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On the Theory of Stackel Curvature (1),

by

a n
KixNnosurE OcUra, Osaka.

In his interesting memoir “ Die begleitenden Grenzkugeln krummer
Flichen,” Prof. P. Stdckel(®) has endeavoured to build up a new
theory of curvature. When a surface is referred to the lines of curvature,
the radius of “ begleitende Kugel ” is given by

o E dv*+7t G dv*
c Ldw+t Ndy® ’

where o, © denote the Laplace-Darboux invariants of the differential
equation
CR R 12| o8

Bwion il s E il alioy

The main object of this paper is to find some properties of the
Stiickel curvature, i. e.

1 _ o¢Ldw+z Ndv
S~ cEdu+tGdv g

and to determine some remarkable curves appearing in this theory from
the standpoint of Laplace transformations, where we meet the modern
theory of congruence established by Prof. E. J. Wilczynski.

‘ This paper contains, moreover, some incidental remarks concerning a
“‘_‘-,‘g‘e:cmetrical characterization of an isothermal system and the vanishing
~ directions of the “ Parameterkriimmung ” due to Prof. A Voss.

(1) Read before the Physico-Mathematical Society of Japan, April, 1919.
(?) Sitzungsberichte d. Heidelberger Akademie d. Wiss,, Jahrg. 1915, 8. Abh. pp-
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PART 1.
Elementary Properties of the Stackel Curvature.

The inverse curvature.

1. TFirst of all T will introduce the notion of the inverse curvature.

Let
fi=Ed+2 Fdudv+ G dv’,
fh=Lduw+2 Mdudv+ N dv?

be the first and second fundamental forms of a surface

== () y=1 (u, v), 2=z, v),

and let J(f},f.) be the Jacobian of £, f,. Then
fltog .f.!-':oy J(fl;sz):oa ']-(fl)']'(fl:.ﬁ_')):o; 'T(f_’) 'T(fl)fl)):‘o

are the equations to the minimal lines, the asymptotic lines, the lines of
curvature, the lines of torsion and the characteristic lines respectively.
I have already proved that the minimal lines, the lines of curvature and
the lines of torsion form a cycle in the sense that the directions of any
one of these families are the double rays of the involution dctermined by
the directions of the other two; similarly the asymptotic lin s, the lines
of curvature and the characteristic lines form another cycle; and these
five families form a closed system ().

j = ;
Now the normal carvature 5 1s given by

i s
B E

bl

and the ceufre of normal curvature [R] has the coordinates
x+ kX, y+RY, z+ RZ,

where X, Y, Z are the direction-cosines of the normal to the surface at

(@, 9, 2).

(*) XK. Ogura, “Some theorems concerning binary quadratic forms and their ap-
plications to the differential geometry,” Science Reports of Tohoku Imp. University, 5
(1916), p. 95; T. Hayashi, “On the usual parametric curves on a surface,” Ibid.,, p

63; Ogura, “Ou the theory of representation of surfaces,” Tohoku Math. Journal, 12
(1917), p. 237.
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~In a similar way, an analogous quantity defined by

1,— [(f., f([nf;))
)

LT I o))
will be called the inverse curvature and the point
z+ IX, y+ 1Y, 2417

the centre of inverse curvature [[I].

If the surface he referred to the lines of curvature, we have

(1) Bl L dw’+ A\i’rl-v"’

it E dv+ G dv*

2) _1_ = _L (Z?bf" —_N(Zn:,
Tk E dw — G dv*

from which we obtain the relation

( e M) ( e M;?_) oo (_-/ u— R )
2 9 9 2

R, R, being the principal radii of normal curvature.

Hence, when the direction dv:dw varies about any given point (u, v),
the centres of normal and inverse curvatures [R], [L]| form the involution on
the normal to the surface at the given point, the double points being the

)

centres of principal curvature [R,], [R,]; when the direction is given, the
centre of inverse curvature [I] is the inverse of the centre of normal cuir-
vature [R] with respect to the sphere, the segment [ £2,| [42;] being a diaineter.

