Graphical method．

いおける瑇姜要喑

目標

長竧

Runge，graphical methods．
Mehmke，Leitfaden Jum．graphischen Rechnem．
＊Willers，Methoden der praktíchen Analyais．

小倉，国3十年かx•国表。
＊Eipka，Graphical and mechanical computation．

Chaptr I. Ratimal intgrel fencti.
pobyonicela

(2) $\operatorname{Lil}_{\mathrm{L}_{1}}(1867)$

$$
\begin{aligned}
& \overline{E X}=x \\
& A_{2} B_{1}=A_{1} A_{2} \cdot \tan ^{\theta}=a_{4} x . \\
& X B_{1}=\left(a_{0}+a_{1} x_{1}+a_{2} x^{2}+a_{3} x^{3}\right)=y
\end{aligned}
$$

$$
\begin{aligned}
& B_{1} A_{3}=a_{3}+a_{4} x . \quad A B_{3} B_{2}=\left(a_{3}+a_{4} x\right) x \text {, } \\
& A_{4} B_{2}=a_{2}+a_{3} x+a_{4} x^{2} . \\
& A_{5} B_{3}=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3} . \quad A_{6} B_{4}=a_{0}+a_{1} x \\
& +a_{\varphi} x^{4}
\end{aligned}
$$

S2 aljebraci eqpations.
(1.) L'll (1867)

（2）Intersectín of cones．
（1）曲资
（2）$\quad y=x^{3}+4 x^{2}+3 x-2 \quad$ ह两，1
（3） $4 x^{3}+8 x^{2}-x-2=0$ दु⿰⿱亠䒑⿱⺊口一 $\left(x=\frac{1}{2},-\frac{1}{2},-2\right)$
（4）$x^{5}+6 x^{3}+5 x^{2}+10 x-18=0$
differentrátión and
chapt．II．graptical vintegratión
§3 Graphical integratión，

$$
\text { द⿸户 } 1
$$

$t \geqslant$ \＆？integral cone

$$
Y=\int f(x) d x
$$

を，价图のみいよって措くてと。
Markan（1878）

$$
\begin{aligned}
& x^{3}+b x^{2}+c x=d \text {. }
\end{aligned}
$$

10 akう：const．つ坆会 $f(x)=c$ ．

（ 12 ）

$$
\begin{aligned}
& f(x)=c_{0} \quad a_{0}<x<a_{1} \\
& =c_{1} \quad a_{1}<x<a_{2} \\
& =c_{2} \quad a_{2}<x<a_{3} \\
& \int_{a_{0}}^{x} f(x) d x \\
& \text { (F } \quad a_{0}<x<a_{1} \\
& \text { では, P。 } P_{1} \text {. }
\end{aligned}
$$

$a_{1}<x<a_{2}$ ひは

$$
\int_{a_{0}}^{2} f(x)=\int_{a_{0}}^{a_{1}} f(x) d x+\int_{a_{1}}^{x} f(x) d x=\overline{a_{1} P_{1}}+\int_{a_{1}}^{x} f(x) d x
$$

棈分四はは折以 P。PIPIPッ

 っそゆるする）

$$
\begin{aligned}
& \text { 限后身 }
\end{aligned}
$$

 よい。
（2）り轴い平行取をな分 $B_{1} A_{1}, B_{2} A_{2}$ ，小の泣置比限
本在西楊？

俊造。

$$
\begin{aligned}
& \int_{x_{0}}^{x_{1}} f(x) d x=\text { 而 } \frac{K_{2}}{K_{x_{0}}} K_{0} D_{1} K_{1} x_{1} \& \\
& \text { 二知形 } \\
& =r_{h} r_{2} \gamma_{2} K_{0} B_{1} A_{1} O K_{1} \text { の子素分 }
\end{aligned}
$$

折入上の安 L L ，L_{1}, L_{L}, L_{3} を這ぎっや了～すべきて。 ある
镸勾 扩独に切す。。

$$
\begin{aligned}
& \text { なす向を } \\
& Y=\tan _{0} \int_{x_{0}}^{x} f(x) d x \quad \tan \varphi=\frac{d Y}{d x} \\
& =f(x)=\overline{K_{1} x_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& P C_{1} \text { ~平行 } \quad \tan \theta_{1}=\overline{O^{\prime} C_{1}} \quad \text { (か) } \\
& \overline{K_{1} x_{1}}=\overline{O^{\prime} C_{1}} \quad \therefore \quad \varphi=\theta_{1} .
\end{aligned}
$$

probelity

$$
\begin{aligned}
& \text { Ex, 1. } Y=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} d x \text { integ mil }
\end{aligned}
$$

II，唇上の审位の变重

$$
\begin{aligned}
& Y=\int f(x) d x=\int y d x
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta=\frac{d\left(Y \cdot l_{y}\right)}{d\left(x \cdot l_{x}\right)}=\frac{l_{y}}{l_{x}} \frac{d y}{d x} \\
& =\frac{l_{r}}{d x} \cdot y
\end{aligned}
$$

ton $\quad \frac{l_{y}}{l_{p}}=\frac{l_{r}}{l_{x}}$.
開
（1）墥車の客保

si
（3） $\int_{0}^{x} \frac{\sin x}{x} d x \quad$（istepral sine） 素数の数
（4） $\int_{0}^{x} \cos \left(\frac{\pi}{2} x^{2}\right) d x \quad$（Freenel in tgral）

t	0	2.0	4.0	5.5	7.0	9.5	11.0	12.5	15.0	17.0
v	0	3.2	6.4	8.5	9.5	12.0	13.0	13.8	14.2	15.0

