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Chapter 1

Introduction

1.1 Operator monotone functions and operator means

Let H be a complex Hilbert space, and B(H) the set of all bounded linear
operators on H. An operator A is called a positive semi-definite operator
if and only if ⟨Ax, x⟩ ≥ 0 for all x ∈ H. We denote by B(H)+ the set of
all positive semi-definite operators in B(H). A > 0 (A is positive definite)
means A is positive semi-definite and invertible. For self-adjoint operators
A,B ∈ B(H), A ≤ B denotes that B −A is positive semi-definite.

Throughout this thesis, we assume that functions are not constants. A
real-valued continuous function f(x) defined on an interval I in R is called
an operator monotone function if for every pair A,B ∈ B(H) whose spectra
σ(A) and σ(B) lie in I, A ≤ B implies f(A) ≤ f(B). Many researchers have
studied operator monotone functions and obtained many results. Here we
introduce a characterization of operator monotone functions established by
Löwner [6];

Theorem L ([6]). Let −∞ ≤ a < b ≤ ∞ and f be a real-valued function
on (a, b) . Then the following are equivalent:
(1) f is an operator monotone function on (a, b),

(2) f has an analytic continuation to the upper half plane C+ := {z ∈
C | ℑz > 0}, and z ∈ C+ implies f(z) ∈ C+, where ℑz is the imaginary
part of z.

We call a real-valued function f(x) on an interval in R a Pick function if
f(x) has an analytic continuation to C+ which maps C+ into itself. The
above theorem shows a relationship between operator monotone functions
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and Pick functions. When we check operator monotonicity of a function
f(x), we often consider the argument of f(z) (z ∈ C+).

The next theorem gives a typical example of operator monotone func-
tions;

Theorem L-H ([3], [6]). Let A,B ∈ B(H). If 0 ≤ A ≤ B, then

Aα ≤ Bα

holds for every α ∈ (0, 1].

This result says that the function fα(x) := xα is an operator monotone
function on [0,∞) for every α ∈ (0, 1], and is obtained by Theorem L as
follows;

Let fα(x) = xα (0 < α ≤ 1). fα has an analytic continuation to the upper
half plane C+. If z ∈ C+ we can suppose that 0 < arg z < π. Then

0 < arg zα = α arg z ≤ arg z < π.

So we have fα(z) = zα ∈ C+ and fα(x) is operator monotone by Theorem L.
It is also shown by Theorem L that fα is not operator monotone for α > 1.
For example,

A =

(
1 0
0 0

)
≤

(
2 1
1 1

)
= B and A2 =

(
1 0
0 0

)
≰

(
5 3
3 2

)
= B2.

Moreover, the logarithmic function log x is an operator monotone func-
tion on (0,∞), too, which is shown as follows;

Assume that 0 < A ≤ B. From Theorem L-H, we have

Aα − I

α
≤ Bα − I

α

for every α ∈ (0, 1]. By tending α ↘ 0, both sides of the above inequality
converge to logA and logB in the norm topology, respectively. So

logA ≤ logB

holds for 0 < A ≤ B, namely, log x is an operator monotone function.

A map M(·, ·): B(H)2+ → B(H)+ is called an operator mean [5] if M(·, ·)
satisfies the following four conditions for A,B,C,D ∈ B(H)+;
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(1) A ≤ C and B ≤ D imply M(A,B) ≤ M(C,D),

(2) X(M(A,B))X ≤ M(XAX,XBX) for all self-adjoint X ∈ B(H),

(3) An ↘ A and Bn ↘ B imply M(An, Bn) ↘ M(A,B),

(4) M(I, I) = I.

(An ↘ A denotes that A1 ≥ A2 ≥ · · · and An converges to A in the strong
operator topology.)

Trivial examples of operator means are the arithmetic mean and the har-
monic mean in the following example;

Example (The arithmetic and harmonic means).
(1) The map A(·, ·) : B(H)2+ → B(H)+ defined by

A(A,B) :=
A+B

2

is an operator mean, and called the arithmetic mean.

(2) The map H(·, ·) : B(H)2+ → B(H)+ defined by

H(A,B) := 2
(
A−1 +B−1

)−1

is an operator mean, and called the harmonic mean.

We can easily show that both the arithmetic and harmonic means are oper-
ator means, but it is pretty difficult for other cases to confirm that they are
operator means.

Here we introduce a quite useful theorem to study operator means. This
theorem shows a relationship between operator means and operator mono-
tone functions;

Theorem K-A (Kubo-Ando [5]). For any operator mean M(·, ·), there
uniquely exists an operator monotone function f ≥ 0 on [0,∞) with f(1) = 1
such that

f(x)I = M(I, xI), x ≥ 0,

where I means the identity operator. Then the following hold:

(1) The map M(·, ·) 7→ f is a one-to-one onto affine mapping from the set of
all operator means to that of all non-negative operator monotone functions
on [0,∞) with f(1) = 1. Moreover, the map preserves the order, i.e., for
M(·, ·) 7→ f, N(·, ·) 7→ g,

M(A,B) ≤ N(A,B) (∀A,B ∈ B(H)+) ⇐⇒ f(x) ≤ g(x) (∀x ≥ 0).