9. Moreover there exvists a kind of duality between the normal and
inwerse curvatures.  The following are some typical cases:

1 o B B 1
The normal curvature —— The inverse curvature T

R |

—}? becomes zero for the asymptotic ’L —11»~ becomes zero for the characteristic
lines and infinity for the minimu.ll lines..1 | lines and infinity for the lines olf:‘ torsicl)n.

It takes the extreme values —J:,I—, R, ' ” It tallces the extreme values —_l(z 7-7[';): ;
for the lines of curvature. 7 T (: 7. ) for the lines of curvature.

The linres of torsion (the characteristic % d The 1;11ninml lines(the asymptotic lines)
lines) are the curves for which £ is the are the curves for which I is the harmonic
harmonic mean (the arithmetic mean) of mean (the arithmetic mean) of I, and I,.

R, and R,.
In order that the two pairs of direc-
tions, on two surfaces £ and Z, for which tions, on two surfaces = and =, for which

R*=R? I2 :I3

may be harmonic in the conformal repre- may be harmonic in the representation

In order that the two pairs of direc-
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sentation (i. e. the representation preserving | preserving the lines of torsion [or in the

the minimal lines) [or in the representation | representation preserving the characteristio
preserving the asymptotic lines], it is : lines], it is necessary :Ed gufficient that
necessary and sufficient that the total cur- | the total curvatures /A, K should be equal
vatures X, K should be equal at correspon- | at corresponding points. The double rays
ding points. The double rays of the in- ; of the involution determined by the two

volution determined by the two pairs of | pairs of directions above mentioned form
directions above mentioned form the the common inverse-conjugate system [or
common conjugate system [or the common the common inverse-orthogonal system]( 1),
orthogonal system]. l

The Stéickel curvalure.

8. When the lines of curvature are parametric (*), the Stickel cur-
vature S7' (the reciprocal of the radius of ¢ begleitende Kugel” due to
Stackel) is given by

1 o Ldu+t Ndv’

(3) = - —
S o I dv'+7 G dv*

where
SFlogVE _ QlgV' G ~ OlogV'E
Quov ou ov :
Plog1V’'G _ 2logV'E DlogV' G .
Quow ov = ou :

and the centre of Stickel curvature [S] (the centre of ¢ begleitende
Kugel ”) has the coordinates @+ SX, y+SY, 2+ SZ.

Eliminating dv: du from (1) and (2), we have

(t—0) LN SR+ (o GL—7 EN) S
+(¢ EN—© GL) R+(x—0) EG=0,

and after a short calculation we get

Bk | [SI[R] _ <
[RI[E]  [R[R] o

Therefore, when the direction dv:du varies about any gien point on
a surface, the centres of mormal and Stéekel curvatures form the projec-

(1) Ogura, loc. cit., (the second paper).
(?) The Stiickel curvature has its essential meaning when and only when the

surface is referred to the lines of curvature. For the surface in which o =r=0 identically,
see § 7 below.

DRI

G
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tive range, the self-corresponding points being the centres of principal cwr-

vature and the double ratio ([ST[R][R,][R.]) being equal to

o
Similarly, when the direction dv:du varies about any given point on
surface, the centres of inverse and Stdeckel curvatures form the projective
range, the self-corresponding points being the centres of principal curvature
T

and the double ratio ([S][1][£] [L£.]) being equal to ——.
g

By means of these theorems we can casily see the change of the
Stickel enrvaturdg when the direction dv:du varies about a given point
on a surface. If the independent variable 6 be taken as the angle between
the directions whose radii of Stiickel enrvature are S and F,, we obtain

the following graphs of 1:8

K>O[
l

-
-
——

G6.T<0
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; ; i
Throughout these figures R, is assumed to be greater than £, ; and
the abscissae of the points 4 and B are

arctg [ — L2 , A
= R,  (the asymptotic direction)

and

arcty [ L T
: B, (the characteristic direction)

respectively (). (For other noteworthy directions, see §§ 12-14).
4. Tet the lines of curvature be taken as the parametric curves

and let 1 f

Pu P

lengths of n=const., v=const. respectively. Since

and s,, s, be the geodesic curvatures and the arec-

sl jeiloo A Oloo VG OlgV'E
Quov Qu Qv

a

:i( V@ \_ VEG
i e

~ve (1), L e viE
ou Po P ou Pu Po

= ai,, ( ;,, )

