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Abstract. We study the strong instability of ground-state standing waves
eiωtϕω(x) forN -dimensional nonlinear Schrödinger equations with focusing dou-
ble power nonlinearity. One is L2-subcritical, and the other is L2-supercritical.
The strong instability of standing waves with positive energy was proven by
Ohta and Yamaguchi (2015). In this paper, we improve the previous result,
that is, we prove that if ∂2

λSω(ϕ
λ
ω)|λ=1 ≤ 0, the standing wave is strongly un-

stable, where Sω is the action, and ϕλ
ω(x) := λN/2ϕω(λx) is the L2-invariant

scaling.
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§1. Introduction

In this paper, we consider the nonlinear Schrödinger equation with double
power nonlinearity

(NLS) i∂tu = −∆u− a|u|p−1u− b|u|q−1u, (t, x) ∈ R× RN ,

where

(1.1) N ∈ N, a > 0, b > 0, 1 < p < 1 +
4

N
< q < 1 +

4

N − 2
,

and u : R × RN → C is the unknown function of (t, x) ∈ R × RN . Here,
1 + 4/(N − 2) stands for ∞ if N = 1 or 2. Eq. (NLS) appears in various
regions of mathematical physics (see [1, 6, 20] and references therein).

The Cauchy problem for (NLS) is locally well-posed in the energy space
H1(RN ) (see, e.g., [4, 9]), that is, for each u0 ∈ H1(RN ), there exist the
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132 N. FUKAYA AND M. OHTA

maximal lifespan Tmax = Tmax(u0) ∈ (0,∞] and a unique solution u of (NLS)
belonging to C([0, Tmax),H

1(RN )) with u(0) = u0 such that if Tmax <∞, then
∥∇u(t)∥L2 → ∞ as t↗ Tmax. In the case Tmax <∞, we say that the solution
u(t) blows up in finite time. Moreover, (NLS) satisfies the two conservation
laws

E(u(t)) = E(u0), ∥u(t)∥L2 = ∥u0∥L2

for all t ∈ [0, Tmax), where E is the energy defined by

E(v) =
1

2
∥∇v∥2L2 −

a

p+ 1
∥v∥p+1

Lp+1 −
b

q + 1
∥v∥q+1

Lq+1 .

Furthermore, if

(1.2) u0 ∈ Σ := {v ∈ H1(RN ) | ∥xv∥L2 <∞},

then the solution u(t) of (NLS) with u(0) = u0 belongs to C([0, Tmax),Σ) and
satisfies the virial identity

(1.3)
d2

dt2
∥xu(t)∥2L2 = 8Q(u(t))

for all t ∈ [0, Tmax) (see [4, Section 6.5]), where vλ(x) = λN/2v(λx) and

Q(v) = ∂λSω(v
λ)|λ=1(1.4)

= ∥∇v∥2L2 −
aN(p− 1)

2(p+ 1)
∥v∥p+1

Lp+1 −
bN(q − 1)

2(q + 1)
∥v∥q+1

Lq+1 .

Eq. (NLS) has standing wave solutions of the form eiωtϕ(x), where ω > 0
and ϕ ∈ H1(RN ) is a nontrivial solution of the stationary equation

(1.5) −∆ϕ+ ωϕ− a|ϕ|p−1ϕ− b|ϕ|q−1ϕ = 0, x ∈ RN .

Eq. (1.5) can be rewritten as S′
ω(ϕ) = 0, where Sω is the action defined by

Sω(v) = E(v) +
ω

2
∥v∥2L2

=
1

2
∥∇v∥2L2 +

ω

2
∥v∥2L2 −

a

p+ 1
∥v∥p+1

Lp+1 −
b

q + 1
∥v∥q+1

Lq+1 .

It is known that if ω > 0, then (1.5) has ground state solutions, that is, the
set

Gω :=

{
ϕ ∈ H1(RN )

∣∣∣∣∣ ϕ ̸= 0, S′
ω(ϕ) = 0,

Sω(ϕ) = inf{Sω(ψ) | ψ ̸= 0, S′
ω(ψ) = 0}

}
of nontrivial solutions to (1.5) with the minimal action is not empty (see, e.g.,
[3, 12, 19]).

The stability and instability of standing waves are defined as follows:
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Definition 1.1. Let ϕ ∈ H1(RN ) be a nontrivial solution of (1.5).

