
学位申請論文

On the Efficient Implementation of

Boolean Gröbner Bases

(ブーリアン・グレブナー基底の効率的な実装につ
いて)

平成 29年 3月

Akira Nagai

(永井彰)

Department of Mathematical Science for Information Sciences,

Tokyo University of Science

1-3 Kagurazaka, Shinjuku-ku,

Tokyo, Japan

Contents

1 Introduction 3

2 Boolean Polynomial Ring 5
2.1 Boolean Polynomial Ring . 5
2.2 Boolean extension theorem . 6
2.3 Boolean Nullstellensatz . 6

3 Boolean Gröbner Bases 8
3.1 Definitions . 8
3.2 Algorithm . 10

4 Comprehensive Boolean Gröbner bases 12
4.1 Definitions . 12
4.2 Naive method . 12
4.3 Alternative Method . 13
4.4 New Algorithm for Elimination Ideals . 14

5 Implementation on general computer algebra systems 19
5.1 Computation of Boolean Gröbner bases . 19
5.2 Implementation method . 21
5.3 Efficient Boolean Gröbner bases software . 22
5.4 Coding of Boolean Gröbner basis computation in SageMath 23
5.5 Parallel Boolean Gröbner bases computation . 24
5.6 Distributed Boolean Gröbner bases computation 26
5.7 Coding of Comprehensive Boolean Gröbner bases 28

6 Applications 32
6.1 Boolean Gröbner bases computation of a finite powerset algebra 32
6.2 Sudoku Solver . 34
6.3 Hierarchy of Sudoku puzzles . 37

7 Conclusions 41

1

Acknowledgments

I would like to thank Professor Yosuke Sato for his valuable comments and fruitful discussion
during the course of this study. I also thank all members of Sato Laboratory for their helpful
comment and support. Finally, I thank my wife, son, daughter and all of my friends.

2

Chapter 1

Introduction

For solving polynomial equations, Gröbner bases computation is a powerful tool. Though Gröbner
bases were originally introduced by B.Buchberger in polynomial rings over fields([4]), there also
have been done many works concerning Gröbner bases of polynomial rings with coefficient rings
that are not fields. Among them Gröbner bases of Boolean polynomial rings (Boolean Gröbner
bases) introduced in [19, 20] have a nice property.

A residue class ring B[X1, . . . , Xn]/⟨X2
1 +X1, . . . , X

2
n +Xn⟩ over a Boolean ring B is called

a Boolean polynomial ring. A Gröbner basis in a Boolean polynomial ring is called a Boolean
Gröbner basis, which is first introduced in [20] together with its computation algorithm. An ideal
in a polynomial ring over the Galois field GF2 is the simplest Boolean ring. Since GF2 is actually a
field, such a Boolean Gröbner basis is easily computed, with no novel theoretical advances. When
the Boolean ring B is PFC(St) that consists of all finite or co-finite subsets of St (Here, St is a
set of all strings of the computer language), Boolean Gröbner bases are of great importance for
solving certain types of combinatorial problems. Since we need a special data structure to encode a
Boolean ring PFC(St), it is not straightforward to implement the computation of Boolean Gröbner
bases in a general purpose computer algebra system. In fact the first implementation was done in
the logic programing languages Prolog and Klic [21, 22]. When a Boolean ring B is the Galois
field GF2 with characteristic 2, we can easily compute Boolean Gröbner bases in most computer
algebra system with a facility to compute Gröbner bases in a polynomial ring over a finite field.

By the technique introduced in [14], we can now compute Boolean Gröbner bases for PFC(St)

by the computation of Boolean Gröbner bases of GF2. This method is implemented in the computer
algebra system Risa/Asir [12]. It brings us a much faster program than those of [21, 22], which
enables us to obtain the recent work of Sudoku puzzles [13]. Though the purpose of the application
of Boolean Gröbner bases to Sudoku puzzles is not making a fast solver, the program can solve any
Sudoku puzzle in acceptable length of time, while other existing Sudoku solvers by the computation
of Gröbner bases such as [1, 6] can solve only limited types of puzzles. Nevertheless, we can not
say it is a real time Sudoku solver since the program takes more than 10 seconds for solving most
puzzles by a standard laptop computer.

In this paper we describe our implementation of Boolean Gröbner bases for PFC(St) in the
computer algebra system SageMath using the PolyBoRi library [3]. In chapter 5 our experimental

3

data suggest that SageMath is faster and more optimal software to compute Boolean Gröbner bases
than other computer algebra systems such as Risa/Asir, Singlar, Mathematica or Maple.

Since PolyBoRi has an optimal data structure for the computation of a Boolean polynomial
ring over GF2, our program of Sudoku puzzles achieves about 15 times speed-up than the previous
program in Risa/Asir. It enables us to have a first-ever real time solver of Sudoku puzzles by the
computation of Gröbner bases.

In this paper we also introduce our parallel and distributed computation method of Boolean
Gröbner bases, which is implemented in the computer algebra system SageMath using the Poly-
BoRi library [3]. We parallelize a Boolean Gröbner bases program introduced in [15]. Note that
a parallel computation program of Boolean Gröbner bases for PFC(St) is already implemented in
[24, 22] using a parallel logic programming language KLIC. Unfortunately, their program does not
achieve enough speed-up, our program achieves satisfactory speed-up.

We have also recomputed s-ranks of 735 Sudoku puzzles treated in [13] and found serious
mistakes on the computation data reported in it. The s-rank of a Sudoku puzzle is a mathematical
index which represents its level of difficulty that was introduced in [13]. In order to compute a s-
rank of a Sudoku puzzle, we need to compute much more Boolean Gröbner bases. For some Sudoku
puzzles, a sequential program needs computation time beyond several minutes. We need parallel
and distributed computation of Boolean Gröbner bases, we have used a parallel computation facility
of SageMath. In this paper we use the word “parallel computation” for parallel computation by one
computer with a multi-core processor, “distributed computation” for distributed computation by
several computers connected on the Internet. So, “parallel and distributed computation” means
parallel computation using several connected computers. (See [16].)

We put our prototype program as an open software at the following URL:

http://www.mi.kagu.tus.ac.jp/˜nagai/BoolGB Sage/.

We also show that for a given ideal I = ⟨f1(Ā, X̄), . . . , fl(Ā, X̄)⟩ in a Boolean polynomial ring
B(Ā, X̄), we can construct the elimination ideal I∩B(Ā) by computing a Boolean Gröbner basis of
the ideal ⟨f1(c̄, X̄), . . . , fl(c̄, X̄)⟩ in the Boolean polynomial ring B(X̄) for each 0, 1 specialization
c̄ of Ā. We also give some example of our computation experiments to show that our method is
quite effective in case we do not have many parameters.

The paper is organized as follows. In chapter 2, we show two classical results of Boolean al-
gebra. In chapter 3 and 4, we give a quick review of Boolean Gröbner bases and comprehensive
Boolean Gröbner bases. Especially section 4.4 is devoted to our new algorithm for the computation
of elimination ideals. In chapter 5, we describe our implementation method of Boolean Gröbner
bases using the PolyBoRi library. we also describe parallel computation and distributed computa-
tion of Boolean Gröbner bases. In chapter 6, we discuss applications of Boolean Gröbner bases.
The reader is referred to [27] for a comprehensive description of Boolean polynomial rings and
Boolean Gröbner bases, also to [13] for more detailed description of the application of Boolean
Gröbner bases to Sudoku puzzles.

4

Chapter 2

Boolean Polynomial Ring

In this chapter, we show two classical results of Boolean algebra in terms of Boolean polynomial
rings. More details can be found in many text books of Boolean algebra such as [18] for example.

2.1 Boolean Polynomial Ring

Definition 1 A commutative ring B with an identity 1 is called a Boolean ring if every element a
of B is idempotent, i.e. a2 = a.

⟨B,∨,∧,¬⟩ becomes a Boolean algebra with the Boolean operations ∨,∧,¬ defined by a ∨ b =
a+ b+ a · b, a ∧b = a ·b, ¬ a = 1+ a. Conversely, for a Boolean algebra ⟨B,∨,∧,¬⟩, if we define
+ and · by a + b = (¬ a ∧ b) ∨ (a ∧ ¬ b) and a · b = a ∧ b, ⟨B,+, ·⟩ becomes a Boolean ring.
We use the symbol ⪰ to denote a partial order of a Boolean ring, that is a ⪰ b if and only if ab = b

for elements a, b of a Boolean ring B. Since −a = a in a Boolean ring, we do not need to use the
symbol ′−′, however, we also use − when we want to stress its meaning.

Definition 2 A non-zero element e of a Boolean ring B is said to be atomic, if there does not exist
a non-zero element c such that ce = c except for c = e. (An atomic element is nothing but a
non-zero minimal element w.r.t. ⪰.)

Lemma 3 If B is a finite Boolean ring, it has at least one atomic element. Let e1, . . . , ek be all the
atomic elements of B, then eiej = 0 for any i ̸= j and e1 + · · ·+ ek = 1.

proof We show the last equation, the rests are obvious. If e1+· · ·+ek ̸= 1, e1+· · ·+ek+1 ̸= 0. Let c
be a minimal element(an atomic element) of B such that e1+· · ·+ek ̸= c, i.e. c(e1+· · ·+ek+1) = c.
It follows that c(e1 + · · ·+ ek) = 0. Since c is a minimal element, c = ei for some ei, which leads
us to a contradiction ei = ei(e1 + · · ·+ ek) = 0. 2

Definition 4 Let B be a Boolean ring. A quotient ring B[X1, . . . , Xn]/⟨X2
1 −X1, . . . , X

2
n −Xn⟩

with an ideal ⟨X2
1 −X1, . . . , X

2
n−Xn⟩ becomes a Boolean ring. It is called a Boolean polynomial

ring and denoted by B(X1, . . . , Xn), its element is called a Boolean polynomial.

5

Note that a Boolean polynomial of B(X1, . . . , Xn) is uniquely represented by a polynomial of
B[X1, . . . , Xn] that has at most degree 1 for each variable Xi. In what follows, we identify a
Boolean polynomial with such a representation. Multiple variables such asX1, . . . , Xn or Y1, . . . , Ym
are abbreviated to X̄ or Ȳ respectively. Lower small Greek letters such as a, b, c are usually used
for elements of a Boolean ring B. The symbol ā denotes an n-tuple of element of B for some n.
For ā = (a1, . . . , an) and b̄ = (b1, . . . , bm), (ā, b̄) denotes an n +m tuple (a1, . . . , an, b1, . . . , bm).
For a Boolean polynomial f(X̄, Ȳ) with variables X̄ and Ȳ , f(ā, Ȳ) denote a Boolean polynomial
in B(Ȳ) obtained by specializing X̄ with ā.

Definition 5 Let I be an ideal of B(X1, . . . , Xn). For a subset S of B, VS(I) denotes a subset
{ā ∈ Sn|∀f ∈ If(ā) = 0}. When S = B, VB(I) is simply denoted by V (I) and called a variety of
I . We say I is satisfiable in S if VS(I) is not empty. When S = B, we simply say I is satisfiable.

2.2 Boolean extension theorem

Theorem 6 (Boolean extension theorem). Let I be a finitely generated ideal in a Boolean poly-
nomial ring B(Y1, . . . , Ym, X1, . . . , Xn). For any b̄ ∈ V (I ∩ B(Ȳ)), there exist c̄ ∈ Bn such that
(b̄, c̄) ∈ V (I).

proof It suffices to show the theorem for n = 1. Note first that any finitely generated ideal is
principal in a Boolean ring, that is an ideal ⟨f1, . . . , fs⟩ is equal to the principal ideal ⟨f1∨· · ·∨fs⟩.
Let I = ⟨fX1 + g⟩ for some f, g ∈ B(Ȳ). We claim that I ∩ B(Ȳ) = ⟨fg + g⟩. Since (f +

1)(fX1 + g) = fg + g, fg + g ∈ I ∩ B(Ȳ). Conversely, suppose that h ∈ I ∩ B(Ȳ), i.e. there
exist p, q ∈ B(Ȳ) such that h = (pX1 + q)(fX1 + g. Then, h = (pf + pg + qf)X1 + qg. Since
h ∈ B(Ȳ), we must have pf + pg + qf = 0, from which we have h = qg = fqg + (f + 1)qg =

g(pf + pg) + (f + 1)qg = gp(f + 1) + (f + 1)qg = (p + q)(f + 1)g ∈ ⟨fg + g⟩. Suppose now
that b̄ ∈ V (⟨fg + g⟩), that is f(b̄)g(b̄) + g(b̄) = 0. Let c = (f(b̄) + 1)d+ g(b̄) where d can be any
element of B. Then f(b̄)c+ g(b̄) = f(b̄)g(b̄) + g(b̄) = 0. That is (b̄, c) ∈ V (I). 2

2.3 Boolean Nullstellensatz

Corollary 7 (Boolean weak Nullstellensatz). For any finitely generated ideal I of a Boolean poly-
nomial ring B(X1, . . . , Xn), the variety V (I)(⊆ Bn) of I is an empty set if and only if there exists
a non-zero constant element of B in I .

proof If I ∩B = {0}, the above proof also works to show that V (I) ̸= ∅. The converse is trivial.
2

Theorem 8 (Boolean strong Nullstellensatz). Let I be a finitely generated ideal of a Boolean
polynomial ring B(X1, . . . , Xn) such that V (I) ̸= ∅. Then, for any Boolean polynomial h(X̄) ∈