（6）Planimeter，綀尚

$$
F=l \rho \cdot \omega
$$

微分任数存在の修件，（Weierstrass）

§4．graptical ifferentiation．
ursc，differentíl cume

そ布くてと，

$$
z-f^{\prime}(x)=\frac{d y}{d x}
$$

$$
\frac{d y}{d x}=\tan \theta, \quad \eta=\tan \theta
$$

$$
B M=\{\quad \operatorname{tru} B は \text { 似分曲み上的上会で }
$$

ある

～周々はて，ある。

 よりむ。

$$
B_{1}, B_{2}, B_{3}, B_{6} \cdot \overrightarrow{-\quad} \text { 信ぎ。 }
$$

$$
\begin{aligned}
& \text { 三解——系し戊ち。 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 伤孙入る } \\
& B_{1} D_{1}, D_{1}^{\prime} B_{2} D_{2} \\
& B_{2} D_{2}, D_{2}^{\prime} B_{3} D_{3}, \text { ह) き }
\end{aligned}
$$

29方情の公点

Ex．
－化分面々を画け
1．$y=e^{-x}$
1．$\quad y=\sin x$
2．$y=\frac{35}{8} x^{4}$
2．$y=\frac{1}{3} x^{3}-\frac{x^{2}}{2}-2 x+\frac{3}{2}$
$-\frac{15}{4} x^{2}+\frac{3}{8}$
$y^{\prime} y^{\prime \prime}$
之，camemax．min．howirt 1 iflemin仿分曲加？载定 max，min
§5．cure－length．

$$
\begin{aligned}
& y=f(x), \\
& s=\int \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \\
& f^{\prime}(x)=\tan \theta .
\end{aligned}
$$

よい精暗を械裁め告い

$$
P N の=w \text { 单位の辱 }+\frac{1}{l} P L=1 \text {. \&52. }
$$

$$
P Q=\frac{1^{l}}{\cos \theta} \operatorname{esc} x d s=\frac{\bar{l}}{P Q} \cdot d x
$$

$$
s=\frac{1}{2} \int \overline{P Q} \cdot d x .
$$

面站をおめってとい帰する。 graphical intyrat ムF วがよい。 （planimeter）．

$$
\begin{aligned}
& d s=\frac{d x}{c \cos \theta} \quad \text { PN } 12 \text { 价四 (倍Sh }
\end{aligned}
$$

$$
\begin{aligned}
& \text { をおかつのよい }
\end{aligned}
$$

$E x$

$$
\frac{x^{2}}{4}+\frac{y^{2}}{7}=1 \quad \text { भ|莒 } 9 \frac{E}{e}+
$$

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}=1 . \quad \cdots
$$

車輅の四ざさんっいて，

$$
d \sigma=\rho, d \omega, \quad \sigma=\rho \omega .
$$

$$
\begin{aligned}
& \rho \sigma=d s \cdot \cos \alpha \\
& \rho d \omega=d s \cdot \cos \alpha
\end{aligned}
$$

chant．III graphical solutiont of differentiél equatión．
§6．Ordinan dy．equation of the first order． Mascan＇s method．

星始修度
intitial

$$
\frac{d y}{d x}=-\frac{x}{y} \quad x^{2}+y^{2}=a^{2}
$$

甧分曲み。
$(x=0, y=0$
conlition
lineas clement

$$
\begin{array}{r}
\frac{d y}{d x}=-\frac{y}{x} \\
x y=a
\end{array}
$$

linear coment

Massan
（1885）
$f(x, y)=c_{1}, c_{2} \ldots \quad$ isoclinal．

$$
\begin{aligned}
& \text { ExI } \frac{d y}{d x}=\sqrt{x^{2}+y^{2}} \\
& \binom{x_{0}=0.30}{y_{0}=0.37}
\end{aligned}
$$

Graphical solutimg安点
analiftúl solution 9 晨 3 ？ （mumerial notio）
andythál colution？\sum

$$
\frac{d y}{d x}=1+x y \quad y=e^{\frac{x^{2}}{2}}\left[e^{x}+\int e^{-\frac{x^{2}}{2}} d x\right]
$$

Ex．2．Clairant

$$
F\left(x, y, \frac{d y}{d x}\right)=0 . \quad y=x \frac{d y}{d x}+\varphi\left(\frac{d y}{d x}\right) \text {. isodinal } y=c x+\varphi(c) \quad \text { an } n
$$

榡宁曲々。
\{7. Guber's methad (1899).
Ex. $\quad \frac{d y}{d x} a+x y=x^{2}$.

成廷
3. $y^{2} \frac{d y}{d x}=x^{2}$.
4. $\frac{d y}{d x}=x y+1$.
51. Paincaré (1r81), Liebmam, Kamke (193.)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{a_{2} x+b_{2} y+\cdots}{a_{1} x+b_{1} y+\cdots} \\
& \Delta=\left(a_{1}-b_{2}\right)^{2}+4 a_{2} b_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=2 \frac{y}{x} \quad y=a x^{2} \\
& \frac{d y}{d x}=-\frac{y}{x} \quad x y=a \\
& \frac{d x}{d x}=\frac{x+y}{x-y} \quad \sqrt{x^{t}+y^{2}}=a \cdot e^{t=-\frac{1}{2} x}, r=a e^{\theta} \text {. } \\
& \frac{a}{x}=-\frac{x}{x} \quad x^{2}+y^{2}=a^{2}
\end{aligned}
$$

