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Abstract

Synchronization is one of the universal phenomena in the world and thus has been

studied in a variety of fields such as physics, biology, and psychology. In recent years,

blink synchronization in experiments with individual participants has been reported.

However, it remains unrevealed that the nature of blink synchronizations in theatre

where a performer and multiple audience members interact with each other. The

purpose of this thesis is to explore the mechanisms of emerging blink synchronizations

in theatre and its effects on human cognition and collective experiences by taking both

computational and empirical approach.

In Chapter 1, I introduced the background of the research on blink synchronizations

in theatre from the viewpoint of synchronizations as universal phenomena that are

observed in a group of neurons as well as inter-personal interactions.

In Chapter 2, I discussed the conditions for emerging blink synchronizations in

theatre. The possibility of emerging blink synchronizations depends on the degree of

mastery of the performers. Moreover, higher subjective transportive experience was

related to larger variance of inter-blink intervals (i.e., IBI). This result suggests that the

professional performance leaded cognitive process regarding enjoyment while experts’

act also guided the switching timing between attentional allocation and attentional

shift. Subsequently, the blink rates change in accordance with the performance, lead-

ing to enlarge the differences between dense blinking and sparse blinking. Hence, the

variance of IBI would be larger for participants who had much the transportive expe-

rience by the professional performance.

In Chapter 3, I explored the nature of blink synchronizations as a human collective

behaviour. In a collective experiment under the theatre setting, the degree of blink

synchronizations was increased 30− 60 % compared to that calculated using the data

obtained in the laboratory experiment with individual participants, which was reported

in Chapter 2. Regarding blink synchronization in theatre, collective viewing is highly

more effective especially for the first-time viewers than the frequent viewers. Inter-
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spectator forces, if I could refer to, influence attractively in collective viewing settings.

In Chapter 4, I proposed a mathematical model that explain human blinking focus-

ing on the distributions of IBI. I discuss how the blinking patterns vary due to external

inputs that is represented as the fluctuation of a threshold function. In particular, the

model reproduced the previously known all four type of IBI distributions and the model

also predict a trimodal IBI distributions that have not been reported empirically. The

parameters of the model also suggested that relatively slow (0.11−0.25[Hz]) oscillation

governs the human spontaneous blinking.

In Chapter 5, I proposed that a method to reconstruct a time series of common

input using overlapped multiple, i.e., superposed recurrence plots. The time series of

the common input can be reconstructed based on superposed recurrence plots with

high accuracy when the sufficiently high dimensional embedding and the widths of

time window for calculating the firing rates were set to an effective value to capture the

fluctuations of the common input. I therefore applied the method to the blinking rates

as well. Using the superposed recurrence plots of audience members’ blinking, a time

series of the common input was reconstructed. The fluctuations of the reconstructed

time series were assumed to be the common input of the expert performances that

influence on blinking systems of audience members.

In Chapter 6, I discussed the blink synchronizations in theatre based on the numer-

ical simulations and experiments in this thesis. Then, I stated the limitations of this

study and possible interpretations. Finally, I referred to the remained problems and

future research on the theatre communications.
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Chapter 1

General Introduction

Synchronization is one of the universal nonlinear phenomena in the world. In physical

systems, more than two oscillators entrain each other, resulting a unitary paced mo-

tion. For instance, two metronomes that beat a steady rhythm can synchronize each

other if they are put on a movable plate, even when their pendulums are initially set

to different angles [5], [6]. Biological systems are also dominated by a variety of syn-

chronization. In microscopic level, for examples synchronization in neurons [7] enables

human critical activities such as recognition, reasoning, and emotional expressions. As

an interpersonal aspect, motor synchronizations [8] and contagions of physiological

behaviours, e.g., yawing, smiling, and laughing [9], may serve as the core component

of empathetic system of human as a social animal [10].

In 2009, Nakano and her colleagues [11] reported “eyeblink synchronization” of

human. In this experiment, participants were individually presented comedy movie

‘Mr. Bean’ in a separated laboratory. As the results, the spontaneous blinking tended

to occur in particular time bins, i.e., participants tend to blink at particular frames of

the film, showing a synchronized blinking among participants. The frames of increas-

ing blinks included implicit breakpoints inferred of the story line as well as explicit

breakpoints. Although this phenomenon could be referred as a “blink increase” at

particular scenes, Nakano et al. named as “eyeblink synchronization.” Based on a

deductive speculation, some researchers may assume that audience members in theatre

would blink at similar timing as well. In theatre, however, many factors are involved

in interactions between a performer and a number of audience members. Theoretical

and numerical researches in the field of physics have revealed that synchronizations are

17
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induced by a common input (e.g., pulse [12] and noise [13]). When the oscillators are

mutually coupled [12], however, synchronizations are not maintained without refrac-

toriness to influences by the other oscillator. Consequently, in some cases, the coupled

oscillators desynchronize due to the interactions between oscillators. Hence, whether

or not blinks synchronize among audience in theatre is a non-trivial problem.

Despite the long history of empirical researches on human blinking, there exist very

few computational models to represent the behaviour of human spontaneous blinking

per se, before the examinations of the considerations of blink synchronizations. Numer-

ous empirical studies have revealed that human blink rates vary depending on cognitive

load and task-demands. In theatre as well, psychological variables such as cognitive

load would constantly fluctuate on the order of 100−10, 000 [ms] while each individual

is viewing theatre performances, resulting in a variety of blink intervals. And therefore,

it is necessary for researcher to develop a model that explains these temporal changes in

blinking patterns. Primarily, it is not understood that the conditions of emerging blink

synchronizations in theatre. Secondary, even if blink synchronizations surely emerge in

theatre, it remains unclear how the phenomenon influence human cognition and expe-

rience processing. If we obtain fundamental understanding in blink synchronizations

in theatre, researchers could know their important roles in the relation to particular

performer-audience communication as well as interactions among audience.



Chapter 2

Blink Synchronization in vaudeville

settings and its psychological

influences

To my best knowledge, blink synchronization in theatre has not been a theme of scien-

tific research. After the observation of blink synchronization in theatre in 2013 [3], I

have been studied blink synchronization which reflect attentions process during view-

ing the performance with using Raking which is a Japanese traditional story-telling

performance. To verify the mechanism of blink synchronization, I exerted an experi-

ment with individual participant who are not familiar with Raking performance and

examined whether or not blink synchronization occur more frequently during viewing

a video that performed by a expert actor than that by a novice actor.

First, the results demonstrated that blink synchronization occurs among partici-

pants who are not familiar with Rakugo performance. The audience would be difficult

to make the storyline in long-term prediction. Thus, the results suggest that blink syn-

chronization does not depends on the prior knowledge. Then, the results also showed

that blink synchronization is observed in the situation where there exists no laughter.

Therefore, blink synchronization does not need laughter of other audience members

as the primary condition. Next, the timing of blink synchronization is unrelated to

actor’s blinks, and therefore blinks synchronization is not a byproduct of blink en-

trainment between an actor and each audience member. Finally, the timing of blink

synchronization related to important scenes to enjoy the story. The results suggest

19
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that expressive contents lead particular temporal patterns in attentional cycle. Ad-

dition to this, the frequency and degrees of blink synchronizations corresponded to

expertising levels of actors who performed the same story. Hence, we would conclude

that blink synchronization occurs due to expressive contents rather than the structure

of the story.

In the study ( [3], Study 2), the participants who were not familiar with Rakugo

performance were selected for detecting the minimum conditions for blink synchroniza-

tion. However, the viewing skill of audience members can change through the repetitive

appreciation. There are both possibilities that the prior knowledge of the actor and

the story leads to be easier to occur blink synchronization by providing the common

framework and such knowledge leads to be more difficult to occur blink synchronization

by building original value standard for appreciation.

Collective spectator communications such as oral presentations, movies, and story-

telling performances are ubiquitous in human culture. Spectators who share time and

space frequently involve their minds and bodies in fascinating performances. Some

spectators would describe their experience as being ’carried away by the story. This

engrossing temporal experience is known as “transportation into the narrative world”

[14]. In a previous study, researchers summarized facilitators of narrative transporta-

tion [15]. For instance, van Laer et al. [15] pointed out that stories containing more

identifiable characters to audience members, plotlines that storytelling audiences can

imagine, and verisimilitude all increase the likelihood that a narrative transportation

will occur (p. 803). In addition, an audience member’s familiarity with a story topic,

attention level, transportability (i.e., “a story receiver’s chronic propensity to be trans-

ported,” see Ref. [15], age, education, and gender (female rather than male) all play

a role in the likelihood of narrative transportation (p. 804). Although these studies

have focused on human traits, in other words, static factors of transportation, dynamic

factors such as fluctuation between attention allocation and attention release during

a performance also affect a transportive experience in live theatre, as expressiveness

between a performer and the audience is communicated in real-time. However, the

processing mechanism by which an audience experiences transportation through the

appreciation of expert performances remains a mystery.

Investigations into audiences’ transportive experience during a storytelling perfor-

mance have suggested that audience attention tends to synchronize with the addition



21

of audio-visual stimuli used during expert performances [3]. In Ref. [3], Nomura

and Okada showed that during an expert performance, eyeblinks among participant

audience members synchronized with greater frequency and more intensity compared

to audience members of a novice performance, even though the expert and novice per-

formers performed the same story. At the same time, subjective rating scores on a

scale to determine transportation into the world of the story [16] including somatic

responses (e.g., sweat and chills, [17] were much higher for participants who watched

an expert performance than those who watched a novice performance.

The timing of eyeblinks is interrelated within attentional process [11] [3]. In gen-

eral, people search for a target upon which to focus their attention. If audiences find a

target, they allocate their attention to it. After this focused concentration, they release

their attention to prepare to search for the next target. Audience eyeblinks decrease

at the moment of attention allocation while they increase at the moment of atten-

tion release. Therefore, eyeblinks tend to synchronously occur at implicit attentional

breakpoints among readers while reading books [18] and among viewers while viewing

videos [19]. An additional qualitative analysis in Ref. [3](Study 2) also indicated

that eyeblinks among audiences are synchronized corresponding to scene changes and

high points of expressive performance. This externally coordinated attention leads to

an efficient cognitive process by avoiding loss of significant information [11]. Thus,

the authors concluded that eyeblink synchronization among audiences is guided by an

expert performance created to make audiences comprehend the important information.

However, it is unclear how eyeblink synchronization among audiences relates to

their experience of transportation. One of the possible mechanisms is that eyeblink

synchronization among audiences is driven by attentional cycles, which are in turn

driven by emotional processing. One’s eyeblinks usually cycle in self-paced (physio-

logical) periods with some fluctuations. However, audience eyeblink onset might be

delayed or accelerated depending on the actors’ expressions, as the timing of attention

allocation and attention release are coordinated with the performance. When audience

members shift their attention back and forth more frequently, in parallel with the sto-

ryline and punchlines performed by the actors, eyeblink time points vary dynamically,

but sensitively, in line with the performance [3]. As s result, eyeblinks among audi-

ences synchronize with each other. Because the duration of attentional cycles reflects

the audience’s active involvement in a performance, durations vary more frequently
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than those of self-paced cycles. Such dynamic attention shifts bring audience members

more emotional excitement. Their emotional excitement may motivate them to pay

attention for upcoming expressions that could contain important content-related in-

formation. Thus, a reciprocal process between emotional excitement and the resulting

motivated attention would affect transportative experiences. In other words, high emo-

tional excitement and high eyeblink variability would predict that audience members

experience more transportation.

The other possibility is that a situation model improves prediction accuracy and

simultaneously facilitates the experience of transportation. A situation model refers

to a reader’s representation of the referents and events described in a text [20]. More

generally, it refers to a story receiver’s mental model [21] using specific information

that aids the comprehension of the current situation. When people comprehend a story,

they construct a representation of the situation and its words and sentences [22]. The

current situation model manages new information from the aspect of temporal, spatial,

or casual consistency [23] and possibly enables people to predict the next plot twist

more precisely. If an audience can construct representations of a story, they will more

easily understand the meaning of the situation. In other words, a situation model

reduces the cognitive burden required to comprehend a story. At the same time, this

reduction facilitates the experience of transportation, because audiences can freely use

remaining cognitive resources for other cognitive activities, such as focusing on the

detail of expressions. Thus, a model can help an audience realize the depth of feelings

expressed in a performance. While a non-experienced audience constructs a situation

model by using only the knowledge accumulated through appreciation of the present

story, an experienced audience constructs a model by also exploiting domain knowledge

cultivated through past viewing experience. In light of this perspective, it could be

predicted that the experienced audience, compared to the non-experienced audience,

would gain more transportative experience from the beginning of a performance.

In summary, the mechanisms of audiences’ blink synchronization reflecting the expe-

rience of transportation are as follows. On one hand, externally coordinated attention

leads to dynamic eyeblink shifting, as well as emotional processing, due to which au-

dience members are inclined to pay additional attention to the performance. On the

other hand, a mental model reduces the cognitive burden of comprehending characters

and plotlines of a story, while simultaneously improving the accuracy of prediction.
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These two mechanisms facilitate audience eyeblink synchronization. However, these

mechanisms could be interdependent. In general, synchronizations caused by exter-

nal inputs are possible if respective elements respond reliably to time-varying stimuli

[24]. Thus, blink synchronization among audiences during Rakugo settings could occur

owing to performance quality in addition to audience sensitivity to external stimulus.

For instance, even though emotional excitement and biased distribution of eyeblinks

predict the transportive experience, this result may be obtained from the experienced

audiences only if domain knowledge is a necessary condition. In another case, even the

non-experienced audiences may obtain a transportive experience if the performance

contains sufficient information to guide their attentional process. The purpose of this

study is to examine these two potential mechanisms and their relationship to each

other. In the experiment, experienced and non-experienced audiences were assigned to

watch one of two videos separately: an orthodox performance (played in front of fre-

quent viewers) or a modified performance (played in front of first-time viewers) acted

by the same artist (The details of the two performances will be described later). In all

settings, participants’ eyeblink responses were observed.

The time cycle of inter-blink intervals (IBIs) varies when the performance contains

more frequent expressions that draw the viewer’s attention, because the original (self-

paced) period becomes accelerated or delayed. This leads to a higher rate of eyeblink

variability. Thus, the standard deviation of IBIs can be used as a measurement of

eyeblink-rate variability on an individual level. Furthermore, emotional excitement

can be measured by a subjective rating score on a humor scale, while it is no sim-

ple task to measure each audience member’s situation model per se during real-time

processing. However, the similarity of situation models among audiences could be es-

timated by focusing on the reproducibility of participants’ eyeblink responses, because

eyeblinks by audiences who have a common situation model would unintentionally se-

lect similar information, leading to more closely-timed (i.e., more reliable) and more

similar eyeblink patterns. In this study, we observed the precision of eyeblink responses

by focusing on time differences within an audience, instead of defining the objective

criteria or identifying audio-visual information to which an audience allocates its atten-

tion. We calculated mean eyeblink timing asynchrony and estimated mean similarity

of IBI patterns between two particular audience members as group-level indices of

reproducibility.
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To investigate the first mechanism, we performed a multiple regression analysis with

a standard deviation of IBIs and humor ratings as an explanatory variable with a self-

reported degree of transportation as a target variable. This hypothetical mechanism

is rejected when standard deviations of IBIs or a subjective-humor response have no

predictive power. Here, we were unable to eliminate the possibility that other variables

suggested by previous research (van Lear et al., 2014) were also facilitating or inhibit-

ing the process interdependently. In the multiple regression analysis, we included age,

gender, mean of IBIs calculated for each individual, knowledge of the performer (a

dummy variable), and knowledge of the story (a dummy variable) as possible predict-

ing variables. This analysis was performed across the experimental conditions, with

the aim of determining whether variables of real-time processing, rather than other

variables such as the nature of performance or the different viewing experiences, had a

predictive power for transportive experience. As the first hypothetical mechanism was

supported by multiple regression analysis, we went on to examine the second mech-

anism, concerning the use of a situation model. If the asynchrony of eyeblinks was

lower in the experienced audience group than in the non-experienced group, it would

suggest that domain knowledge had helped in the construction of a situation model.

One-way ANOVA was performed to assess the interaction between viewing experience

and actor expression during performance. If a situation model was unnecessary for

transportation, the degree of transportation did not increase, at least in the situation

in which group-level eyeblink asynchrony was high. If any other factor was suspected

of contributing to the process of transportation throughout the analyses, an additional

analysis was performed according to the nature of stimuli such as laughter of audience

recorded during Rakugo (Japanese) vaudeville performances (i.e., in situ).