• We say that the standing wave solution eiωtϕ of (NLS) is stable if for each
ε > 0, there exists δ > 0 such that if u0 ∈ H1(RN ) satisfies ∥u0−ϕ∥H1 <
δ, then the solution u(t) of (NLS) with u(0) = u0 exists globally in time
and satisfies

sup
t≥0

inf
(θ,y)∈R×RN

∥u(t)− eiθϕ(· − y)∥H1 < ε.

• We say that the standing wave solution eiωtϕ of (NLS) is unstable if it
is not stable.

• We say that the standing wave solution eiωtϕ of (NLS) is strongly unsta-
ble if for each ε > 0, there exists u0 ∈ H1(RN ) such that ∥u0−ϕ∥H1 < ε,
and the solution u(t) of (NLS) with u(0) = u0 blows up in finite time.

In this paper, we study the strong instability of the standing wave solution
eiωtϕω for (NLS), where ω > 0, and ϕω ∈ Gω is a ground state.

In the single-power L2-supercritical or L2-critical case when a = 0, b > 0,
and 1 + 4/N ≤ q < 1 + 4/(N − 2), Berestycki and Cazenave [2] and Wein-
stein [21] proved that the standing wave is strongly unstable for any ω > 0
by using variational arguments and the virial identity. On the other hand, in
the L2-subcritical case when a > 0, b = 0, and 1 < p < 1 + 4/N , Cazenave
and Lions [5] proved that the standing wave is stable for any ω > 0. They
show that the ground state is the unique minimizer of the action under the
mass constraint ∥v∥L2 = ∥ϕω∥L2 up to symmetries and that the minimizing
sequence in the sense that Sω(vn) → Sω(ϕω) and ∥vn∥L2 → ∥ϕω∥L2 is compact
up to translation.

In the double power case when (1.1) is assumed, the argument of Ohta [14]
showed the instability of standing waves for sufficiently large ω > 0. In [14], it
was proven that if ∂2λSω(ϕ

λ
ω)|λ=1 < 0, then the standing wave is unstable, where

vλ(x) := λN/2v(λx) is the scaling, which does not change the L2-norm. The
assumption ∂2λSω(ϕ

λ
ω)|λ=1 < 0 means that ∂λϕ

λ
ω|λ=1 is an unstable direction,

and that the ground state ϕω is a saddle point of the action on the hypersurface
{v ∈ H1(RN ) | ∥v∥L2 = ∥ϕω∥L2}. On the other hand, Fukuizumi [8] proved the
stability of standing waves for sufficiently small ω > 0 showing some coercivity
of the linearized operator around the ground state. See also [13, 15] for the
stability and instability in one dimensional case. The strong instability of
standing waves for sufficiently large ω was proven by Ohta and Yamaguchi [17].
In [17], they proved the strong instability of standing waves with positive
energy E(ϕω) > 0 by using and modifying the idea of Zhang [22] and Le
Coz [10] (see also [18] for related works).
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Recently, for the nonlinear Schrödinger equation with harmonic potential

(1.6) i∂tu = −∆u+ |x|2u− |u|q−1u, (t, x) ∈ R× RN

with 1+4/N < q < 1+4/(N −2), Ohta [16] proved that if ∂2λS̃ω(ϕ
λ
ω)|λ=1 ≤ 0,

then the standing wave is strongly unstable, where S̃ω is the corresponding
action. This assumption is the same one as in Ohta [14]. More recently, Fukaya
and Ohta [7] proved the strong instability of standing waves for nonlinear
Schrödinger equation with an attractive inverse power potential

(1.7) i∂tu = −∆u− γ

|x|α
u− |u|q−1u, (t, x) ∈ R× RN

with γ > 0, 0 < α < min{2, N}, and 1 + 4/N < q < 1 + 4/(N − 2) under the
same assumption ∂2λS̃ω(ϕ

λ
ω)|λ=1 ≤ 0 as in [16] by using the idea of Ohta [16]

with some modifications. The assumption ∂2λS̃ω(ϕ
λ
ω)|λ=1 ≤ 0 indicates that

∥ϕλω∥L2 = ∥ϕω∥L2 , S̃ω(ϕ
λ
ω) < S̃ω(ϕω), and Q̃(ϕλω) < 0 for all λ > 1, where

Q̃ is the functional arising in the virial identity. In general, the assumption
∂2λS̃ω(ϕ

λ
ω)|λ=1 ≤ 0 is a local property around ϕω. In case of (1.6) or (1.7),

however, this assumption gives global information in some sense thanks to the
homogeneity of the potential energy. Due to this assumption, the inequality
Q̃(ϕλω) < 0 leads to the uniform estimate supt∈[0,Tmax) Q̃(uλ(t)) < 0, where

uλ(t) is the solution with initial data ϕλω. This uniform estimate combined
with the virial identity implies the strong instability of the standing wave.