6

B(X̄),
h(X̄) ∈ I if and only if ∀(b̄) ∈ V (I) h(b̄) = 0. (2.1)

proof Let I = ⟨f(X̄)⟩ and B′ be a Boolean subring of B generated by all coefficients of f(X̄)

and h(X̄), i.e. B′ is the smallest Boolean subring of B which includes all coefficients of f(X̄) and
h(X̄). First note that I is also satisfiable in B′ by Boolean weak Nullstellensatz. Secondly note that
B′ is finite, because each element of B is a sum of finite elements which have a form an1

1 a
n2
2 · · · a

nl
l

where a1, a2, . . . , al are coefficients of f(X̄) and each ni is either 0 or 1. By Lemma 3, B′ has
atomic elements e1, . . . , ek such that eiej = 0 for any i ̸= j and e1 + · · · + ek = 1. Suppose now
that ∀b̄ ∈ V (I) h(b̄) = 0. We certainly have the property:

∀b̄ ∈ B′n(f(b̄) = 0⇒ h(b̄) = 0) (2.2)

In order to show h(X̄) ∈ I , we prove the following claims.
Claim 1: f(b1, . . . , bn) = 0⇔ eif(eib1, . . . , eibn) = 0 for each i = 1, . . . , k.
proof of Claim1 We clearly have f(b1, . . . , bn) = 0 ⇔ eif(eib1, . . . , eibn) = 0 for each i =

1, . . . , k. We also have the equation eif(b1, . . . , bn) = eif(eib1, . . . , eibn). The assertion follows
from them. ⊠
Claim 2: ∀(b1, . . . , bn) ∈ B′n(eif(eib1, . . . , eibn) = 0 ⇒ eih(eib1, . . . , eibn) = 0) for each i =
1, . . . , k.
proof of Claim2 Let i be fixed and suppose eif(eib1, . . . , eibn) = 0 for elements b1, . . . , bn in B.
Since I is satisfiable in B′, we have elements c1, ..., cn in B′ such that f(c1, . . . , cn) = 0. Let
aj = eibj + (1 + ei)cj for each j = 1, . . . , n. Then, we have eiaj = eibj and etaj = etcj for each
t ̸= i. By Claim 1, we have f(a1, . . . , an) = 0. By the property, we have h(a1, . . . , an) = 0. By
Claim 1 again, we have eih(eia1, . . . , eian) = 0 which is equivalent to eih(eib1, . . . , eibn) = 0. ⊠
Claim 3: The ideal ⟨eif(X̄), ei(Uh(X̄) + 1)⟩ ⊆ B′(U, X̄) is unsatisfiable in B′ for each i =

1, . . . , k, where U is a new variable.
proof of Claim 3 Assume that eif(b1, . . . , bn) = 0 for some (b1, . . . , bn) ∈ B′n. By Claim 1, we
have eif(eib1, . . . , eibn) = 0. By Claim 2, we have eih(eib1, . . . , eibn) = 0. By Claim 1 again, we
have eih(b1, . . . , bn) = 0. Therefore ei(Uh(b1, . . . , bn) + 1) = ei ̸= 0. ⊠

By the last claim and Boolean weak Nullstellensatz, we can see the ideal ⟨eif(X̄), ei(Uh(X̄)+1)⟩
contains a non-zero element of B′. Since ei is an atomic element of B′, it must contain ei. So, there
exist Boolean polynomials p(U, X̄) and q(U, X̄) of B′ (U, X̄) such that ei = eif(X̄)p(U, X̄) +

ei(Uh(X̄) + 1)q(U, X̄).
Multiplying h(X̄) from both sides and substituting U by 1, we have eih(X̄) = eif(X̄)p(1, X̄)

h(X̄), which shows that eih(X̄) ∈ I . So, h(X̄) = e1h(X̄) + · · ·+ ekh(X̄) ∈ I .
The converse is trivial. 2

7

Chapter 3

Boolean Gröbner Bases

A Boolean Gröbner basis is defined as a natural modification of a Gröbner basis in a polynomial
ring over a Boolean ring. Though it was introduced in [19, 20] together with a computation al-
gorithm using a special monomial reduction, the same notion was independently discovered by
V.Weispfenning in a polynomial ring over a more general coefficient ring, namely, a commutative
von Neumann regular ring([30]). In this section, we give a quick review of Boolean Gröbner bases.
For the proofs and more detailed descriptions, refer to [30] or [23].

We concentrate on Boolean rings. In what follows, we assume that some term order on a set of
power products of variables is given. For a polynomial f in a polynomial ring B[X1, . . . , Xn](=

B[X̄]) over a Boolean ring B, we use the notationsLT (f), LM(f) andLC(f) to denote the leading
power product, the leading monomial and leading coefficient of f respectively. f − LM(f) is also
denoted by Rd(f). We also use the notations LT (F) and LM(F) to denote the sets {LT (f)|f ∈
F} and {LM(f)|f ∈ F} for a (possibly infinite) subset F of B[X̄]. T (X̄) denotes the set of power
products consisting of variables X̄ .

3.1 Definitions

Definition 9 For an ideal I of a polynomial ring B[X̄], a finite subset G of I is called a Gröbner
basis of I if ⟨LM(I)⟩ = ⟨LM(G)⟩.

Definition 10 For a polynomial f ∈ B[X̄], let a = LC(f), t = LT (f) and h = Rd(f). A
monomial reduction→ f by f is defined as follows:

bts+ p→f (1− a)bts+ absh+ p.

(Note that (bts+ p)− ((1− a)bts+ absh+ p) = bs(af).)
Where s is a term of T (X̄), b is an element of B such that ab ̸= 0 and p is any polynomial of B[X̄].
For a set F ⊆ B[X̄], we write g→F g

′ if and only if g→f g
′ for some f ∈ F . A recursive closure

of→F is denoted by ∗→F , i.e. g ∗→F g
′ if and only if g = g′ or there exist a sequence of monomial

reductions g→F g1→F · · · →F gn→F g
′.

8

Theorem 11 When F is finite,→ F is noetherian, that is there is no infinite sequence of polyno-
mials g1, g2, . . . such that gi → Fgi+1 for each i = 1, 2,

Theorem 12 Let I be an ideal of a polynomial ring B[X̄]. A finite subsetG of I is a Gröbner basis
of I if and only if ∀h ∈ I h ∗→G 0.

Using our monomial reductions, a reduced Gröbner basis is defined exactly same as in a polynomial
ring over a field. A Gröbner basis G is reduced if each polynomial of G is not reducible by a
monomial reduction of any other polynomial of G. In a polynomial ring over a field, a reduced
Gröbner basis is uniquely determined. In our case, however, this property does not hold.

Example 13 Let B = GF2 × GF2. In a polynomial ring B[X], {(1, 0)X, (0, 1)X} and {(1, 1)X}
are both reduced Gröbner bases of the same ideal.

In order to have a unique Gröbner basis, we need one more definition.

Definition 14 A reduced Gröbner basis G is said to be stratified if G does not contain two polyno-
mials which have the same leading power product.

Theorem 15 IfG andG′ are stratified Gröbner bases of the same ideal w.r.t. some term order, then
G = G′.

In the above example, {(1, 1)X} is the stratified Gröbner basis, but the other is not.

Definition 16 For a polynomial f , LC(f)f is called a Boolean closure of f , and denoted by bc(f).
If f = bc(f), f is said to be Boolean closed.

Theorem 17 Let G be a Gröbner basis of an ideal I , then {bc(g)|g ∈ G}{0} is also a Gröbner
basis of an ideal I .

S-polynomial is also defined similarly as in a polynomial ring over a field.

Definition 18 Let f = atr + f ′ and g = bsr + g′ be polynomials where a = LC(f), b = LC(g),
tr = LT (f) and sr = LT (g) for some power product t, s, r such that GCD(t, s) = 1, i.e. t

and s do not contain a common variable. The polynomial bsf + atg = bsf ′ + atg′ is called an
S-polynomial of f and g and denoted by S(f, g).

As in a polynomial ring over a field, the following property is crucial for the construction of Gröbner
bases.

Theorem 19 Let G be a finite set of polynomials such that each element of G is Boolean closed.
Then, G is a Gröbner basis if and only if S(f, g) ∗→G 0 for any pair f, g of G.

9

3.2 Algorithm

For any given finite set F , using our monomial reductions, we can always construct a Gröbner basis
of ⟨F ⟩ with computing Boolean closures and S-polynomials by the following algorithms. It is also
easy to construct a stratified Gröbner basis from a Gröbner basis.
Algorithm: BC
input: F a finite subset of B[X̄]

output: F ′ a set of Boolean closed polynomials such that ⟨F ′⟩ = ⟨F ⟩ begin
F ′ = ∅
while there exists a polynomial f ∈ F which is not Boolean closed
F = F ∪ {bc(f)− f} \ {f}, F ′ = F ′ ∪ {bc(f)}

end.

Algorithm: BGB
input: F a finite subset of B[X̄], > a term order of T (X̄)

output: G a Gröbner basis of ⟨F ⟩ w.r.t. >
begin
G =BC(F)
while there exists two polynomials p, q ∈ G such that S(p, q) ∗→G h for some non-zero polynomial
h which is irreducible by→G

G = G∪ BC({h})
end.

Since any element of a Boolean ring is idempotent, a Boolean polynomial ring is more natural to
work on. We can also define Gröbner bases in Boolean polynomial rings.

A power product X l1
1 · · ·X ln

n is called a Boolean power product if each li is either 0 or 1. The
set of all Boolean power products consisting of variables X̄ is denoted by BT (X̄). A Boolean
polynomial f(X̄) in B(X̄) is uniquely represented by b1t1 + · · · + bktk with elements b1, . . . , bk
of B and distinct Boolean power products t1, . . . , tk. We call b1t1 + · · · + bktk the canonical
representation of f(X̄). Since BT (X̄) is a subset of T (X̄), a term order≥ on T (X̄) is also defined
on BT (X̄). Given such a term order ≥, we use the same notations LT (f), LM(f), LC(f) and
Rd(f) as before, which are defined by using its canonical representation. We also use the same
notations LT (F) and LM(F) for a set F of Boolean polynomials as before.

Definition 20 For an ideal I of a Boolean polynomial ring B(X̄), a finite subset G of I is called a
Boolean Gröbner basis of I if ⟨LM(I)⟩ = ⟨LM(G)⟩ in B(X̄).

Using canonical representations of Boolean polynomials, we can also define monomial reductions
for Boolean polynomials as Definition 10 and have the same property of Theorem 12. The Boolean
closure of a Boolean polynomial is also similarly defined as Definition 16 and the same property
of Theorem 17 holds. We can also define a stratified Boolean Gröbner basis as in Definition 14,
which is unique w.r.t. a term order. Construction of a Boolean Gröbner basis is very simple. Given

10

a finite set of Boolean polynomials F ⊆ B(X̄). Compute a Gröbner basis G of the ideal ⟨F ∪
{X2

1 −X1, . . . , X
2
n−Xn}⟩ in B[X̄] w.r.t. the same term order. Then, G\{X2

1 −X1, . . . , X
2
n−Xn}

is a Boolean Gröbner basis of ⟨F ⟩ in B(X̄). If G is stratified, then G \ {X2
1 −X1, . . . , X

2
n −Xn}

is also stratified.

Example 21 The following left constraint with unknown set variables X and Y and an unknown
element variable a is equivalent to the right system of equations of a Boolean polynomial ring
B(X,Y,A), where B is a Boolean ring of sets and the variable A stands for the singleton {a}.

X ∪ Y ⊆ {1, 2}
1 ∈ X
a ∈ Y
X ∩ Y = ∅

⇐⇒

(1 + {1, 2})(XY +X + Y) = 0

{1}X + {1} = 0

AY + A = 0

XY = 0

The stratified Boolean Gröbner basis G of the ideal

I = ⟨(1 + {1, 2})(XY +X + Y), {1}X + {1}, AY + A,XY ⟩
w.r.t. a lexicographic term order X > Y > A has the following form:
G = {{2}XY, {2}Y A+ {2}A, (1 + {2})Y, {2}XA, (1 + {2})X + {1}, (1 + {2})A}

From this we can get the elimination ideal I ∩B(A) = ⟨(1+2)A⟩. By Boolean extension theorem,
we can see that the given constraint is satisfiable if and only if the element variable a satisfies the
equation (1 + {2}){a} = 0 that is a = 2.

We conclude this section with the following theorem, which is essentially a special instance of
Theorem 2.3 of [30].

Definition 22 Let B be a Boolean ring and k be a natural number. Bk denotes a direct product, i.e.
the set of all k-tuples of elements of B. For an element p of Bk, pi ∈ B denotes the i-th element
of p for each i = 1, . . . , k. If we define p + q and p · q for p, q ∈ Bk by (p + q)i = pi + qi and
(p · q)i = pi · qi for each i = 1, . . . , k, Bk also becomes a Boolean ring. For a polynomial f(X) in
Bk[X̄]fi(i = 1, . . . , k) denotes the polynomial in B[X̄] obtained by replacing each coefficient p of
f by pi. For a Boolean polynomial f(X̄) in Bk(X̄), a Boolean polynomial fi in B(X̄) is defined
similarly.