2.1 Materials and methods

2.1.1 Participants

Participants included 28 males and 44 females, all native Japanese speakers. Out of 72

people who participated in the experiments, complete eye-tracking data was obtained

from 60 participants (24 males and 36 females, mean age = 34.12 yrs., range = 18−−63
yrs.). Eye-movement data from two people was not usable due to drooping eyelids.
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Data from 10 other people were unusable because troubles with the instruments caused

a loss of eye-detecting information leading to insufficient records. The experimenter

defined participants who had viewed the type of storytelling performance used in the

study more than ten times in any situation, including through other media and live

performances, as an experienced audience member. The experimenter adopted the

criteria because the mean number of viewing times was usually three or four times in

the daily lives of most Japanese. This meant that individuals who met the criteria

seemed to seek opportunities to view Rakugo more than five times. As a result, 30

(15 experienced and 15 non-experienced) participants were assigned the videotaped

performance as first-time viewers and the remaining 30 participants (15 experienced

and 15 non-experienced) were assigned the videotaped performance as frequent viewers.

2.1.2 The storytelling artist and stimuli

In the current study, the authors asked professional Rakugo artist Bungiku Kokontei

(34-year-old performer with 10 years’ experience) to record his performances. Rakugo

is a traditional Japanese comic vaudeville storytelling performance in which one artist

plays many characters. The stage setting is usually just a square cushion (zabuton) on

which the performer sits to tell passed-down and newly created stories. The artist uses

a Japanese fan and a traditional hand towel to represent all stage properties such as

chopsticks and a sword (katana). In a traditional Rakugo apprenticeship of the Associ-

ation of Rakugo (General Incorporated Associations), the title of first-rank performer

(“Shin’uchi”) was given to Bungiku earlier than the 28 senior performers. We there-

fore assumed that Bungiku possesses the skills to modify his performance according

to the nature of the audience. Two storytelling performances as well as the audio-

visual information during the performance were videotaped. In both performances,

the story Bungiku told was called “Nibansenji,” literally meaning the second brew of

tea or decoction, which is semantically transferred to mean that things become a pale

imitation. The outline of the story is as follows: five civilians go around the city of Edo

(the old name of Tokyo) to prevent fires on a very cold winter night. After enduring

the cold, they go back to a hut and have a warm meal, while passing around a small

cup of warmed sake, conveniently concealed as “senji-kusuri” (decoction). Suddenly, a

samurai who supervises the fire-prevention activities comes to the hut and calls for the

door to be opened. Although civilians hurriedly hide the meal and sake, the samurai
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notices them quickly and wants to make them his own, relying on his authority. While

the samurai wants another decoction (i.e., sake), one of the civilians answers that they

have no more decoction. As the last line, the samurai orders as follows: “While I patrol

around the neighborhood, brew the second decoction.”

The performances were recorded on December 6th, 2013, in a Rakugo vaudeville

setting that was recreated in a laboratory room at the University of Tokyo. The artist

performed live in front of 31 frequent viewers and 24 first-time viewers. They (i.e.,

audience in situ) were different from participants of the current laboratory experiment.

Several experimenters and assistants were also present in the room. The performance

for frequent viewers was acted in the style of traditional vaudeville storytelling perfor-

mance in everyday theatre (orthodox video). The performance for first-time viewers

was played in a modified way to help first-time viewers better comprehend the content

of the story (modified video). The videos lasted approximately 3220 s (53 min 40 s)

and 3022 s (50 min 22 s), respectively. For the first-time viewers, the artist took a few

minutes to explain the traditional way of viewing this type of storytelling performance.

The videotaped performance was presented on a 19-inch monitor distanced 58 cm

from each participant. The video was projected to a size of 15 cm (H) × 24.6 cm

(W). The subjects’ viewing angle of the performer, who was sitting on the zabuton,

was approximately 11.3 deg × 10.7 deg located at the center of the monitor. The

projected size was approximately equivalent to the size of performers viewed by an

audience seated at a 5-meter distance in the center of a vaudeville theatre. The video

stimuli were controlled by a desktop personal computer (Dell, Optilex 900, CPU 3.40

GHz, Memory 8.00GB).

Eye movements were measured by a non-contact, eye-tracking device (EMR-AT,

VOXER, nac Image Technology Inc.) at a sampling rate of 60 [Hz]. The eye position

was smoothed using a moving-average method and recorded electronically. The eye-

blinks were detected by instantaneous losses (0.3−1.0 [s]) of pupil with an eye-position

motion that went rapidly down and then immediately up. The first time point during

the detected eyeblink was identified as the onset of that eyeblink. The time duration

from one onset to the next onset was defined as the IBI. Each participant’s chin and

forehead were placed in fixed way on a support device to minimize the influence of head

movements on eye-tracking data. Presentation of stimuli were controlled and recorded

by a background program made by Visual Basic. A few time delays occurred before the
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presentation while the computer was loading a video. These presentation time delays

were corrected using recorded time stamps.

2.1.3 Questionnaire

The questionnaire package consisted of two scales (humor and transportation), two

demographic characteristics (age and gender), and domain knowledge of the storytelling

performance being shown. Humor as the emotional excitation in vaudeville settings

was rated using a 4-point (from 1 to 4) Likert scale. The humor rating scale [25]

included four items that reflected the audience’s degree of perceived humor (e.g., “I

laughed or was inclined to laugh so much”). The transportive experience was rated

using 18 items related to temporal transportation. Half of the items were derived from a

subscale of the Literary Response Questionnaire (LRQ, [16], which was translated into

Japanese [26]). However, the wording of questions was inverted to fit into a vaudeville

setting. For instance, “reading a novel” in the original text was changed to “viewing

Rakugo” in the modified text [17]. The translated questionnaire also contained items

relevant to the emotion of enjoyment in real life or items relevant to the author of

the stories rather than transportation per se and less relevant items, which were not

used. Moreover, as another aspect of the transportive experience, some items reflected

subjective evaluation about participant’s own somatic responses such as sweaty palms

and chills [17] were included. The questionnaire asked participants to write their

age and gender in the blanks on the sheet and describe their knowledge of the story

and the artist in the recorded performance. The questionnaire also asked participants

to describe their impressions of the performance. In addition, participants filled out

information on their familiarity with Rakugo performances by (1) using media and (2)

going to the theatre in their everyday lives.

2.1.4 Procedure

The participants were separately invited to the laboratory room where the experimenter

explained the experiment. To lessen the possibility that each participant intentionally

controlled his/her eyeblink response, the experimenter withheld the actual purpose

from the participants. Instead, the experimenter told the participants that the exper-

iment “aimed to examine where you look on the monitor by measuring and recording
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the eye points while appreciating a Rakugo performance.” After briefly explaining

the eye-tracking device, a nine-point calibration was performed. The experimenter

recorded the air temperature and humidity at the starting point and checked to ensure

that the videos worked well. The experimenter played a video (a muted movie of fish

swimming in a group), while measuring and recording the eyeblinks of each partic-

ipant as an individual frequency and asynchrony baseline within each group. Each

participant was then instructed how to play the movie and the experimenter left the

room. Participants started to play the assigned video on their own, while the device

was measured and recorded their eyeblinks. After finishing the video presentation, the

experimenter re-entered the room and asked the participants to complete the question-

naire. The experimenter explained that the actual purpose of the experiment was to

measure the timings and frequency of eyeblinks while watching the storytelling per-

formance. All participants gave permission for their eye information to be used in the

study and agreed to answer the questionnaire. In addition, the experimenter asked if

they had noticed that this was a study on eyeblinks. Five participants answered that

they had noticed the eyeblink data, of which three were omitted from the analysis due

to incomplete data (see, Participants). The other two participants suspected that the

device might be related to eyeblink measurement; however, their eyeblink data were

included in the analysis because they stated that they did not change the timing of

their eyeblinks intentionally.

2.1.5 Analysis

2.1.5.1 Distance-based analysis of blink (spike) trains: Asynchrony

Victor and Purpura [1] proposed methods to quantify the asynchrony of two particular

spike trains (e.g., time series of intermittently firing neurons) focusing on the difference

of spike timings. D spike and Dinterval equally evaluate the distances of two different

blinking trains (Fig. 1). However, only D spike calculates the distance at each time

point of the spikes. In contrast, Dinterval takes into account the intervals of spike-by-

spike. While these methods have been developed with the aim of analyzing asynchrony

in firing neuron spike trains, they can be used to quantify the degree of asynchrony of

particular blink trains.

Dspike is sensitive to inter-spike intervals. In contrast, Dinterval is sensitive to tem-
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Figure 2.1: Schematic illustrations of Dspike and Dintervals (A) The distance be-
tween the two spike trains, St and So, is equal to seeking a path of the minimum cost,
which transforms So − St′ , with spike times (a, b, c, d, e, f) equal to St. (B) The
distance between St and So is equal to seeking a path of the minimum cost, which
transforms So−St′ , with IBIs (a, b, c, d, e) equal to St. The authors originally created
these two schematic illustrations based on Ref. [1].

poral spike patterns. Although a Dinterval value is constantly equal to or smaller than

that of Dspike, there is no difference between the values of these indices if a particular

temporal pattern is started at the same time. However, the value of Dinterval becomes

smaller than that of Dspike when spike trains exhibit the same temporal pattern (motif)

with a time delay in each time train [1]. Thus, the differences between these indices

represent the degrees of pattern formation of IBIs. In other words, the difference in

the value of Dinterval compared with that of Dspike suggests the ratio explained by the

pattern similarity. If the viewing experience influences a situation model constructed

through a viewing performance, a significant difference of pattern similarity will be

found between experienced and non-experienced audiences.

In this study, the analysis unit was set to 250 [ms] because a blink usually occurs

at an interval elapse of least 300 [ms] due to physiological limits [11]. That is, the

whole video recording was divided into huge numbers of time windows (i.e., bins), each

of which with a length of 250 [ms], and the distance was counted based on the number

of bins. To evaluate asynchrony of each scene during the performance, time trains of 5

min of performance time each (i.e., 1200 units = 4(bins/s) × 60(s) × 5 (min.)) were

used for calculation. As the total length was different with each video, the last 50 min.

of video footage was accurately divided into 10 scenes (i.e., each scene containing 5

minutes of footage). The rest (i.e., the first 22 s in the video for frequent viewers and
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220 s in the video for first-time viewers) was excluded from the time-series analysis.

All values of Dspike and Dinterval were calculated using a modified version of a

program provided by Ref. [1]. The program was mainly developed in the Matlab and

Visual C++ environment. All p-values were two sided and a p-value of .05 or less was

assumed statistically significant. All statistical analyses were performed using EZR

(Easy R, Saitama Medical Center, Jichi Medical University; [27]), which is a graphical

interface for R (The R Foundation for Statistical Computing, Vienna, Austria, version

3.0.2).

2.1.5.2 Detecting the onset of laughter elicited in situ

To detect laughter, videos recorded in 30 frames per s were coded using ELAN 4.5.1

(Max Planck Institute for Psycholinguistics, Nijmegen), which has been developed for

analyzing discourse processes and interactions among small-group members in face-to-

face communication. The period of laughter was detected in the frame as the smallest

unit (33.4 Hz) using only the sounds of the video. Each first frame was set as the onset

of that laughter. A researcher trained in the methods of psychological study performed

the coding procedure.

2.2 Results

2.2.1 Operational checks

2.2.1.1 Laboratory environment and time delay of stimuli presentation

No difference in the degree of laboratory humidity was found among the groups. Dif-

ferences of time delays among the groups were not significant (range 501± 88.69 [ms]).

2.2.1.2 Audience knowledge about the performer and the story

None of the non-experienced participants knew either the performer or the story. On

the other hand, approximately a half of the experienced participants knew the per-

former (the orthodox performance: 46.67 % and the modified performance: 33.33%)

and the story (the orthodox performance: 66.67 % and the modified performance:

46.67 %). (2.1).
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Table 2.1: Percentages of participants with knowledge of the performer and the story.

Experienced participants Non-experienced participants
Knowledge in advance of the performer
Typical performance 46.67 0.00
Modified performance 33.33 0.00
Knowledge in advance of the story
Typical performance 66.67 0.00
Modified performance 46.67 0.00
n = 15 for each group.

2.2.1.3 Reliabilities of scales

The α coefficients of the scales were .77 and .91 for humor and experience of transportive

experience, respectively. The coefficients were high enough for the following analysis.

2.2.1.4 Baseline of asynchrony

To confirm that there was no difference in the total count of eyeblinks per time between

groups, ANOVA was used for the IBI expressions of performer and viewing experience

of the audience. The results showed no main effect and no interaction. Thus, the

total rates or total numbers of eyeblinks were not different among the groups. This

result was supported even if the participant’s age, a factor that may have influenced

the total numbers of eyeblinks, was taken into account. Under the baseline condition,

only the main effect of audience viewing experience was significant (F (1, 338) = 9.84,

p < .01). The experienced audience value of Dinterval was lower than that of the non-

experienced audience (.62 vs. .70, p < .05 for orthodox video and .60 vs. .71, p < .10

for modified video, respectively). This fact may indicate that experienced audience

members slightly tend to synchronize their eyeblinks even when they are watching

a video unrelated to domain knowledge (silent movie of a group of fish). Owing to

this result, in section 3.4.2, differences between the value of Dinterval for experienced

and that for non-experienced audiences were accepted only when the effect size of

this comparison exceeded that of the baseline, and statistical values were significant.

The values of asynchrony under the baseline condition in each group were relatively

lower than those during video screening. Because the stimulus used in the baseline

condition contains only visual information, the timing of the allocation would converge.
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On the other hand, storytelling performances included audio-visual stimulus requiring

participants to integrate multimodal information.

2.2.2 Multiple regression analysis

The mean and standard deviation of IBIs followed logarithmic normal distribution ac-

cording to the nature-of-time relevant variable. In the following analysis, logarithmic-

transformed mean and standard deviations of IBIs were used. To examine the rela-

tionships between variables, zero-order correlations were calculated (Table 2.2). The

coefficient of correlation between transportive experience and humor was very high

(r = .772, p < .001). Knowledge of the performer positively correlated with trans-

portive experience and humor. The SD of IBIs did not have a salient correlation with

other variables.

Table 2.2: Zero-order correlation coefficients between variables used for multiple re-
gression analysis.

2 3 4 5 6
1. Transportation 0.772∗∗∗ 0.071 0.197† 0.262∗ 0.107
2. Humor – −0.008 −0.014 0.315∗∗ 0.191†

3. Mean of IBIs – 0.156 0.033 −0.028
4. SD of IBIs – 0.085 0.105
5. Knowledge of the performer – 0.703∗∗∗

6. Knowledge of the story –
IBIs: inter-blink intervals, N = 60, †p < .10, ∗p < .05, ∗∗p < .01, ∗∗∗p < .001.

In order to explore which variables predicted the experience of transportation, a

multiple regression analysis was performed (Table 2.3). The results of multiple re-

gression analysis demonstrated that humor strongly predicted the experience of trans-

portation (β = .772, p < .001). SD of IBIs also regressed on the experience of trans-

portation (β = .208, p < .05). The other variables such as age, gender, means of

IBIs, and domain knowledge (the performer and the story, dummy variables) exhibited

no significant effects. The zero-order correlations between the domain knowledge and

transportive experience were weakened by taking the other variables into consideration.

The coefficient of determination was considerably high (R2 = .64).
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Table 2.3: Zero-order correlation coefficients between variables used for multiple re-
gression analysis.

B SE Standardized β t-test
Intercept 0.362 0.726 0.499
Humor 0.503 0.056 0.772 9.064∗∗∗

Mean of IBIs 0.047 0.101 0.038 0.462
SD of IBIs 0.432 0.171 0.208 2.525 ∗
Knowledge of the performance 0.102 0.140 0.085 0.724
Knowledge of the story −0.128 0.121 −0.121 −1.059
IBIs=inter-blink intervals R = 0.806, R2 = 0.649 ∗p < .05, ∗∗∗p < .01.

2.2.3 Experience of transportation

To reveal the effect of the performer’s expressions and audience viewing experience,

the factor design was a two-way ANOVA performance (between the two levels; for

frequent viewers and first-time viewers) × experience of audience (between the second

level; experienced and non-experienced). The dependent variables analyzed included

the score of humor scale and the score of the transportation scale. When humor and

transportation scale scores were combined, the main effects and interaction between

performance and experience of audience were not significant. For the transportation

scale score, the effect of experience was marginally significant, indicating that the score

of the experienced audiences was very slightly higher than that of the non-experienced

(F (1, 56) = 2.963, p < .10, experienced 2.58 vs. non-experienced 2.37). In addition,

the simple main effect (corrected Bonferroni’s method) of the experienced audiences

was marginally significant (.30, se = .17, p < .10, experienced 2.69 vs. non-experienced

2.39).