For (NLS), the strong instability of standing waves with negative energy
was not known. The aim of this paper is to prove the strong instability under
the same assumption ∂2λSω(ϕ

λ
ω)|λ=1 ≤ 0 as in [7, 16]. Now, we state our main

result.

Theorem 1.2. Assume (1.1), ω > 0, and that the ground state ϕω ∈ Gω

satisfies ∂2λSω(ϕ
λ
ω)|λ=1 ≤ 0, where ϕλω(x) = λN/2ϕω(λx). Then the standing

wave solution eiωtϕω of (NLS) is strongly unstable.

Remark 1.3. In the case (1.1), E(ϕω) > 0 implies ∂2λSω(ϕ
λ
ω)|λ=1 < 0. Indeed,

let α = N(p−1)/2 and β = N(q−1)/2. Then since Q(ϕω) = ∂λSω(ϕ
λ
ω)|λ=1 = 0

and 0 < α < 2 < β, we have

∂2λSω(ϕ
λ
ω)|λ=1 = ∥∇ϕω∥2L2 −

aα(α− 1)

p+ 1
∥ϕω∥p+1

Lp+1 −
bβ(β − 1)

q + 1
∥ϕω∥q+1

Lq+1

= (α+ 1)Q(ϕω)− 2αE(ϕω)−
b(β − 2)(β − α)

q + 1
∥ϕω∥q+1

Lq+1

< 0.

Therefore, Theorem 1.2 is an improvement of the result of Ohta and Yam-
aguchi [17].
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To prove Theorem 1.2, we introduce the set

(1.8) Bω :=

{
v ∈ H1(RN )

∣∣∣∣∣ Sω(v) < Sω(ϕω), ∥v∥L2 ≤ ∥ϕω∥L2 ,

Kω(v) < 0, Q(v) < 0

}
,

where

Kω(v) := ∂λSω(λv)|λ=1(1.9)

= ∥∇v∥2L2 + ω∥v∥2L2 − a∥v∥p+1
Lp+1 − b∥v∥q+1

Lq+1

is the Nehari functional. Then we obtain the following blowup result.

Theorem 1.4. Assume (1.1), ω > 0, and that the ground state ϕω ∈ Gω

satisfies ∂2λSω(ϕ
λ
ω)|λ=1 ≤ 0. Then the set Bω is invariant under the flow of

(NLS). Moreover, if u0 ∈ Bω ∩ Σ, then the solution u(t) of (NLS) with
u(0) = u0 blows up in finite time.

Theorem 1.2 follows from Theorem 1.4 because the scaling of the ground
state ϕλω belongs to Bω ∩ Σ for all λ > 1 (see Section 3 below).

The proof of Theorem 1.4 is based on the variational argument in Ohta [16]
and Fukaya and Ohta [7]. Firstly, we derive the key estimate Q(v)/2 ≤
Sω(v)− Sω(ϕω) for all v ∈ Bω (Lemma 2.1 below). Then by using the conser-
vation laws, the variational characterization of the ground state by the Nehari
functional, and the key estimate, we show the invariance of Bω under the
flow of (NLS) (Lemma 2.2 below). Combining the virial identity with the
key estimate, finally, we can obtain the blowup of solutions to (NLS) with
initial data belonging to Bω∩Σ by the classical argument as in Berestycki and
Cazenave [2].