Theorem 23 In a polynomial ring Bk[X̄], let G be a finite set of Boolean closed polynomials.
Then, G is a (reduced) Gröbner basis of an ideal I if and only if Gi = {gi|g ∈ G} \ {0} is a
(reduced) Gröbner basis of the ideal Ii = {fi|f ∈ I} in B[X̄] for each i = 1, . . . , k.

Corollary 24 In a Boolean polynomial ring Bi(X̄), letG be a finite set of Boolean closed Boolean
polynomials. Then,G is a (reduced) Boolean Gröbner basis of an ideal I if and only ifGi = {gi|g ∈
G} \ {0} is a (reduced) Gröbner basis of the ideal Ii = fi|f ∈ I in B(X̄) for each i = 1, . . . , k.

11

Chapter 4

Comprehensive Boolean Gröbner bases

In a polynomial ring over a field, construction of a comprehensive Gröbner basis is not so simple in
general. In order to get a uniform (with respect to parameters) representation of reduced Gröbner
bases, we need to divide a parameter space into several partitions according to the conditions that
parameters satisfy. (See [8, 9, 10, 28, 29, 31].) In our Boolean polynomial ring, however, we can
always construct a stratified comprehensive Boolean Gröbner basis. We do not even need to divide
a parameter space. In what follows, we use variables Ā = A1, · · · , Am for parameters and variables
X̄ = X1, · · · , Xn for main variables. We also assume that some term order on T (X̄) is given.

4.1 Definitions

Definition 25 Let F = {f1(Ā, X̄), . . . , fl(Ā, X̄)} be a finite subset of a Boolean polynomial ring
B(Ā, X̄). A finite subset G = {g1(Ā, X̄), . . . , gk(Ā, X̄)} of B(Ā, X̄) is called a comprehensive
Boolean Gröbner basis of F , if G(ā) = {g1(ā, X̄), . . . , gk(ā, X̄)} \ {0} is a Boolean Gröbner basis
of the ideal ⟨F (ā)⟩ = ⟨f1(ā, X̄), . . . , fl(ā, X̄)⟩in B′(X̄) for any Boolean extension B′ of B, i.e. a
Boolean ring which includes B as a subring, and any a = (a1, . . . , am) ∈ B′m. G is also said to be
stratified if G(ā) is stratified for any ā = (a1, . . . , am) ∈ B′m.

4.2 Naive method

In this section, we present a naive method to construct comprehensive Boolean Gröbner bases.

Theorem 26 Let F = {f1(Ā, X̄), . . . , fl(Ā, X̄)} be a finite subset of a Boolean polynomial ring
B(Ā, X̄). Considering B(Ā, X̄) as a Boolean polynomial ring B((Ā), X̄) with the coefficient
Boolean ring B(Ā), let G = {g1(Ā, X̄), . . . , gk(Ā, X̄)} be a (stratified) Boolean Gröbner basis
of the ideal ⟨F ⟩ in this polynomial ring. Then G becomes a (stratified) comprehensive Boolean
Gröbner basis of F .

proof Let ā = a1, . . . , am be an arbitrary m-tuple of elements of B′. Note that the specialization of
parameters Ā with ā induces a homomorphism from B(Ā, X̄) to B′(X̄). We clearly have ⟨F (ā)⟩

12

= ⟨G(ā)⟩ in B′(X̄).
If f(Ā, X̄) →g(Ā,X̄) h(Ā, X̄) in (B(Ā))(X̄), then f(Ā, X̄) = p(Ā)ts + f ′(Ā, X̄), g(Ā, X̄) =

q(Ā)t+ g′(Ā, X̄)，and h(Ā, X̄) = (1− q(Ā))p(Ā)ts+ q(Ā)p(Ā)sg′(Ā, X̄) + f ′(Ā, X̄) for some
t, s ∈ T (X̄) and p(Ā),q(Ā) ∈ B(Ā) and f ′(Ā, X̄), g′(Ā, X̄) ∈ B(Ā, X̄) , where q(Ā)t is the
Boolean leading monomial of g(Ā, X̄). In case q(ā)p(ā) ̸= 0 , certainly q(ā) ̸= 0 and p(ā) ̸= 0,
so q(ā)t is the Boolean leading monomial of g(ā, X̄) and p(ā)ts is a monomial of f(Ā, X̄) and
f(ā, X̄)→g(ā,X̄) h(ā, X̄). Otherwise, h(ā, X̄) = f(ā, X̄). In either case, we have f(ā, X̄)

∗→g(ā,X̄)

h(ā, X̄). Therefore, if f(Ā, X̄) →G h(Ā, X̄) in (B(Ā))(X̄), then we have f(ā, X̄)
∗→G(ā,X̄)

h(ā, X̄) in B′(X̄). Any Boolean polynomial in the ideal ⟨F (ā)⟩ is equal to f(ā, X̄) for some
Boolean polynomial f(Ā, X̄) in the ideal ⟨F ⟩ of (B(Ā))(X̄). Since G is a Boolean Gröbner basis
of ⟨F ⟩, we have f(Ā, X̄)

∗→G 0. By the above observation, we have f(ā, X̄)
∗→G(ā) 0. This shows

that G is a comprehensive Boolean Gröbner basis of F .
Suppose G is stratified, then any element g of G is Boolean closed.
So, if LC(g)(ā) = 0, then g(ā, X̄) must be equal to 0. Therefore, unless g(ā, X̄) = 0, we have

LT (g(ā, X̄)) = LT (g(Ā, X̄)). Now it is clear that G(ā) is stratified. 2

Example 27 For the same example of Example 21, the stratified Boolean Gröbner basis of I in
the Boolean polynomial ring (B(A))(X,Y) has the following form: {({2}A+ {2})XY, (1 +A+

{2})X+{1}A+{1}, (1+A+{2})Y +{2}A, (1+{2})A}. From this, we can get the elimination
ideal I ∩B(A) = ⟨(1 + 2)A⟩. Moreover, if we specialize the variable A with {a}, it becomes the
stratified Boolean Gröbner basis {X + {1}, Y + {2}}.

The computation of comprehensive Boolean Gröbner bases is much simpler than the computa-
tion of usual comprehensive Gröbner bases in polynomial rings over fields. Given a finite set F of
Boolean polynomials in B(A1, . . . , Am, X1, . . .,Xn), let G be a (stratified) Boolean Gröbner basis
of the ideal ⟨F ⟩ in the Boolean polynomial ring (B(A1, . . . , Am))(X1, . . . , Xn) over the coefficient
Boolean ring B(A1, . . . , Am), then G is a (stratified) comprehensive Boolean Gröbner basis of F
with parameters A1, . . . , Am. We can also apply the above method for them, however, when m is
not very small we need a huge natural number k for the isomorphism between B(A1, . . . , Am) and
GFk

2, namely k ≥ 2m. Therefor the above method is not feasible when we have many parameters.
The next result recently reported in [11] enables us to apply the above method for the computation
of comprehensive Boolean Gröbner bases.

4.3 Alternative Method

Theorem 28 Let G = {g1(Ā, X̄), . . . , gk(Ā, X̄)} be a Boolean Gröbner basis of ⟨F ⟩ for F =

{f1(Ā, X̄), . . . , fl(Ā, X̄)} in a Boolean polynomial ring B(Ā, X̄) w.r.t. a block term order > such
that X̄ ≫ Ā. Then G is a comprehensive Boolean Gröbner basis of F w.r.t. >X̄(restriction of >
on T (X̄)).

13

Example 29 The following left constraint is same as the previous example except that we have an
another unknown variable a for an element. Using another set variable A to represent a singleton
set {a}, it is equivalent to the right system of equations of a Boolean polynomial ring B(A,X, Y).

X ∪ Y ⊆ {s1, s2}
s1 ∈ X
a ∈ Y
X ∩ Y = ∅

⇐⇒

(1 + {s1, s2})(XY +X + Y) = 0

{s1}X + {s1} = 0

AY + A = 0

XY = 0

Let F = {(1 + {s1, s2})(XY +X + Y), {s1}X + {s1}, AY + A,XY }.
The stratified Boolean Gröbner basisG of F w.r.t. a lexicographic term order such thatX > Y > A

has the following form:

G = {{s2}XY, {s2}Y A+ {s2}A, (1 + {s2})Y,
{s2}XA, (1 + {s2})X + {s1}, (1 + {s2})A}.

This is not reduced as a Boolean Gröbner basis in (B(A))(X,Y).
In fact, if we specialize A by {s2}, G({s2}) \ {0} becomes {{s2}XY, {s2}Y + {s2}, (1+ {s2})Y ,
{s2}X , (1 + {s2})X + {s1}}, which is not reduced.
But, from the above comprehensive Boolean Gröbner basis we can easily construct the stratified
Boolean Gröbner basis of F in (B(A))(X,Y):

{({s2}A+ {s2})XY, (A+ 1 + {s2})X + {s1}A+ {s1},
(A+ 1 + {s2})Y + {s2}A, (1 + {s2})A}.

4.4 New Algorithm for Elimination Ideals

In chapter 2, we saw the importance of ideals in Boolean polynomial rings. For a system of Boolean
equations given in a form of

f1(X1, X2, . . . , Xn) = 0
...

fl(X1, X2, . . . , Xn) = 0

· · · (1)

with Boolean polynomials f1(X̄), f2(X̄), . . . , fl(X̄) of B(X̄), we can solve it by computing a
stratified Boolean Gröbner basis of the ideal I = ⟨f1(X̄), f2(X̄), . . . , fl(X̄)⟩ w.r.t. a certain term
order. We can also solve many problems concerning it. For example, if we want to decide whether
a given Boolean polynomial h(X̄) vanishes on every solutions, what we have to do is computing
a Boolean Gröbner basis G of I(w.r.t. any term order) and checking the normal form of h(X̄) by
→G is 0 or not. In any case, as long as we can compute a Boolean Gröbner basis of I , we are
almost done. Unfortunately, however, Gröbner bases computations are getting heavier when the
number of variables increases. If we are interested in only solutions of some restricted variables,
sayX1, X2, X3 for example, we do not necessarily need a Boolean Gröbner basis of the whole ideal
I , what we need is a Boolean Gröbner basis of the elimination ideal ⟨f1(X̄), f2(X̄), . . . , fl(X̄)⟩ ∩

14

B(X1, X2, X3). If we want to know whether a given polynomial h(X1, X2, X3) consisting of only
three variablesX1, X2, X3 vanishes on every solution of (1), what we need is not a Boolean Gröbner
basis of the whole ideal but a Boolean Gröbner basis of the above elimination ideal. A Gröbner
basis of such an elimination ideal is usually obtained by computing a Gröbner basis of the whole
ideal w.r.t. a block order X1, X2, X3 << X4, . . . , Xn, i.e. a term order such that each variable
X1, X2, X3 is lexicographically less than the other variables.

In this section, we give an algorithm to compute a Boolean Gröbner basis of an elimination
ideal without computing a Boolean Gröbner basis of the whole ideal. The next lemma is an easy
but important key fact for our algorithm.

Lemma 30 Let I be an ideal of a Boolean polynomial ring B(Ā, X̄) with variables Ā and X̄ , G
be a stratified Boolean Gröbner basis of I in a Boolean polynomial ring (B(Ā)(X̄)) w.r.t. some
term order of T (X̄). Then G ∩ B(Ā) is either an empty set or a singleton {h(Ā)} of a Boolean
polynomial of B(Ā). In the latter case, the elimination ideal I∩B(Ā) is equal to ⟨h(Ā)⟩, otherwise
it is equal to the trivial ideal {0} in B(Ā).

If the computation of such a G were faster than the computation of a Boolean Gröbner basis of I
in the Boolean polynomial ring B(Ā, X̄) w.r.t. a block order Ā << X̄ , it would give us a more
efficient algorithm to compute a Boolean Gröbner basis of the elimination ideal. Unfortunately,
however, a naive method described in section 4.2 is much slower than the computation of a Boolean
Gröbner basis of I w.r.t. such a block order in general. Though there is a work concerning an
efficient computation algorithm for such a G, it is based on the computation of a Boolean Gröbner
basis of the whole ideal w.r.t. a block order([25]).

In this section, we give a new approach to compute an elimination ideal I ∩B(Ā). The key fact
is the following lemma concerning the structure of a Boolean polynomial ring B(Ā).

