Chapter XXI. Dd. eq. of the second order. & 2. Ordning. 92. Feneral remarks, $\frac{d^2y}{dx^2} = f(x, y, \frac{dy}{dx})$ Type I. $d_{xy}^{2y} = f(x)$ $d_{yhe}^{2y} = \pm k^{2}y$. $d_{xy}^{2y} = f(y)$. コノニーからそうアンでをチャリ -#377 1. = 1/ cont. Co., Ca 7/24. 134 dy = = - - dy = + c, y= + c, xrez. $\frac{ds}{dt^2} = -g, \quad \frac{ds}{dt} = -gt + c, \quad s = -\frac{1}{2}gt^2 + c_1 t + c_2.$ ★=表:與限,曲なアカル C1, C2, 至小年から、 $\begin{array}{c} Y \\ P_{i} \\ P_{i} \\ (x_{i}, y_{i}) \end{array}$ 二美アしししはりい, 一知、一タンア思いし. イラトナム・ sizy ≥ S1=--29t,+C1t,+C2 らっこう $|S_2 = -\frac{1}{2}gt_1 + c_1t_2 + c_2$ 一美ト方向トラション、南八、空い マン $(\overline{\beta} + t_{1}) : (\frac{ds}{dt}) = \begin{cases} -gt_{0} + c_{1} = v_{0} \\ -\frac{1}{2}gt_{0}^{2} + c_{1}t_{0} + c_{2} = s_{0} \end{cases}$ 道、二克、與尼,曲日野, いろ方和赵 00000 B. 半经Y ☎ (-定)+-円 $(x-a)^{2} + (y-b)^{2} = \gamma^{2}$. $(\chi-a)^{2} = \bullet (\gamma-b)^{2} \left(\frac{d\gamma}{da}\right)^{2}.$ $(y-b)^2 = [1+(\frac{dy}{dx})^2] = \gamma^2.$ x-a+ (y-6) dy =0. $1 + \mathcal{Q}\left(\frac{dy}{dx}\right)^2 + \left(\frac{y}{y} - \varepsilon\right) \frac{d^2y}{dx} = 0.$ $\mathcal{J}-\mathcal{b}=\pm\frac{\gamma}{2}\left[1+\left(\frac{dy}{dz}\right)^{-\frac{1}{2}}\right]$ $I + \begin{pmatrix} dy \\ dx \end{pmatrix}^* = \mp \Upsilon \cdot \left[I + \begin{pmatrix} dy \\ ax \end{pmatrix} \right]^{-\frac{1}{2}} \frac{d\Upsilon}{dx}.$ $\frac{\frac{d\gamma}{dx^2}}{\left[1+\left(\frac{d\gamma}{dx}\right)^2\right]^{\frac{3}{2}}} = \pm \frac{1}{\gamma}.$