We prove the key estimate Q/2 ≤ Sω − Sω(ϕω) on Bω following the proof
of the same estimate for (1.7) in [7, Lemma 3.2]. The proof relies on the
variational characterization of the ground state by the Nehari functional

Sω(ϕω) = inf{Sω(v) | v ̸= 0, Kω(v) = 0}

and the property of the graph of the function λ 7→ Sω(v
λ). Note that the

graph of Sω(v
λ) for (NLS) has the same property as that for (1.7). In the case

of (1.7), since the action S̃ω can be expressed by use of the Nehari functional
K̃ω(v) := ∂λS̃ω(λv)|λ=1 as

(1.10) S̃ω(v) =
1

2
K̃ω(v) +

q − 1

2(q + 1)
∥v∥q+1

Lq+1 ,

the above variational characterization can be written by use of Lq+1-norm.
Therefore, in [7], not only the action but also Lq+1-norm was used effectively.
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On the other hand, in the case of (NLS), the action Sω cannot be expressed
as (1.10) because (NLS) has double power nonlinearity. Due to this fact, we
can not directly apply the proof in [7]. However, in this case, we see that the
action can be expressed as

Sω(v) =
1

2
Kω(v) +

1

2
F (v),

where

F (v) =
a(p− 1)

p+ 1
∥v∥p+1

Lp+1 +
b(q − 1)

q + 1
∥v∥q+1

Lq+1 .

Therefore, we can use F instead of Lq+1-norm. By applying the argument in
[7] using F , although the calculation processes differ from that in [7], we can
prove the key estimate above.

At the end of this section, we remark that the assumption ∂2λSω(ϕ
λ
ω)|λ=1 ≤ 0

is not a necessary condition for the instability of standing waves (see [18, Sec-
tion 4] for related remarks). However, in [7, 16] and this paper, this assumption
plays a very important role in the proof of the strong instability of standing
waves. It is still an open problem whether the unstable standing wave is
strongly unstable or not if the assumption ∂2λSω(ϕ

λ
ω)|λ=1 ≤ 0 is broken.

The rest of this paper is organized as follows: In Section 2, we prove Theo-
rem 1.4, that is, we prove that if ∂2λSω(ϕ

λ
ω)|λ=1 ≤ 0, then the solution of (NLS)

with u(0) = u0 ∈ Bω ∩ Σ blows up in finite time. In Section 3, we prove the
strong instability of standing waves by using Theorem 1.4.

§2. Blowup

In this section, we prove Theorem 1.4. Throughout this section, we assume
(1.1) and ω > 0. Recall that the ground state ϕω ∈ Gω satisfies Kω(ϕω) = 0
and the variational characterization

(2.1) Sω(ϕω) = inf{Sω(v) | v ̸= 0, Kω(v) = 0}

(see, e.g., [11, 12]), where Kω is the Nehari functional defined in (1.9). Note
that the action Sω is expressed as

(2.2) Sω(v) =
1

2
Kω(v) +

1

2
F (v),

where

F (v) =
a(p− 1)

p+ 1
∥v∥p+1

Lp+1 +
b(q − 1)

q + 1
∥v∥q+1

Lq+1 .

Therefore, the characterization (2.1) is rewritten as

(2.3) F (ϕω) = inf {F (v) | v ̸= 0, Kω(v) = 0} .
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Let

α =
N(p− 1)

2
, β =

N(q − 1)

2
.

Using this notation, we have

Sω(v
λ) =

λ2

2
∥∇v∥2L2 +

ω

2
∥v∥2L2 −

aλα

p+ 1
∥v∥p+1

Lp+1 −
bλβ

q + 1
∥v∥q+1

Lq+1 ,

Kω(v
λ) = λ2∥∇v∥2L2 + ω∥v∥2L2 − aλα∥v∥p+1

Lp+1 − bλβ∥v∥q+1
Lq+1 ,

N

2
F (vλ) =

aαλα

p+ 1
∥v∥p+1

Lp+1 +
bβλβ

q + 1
∥v∥q+1

Lq+1 ,

Q(v) = ∥∇v∥2L2 −
aα

p+ 1
∥v∥p+1

Lp+1 −
bβ

q + 1
∥v∥q+1

Lq+1 ,

∂2λSω(v
λ)|λ=1 = ∥∇v∥2L2 −

aα(α− 1)

p+ 1
∥v∥p+1

Lp+1 −
bβ(β − 1)

q + 1
∥v∥q+1

Lq+1 ,

where vλ(x) = λN/2v(λx). Note that by S′
ω(ϕω) = 0, we have

Kω(ϕω) = ⟨S′
ω(ϕω), ϕω⟩ = 0, Q(ϕω) = ⟨S′

ω(ϕω), ∂λϕ
λ
ω|λ=1⟩ = 0.