2.2.4 blink synchronization

2.2.4.1 Estimated similarity of IBI patterns

The difference between and Dspike indicates the similarity of the IBI patterns within

two trains (Fig. 2.2A, B). As the results of the two-way ANOVA (viewing experience

× video) data of 10 scenes showed, the main effect of the viewing experience was

significant (F (1, 2066) = 25.38, p < .0001, Fig. 1D). Sub-effect tests revealed that

the estimated similarity in eyeblinks of the experienced audience was higher than that
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of the non-experienced audience in both performances (p < .001, 0.15 vs. 0.09 and

p < .05, 0.14 vs. 0.11). In addition, the estimated similarity in eyeblinks during the

orthodox video was higher than that of the modified video (p < .01, 0.12 vs. 0.10).
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Figure 2.2: estimated similarity of inter-blink interval (IBI) patterns. (A)
The scatter plot of Dinterval and Dspike. The coefficient of determination R2 = 0.87.
(B) Similarity of IBI patterns within each group estimated from the difference between
Dinterval and Dspike. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

2.2.4.2 Temporal pattern of Dinterval

In the first six scenes (0− 30 min) of each video, the average Dinterval within a group

of experienced participants was significantly higher than that of the non-experienced

participants, except for 25 min. of the orthodox performance. All effect sizes of these

comparisons exceeded those of the comparisons observed under the baseline condition.

Regarding homogeneity of variances, the null hypothesis that the true ratio of variances

is equal to 1 was rejected atDinterval from 15 to 30 min of the orthodox video and during

all Dinterval of the modified video (not shown in Fig.2.3). Overall, the index Dinterval

of the participants who had viewing experience remained low while watching both

the orthodox video (Fig.2.3A, orange line) and the modified video (Fig.2.3B, orange

line). Non-experienced participants who watched the modified performance gradually

reduced eyeblink asynchrony as the story developed (Fig.2.3B, blue line). On the

other hand, even non-experienced participants had reduced asynchrony as of the first
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few minutes to the end of the story while watching the orthodox video (Fig.2.3, blue

line). The standard deviations for experienced participants also stayed relatively small

while standard deviations for non-experienced participants decreased throughout the

performance.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

5 10 15 20 25 30 35 40 45 50

A
sy

n
ch

ro
n

y 
(D

in
te

rv
al

/s
)

Time (min.)
baseline

�
���

��
��

����

����

����

����

����

����

����

����

����

����

5 10 15 20 25 30 35 40 45 50

Non-experienced

Experienced

A
sy

n
ch

ro
n

y 
(D

in
te

rv
al
/s

)

Time (min.)

baseline

�

�����
��

�� ��

Modified performance for
first-time viewers

Typical performance for 
frequent viewers

� �

Figure 2.3: Asynchrony of eyeblinks among participants at each scene (5
min) During appreciation of videotaped performance (A), which is typi-
cal for frequent viewers, and (B), which is modified for first-time viewers.
Mean Dinterval among all possible pairs within each group were calculated. Error bars
shows the SD. Asterisks and obelisks indicate the p-values of t-tests assuming un-
equal variance, which were performed in each scene between experienced audience vs
non-experienced audience. P-values corrected by the method of Bonferroni were used.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

2.2.4.3 Effect of laughter

In the case of the orthodox performance, the results of abovementioned ANOVA demon-

strated relatively lower levels of Dinterval for even non-experienced participants as of the

beginning of the performance. However, these effects for non-experienced participants

were not observed in the modified performance, possibly because of the differences

between audience responses in situ reflecting changes in the emotional expression of

the performance. In order to reveal the possible influence of laughter on the differ-

ence in Dinterval, the number of eyeblinks occurring at, before, and after the onset

of laughter was compared. A three-way ANOVA was performed on the number of

eyeblinks in each unit was normalized to a z-score across the performances (Fig.2.4).
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The factor design of this ANOVA was video (between the two levels; orthodox and

modified) × experience of audience (between the two levels; experienced and non-

experienced) × timing (between the twelve levels; the time of 6 units before onset

and 6 units after onsets of laughter). First, Mauchly’s test was conducted to check

sphericity. All of the test statistics were not significant. We then used type III sum of

square repeated measures ANOVA assuming sphericity. The main effects of time were

significant (F (11, 3916) = 1.853, p < .05) and none of the other main effects and inter-

actions were significant. To identify the sub-effect, a two-way ANOVA for each video

(orthodox and modified) was exerted. The results demonstrated that the main effect

of timing was significant during the orthodox video (F (11, 2420) = 2.21, p < .05). We

performed one sample t-test for the mean against the null hypothesis (µ = 0) using a

p-value collected by the Bonferroni’s method. Only a time point 1.25−−1.50 [s] after

the onset of laughter in the video was significantly higher than 0. All means at the

other time points were not significant for rejecting the null hypothesis.
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Figure 2.4: z-scores of eyeblinks before and after onsets of laughter Z-scores
recorded in performance (A) Typical and (B) Modified. Error bars show the SD. An
asterisk indicates a p-value of one sample t-test for the mean against the null hypothesis.
P-values corrected by the method of Bonferroni were used. ∗p < 0.05.
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2.3 Discussion

2.3.1 Mechanisms of transportation

Participants’ eyeblinks synchronized among the non-experienced audience at a level

equivalent to that of the experienced participants through an appreciation of the per-

formance (Fig. 2A). As enough information seemed to be presented in each perfor-

mance, even non-experienced participants appeared to be able to construct a situation

model using only a temporally accumulated knowledge of the story by comprehending

the storyline and the personalities of the characters. On the other hand, the standard

deviations of the experienced participants tended to be lower than those of the non-

experienced participants. This result suggests that the audience’s domain knowledge

cultivated by viewing experience aids in the construct of similar situation models among

the audience. The results of estimated similarity of the IBI pattern (Fig. 1C) also sug-

gest that experienced audiences, compared to non-experienced audiences, respond in

more reproducible ways within each group. Although not all experienced participants

knew the story or the performer perfectly, the experience of the participants helped to

synchronize their eyeblinks. Thus, results were obtained by application of knowledge

regarding typical developing patterns of storylines in the field of Rakugo performance.

However, in this experiment, the situation model supported by domain knowledge

did not explain an experience of transportation fully (Fig.2.3B). The results of the

ANOVA concerning transportation showed that the main effect of audience experience

was weak. The results of the multiple regression analysis indicated that humor and

standard deviation of IBIs predicted a transportive experience. Other variables had no

predictive effects. In Ref. [15] van Laer et al. reveals that age, gender, and knowledge

gained by education, among other variables, affects the degree of a transportive expe-

rience, based on a review of several articles (e.g., [28] [29]). However, the apparent

effects relating to the degree of viewing experience and other demographic variables

seem to be peripheral. The standard deviation of IBIs suggests that an individual’s

allocation of attention varies more frequently as he or she is inclined to predict up-

coming events [3]. It could be said that the eyeblink-rate variability is accompanied

by emotional excitement. This emotionally motivated eyeblink-rate variability might

be attributed to the expressiveness of a performance and corresponding humor in situ.

Because the same story was performed by the same performer, the differences of asyn-
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chrony must depend on the performance rather than the structure of the story. As

described so far, the two mechanisms that we mentioned earlier seemed to be con-

firmed. It was suggested that the emotionally excited eyeblink-rate variability could

be a good predictor of transportation.

The possibility of eyeblink occurrence increased at 1.25−−1.50 [s] after the onset of
laughter. This result suggests that laughter by the surrounding audiences functions as

a cue for further processing [30]. A time delay from the onset of laughter may be due

to a time lapse between recognition and reinterpretation of a situation in the story.

However, the effect was confirmed only during the orthodox performance. For non-

experienced audiences, estimated pattern similarity (i.e., formation ratio of temporal

patterns, “motif”) was also higher for those who watched the orthodox video than

those who watched the modified video, as shown in Fig.2.3B. These results suggest

that even non-experienced audiences synchronize their eyeblinks, to some extent, when

appreciating a performance acted in the orthodox way usually seen in theatres. The

performance that amuses experienced audiences would seem to simultaneously exert

this effect on non-experienced audiences.

Although the effect of the viewing experience was confirmed, it was weak. A non-

experienced audience might devote significant cognitive resources to comprehending the

contents of the story, leaving very little for other resources. In contrast, an experienced

audience might be engaged in a transportive experience by sparing cognitive resources

in order to appreciate the details of expression, especially for an orthodox performance.

The experienced audience might sometimes pay attention to a particular nuance of

expression by each artist rather than simply enjoy the contents of the performance

per se. Actually, in the free description about their impressions of the performance,

some experienced audience members answered that the performer appeared to inherit

the traditional style of Rakugo compared to the other performers in his generation.

A viewing experience does not always lead to transportation. An implicit selection of

information and a resupply of emotionally excited attention lead to a precise prediction

of the next plot twist and an engrossing experience. Overall, a transportive experience

would actualize under a situation in which both active leading by performance and

active anticipating by the audience occur. In this sense, a performer and audience

share the responsibility to create transportive enjoyment in a vaudeville setting. A

performer would act as the leader in providing his/her creative expressions and the
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audience would play the role of actively anticipating the created world of the story.

2.3.2 Dynamic indices and future direction

The findings about the underlying mechanisms in real-time processing are significant

in the research field of transportive experience that has focused on the traits of the

receiver (see Ref. [15]). In particular, the predictive power of eyeblink-rate variabil-

ity during viewing performance implies that people experience transportation through

active coordination of specific external audio-visual information. Both blink synchro-

nization and eyeblink-rate variability could be useful measurements for researchers to

infer the inner experience of audience members by observing unintentional behaviors

objectively. The results of this study also suggest that emotional excitement motivates

more attentional cognitive resources onto the actor’s expressions and the structure of

the story. In this study, the positive emotion (i.e., humor) is strongly related to the

transportive experience because the performance is oriented to create a sense of en-

joyment or exhilaration in the audience in a vaudeville setting. However, it is not

surprising if the feelings of thrill or suspense predict a transportive experience at the

cinema. Future research is necessary to examine the relationships between excitement

of other kinds of emotion and transportive experiences.

A possibility exists that transportation is weakened compared with that experi-

enced through live performance because a videotaped performance cannot preserve the

atmosphere in situ. Further study is necessary to clarify whether or not emotionally

excited eyeblink-rate variability more strongly facilitates the transportive experience in

real vaudeville settings. Although the humor experience was evaluated retrospectively

owing to operational limitations in this study, future research will reveal the time-

sequential relationships between transportation, emotional excitement, and eyeblink-

rate variability by measuring ongoing physiological indices such as skin conductance,

heart rate, and aspiration rhythm.

In the first experiment, blinks among participants synchronized frequently and

strongly under the condition where the participants viewed the expert story-telling per-

formance, compared to that where participants viewed the novice performance. The

results suggest that blink synchronization occurred in response to the appeal power

of the expert performance because other most of possible variables were controlled by

using the same story and by assigning the participants to be approximately equaled
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regarding their viewing experience. In this setting, it seemed that the appeal power

of performance changed the participants’ timing of attention allocation. Consequently,

participants become to blink in closer timing when to view. Blink synchronizations

induced by common inputs appears that occurrences of temporally increase of blinking

density rather than the precise co-occurrence of blinks. Previous studies in blink bursts

are also supported the blink synchronization as the covarying of blink rates [31].

In this chapter, blink synchronization was defined as the average lower editing

cost between a pair of time series of blinking timing as a point process. The results

demonstrated that the degree of blink synchronizations was higher for frequent viewers

than first-time viewers both in two recorded performances. The results suggest that

knowledge about the performance and the performer helps to make segmentations of

the visual information in accordance with the professional performance, leading the

resemble blinking patterns. The results also demonstrated that the larger variance of

the IBI related to the more transportive experience into the narrative world. Common

inputs that is able to establish blink synchronization may elicit cognitive entrainment

among audience members in theatre.



Chapter 3

Inter-Spectator Interactions

facilitate blink synchronization

If blink synchronization occurred only due to the common inputs of the story-telling

artist, then interactions would neither have attractive nor repulsive effects among au-

dience members. In this case, the results would demonstrate no differences between

these two groups, i.e., audience in situ vs. participants in the individual experimental

setting as shown in Chapter 2. On the other hand, if interactions among audience

members were also due to blink synchronization within the audience, systematic dif-

ferences would be found. Moreover, if the collective nature of audience members was

cooperative, interactions would have an attractive effect. If the collective nature was

competitive, interactions would be repulsive. Therefore, in the former case, the results

would show that eyeblinks would synchronize more in situ than in the individual exper-

imental setting. In contrast, for the latter case, the results would occur in the opposite

way. Regarding the cooperative nature, it could be hypothesized that it occurs by

facilitating cognitive entrainment, which decreases each audience members’ cognitive

load. This hypothesis would be supported if the attractive effect were stronger for first-

time viewers than for frequent viewers. However, if this cooperative nature was caused

by mere somatic entrainment among audience members regardless of domain knowl-

edge, there would be no difference found in blink synchronization based on audience

members’ viewing experience. In this chapter, I examine the influence of surrounding

audience members on blink synchronization.

41
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3.1 Method

3.1.1 Participants

Participants in the experimental condition (audience members) included 31 frequent

viewers (mean age = 44.37, SD = 13.57) and 24 first-time viewers (mean age =28.06,

SD = 13.91) for two separate performances, respectively. We defined frequent view-

ers in this study as the participants who had viewed Rakugo (Japanese traditional

storytelling performance) more than 10 times regardless of type. The reason why we

adopted this criterion is that the mean number of viewing times in the daily lives of

most Japanese people is usually three or four. This means that a participant who

meets our criteria as a frequent viewer would seek opportunities to view the Rakugo

performance more than the average Japanese person would. Seven (five male and two

female) frequent viewers and seven (five male and two female) first-time viewers were

selected from each audience group as the targets whose eyeblink responses would be

observed. This is due to the limitation of the observation method: the experimenter

could only detect the eyeblink responses of these participants by the recorded faces. As

all of the observed targets sat facing forward instead of facing the audience, the targets

were limited to obtaining visual information only from the performer. In other words,

the participants were not able to look at each other’s faces or see each other’s eyeblinks.

The participants in the control condition (see Chapter 2) included 24 males and 36 fe-

males. Half of the participants were frequent viewers and the others were first-time

viewers. The experimenter used the same criteria based on the participants’ viewing

experience to divide them into frequent viewers and first-time viewers. All participants

provided their written informed consent to participate in this study. This experiment

was approved by Life Science Research Ethics and Safety, the Ethics Committee of the

University of Tokyo.

3.1.2 The storytelling artist and performed story

Rakugo is a traditional Japanese art of storytelling in which one artist plays many char-

acters by changing face directions and sitting postures. Moreover, since the artist acts

without lighting effects, visual information of the performer stays the same even when

the scene changes. Therefore, the changes of characters and of scenes are interpreted
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by acting conventions among the performer and audience members. In order to un-

derstand the story, the audience members themselves must work to make non-obvious

segmentations on the continuous performance. In order to investigate the particular

impact of story-telling performances, the authors used Rakugo performances, on which

only minimal visual and sound effects are added, for this experiment. Because each

artist is classified into three grades in accordance with their acting abilities, the author

was able to validate the quality of the artist in this study. The artist of the live Rakugo

performance was Bungiku Kokontei (34-year-old with 10 years’ worth of experience as a

performer) who is one of the highest-graded artists. The performed story was one of the

classic Rakugo repertories, ”Nibansenji,” which literally means the second brew of tea

or decoction. The performance for frequent viewers was conducted in the style of tra-

ditional vaudeville storytelling performances in everyday theatre (Orthodox version).

The performance for first-time viewers was modified to allow the first-time viewers to

better comprehend the content of the story (Modified version). The total time of the

performances were 3022 seconds (s; 50 minutes (min.) 22 s) and 3220 s (53 min. 40

s), respectively. For the first-time viewers, the artist took a few minutes to explain

the traditional way of viewing this type of storytelling performance. In the experiment

settings, the experimenter used the video clips of the live performances.