93. $\int \frac{d^2y}{dx^2} = f(x), \quad 2 \quad \frac{d^2y}{dx^2} = f(y),$ 3 $\frac{d^2 y}{dx^2} = f(x, \frac{dy}{dx}) + \frac{d^2 y}{dx^2} = f(y, \frac{dy}{dx}).$ $(3), \quad \frac{dy}{dx} = p, \quad \frac{dy}{dx} = \frac{dk}{dx}.$ $\frac{d\phi}{dx} = f(x, \phi),$ B. Catenary. a $\frac{d^{2}y}{dx^{2}} = \sqrt{1 + (\frac{dy}{dx})^{2}}.$ (4) $\frac{dy}{dx} = p$, $\frac{d^2y}{dx} = \frac{dp}{dx} = \frac{dp}{dy} \frac{dy}{dx} = \frac{dp}{dy} p$ $p \frac{db}{dy} = f(y, p).$ これの B. 1. $d^2s = F(s)$. ds = b = v1. s) = A inkt + B eickt 3) A, B 7 Betik. 2. $d = v^2 + 1 + v \overline{u}$ $\frac{1}{2p} / \frac{1}{2} t_{\overline{z}}$ arcty v = t+c, $v = t_g(t+c)$, $s = -log c_o(t+c)+c'$. B.2. (b) $PN = g \quad (\pm 752-)$ $PN = \frac{y}{cor\theta} = \frac{y}{\sqrt{1+ty\theta}} = \frac{y}{\sqrt{1+ty\theta}} \frac{1}{(\frac{dy}{dx})^2}$ $\frac{y}{\sqrt{1+ty\theta}} = \frac{y}{\sqrt{1+ty\theta}} \frac{1}{(\frac{dy}{dx})^2} = \frac{(1+(\frac{dy}{dx})^2)^2}{\frac{dy}{dx}}$ $\frac{y}{dx} = \frac{1}{(\frac{dy}{dx})^2} = \frac{1}{(\frac{dy}{dx})^2}$ $\frac{3}{dx^2} = e^{2y}$ IZ Y X X X ALY IZ X X X ALY Z X X ALY Z X X ALY $(+)_{I} t \frac{q}{2} \frac{d}{dy} = 1 + \frac{p}{1 + p} dp = \frac{dy}{f}.$ $\frac{1}{2}\log(1+p^2) = \log g + \log c \quad \sqrt{1+p^2} = c \cdot y, \quad p = \sqrt{c^2y^2 - 1} \left(=\frac{d \cdot y}{dx}\right)$ $\int \frac{dy}{\sqrt{cy^{-1}}} = x + c_{i}^{i}, \quad log(c_{i} + \sqrt{cy^{-1}}) = c(x + c^{i})$ $= c_{i}^{i} + c_{i}^{i}, \quad log(c_{i} + \sqrt{cy^{-1}}) = c(x + c^{i})$ $= c_{i}^{i} + c_{i}^{i}, \quad log(c_{i} + \sqrt{cy^{-1}}) = c(x + c^{i})$ $(-) I t = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt$ $-(c-\frac{2}{7})^{\frac{1}{2}} = x+c' \qquad c-\frac{2}{7} = (x+c')^{2}$ $\kappa^{\frac{2}{7}}+\frac{2}{7} + Ax+B=0.$ [7]

94. O Homegenemo linear equation
A
$$\frac{d^{2}}{dx} + B \frac{dx}{dx} + C = 0.$$

(A, B, C, n const.)
 $\frac{d^{2}}{dx} = e^{Mx} + FT.$
(Am²+Bm+C) $e^{Mx} = 0$ $ET.$
Am²+Bm+C = 0.
(I) $A = B^{2} + AC > 0$ = $cc 5 FD + An = -1/2 FC_{2} + FZ.$
 $+5/n', \qquad J = C_{1} + Mn + C_{2} + Mn + C_{3} + C_{3} + Mn + C_{3} +$

-

.

76. Empirical formula.

$$y = a e^{ix} + b e^{dx}.$$

$$x = \frac{ax}{x_{1}} \frac{ax}{x_{1}} \frac{ax}{x_{1}} \frac{ax}{x_{1}} \frac{ax}{x_{1}} \frac{x}{x_{1}} \frac{x}$$

axu - axu
:2. y = @ e axx (c cre bxx + d in bxx) = y y k e rec bxy = c+dtg bx
= Fl7 X = ty bxx, Y = Yx e ^{-axx} sec bxx + tyn, Y = c+dx
コレシリ く、カラホイル、
Ex. t在住中= ~ 振子 t 7 bt (\$4), x7(素(2 (\$10))
t x
o 1.50 97. graphical solution.
1 0.89
2 0.28
4 -0.4
5 -0.48 -0.55
7 -0.47
8 -0.30
9 -0.12
10 +0.03
11 0.12
12 0.15

Exercises. 1. $\frac{d^{3}y}{dx^{3}} - \frac{dy}{dx} = 0$ $m^{3} - m = 0$ 0, 1, -1 $y = c_{1} + c_{2}e^{2} + c_{3}e^{2}$. 2. $\frac{d^{4}y}{dx^{3}} + \frac{d^{3}y}{dx^{3}} + \frac{d^{3}y}{dx^{3}} + \frac{8}{9} = 0$ $m^{3} + \frac{8}{9} = 0$ $(m+2)[m^{2} - 2m + 4] = 0$ $m = -2, -1 \pm \sqrt{3}$: $(m = 1 \pm \sqrt{1 - 4})$ $y = c_{1}e^{-2x} + e^{2}[c_{2}e_{0}\sqrt{3}x + c_{3}+\sqrt{5}x]$.