Firstly, we prove the key lemma in the proof.

Lemma 2.1. Assume that ϕω ∈ Gω satisfies ∂2λSω(ϕ
λ
ω)|λ=1 ≤ 0. Let v ∈

H1(RN ) satisfy

v ̸= 0, ∥v∥2L2 ≤ ∥ϕω∥2L2 , Kω(v) ≤ 0, Q(v) ≤ 0.

Then
Q(v)

2
≤ Sω(v)− Sω(ϕω).

Proof. Since limλ↘0Kω(v
λ) = ω∥v∥2L2 > 0 and Kω(v) ≤ 0, there exists λ0 ∈

(0, 1] such that Kω(v
λ0) = 0. By the definition of the scaling vλ and (2.3), we

have

∥vλ0∥L2 = ∥v∥L2 ≤ ∥ϕω∥L2 ,(2.4)

N

2
F (ϕω) ≤

N

2
F (vλ0) =

aαλα0
p+ 1

∥v∥p+1
Lp+1 +

bβλβ0
q + 1

∥v∥q+1
Lq+1 .(2.5)

Now, we define

f(λ) = Sω(v
λ)− λ2

2
Q(v)

=
ω

2
∥v∥2L2 −

a

p+ 1

(
λα − αλ2

2

)
∥v∥p+1

Lp+1 −
b

q + 1

(
λβ − βλ2

2

)
∥v∥q+1

Lq+1 .
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for λ ∈ (0, 1]. If we have f(λ0) ≤ f(1), then by (2.1) and Q(v) ≤ 0, we obtain

(2.6) Sω(ϕω) ≤ Sω(v
λ0) ≤ Sω(v

λ0)− λ20
2
Q(v) ≤ Sω(v)−

Q(v)

2
.

This is the desired inequality.

In what follows, we prove the inequality f(λ0) ≤ f(1). This is equivalent
to

(2.7)
a

p+ 1
∥v∥p+1

Lp+1 ≤ b

q + 1
· 2λ

β
0 − βλ20 − 2 + β

αλ20 − 2λα0 − α+ 2
∥v∥q+1

Lq+1 .

Since

(2.8)
p+ 1

α
+

2

β
=

2

N
+

2

β
+

2

α
=
q + 1

β
+

2

α
,

we have

Kω(ϕω) +
2

αβ
∂2λSω(ϕ

λ
ω)|λ=1 −

(
1 +

2

αβ

)
Q(ϕω)

= ω∥ϕω∥2L2 −
aα

p+ 1

(
p+ 1

α
+

2

β
− 1− 4

αβ

)
∥ϕω∥p+1

Lp+1

− bβ

q + 1

(
q + 1

β
+

2

α
− 1− 4

αβ

)
∥ϕω∥q+1

Lq+1

= ω∥ϕω∥2L2 −
(
q + 1

β
+

2

α
− 1− 4

αβ

)
N

2
F (ϕω).

Therefore, by Kω(ϕω) = Q(ϕω) = 0 and the assumption ∂2λSω(ϕ
λ
ω)|λ=1 ≤ 0,

we obtain

ω∥ϕω∥2L2 ≤
(
q + 1

β
+

2

α
− 1− 4

αβ

)
N

2
F (ϕω).

Combining (2.4) and (2.5) with this inequality and using (2.8) again, we have

(2.9)

ω∥v∥2L2 ≤
(
a+

a

p+ 1
· 1
β
(2α− αβ − 4)

)
λα0 ∥v∥

p+1
Lp+1

+

(
b+

b

q + 1
· 1
α
(2β − αβ − 4)

)
λβ0∥v∥

q+1
Lq+1 .
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Moreover, it follows from Kω(v
λ0) = 0, Q(v) ≤ 0, and (2.9) that

a∥v∥p+1
Lp+1 = λ2−α

0 ∥∇v∥2L2 + λ−α
0 ω∥v∥2L2 − bλβ−α

0 ∥v∥q+1
Lq+1

≤ λ2−α
0

(
aα

p+ 1
∥v∥p+1

Lp+1 +
bβ

q + 1
∥v∥q+1

Lq+1

)
+

(
a+

a

p+ 1
· 1
β
(2α− αβ − 4)

)
∥v∥p+1

Lp+1

+

(
b+

b

q + 1
· 1
α
(2β − αβ − 4)

