∑
D=1

aD := a11′ + a12′ + a21′ + a22′ .

Theorem 6.20. Let f and g be smooth functions on G2,2. The recurrence relation of T n
~αn

~β∗
n
given

in (10.3) is

βI
(
1 + ~− ~βn

I − ~βn
ji′ − ~βn

ij′

)
T n

~αn
~β∗
n
− ~

(
βn
ij′ + 1

) (
βn
ji′ + 1

)
T n

~αn
~β∗
n− ~eJ+ ~eij′+ ~eji′− ~eI

= ~gĪIT n−1
~αn− ~eI ~β∗

n− ~eI
+ ~gĪij′T n−1

~αn− ~eij′
~β∗
n− ~eI

+ ~gĪji′T n−1
~αn− ~eji′

~β∗
n− ~eI

+ ~gĪJT n−1
~αn− ~eJ ~β∗

n− ~eI
.(6.5.1)

for each I.
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Proof. The curvature (12.2) is substituted into Theorem 10.6, and the following is obtained.

4∑
D=1

~gĪDT n−1
~αn− ~eD ~β∗

n− ~eI

= βIT
n
~αn

~β∗
n

−
4∑

K=1

4∑
P=1

~ (βn
K − δKP − δIK + 1) (βn

K − δKP − δIK + 2)
(
δpi′,K̄δip′,K̄ + δip′,K̄δpi′,K̄

)
2

T n
~αn

~β∗
n− ~eP+2 ~eK− ~eI

−
4−1∑
K=1

4−K∑
L=1

4∑
P=1

~ (βn
K − δKP − δIK + 1)

(
βn
K+L − δ(K+L),P − δI,(K+L) + 1

)
×
(
δpi′,K+Lδip′,K̄ + δip′,K+Lδpi′,K̄

)
T n

~αn
~β∗
n− ~eP+ ~eK+ ~eK+L− ~eI

= βI
{
1 + ~− ~βn

I − ~βn
ji′ − ~βn

ij′

}
T n

~αn
~β∗
n
− ~

(
βn
ij′ + 1

) (
βn
ji′ + 1

)
T n

~αn
~β∗
n− ~eJ+ ~eij′+ ~eji′− ~eI

The theorem follows from this.

Star products on a noncommutative G2,2 are determined by this formula recursively. For general
Gp,q, the recurrence relations are determined in a similar way.
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Chapter 7

Summary

In this paper, we considered noncommutative geometry of Kähler manifolds often from the view-
point of deformation quantization in detail when the Kähler manifold is locally symmetric. We also
discussed the relationship between a gauge theory defined on noncommutative R4, one of the non-
commutative Kähler manifolds, and the Ricci flat metric on a commutative Hermitian manifold.

From various methods for constructing noncommutative geometry, we chose a deformation quan-
tization which replace products of functions by noncommutative products called star products. In
particular for the noncommutative deformation of Kähler manifolds, we used the deformation quan-
tization with separation of variables introduced by Karabegov.

At first we focused on the gauge theory defined on the noncommutative R4, which is the simplest
example of a noncommutative Kähler manifold. The relationship between U (1) gauge theory in
the noncommutative R4 and the Ricci flat metric of a Hermitian manifold was discussed. Yang
et al. had already discussed the relationship between the instanton of the noncommutative U (1)
gauge theory and the Eguchi-Hanson metric/Kähler metric. The relation is based on the idea of the
Seiberg-Witten map which is the map from noncommutative gauge fields to commutative gauge fields.
Yang et al. gave a new interpretation to the correspondence of gauge theories on a noncommutative
space and a commutative space. We extended the researches, and we showed that noncommutative
U (1) instantons constitute Ricci flat metrics of Hermitian manifolds using noncommutative U (1)
gauge connection and metric correspondence by Yang. We have also constructed a number of actual
examples. Under the asymptotically flat conditions, it was shown that this Ricci flat metric leads to
an instanton solution.

Next we focused on noncommutative deformation of non-flat Kähler manifolds. It is known
that the star products which are products of deformation quantization can be constructed in all
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Kähler manifolds. However, even if it is known that a star product exists in a manifold, it does not
mean that the star product that can be actually calculated is obtained. The explicit star products
of Cn, projective spaces, and hyperbolic spaces were obtained by the method of the deformation
quantization with separation of variables, but no other examples have been known. The authors
newly construct star products that holds for any Riemann surfaces, and recurrence formulas that
allows star products to be constructed in algebraic ways for Grassmann manifolds.

The following are future issues. What is obtained in the deformation quantization of the local
symmetric Kähler manifold is a recurrence formula that constitutes a noncommutative product. In
the case of a compact Riemann surface or complex projective space, this recurrence formula can be
solved, but in the case of a complex two-dimensional case or a complex Grassmann manifold, the
solutions are not obvious. If we try to obtain deformation quantization of other Kähler manifolds,
we need to solve the problem.

Instanton solution and Hermitian-Einstein metric are very important objects in physics, but the
physical conditions are slightly different. Instanton solution is one of the solutions of gauge theory,
but not all solutions. In other words, the set of gauge theory solutions is a little wider. Einstein
metrics that appear in astronomy are called pseudo-Riemannian metric and are not positive. For
real physics we need to study a little more.
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