(2) When A > 0, M(A,B) = A
1
2 f(A

−1
2 BA

−1
2 )A

1
2 .
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The function f(x) in Theorem K-A is called the representing function of

M(·, ·). The representing functions of A(·, ·) and H(·, ·) are A(x) :=
x+ 1

2

andH(x) :=
2x

x+ 1
, respectively. From this theorem, it is enough to consider

operator monotone functions when we study operator means.

Also, it is well-known that
x

f(x)
is an operator monotone function on

(0,∞) if f(x) is a positive-valued operator monotone function on (0,∞),

and the operator mean with the representing function
x

f(x)
is called the

dual of M(·, ·). We remark that A(·, ·) and H(·, ·) are mutually dual.

1.2 Several examples

In this section, we shall introduce well-known examples of operator means
and their representing functions.

Example (The geometric mean). The geometric mean G(·, ·) : B(H)2+ →
B(H)+ is defined by

G(A,B) := A
1
2 (A

−1
2 BA

−1
2 )

1
2A

1
2 ,

and its representing function is G(x) := x
1
2 , which is operator monotone on

[0,∞) as mentioned above in Theorem L-H. This mean is self-dual.

Example (The identric mean).

ID(x) :=



1

e
(x = 0)

1 (x = 1)

1

e
x

x
x−1 = exp

(
x log x

x− 1
− 1

)
(x ̸= 0, 1)

is an operator monotone function on [0,∞) ([8]) and known as the repre-
senting function of the identric mean.

The exponential function exp(x) is well known as a function which is not
operator monotone, in contrast with its inverse function log x is so. For
example,

A =

(
0 0
0 −2

)
≤

(
2

√
6√

6 1

)
= B
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and

exp(A) =

(
1 0
0 e−2

)
≰

1

5e

(
3e5 + 2

√
6
(
e5 − 1

)
√
6
(
e5 − 1

)
2e5 + 3

)
= exp(B).

But there exists a function f(x) such that exp{f(x)} is an operator mono-
tone function, like ID(x). In general, it is so difficult to check operator
monotonicity of exp{f(x)} because exp{f(x)} is the composite function of
the non-operator-monotone function exp(x) with f(x). In Chapter 2, we
will obtain a characterization of such functions by using Theorem L and
Euler’s formula. Thanks to this result, it has become easy to check operator
monotonicity of exp{f(x)} by simple computation.

Example (The weighted power mean). The map Pr,α(·, ·) : B(H)2+ →
B(H)+ defined as

Pr,α(A,B) := A
1
2

(
(1− α)I + α

(
A

−1
2 BA

−1
2

)r) 1
r
A

1
2

is an operator mean for every r ∈ [−1, 1]\{0}, α ∈ (0, 1], and its representing
function is

Pr,α(x) :=
(
(1− α) + αxr

) 1
r .

The case r = 0 is defined by the limit P0,α(x) := lim
r→0

Pr,α(x) = xα. More-

over, for each fixed x > 0 and α ∈ (0, 1], Pr,α(x) is increasing on r ∈ [−1, 1].

The above weighted power mean is a 2-parameter family of operator means,
namely, a 2-parameter family of operator monotone functions on (0,∞), and

interpolates many operator means. In fact, for α =
1

2
, it coincides with the

arithmetic, geometric and harmonic means if r = 1, r = 0 and r = −1,
respectively. In Chapter 3, we will introduce a new way to get a family of
operator monotone functions and construct another 2-parameter family of
operator monotone functions

Fr,s(x) :=

(
r(xr+s − 1)

(r + s)(xr − 1)

) 1
s

by using Pr,α(x).
In Chapter 4, we will investigate a range of parameters such that Fr,s(x)

is operator monotone, and try to extend it.
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Chapter 2

Operator monotonicity of
exp{f (x)}

2.1 Characterization

Here we give a characterization of a continuous function f(x) on (0,∞)
such that exp{f(x)} is an operator monotone function. It is clear that
f(x) = log x satisfies this condition. The principal branch of log z is defined
as

Logz := log r + iθ (z := reiθ,−π < θ ≤ π).

It is an analytic continuation of the real logarithmic function to C\ (−∞, 0].
Moreover it is a Pick function, namely an operator monotone function by
Theorem L, and satisfies ℑLogz = θ. In the following we think about the
case f(x) is not the logarithmic function:

Theorem 1 ([10]). Let f(x) be a continuous function on (0,∞). If f(x) is
not either a constant or log (αx) (α > 0), then the following are equivalent:

(1) exp{f(x)} is an operator monotone function.

(2) There exists an analytic continuation satisfying

0 < v(r, θ) < θ

where u(r, θ) and v(r, θ) are real-valued continuous functions such that f(reiθ) =
u(r, θ) + iv(r, θ) (0 < r, 0 < θ < π) (therefore f(x) is operator monotone).
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Remark 1. In [2] Hansen proved a necessary and sufficient condition for
exp{F (log x)} to be an operator monotone function, that is, F admits an
analytic continuation to S := {z ∈ C | 0 < ℑz < π} and F (z) maps from S
into itself. The condition of Theorem 1 is more rigid than this statement.