= aasu ( ; )

we obtain from (3) the three formulae :

‘*118(1)(12 i s ;
i e D2, Py Tt Uid: st\pv)dsv

S (2] (1 )d? fe) ( 1 ; :
Oy Ny i 08, p,,,)dsv

(%) For our purpose we may construct a figure, from the formula (3), analogous to
Dupin’s indicatrix.
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L SEL e
O Sy Pu a\- \ Py
S ] 2y | sy
vy e e en e
0 (o)) e
R LT E)(l)zg 8(1 o
el e ——)(ls-,,
a Su pf’z a Sy ,Ou

where 7 and JT denote the geodesic torsion and mean curvature res-

pectively.

Isotlhermic and inverse-isothermic surfaces.

8. It follows from (4) that S is equal to £ for all directions at
any point of the surface, when and only when the quuntit.y(l)

el dl )___8__(__1_ )
. a'\'ac ( ‘011 O 'S'u Pu

vanishes identically, which is notuing but the well known condition that

the parametric curves should form an isothermal system. Hence we have
the theorem due to Prof. Sticlkel (*):

The Stcickel curvature s identically equal to the normal curvabwre
when and only when the surface is isothermic (*). |

I take this opportunity to give a purely geometric characterization of
an isothermal system. Recently Dr. G. M. Green(*) gave two such
characterizations ; it should be noted that, however, one of them breaks
down when the isothermal systemy consists of the lines of curvature,
whercas the other can be applicable only when the surfice is not deve-
lopable.

Let u=const., v=const. be an orthogonal system and let w=const.
be the isogonals which cut w=const. at a constant angle ¢. Then

(1) For this quantity, see G. Ricei, Lezioni sulla teoria delle superficie (1898), p.
214; R. v. Lilienthal, Vorlesungen iiber Differentialgeometrie, 1 (1U08), pp. 167-169,
(2) Stickel, loe. cit, p. 31.
(3) Excluding the plane, the sphere, and the surface in which ¢=r=0 identically
(O '
(*) Green, “Some geometric characterizations of isothermal nets on a curved
surface,” Trans. Amer. Math. Soc., 18 (1917), p. 4.80.
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1 cosd . sing

Pw ;()u ‘0"

ﬂ.ll(']

0 ( il )} . o ( 1 )
i — "'""Sl”. - T — .
8311 P asv P,'\

If ¢, and ¢, be the angles which satisfy the equation

5 o 1 , . o Lae 0 :
6 0s' §. (——+‘S¢SD¢ ) o )
( ) €05 CI) 2 S, 0. ) ¥ : |: o Sy ( P Su ( Po :'

we have

when and only when

o o (1 )_ gl ):0(1).

a Su Pu a 'Q‘v \ ‘0 »
In the above we have assumed that (6) is not an identity. If this
be the case,
L e
08y \ Py 98, \ py

identically, so that the orthogonal system consists of curves of constant
geodesic curvature ; hence by a well known theorem this system must be
isothermic. '

(1) An analogous condition for a system of plane curves defined by the differential
equation

dy
‘%_ =tg A (1" y)

wasg alrea y obtained by Prof. E Kasner. See Kasner, “The Riccati differential
equations which represent isothermal systems,” Bull. Amer. Math. Sce.,, 10 (1905), p. 342;
H. W. Reddick, “Systems of plane curves whose intrinsic equations are analogous to
the intrinsic equation of an isothermal system,” Annals of math., II, 14 (1913), p. 179.
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Consequently, for each izogonals ¢ of a family y of o' curves which
passes through a point P, we can draw the curve g which osculate ¢ at
that point and which has constant geodesic curvature (the osculating
geodesic circle of ¢); and there are either

(i) two directions which are orthogondl,
or (ii) o' directions
through each point in which the osculating geodesic circles hyperosculate their
corresponding isogonals, when and only when the family y and its orthogonal
trajectories form an isothermal system.