3.1.3 Data collection

To detect the eyeblink responses, the analyzer utilized ELAN 4.5.1 (Max Planck In-

stitute for Psycholinguistics, Nijmegen), which was developed for discourse analysis.

When using this software, an analyzer can easily record many types of annotations on

utterances and gestures (e.g., the onsets or offsets of a particular gesture). The onset

of an eyeblink was defined as the frame prior to the frame in which the pupils were cov-

ered by the eyelids after a target audience member started blinking. An analyzer who

had two years’ worth of Rakugo-performing experience coded the eyeblink responses

using the video recording of the audience (33.4 Hz) that was muted to eliminate the

possibility of being influenced by the recorded voice of the performer. An analyzer also

reduced the playing speed by approximately 60% of the original video, thus preventing

the analyzer from missing the target’s eyeblinks due to his own eyeblinks. If the motion

of eyelids did not cover the whole eye surface area, it was coded as a muscle artifact

and was not used in the analysis. To confirm coding reliability, the first author sepa-
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rately coded one of the targets using the same procedure. As both coders concurrently

identified more than 95% of the eyeblinks, the data coded by the analyzer were used

for the consequent analysis.

3.1.4 Procedure

Participants were invited to enter the vaudeville setting recreated in the laboratory

room. Six seats (three seats by two lines) were reserved for the first six participants of

the experiment. The other seats were free seating. For first-time viewers, the experi-

menter explained the procedure of Rakugo performances (e.g., a storytelling performer

changes his voice and turns his face to play many characters by himself). Then, the

artist went to the center of the stage while a classic Japanese theme song played on the

speakers. The artist sat down on the square cushion to start the performance. After

the performance, the artist left the room. The experimenter and assistants distributed

questionnaires to the participants in order to obtain their demographic variables and

assess their domain knowledge regarding this kind of performance.

3.1.5 Distance-based analysis of blink (spike) trains: Asyn-

chrony

Victor and Purpura [1] proposed a method to quantify the asynchrony of two par-

ticular spike trains (e.g., the time series of intermittently firing neurons) focusing on

the difference of spike timings, Dinterval. This method does not assume a Euclidean

notion of distance. Rather, it adopts a metric space to define the distance, and then

the method can be applied to the time trains of eyeblink occurrence [32]. In this

study, Dinterval was used to evaluate the distances of two different blinking trains. The

distance between the two spike trains, Sa and Sb, is equal to seeking a path of the

minimum cost, which transforms Sa-Sb, with IBIs (a, b, c, d, e) equal to S ′
b. If the

original pattern of Sb is more similar to Sa, the cost of transforming is lower. Hence,

Dinterval quantifies the asynchrony between two particular time trains. In this study,

the analysis unit was set to 250 milliseconds [ms] to maintain a format of results similar

to that of the control condition results, reported in Chapter 2. In other words, the

entire video recording was divided into many time windows of 250 [ms] width (i.e.,

bins). To evaluate the asynchrony of each scene during the performance, time trains of
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5 min. of performance time each (i.e., 1200 bins = 4 bins/s × 60 [s] × 5 [min.]) were

used for calculations as in the control condition. Welch’s tests of the mean Dinterval

in situ vs. the mean Dinterval in the experiment were performed for each scene using

Bonferroni-adjusted p-values.

3.2 Results

In Chapter 2, I reported that the eyeblinks of frequent viewers synchronized than

that of first-time viewers during the first 30 [min.] of the performance in both videos

(Orthodox version and Modified version). This effect of viewing experience on blink

synchronization was especially stronger in the Modified version (Fig.2.2B). In contrast,

the results observed in the live performances in this study demonstrated that both the

Dintervals of frequent viewers and that of the first-time viewers were much lower than

those of each control condition (black lines in Fig.2.2A and Fig.2.2B), indicating that

eyeblinks synchronized in situ rather than in the individual control condition, regardless

of the version of performances. For frequent viewers, there was no difference in the

asynchrony of eyeblinks at the starting point of the story despite the format of the

Orthodox version of the performance (Fig.2.2A, orange line and black line). However,

the asynchrony (Dintervals) of the audience members’ eyeblinks in situ decreased as the

story progressed (from the fifth scene to the tenth scene, respectively: t(37.10) = 5.77,

p < .001; t(37.10) = 5.80, p < .001; t(61.19) = 9.45, p < .001; t(70.70) = 9.26,

p < .001; t(43.02) = 8.75, p < .001; t(71.43) = 9.84, p < .001). As a result, asynchrony

was lowest during the last 5 min of the performance, including the final remark (punch

line). In contrast, in the performance of the Modified version (Fig.2.2B, blue line and

black line), throughout the whole story, there were major gaps between the asynchrony

(Dintervals) gained from in situ and that acquired from the experiment for first-time

viewers (from the first scene to the tenth scene, respectively: t(118.81) = 8.61, p < .001;

t(118.81) = 10.06, p < .001; t(120.32) = 8.97, p < .001; t(98.26) = 6.50, p < .001;

t(70.62) = 11.91, p < .001; t(99.82) = 8.42, p < .001; t(72.98) = 7.08, p < .001;

t(57.20) = 6.97, p < .001; t(57.43) = 6.93, p < .001; t(100.44) = 7.79). The asynchrony

of the first-time viewers’ eyeblinks in situ was lower (Fig.2.2A, black line) even when

compared to that of the eyeblinks of frequent viewers (Fig.2.2B, black line).
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Figure 3.1: Asynchrony of eyeblinks among participants at each scene during
observation of the performance. (A) Typical live (black line) and videotaped
(orange dashed line) performances for frequent viewers, and (B) modified live (black
line) and videotaped (blue dashed line) performances for first-time viewers. Both
dashed lines and gray lines show data reported in the above section. Error bars show
the sd. Asterisks indicate the p-values of Welch’s tests, which were performed for each
scene between the mean Dinterval in situ vs. the mean Dinterval in the experiment.
Bonferroni-adjusted p-values were used. ∗∗∗p < .001.

3.3 Discussion

3.3.1 Comparison between frequent viewers and first-time view-

ers

The purpose of the current study is to explore the effect of interactions among audi-

ence members on the cognitive aspect of entrainment in live performances. To assess

the effect of interactions, the blink synchronization of audience members during live

performances was compared to that of audience members in individual experiments.

The results demonstrated that interactions among audience members facilitate blink

synchronization. Although this attractive effect was found in both the Orthodox ver-

sion for frequent viewers and the Modified version for first-time viewers, the estimated

effect of interactions for first-time viewers was stronger than that of frequent view-

ers. First-time viewers would have to spare cognitive resources to comprehend a story.

Hence, the cognitive load would be relatively higher for first-time viewers than frequent

viewers. Previous research [33], [34] reported that as the cognitive load increased,
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eyeblink rate increased. In this study, however, first-time viewers synchronized more

their eyeblinks (i.e., showed lower asynchrony, Dinterval, as compared to the experienced

viewers). Occurrence timings of eyeblinks were found to be related to change in atten-

tional state regardless of stimulus modality [35]. If one audience member can adopt

clues of attentional processing from other audience members in a collective situation,

even first-time viewers would lead cognitive entrainment at a smaller cognitive cost. It

is suggested that first-time viewers enjoy the story by unintentionally utilizing other

audience members’ responses as clues for cognitive processing.

On the other hand, frequent viewers appeared to be relatively less influenced by

the temporal responses of other audience members, since they internalized viewpoints

of this domain based on their many experiences. The study in Chapter 2 reported

that frequent viewers synchronized their eyeblinks by watching the same story-telling

performance. Thus, frequent viewers seemed to enjoy the story based on individual

cognitive processing and using their own domain knowledge.

Because all target audience members faced forward in their audience seats, they

seemed to be influenced mainly by the laughter of other audience members instead of

by visual information. A theory of humor [30] has suggested that further elaboration

increases the experience of subjective humor. Laughter could be one of the clues

indicating the occurrence of elaboration [30].

3.3.2 Advantages of the current study and future directions

This study analyzed blink synchronization in order to shed light on the cognitive en-

trainment that emerges because of interpersonal communications. This approach could

provide a new perspective from which the dynamics of collective human behaviors in

a temporally shared field might be examined. Audience members appeared to attract

each other, leading to a mutual entrainment [36]. Eyeblink synchronization was also

observed when individuals were watching the same storytelling performance separately

[3], during which a forced entrainment [36] between the performer and each audience

member would occur. In the actual theatre, these two entrainments would occur in

complex ways. From the viewpoint of a complex system, blink synchronization is hy-

pothesized to be a synchronization of multiple agents’ periodic behaviors induced by

the common inputs [14]. This performer-audience system includes both top-down in-

puts and bottom-up emergent processes [37]. Attractive effects of interactions among
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audience members suggest that partly depending on other members who have received

the same inputs could possibly be a mechanism of self-adaption [38] based on visual

cues that are used in collective viewing situations. From this perspective, becoming an

expert narrative artist is a process that involves acquiring adaptive control strategies

to be used in uncertain situations where unexpected patterns of audience members’

response usually occur.

However, in the current study, the interactions among audience members were

estimated as the total mass. Thus, the results only roughly illustrate a sketch of the

time developments of cognitive entrainment. In future research, it would be necessary

to develop a model of an entrainment system between a performer and the spectators.

Somatic entrainment and cognitive entrainment within an audience are still not well

understood. Does somatic entrainment lead to cognitive entrainment, does cognitive

entrainment lead to somatic entrainment, or is it mutual? This is a key question, as

situations in which a speaker performs in front of spectators are ubiquitous in human

cultures. The elaborated model must provide universal findings and strategies that are

applicable to other kinds of oral performance, such as speeches, presentations, lectures,

and so on.

3.4 Conclusion

Whereas the entrainment of movements and aspirations among audience members has

been known as a basis of collective excitement in the theatre, the role of the entrain-

ment of cognitive processes among audience members is still unclear. In this chapter,

temporal patterns of the audience members’ attention were observed using eyeblink re-

sponses. To determine the effect of interactions among audience members on cognitive

entrainment, as well as its direction (attractive or repulsive), the blink synchronization

of the following two groups were compared. The results of this study demonstrated

that the mean values of a measure of asynchrony (i.e., Dinterval) were much lower for

the experimental condition than for the control condition. Frequent viewers had a

moderate attractive effect that increased as the story progressed, while a strong at-

tractive effect was observed throughout the story for first-time viewers. The attractive

effect of interactions among a group of spectators was discussed from the viewpoint of

cognitive and somatic entrainment in live performances.



Chapter 4

A model of Human Spontaneous

Blinking

4.1 Introduction

Although numerous experimental studies on human spontaneous blinking have been

developed [32], [39], [40], little theoretical research using mathematical models has

been carried out. The one-dimensional stochastic diffusion (OSD) model has been pro-

posed as a mathematical model of spontaneous blinking [41]. This model assumes a

blink generator in which electrical potential varies depending on the external inputs of

corneal stimulation such as dryness, dust, or muscle fatigue. The electrical potential

varies as Brownian motion process, resulting in a blink when the potential reaches a

threshold. The potential exponentially decays to a constant value when the blink gen-

erator receives no inputs. Thus, intervals between spontaneous blinks are formulated

as a first-passage-time to a constant threshold. According to [41], burst patterns in

blinking can be explained by assuming that the threshold was shifted lower when the

participants were drowsy.

Human blinking rates, however, vary in a few tens of seconds while watching an

audio-visual stimulus [42]. A realistic model should account for this variation. In

addition to such temporal characteristics, changes in blinking rates often provide less

common distributions of inter-blink intervals (IBIs) in cognitive tasks [31], [43]. Thus,

an adequate model should reproduce the diverse distributions of spontaneous blinking.

The OSD model cannot reproduce distributions of IBIs because of its stochastic nature

49
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and constant threshold.

In this paper, we propose a leaky integrate-and-fire (LIF) model with a variable

threshold to represent the fluctuation of internal states of human blinks. First, we

examine the reproducibility of the distributions of IBIs by the OSD model, however,

the OSD cannot reproduce experimental results. Then, we show that the proposed

LIF model reproduces a variety of distributions such as the positively skewed, normal,

peak-less, and bimodal distributions of IBIs. Finally, we explore the parameters that

reproduce the distributions of IBI reported in a classical experimental study.

4.2 Model of Human Spontaneous Blinks

4.2.1 One-dimensional stochastic diffusion model

In this model, changes in the potential X of the blink generator are governed by the

following equation:

dX(t) =

(
−X(t)

β
+ µ

)
dt+ ϕdW (t), (4.1)

with an initial condition X(0) = X0.

In Eq. (4.1), W is a Wiener process that is characterized by spontaneous decay β

(> 0), average input µ (−∞ < µ < ∞), and a noise term of ϕ (> 0) for a random

process. This stochastic differential equation is formally equivalent to the Ornstein-

Uhlenbeck process. The interval between one blink and the next (IBI) can be expressed

as a first-passage-time density function, which is defined by the time duration between

the initial potential X0 and the time to pass the threshold potential.

The OSD model is based on the Ornstein-Uhlenbeck process and therefore the

potential X obeys the mean reversion law [41]. If we took P (ω|α, t) as the probability
that a stochastic variable α is given when t = 0 whereby we gain ω at time t, in this

model, P (−∞|X0, t) = 0. According to Hoshino [41], this mathematical assumption

represents the physiological nature of a blinking generator that reliably repeats to

active blinking within a finite time period without assuming a reflecting boundary.

The results of numerical simulations demonstrated that the OSD model can repro-

duce the positively skewed distribution of experimentally observed IBI [41]. However,

this model does not reproduce the other previously reported distributions of IBI.
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Figure 4.1: Results by the LIF model with (a), (b) a constant and (c) a
variable threshold. The V increases with integrating the binomial input I. The
parameter c is the decay term and the parameter σ is the standard deviation of noise
ξ. The baseline of the threshold function a = 1. (a) There are no decay and no
noise, i.e., c = 0 and σ = 0. (b) There is no noise, i.e., σ = 0. (c) The threshold is
time-varying with the amplitude k and the period τ where the decay and the noise
exist.
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4.2.2 Leaky integrate-and-fire model with a variable threshold

Although the primary physiological function of blinking is to prevent dryness of eye-

surfaces, cognitive functions of human blinks have also been reported [32], [18].

Human blinks in accordance with semantic segmentations of audio-visual information.

For example, people tend to blink after looking at punctuation marks in reading tasks

[18] and immediately after listening to the punch line of jokes while viewing a sto-

rytelling performance [32]. Neurological research indicated that spontaneous blinks

contribute to disengaging attention from audio-visual stimuli [44]. Cognitive load is

integrated while audio-visual information is continuously accumulated. When people

blink, however, the cognitive load is reset by attentional disengagement where a part

of audio-visual information is transmitted to the next processing stage. These facts

indicate that we can model the biophysical changes in an internal value of a blink

generator which is driven by cognitive load as well as by physiological inputs such as

dryness and fatigue of muscle.

As one of the possible models, we used a leaky integrate-and-fire model with a

variable threshold to represent such a blink-and-reset mechanism. The leaky integrate-

and-fire models have been used as models of changes in membrane potential of a single

neuron [45]. Human blinking is a macroscopic phenomenon that involves several brain

areas. However, as long as we could assume that integrate-and-reset mechanism as a

plausible postulation, the leaky integrate-and-fire model is suitable for human blinking

as well.

As a possible mechanism for blinking intervals providing a variety of distributions,

we assumed that the changes in blink rates are regulated by internal states that could

vary in accordance with external stimuli. To construct the model, we assume a simply

formulated situation where a background oscillation exists as a regulator of frequent

human blinking. Such oscillation would emerge spontaneously as a result of physio-

logical rhythms in addition to the rhythm induced by the external stimuli during an

experimental task that requires visual attentions. In this study, we consider a leaky

integrate-and-fire model with a variable threshold [46].

The potential V of blinking generator is governed by

dV

dt
= −cV + I + ξ, (4.2)



53

where c is a constant decay term and I is an external input with intensity b. The last

term represents the Gaussian noise ξ ∼ N(0, σ2) derived from the random fluctuation

of external stimuli. The noise ξ = 0 when σ = 0.

One way to extract a particular rhythmic process in a physiological system is to

set a variable threshold function [47]. Then, we introduced the following threshold

function θ(t) determined by

θ(t) = a+ k sin
2πt

τ
, (4.3)

where a is the baseline constant, k is the amplitude coefficient, and τ is the period.

When V reaches the threshold, it immediately elicits a blink.