Proof. (1) =⇒ (2).
Since exp{f(x)} is operator monotone, it is a Pick function by Theorem
L, so there exists an analytic continuation to the upper half plane C+ and
z ∈ C+ implies exp{f(z)} ∈ C+. For z = reiθ (0 < r, 0 < θ < π), let
f(z) = f(reiθ) = u(r, θ) + iv(r, θ). Using Euler’s formula, we obtain

exp{f(z)} = exp{u(r, θ)}
(
cos{v(r, θ)}+ i sin{v(r, θ)}

)
.

So we have ℑ exp{f(z)} = exp{u(r, θ)} sin{v(r, θ)}, and hence 0 < sin{v(r, θ)}.
We note that v(r, θ) is continuous on its domain. From these facts, we can
find that

2nπ < v(r, θ) < (2n+ 1)π

holds for the unique n ∈ Z. Since f(z) takes real values on the real axis,
lim
θ→0

v(r, θ) = 0, so that n = 0, namely,

0 < v(r, θ) < π.

On the other hand, from the operator monotonicity of exp{f(x)} and the
assumption of Theorem 1, x[exp{f(x)}]−1 is a positive operator monotone
function on (0,∞), too. So we get

z[exp{f(z)}]−1 = exp{Logz − f(z)}
= exp{(log r − u(r, θ)) + i(θ − v(r, θ))}
= exp{log r − u(r, θ)}

(
cos{θ − v(r, θ)}+ i sin{θ − v(r, θ)}

)
.

From the above,
2mπ < θ − v(r, θ) < (2m+ 1)π

holds for the unique m ∈ Z. Moreover, 0 < v(r, θ) < π and 0 < θ < π imply

−π < θ − v(r, θ) < π.

From these facts, v(r, θ) must satisfy 0 < θ − v(r, θ) < π, so we get

0 < v(r, θ) < θ.

(2) =⇒ (1).
Since the set of all holomorphic functions is closed under composition,
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exp{f(z)} is holomorphic on the upper half plane C+. Let z = reiθ ∈ C+.
From the assumption 0 < v(r, θ) < θ < π,

0 < sin{v(r, θ)} ≤ 1.

So we have
0 < exp{u(r, θ)} sin{v(r, θ)} = ℑ exp{f(z)}

and find
z ∈ C+ =⇒ exp{f(z)} ∈ C+,

that is, exp{f(x)} is a Pick function, and thus it is operator monotone by
Theorem L. 2

2.2 Applications

By Theorem 1, we can check numerically that exp{f(x)} is operator
monotone or not if the imaginary part of f(z) can be expressed concretely.
Now we apply Theorem 1 and get some examples by “only” using simple
computation.

Example 1 (The harmonic mean).

H(x) =
2x

x+ 1

is an operator monotone function on [0,∞), but exp{H(x)} is not operator
monotone. Actually, by putting z = reiθ (0 < r, 0 < θ < π), we have

H(z) =
2(r2 + r cos θ) + i(2r sin θ)

r2 + 1 + 2r cos θ

and

v(r, θ) := ℑH(z) =
2r sin θ

r2 + 1 + 2r cos θ
.

When r = 1, θ =
3

4
π, we get v

(
1,

3

4
π

)
=

√
2 + 1 >

3

4
π, hence we can find

exp{H(x)} is not an operator monotone function by Theorem 1.

Example 2 (The logarithmic mean).

L(x) :=


0 (x = 0)

1 (x = 1)

x− 1

log x
(x ̸= 0, 1)
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is an operator monotone function on [0,∞), and is the representing function
of the logarithmic mean. But exp{L(x)} is not operator monotone. Actually,
by putting z = reiθ (0 < r, 0 < θ < π), we have

L(z) =

{
(log r)(r cos θ − 1) + rθ sin θ

}
+ i

{
(r log r) sin θ − θ(r cos θ − 1)

}
(log r)2 + θ2

and

v(r, θ) := ℑL(z) = (r log r) sin θ − θ(r cos θ − 1)

(log r)2 + θ2
.

Since sin θ > 0, lim
r→∞

v(r, θ) = ∞. Therefore, we find that exp{L(x)} is

not an operator monotone function by Theorem 1. Actually, when r =

exp
{π

2

}
, θ =

π

2
, we get v

(
exp

{π

2

}
,
π

2

)
=

exp{π
2 }+ 1

π
= 1.8495 · · · >

1.5707 · · · = π

2
.

Example 3 (The dual of the logarithmic mean).

