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1. Consider a transcendental integral function f(2) of the complex

variable z (z=r¢”) such that it does not become infinite even at z=co

so long as z is real, and | f(z) | becomes infinite to a lower order than
T r'| sinf |

: e

when z approaches infinity. Such a function will be called the cardinal

Sunetion. 2

- The notion of cardinal functions is of fundamental importance in the

theory of interpolation from the reason that : ‘

I. Tt can be constructed analytically in a simple manner when the

values

FO) F1) f(=D, f(+2), F(=2), s
are given: in fact,

.

f="22E
T

j(*l)’ﬂ (&0 -

e
V=en 22—y

IT. Tt may be represented by the Gauss formula of interpolation

—1) o Dee=1) s
.f(2)=ﬂ)+Tz!—6j%+_z%:Q_3ﬁ,+ (e );'(z ) 5']‘%

(1)

o (z+1)z(z4:—’1)(3~—2) Syt weeee(2)

Now we add the following remark : Prof. Whittaker stated that if

- (1) E.T. Whittaker, “On the functions which are represented by the expansions
f the interpolation-theory,” Proc. Roy. Soe. Edinburgh (1915), pp. 181-194; especially
pp. 182-187. Although his method is very interesting and instructive for practical worl,
t is not free from inaccuracies. A proof of this theorem, which is simple and rigorous,
be obtained in E. Lindelsf, Caleul des résidus (1905), p. 53.

\ ) Whittaker, loc. cit, pp. 191-2. We use of the following scheme:

i
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(s) be a one-valued analytic function such that the values o(v)

(v=0, =1, %2,.--... ) are all finite even at infinity, then the series
sin 7z <o v :
2 (=1 v
T - Z—V

represents a cardinal function f(z) for which

Sf@=0(), (=0, =1, +2, ...... )

It seems to me that this statement is erroncous: TFor, if we take

any one-valued analytic function ¢ (z) such that

2(0)=0, ¢(=1)=—1, o(-2)=+1, ¢(—3)=—1, ¢(—4)=+1, -----. ,
p(+D=+1, p(+2)=—1, o(+3)=+1, p(+4)=—1, -,

the corresponding series diverges at z— —l)q :

Moreover the converse of Theorem II is not true. Although a
transcendental integral function ¢ () may be expressed by the Gauss
formula, the funetion is nof cardinal in general. For example, if we
take the function ¢(s)=¢*, the correspondivg Gauss formula becomes

1+(eT1)_13°T+e-1 (- dp =l e (e 1) (3+llz(z—l)

91 ol
e e D)
41
te?(e—1f (z+2)(z-f—l)~z’(z—l)(z—2) w(E :
(3

which converges to ¢ iftself for every value of s ('). On the other

Argument Entry

—2 S
3f_s2 e
-1 ey 62f__£ Yo alse
6f-1)2 Gl e
0 Jo P fo &+ fo
5f12 83 f12 e S5
- +1 1 52f1 S i
Bf3,2 slvie 5 alaisle

+2 Fi skt

where 8f-12=fo=f-1; Sfip=f,—fs, 8 fo=8fij2—8f—112, ete.
For the Gauss formula, see D. Gibb, A course in interpolation and numerical integration
(1915), p. 26. o e

(;) G. Faber, “Beitrag zur Theorie der ganzen Funktionen,” Math. Ann, 70
(1911), p. 65, Tl i '

i
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hand ¢ is not cardinal. Indeed it will be easily seen that
¢(2)=¢“*" (a, b being constants)
is cardinal when and only when
a=" ‘3,

2 being real and —7 <3<z ; and in such a case |¢(z)| is constant

so long as z is real.
2. [If the transcendental integral function

AL M= W 0 :
el By
r=U Y= -

be cardinal, we have from the definition
(2) I‘j(’i) l< e*'¢l for I:1>Zl),
B being a sufficiently large positive quantity; so that the cardinal
Junetion is of order (ordre apparent) unity at most.
Applying a well known theorem (') to the inequality (%) we obtain
« Sha 7? 7;77 VoS
(3) lim /| fY (0N ==,
V=0
Now we can prove the theorem: Any eardinal function, exeluding
A P
(A being a constant and 3 being real and —m <3< ),
has an infinite number of zero-points.
Let us suppose that a cardinal function f(z) has no root. Then
J(2) has the form :
f@=e,
where ¢(z) denotes integral function. If G(r, #) be the real part of 4(2), .
I el l — 1, 8)
It is well known (*) that the inequality
Gl < mp
(for every value of » such that »> R, and for every value of &) does
not hold, unless ¢(») has the form :
g(z)=uz+0b, (a, b being constants).