Lemma 31 A Boolean polynomial ring B(A1, . . . , Am) is isomorphic to the direct product B2m.
An isomorphism ϕ from B(A1, . . . , Am) to B2m is given by ϕ(f(A1, . . . , Am))i = f(ci1, . . . , c

i
m)

for each i = 1, ..., 2m, where ci1 . . . c
i
m is a binary number representation of i− 1. The inverse of ϕ

is given by ϕ−1((a1, a2, . . . , a2m)) =
∑2m

i=1 ai(A1 + ci1 +1)(A2 + ci2 +1) · · · (Am + cim +1). (Note
that cik + 1 = 1 if cik = 0 and cik + 1 = 0 if cik = 1.)

proof Proof is by induction on m. We first show the lemma for m = 1. Any Boolean polynomial
of B(A1) has a form aA1 + b for some elements a and b of B. By the definition, ϕ(aA1 + b)1 = b

and ϕ(aA1 + b)2 = a + b, that is ϕ(aA1 + b) = (b, a + b). It is easy to check that ϕ is
a homomorphism. It is also obvious that ϕ is a bijection. Let m > 1 and assume that the
lemma holds for m − 1. Note that any element of B(A1, . . . , Am) is uniquely represented as
f(A2, . . . , Am)A1 + g(A2, . . . , Am) with some elements f(A2, . . . , Am) and g(A2, . . . , Am) of
B(A2, . . . , Am). Considering a Boolean polynomial ring B(A1, . . . , Am) as a Boolean polyno-
mial ring (B(A2, , Am))(A1), it is isomorphic to B(A2, . . . , Am)

2 with an isomorphism θ such
that θ(f(A2, . . . , Am)A1 + g(A2, . . . , Am)) = (g(A2, . . . , Am), f(A2, . . . , Am) + g(A2, . . . , Am))

by the first assertion we have shown above. By the assumption, we have an isomorphism ψ from

15

B(A2, . . . , Am) to B2m−1 given by ψ(f(A2, . . . , Am))i = f(c2, . . . , cm) for each i = 1, . . . , 2m−1,

c2 · · · cm is a binary number representation of i − 1. Now, a map ϕ from B(A1, . . . , Am) to
B2m defined by ϕ(f(Ā)) = (ψ(θ(f(Ā))1), ψ(θ(f(Ā))2)) (the concatenation of two 2m−1-tuples
ψ(θ(f(Ā))1) and ψ(θ(f(Ā))2) satisfies the property of the lemma. The last assertion is obvious. 2

This lemma together with Corollary 24 gives us a new algorithm to compute a Boolean Gröbner
basis of an elimination ideal.

ElimBGB
input:F a finite subset of B(Ā, X̄),

Ā parameter variables, > a term order of T (Ā)
output: G a Boolean Gröbner basis of the elimination ideal ⟨F ⟩ ∩B(Ā) w.r.t. >.
begin
F ′ ← {ϕ(f) | f ∈ F}

For i = 1 to 2m, compute the stratified Boolean Gröbner basis
Gi of the ideal generated by F ′

i = {fi ∈ B(Ā) | f ∈ F ′} w.r.t. any term order of T (X̄).
For i = 1 to 2m, if Gi contains a non-zero element of B
then bi = such an element, else bi = 0.

G = a Boolean Gröbner basis of the ideal ⟨ϕ−1((b1, b2, . . . , b2m))⟩ w.r.t. >.
end.

In the above, ϕ is an isomorphism from (B(A1, . . . , Am))(X̄) to B2m(X̄) obtained as an extension
of the isomorphism defined in Lemma 31. We implemented the algorithm for a Boolean ring B =
{S ⊆ St | S is a finite or co-finite set}, where St denotes a countable set of all strings. We show
how our algorithm works using an example of our computation. In the following example, we have
30 variables X1, . . . , X30. a, b, . . . , t denote strings, so {d, p}, {a, b}, . . . are elements of our B.

Example 32 Compute the eliminate portion ⟨F ⟩ ∩B(X1, X2, X3) for
F = {f1(X̄), f2(X̄), . . . , f18(X̄)} with
f1(X̄) = X1X3X18 + {d, p}X4X18X20 +X11X13 + {a, d}X6X10 +X5X18 +X4,

f2(X̄) = X2X5 +X4X5 + {k, q}X6X8 +X1X26X27 + {c, k}X4X8 +X10 +X6X10,

f3(X̄) = X1X2X4 +X3X5X10 + {d, i}X11 +X1 +X5 +X12X24X28,

f4(X̄) = X2X4 + {e, g}X3X4 +X1X12 +X12X15 +X5X10X12 +X3X11,

f5(X̄) = X1X3 +X1X5 + {j, l}X2X5X16 +X11X12 +X11X23 +X16 + 1,

f6(X̄) = X6X17 +X5X9X30 + {a, c}X8X10 +X1X12 +X25X29,

f7(X̄) = X1X11 +X12 +X2X8 +X3X11X12 +X11X12 +X4X6 + {b, e},
f8(X̄) = X2 +X4X7 + {c, f}X12X17X21 +X2X3X12 +X6X7 +X12 +X4X25 +X1X11,

f9(X̄) = X3 +X3X4 + {k,m}X1X3 +X5X6 + {h, i}X7X24,

f10(X̄) = X1 + {g, i}X4X5X11 + {m, r}X1X9X11 +X2X6 +X11 + 1,

f11(X̄) = X3X20 +X5 +X5X7 +X11 + {l, o, s}X13X30 +X11X18X23,

f12(X̄) = X3X14 + {f, n, t}X1X2 +X2 +X11 +X11X15 +X19X22,

16

f13(X̄) = X2X7 + {f, j}X11 +X2X3 +X11X12 +X9X13 +X13,

f14(X̄) = X3X7 +X8 + {d, o}X8X13 + {c, t}X2X23 +X3X20X22 + 1,

f15(X̄) = X4X9 +X7X20 + {b, l}X8X19 +X20,

f16(X̄) = {a, e, n}X7X9 +X3X5 +X6X22 + {e, r}X18X29 +X19X21,

f17(X̄) = X3 +X14 +X17X18 +X3X4X19,

f18(X̄) = X7 +X7X21 +X23X24}

We apply the algorithm ElimBGB for F where X1, X2, X3 are parameters and we use a purely
lexicographic term order such that X1 < X2 < X3.

The isomorphism ϕ from B(X1, X2, X3) to B8 is given by ϕ(f(X1, X2, X3) = (f(0, 0, 0),
f(0, 0, 1), f(0, 1, 0), f(0, 1, 1), f(1, 0, 0), f(1, 0, 1), f(1, 1, 0), f(1, 1, 1)).
F ′
1 = {f1(0, 0, 0, X4, . . . , X30), . . . , f18(0, 0, 0, X4, . . . , X30)}
F ′
2 = {f1(0, 0, 1, X4, . . . , X30), . . . , f18(0, 0, 1, X4, . . . , X30)}

...
F ′
8 = {f1(1, 1, 1, X4, . . . , X30), . . . , f18(1, 1, 1, X4, . . . , X30)}

Computation of a stratified Boolean Gröbner basis for each F ′
i yields

b1 = 0, b2 = {i}, b3 = {k, q}, b4 = 0, b5 = 0, b6 = 0, b7 = 0, b8 = 0

ϕ−1((0, {i}, {k, q}, 0, 0, 0, 0)) = {i}(X1 + 1)(X2 + 1)X3 + {k, q}(X1 + 1)X2(X3 + 1)

We finally have a desired stratified Boolean Gröbner basis
G = {{i, k, q}X1X2X3 + {i, k, q}X2X3 + {i}X1X3 + {i}X3

+ {k, q}X1X2 + {k, q}X2}

Total computation time is 274 seconds by a PC with 1.7GHZ pentium-M CPU and 2GB SDRAM.
Whereas, a Boolean Gröbner basis computation w.r.t. any term order did not terminate in hours, a
comprehensive Gröbner basis computation with parameters X1, X2, X3 did not either terminate in
hours.
In the algorithm ElimBGB, if we use a proper termorder of T (X̄) we can also get other eliminate
portions. In the above example, we used a purely lexicographic term order such that X4 < X5 <

X6 < · · · < X30. From G1, G2, . . . , G8, for example, if we use Gi ∩ B(X4, X5) instead of using
a constant part bi, we can get an elimination ideal ⟨F ⟩ ∩ B(X1, . . . , X5). From which, we can
compute the stratified Boolean Gröbner basis G of the elimination ideal ⟨F ⟩∩B(X3, X4, X5) w.r.t.
a purely lexicographic term order X3 < X4 < X5.

G = {{s, b, i, k, c, e, f, t,m, l}X3X4X5 + {i}X4X5 + {s, b, k, c, e, f, t,m, l}X3X5

+ {s, b, i, k, c, e, f, t,m, l}X3X4 + {i}X4 + {s, b, i, k, c, e, f, t,m, l},
{o}X5X4 + {o}X3X5 + {o}X4 + {o}X3,

(1 + {s, b, i, k, c, h, e, f, t,m, l})X3X4 + (1 + {s, b, i, k, c, h, e, f, t,m, l})X3}

What the algorithm ElimBG computes is essentially a comprehensive Boolean Gröbner basis of
⟨F ⟩ with parameters Ā. The possible values for each parameter are not only 0 and 1 but also all
elements of B. In the example of the last section, possible values for each parameter X1, X2, X3

17

are all the subsets of a, b, c, . . . , s, t and their complements. So, there are (221)3 = 263-many
possible cases for all specializations, where as there are only 8 cases for 0 and 1 specializations.
In this sense, our algorithm is efficient. For m-many parameters, however, our algorithm needs
computations of 2m-many Boolean Gröbner bases. This is of course infeasible when m is big, our
method is effective only when m is small. Complexity of Boolean Gröbner bases computation is
exponential in the number of variables in the worst case for both time and spaces. (So, the method
based on computations of Boolean Gröbner bases is not quite unreasonable, since it is an NP-hard
problem to solve Boolean equations.) Therefore, the method based on the computation of Boolean
Gröbner bases w.r.t. some block order or the naive method to compute comprehensive Boolean
Gröbner bases described in section 4.2 should be more efficient than our method at least from
the theoretical point of view. (In case we have a parallel computation environment with enough
computer resources, it does not apply.) Nevertheless, our (sequential) computation experiments
show the efficiency of our method. In the experiments, we used randomly generated 32 sets of
Boolean polynomials with 20 to 30 variables with 5 parameters. For 15 examples, either a Boolean
Gröbner basis computation w.r.t. a block order or a naive comprehensive Boolean Gröbner basis
computation did not terminate in hours, whereas we successfully computed the elimination ideals
by our method for all examples.

18

Chapter 5

Implementation on general computer
algebra systems

5.1 Computation of Boolean Gröbner bases

Definition 33 Let St denote an enumerable set of strings (of some computer language). PFC(St)

denotes the set of all finite or co-finite subsets of St, i.e. PFC(St) = {S ⊂ St | S is finite or St \
S is finite}.

In the rest of this chapter we consider PFC(St) as a Boolean ring and we concentrate on this
Boolean ring for the computation of Boolean Gröbner bases. Note that an atomic element in this
Boolean ring is nothing but a singleton of a string.

Let f1(X̄), f2(X̄), . . . , fl(X̄) ∈ PFC(St)(X̄). When we compute a Boolean Gröbner basis of
the ideal ⟨f1(X̄), f2(X̄), . . . , fl(X̄)⟩, we do not need to use whole PFC(St) (which is infinite).
Let {s1, s2, . . . , sk} be the set of all string that is contained in a coefficient of some fi and e1 =

{s1}; e2 = {s2}, . . . , ek = {sk}. Then, the finite Boolean subring B generate by e1, . . . , ek is
enough to work. By Stone’s representation theorem B is isomorphic to some direct product of
GF2, more precisely it is isomorphic to GFk+1

2 . Note that we have an extra atomic element 1+e1+
e2 + · · ·+ ek of B.

Definition 34 For any element b ∈ B, we can express b in the form b = b1e1 + b2e2 + · · ·+ bkek +

bk+1(1 + e1 + e2 + · · · + ek), where bi ∈ {0, 1}, 1 ≤ i ≤ k + 1. Let θ be an isomorphism from
B to GFk+1

2 defined by θ(b) = (b1, . . . , bk+1). For each i = 1, . . . , k + 1, a projection πi is an
epimorphism from B to GF2 defined by πi(b) = θ(b)i(the i-th component of θ(b)). We also define
a monomorphism π−1

i from GF2 to B by π−1
i (0) = 0 and π−1

i (1) = ei for each i = 1, . . . , k and
π−1
k+1(1) = 1+e1+ · · ·+ek. θ, πi and π−1

i are naturally extended to an isomorphisms from B(X̄) to
GFk+1

2 (X̄), an epimorphism from B(X̄) to GF2(X̄) and a monomorphism from GF2(X̄) to B(X̄)

respectively.

We can easily prove the following lemma.

19

Lemma 35 For each f ∈ B(X̄) f = π−1
1 (π1(f)) + · · ·+ π−1

k+1(πk+1(f)).

Since GF2 is a field, a Boolean Gröbner basis in the Boolean polynomial ring GF2(X̄) can be com-
puted by a usual Buchberger algorithm and we can compute it in most computer algebra system
which has a facility to compute Gröbner bases in a polynomial ring over GF2.
For a finite set of polynomials F = {f1, . . . , fl} ⊂ PFC(St)(X̄), let e1, . . . , ek and B be as
above. We abuse the notations πi and π−1

i for a set, i.e. πi(P) = {πi(f) | f ∈ P} and
π−1
i (Q) = {π−1

i (f) | f ∈ Q}.

Given a finite set F of Boolean polynomials in B(X1, . . . , Xn), let B′ be its smallest Boolean sub-
ring that contains all coefficients of polynomials in F . Obviously, any Boolean Gröbner basis G of
the ideal ⟨F ⟩ in B

′
(X1, . . . , Xn) is also a Boolean Gröbner basis of the ideal ⟨F ⟩ in B(X1, . . . , Xn).

Note that B′ is a finite Boolean ring, so it is isomorphic to a direct product GFk
2 of the Galois field

GF2 for some natural number k.

Computation of Boolean Gröbner bases in GF2(X̄) is quite easy.

Theorem 36 For a finite set {f1, . . . , fl} of Boolean polynomials in GF2(X̄), let G be a (reduced)
Gröbner basis of the ideal ⟨f1, . . . , fl, X2

1 −X1, . . . , X
2
n−Xn⟩ in the polynomial ring GF2[X̄] over

the field GF2 w.r.t. some term order. Then G \ {X2
1 −X1, . . . , X

2
n −Xn} is a (reduced) Boolean

Gröbner basis of the ideal ⟨f1, . . . , fl⟩ in GF2(X̄) w.r.t. the same term order.