DL(x) :=


0 (x = 0)

1 (x = 1)

x log x

x− 1
(x ̸= 0, 1)

is an operator monotone function on [0,∞) and exp{DL(x)} is operator
monotone, too. In the following we verify that DL(x) satisfies the condition
of Theorem 1:
By putting z = reiθ (0 < r, 0 < θ < π), we have

DL(z) =
r
[{

(r − cos θ) log r + θ sin θ
}
+ i

{
θ(r − cos θ)− (log r) sin θ

}]
r2 + 1− 2r cos θ

and

v(r, θ) := ℑDL(z) =
r

r2 + 1− 2r cos θ

{
θ(r − cos θ)− (log r) sin θ

}
.

From operator monotonicity of DL(x) we have 0 < v(r, θ) by Theorem L.
In the following we show v(r, θ) < θ, which is equivalent to r

{
θ cos θ −

(log r) sin θ
}
< θ. By using the following inequalities

θ cos θ < sin θ < θ (0 < θ < π), r(1− log r) ≤ 1 (0 < r),
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we obtain

r
{
θ cos θ − (log r) sin θ

}
< r

{
sin θ − (log r) sin θ

}
= r(1− log r) sin θ

≤ sin θ < θ.

Example 4.

IL(x) := −L(x)−1 =


−1 (x = 1)

− log x

x− 1
(x ̸= 1)

is a negative operator monotone function on (0,∞) and exp{IL(x)} is op-
erator monotone, too. In the following we verify that IL(x) satisfies the
condition of Theorem 1:
By putting z = reiθ (0 < r, 0 < θ < π), we have

IL(z) = −{(log r)(r cos θ − 1) + rθ sin θ}+ i{θ(r cos θ − 1)− (r log r) sin θ}
r2 + 1− 2r cos θ

and

v(r, θ) := ℑIL(z) = (r log r) sin θ − θ(r cos θ − 1)

r2 + 1− 2r cos θ
.

From operator monotonicity of IL(x) we have 0 < v(r, θ) by Theorem L.
In the following we show v(r, θ) < θ, which is equivalent to (log r) sin θ +
θ cos θ < rθ. By using the following inequalities

θ cos θ < sin θ < θ (0 < θ < π), log r + 1 ≤ r (0 < r),

we obtain

(log r) sin θ + θ cos θ < (log r) sin θ + sin θ

= (log r + 1) sin θ

≤ r sin θ < rθ.

Results of Example 3 and Example 4 are extended as follows;

Theorem 2 ([10]). Let

DLp(x) :=


1

p
(x = 1)

xp log x

xp − 1
(x ̸= 1).

Then exp{DLp(x)} is an operator monotone function on (0,∞) for all p ∈
[−1, 1] \ {0}.
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Remark 2. Theorem 2 can be also proved from Example 3 and the well-

known fact that if f(x) is operator monotone on (0,∞) then so is f(xp)
1
p

for p ∈ [−1, 1] \ {0} since

exp{DLp(x)} = exp

{
1

p
DL(xp)

}
=

{
exp{DL(xp)}

} 1
p .

Proof. Firstly, we show that DLp(x) satisfies the condition of Theorem 1
for the case p ∈ (0, 1]:
By putting z = reiθ (0 < r, 0 < θ < π), we have

DLp(z) =
rp
[{

(rp − cos(pθ)) log r + θ sin(pθ)
}
+ i

{
θ(rp − cos(pθ))− (log r) sin(pθ)

}]
r2p + 1− 2rp cos(pθ)

and

v(r, θ) := ℑDLp(z) =
rp

r2p + 1− 2rp cos(pθ)

{
θ(rp−cos(pθ))−(log r) sin(pθ)

}
.

In the following we show 0 < v(r, θ) < θ.

(1) Proof of v(r, θ) < θ;

We shall show rpθ cos(pθ) − (rp log r) sin(pθ) < θ since it is equivalent to
v(r, θ) < θ.

rpθ cos(pθ)− (rp log r) sin(pθ) < rp
(
1

p

)
sin(pθ)− (rp log r) sin(pθ)

=

(
1

p

)
(rp − rp log rp) sin(pθ)

≤
(
1

p

)
sin(pθ) <

(
1

p

)
(pθ) = θ.

(2) Proof of 0 < v(r, θ);
This inequality follows from the fact that DLp(x) is the composite function

of operator monotone functions
1

p
DL(x) and xp. Here we give another proof

by only using simple computation from Theorem 1. It is enough to show
(log r) sin(pθ) < θ(rp − cos(pθ)).

When r = 1, the inequality holds clearly. When 1 < r,

(log r) sin(pθ) =

(
1

p

)
(log rp) sin(pθ)

<

(
1

p

)
(rp − 1)(pθ) < (rp − cos(pθ))θ.
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When 0 < r < 1,

(log r) sin(pθ) =

(
1

p

)
(log rp) sin(pθ)

<

(
1

p

)
(rp − 1)(pθ) cos(pθ)

= θ
(
rp cos(pθ)− cos(pθ)

)
< θ(rp − cos(pθ)).

Next, when p ∈ [−1, 0),

DLp(z) =
zpLogz

zp − 1
=

z−pzpLogz

z−p(zp − 1)
=

Logz

1− z|p|

and

ν(r, θ) := ℑDLp(re
iθ) =

(r|p| log r) sin(|p|θ)− θ(r|p| cos(|p|θ)− 1)

r2|p| + 1− 2r|p| cos(|p|θ)
.