Figure 4.1(a) and (b) shows the typical pattern when a = 1 and k = 0, i.e. θ(t) = 1.

In a simple case of a perfect integrator without decay and noise, i.e. c = 0 and σ = 0, V

demonstrates a monotone increasing with accumulating non-negative external inputs I

(Fig. 4.1(a)). Even when the threshold is constant, V , in the integrate-and-fire model,

behaves in a complex way due to the decay term c and the noise σ = 0, resulting in the

creation of irregular IBIs (Fig. 4.1(b)). The parameter k determines the amplitude of

the threshold function θ(t). Owing to the nonlinearity of the varying threshold function

θ(t), IBIs can show rather complex patterns even if the external input I is constant.

Previous researches have revealed the effect in a modulation of the current in LIF

models of a neuron numerically and analytically [45], [48], [49]. A modulation of the

current can be mathematically transformed to the variations of threshold. Therefore,

the LIF model with a variable threshold would provide results that correspond to

the previous research on a neuron. However, the LIF model would also be useful to

understand statistical behavior of the human blinking if the LIF model fit the data

from physiological experiments.

4.3 Numerical Simulation and Analysis

4.3.1 Parameters

To the best of the authors’ knowledge, no mathematical proof provides that first-

passage-time density functions of the Ornstein-Uhlenbeck process always exhibits pos-

itively skewed distributions. Thus, the ODS model [41] may reproduce a variety of

distributions when specific parameters are set. Hence, we re-examined the distribu-
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tions simulated by the OSD model. In this replication, threshold potential was set to

1.0 and the parameters of the Ornstein-Uhlenbeck process were set as shown in Table

4.1 to cover the typical ranges of decay β and input µ that elicit blinking at realistic

intervals. In the numerical experiments, the parameters β, µ, and ϕ are increased by

the values denoted in the third column of Table 4.1.

Table 4.1: Parameters used in the OSD model.
range an increment

β [0.01, 10.0] 0.01
µ [0.1, 10.0] 0.1
ϕ [0.5, 1.0] 0.05

In all simulations, the time step was set to dt = 0.001 s. The total time for

observation was 50 min (= 3, 000 s) to gain enough occurrences of IBI to estimate the

distribution of human spontaneous blinking [50].

On the other hand, in the simulations of the proposed model, parameters were set

as follows: the intensity of the external input I of which intervals obey a binomial

distribution was set to b = 1. To explore a relatively wide range of intensities for

the inputs, a constant threshold baseline a = 1 was set. When we assume the simple

case with c = 0 and σ = 0, it is necessary to accumulate non-negative inputs 1, 000

times because b× dt = 0.001. Considering the binomial distribution of I, 2, 000 steps

were needed on average to reach the threshold baseline. In other words, the variable

V reaches the threshold in an average of 2 s. For instance, in case that k = 0.20, this

corresponds to a maximum deviation 1/5 from the threshold baseline when a = 1. In

case that k = 0.0, however, the threshold is a constant θ(t) = a because

k sin
2πt

τ
= 0.

The period τ corresponds to the frequency of the threshold function θ(t). For example,

the frequency of the threshold is 0.1 Hz for τ = 10 s and 10.0 Hz for τ = 0.1 s. Figure

4.1(c) shows the typical pattern when a = 1, k = 1/10, and τ = 5 s, i.e.

θ(t) = 1 +
1

10
sin

2πt

5
.
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4.3.2 Evaluation of Distribution

Based on observation of human blinking behaviours, Ponder and Kennedy [4] reported

four types of distributions of IBI. Although this study is classical, we focused on this

study because it had reported all of known distributions. Moreover, the distributions

were obtained from sufficient number of participants with using a certain procedure.

Variations of distributions were consistent with that obtained in the following experi-

mental studies [51], [40]. Thus, Ponder & Kennedy’s [4] four types of distributions of

IBI are very informative even in recent years. According to Ref. [4], the results show

that most common distribution was positively skewed (62.0%, 31/50 people). The

authors also observed peak-less distributions (22.0%, 11/50), bimodal distributions

(12.0%, 6/50), and normal distributions (4.0%, 2/50).

We evaluated the peaks of simulated distributions of IBIs using kernel estimation

of probability density. The kernel density function f̂h(x) was estimated as

f̂h(x) =
1

nh

n∑
i=1

K(u).

We used a Gaussian kernel function, which is described as

K(u) =
1√
2π

e−u2/2,

where

u =
x− xi

h
.

In this equation, xi was the ith observed value and h was the bandwidth, n was the

total number of xi. For kernel density estimations, we used the C++ library [52] in

which the optimal bandwidths h were calculated as the integral over the square of the

curvature using the trapezoidal rule.

We then estimated the number of peaks in the simulated distributions by applying

the peak-finding algorithm [53]. In order to detect peak(s), this algorithm differentiates

the estimated probability density and finds the locations where the signs change from

positive to negative. Each peak is determined relatively rather than absolutely because

the probability density could be high depending on the bandwidth. Therefore, a peak

was defined as the point that fulfills the following two conditions that the peak point
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exceeds 0.1, and exceeds one quarter of the difference between the maximum value

and the minimum values. If any probability density was incomputable due to low

occurrence of blinking, the peak-finding algorithm was not applied to those specific

results.

We evaluated the kernel-estimated distribution in the range of 0–20 s, which is the

usual IBI range. We calculated the median of the results of the simulations for com-

parison with the means of experimental data, because the shapes of the distributions

were diverse. For unimodal distributions, we used these median values to detect the

skewness. If the time location of the peak was lower than the centre of the estimated

range, we regarded the distribution as the positively skewed.

For bimodal distributions, we evaluated the time locations of two simulated peaks.

We permitted differences within ±0.025 s for each reported peak. For instance, if the

time locations in the experimental data were 0.5 s and 5.5 s, we assumed that these

peaks were reproduced when the first simulated peak was located between 0.475–0.525

s and the second simulated peak was located between 5.475–5.525 s. The width of each

histogram bin in Ref. [4] was 0.5 s, and therefore the range was narrow enough to

capture the simulated peaks.

4.4 Results

4.4.1 Distributions of IBI simulated by OSD model

Our simulations resulted in 901, 000 solutions for the OSD model. Then, 70.53%

(635, 488/901, 000) of the solutions had a peak, while the remainder (29.46%) had no

peak defined by the peakfinder algorithm; bimodal and other multimodal distributions

were not detected. One third (30.84%, 195, 985/635, 488) of distributions with a peak

were positively skewed although the time location of the peak depended on the parame-

ters. Otherwise (69.15%, 439, 503/635, 488), the simulated distributions approximated

normal distributions. Regarding the distributions without peaks, the probability den-

sity was approximately constant within the range of 0–20 s, which is chosen for the

simulation. We considered that these results demonstrated peak-less distributions at

least in this range. Thus, the one-dimensional stochastic diffusion model reproduced

only positively skewed, normal and widespread peak-less distributions of IBIs.
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4.4.2 Proposed model
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Figure 4.2: Results obtained by the LIF model with a variable threshold.
Probability density functions change in accordance with decay term c or amplitude of
threshold function k. (a) The symmetric shapes of distributions are maintained even
when the decay term c becomes larger. (b) The tails of the distributions expand when
the amplitude k becomes larger.

4.4.2.1 Parameters and behaviours of V and distributions of IBI

Contrary to the OSD model, the leaky integrate-and-fire model with a variable thresh-

old reproduced a variety of distributions depending on the parameters. By exper-

imenting with the parameters, we thus could reproduce the distributions of IBI of

spontaneous human blinking.

When the parameters were fixed at a = 1, σ = 0, and k = 0, the mean and median

values increased as c became larger within the range of 0.0–0.3 (Fig. 4.2(a)). The

symmetric shape of the distribution did not change. In the leaky integrate-and-fire

model, the intervals of the external input I obey a binomial distribution. Theoreti-

cally, the proposed model reproduces the normal distribution of IBI with these specific

parameters because a binomial distribution with sufficient sample size approximates a

normal distribution.

When the parameters were fixed at σ = 0 and c = 0 and then the amplitude k of

the threshold functions varied in the range of 0.0–0.3, the medians of the distributions

were almost constant. In this case, however, the tails of the distributions expanded

and the shorter IBI showed relatively higher probability density than the longer one
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Figure 4.3: Results by the LIF model with a variable threshold. The V increases
with integrating the binomial input I. The parameter c is the decay term and the
parameter σ is the standard deviation of noise ξ. The baseline of the threshold function
a = 1 and the threshold is time-varying with the amplitude k and the period τ . (a) The
period τ is short and the prolonged IBI is observed only if the value V is not trapped
by the threshold function which is convex down. (b) When the threshold function is
convex up with the large period τ , the prolonged IBI is frequently observed. (c) Due to
the large decay term c, the prolonged IBI is observed even when the period τ is small.
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Figure 4.4: The number of peaks of the distributions of IBI in case that c and
k are changed. The color bars show the number of peaks. (a) Trimodal distributions
are observed as red clusters surrounded by the areas of bimodal distributions. (b) For
the larger period τ , trimodal distributions are not observed.

(Fig. 4.2(b)).

The proposed model was capable of reproducing bimodal distributions by setting

the amplitude k and the period τ of threshold functions. As shown in Fig. 4.3(a),

when the threshold function θ(t) is convex downward, the value V frequently reached

the threshold. In this case, the number of the peak was unity. When the threshold

function θ(t) fluctuated near the baseline with a smaller amplitude and a longer period,

prolonged IBIs occurred (Fig. 4.3(b)). Due to the effect of the decay term c, the value

V remained just below the threshold. In this case, the number of peaks was two.

Therefore, if a larger decay term was chosen, we were able to obtain both relatively

longer IBIs and shorter IBIs even when the baseline was much lower (Fig. 4.3(c)).

We chose the parameters of the proposed model as shown in Table 4.2 to cover ap-

proximately widest ranges of c and k. The third column in Table 4.2 shows increments

for the parameters c, k, and τ . The period 1 ≤ τ ≤ 10 s was set to correspond to the

range 0.1–1.0 Hz. For the sake of simplicity, other parameters were fixed to a = 1 and

σ = 0.

Table 4.2: Parameters used in experiments by the LIF model with a variable threshold
range an increment

c [0, 1] 0.01
k [0, 0.9] 0.01
τ [1, 10] 0.5
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In the range of these parameters, we obtained 174,629 solutions for the proposed

model. The results of peak-detection showed that 4.68% (8, 170/174, 629) of distri-

butions were peak-less, 37.95% (66, 273/174, 629) were unimodal, 41.03% (71, 653/

174, 629) were bimodal, and 1.38% (2, 411/174, 629) of those were trimodal. The re-

maining 14.96% (26, 122/174, 629) of distributions were not computable due to their

lower number of blinks.

The proposed model also produced trimodal distributions. Figure 4.4 demonstrates

the number of peaks depending on decay term c and amplitude k when a = 1 and σ = 0

(these parameters are discussed in Section 4.4.2.2).

4.4.2.2 Reproduction of Ponder and Kennedy’s [4] bimodal distributions

of IBI

The proposed model is capable of reproducing bimodal distributions of IBIs. In this

reproduction, the time bins that contain peaks were determined by the combination of

baseline a and amplitude k of the threshold function θ(t). The value V is most likely

to reach the threshold when the threshold function θ(t) has a minimal value at

sin
2πt

τ
= −1,

where

θ(t) = a+ k sin
2πt

τ
= a− k.

Table 4.3: Peaks and means reported in Ref. [4] and the parameter ranges to reproduce
these peaks.

Reported in Ref. [4] Parameters of the proposed model
Case First peak Second peak Mean a− k τ Freq.[Hz] Median

1 0.5 3.5 2.05 0.14− 0.19 4.0− 7.0 0.14− 0.25 2.42− 2.73
2 0.5 5.0 3.31 0.14− 0.16 6.0− 8.5 0.12− 0.16 3.45− 3.86
3 0.5 5.0 3.64 0.14− 0.16 6.0− 8.5 0.11− 0.16 3.45− 3.86
4 0.5 6.5 4.12 0.15− 0.16 8.0− 8.5 0.11− 0.13 4.65− 4.91
5 1.0 5.5 3.95 0.30− 0.35 6.5− 9.0 0.11− 0.15 3.95− 4.65
6 0.5 7.0 4.45 0.15 9.0 0.11 5.03

Note. For case 6, one combination of parameters existed.
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Hence, the time location of the first peaks (the peak closest to 0) is determined by

the values a − k. If the decay term exists in the range of 0 < c < 1, the first peak is

located around 0.5 s when a− k ≃ 0.15. If the value V is not trapped by the threshold

function, it increases with non-negative inputs. Then, the value V certainly hits the

threshold function which is convex downward. Therefore, the intervals between the

time location of the first peak and that of the second peak are always smaller than the

period τ of the threshold function. Consequently, the time location of the second peak

depends on the period τ .

Assuming that the threshold function determines time locations of peaks, we can

reproduce two peaks where we intend to allocate. Table 4.3 demonstrates the time

locations of peaks and the means in the bimodal distributions in the experimental

study [4].

The parameters shown in Table 4.3 demonstrate the minimum value a− k and the

period τ that reproduce bimodal distributions. As shown in Table 4.3, 0.14 ≤ a− k ≤
0.35 and the period was 4.0 ≤ τ ≤ 9.0 s. These periods correspond to 0.11–0.25 Hz.

Furthermore, the proposed model also produces trimodal distributions if particular

parameters are given. For instance, we obtain trimodal distributions when c = 0.05,

a = 1, and k = 0.6, i.e., a− k = 0.4 under the condition that the period τ = 7.5. The

combinations of parameters that reproduce trimodal distributions were distributed as

clusters (red regions in Fig. 4.4(a)). The trimodal distributions were also obtained

when we expanded the ranges of parameters to 0 ≤ c ≤ 1 and 0 ≤ k ≤ 0.9.The

trimodal distributions could exist in areas surrounded by the bimodal distributions.

To reproduce the empirical bimodal distributions reported by Ponder and Kennedy

[4], the parameter range of τ was estimated as 4.0–9.0. Within this range, we obtain

the trimodal distributions as well.

4.5 Discussion

4.5.1 Distributions of spontaneous human blinking

Although the OSD model [41] reproduced the positively skewed, normal, and peak-

less distributions of spontaneous human blinking, the model did not reproduce bimodal

distributions within the range of typical parameters. In contrast, the proposed model
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reproduced all four distributions including the bimodal one.

Contrary to the previous experimental study [4], the positively skewed distribution

was not the most common among the numerical results of the proposed model: 66, 273

cases (37.95%) followed a unimodal distributions and only 22, 142 (12.6%) cases were

positively skewed. The normal distributions were also achieved by the binomial nature

of inputs, albeit only in the simplest cases with noiseless inputs and thresholds with

a constant value, i.e. σ = 0 and k = 0. In most simulations, however, σ = 0 and

k > 0. These results suggest that a noisy system reproduces the positively skewed

distributions if the threshold varies periodically. One possibility is that positively

skewed distributions are common in previous studies (e.g., [50], [4]) as a consequence

of the ubiquitous noise in biological systems, such as blink generators.

The bimodal distribution was also observed in the experimental study [4], albeit

less commonly than the positively skewed and normal distributions. To reproduce

the bimodal distributions, the differences between baseline and threshold amplitude,

i.e. a − k, had to be set at lower values. When the value of the threshold function

was convex downward (Fig. 4.3(c)), the model elicited a series of blinks within short

intervals. Frequent blinking in a short period, known as “blink bursts” [41], could be

explained by the short term decrease of the threshold function.

In this chapter, the proposed model also produced trimodal distributions. The com-

binations of the parameters that produce the trimodal distributions were not localized

but distributed in small regions (Fig. 4.4). In future research, we will examine whether

or not trimodal distributions of IBI can be confirmed experimentally. As one of the

cases, we consider a viewing task that requires visual attentions. In such simple per-

ceptional task, we could assume that cognitive load, i.e., I, is almost task-independent,

or obey a stochastic process. The saliency and the stimulus value is well controlled and

thus the visual attentions are simply regulated by the presentations of visual targets.

Here, k and c could be interpreted as individual factors, sensitivity to the external

stimuli and tendency to induce blink suppressions, respectively. When a participant’s

sensitivity is higher, this is represented as a larger value of k in the model. The param-

eter c is a decay term and thus if c is larger, the value V tends to fluctuate under the

threshold, producing prolonged IBIs. Therefore, larger c corresponds to the tendency

to induce blink suppressions.

