Biomachematics.

(Biometry 7 1年1, 21, 三年+·物八).

morphology of blood Burns? Biophysics
1. 重为 MK / 本友 1+2 泊, (John Hunter).

AD 11 血壓, 差 min. + 3 2 42.

A $A = \frac{1}{12} \frac{1}$

$$AD_i \Rightarrow i \not \supseteq \overline{R}_{E_i} = K \left(\frac{AB}{R} + \frac{BD}{Y} \right)$$

$$= k \left(\frac{a - x}{R} + \frac{\sqrt{k^2 + x^2}}{\gamma} \right)$$

$$\frac{1}{R} + \frac{2x}{2\gamma \sqrt{x^2 + k^2}} = 0$$

$$\frac{\gamma}{R} = \frac{x}{\sqrt{x^2 + k^2}} = e_{\sigma} = 0$$

が (1) Rがらよいランタトキ、アかはくとかい、日モー定。

(2) 下的: 基分: 小, the 日 70°

(3) $\stackrel{\times}{R} \rightarrow 1$ +511. en $0 \rightarrow 1$ $\stackrel{\cdot}{\rightarrow} 0 \rightarrow 0$

2. Dissociation of Oxyhaemoglobin. Hb 1 saturation percentage = $y = 100 \frac{C(H602)}{C(H602)}$ Oxygen 1 concentration = C(2) = x.

メトチトノ関係をおる。

Hb+02 = Hb02

平分子/ 七字/522
$$\frac{C(H600)}{C(H60)} = K$$
.

$$\frac{C(H60z)}{C(H6)} = K \times \qquad \qquad y = 100. \frac{C(H60z)}{C(H6)}$$

$$\frac{C(H60z)}{C(H6)} = \frac{1 + \frac{C(H60z)}{C(H6)}}{1 + \frac{C(H60z)}{C(H6)}}$$

3. Determination of the order 5182 145 of the chemical reaction.

1. $H_2O_1 = H_1O + 0$ $t = 2H_1O_1 = 2H_1O + 0$ wi molecular "

which is molecular "

tup. 21 th/2 - mi +11.

 $\frac{dx}{dt} = K(a-x)^n$ n order of reaction.

a-x=C, $\frac{dx}{dt}=-\frac{dC}{dt}$,

 $\frac{dC}{dt} = -KC^n$

 $\int \frac{dC}{C^n} = -Kt + A.$

n=1.

4=2

-log C = A-Kt. Kt-A

+ = = A= K+ K+-A

n=3

+ 1/2 (2 = A= + Kt-A

n

 $\frac{1}{(n-1)^n} = Kt-A.$ $\frac{1}{n-1} = Kt-A.$ $\frac{1}{n-1} = Kt-A.$

第一坛. $K = \frac{1}{t} \log \frac{a}{a-x}$ $K = \frac{1}{t} \left(\frac{1}{a-x} - \frac{1}{a} \right)$ const.

Ex. 1. Madsen and Famulener vibriolysin 75/84

t(5)	C	loge		0
0	100	2	rep	
10	78.3	1.894	lycho	
20	67-6	1.836	1.4	
)0	59.3	1.775	1.8	
40	49.8	1.699	1.7	1
50	40.8	1.610	1.6+	The state of the s
60	34.4	1. 537	1.5	0)0 40 50 60

tre unimoleuler.

Ex. 2. Madsen and Walburn.

Casein 7 trypein 7: 5 78 x HC (catalyes).

(casen) 見, 爾皇素 ティハロ.

中九一里的女

4. Number of micro-organisms.

Munke d y bartena constit 3 ford dt = k y (a-x)

(x+y+1 Etelmant assuman y

 $\frac{day}{dt} = Ky(q-y).$

$$k + C = \int \frac{dy}{y(a-y)} = \int \left[\frac{1}{a}\left[\frac{1}{y} + \frac{1}{a-y}\right]dy = \frac{1}{a}\left[\log y - \log(a-y)\right]\right]$$

log = akt+aC.

$$t=0/1+$$
 $y=y_0$, $log \frac{y_0}{a-y_0}=aC$.

$$\log \frac{y_0}{a-7} = aC$$

 $\log \frac{y}{a-y} = a\kappa t + \log \frac{y_0}{a-y_0}.$

 $\log \frac{1}{\frac{(a-y_0)y}{y_0(a-y)}} = ant$

$$\frac{(a-y_0)y}{y_0(a-y)} = ant,$$

$$y = \frac{a}{1 + \frac{a - y_0}{y_0} e^{-akt}}$$

M Kendrick and Kesava Pai (1911) Bacillus coli 大陽萬.