)
λβ−α
0 ∥v∥q+1

Lq+1 − bλβ−α
0 ∥v∥q+1

Lq+1

=

(
a+

a

p+ 1
· 1
β

(
2α− αβ − 4 + αβλ2−α

0

))
∥v∥p+1

Lp+1

+
b

q + 1
· 1
α

(
(2β − αβ − 4)λβ−α

0 + αβλ2−α
0

)
∥v∥q+1

Lq+1 ,

and thus

a

p+ 1
· 1
β

(
αβ + 4− 2α− αβλ2−α

0

)
∥v∥p+1

Lp+1

≤ b

q + 1
· 1
α

(
(2β − αβ − 4)λβ−α

0 + αβλ2−α
0

)
∥v∥q+1

Lq+1 .

Since αβ + 4− 2α− αβλ2−α
0 ≥ 4− 2α > 0, this is rewritten as

(2.10)
a

p+ 1
∥v∥p+1

Lp+1 ≤ b

q + 1
· β(2β − αβ − 4)λβ−α

0 + αβ2λ2−α
0

α(αβ + 4− 2α− αβλ2−α
0 )

∥v∥q+1
Lq+1 .

In view of (2.7) and (2.10), it suffices to show that

β(2β − αβ − 4)λβ−α
0 + αβ2λ2−α

0

α(αβ + 4− 2α− αβλ2−α
0 )

≤ 2λβ0 − βλ20 − 2 + β

αλ20 − 2λα0 − α+ 2
.

This inequality follows if we have

g1(λ) :=
α(2λβ − βλ2 − 2 + β)(αβ + 4− 2α− αβλ2−α)

(αλ2 − 2λα − α+ 2)λβ−α

− β(2β − αβ − 4)− αβ2

λβ−2

≥ 0

for all λ ∈ (0, 1). Since limλ↗1 g1(λ) = 0, it is enough to show that g′1(λ) ≤ 0
for all λ ∈ (0, 1). A direct calculation shows

g′1(λ) =
αλα−β+1

(αλ2 − 2λα − α+ 2)2

·
(
(2− α)(β − 2)− 2βλ−α + (αβ − 2α+ 4)λ−2

)
·
(
2α(2− α)λβ − αβ(β − α)λ2 + 2β(β − 2)λα − (2− α)(β − 2)(β − α)

)
.
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Now, we put

h(λ) = (2− α)(β − 2)− 2βλ−α + (αβ − 2α+ 4)λ−2.

Since h(1) = 0 and for λ ∈ (0, 1)

h′(λ) = −2αβ(λ−3 − λ−α−1)− 4(2− α)λ−3 ≤ 0,

we have h(λ) ≥ 0. Thus, we only have to show that

g2(λ) := 2α(2−α)λβ −αβ(β−α)λ2+2β(β−2)λα− (2−α)(β−2)(β−α) ≤ 0

for all λ ∈ (0, 1). Since g2(1) = 0, it suffices to show that

g′2(λ) = 2αβλα−1
(
(2− α)λβ−α − (β − α)λ2−α + β − 2

)
≥ 0

for all λ ∈ (0, 1). This is equivalent to

g3(λ) := (2− α)λβ−α − (β − α)λ2−α + β − 2 ≥ 0.

Since g3(1) = 0, and

g′3(λ) = −(β − α)(2− α)λ1−α(1− λβ−2) ≤ 0

for all λ ∈ (0, 1), we obtain g3(λ) ≥ 0 for all λ ∈ (0, 1). This implies f(λ0) ≤
f(1). Thus, the inequality (2.6) follows. This completes the proof.

Next, we show that the set Bω given in (1.8) is invariant under the flow of
(NLS).

Lemma 2.2. Let u0 ∈ Bω. Then the solution u(t) of (NLS) with u(0) = u0
belongs to Bω for all t ∈ [0, Tmax).

Proof. Firstly, since Sω and ∥ · ∥L2 are the conserved quantities of (NLS), we
have Sω(u(t)) = Sω(u0) < Sω(ϕω) and ∥u(t)∥L2 = ∥u0∥L2 ≤ ∥ϕω∥L2 for all t ∈
[0, Tmax). Then by (2.1), we have Kω(u(t)) ̸= 0 for all t ∈ [0, Tmax). Moreover,
Kω(u0) < 0 and the continuity of the solution u(t) imply Kω(u(t)) < 0 for all
t ∈ [0, Tmax).