We can show 0 < ν(r, θ) < θ by the same technique. 2
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Chapter 3

A method to obtain families
of operator monotone
functions

In Chapter 1, we showed the operator monotonicity of log x by that of

xα (α ∈ (0, 1]). Here we give a proof of operator monotonicity of
x− 1

log x
, the

representing function of the logaritmic mean (see Example 2), by using xα

again;

xα is an operator monotone function on (0,∞) for every α ∈ (0, 1]. More-
over, for fixed x > 0, xα is continuous on α and we have∫ 1

0
xαdα =

x− 1

log x
.

Since the set of all operator monotone functions on an interval (a, b) is closed

under addition,
x− 1

log x
is an operator monotone function on (0,∞).

In the above proof, we used an integral with respect to α ∈ [0, 1]. By the
same technique, we can obtain a 1-parameter family of operator monotone
functions as follows;

Pr,α(x) =
(
(1− α) + αxr

) 1
r

is operator monotone on (0,∞) for every r ∈ [−1, 1] \ {0}, α ∈ (0, 1] (the
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weighted power mean), and we have∫ 1

0
Pr,α(x)dα =

r(xr+1 − 1)

(r + 1)(xr − 1)
.

Hence

{
r(xr+1 − 1)

(r + 1)(xr − 1)

}
r∈[−1,1]\{0}

is a family of operator monotone func-

tions on (0,∞). We note that these functions are the representing functions
of a well-known operator mean as the power difference mean (see Example
5).
In this chapter, we will develop this technique and obtain a new method to
get families of operator monotone functions. Moreover, we will construct a
2-parameter family of operator monotone functions by applying it.

3.1 The method and its application

For a natural number k, let u(x) be a positive function on [0,∞) defined by

u(x) := r

k∏
i=1

(x+ai)
pi (0 ≤ a = a1 < a2 < · · · < ak = b, 1 ≤ p1, 0 < pi, 0 < r).

We remark that u(x) is a strictly increasing function on [−a,∞), and it has
the inverse function u−1(x). M. Uchiyama has obtained the following result
in [9].

Lemma U ([9 Theorem 2.1]). The inverse function u−1 of u is an operator
monotone function on [0,∞).

Theorem 3 ([11]). Let µ be a probability measure on [0, 1] and {f(α;x) | α ∈
[0, 1]} be a family of positive-valued operator monotone functions of x ≥ 0.
Assume for each x ≥ 0, the map α 7→ f(α;x) is continuous. Then

F (x) := u

(∫ 1

0
u−1 (f(α;x)) dµ(α) + b− a

)
is an operator monotone function.

Proof. It is enough by Theorem L to show that u
(∑

j βju
−1(f(αj ;x)) + b− a

)
is a Pick function for any α1, · · · , αm ∈ [0, 1] and positive numbers β1, . . . , βm
which satisfy

∑m
j=1 βj = 1. From the assumption, u−1(f(αj ;x)) is operator
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monotone by Lemma U, and hence a Pick function by Theorem L. Thus for
a complex number z ∈ C+, we have

0 < arg

u

∑
j

βju
−1(f(αj ; z)) + b− a


=

∑
i

pi arg

∑
j

βju
−1(f(αj ; z)) + b− a+ ai


≤

∑
i

pi arg

∑
j

βju
−1(f(αj ; z)) + b


≤

∑
i

pimax
j

{
arg

(
u−1(f(αj ; z)) + b

)}
≤ max

j

{∑
i

pi arg
(
u−1(f(αj ; z)) + ai

)}
= max

j

{
arg(u(u−1(f(αj ; z)))

}
= max

j
{arg f(αj ; z)} < π,

where the last inequality follows from that f(αj ;x) is a Pick function. Hence

u
(∑

j βju
−1(f(αj ;x)) + b− a

)
is a Pick function. Therefore the proof is

completed. 2

Corollary 1 ([11]). Under the same assumptions of Theorem 3,

Φ(x) :=

[
u

(∫ 1

0
u−1(f(α;x)−1)dµ(α) + b− a

)]−1

is an operator monotone function.

Proof. Since f(α;x−1)−1 is operator monotone,

Ψ(x) := u

(∫ 1

0
u−1

(
f(α;x−1)−1

)
dµ(α) + b− a

)
is operator monotone by Theorem 3. So we have

Φ(x) = Ψ(x−1)−1 =

[
u

(∫ 1

0
u−1(f(α;x)−1)dµ(α) + b− a

)]−1

is operator monotone. 2

17



As easy consequences of Theorem 3 and Corollary 1, we obtain the fol-
lowing family of operator monotone functions.

Corollary 2 ([11]). Under the same assumptions of Theorem 3, for each
p ∈ [−1, 1] \ {0},

Fp(x) :=

(∫ 1

0
f(α;x)pdµ(α)

) 1
p

is an operator monotone function of x ≥ 0. Moreover, for each fixed x ≥ 0,
Fp(x) is increasing on p ∈ [−1, 1] \ {0}.