(1) A Pringsheim, ¢Elementare Theorie der ganzen transcendenten Funktionen

von endlicher Ordnung,” Math. Ann,, 58 (1904), p. 266.
(2) Hadamard's theorem (cited below, p. 186). See, for example, Pringsheim,

loe, cit.,, p. 284.
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But if g(z)=az+0b, the function ¢#® is cardinal when and only
when

—i4,

B being real and —7<f<w. Also if ¢ () be not of the form az-+b,
there exists a certain point (r;, 6,) for which

Gl ==, o >R,
10
Hence for z=nr, e l(rl>R) we have

1 eg(z,)

1]
= oS

so that ¢’® is not cardinal.

Next suppose that a cardinal function f(z) has p zero-points 6, b,,
.=+, b,. Then f(2) takes the form

f(@)=(E—0) (z—0b,)---(z—0b,) .
When g(z) reduces to a constant, |f(z)| becomes infinity at z=co so

long as z is real, which contradicts with the supposition. When g¢(z)

is not constant, we have already shown that ¢ is not cardinal, unless
g(z) has the form

g(E)=1i3z+0,
where 3 is real and —7 <3<z, and b any constant.

But when ¢’® is not cardinal we can immediately see that f(z) can
not be cardinal. On the other hand, when ¢© is cardinal, |f(z)
comes infinity at z=co so long as z is real. (See the last remark
n § 1).

3. In this paragraph I will confine myself to the case where cardinal
fenction has an infinite number of zero- points.

Let b,, b,, by, «----- be the zero-points (other than zero) of f(z)
such that

------

o] =

Then there exists the well known inequality (*):

ip 6

vl

Iim ” =1

Since

(1) J. Hadamard, “Ltudes sur les propriétés des fonctions entiéres, ete.,” Journ
de math, (4) 9 (1893), p. 171.

s
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11?15(/' by by b,y fw | hm\/l yI ;

= limv” | f& (O) ]

=,

we obtain

Syl il
lim e < 7,
| by by, |

or by means of Stirling’s formula

Py
s RE RS e
V!:]/'zfr. Y : € (O<‘np<]—)y
we infer: If b, by,------ be the zero-points (0< [b,| =|b,.1]) of a
cardinal funetion, then
v
(4) s 12 Lot ] 5> !
= v e
and especially
(4) b &L = i .
Y 3

provided the limit of the left hand side exists.
On the other hand, (2) leads us to the inequality :
: b, | 1 )
4y Tim 1%l = :
< = S Gl e (

The class (genre, Hohe) and “ Grenzexponent” of the cardinal function

-are wnity at most respectively.

4. Prof. G. Faber proved the following theorems () :
I. In order that the series

(9) e+e (z—a,)+e, (G—a) (=a) S

(=) (=) - (2= )
i (a1'—a0) (Gz—“o)" '(ap‘z_ao)

------

where

Iaﬂlélallélaglé """ and Iimlay]:oo,

(1) E.Schou, “Sur la théorie des fonctions entidres,” Compt. rend. Paris, 125

{1897), p. 763; Pringsheim, loc. cit.,, p. 295.

(2) Faber ,loc. cit, p. 52, and p. 55.
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be convergent for every value of z il is necessary that
Imv e | =1,

and sufficient that

limy/ | |e ] i

II. TIf a transcendental integral function f(z) satisfy the condition

limy/ lay a5 6| =0,
then the function may be represented by the series (5) having the
limitation
limy” [e,| =0.
In the case under consideration we have from (1) that

g g —nt b (n=0, 1 2. ),

_ a[m=DIT e,
Ll e fos

R P
‘ (1 ) Se l)fl :
whence by use of Stirling’s formula we get

Iim v lCLl (L_)'"'a,,_lli 1 1 ;
vl 2

limy/ o= {ll ﬁl v (0% fl

e

hm 271.4-11/ lezn+1| e % E{2n+ll/ lﬁunﬂ)f}fl z

Therefore from Theorem I above mentioned we have:

In order that the Gauss formula of interpolation (1) fo‘r a one-valued

function f(z), such that the values f(v) (v=0, =1, +2,.--) are all finite
be convergent for every value of z, it is necessary that

]imzln/ l 5(2")ful é 2, E 2"4:']/ !b‘(m-ﬁ-l)f%l EQ’

and sufficient that
(6) TEmV [0™f] <2, Lim "V @07 <2

Especially consider the case where the condition (6) is satisfied ;.

then
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G TR R T & 5 o] O e
(7) lim v/ [0 FT=) Tm "V [0@+DF T —
E‘ :
/4 being a positive constant smaller than 2, and hence

oy = (-—}) v

It the function f(z) be represented by the Gauss formula (1), we have

< 1 % Y (J 1 1
(')V S~ : -r; -}
I I I((l a'l.“('lll—ll {:I()L’l + 1' +1l + 2! I€u+,l+ ]( )

1 } -/ Y ) ; ( 1 - 2
< ( ) 1 (__) c ytl) (2
@ Gy |\ 2 [ IEEEE G 2 )+ 5

o 1 (/)’ (]5 / )"’
|a, @+ a4 | 2 e A

2 1 ( J )"
|a, @y -, 4| I

g0 that

R AR L
ey

But since

4)2
ke e
2—
according as
o
Al gt
AMED 4

we obtain the result: A necessary (but mot suficient) condition that a
t'ranscendmnfa[ integral function f (z) satisfying

(7) Tim v/ 1097 fy] k) P R Tim "V | 0¢ "“'f =4 (0 A< 2).

may be ecardinal, is that

(8)

7)[ é :/__ or _S__ T

according as

2w a9
‘?+7r 244

O A-<

(1) Faber, loc. cit, p. 53.
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It should be noticed that Y a transcendental integral Junetion f(z)
satisfy (7) and

e e
the Gauss formula converges, but it represents no cardinal Junction (1).
9. The method of proof used in the last paragraph leads wus to
the following: In order that a transcendental integral function f(z) may
be represented by the Gauss formula with the limitations
(9) Imv/[o%F | =0, lim™V 5@ =0,
3
it is necessary that
(10) limv”" [ f®(0) ] =0.
On the other hand we can state the theorom : If a transcendental
itegral function f(z) remain Jinite for z=00 so long as z is real, and if

FIvem= -, (25 =1<a),
2+ x

(10) limy” { 7*(0) T =0,
then the function is cardinal.
Let 6 be a real quantity which is arbitrarily small in the absolute
value. Then the condition (10) shows us that there exists a positive
quantity /2 such that

®x

E: Gz

ve=(

[2].|sing |

<e for all 2] > R,

(1) As an example, let us consider the function

f(Z)=e§z+ sin 2 2.
Then

Hm §/ " [s@mf, | = fim "4/ [3EDF T =et—e-t=164....,
80 that we may take

A=1.65 (> 27 =1,2....)

2+

and hence

22 =9 4.5,

2—1
Since

Gmy/ [f0I(0)] = lim **4/ (@t o (P = o,
we have
Y — 2A
reiny MO

In fact, the Gauss formula represents the function e (but not f(z) itself), which
is not cardinal,

i

e —

79 OGURA: TRANSCENDENTAL INTEGRAL FUNCTIOX.

; - 4 fonsequently by the definition f(2)
however small |6] may be('). Conseq :

a cardinal function. _ . e R
But when a transcendental integral runction .

lim1/ ;[f“')”(“j =0,

(]'()) . ’l - 3 ;
, ' e
: i "’ vorem LI mentioned m § 4,
we have, from Faber's theore =T
7 Y o@m f 0.0 W eerr 0.
9 lLimv [d“"f | =0, h | J1

Thus we have arrived at the theorem : j
Flech 5 - o F2) remain fimite for z2=00
Tel a transcendental integral function f(z) remain Ju - s
L€l , S( ul : : g : ,  mpepresented O

In order that this fumction may sl L J

n Fhat

SO

long as z s real. Sl
Gawuss formula of interpolation such that

LS T 2 5 Bl U R ey e e e TrL) © :()
P (Y Ay 235 0( 1)
limv |0 f| =Y, lim "V | J }-l

3

2CESS

: e G formula 1is
; . e b A by the Gauss
For such a function the interpolation by

very effective.

[keda near C)sak&, March 1919.

(1) Pringsheim, loc. cit,, p. 339.
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