Now we are ready to describe our implementation method.

Algorithm: Boolean GB for PFC(St)

input: F a finite subset of PFC(St)(X̄) and a term order > on T (X̄)

output: G a reduced Boolean Gröbner basis of ⟨F ⟩ w.r.t. >
For each i = 1, . . . , k + 1 compute the reduced Boolean Gröbner basis Gi of the ideal ⟨πi(F)⟩ in
GF2(X̄). Set G = ∪k+1

i=1 π
−1
i (Gi).

In order to get a stratified Boolean Gröbner basis, we further need the following manipulation.

Algorithm: Stratification for PFC(St)

input: G a reduced Boolean Gröbner basis in PFC(St)(X̄)

output: G′ a stratified Boolean Gröbner basis
Let {t1, . . . , ts} be the set of all leading terms(i.e. initials) of some polynomial in G. For each
i = 1 . . . , s, let gi =

∑
LT (g)=ti,g∈G g. Set G′ = {g1, . . . , gs}.

We conclude this section with a simple example of our method.

Example 37 We show a calculation process of the Boolean Gröbner basis of the following F .

F =

{
({e1, e2}+ 1) ∗X ∗ Y + {e1} ∗X + Y + {e2}
X ∗ Y + {e1} ∗ Y +X + {e1, e2}

20

We compute πi(F) as follows.

π1(F) =

{
X + Y

X ∗ Y + Y +X + 1
π2(F) =

{
Y + 1

X ∗ Y +X + 1
π3(F) =

{
X ∗ Y + Y

X ∗ Y +X

We compute the reduced Boolean Gröbner basis Gi of the ideal ⟨πi(F)⟩ in GF2(X,Y).

G1 =

{
X + 1

Y + 1
G2 = {1} G3 = {X + Y }

We compute π−1
i (Gi) as follows.

π−1
1 (G1) =

{
{e1} ∗X + {e1}
{e1} ∗ Y + {e1}

π−1
2 (G2) = {{e2}} π−1

3 (G3) = {({e1, e2}+ 1) ∗ (X + Y)}

Finally, we do Stratification in order to get a stratified Boolean Gröbner basis.

G′ =

({e2}+ 1) ∗X + ({e1, e2}+ 1) ∗ Y + {e1}
{e1} ∗ Y + {e1}
{e2}

5.2 Implementation method

We show how we can implement the computation method of Boolean Gröbner bases described in
the last section using the only manipulations of polynomial rings over the Galois field GF2.

In our implementation, an element of PFC(S) is represented as a polynomial over GF2. For
example, an element 1 + {s1, s2} of PFC(S) is represented as a polynomial 1 + s1 + s2 of
GF2[s1, s2]. Using this representation, a polynomial f of PFC(S)[X̄] is translated into a poly-
nomial in GF2[s1, . . . , st, X̄], where s1, . . . , st are all the strings which occurs in some coefficient
of f . The smallest Boolean subring of PFC(S) that contains s1, . . . , st is isomorphic to the direct
product GFt+1

2 . Using an isomorphism ψ such that ψ({si}) is the (t + 1)-tuple of 0, 1 such that
only the i-th component is 1 and the others are all 0 and ψ(1 + {s1, . . . , st}) is the (t + 1)-tuple
of 0, 1 such that only the last component is 1, we can consider f as a polynomial of GFt+1

2 [X̄].
Under this isomorphism, fi can be computed by simply specializing si with 1 and other sj with 0

for i = 1, . . . , t, for i = t+ 1 by specializing all variables s1, . . . , st with 0.

Example 38 f = (1 + {s1, s2})XY is translated into XY + s1s2XY .
g = {s1, s2}X({s1}Y) is translated into (s1 + s2)Xs1Y = s21XY + s1s2XY .

Note that the second polynomial g could be further simplified to s1XY , however we do not em-
ploy this simplification since it does not affect the above specializations. By this rather lazy strat-
egy together with the computation technique of Boolean Gröbner bases described in Theorem 36,
we can construct most part of Boolean Gröbner bases computations by only using facilities of

21

Risa/Asir. Our codes for the computations of both Boolean Gröbner bases and comprehensive
Boolean Gröbner bases consists less than 300 lines.

The following are computation examples by Risa/Asir.

[1378] G=cbgb([(1+(s1+s2))*(x*y+x+y),s1*x+s1,s2*y+s2,x*y],

[x,y],[],[s1,s2],2,1,1,1)$

[1379] bp_str(G,[x,y],[]);

[1*y+[s2],1*x+[s1]]

[1380] G=cbgb([(1+(s1+s2))*(x*y+x+y),s1*x+s1,a*y+a,x*y],

[x,y],[a],[s1,s2],2,1,1,1)$

[1382] bp_str(G,[x,y],[a]);

[([s2]+1)*a,1*a*y+([s2]+1)*y+[s2]*a,

1*a*x+([s2]+1)*x+[s1]*a+[s1],[s2]*a*y*x+[s2]*y*x]

5.3 Efficient Boolean Gröbner bases software

In this section, we give the computation data obtained by SageMath, Risa/Asir, Mathemathica,
Maple, and Singlar, in order to consider suitable software to compute Boolean Gröbner bases. In
the experiments, we used randomly generated 20 examples which include polynomials over GF2

with 100 variables by using PolyBoRi command “random element”. Most combinatorial problems
are consisted of polynomials which have total degree 1 or 2 because the Boolean operations ∨,∧,¬
are defined by a∨b = a+b+a ·b, a∧b = a ·b,¬a = 1+a. In fact, polynomials of Example 5 and 6
are constructed of a linear combination of monomials have total degree 1 or 2. In our experiments,
we therefore randomly generated polyomials have total degree 1 or 2 like Example 39, 40 and 41.
All the computations are done by the same computer with the following spec:

OS: Ubuntu 14.04 LTS 64bit, CPU: Intel(R) Core(TM) i7-3970X, Clock: 3.50GHz, Number of
Cores: 6, Memory: 64GB.

We compared the following system:

SageMath Version 6.7: PolyBoRi package with heuristic option False. Risa/Asir Version 20140224:
“nd gr” command. Mathemathica Version 10: Modulus 2 options. Maple: Gröbner package with
default options. Singular 3-1-6: “std” command. With the exception of SageMath, we add the
following polynomials {x21 + x1, x

2
2 + x2, · · · , x2n + xn} to polynomials F in Examples.

Table 5.1 contains computation time of Gröbner bases (in seconds) of F in examples 39, 40 and
41.

22

SageMath Risa/Asir Singlar Mathematica Maple

Example 39 0.73 0.99 0.27 1723.74 >1 hour
Example 40 3.66 40.49 385.65 >1 hour >1 hour
Example 41 500.90 > 2 hours > 2 hours >2 hours >2 hours

Table 5.1: Computation time of Gröbner bases (Sec)

For other 8 examples, a Gröbner basis computation by Risa/Asir, Mathematica, Maple and
Singlar did not terminate in hours, whereas SageMath successfully computed.

Example 39 F = {x17x77 + x60x85, x4x96 + x96x99, x35x84 + x39x59, x23x58 + x61x83, x35x45 +

x43x76, x17x51+x75x85, x49x73+x70, x28x50+x35x80, x8x30+x14x49, x35x41+x52x54, x13x29+

x17x28, x21x72+x39x49, x22x92+x37x38, x17x55+x57x98, x14x72+x32x67, x25x42+x58x80, x1x24+

x78x96, x20x41 + x58x84, x20x47 + x36x41, x46x56 + x66x75, x26x85 + x46x100, x43x60 + x44x69,
x5x82 + x6x27, x26x94 + x30x65, x1x88 + x54x90}.

Example 40 F = {x39 + x40x76 + x45 + x52 + x93 + x94, x24 + x25x62 + x25 + x51 + x72 +

x80, x25x71 + x25 + x32 + x38 + x69 + x90, x5 + x16x30 + x22 + x35 + x65 + x96, x7x54 + x11 +

x49 + x67 + x87 + x92, x5x53 + x17 + x37 + x74 + x76 + x90, x17 + x44x66 + x61 + x65 + x74 +

x89, x16+x33+x34+x57x69+x59+x73, x10+x35x41+x51+x59+x100+1, x2+x5x47+x56+

x91 + x92 + x95, x15 + x30x96 + x30 + x37 + x84 + x86, x1 + x53 + x76x88 + x76 + x85 + 1, x10 +

x19x22 + x35 + x50 + x58 + x92, x18 + x37 + x44 + x51x59 + x59 + x77, x30 + x31x73 + x38 + x45 +

x78 + x89, x14 + x22 + x24 + x81x98 + x92 + x98, x10x31 + x19 + x39 + x40 + x41 + x44}.

Example 41 F = {x4x84 + x69x92, x49x82 + x75x89, x41x73 + x58x75, x1x43 + x9x50, x2x86 +

x15x79, x24x34+x45x52, x4x48+x22x98, x2x23+x51x81, x8x77+x10x79, x3x8+x53x95, x3x73+

x18x95, x8+x18+x27+x29+x30+x66, x2+x9+x63+x73+x79+x97, x36+x46+x59+x63+

x70 + x74, x31 + x34 + x36 + x41 + x60 + x66, x9 + x30 + x48 + x79 + x83 + x88, x26 + x47 + x67 +

x85 + x88 + x100, x1 + x42 + x53 + x55 + x86 + x98, x33 + x57 + x69 + x70 + x84 + x90, x3 + x12 +

x14 + x59 + x61 + x72, x2 + x41 + x43 + x63 + x91 + x97, x12 + x19 + x38 + x62 + x65 + x77, x20 +

x32+x36+x50+x98+1, x2+x4+x17+x40+x85+x92, x11+x29+x31+x46+x79+x98, x10+

x51+x58+x59+x89+x90, x2+x8+x17+x42+x50+x93, x6+x24+x27+x64+x86+x90, x1+

x6 + x47 + x67 + x74 + x85, x26 + x40 + x54 + x57 + x68 + x89, x7 + x51 + x53 + x92 + x94 + x98}.

5.4 Coding of Boolean Gröbner basis computation in SageMath

Our program to compute Boolean Gröbner bases of PFC({s1, . . . , sk}) has the following rather
simple shape.

def bgb(Polys,Vars,Eles):

23

B=BooleanPolynomialRing(len(Vars)+len(Eles),

Eles+Vars,order=’lex’)

BPolys=(B.ideal(Polys)).gens()

BEles=(B.ideal(Eles)).gens()

Polys_set=divide(BPolys,Eles)

Bgb_Set=bgb_comp(Polys_set,Vars,Eles)

Ele_Polys=mulatom(Bgb_Set,BEles)

Bgb=stratify(Ele_Polys,Eles)

return Bgb

A Boolean polynomial of PFC({s1, . . . , sk})(X̄) is represented by a Boolean polynomial of
GF2(s1, . . . , sk, X̄) considering s1, . . . , sk as indeterminates. For example, a Boolean polynomial
{green, red}X1 + {blue}X2 is represented by a polynomial (green+ red) ∗X1 + blue ∗X2. We
input a list of such represented Boolean polynomials in Polys, a list of variables, i.e., X̄ in Vars
and a list of elements, i.e., s1, . . . , sk in Eles. BooleanPolynomialRing is a PolyBoRi com-
mand which defines a Boolean polynomial ring GF2(X̄, s1, . . . , sk). For the input F of Polys,
divide computes πi(F) for each i = 1, . . . , k + 1. bgb_comp computes a reduced Gröbner
basis Gi of the ideal ⟨πi(F)⟩ in GF2(X̄) for each i = 1, . . . , k + 1, which uses the PolyBoRi pro-
gram groebner_basis to compute Gröbner bases of GF2. mulatom is a program to compute
π−1
i (Gi). Finally stratify compute the stratified Boolean Gröbner basis G′.

The following is a computation example of a Boolean Gröbner basis by our program. It compute
the stratified Boolean Gröbner basis {x+ {s1}, y + {s2}} of the ideal ⟨(1 + {s1, s2})(XY +X +

Y), {s1}X + {s1}, {s2}Y + {s2}, XY ⟩ in a Boolean polynomial ring PFC({s1, s2})(x, y) w.r.t. a
lex order such that x > y.

% sage

sage: load("bgb.sage")

sage: var("x,y,s1,s2")

(x, y, s1, s2)

sage: bgb([(1+s1+s2)*(x*y+x+y),s1*x+s1,s2*y+s2,x*y],[x,y],[s1,s2])

[x + s1, y + s2]

5.5 Parallel Boolean Gröbner bases computation

In this section we describe a parallelization method for Boolean Gröbner basis computation and
its implementation. In section 5.1 we see that each computation of ⟨πi(F)⟩ for i = 1, . . . , k is
done independently. Hence, the computation of the reduced Gröbner basis Gi of the ideal ⟨πi(F)⟩
in GF2(X̄) is also done independently. Therefore we can easily have an algorithm for parallel
Boolean Gröbner basis computation. It is also easy to implement a parallel Boolean Gröbner basis
computation by using a decorator which gives a function of a parallel interface. This decorator

24

represented by “@parallel” is supported in SageMath. Our program to compute a Boolean Gröbner
basis for PFC({s1, . . . , sk}) has the following rather simple shape.