Proof. Operator monotonicity of Fp(x) can be obtained by putting u(x) =

x
1
p (p ∈ (0, 1]) in Theorem 3 and Corollary 1. So we have only to prove the

monotonicity of Fp(x) on p ∈ [−1, 1] \ {0}. Since xα is a concave function
for α ∈ [0, 1], then for 0 < p < q ≤ 1,∫ 1

0
f(α;x)pdµ(α) =

∫ 1

0
f(α;x)

q· p
q dµ(α) ≤

(∫ 1

0
f(α;x)qdµ(α)

) p
q

.

Hence we have Fp(x) ≤ Fq(x).
We can prove the case −1 ≤ q < p < 0 by the same way. Next, we shall

show F−p(x) ≤ Fp(x) for 0 < p ≤ 1. Since x−1 is a convex function we have∫ 1

0
f(α;x)−pdµ(α) ≥

(∫ 1

0
f(α;x)pdµ(α)

)−1

.

Taking the power −1
p on both sides, we have F−p(x) ≤ Fp(x). 2

By using l’Hospital’s theorem we can obtain Corollary 3 easily.

Corollary 3 ([11]). Under the same assumptions of Theorem 3,

F0(x) := lim
p→0

Fp(x) = exp

(∫ 1

0
log f(α;x)dµ(α)

)
is operator monotone, where Fp(x) is defined in Corollary 2. Moreover,
Fp(x) ≤ F0(x) ≤ Fq(x) hold for all p ∈ [−1, 0) and q ∈ (0, 1].

Therefore Fp(x) is increasing of p ∈ [−1, 1] and operator monotone on
x ≥ 0. By putting f(α;x) = Pr,α(x) (the representing function of the
weighted power mean) and µ(α) = α, we now get a 2-parameter operator
monotone function in the following;
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Theorem 4 ([11]). For r ∈ [−1, 1] and s ∈ [−1, 1],

Fr,s(x) :=



(∫ 1

0

(
(1− α) + αxr

) s
r dα

) 1
s

=

(
r(xr+s − 1)

(r + s)(xr − 1)

) 1
s

(r, s ̸= 0, r ̸= −s)(∫ 1

0

(
(1− α) + αxr

)−1
dα

) 1
−r

=

(
xr − 1

r log x

) 1
r

(r, s ̸= 0, r = −s)(∫ 1

0
xαsdα

) 1
s

=

(
xs − 1

s log x

) 1
s

(r = 0, s ̸= 0)

exp

{∫ 1

0
log

(
(1− α) + αxr

) 1
r dα

}
= exp

{
1

r

(
xr log xr

xr − 1
− 1

)}
(r ̸= 0, s = 0)

exp

{∫ 1

0
log xαdα

}
= x

1
2 (r, s = 0)

is an operator monotone function of x ≥ 0. Moreover, for each fixed x ≥ 0,
Fr,s(x) is increasing on each r ∈ [−1, 1] and s ∈ [−1, 1].

Since Fr,s(1) = 1, Fr,s(x) is the representing function of an operator
mean for r, s ∈ [−1, 1]. This family interpolates some famous 1-parameter
family of operator monotone functions.

3.2 Interpolation of some operator means

Example 5 (The power difference mean [1], [4]). From operator monotonic-
ity of {Fr,s(x)}r,s∈[−1,1], we have that

Fr,−1(x) =
(r − 1)(xr − 1)

r(xr−1 − 1)
(−1 ≤ r < 1, r ̸= 0)

is operator monotone. Also we have that

Fr,1(x) =
r(xr+1 − 1)

(r + 1)(xr − 1)
=

(q − 1)(xq − 1)

q(xq−1 − 1)
(0 < q ≤ 2, q ̸= 1)

is operator monotone, too. So we obtain a 1-parameter family {PDr(x)}r∈[−1,2]

of operator monotone functions such that

PDr(x) :=
(r − 1)(xr − 1)

r(xr−1 − 1)
(−1 ≤ r ≤ 2, r ̸= 0, 1).

This family is called the power difference mean and the optimality of its
range of the parameter −1 ≤ r ≤ 2 is well known (e.g., see [4 Proposition
4.2]).
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Example 6 (The power mean). If r = s, then

Fr,r(x) =

(
xr + 1

2

) 1
r

(−1 ≤ r ≤ 1, r ̸= 0).

This function is the representing function of the power mean Pr(x), and is

the case of α =
1

2
of the weighted power mean. Namely, {Fr,s(x)}r,s∈[−1,1]

interpolates the power mean.

Example 7 (The Stolarsky mean [8]). If r = 1 and s = p− 1, then Fr,s(x)
coincides with

Sp(x) :=

(
p(x− 1)

xp − 1

) 1
1−p

(p ̸= 0, 1),

and by Theorem 4 we obtain the fact that Sp(x) is operator monotone for
0 ≤ p ≤ 2. Sp(x) is the representing function of the Stolarsky mean, and
the range −2 ≤ p ≤ 2 is optimal for which Sp(x) is operator monotone ([8]).
Namely, Sp(x) is not operator monotone if p ∈ (−∞,−2) ∪ (2,∞).