t (four) 0 1 2 3 4 y 2850 17500 105000 625000 2250000 100 000 006 1+ 茂色业4:

 $\begin{cases} y_0 = 2850 \\ a = 100000000 \end{cases}$

 $\log_{10} \frac{3}{4-3} = \log_{10} 3.46 + 24 + 5.02 + 5.90 + 6.35$

log, a-y = ak log, e. t + log, o a-y.

aklog 10 € = 0.8 basteria 1 f2 5: = 13 + - bt, to.

logio 27 a-124 = aklogio e. t'+ logio 4-70.

logio 2 + logio \frac{4}{a-2y} = 2k logio et' + ---.

log, 2 = aklog, e. (t-t) t'-t= log102 = 0.301 ho. = 22.5 min (5)

(Robertson, Child physiology.)

 $\log \frac{x}{341.5-x} = K(t-1.66)$ 9切17年·适用。 七八七ンラカラノ月影。 AUHa ounce

t K X 111 -0.75 0.132 -0.42 117 0.136 -0.08 127 0.131 0 127 0.136 +0.25 137 0.123 +0.58 144 0.122 +0.92 146 0.171 men 0.136

Lemon 1 1 Fe

+ th? K1, K2, K3.

·愛哈.

1. Pepsin digestrón (Sjögnist 1272).

t (hom)
$$\times$$
 percent.

0 0 0
2 10.5 \times
4 16.41
6 19.93
8 22.68
9 24.00
12 27.04
16 30.36
20 33.68

2. Decomposition of tetanolysin by means of peptone (Madsen and Walburn).

+ (hour)	C tetanolyin	order of reaction = 2.
0.5	47.7	
ľ	39.7	
2	3 6.3	
24	22.3	
6	18.1	
9	17.0	

6. Law of digestion.

X= サルナナーフラ

x= cvt. Schütz-Borissoff law x=c2t.

 $2x \frac{dx}{dt} = c^{2}. \frac{dx}{dt} = \frac{c^{2}}{2}. \frac{1}{x} \quad \text{the velocity in its in the first of the state of$

Theory of Arrhenius

$$\frac{dx}{dt} = K \cdot \frac{1}{x} (a - x)$$

 $\left| \frac{2dx}{a-x} = k + C. \quad \frac{x}{a-x} = \frac{a}{a-x} - 1 \right|$

- a log (a-x)- x=Kt+C. t=0 1+ + x=0 -a loga = C. - a log ((a-x)-x= Kt-a loga. a log $\frac{a}{a-x} - x = Kt$.

t (how)	Protein digested by means of pepsin & (percent)	$K = \frac{1}{t} \begin{bmatrix} a & b \\ a & c \end{bmatrix}$		
2	10.5	3.0	7.5	
4	16.4	3.8	8.2	
6	19.9	3.8	8.1	
8	22.7	2.8	8-0	
. 12	27.0	\$3.7	7.7	
16	30.4	3.6	7.6	
20	33.7	2. 7	7.5	
32	40.0	3.4	7.1	
48	45.1	3. 2	6.5	
64	50.8	3,1	6.3	
96	57.4	2.9	5.9	

7. Flow of a viscous liquid through a tube.

答/ 2-dv から (単位面をまます)

举生十2 n = coefficient of viscosity.

€ -2π×l. 4 m = \$π×2β

p , pursure difference.

- 2 ly #= rp.

-2 l r v = p 1 r + C. Y=R/1+ V=0 $0 = \frac{1}{2}R^2 + C.$

 $-2l_{v} = \frac{1}{2} (v^{2} - R^{2})$ $: v = \frac{p(R^{2} - r^{2})}{4l\eta}$

2Terdr.

单位分的: 通一体转

dV= v. 2 myd $=\frac{\beta(R^2-\gamma^2)}{2}\pi\gamma d\gamma$

$$\nabla = \int_{0}^{R} dv = \frac{b\pi}{2l\eta} \int_{0}^{R} v(R^{2}-v^{2})dv$$

$$= \frac{b\pi}{2l\eta} \left(\left(\frac{R^{4}}{2} - \frac{R^{4}}{4} \right) \right) = \frac{b\pi R^{4}}{8l\eta}$$

To Poisseville

Brodie 际管

7=719×10-5 (35° -7)

V= 1 ".c per minute