@parallel()

def parallel_gb(In):

I = ideal(In[1])

BG=I.groebner_basis(heuristic=False)

return [In[0],BG]

def parallel_bgb(Polys,Vars,Eles):

B = BooleanPolynomialRing(len(Vars)+len(Eles), Vars+Eles,

order=’lex’)

BPolys=(B.ideal(Polys)).gens()

BVars=(B.ideal(Vars)).gens()

BEles=(B.ideal(Eles)).gens()

Polys_set=divide(BPolys,BVars,BEles)

Input=[[i,Polys_set[i]] for i in range(len(Polys_set))]

Output=list(parallel_gb(Input))

Bgb_set=[]

Bgb_set=[Bgb_set+Output[j][1][1] for i in

range(len(Output))

for j in range(len(Output))if Output[j][1][0]==i]

Ele_BPolys=mulatom(Bgb_set,BEles)

Bgb=stratify(Ele_BPolys,BVars)

return Bgb

BooleanPolynomialRing and divide are the same functions as those of bgb in the
previous section. parallel_gb computes a reduced Gröbner basis Gi of the ideal ⟨πi(F)⟩ in
GF2(X̄) for each i = 1, . . . , k in parallel. After that, an output of parallel_gb stored in an
array is sorted. mulatom and stratify are the same functions as those of bgb.

We give a snapshot of timing data of the following example of parallel Boolean Gröbner basis
computation. In the example, we have 40 variables x1, · · · , x40. The symbols e1, e2, · · · , e10 denote
strings, so {e1}, {e2}, · · · are elements of our B.

Example 42 F = {x8x40 + x11x15 + x13x30 + x23x27, x19 + x26x38, {e1}x14x40 + x15x2 +

x1, {e7}x26 + {e10}x37 + {e7}, x8x23 + x11x39 + x16x18, x25x27 + {e4}x35, {e5}x12 + x33x4 +

x17x6 + x33, {e4}x10 + x22x24 + x12x3, {e1}x27 + {e6}x34, {e6}x14x2 + x20x28 + x27x38 +

x31x38+ e9, {e1}x18x37+x12x16+x1x20+x22, x4x13+x5, x10x14x32, {e6}x16x22, {e1}x22x37+
{e8}x25, {e3}x10+x12x30, {e4}x15+{e9}x22+x25, {e5}x35+x12+x7, {e2}x2x29+{e7}x21x33+
{e8}x36x9, x1 + x8 + x15 + x16 + x22, {e3}x7 + {e3}, {e8}x28 + {e8}}

25

The computation is done by the computer with OS: Ubuntu 14.04 LTS 64bit, Software: Sage-
Math 7.1, CPU: Intel(R) Core(TM) i7-3970X, Clock: 3.50GHz, Number of Cores: 6, Memory:
64GB. Total computation time is 16.7 seconds using parallel Boolean Gröbner basis computation.
Whereas, sequential computation time is 70 seconds.

sage: load("bgb.sage")

sage: %time B=parallel_bgb(Polys_ex_para,Vars_ex_para,Eles_ex_para)

For the element 3 GB Computation time 2.95557999611

For the element 4 GB Computation time 4.66137695312

For the element 8 GB Computation time 4.94551992416

For the element 1 GB Computation time 7.18508601189

For the element 9 GB Computation time 9.36309504509

For the element 10 GB Computation time 10.1585040092

For the element 2 GB Computation time 11.1377859116

For the element 7 GB Computation time 11.1130139828

For the element 11 GB Computation time 11.1987161636

For the element 5 GB Computation time 13.8662071228

For the element 6 GB Computation time 14.5633881092

CPU times: user 4.82 s, sys: 153 ms, total: 4.97 s

Wall time: 16.7 s

This parallel computation is essentially same as the parallel computation introduced in [22, 24].
Though we have satisfactory speed-up for this example, there are two problems for this type of
parallel computation. One is that we can expect only n+ 1-times speed-up, where n is the number
of elements. The another one is that, unless each computation has almost same computation time,
we can not expect enough speed-up. For example, if two computations need 5 minutes and other
need only a few seconds then the speed-up can be only double.

As is described in the introduction, we need to compute at most 10 Boolean Gröbner bases
for solving one Sudoku puzzle. Since each Boolean Gröbner basis computation is done within 1
seconds, we do not need parallel computation for the solver of a Sudoku puzzle. For the compu-
tation of the s-rank of a Sudoku puzzle, we need to compute much more Boolean Gröbner bases.
Since they are divided into many independent computations, parallel and distributed computation
of Boolean Gröbner bases is effective for its computation.

5.6 Distributed Boolean Gröbner bases computation

In this section we describe how we implemented distributed Boolean Gröbner basis computation.
We have implemented distributed computation using “multiprocessing” module in Python which
provide the remote manager. Client code is as follows.

26

from multiprocessing.managers import BaseManager

class QueueManager(BaseManager):pass

QueueManager.register(’bgb_remote’)

QueueManager.register(’parallel_bgb_remote’)

def distributed_bgb(Polys,Vars,Eles,IP,Port,Parallel=False):

B = BooleanPolynomialRing(len(Vars)+len(Eles), Vars+Eles,

order=’lex’)

m = QueueManager(address=(IP,Port),authkey=’abracadabra’)

m.connect()

if Parallel==True:

Bgb = (m.parallel_bgb_remote(Polys,Vars,Eles)).

_getvalue()

else:

Bgb = (m.bgb_remote(Polys,Vars,Eles))._getvalue()

return Bgb

Clients setup IP address and Port number of a distributed computing server. Basically, clients
set any password to “authkey” for the authentication when “BaseManager” object is used. We fix
“authkey” here for simplicity. Next, server code is as follows.

from multiprocessing.managers import BaseManager

class QueueManager(BaseManager):pass

def _bgb(polys,vars,eles):

print("bgb call ")

w=walltime()

Bgb=bgb(polys,vars,eles)

wtime=walltime(w)

print ’\033[94m’+"BGB Computation time "+’\033[0m’,wtime

return Bgb

def _parallel_bgb(polys,vars,eles):

print("parallel bgb call ")

return parallel_bgb(polys,vars,eles)

if __name__ == ’__main__’:

load("bgb.sage")

QueueManager.register(’bgb_remote’, callable=_bgb)

QueueManager.register(’parallel_bgb_remote’, callable=

_parallel_bgb)

27

m = QueueManager(address=("127.0.0.1",50000),authkey=

’abracadabra’)

s = m.get_server()

s.serve_forever()

When client calls bgb_remote function, server executes _bgb function. Although there are
other implementation methods to distribute, this implementation method is very simple and easy to
deal with.

The following computation example shows how to use our program. It compute the stratified
Boolean Gröbner basis {x+ {s1}, y+ {s2}} of the ideal ⟨(1 + {s1, s2})(XY +X + Y), {s1}X +

{s1}, {s2}Y + {s2}, XY ⟩ in a Boolean polynomial ring P({s1, s2})(x, y) w.r.t. a lex order such
that x > y.

sage: load("bgb.sage")

sage: var("x,y,s1,s2")

(x, y, s1, s2)

sage: distributed_bgb([(1+s1+s2)*(x*y+x+y),s1*x+s1,s2*y+s2,x*y],

....: [x,y],[s1,s2],"127.0.0.1",50000,Parallel=True)

[x + s1, y + s2]

Parallel computation is available as an option. In this way, we can easily use distributed Boolean
Gröbner basis computation.

5.7 Coding of Comprehensive Boolean Gröbner bases

In this section we introduce implement methods of Comprehensive Boolean Gröbner bases in Sage-
Math. In a polynomial ring over a field, construction of a comprehensive Gröbner basis is not so
simple in general. Whereas, construction of comprehensive BooleanGröbner bases is very simple.

There are three methods to compute a comprehensive Boolean Gröbner basis. The first method,
letG be a Boolean Gröbner basis of I in B2m(X̄), then φ−1(G) becomes a comprehensive Boolean
Gröbner basis of I with parameters Ā, since a Boolean polynomial ring B(A1, . . . , Am) is iso-
morphic to the direct product B2m, there exists an isomorphism φ from (B(A1, . . . , Am))(X̄) to
B2m(X̄). The second method, a comprehensive Boolean Gröbner basis of I in B(Ā, X̄) with main
variables X̄ and parameters Ā can be obtained by simply computing a usual Boolean Gröbner basis
of I regarding both X̄ and Ā as variables with a certain block term order such that X̄ ≫ Ā(see
[11]). The third method, let G be a Boolean Gröbner basis of I in (B(Ā))(X̄), then G becomes a
comprehensive Gröbner basis of I with parameters Ā (see [26]). For m-many parameters, the first
method needs computations of 2m-many Boolean Gröbner bases, so the first method is effective
empirically when m is small. We have implemented the first method and the second method in
SageMath. Our comprehensive BooleanGröbner bases program run both the first and the second
methods in parallel and return output of a faster one. Using only each method is available as an
option.

28

First of all, we review a calculation process of the first method and the second method through
the following example.

Example 43 Let F = {(1 + {s1, s2})(X1X2 +X1 +X2), {s1}X1 + {s1}, AX2 + A,X1X2}.

When using the first method, we obtain the following Boolean Gröbner bases in Boolean polyno-
mial ring B2(X1, X2).

{G1 = {{s2}X1X2, ({s2}+1)X1+{s1}, ({s2}+1)X2}, G2 = {{s2}X1, {s2}X2+{s2}, {s2}+1}}

After φ−1, we obtain the following Boolean Gröbner bases in Boolean polynomial ring
B(A)(X1, X2).

{φ−1(G1) = {{s2}AX1X2 + {s2}X1X2, ({s2}+ 1)AX1 + {s1}+ ({s2}+ 1)X1 + {s1},

({s2}+ 1)AX2 + ({s2}+ 1)X2},

φ−1(G2) = {{s2}AX1, {s2}AX2 + {s2}A, ({s2}+ 1)A}}

Finally, we obtain the following stratified Comprehensive Boolean Gröbner basis.
G = {{s2}AX1X2 + {s2}X1X2, (A + {s2} + 1)X1 + {s1}A + {s1}, (A + {s2} + 1)X2 +

{s2}A, ({s2}+ 1)A}
Next, we describe the second method. We obtain the following Comprehensive Boolean Gröbner
basis of F by computing a Boolean Gröbner basis of F w.r.t. a lexicographic term order such that
X > Y > A.

G = {{s2}X1X2, {s2}AX1, ({s2}+1)X1+{s1}, {s2}AX2+{s2}A, ({s2}+1)X2, ({s2}+1)A}

We can implement above two methods easily. Regarding the first method, we need to implement φ
for the input F but this function which perform an operation from (B(A1, . . . , Am))(X̄) to B2m(X̄)

can be made in the same way as divide function in our program for a Boolean Gröbner basis
computation. Regarding the second method, we run the program of Boolean Gröbner basis w.r.t. a
lexicographic term order such that X̄ > Ā.

The following computation example shows how to use our program. It compute the compre-
hensive Boolean Gröbner basis of above example F = {(1+{s1, s2})(X1X2+X1+X2), {s1}X1+

{s1}, AX2 + A,X1X2}

sage: load("cbgb.sage")

sage: var("X1,X2,A,s1,s2")

(X1, X2, A, s1, s2)

sage: F=[(1+s1+s2)*(X1*X2+X1+X2),s1*X1+s1,A*X2+A,X1*X2]

sage: cbgb(F,[X1,X2],[s1,s2],[A])

Using BGB method with X>A

[X1*X2*s2, X1*A*s2, X1*s2 + X1 + s1, X2*A*s2 + A*s2, X2*s2 + X2,

A*s2 + A]

29

It is easy to implement the first method and the second method, but it is not easy to kill the other
one after a faster one finished when two methods are run in parallel. In general, a parent process
can not produce grandchild processes to prevent creating zombie processes. So we create children
processes which perform the first method and the second method on a same parent process and kill
the other one after a faster one finished. We show how to create processes for a computation of a
Boolean Gröbner basis in the following program.

queue = multiprocessing.Queue()

B = BooleanPolynomialRing(len(Vars)+len(Eles), Vars+Eles,

order=’lex’)

BPolys=(B.ideal(Polys)).gens()

BVars=(B.ideal(Vars)).gens()

BEles=(B.ideal(Eles)).gens()

Polys_set=divide(BPolys,BVars,BEles)

In=[[i,Polys_set[i],Vars,Eles] for i in range(

len(Polys_set))]

jobs=[]

for i in range(len(In)):

p = Process(target=bgb_comp_using_process, args=(

i,In[i][1],In[i][2],In[i][3],queue))

jobs.append(p)

for p in jobs:

p.start()

Output=[]

for p in range(len(jobs)):

Output.append(queue.get())

return Output

def bgb_comp_using_process(i,Polys,Vars,Eles,queue):

B = BooleanPolynomialRing(len(Vars)+len(Eles), Vars+Eles,

order=’lex’)

if Polys != [B.zero()] :

I = ideal(Polys)

BG=I.groebner_basis(heuristic=False)

else:

BG=[B.zero()]

queue.put([i,BG])

Process is a API offered in the multiprocessing package, “Process(target=bgb comp using

30

process, args=(i,In[i][1],In[i][2],In[i][3],queue))” create a process object of calculating a Boolean
Gröbner basis. Then, p.start() start processes and queue.put insert a result into a queue.
We obtain a result of a Boolean Gröbner basis by queue.get. In this way, we create process
objects of the first method and the second method, and compute them in parallel. In the above
snapshot, the second method finished faster than the first method. We give an efficient example of
the first method.