Remark 3. We cannot prove operator monotonicity of Sp(x) for −2 ≤ p < 0
by Theorem 4, because s = p−1 ∈ [−1, 1]. So we think that the range of the
parameters (r, s) ∈ [−1, 1]× [−1, 1] of {Fr,s(x)}r,s∈[−1,1] such that Fr,s(x) is
operator monotone is not optimal, and try to extend it in the next chapter.

Example 8 (Order among means obtained from Fr,s(x)). Since {Fr,s(x)}r,s∈[−1,1]

has monotonicity for its parameters r and s, we can observe the following
inequalities;

2x

x+ 1
≤ x log x

x− 1
≤ x

1
2 ≤ x− 1

log x
≤ exp

{
x log x

x− 1
− 1

}
≤ x+ 1

2
. (3.1)

These six functions are the representing functions of the harmonic, dual of
logarithmic, geometric, logarithmic, identric, and arithmetic means, respec-
tively, so we have obtained order among these operartor means.

We can summarize concrete examples of Fr,s(x) in the following table,
where α ∈ (−1, 0) and β ∈ (0, 1).
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s\r −1 α 0 β 1

−1 H(x) = A(x−1)−1 PDα(x) L(x−1)−1 PDβ(x) L(x)

α S1−α(x
−1)−1 Pα(x) L(xα)

1
α Fβ,α(x) S1+α(x)

0 ID(x−1)−1 ID(xα)
1
α G(x) ID(xβ)

1
β ID(x)

β S1−β(x
−1)−1 Fα,β(x) L(xβ)

1
β Pβ(x) S1+β(x)

1 L(x−1)−1 PD1+α(x) L(x) PD1+β(x) A(x)
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Chapter 4

2-parameter Stolarsky mean

In this chapter we treat {Fr,s(x)} in the following form;

Sp,α(x) := Fp,α−p(x) =



(
p(xα − 1)

α(xp − 1)

) 1
α−p

(0 ̸= p ̸= α ̸= 0)(
xp − 1

p log x

) 1
p

(p ̸= α = 0)(
xα − 1

α log x

) 1
α

(0 = p ̸= α)

exp

{
1

p

(
xp log xp

xp − 1
− 1

)}
(p = α ̸= 0)

x
1
2 (p = α = 0).

We call it 2-parameter Stolarsky mean. Nagisa and Wada [7] have obtained
an equivalent condition of (p, α) such that Sp,α(x) is operator monotone.
Their characterization, however, has not given any explicit condition in
terms of p and α, therefore, we have not known the concrete form of the
optimal range of (p, α) such that Sp,α(x) is operator monotone, yet. On the
other hand, we have obtained a part of this range in Chapter 3. In this
chapter, we shall extend and investigate it from the results in the previous
chapters.
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4.1 Range of the two parameters

4.1.1 Known part

We have known so far that Sp,α(x) is operator monotone if

p− 1 ≤ α ≤ p+ 1, p ∈ [−1, 1]

from the operator monotonicity of Fr,s(x) shown in Chapter 3. On the other
hand, it was shown in [7] that the following function

hp,α(x) :=
α(xp − 1)

p(xα − 1)

is operator monotone if and only if (p, α) ∈
{
(p, α) ∈ R2

∣∣ 0 < p−α ≤ 1, p ≥
−1 and α ≤ 1

}
∪([0, 1]×[−1, 0])\{(0, 0)}. Also, if α ≤ p−1, then 1

p−α ∈ (0, 1].

From these results and Theorem L-H, we can find that Sp,α(x) = hp,α(x)
1

p−α

is operator monotone if (p, α) ∈ {(p, α) ∈ R2|α ≤ p−1, p ≤ 1 and −1 ≤ α}.
Therefore, we obtain the fact that Sp,α(x) is operator monotone if

(p, α) ∈
{
(p, α) ∈ R2

∣∣ p− 1 ≤ α ≤ p+ 1, p ∈ [−1, 1]
}
∪ ([0, 1]× [−1, 0]).

4.1.2 Trivial part

There is a domain where Sp,α(x) is trivially operator monotone. If α =
−p ̸= 0, then

Sp,−p(x) =

(
p(x−p − 1)

(−p)(xp − 1)

) 1
−2p

=

(
1

xp

) 1
−2p

= x
1
2 .

Hence, we find that operator monotonicity of Sp,α(x) always holds if α = −p.

4.1.3 Extension from the Stolarsky mean

From Theorem L and operator monotonicity of the 1-parameter family
{Sp(x)}p∈[−2,2], z ∈ C+ implies Sp(z) ∈ C+ for all p ∈ [−2, 2], namely,
we can assume that the argument of Sp(z) has the following property

0 < arg

(
p(z − 1)

zp − 1

) 1
1−p

(
=

1

1− p
arg

(
p(z − 1)

zp − 1

))
< π

(z ∈ C+, −2 ≤ p ≤ 2). So we get

0 < arg

(
p(z − 1)

zp − 1

)
< (1− p)π (−2 ≤ p < 1),
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0 < arg

(
zp − 1

p(z − 1)

)
< (p− 1)π (1 < p ≤ 2).