Trimodal distributions might be observed when we change the conditional variables
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that correspond to k and c in experiments with participants who show bimodal distri-

butions. First, the targets of visual attentions are intermittently presented within 7.5

s, which corresponds to τ . Second, when a participant’s sensitivity k is relatively low,

e.g., k = 0.2, the shortest IBI would be averagely 1.6 s when there is no decay c = 0.

Meanwhile, a participant has a moderate tendency of blink suppression, in the range

of c = 0.41− 0.45, trimodal distributions could be observed. For this participant, the

value V fluctuates under the threshold function because decay and the input intensity

are well balanced, producing prolonged IBIs. However, once the threshold is convex

downward due to disappearance of targets, the value V must hit the threshold func-

tion in several hundred milliseconds, resulting a termination of the prolonged IBI. Two

cases would be occurred after the reset. In one case, it takes a few seconds until the

V reaches to the threshold again because the previous reset occurred approximately at

the maximum value of the threshold function. In another case, short-term sequential

blinking is observed if the previous reset occurred at near the minimum value of the

threshold function. As the results, prolonged IBI and two types of behaviours after

reset would produce the trimodal distributions of IBI.

In more complex task, k corresponds to the integration of task-dependent cognitive

loads as well as individual sensitivity to the external stimuli. Thus, we need considera-

tions on certain characteristics of the variable threshold when we argue more complex

tasks by applying the proposed model.

4.5.2 The variable threshold and biological oscillations

The results of numerical simulations in this study suggest that the variable threshold

plays a critical role in producing a variety of IBI distributions, especially for the bi-

modal distribution. Numerous experimental studies have revealed that the blink rates

are regulated by internal states of the participants during performing cognitive tasks

(e.g., [31], [43]). While we assumed that the variable threshold represented particular

physiological fluctuations, a few plausible candidates of human internal states exist.

Researchers have reported that dopamine levels in the brain may influence IBI.

For example, pathologic reduction of dopamine induces a lower frequency of blinking

and fewer variations of IBI [50]. The blinking rate varies depending on the level of

tonic and phasic dopamine [54]. In other words, the frequency of blinking varies in

accordance with the innate baseline and transient states of the dopamine levels. As one
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possibility, one could speculate that the threshold fluctuations in the proposed model

correspond to phasic dopamine levels. If this hypothesis is correct, blinking frequencies

increase with phasic dopamine levels, reshaping the distributions of IBI.

Rhythms of human biological systems such as brain waves [55] and attentional

fluctuations [56] could also be candidates. The results of reproduction of the bimodal

distributions suggested that relatively slow oscillations (0.11−0.25 Hz) regulate blinks.

Recent neurological studies have found delta-band (0.5−4 Hz) blink-related oscillations

(BROs) in a resting sate [57]. One study [55] reported that spontaneous blinks

activate precuneus regions related to awareness and monitoring of the environment.

Physiological fluctuations represented by the threshold function in the proposed model

may relate to such brain waves.

4.5.3 Consistency between the model and the physiological

foundations of motor control

In the proposed LIF model, V represents the changes in an internal value of a blink

generator. Although the location of the blink generator circuit is controversial [50],

human blinking must be involved in the general motor control circuits. There is no

major contradiction if we assume that the integration of cognitive load may correspond

to a direct path of excitatory motor control circuits that increase blinking frequency.

On the other hand, inhibitory signals decrease blinking frequency and therefore can

provide less frequent blinks, leading variations of IBI [51], [50]. The variations of

the threshold would be in accordance with an indirect path of inhibitory motor control

circuits. The results on IBI distributions in this paper suggest that a variable threshold

can create two or three types of IBI. When we acknowledge the variable threshold in

the LIF model corresponds to this inhibitory control, we can argue that human blinking

rates vary in a few tens of seconds due to the effect of inhibitory signals [40]. While the

LIF models are often used for a neuron, it also seems that the model would be useful

to represent human blinking as the macroscopic phenomenon that involves multiple

brain areas.
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4.6 Conclusion

In this paper, we proposed a leaky integrate-and-fire model with a variable thresh-

old to model human spontaneous blinking. The proposed model could reproduce the

positively skewed, normal, and peak-less distributions of IBI. Moreover, the proposed

model reproduced the bimodal distributions, which could not be reproduced by the

OSD model at least within the typical range of parameters.

Parameters that reproduce the temporal locations of peaks in the experimental

distributions reported by a classical study [4] suggest that relatively slow oscillations

(0.11− 0.25 Hz) govern blink elicitations. The proposed model also predicts the exis-

tence of the trimodal distributions of IBI and the distributions could be produced by

the non-specific parameters. As a possible mechanism, we can assume that changes

in blink rates would reflect fluctuations of threshold regulated by particular human

internal states such as a brain dopamine level or rhythms of human biological system.

Trimodal distributions of IBI was numerically produced when τ is 5.0−7.5 [s]. Tau

was set to 5.0 [s], for instance, the variable-threshold LIF model produced trimodal

distributions when the k is 0.2 − 0.4 and decay term c is about 0.30 − 0.35. Such

combinations of parameters would be interpreted as the following conditions as phys-

iological or psychological experiment settings. The period of threshold functions tau

would correspond to a fluctuation of cognitive processing in accordance with particular

external stimuli. The amplitude of the threshold function k is interpreted as the com-

bined influence of participants’ individual sensitivity to stimulus and an appeal power

of stimuli. This combined influence relates to tendency to occur short-term sequential

blinking because a− k is the minimum value of threshold function that determines the

shortest intervals of blinking. The decay term c is interpreted as an individual factor

that regulates internal state value in the balance of an external input, eliciting a blink

suppression.

As one of the cases but not limited, if we consider a viewing task that requires

visual attentions, the conditions of parameters could be interpreted in the experimental

settings as follows. In this setting, it could be assumed that an appeal power of the

stimuli is approximately constant because the saliency or the stimulus value are well

controlled. Hence, the k simply corresponds to individual sensitivity to stimulus in this

context. Regarding the case that an appeal power is dominant, see Chapter 2.
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First, the target of the visual attention appears intermittently between 5.0− 7.5 [s]

corresponding to τ . Second, the participant’s sensitivity k is 0.2−0.4. This means that

the shortest IBI would be averagely 1.2−1.6 [s] when there is no blink suppression, i.e.,

c = 0. Meanwhile, a participant has the tendency of relatively weak blink suppression,

i.e., c is 0.30 − 0.35, the internal state value fluctuates under the threshold function

because decay and the input intensity are well balanced, resulting in prolonged in-

tervals of blinking. However, once the threshold is convex downward, e.g., due to

disappearance of target stimuli, the internal state value must reach to the threshold

function in several hundred milliseconds, resulting a termination of the prolonged IBI.

Two cases would be considered after the reset. In one case, it takes few seconds until

the internal state value reaches to the threshold again because the previous reset oc-

curred approximately at the maximum value of the threshold function. In another case,

short-term sequential blinking is observed if the previous reset occurred at near the

minimum value of the threshold function. As the results, prolonged IBI and two type

of behaviours after reset would produce the trimodal distributions IBI. The adequacy

of the variable-threshold LIF model of human blinking is tested by examining whether

or not the trimodal distributions are observed in the future experiments.



Chapter 5

Reconstruction of common input

with using superposed recurrence

plots

5.1 Introduction

Biological systems receive inputs from external environment. In microscopic level, for

instance, neurons throughout our body receive intermittent inputs. Common inputs

transmit information by changing the behavior of the forced biological systems, and

thus play certain roles in communications among biological systems. However, the

amplitude of common inputs in each time are usually not known for an observer. Direct

observations of the common inputs are frequently not easy for researchers because the

measurement of signals per se often influences on the behaviors of biological systems.

Thus, reconstructing a common input by using the observed behaviors is one of the

important issues of time series analysis on various biological systems. In this chapter,

I propose a reconstructing method common inputs for point processes.

As shown in Chapter 4, the proposed model is assumed as leaky integrate-and-fire

model with a variable-threshold for spontaneous blinking. Because the fluctuations

of threshold can be mathematically transformed to a modulation of the input, the

model also indicates that fluctuations of common input would change blink rates of

each audience member. Thus, a variety of distributions shown in Chapter 4 can be by

driven the common input. To reveal such external inputs, reconstruction of time series
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using recurrence plots [2] is one of the strong non-linear methods.

The purpose of this chapter is to propose a method to reconstruct time series of

common input using point process data and the examine the precision of the recon-

structed time series. For this aim, I use the number of firings per unit time, i.e.,

firing rates, of Izhikevich neuron model as a good example to produce occurrence num-

bers time series within each time window. By changing parameters, Izhikevich neuron

model can exhibit a variety of firing patterns such as Regular Spiking (RS), Chattering

Spiking (CH), Fast Spiking (FS), and others. If the method can be used for a firing

rates time series, then I apply this method to the number of blinks per unit time, i.e.,

blinking rates, as well.

5.2 Reconstruction of common input

5.2.1 Recurrence plots and forced dynamical system

Dynamical systems often show recurrences. In other words, a state of some dynamical

system returns to the former state along with the similar trajectory in phase space.

Recurrence plots are two-dimensional visualizations of this nature. Based on Takens’s

embedding theorem [58], embedding of time series to a time delay coordinates system

was established as the basic method to construct multidimensional dynamics in phase

space from an observed variable.

In 1987, using this embedding method, Eckmann [59] proposed a recurrence plot

as a method to visualize a nonlinearity and nonstationarity of an observed time series.

Subsequently, recurrence plots were used to reveal the characteristics of time series

obtained from dynamical system. Ten years later, however, Casdagli [60] demonstrated

that a recurrence plot of which embedding dimension is sufficiently large shows similar

patterns with the recurrence plot of a common input as long as the common input

change slowly and smoothly.

After this revisit, recurrence plots became to be recognized as the method to de-

scribe the dynamics of inputs. Thus, the recurrence plots have been used for estimating

of underlying dynamical system. Using visual features of recurrence plots, several quan-

tification indices for time series analyses have been developed [61]. For example, DET

is used for detecting determinism because the diagonal components are observed in
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recurrence plots when the driving system have determinism. In recent years, quantifi-

cation methods based on recurrence plots are also applied to detect the relationships

between biological signals in physiological data [62] and semantic networks in human

group dynamics [63].

Another application of recurrence plots is to estimate the common input time series.

Although recurrence plot is a two-dimensional visualization, the distances between one

state and another state possess the underlying dynamics of a high dimensional phase

space. Thus, it contains whole information to reconstruct the input. As shown by

Casdagli [60], the recurrence plots of forced system are similar with that of the common

inputs when we embed a forced system to time delay coordinates in sufficiently high

dimensions. This is because that both states of forcing system and the forced system

are simultaneously neighboring each other when the neighboring points exist in the

time delay coordinates. Thus, we can obtain a time series of the common input by

transforming the union of recurrence plots calculated using observed forced systems

because the recurrence plots are a subset of the recurrence plots of the inputs [2].

Although Casdagli [60] pointed out that an input can be reconstruct as long as

it changes slowly and smoothly, Hirata et al. [2] demonstrated that the input can

be reconstructed when we can observe multiple forced systems based on Stark’s em-

bedding theorem which consider real situations in experiments and natural settings.

Stark’s embedding theorem [64] assume that system is driven by the other system

while Takens’s embedding theorem assume that underlying system is autonomous. Be-

cause respective recurrence plots of forced systems are subsets of the recurrence plots

of the common input, the unique parts of each recurrence plot are removed and thus

the union corresponds to the inputs when we take a union of the recurrence plots of

forced systems. Thus, we can reconstruct time series of the input when we have no

prior knowledge if we can observe multiple systems [2], with using the network-based

method that proposed by Sauer [65].

However, physiological experiments often provide point process data, such as the

firing intervals of a single neuron. Time series analyses using recurrence plots were

also applied to the point process data [66]. This study also reported that recurrence

plots of firing rates can reconstruct the original recurrence plot of the input signal,

even when neurons show chaotic firing characteristics as well as they show a periodical

firing pattern. Based on these results, it is suggested that the time series of the common
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input would be reconstructed by using firing rates of the neurons that receive the forcing

common input [2]. However, it remains unknown how much we can reconstruct the

common input by using firing rates time series of neuron model and whether we can

apply the method to the data of human blinking.

In this chapter, I aim to examine efficacy of the reconstructing method for point

processes. First, I introduce the reconstructing method and propose a method using

superposed recurrence plots to reconstruct time series of a common input. Then, I

examine the precision of the reconstructed time series. Finally, to reconstruct the time

series of common input that corresponds expressive performance, I apply the method

to the blinking rates, i.e., the number of blinks per unit time.

5.2.2 Superposed recurrence plot with using multiple firing

rates

Suppose yt be states at time t sampled within each time interval of τ and one-

dimensional observation function φ: A → R. Based on Takens Theorem [58], if we

take a observable φ(yt), which is mapped on the d-dimensional coordinates, we can

obtain a reconstructed copy of the original system as

(φ(yt), φ(yt+τ ), φ(yt+2τ ), . . . , φ(yt+(d−1)τ )). (5.1)

Stark [64] expanded this Takens Theorem. Stark’s version of embedding theo-

rem [64] assume that a system is driven by another system. Suppose f : A → A be a

dynamical map on a m-dimensional manifold and g : Q → Q be a dynamical map on

a n-dimensional manifold. A dynamical system on A×Q is described as

x(t+ 1) = f(x(t), y(t)), (5.2)

and

y(t+ 1) = g(y(t)), (5.3)

where x(t) represents the state of the forced system and the map g represents a forcing

system. Thus, using the current state (x(t), y(t)), the next state is defined as ( x(t+

1), y(t + 1) ) = ( f(x(t), y(t)), g(y(t)) ). Furthermore, we can define the map Φf,g,φ
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applying φ:

Φf,g,φ(x, y) = ( φ(f (0)(x, y)), φ(f (1)(x, y)), . . . , φ(f (d−1)(x, y)) ), (5.4)

where the maps are given by g(0)(y) = y, g(i+1)(y) = g(g(i)(y)), f (0)(x, y) = x, and

f (i+1)(x, y) = f(f (i)(x, y), g(i)(y)). Stark’s version of Takens Theorem says that Φf,g,φ

embeds (A,Q) into Rd under the condition of d ≥ 2(m+ n) + 1.

In the reconstructing method [2], Hirata prepared multiple forced systems to take

the union of recurrence plots. In this set up, suppose f : Aκ → Aκ be dynamical maps

on a mκ-dimensional manifold for κth system (κ = 1, 2, · · · , K). As the extension of

above theoretical considerations, the states of system xκ and y are modeled by the

following equations:

xκ(t+ 1) = fκ(xκ(t), y(t)), (5.5)

and

y(t+ 1) = g(y(t)). (5.6)

For these equations, using the current state (xκ(t), y(t)), the next state is defined as

( xκ(t + 1), y(t + 1) ) = ( fκ(xκ(t), y(t)), g(y(t)) ). Thus, we can define the maps

Φfκ,g,φ applying φ for each κ:

Φfκ,g,φ(xκ, y) = ( φ(f (0)
κ (xκ, y)), φ(f (1)

κ (xκ, y)), . . . , φ(f
(d−1)
κ (xκ, y)) ). (5.7)

Subsequently, Hirata’s extension of Takens Theorem says that Φfκ,g,φ embeds (Aκ, Q)

into Rd under the condition of d ≥ 2(mκ + n) + 1. Henceforth, we describe Φt,κ the

value of Φfκ,g,φ(x, yκ) at time t for notational convenience.

Let Rij,κ(ϵκ) be an T × T recurrence matrix defined as

Rij,κ(ϵκ) = Θ(ϵ− ∥Φi,κ − Φj,κ∥), i = 1, 2, . . . , T, j = 1, 2, . . . , T, (5.8)

where ϵκ is a threshold distance, and Θ(·) is the Heaviside step function. While

Heaviside function returns one if ∥Φi,κ−Φj,κ∥ < ϵ, it returns zero otherwise. Recurrence

plot is a visualization of this matrix in which the ones are plotted as black and zeros

are plotted as white.

To interpolate the information of common input, we overlapped these multiple
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recurrence plots Rij,κ(ϵκ). To calculate this recurrence plots, we suppose a T × T

recurrence matrix which is defined using the mathematical expression:

SRij(ϵ1, . . . , ϵK) =
K∑

κ=1

Rij,κ(ϵκ), i = 1, 2, . . . , T, j = 1, 2, . . . , T, (5.9)

where ϵκ is the threshold for κ system x1, x2, . . . , xK . In this study, the ϵκ for each

system were determined as the number that corresponds to the lower 10 % of the total

number of combinations between i and j. We refer SRij(ϵ1, . . . , ϵK) as superposed

recurrence plot in this thesis.