Example 44 F = {f1(X̄), f2(X̄), . . . , f18(X̄)} have 27 variables X4, · · · , X30 and 3 parameters
A1, A2, A3.
f1(X̄) = A1A3X18 + {d, p}X4X18X20 +X11X13 + {a, d}X6X10 +X5X18 +X4,

f2(X̄) = A2X5 +X4X5 + {k, q}X6X8 + A1X26X27 + {c, k}X4X8 +X10 +X6X10,

f3(X̄) = A1A2X4 + A3X5X10 + {d, i}X11 + A1 +X5 +X12X24X28,

f4(X̄) = A2X4 + {e, g}A3X4 + A1X12 +X12X15 +X5X10X12 + A3X11,

f5(X̄) = A1A3 + A1X5 + {j, l}A2X5X16 +X11X12 +X11X23 +X16 + 1,

f6(X̄) = X6X17 +X5X9X30 + {a, c}X8X10 + A1X12 +X25X29,

f7(X̄) = A1X11 +X12 + A2X8 + A3X11X12 +X11X12 +X4X6 + {b, e},
f8(X̄) = A2 +X4X7 + {c, f}X12X17X21 + A2A3X12 +X6X7 +X12 +X4X25 + A1X11,

f9(X̄) = A3 + A3X4 + {k,m}A1A3 +X5X6 + {h, i}X7X24,

f10(X̄) = A1 + {g, i}X4X5X11 + {m, r}A1X9X11 + A2X6 +X11 + 1,

f11(X̄) = A3X20 +X5 +X5X7 +X11 + {l, o, s}X13X30 +X11X18X23,

f12(X̄) = A3X14 + {f, n, t}A1A2 + A2 +X11 +X11X15 +X19X22,

f13(X̄) = A2X7 + {f, j}X11 + A2A3 +X11X12 +X9X13 +X13,

f14(X̄) = A3X7 +X8 + {d, o}X8X13 + {c, t}A2X23 + A3X20X22 + 1,

f15(X̄) = X4X9 +X7X20 + {b, l}X8X19 +X20,

f16(X̄) = {a, e, n}X7X9 + A3X5 +X6X22 + {e, r}X18X29 +X19X21,

f17(X̄) = A3 +X14 +X17X18 + A3X4X19,

f18(X̄) = X7 +X7X21 +X23X24}

The computation is done by the computer with OS: Ubuntu 14.04 LTS 64bit, Software: SageMath
7.1, CPU: Intel(R) Core(TM) i7-3970X, Clock: 3.50GHz, Number of Cores: 6, Memory: 64GB.
Total computation time is 4.9 seconds using the first method. This example is same as Example
4 in [26], it took 274 seconds with 1.7GHZ pentium-M CPU and 2GB SDRAM at that time. We
use a richer computer but we obtain farther more speed-up. Whereas, the second method did not
terminate within 1 hour.

31

Chapter 6

Applications

6.1 Boolean Gröbner bases computation of a finite powerset al-
gebra

Definition 45 Let S be an arbitrary set and P(S) be its power set, i.e., the family of all subsets
of S. Then, (P(S),∨,∧,¬) becomes a Boolean algebra with the operations ∨,∧,¬ as union,
intersection and the complement of S respectively. It is called a powerset algebra of S.

Let k be its cardinality. Then the Boolean ring B of the powerset algebra P(S) is isomorphic to the
direct product GFk

2. More precisely, let S = {a1, a2, . . . , ak} then the isomorphism θ from P(S)
to GFk

2 is defined by θ(A) = (e1, e2, . . . , ek) for each A ⊆ S, where ei = 1 if ai ∈ A and ei = 0 if
ai ̸∈ A for each i = 1, . . . , k.

For an element v ∈ GFk
2, πi(v) denotes the i-th component of v. This projection is naturally

extended to a Boolean polynomial of GFk
2(X̄). The following theorem reduces the computation

of a Boolean Gröbner basis of a Boolean polynomial ring GFk
2(X̄) to the computation of Boolean

Gröbner bases of GF2(X̄).

Theorem 46 In a Boolean polynomial ring GFk
2(X̄), let G be a finite set of Boolean closed poly-

nomials. Then, G is a (reduced) Boolean Gröbner basis of an ideal I in GFk
2(X̄) if and only if

πi(G) = {πi(g)|g ∈ G} \ {0} is a (reduced) Gröbner basis of the ideal πi(I) = {πi(f)|f ∈ I} in
GF2(X̄) for each i = 1, . . . , k.

For each i = 1, . . . , k, define a map ϕi from GF2 to GFk
2 by ϕi(0) = (0, . . . , 0) and ϕi(1) =

(e1, . . . , ek) where ei = 1 and ej = 0 for any j such that j ̸= i. It is also naturally extended to a
map from GF2(X̄) to GFk

2(X̄).

Algorithm: Boolean GB of power set algebra
input: F a finite subset of GFk

2(X̄) and a term order > on T (X̄)

output: G a reduced Boolean Gröbner basis of ⟨F ⟩ w.r.t. >
For each i = 1, . . . , k compute the reduced Boolean Gröbner basis Gi of the ideal ⟨πi(F)⟩ in

32

GF2(X̄). Set G = ∪ki=1ϕi(Gi).

Algorithm: Stratification of power set algebra
input: G a reduced Boolean Gröbner basis in GFk

2(X̄)

output: G′ a stratified Boolean Gröbner basis
Let {t1, . . . , ts} be the set of all leading terms of some polynomial in G. For each i = 1 . . . , s, let
gi =

∑
LT (g)=ti,g∈G g. Set G′ = {g1, . . . , gs}.

Definition 47 Let I be an ideal of B(X̄). For a subset A of Bn, VA(I) denotes a subset {ā ∈
A|∀f ∈ If(ā) = 0}. When A =Bn, VA(I) is simply denoted by V (I) and called a variety of I . We
say I is satisfiable in A if VA(I) is not empty. When A = Bn, we simply say I is satisfiable.

Example 48 Consider the coloring problem of the following graph by three colors, green, blue and
red. Let S be a finite set {green, blue, red} and B be the powerset algebra of S. Let Sing denote
the subset of B8 defined by Sing = {(s1, . . . , s8) ∈ B8| each si is a singleton}. Without loss of
generality we can assume x1 is assigned to green and x2 is to blue. Then the problem is equiva-
lent to computing the variety VSing(I) for the ideal I = ⟨x1 + {green}, x2 + {blue}, x1x2, x1x5,
x1x6, x2x3, x2x4, x2x8, . . . , x7x8⟩ of B(x1, x2, . . . , x8).

��

��

��
��

��
��

�� ��

The graph of Example 48

33

4 9
3 1 8

5
5 8

2 9
1 7

6 5
7

2 9

Example of a Sudoku puzzle

Example 49 Consider the above Sudoku puzzle. We associate a variable Xij for each grid at the
i-th row and the j-th column. This puzzle can be considered as a set constraint where each variable
should be assigned a singleton from 9 candidates {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8} and {9}
so that any distinct two variables which lie on a same row, column or block must be assigned
different singletons. 17 variables are assigned singletons X11 = {4}, X15 = {9}, . . . , X99 = {9}
as the initial conditions. Let B be a powerset algebra of the finite set {1, 2, . . . , 9}. This constraint
is translated into a system of equations of the Boolean polynomial ring B(X11, X12, . . . , X99) =

B(X̄) as follows:

(1) X11 + {4} = 0, X15 + {9} = 0, . . . , X99 + {9} = 0.
(2) XijXi′j′ = 0 for each pair of distinct variables Xij, Xi′j′ which lie on a same

row, column or block.
(3)

∑
(i,j)∈AXij + 1 = 0 where A is a set of indices lying on a same row, column

or block. (There are 27 such A’s. Remember that 1 = {1, 2, . . . , 9}.)

Let I be the ideal of B(X̄) generated by the corresponding polynomials of (1),(2) and (3). Let
Sing denote the subset of B81 defined by Sing = {(s1, s2, . . . , s81) ∈ B81| each si is a singleton
}. Then the puzzle is equivalent to computing the variety VSing(I).

The above examples are so-called singleton set constraints. We can handle such a constraint by
the computation of Boolean Gröbner bases of a finite powerset algebra. See [13] for more details.

6.2 Sudoku Solver

Firstly, we give the computation data obtained by our program of SageMath and the previous pro-
gram of Risa/Asir [12]. We also optimized programs of both Risa/Asir and SageMath for Sudoku
puzzle. Next, we give some computation data of the s-rank of Sudoku puzzles obtained by our
parallel and distributed Boolean Gröbner basis program in SageMath in order to show its effect.
The reader is referred to [13] for s-rank.

Table 6.1 contains average time (in seconds) of 10 puzzles in the Sudoku book High and UltraHard

34

[7] for obtaining a solution of a puzzle. These puzzles have a property of basicsolvable introduced
in [13]. Each computation is done serially by computer 1 in Table 6.2.
We put snapshots of the computations of the following puzzle by SageMath and Risa/Asir pro-

SageMath Risa/Asir
(Sequential) (Sequential)

High 0.64 9.44
UltraHard 0.77 11.28

Table 6.1: The calculating time of a Sudoku puzzle

grams. S50_1 is basic solvable.

9 3 8 4 2

8 1 3

3 5 8

9 2 3

1 7 6

8 4 5 2

4 3 1 7

2 9

8 6 4 1 3

S50_1

sage: S=sudoku_solve(S50_1) [1903] load("./S50_1")$

This is solvable.

1 2 3 4 5 6 7 8 9 _ _ _ _ _ _ _ _ _

1 [6, 7, 9, 3, 8, 4, 2, 5, 1] |6|7|9|3|8|4|2|5|1|

2 [2, 8, 5, 7, 1, 6, 4, 3, 9] |2|8|5|7|1|6|4|3|9|

3 [3, 1, 4, 2, 5, 9, 7, 6, 8] |3|1|4|2|5|9|7|6|8|

4 [9, 4, 6, 1, 2, 8, 5, 7, 3] |9|4|6|1|2|8|5|7|3|

5 [1, 5, 2, 9, 7, 3, 8, 4, 6] |1|5|2|9|7|3|8|4|6|

6 [8, 3, 7, 4, 6, 5, 9, 1, 2] |8|3|7|4|6|5|9|1|2|

7 [4, 6, 3, 5, 9, 2, 1, 8, 7] |4|6|3|5|9|2|1|8|7|

8 [5, 2, 1, 8, 3, 7, 6, 9, 4] |5|2|1|8|3|7|6|9|4|

9 [7, 9, 8, 6, 4, 1, 3, 2, 5] |7|9|8|6|4|1|3|2|5|

S50_1: Comp time 0.671790838242 7.956sec + gc : 0.2046sec(8.165sec)

Next, we give some computation data of the s-rank of Sudoku puzzles obtained by our parallel
and distributed Boolean Gröbner basis program. The computing environment used for our exper-
iments is summarized below. For the computation of s-ranks, we empirically compute more than
100 Boolean Gröbner bases. These Boolean Gröbner basis computations are independent, so we

35

Computer 1 and 2 Computer 3

OS Ubuntu 14.04 LTS 64bit Ubuntu 14.04 LTS 64bit
SageMath 7.1 7.1

CPU Intel(R) Core(TM) i7-3970X Intel(R) Core(TM) i7-4960X
Clock 3.50GHz 3.60GHz

Num of Cores 6 6
Memory 64GB 64GB

Table 6.2: The computing environment

can expect reasonable speed-up by using parallel and distributed Boolean Gröbner basis computa-
tion.

The following Table 6.3 contains computation time (in seconds) obtained by three types of
computation. The first one, “Sequential” is a serial computing, which means all Boolean Gröbner
basis computations are executed sequentially. The second one, “Parallel” means Boolean Gröbner
basis computations executed simultaneously by a single computer with multiple processors/cores.
We run a Boolean Gröbner bases program introduced in [15] as regards “Sequential” and “Parallel”.
The third one, “Parallel and Distributed” means “Parallel” computations by three computers in
Table 6.2. The first row in Table 6.3 is the average time (in seconds) of 10 puzzles in the Sudoku
book UltraHard [7] for obtaining s-rank of a puzzle. Example A and Example B contains the data
for two puzzles among them.

Sequential Parallel Parallel and Distributed

Average　 74.13 15.55 6.49
Example A　 184.9 37.32 14.39
Example B　 64.12 14.04 5.66

Table 6.3: Computation time of Srank (Sec)

2 9

5 1 6

6 3 4

1 9 2

4 5 7

8 4

7 4

5 6 2

1 2 7 3

Example A

36

2 9 8
3 1 6

9 5 4
6 3

3 1
9 4

9 7 8
4 5 9

6 2 5

Example B

The computation time of Example A and B shows that our parallel and distributed computation
is efficient for s-rank. When a given Sudoku puzzle is not basic solvable (see [13]), for computing
its s-rank, we need computations of many Boolean Gröbner bases. For such computations, our
computing method is practical and useful.

6.3 Hierarchy of Sudoku puzzles

In this section, we propose a new hierarchy for the data reported in [13]. For their data, we also
found errors and corrected by our program. We use the same notations given in Example 49. The
reader is referred to [13] for an operation Ψ .