By these inequalities we obtain

0 < arg

(
p(zα − 1)

α(zp − 1)

) 1
α−p

=
1

α− p

{
arg

(
zα − 1

α(z − 1)

)
+ arg

(
p(z − 1)

zp − 1

)}
<

1

α− p

{
(α− 1)π + (1− p)π

}
= π,

that is, Sp,α(z) ∈ C+ for the case −2 ≤ p < 1 < α ≤ 2. Hence we have
Sp,α(x) is operator monotone by Theorem L. On the other hand,

S−p(x
−1)−1 =

(
(−p)(x−1 − 1)

(x−1)−p − 1

) −1
1−(−p)

=

(
(−p)(1− x)

x(xp − 1)

) −1
1+p

=

(
x(xp − 1)

p(x− 1)

) 1
1+p

is operator monotone for −2 ≤ p ≤ 2, too. So we have

0 <
1

1 + p
arg

(
z(zp − 1)

p(z − 1)

)
< π (z ∈ C+, −2 ≤ p ≤ 2)

by Theorem L and get the following relation similarly for the case −2 ≤ α <
−1 < p ≤ 2;

0 < arg

(
p(zα − 1)

α(zp − 1)

) 1
α−p

=
1

p− α

{
arg

(
z(zp − 1)

p(z − 1)

)
+ arg

(
α(z − 1)

z(zα − 1)

)}
<

1

p− α

{
(1 + p)π − (1 + α)π

}
= π,

that is, Sp,α(z) ∈ C+, and we have Sp,α(x) is operator monotone by Theorem
L.

4.1.4 Investigation of the range

Moreover, since Sp,α(x) is symmetric with respect to p and α, i.e., Sp,α(x) =
Sα,p(x), we can extend symmetrically the range of parameters obtained so
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far. Namely, we have{
(p, α) ∈ R2

∣∣ p− 1 ≤ α ≤ p+ 1, p ∈ [−1, 1]
}
∪ ([0, 1]× [−1, 0])

−→
{
(p, α) ∈ R2

∣∣ α− 1 ≤ p ≤ α+ 1, α ∈ [−1, 1]
}
∪ ([−1, 0]× [0, 1]),

[−2, 1)× (1, 2] −→ (1, 2]× [−2, 1),

(−1, 2]× [−2,−1) −→ [−2,−1)× (−1, 2].

We can summarize the above-mentioned results on monotonicity of Sp,α(x)
in the following form.

Theorem 5 ([10]). Let

Sp,α(x) :=



(
p(xα − 1)

α(xp − 1)

) 1
α−p

(0 ̸= p ̸= α ̸= 0)(
xp − 1

p log x

) 1
p

(p ̸= α = 0)(
xα − 1

α log x

) 1
α

(0 = p ̸= α)

exp

{
1

p

(
xp log xp

xp − 1
− 1

)}
(p = α ̸= 0)

x
1
2 (p = α = 0).

Then Sp,α(x) is operator monotone on (0,∞) if (p, α) ∈ A ⊂ R2, where

A :=
(
[−2, 1]× [−1, 2]

)
∪
(
[−1, 2]× [−2, 1]

)
∪
{
(p, α) ∈ R2

∣∣ α = −p
}
.
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Remark 4. Sp,α(x) is not operator monotone if 1 < |p| and α = p. Sp,p(x)
coincides with exp{DLp(x)− 1

p}, where DLp(x) is the one-parameter family
of functions defined in Theorem 2. If p = 2, for example, then

DL2(x) =
1

2
× 2x

x+ 1
× x log x

x− 1
.

From the inequality (3.1) in Chapter 3, we have

2x

x+ 1
× x log x

x− 1
≤ x

1
2 × x

1
2 = x,

and DL2(x) is not operator monotone from the well-known fact that a pos-
itive operator monotone function on (0,∞) with f(1) = 1 must satisfy
x < f(x) if 0 < x < 1. And hence, exp{DL2(x)} is not operator mono-
tone by Theorem 1. Next we will see general case 1 < |p|. From the proof
of Theorem 2, we have

v(r, θ) := ℑDLp(z) =
rp

r2p + 1− 2rp cos(pθ)

{
θ(rp−cos(pθ))−(log r) sin(pθ)

}
.

By simple computation,

v(r, θ) < θ ⇐⇒
(
l(p, r, θ) =

)
rp

(
cos(pθ)− (log r)

sin(pθ)

θ

)
< 1.
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Take θ as
π

p
< θ < min

{
π,

2π

p

}
, then sin(pθ) < 0 and

lim
r→∞

l(p, r, θ) = ∞.

Therefore exp{DLp(x)} = Sp,p(x) is not operator monotone if 1 < p from
Theorem 1. We can also show the case p < −1 similarly.
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