5.2.3 Reconstruction procedures using recurrence plots

In Ref. [2], Hirata et al. proposed a method to reconstruct a common input using

recurrence plots. A recurrence plot is visual representation using two-dimensional

matrix in which the ones dot as black and zeros dot as white.

With using the threshold ϵκ, we put a dot onRij,κ for each κ. Then, the SRij(ϵ1, . . . , ϵK)

is transformed to a binarized superposed recurrence plot by using the threshold q of

binarization. If we set q = 1, the dots were put when the value of SRij(ϵ1, . . . , ϵK)

was more than one. This means that dots (i, j) in the binarized recurrence plot were

plotted when at least one point exists on (i, j) in Rij,κ.

Next, we calculate a weight for each link using the Gi as the set of time indices

to which i is close. Regarding each existing edge between i and j, the weight W was

defined as

W (i, j) = 1− |Gi ∩Gj|
|Gi ∪Gj|

, (5.10)

where |X| means the number of elements in set X, the signs ∩ and ∪ show the

intersection of two sets and the union of two sets, respectively. The weight of the link

corresponds the distance between states xi and xj. Thus, the minimum of Eq. 5.2.3 is

zero when Gi = Gj. We define a set of link weights corresponding the pair of i and j

as the distance matrix Dij.

In Ref. [2], Hirata et al. detected the structure of the network by finding shortest

paths among all pairs of i and j. Finally, the original time series is reconstructed by

applying a method of multidimensional scale to the shortest path matrix d. However,
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(c) A network created using the recur-
rence matrix(b)
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(d) Reconstructed time series

Figure 5.1: Reconstruction of a time series [2] (a) An example of original time
series. (b) Recurrence plot of the data of (a) using θ = 0.3. (c) a network presentation
of a weight matrix Dij. The weight 0.0 means that the two time indcies are identical
and thus they are indistinguishable twins [2]. (d) Reconstructed time series obtained
as the results of the multidimensional scaling method.
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I utilized only the distance matrix Dij as the structure of time series in the following

estimations of embedding parameters.

As an example of this method, I show the reconstruction of a toy time series like

X of Duffing equation. Based on the recurrence plot in Fig. 5.1, I calculated Dij. In

this matrix Dij, the sign “–” shows that there is no direct path.

Dij =



0.00 − − 0.57 − − 0.2 0.57 − 0.33 −
− 0.00 − − − 0.25 − 0.4 − − −
− − 0.00 − 0.20 − − − 0.00 − 0.20

0.57 − − 0.00 0.57 − 0.50 − − − 0.57

− − 0.2 0.57 0.00 − − − 0.20 − 0.00

− 0.25 − − − 0.00 − 0.20 − 0.50 −
0.20 − − 0.50 − − 0.00 − − 0.50 −
0.57 0.40 − − − 0.20 − 0.00 − 0.33 −
− − 0.00 − 0.20 − − − 0.00 − 0.20

0.33 − − − − 0.50 0.50 0.33 − 0.00 −
− − 0.20 0.57 0.00 − − − 0.20 − 0.00


Then, we can obtain an i × i shortest path matrix d. The matrix of the shortest

paths d was as follows:

d =



0.00 0.97 1.34 0.57 1.14 0.77 0.20 0.57 1.34 0.33 1.14

0.97 0.00 2.31 1.54 2.11 0.25 1.17 0.40 2.31 0.73 2.11

1.34 2.31 0.00 0.77 0.20 2.11 1.27 1.91 0.00 1.68 0.20

0.57 1.54 0.77 0.00 0.57 1.34 0.50 1.14 0.77 0.90 0.57

1.14 2.11 0.20 0.57 0.00 1.91 1.07 1.71 0.20 1.48 0.00

0.77 0.25 2.11 1.34 1.91 0.00 0.97 0.20 2.11 0.50 1.91

0.20 1.17 1.27 0.50 1.07 0.97 0.00 0.77 1.27 0.50 1.07

0.57 0.40 1.91 1.14 1.71 0.20 0.77 0.00 1.91 0.33 1.71

1.34 2.31 0.00 0.77 0.20 2.11 1.27 1.91 0.00 1.68 0.20

0.33 0.73 1.68 0.90 1.48 0.50 0.50 0.33 1.68 0.00 1.48

1.14 2.11 0.20 0.57 0.00 1.91 1.07 1.71 0.20 1.48 0.00


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The original time series (Fig. 5.1(a)) was reconstructed using a recurrence plot Fig.

5.1(d)). Because a recurrence plot is symmetry with respect to the main diagonal, only

an upper or a lower triangular matrix is used for calculations of weight. As shown in

Fig. 5.1(a) and (d), the reconstructed time series maintained almost all information,

except for scale factor of a time series.

5.3 Common input to Izhikevich neuron model with

slightly different parameters

5.3.1 Recurrence plot using firing rates of a single neuron

To test the reconstructing method by using superposed recurrence plots relatively slow

and smooth common input was suitable. Figure 5.2(a)-(b) show a time series of a

common input which was generated by Duffing equation and its recurrence plot. In

this recurrence plot, the plotted lines and blocks shows smooth because the time series

vary in a relatively slow way. As a common input, we used the values of a variable X

of Duffing equation. Duffing equation is defined asẋ = y

ẏ = −0.05y − x3 + 7.5 cos t.
(5.11)

Figure 5.2(a) shows an original time series of a common input which was generated

from Duffing equation. For recurrence plot, 6,000 points were sub-sampled in each

10 point from this time series. Figure 5.2(b) demonstrates a recurrence plot of the

common input.

We selected Izhikevich neuron model because it can reproduce various firing pat-

terns with substantially different baselines of firing rates just by changing the param-

eters. Izhikevich neuron model of a neuron is described as follows:v̇ = 0.04v2 + 5v + 140− u+ Iv(t)

u̇ = a(bv − u)
(5.12)
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(b) Time series of common input (re-scaled)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1000 2000 3000 4000 5000 6000

�

�

(c) Recurrence plot of common
input

Figure 5.2: Original time series of common input and its recurrence plot. (a)
Duffing equation. (b) The first 60,000 points of variable x of Duffing equation were
plotted. (c) A recurrence plot of 6,000 points sampled in each 10 point from the time
series (b). The parameters embedding dimension m = 5 and the delay time τ = 1 were
used.
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if v ≥ 30, then

v ← c

u← u+ d,

where v is the membrane potential, u is the recovery variable, and Iv(t) is the forcing

input. Other parameters a, b, c, and d determine the firing pattern of the neuron.

To test whether or not a recurrence plot can reconstruct the time series of the

common input, we apply the method to a firing rates time series calculated by single

Izhikevich neuron model. First we generated three Regular Spiking models with the

parameters 0.018 ≤ a ≤ 0.022 and 0.198 ≤ b ≤ 0.202. Figures 5.3(a)–(c) demonstrated

that the recurrence plots by using firing rates of Regular Spiking models which are

driven by the common input (Fig. 5.2(a)). As shown in Figure 5.3(a)–(c), the rough

patterns of the recurrence plots were similar with each other. These recurrence plots

also shared similar features with the recurrence plot of the common input.
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(a) a = 0.020, b = 0.200, c =
65 d = 8. (Parameters of Reg-
ular Spiking in Ref. [67])
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(b) a = 0.018, b = 0.198, c =
65 d = 8.
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(c) a = 0.022, b = 0.202, c =
65 d = 8.

Figure 5.3: Recurrence plots using firing rates of Izhikevich models with
slightly different parameters that exhibit Regular Spiking. Width of time
windows w = 1000.

However, these recurrence plots calculated using the firing rates of single neurons

could not reconstruct the time series of common inputs. This due to the fact that a

recurrence plot using the firing numbers of the single neurons contains both dynamics

of common input and the neuron model. We cannot separate these information, and

thus we would lose information of common input as long as using the responses of

single neuron.

Hence, we propose a method to interpolate information by taking a union of multiple
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recurrence plots to obtain the shared recurrences. Firing rates of a neuron approxi-

mately corresponds to the amplitude of the common input. Thus, in the case that

we impose a common input to the neurons with individual differences, the number of

firings increases at the approximately same timing while the precise values of firing

rates differ with each other. From these variations firing rates, we can obtain different

though partially overlapping patterns of recurrence plots. By taking the union of re-

currence plots, the unique dynamics of each neuron would be canceled with each other,

and thus we would be able to obtain the component of the common input.

5.3.2 Reconstruction of common input with using superposed

recurrence plots

5.3.2.1 Superposed recurrence plots of firing rates obtained from neurons

that exhibit particular firing patters

We generated 80 models that exhibit Regular Spiking with the parameters 0.018 ≤
a ≤ 0.022 and 0.198 ≤ b ≤ 0.202. Figures 5.4(a)-(c) demonstrated that superposed

recurrence plots by using firing rates of these models which are driven by the common

input. When w = 500 and w = 1000, the rough patterns of the recurrence plots were

similar with each other. These recurrence plots also shared similar features with the

recurrence plot of the common input.

To test the results of Chattering and Fast Spiking models are consistent with that

of Regular Spiking models, we generated 80 models by changing parameters a and b.

Then, we added the common input (Fig. 5.2(a)) to these models. Figure 5.4 shows

the superposed recurrence plots calculated by using firing rates of Chattering and Fast

Spiking models. Regarding Chattering Spiking models, the patterns of recurrence plots

were similar with that of Regular Spiking as well as the common input when the width

of time window w = 500 and w = 1000. Unlike the results of Regular Spiking and

Chattering Spiking, the line widths in recurrence plots were narrow.

For Regular Spiking and Chattering Spiking, when I used 100 [ms] time window

for calculating the firing rates, I cannot reconstruct the time series of the common

input because the almost all superposed recurrence plots were filled with black points.

By contrast, for Fast Spiking, I can reconstruct a time series, whilst the shapes are

different from the original common input if the embedding dimension m = 1 or m = 3
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when I used the 100 [ms] time window.

For Regular Spiking and Chattering Spiking, when I used 500 [ms] time window for

calculating the firing rates, I can obtain the time series from the superposed recurrence

plots, and the shape became smoother when the embedding dimension became larger.

When I use 500 [ms] time window for firing rate from Fast Spiking, we can reconstruct

smooth and almost exact time series of the common input even when m = 1 or m = 3,

yielding a fewer root mean square errors.

When I used 1000 [ms] time window for calculating the firing rates obtained from

Regular Spiking and Chattering Spiking, while I can obtain the time series, the time

series had small fluctuations than that obtained when I used 500 [ms] time window. By

contrast, firing rate obtained from Fast Spiking can reconstruct the time series of the

common input and the root mean square errors were small, approximately 0.1. The

absolute values of maximal values and minimal values is smaller than that obtained

when I used 500 [ms] time window, resulting larger errors.

Then, we examined the relations between embedding dimension and ability of re-

construction. Figure 5.5 shows the differences between the original time series of the

common input and the reconstructed time series when we used Regular Spiking and

Fast Spiking. As shown in Fig. 5.5, in the case of embedding dimension m = 1 in-

dicating that no embedding was done, the time series of the common input were not

reconstructed when we used Regular Spiking neurons.

Finally, to evaluate precision of reconstruction, we calculated the root mean square

errors (RMSE) of each width of time window and embedding dimensions.

In sum, when I used firing rates obtained from Fast Spiking, compared to that from

Regular and Chattering Spiking, the precisions of the reconstructed time series were

higher.

The baseline firing rates were 15, 60, and 80[spikes/sec] for Regular, Chattering,

and Fast Spiking, respectively. When the firing rates baseline is higher, the forced

Izhikevich neurons can reflect the variations the common input. Thus, these results

would due to the higher firing rates baseline of Fast Spiking which possess higher

temporal resolution to the forcing input.

Then, I examined the binarizing-threshold q dependency of the reconstructing

method using superposed recurrence plots. Left panels of Fig. 5.7 show the binarized

superposed recurrence plots with the threshold (a) q = 1, (c) q = 8, (e) q = 32, and (e)
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Figure 5.4: Superposed recurrence plots using the firing rates of (a)–(c) Reg-
ular Spiking, (d)–(f) Chattering Spiking, and (g)–(i) Fast Spiking models.
The embedding dimension m = 5 and time delay τ = 1. The ws are the width of time
window for calculations of firing rates.



81

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

y(
i)

Time Index i

p=1
p=2
p=4
p=8

original

(a) RS, m = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

y(
i)

Time Index i

p=1
p=2
p=4
p=8

p=32
p=40

original

(b) FS, m = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

y(
i)

Time Index i

p=1
p=2
p=4

original

(c) RS, m = 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

y(
i)

Time Index i

p=1
p=2
p=4
p=8

p=32
p=40

original

(d) FS, m = 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

y(
i)

Time Index i

p=1
p=2
p=4
p=8

original

(e) RS, m = 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

y(
i)

Time Index i

p=1
p=2
p=4
p=8

original

(f) FS, m = 5.

Figure 5.5: Root mean square error depending on embedding dimension m
and threshold of superposed recurrence plots p. Width of time window w = 500.
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(f) Fast Spiking. w = 1000.

Figure 5.6: Root mean square errors for embedding dimension m and thresh-
old of superposed recurrence plots for Regular, Chattering, and Fast Spik-
ing. When m = 1, original firing rates time series were used, i.e., embedding was not
applied.
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q = 40. Right panels of Fig. 5.7 show the reconstructed time series by using binarized

superposed recurrence plots with the threshold (b) q = 1, (d) q = 8, and (f) q = 32.

When we used the threshold q = 40, the half number of cumulations, the method could

not be applied because the distances between each point were incomputable.

5.3.2.2 Superposed recurrence plots of firing rates obtained from different

models

The models shown in Section 5.2.2 have different baselines of firing rates: The base-

line firing rates were 15[spikes/sec] for Regular Spiking, 60[spikes/sec] for Chattering

Spiking, and 80[spikes/sec] for Fast Spiking. Nonetheless, we can reconstruct the time

series of the common input using firing rates time series obtained from each firing

patterns as long as the embedding dimensions were sufficiently high and the widths of

time window is appropriate. Because the rough shapes of recurrence plots generated

by using these firing rates were similar with each other, I conclude that the differences

of mean firing rates have little influence on rough shapes of recurrence plots when we

use the distance in embedded spaces.

Therefore, there exits a possibility that the recurrence plots have partial informa-

tion of the recurrence plot of the common input, regardless of the baseline firing rates

of forced neuron models. If this is plausible, information of the common input would

be captured even when the reconstructing method is applied to the combinations of

multiple firing patterns of Regular, Chattering, and Fast Spiking. To test this hypoth-

esis, I generated 80 models by changing parameters a and b of Izhikevich models that

exhibit Regular Spiking, Chattering Spiking, and Fast Spiking. Then, in ascending

order of parameters, we chose first 27 models, middle 27 models, and last 26 models

out of 80 models of respective firing patterns. Then, we added the common input (Fig.

5.2(a)) to these models. Figures 5.8(a)–(c) show the resulting recurrence plots of (a)

Regular, Chattering, and Fast Spiking, (b) Chattering, Fast, and Regular Spiking, and

(c) Fast, Regular, and Chattering Spiking.

As shown in Fig. 5.8(a)–(c), the superposed recurrence plots calculated by using

firing rates of Regular, Chattering, and Fast Spiking were similar with each other. The

shared rough shapes were similar to that of the common input as well.

I also applied the method to the recurrence plot calculated by using firing rates

of first 27 Regular Spiking, middle 27 Chattering Spiking, and last 26 Fast Spiking
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(f) Reconstructed time series when q = 32.

Figure 5.7: Binarized superposed recurrence plots and reconstructed time
series.



85

 0

 50

 100

 150

 200

 0  50  100  150  200

�

�

(a) RS, CH, and FS.ws = 500.

 0

 50

 100

 150

 200

 0  50  100  150  200

�

�

(b) RS, CH, and FS.ws = 1000.

Figure 5.8: Superposed recurrence plots by using mixture of firing rates time
series of each firing pattern. RS: Regular Spiking, CH: Chattering Spiking, and
FS: Fast Spiking. Width of time window w = 500 and w = 1000.

models chosen from 80 models with slightly different parameters. This combination

corresponds to Fig. 5.8(b). As shown in Fig. 5.7, the common input was able to be

reconstructed using the superposed recurrence plots. When the threshold q became

larger, the common inputs were reconstructed as a smoother line while the precisions

were nearly independent of the threshold. When the threshold q = 40, however, we

could not obtain a reconstructed time series. This would be due to the fact that the

dominant lines on the superposed recurrence plots disappeared.