Finally, we show that Q(u(t)) < 0 for all t ∈ [0, Tmax). If not, there exists
t0 ∈ (0, Tmax) such that Q(u(t0)) = 0. Then by Lemma 2.1 and Sω(u(t0)) <
Sω(ϕω), we have Q(u(t0)) < 0. This is a contradiction. This completes the
proof.

Finally, we prove the blowup result.

Proof of Theorem 1.4. By the virial identity (1.3), Lemmas 2.1 and 2.2, and
the conservation of Sω, we have

d2

dt2
∥xu(t)∥2L2 = 8Q(u(t))

≤ 16
(
Sω(u(t))− Sω(ϕω)

)
= 16

(
Sω(u0)− Sω(ϕω)

)
< 0

for all t ∈ [0, Tmax). This implies Tmax <∞. This completes the proof.
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§3. Strong instability

In this section, we prove Theorem 1.2 using Theorem 1.4. Throughout this
section, we impose the assumption of Theorem 1.2.

We remark that

Sω(v
λ) =

1

2
Kω(v

λ) +
1

2
F (vλ)

=
λ2

2
∥∇v∥2L2 +

ω

2
∥v∥2L2 −

aλα

p+ 1
∥v∥p+1

Lp+1 −
bλβ

q + 1
∥v∥q+1

Lq+1 ,

Q(vλ) = λ∂λSω(v
λ),

Q(ϕω) = ∂λSω(ϕ
λ
ω)|λ=1 = 0, ∂2λSω(ϕ

λ
ω)|λ=1 ≤ 0.

Lemma 3.1. Assume that ϕω ∈ Gω satisfies ∂2λSω(ϕ
λ
ω)|λ=1 ≤ 0. Then ϕλω ∈ Bω

for all λ > 1.

Proof. First, by the definition of the scaling vλ, we have ∥ϕλω∥L2 = ∥ϕω∥L2 for
all λ > 1.

Next, we show Sω(ϕ
λ
ω) < Sω(ϕω) and Q(ϕλω) < 0 for all λ > 1. Note that the

function Sω(ϕ
λ
ω) of λ has the form Sω(ϕ

λ
ω) = Aλ2+B−Cλα−Dλβ with some

positive coefficients A, B, C, and D. By ∂λSω(ϕ
λ
ω)|λ=1 = 0, the assumption

∂2λSω(ϕ
λ
ω)|λ=1 ≤ 0 can be rewritten as −β(β−2)D ≤ −α(2−α)C. Using this,

we have

∂3λSω(ϕ
λ
ω) = α(α− 1)(2− α)Cλα−3 − β(β − 1)(β − 2)Dλβ−3

≤ −α(2− α)λα−3
(
(β − 1)λβ−α − (α− 1)

)
C < 0

for all λ ≥ 1. Therefore, it follows that ∂2λSω(ϕ
λ
ω) < 0, ∂λSω(ϕ

λ
ω) < 0, and thus

Sω(ϕ
λ
ω) < Sω(ϕω) for all λ > 1. Moreover, we have ∂λQ(ϕλω) = ∂λSω(ϕ

λ
ω) +

λ∂2λSω(ϕ
λ
ω) < 0 for all λ > 1, which implies Q(ϕλω) < 0.

Finally, we obtain

Kω(ϕ
λ
ω) = 2Sω(ϕ

λ
ω)− F (ϕλω) < 2Sω(ϕω)− F (ϕω) = 0

for all λ > 1. This completes the proof.

Now, we prove our main theorem.

Proof of Theorem 1.2. By an analogous argument in the proof of [4, Theo-
rem 8.1.1], we see that ϕω decays exponentially. This implies ϕω ∈ Σ, where
Σ is the weighted space defined in (1.2). Therefore, combining this with
Lemma 3.1, we have ϕλω ∈ Bω ∩ Σ for all λ > 1. Thus, Theorem 1.4 im-
plies that for any λ > 1, the solution u(t) of (NLS) with u(0) = ϕλω blows up
in finite time. Moreover, we obtain ϕλω → ϕω in H1(RN ) as λ↘ 1. Hence, the
standing wave solution eiωtϕω of (NLS) is strongly unstable.
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