In [13], s-ranks of 525 Sudoku puzzles contained in the series of Sudoku books (named High,
SuperHigh, Hard, SuperHard and UltraHard) [7] are reported as in the following table.

s-rank 0 1 2 3 4 5 ∞
High 84 3 10 7 1 0 0

SuperHigh 58 9 22 12 4 0 0

Hard 39 15 21 17 8 4 0

SuperHard 17 13 32 24 19 1 0

UltraHard 11 15 22 21 21 9 6

S-rank of Sudoku puzzles

In the following example, we show an error of [13].

Example 50 In [13], the following puzzle have a s-rank 3 but it is not correct. Let J be an ideal of
polynomials which represent this puzzle.

37

6 5 3 4
3 8 1 5
4 2 6
5 6

9 7 1
6 9

3 1 4
9 6 7 1

8 7 3 2

Example of s-rank 2 in [13]

6 1 9 8 5 3 4
3 8 1 5
4 5 9 2 3 7 1 6 8
5 3? 6

9 3? 7 1
6 3 9

6 3 2 7 1 4
9 4 5 8 6 2 7 3 1
1 8 7 3 2 6

Ψ ∗
0 (J)

6 1 9 8 5 3 4 2
3 2 8 1 5
4 5 9 2 3 7 1 6 8
5 2 (3) 6 7

9 4 7 2 1 3
6 2 3 4 9

6 3 2 7 1 4
9 4 5 8 6 2 7 3 1
1 8 7 3 2 6

{2} ∈ Ψ 1
1 (Ψ ∗

0 (J) +⟨X43 + {3}⟩)

38

2 6 1 9 8 5 3 4 7
3 7 8 6 1 4 2 9 5
4 5 9 2 3 7 1 6 8
5 2 4 1 9 8 6 7 3
8 9 3 5 7 6 4 1 2
7 1 6 4 2 3 8 5 9
6 3 2 7 5 1 9 8 4
9 4 5 8 6 2 7 3 1
1 8 7 3 4 9 5 2 6

Ψ ∗
0 (Ψ ∗

0 (J) +⟨{3}X43⟩)

Once we compute Ψ ∗
0 (J); in other words, we use naked and hidden singles, then we can see that this

puzzle have X43 = {3} or X53 = {3}. If we compute Ψ ∗
0 (Ψ 0∗0(J) +⟨X43 + {3}⟩), then this ideal

contains a contradiction polynomial {2}. So, we get {6}X43 and compute Ψ ∗
0 (Ψ ∗

0 (J) +⟨{6}X43⟩) .
In this puzzle, we have a correct answer by adding only {3}X43. Therefore s-rank is 1 NOT 2.

We have recomputed 735 Sudoku puzzles which are contained in the series of Sudoku books
[7] by our program. The results are as follows.

s-rank 0 1 2 ∞
High 84 21 0 0

SuperHigh 58 47 0 0

Hard 40 65 0 0

SuperHard 17 86 2 0

UltraHard 13 90 2 0

S-rank of Sudoku puzzles (revised)

Our new data shows that we cannot categorize Sudoku puzzles in terms of their s-ranks. In
order to give a finer hierarchy, we define two numbers ‘A’ and ‘B’. ‘A’ means the number of figures
such that we can obtain s-rank by using the only elements of ‘A’ figures or more. For example, in
example 14, the number of figures we firstly have for each element are 4, 2, 4, 3, 3, 5, 3, 2, 3. After
we compute Ψ ∗

0 (J), the number of figures are 7, 4, 7, 4, 5, 7, 5, 5, 5. We can obtain a contradiction
polynomial by computing Gröbner bases for elements 1, 3, and 6 which have 7 figures. Then we
can obtain an answer of example 14 by Ψ ∗

0 (Ψ ∗
0 (J) +⟨{3}X43⟩). Therefore, example 14 have s-rank

1 and A=6. When A = 0 and we cannot construct BRk(J), then we up s-rank. ‘B’ means the
number of computations of Boolean Gröbner bases for getting a maximal ideal such that ΨB

0 (Ψ ∗
0 (J)

+⟨BRk(J)⟩). The following table contains an obtained data by our program. In the table, puzzles
are ordered from left to right according to our mathematical levels of difficulty.

39

s-rank 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
A - 6 6 4 4 4 4 4 2 2 2 2 2 4 4 2
B - 1 2 1 2 3 4 5 1 2 3 4 5 3 4 2

High 84 1 1 10 4 2 2

SuperHigh 58 17 22 2 2 3 1

Hard 40 10 28 5 1 1 13 6 1

SuperHard 17 4 1 38 11 3 15 13 1 1 1

UltraHard 13 2 29 9 4 2 21 14 6 3 1 1

S-rank of Sudoku puzzles (Proposed)

40

Chapter 7

Conclusions

There are many sophisticated implementations to compute Boolean Gröbner bases such as [2, 3, 5].
Though any of them deals with only Boolean polynomials over GF2, we can implement our method
on those systems.

We have introduced parallel computation of Boolean Gröbner bases and comprehensive Boolean
Gröbner bases of an arbitrary finite power set algebra. It is implemented in the computer algebra
system SageMath using the PolyBoRi library. A parallel Boolean Gröbner basis computation pro-
gram is implemented with “@parallel” decorator. We do not use any sophisticated technique of
parallel programming. Nevertheless, our method is sufficiently effective as we saw in chapter 5.
We have also introduced the distributed computation of Boolean Gröbner bases. Data of our exper-
iments presented in chapter 6 show that our programs work properly and effectively. Our parallel
and distributed program in SageMath(PolyBoRi) can obtain s-rank within 10 seconds. When a
given Sudoku puzzle is not basic solvable, for computing its s-rank we need computations of many
Boolean Gröbner bases. For such a computation, parallel computation is efficient.

For only solving combinatorial problems such as Sudoku puzzles, symbolic computation of
Boolean Gröbner bases is too heavy. In fact, a Sudoku puzzle can be formulated in a Boolean
polynomial ring of GF2 using 729 variables. This approach is hired for Sudoku solvers by SAT.
They can solve any Sudoku puzzle in a second, while symbolic computation for such a formulation
is too heavy even for PolyBoRi. However, this formulation cannot decide the level of difficulty of
a Sudoku puzzle. Our approach by symbolic computation is an ideal tool for deciding the s-rank of
a Sudoku puzzle.

As is described in the introduction, our parallel Boolean Gröbner basis computation does not
have an enough effect on just solving one Sudoku puzzle. For solving a Sudoku puzzle which has
a size 16 × 16, however, we think parallel and distributed Boolean Gröbner basis computations
are useful. For solving a normal Sudoku puzzle of the size 9 × 9, we need about 800 Boolean
polynomials with 81 variables, whereas for solving a Sudoku puzzle of the size 16 × 16, we need
about 3700 Boolean polynomials with 196 variables.

We can also parallelize the computation of a comprehensive Boolean Gröbner basis by using
the same parallel computation, we have implemented it and show its efficiency. A comprehensive
Boolean Gröbner basis is an ideal tool for obtaining an elimination of an ideal of a Boolean poly-

41

nomial. Computation of such an elimination is very important for many types of combinatorial
problems. We expect that our parallel and distributed computation method of Boolean Gröbner
bases also contributes to speed-up solving those problems.

We also have some problems besides Sudoku puzzles for which our BGB algorithm is superior
to standard algorithms for our future work.

42

Bibliography

[1] Arnold, E., Lucas, S. and Taalman, L. (2010). Gröbner basis representations of Sudoku, The
College Mathematics Journal, 41(2), pp.101-112.

[2] Bosma, W., Cannon, J., and Playoust, C. (1997). The Magma Algebra System
I: The user language. Journal of Symbolic Computation, 24 (3-4), pp.235-265.
http://magma.maths.usyd.edu.au/magma/.

[3] Brickenstein, M., Dreyer, A. (2009). A framework for Gröbner basis computations with
Boolean polynomials. Journal of Symbolic Computation, 44 (9), pp.1326-1345. PolyBoRi
Polynomials over Boolean Rings. http://polybori.sourceforge.net/.

[4] Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Doctoral Dissertation Math.
Inst.University of Innsbruck, Austria.

[5] Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H. (2010). Singular 3-1-2–A computer
algebra system for polynomial computations. http://www.singular.unikl.de/.

[6] Gago-Vargas, J., Hartillo, I., Martı́n-Morales, J., Ucha, J.M. (2006). Sudokus and Grobner
bases: not only a divertimento. Computer algebra in scientific computing (CASC 2006),
Springer LNCS 4194, pp.155-165.

[7] Gohnai, K., and Cross Word editorial desk (2008). Number Placement Puzzles(Basic, Middle,
High, SuperHigh, Hard, SuperHard, UltraHard), (In Japanese) Kosaido Publishing Co.

[8] Kapur, D. (1995). An Approach for Solving Systems of Parametric Polynomial Equations.
Principles and Practices of Constraint Programming. (eds. Saraswat and Van Hentenryck),
MIT Press, pp.217-244.

[9] Manubens, M. and Montes, A. (2006). Improving DISPGB algorithm using the discriminant
ideal. Journal of Symbolic Computation, 41, pp.1245-1263.

[10] Montes, A. (2002). A new algorithm for discussing Gröbner bases with parameters. Journal
of Symbolic Computation, 33(2), pp.183-208.

43

[11] Inoue, S. (2009). On the Computation of Comprehensive Boolean Gröbner Bases. Proceed-
ings of CASC2009, Springer LNCS 5743, pp.130-141.

[12] Inoue, S. (2009). BGSet Boolean Groebner bases for Sets.
http://www.mi.kagu.tus.ac.jp/˜inoue/BGSet/.

[13] Inoue, S. and Sato, Y. (2014). A Mathematical Hierarchy of Sudoku Puzzles and its Compu-
tation by Boolean Gröbner Bases. Proceedings of 12th International Conference, AISC2014,
Springer LNCS 8884, pp.88-98.

[14] Nagai, A. and Inoue, S. (2014). An Implementation Method of Boolean Gröbner Bases and
Comprehensive Boolean Gröbner Bases on General Computer Algebra Systems. Proceedings
of ICMS2014, Springer LNCS 8592, pp.531-536.

[15] Nagai, A. and Sato, Y. (2015). An efficient implementation of Boolean Gröbner Bases of a
power set algebra. Proceedings of ATCM2015, Mathematics & Technology, LLC, pp.326-
335.

[16] Nagai, A. and Sato, Y. (2016). Parallel and Distributed Boolean Gröbner Bases Computation
in SageMath. Proceedings of ATCM2016, Mathematics & Technology, LLC, pp.269-278.

[17] Noro, M. et al. (2009). A Computer Algebra System Risa/Asir.
http://www.math.kobe-u.ac.jp/Asir/asir.html.

[18] Rudeanu, S. (1974). Boolean functions and equations. North-Holland, Amsterdam.

[19] Sakai,K. and Sato, Y. (1988). Boolean Gröbner bases. ICOT Technical Momorandum 488,
http://www.icot.or.jp/ARCHIVE/Museum/TRTM/tm-list-E.html

[20] Sakai,K. and Sato, Y. and Menju, S. (1991). Boolean Gröbner bases(revised). ICOT Technical
Report 613, http://www.icot.or.jp/ARCHIVE/Museum/TRTM/tr-list-E.html

[21] Sato,Y. (1996). Set Constraint Solvers(Prolog Version).
http://www.jipdec.or.jp/archives/icot/ARCHIVE/Museum/FUNDING/funding-95-E.html

[22] Sato,Y. (1998). Set Constraint Solvers(KLIC Version).
http://www.jipdec.or.jp/archives/icot/ARCHIVE/Museum/FUNDING/funding-98-E.html

[23] Sato,Y. (1998). A new type of canonical Gröbner bases in polynomial rings over Von Neu-
mann regular rings. Proceedings of ISSAC 1998, ACM Press, pp.317-32.

[24] Sato, Y. and Suzuki, A. (1999). Parallel Computation of Boolean Gröbner Bases. Electronic
Proceedings of ATCM1999.
http://epatcm.any2any.us/10thAnniversaryCD/EP/1999/contributed papers.html

44

[25] Sato, Y. and Inoue, S. (2005). On the Construction of Comprehensive Boolean Gröbner Bases.
Proceedings of the Seventh Asian Symposium on Computer Mathematics(ASCM 2005),
pp.145-148.

[26] Sato, Y., Nagai, A. and Inoue, S. (2008). On the computation of elimination ideals of Boolean
polynomial rings. Springer LNCS 5081, pp.334-348.

[27] Sato, Y. et al. (2011). Boolean Gröbner bases. Journal of Symbolic Computation, 46, pp.622-
632.

[28] Suzuki, A. and Sato, Y. (2003). An Alternative approach to Comprehensive Gröbner Bases.
Journal of Symbolic Computation, 36(3-4), pp.649-667.

[29] Suzuki, A. and Sato, Y. (2006). A Simple Algorithm to Compute Comprehensive Gröbner
Bases Using Gröbner Bases. International Symposium on Symbolic and Algebraic Computa-
tion(ISSAC 2006), Proceedings, pp.326-331.

[30] Weispfenning, V. (1989). Gröbner Bases in polynomial ideals over commmutative regular
rings. EUROCAL’87, Springer LNCS 378, pp.336-347.

[31] Weispfenning, V. (1992). Comorehensive Gröbner Bases. Journal of Symbolic Computation,
14, pp.1-29.

45