By using the proposed superposed recurrence plots, I can reconstruct the time series

of the common input while the forced system outputs are point process data. Totally,

the precisions became better when the embedding dimensions were higher.

According to Casdagli [60], recurrence plots can detect the common input as long

as it is smooth and slow. Thus, time scale would influence on these results. The time

series of the common input was more precisely reconstructed in case the firing rates are

high enough compared to the variations of the common input. Therefore, I can point

out that the possibility that firing rates time series obtained from Regular Spiking or

Chattering Spiking neurons can reconstruct the common input in lower embedding

dimensions when the time scale of Duffing equation is changed to be more slowly.

However, from the theoretical view, the information of each firing rates time series

was canceled with each other. Therefore union among the recurrence plots, if the

observed time series were embedded in sufficient high dimensions, remain information
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Figure 5.9: Root mean square errors for combinations of Regular, Chattering,
and Fast Spiking.
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of the common input. As Sauer [65] claimed based on Stark’s version of embedding

theorem, we would be able to reconstruct the time series of common input in case the

forced system is deterministic and we can use responses of multiple forced system.

The results of this chapter confirmed that superposed recurrence plots can recon-

struct the time series of the common input the even when we use a point process as

the output of forced system. In other words, firing rates time series calculated within a

width of time window can be used robustly for the reconstruction. The reconstructing

method do not postulate any biological constrains derive from Izhikevich model and

other models of neurons. Therefore, I conclude that proposed reconstructing method

using superposed recurrence plots can be used for various time serious of point process

in physics, biology, and psychology.

5.4 Reconstruction of common inputs using blink

rates

The reconstructing method would be applied to the time series of blinking rates cal-

culated as the numbers per unit time for reconstructing the time series of a common

input. I therefore used this method to reconstruct the time series by using the the

number of blinks per unit time reported in Chapter 2 and the such data of Ref. [3].

The first data obtained from the participants who had sufficient viewing experiences

of Rakugo. The latter data obtained within two conditions: The blinks of partici-

pants who watched video of an expert actor and that watched a novice actor. These

two actors performed the almost same story that shares the storyline and punchline.

The performance durations were different each other because the novice performer had

difficulty to act the full length of the story due to his performing skill.

The common input, in this situation, would correspond to the performance acted

by the expert Rakugo performer. The time series of blinking rates were obtained from

seven participants of experienced audience members, i.e., the targets of the observations

in Chapter 2 because the degree of blink synchronization was highest in our reported

data.

As shown in Fig. 5.10, temporal patterns in blinking rates differ with each audience

members. Therefore, the recurrence plot of these blinking rates demonstrated the dif-

ferent patterns among them. However, several plots shared the common characteristics.
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Figs. 5.11 and 5.12 showed that common white, i.e., unplotted area at around time

index was 900 for Participants A, E, F, and G. As mentioned above, the recurrence

plots of forced system are the subset of the common input. Thus, we can interpolate

the loss of information using the union across the recurrence plots. I calculated super-

posed recurrence plot for reconstruct the common input. The embedding dimension

was set to m = 6 as the sufficiently higher dimension for the driving system and the

forced system while the accurate dimension was unknown. The time delay was set to

τ = 6 because the auto-correlation function of blinking rates showed almost minimal

value in the delay.

Figure 5.14 demonstrates the results of the binarized superposed recurrence plots,

i.e., estimated recurrence plots of the common input, for each threshold q. Using

these binarized superposed recurrence plots, I reconstructed the time series of common

inputs.

The reconstructed time series had fluctuations, indicating the common input vary

in time. Especially, when the binarization threshold q = 3, large amplitude was ap-

peared approximately at 1760 [s]. The time range corresponded to the white area in

recurrence plots calculated using the blinking rates of respective audience members.

Using these binarized superposed recurrence plots, I reconstructed the time series of

common inputs.

Then, I applied the method the data in Ref. [3] as well. In this analysis, the

embedding dimension was set to m = 6 as the sufficiently higher dimension for the

driving system and the forced system while the accurate dimension was unknown. The

time delay was set to τ = 6 because the auto-correlation function of blinking rates

showed almost minimal value in the delay.

Figure 5.15 and 5.16 demonstrate the superposed recurrence plots of the blink

for participants who watched the expert and the novice actors. Dominant patterns

were not detected in their visualizations. However, Fig. 5.17 shows the reconstructed

common input for the data in Ref. [3]. In each time series, the amplitudes were larger

in accordance with the binarization threshold while the tendencies were different each

other. As shown in Fig. 5.17, the reconstructed time series of common input of the

expert performance had several peaks in approximately 190 − 220 [s]. Subsequently,

it showed the relatively higher values over zero. In this scene, a character of the story

finished off his drink. Participants would paid their attention for viewing this non-
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Figure 5.10: Blinking rates of participants in a vaudeville setting
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Figure 5.11: Recurrence plots of the participants 1
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Figure 5.12: Recurrence plots of the participants2
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Figure 5.13: Superposed recurrence plots for each binarizing threshold q
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Figure 5.14: Reconstructed time series using superposed recurrence plots for
each binarizing threshold q
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linguistic expression and thus showed lower numbers of blinks. On the other hand, the

reconstructed time series of common input of the novice performance former half of it

showed in higher values. Then, the reconstructed time series demonstrated dominant

lower peaks after 850 [s] and this tendency continue for approximately 100 [s] to the

end of the story.

5.5 Discussion

5.5.1 Superposed recurrence plots for interpolation

For the calculations of these recurrence plots I only used the firing rates time series and

did not use information of the common input. As shown in Fig. 5.4 shows the super-

posed recurrence plots, the rough shapes of these recurrence plots almost corresponded

to recurrence plots of the common input. These results indicate that the reconstruc-

tion method in Ref. [2] could be applied to firing rates as well, as suggested by Ref.

[66]. However, the patterns in these recurrence plots showed the dotted line in the

recurrence plots of firing rates time series while the most of them were continuous lines

in the recurrence plots of common input. Therefore, to reconstruct the common input,

we must prepare multiple forced systems. By taking a union, the unique recurrences

were cancelled with each other in the superposed recurrence plots.

The results of neurons with individual differences which respectively exhibit par-

ticular firing patterns (RS, CH, or FS) demonstrated that superposed recurrence plots

calculated with using firing rates of Regular and Chattering Spiking neurons cannot

reconstruct the common input when the time window is narrow (500[ms]) and the

thresholds for binarization was too large. Moreover, precision of the reconstructed

time series mainly depends on the embedding dimension m. If we do not embed the

firing time series, i.e., m = 1, the shapes of the reconstructed time series are far from

the common input, showing higher the root mean square errors. Since this tendency

is found in all firing patterns, it is suggested that embedding is also necessary for the

proposed reconstructing method [61].

When we used firing rates obtained from neurons of which firing patterns are differ-

ent each other, the proposed superposed recurrence plots can reconstruct the time series

of the common input as well. Superposed recurrence plots calculated by using first 27



95

 0

 500

 1000

 1500

 0  500  1000  1500

�

�

(a) q = 1

 0

 500

 0  500

�

�

(b) q = 1

 0

 500

 1000

 1500

 0  500  1000  1500

�

�

(c) q = 2

 0

 500

 0  500

�

�

(d) q = 2

 0

 500

 1000

 1500

 0  500  1000  1500

�

�

(e) q = 3

 0

 500

 0  500

�

�

(f) q = 3

Figure 5.15: Superposed recurrence plots for each binarizing threshold q (1)
Left panels show the recurrence plots of blinking data obtained from viewers of expert
performance and right panels show that of novice performance.
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Figure 5.16: Superposed recurrence plots for each binarizing threshold q (2)
Left panels show the recurrence plots of blinking data obtained from viewers of expert
performance and right panels show that of novice performance.
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Figure 5.17: Reconstructed time series using superposed recurrence plots for
each binarizing threshold q for Ref. [3]
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Regular Spiking, middle 27 Chattering Spiking, and last 26 Fast Spiking models, out of

80 models, demonstrated the almost similar the recurrence plots to the recurrence plot

calculated by using the common input. These results show that the rough shapes of the

recurrence plots would be reproduced even if the baseline firing rates show differences

in the order of several times. Moreover, the precisions of reconstructed time series were

nearly independent on the threshold if the embedding dimension m > 1.

The method using superposed recurrence plot could reconstruct the common input

even when we set lower threshold of binarization (q = 1). Although smooth lines

are reconstructed if we used high threshold, we cannot obtain reconstructed time series

when the threshold become much higher q = 40(50%) due to disappearance of the main

lines and dots in the superposed recurrence plots. Because this trade off relationship

have only little effects on the precision of reconstruction, we practically recommend

the readers to use lower threshold that can certainly reconstruct the common input.

When I applied the method using superposed recurrence plots to the time series

of human blinking rates, the time series that would correspond to the common input

were reconstructed as well. In the first reconstructed time series, large amplitude was

appeared approximately at 1760 [s]. In this time range, the expert performer acted a

character who poured other characters a small cup of warmed sake (Japanese alcohol),

with using salient the non-verbal expressions [42]. This scene located at the beginning of

a drinking session after night-watch for preventing of fires in a cold night. Because this

story develops with the interaction regarding sake after that, the scene has the role to

introduce the latter half of this story to audience. In Fig. 5.14, there were no the salient

fluctuations in the time series while the blinking rates of audience members were the

averagely lower (Fig. 5.14). Therefore, the recurrences were observed in the embedded

time delay coordinates, showing union of the recurrence plots corresponded to the

common input rather than each forced blinking systems. To quantify the common

input means to quantify the amplitude of the common input that drive the audience

members’ blinking system. The fact that the blinking systems recurred at the same

time points indicates the forcing common input become had large amplitude at these

points. Thus, the reconstructed amplitude of the common input would correspond to

forcing power of actor’s performance that attract attentions of the audience members.

The results of the comparison between the reconstructed input of the expert actor

and that of the novice actor showed that the different variations while the almost same
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stories were performed. The amplitude decreased for novice video in the last of the

story. From the viewpoints of expertising level, the results suggest that the novice

performer had lower skills and thus the it cannot attract participants’ attentions in

the end of the story. Therefore, the participants would have eyestrain and become

lower concentrations. Regarding the participants who viewed the expert performance,

the fluctuations of the reconstructed time series of the common input roughly corre-

sponded to that of mean numbers of blinks. However, regarding those who viewed the

novice performance, this tendency was not supported. Normalization of the time series,

from zero to one, may enlarge the amplitude of the novice performer’s common input.

In both cases, the short-term fluctuations may relate to the respective expression of

the performance. Thus, to reveal what is the dominant component of the common

input, correlation analyses between the reconstructed time series of common input in

this thesis and the performer’s expressions, including linguistic, non-linguistic, and

para-linguistic information, would be performed in the future research. If the analyses

demonstrate the dominant component of the common input, reconstruction of com-

mon input based on superposed recurrence plot would be an assessment tool of the

performance of which expressions keep audience members’ attention.

5.5.2 Advantages of superposed recurrence plots and future

research

As the results demonstrated, the differences in firing patterns (RS, CH, and FS) had

little effect to the reconstruction. In addition to this, we can reconstruct with high

precision although the firing patterns had different baseline firing rates. Because the

reconstructing method is based on the common recurrences in the phase space, it

is tolerant for outlier. In addition to this, these results indicate that our proposed

method can detect a type of synchronization that “increase of firing numbers of multiple

neurons that commonly driven by an input” by taking a union of recurrence plots. In

the biological system, there exist synchronizations in broader sense other than accurate

coincidences of firing of neurons that is describe by mathematical models. The proposed

method can reconstruct the time series of a common input when forced neurons had

individual differences and those neurons were mixed. Thus, this method would be

applied to detect these synchronizations regardless of the baseline firing rates.
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Results in this chapter were obtained when no noise was added on Izhikevich neuron

models and the driving Duffing equation. However, time series of biological system in

the real experimental data usually contains noises. Thus, for wider applications, to

examine the precisions of the reconstructing method when we add dynamical noise to

the driving or forcing systems as well as the observational noise would be issues of

future study.

5.6 Conclusion

In this chapter, we first reviewed the methods for reconstruction of common input time

series by using recurrence plots. Then, we proposed a reconstructing method using su-

perposed recurrence plots of point process time series. The results demonstrated that

this method can reconstruct the time series of the common input by embedding the

time series of forced dynamical systems to a delay time coordinate, while the precision

depends on the width of window size for firing rates calculation. The proposed recon-

structing method using superposed recurrence plots could be widely applied for the

point process data other than firing rates. Biological systems receive various common

inputs, yet direct observation often changes behaviors of observed biological system.

This method would be expected to estimation of common inputs based on the occur-

rence numbers biological signals as well as human behaviors.

In this chapter, I applied the method to the blinking numbers obtained from au-

dience members who viewed vaudeville performances. The comparison between the

expert’s and novice’s act suggest that the reconstructed common input would corre-

spond to the expressions of performance. Thus, this reconstructing method would be

also used for describing the life-long changes of a performance and comparing among

several performers from the viewpoint of appealing powers as the amplitudes of com-

mon input. The quantification of the common input would provide researchers a path

to scientific study on the expertising of performers.



Chapter 6

General Discussion

Throughout this thesis, the nature of blink synchronization in theatre was revealed.

In the vaudeville settings, compared to the individual laboratory experiments, the

degrees of the blink synchronizations were improved 30 − 60 %. This result suggests

that interactions among audience members facilitate blink synchronization in theatre.

I would refer this accelerated effect is induced by inter-spectator force as the analogy

of inter-molecular force although the medium of the synchronization is still unknown.

The observed attractive forces for blink synchronization were more intense for first-

time viewers than frequent viewers. Moreover, for first-time viewers, the observed

effects were significant through the performance. For frequent viewers, meanwhile, the

observed effects were significant only for latter part of the performance. These results

indicate that, in actual vaudeville settings, first-time viewers’ inter-spectator forces

have stronger influence on blink synchronizations than frequent viewers’ the effect.

Thus, attractive force has stronger influence than knowledge of the performance and the

performer. However, for frequent viewers, the degree of blink synchronization increased

as the performance progressed. The force seems to facilitate blink synchronization

generally whereas the degree of the effect is depending on the viewing experience of

audience members.

As the results of an experiment with individual participants, it is demonstrated

that blink synchronizations could be established just by receiving a common input

of expert performance. The theoretical and numerical researches have revealed that

synchronization induced by a common input is not always maintained when oscillators

mutually coupled [36]. However, in this thesis, blink synchronization was facilitated

101
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in the situation where the audience members interact each other. Regarding blink

synchronization in theatre, I conclude that the inter-spectator force would serve as an

attractive force. Therefore, blink synchronizations would emerge in theatre are induced

by the synergy of inputs from a performer and inter-spectator forces.

The computational approach study provided a more rigorous interpretation about

the human spontaneous blinking and make us possible to predict trimodal distributions

of IBI that have not been reported. These studies could lead a perspective that blink

synchronizations emerges driven by inputs imposed by expressions of a performer. With

considering the results of Izhikevich neuron model, I conclude that the common input

could be reconstructed by using the mean blinking rates.

Blink synchronization would be achieve because the human blinking system has

flexibility to shift within a short period from any states to a particular state where

rapid serial blinks could occur. Such flexible shifts suggest the existence of temporally-

localized nonlinearity in blinking system, resulting intermittently blinking and various

IBI distributions. In theatre, one of the most influential driving input would be expres-

sions of a performer. However, a blink generator receives individual’s internal states,

e.g., memory and emotion, or external stimulation, e.g., laughter from the surrounding

audience members. As the results, blinking behaviours showed larger individual differ-

ences in the natural settings that allow participants to enjoy Rakugo performance as

reported in this thesis. Nonetheless, the reconstruction method would be capable to

estimate the amplitude of such common input from the blinking patterns of audience

members because the method is less dependent on the baseline blinking rates.

In this thesis, albeit the inter-spectator force contributes to blink synchronization

attractively, it is unrevealed that interactions among forced system facilitate synchro-

nizations under the general situations where the forced systems receive a common

input. Further computational researches are necessary for rigid findings. These chal-

lenges would provide a better understanding of blink synchronization in theatre as

well.
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