6. Again, if ¢, and ¢, be the angles which satisfy the equation (6),

we have

T
1+ Dy= A ——
bitpi=

(i. e. the two directions corresponding to ¢, ¢, are inverse-orthogonal

with respect to w=const.), when and only when
@, 1 1
(8) 2 (L) 2 (=)=
C ) b}

This gives a geometric characterization of the condition (8) ().
When an orthogonal system w=const., v=const. satisfies the condition
(8), it will be called an inverse-isothermic system ; and especially a surface

whose lines of curvature are inverse-isothermic an inverse-1sothermic  Sui-

face.
Using this definition and recalling the formula (5) we have:
The Stackel curvature is identically equal to the inverse curvalure
when and only when the suiface s snwerse-isothermic (* ).
If the lines of eurvature be taken as the parametric Ccurves

Codazzi equations may be written

(_1 ____1_) alogl/E_ i o (J_)’
R, it v ov\ R,

( il ___j__) 2logV'G _ O (Al_>;
T R, ou ou\ R

the

whence

(1) Compare with Reddick, loc. cit.
(2) Excluding the plane, the sphere, and the surface in which ¢=7r=0 identically

§ 7).
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s )

; 5 B B Gl

1 aau I]?-.l ) aav( }13, )+_ aau( ]11’2 ) 881;( ]]B )’
)
()

Therefore we have the condition for the inverse-isothermic surface )
L e SRR
/i R, 72uov\ R, i SRRSO\ R,

_4_3(1\8 1>+28(1>8(1)_
ou Jov \ R, SR o N T,

7. Lastly consider the surface such that ¢ and 7 vanish identically
when the lines of curvature are parametrie. Prof. Stiickel (*) remarked
that the surface under consideration ix Peterson’s P-surface whose genera-
ting conical curves are the lines of curvature; and moreover K. M.
Peterson (") dealt with such a conical line of curvature at length.

On the other hand we have seen in §5 that each of the lines of
curvature has constant geodesic ¢urvature for and only for the surface
under consideration. Such a surfice has been trested by Bonnet,
Ribaucour and Darboux (*); aud especially by Darboux’s theorem
we can infer :

When & surface is referred to the lines of curvature, the Stiickel cur-
vature becomes indeterminate for the surface of revolution, the cone, the
cylinder, and their transforms by inversion and for only these ; and in such
a case the lines of curvature are conical currves.

/—-\

| =

Pransformations.

8. I will begin with the general represen‘ation of two s wfac:s X and

(') A modified form of the aualogous condition for the isothermic surface is found
in Darboux, Théorie des surfaces 2 (1889), p. 251.

(2) Stickel, loc. cit.

(3) Peterson, «“Sur les courbes tracées sur les surfaces,” Annales de Toulouse, II
7 (1905), pp. 56-65.

() Darboux, Théorie des surfaces 3 (1894), pp. 121-122,

IS

=
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X in which the lines of curvature are preserved. If the lines of curvature

be taken as the parametric curves, the representation will take the form

W10, D=1}
and therefore
1 o Ldv+t Ndv 1 _ oLdu+7Ndv
8 ocEdl+TGdr’ S GEdw+7Qdv

.y . . u
Eliminating dv:du from these, we get the bilinear relation between S

and S:
N & . NI el N [ NeBes mil
' ! Srgeels e o b e
BSEZ R e ST e O !aL TN
ol 1@
! i L :O.
N FG

Hence the straight lines joining the centres of Stickel curvature for
corresponding directions ot corresponding points form a system of generators
of a quadric.

This result is also true, if the \\md “ Stackel uuvatme .
placed by “normal curv sature” (1) or “inverse curvature ” respectively.

9. As a particular case I considers the isometric representation

”? be re-

U=1U, V=",
in which the lines of curvature w=const., v=const. correspond to the

. 3 — = a otivel v The e ave
lines of curvature #%=const., v=const., respectively. Then we bay

E=E, i G=G,
M=M=0, oc=0, P
Also since the total curvature is absolutely invariant,
LN=LN.
The directions for which
Q2. e

are given by

o (D=I)dut + o (N£N) d*=0

(1) Ogura, loc. cit., (the second paper), in which it will be found a general dis-

cussion for some problems of similar nature.
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nd

In consequence of
ot (L—L)(N+N)+or (L+L)(N—-DN)
=2 07 (LN—LN)=0,

we obtain the theorem :
In the isometric representation preserving the lines of curvature the two
pairs of directions corresponding to

SE=

0

(5]

are separated harmonically.

10. Now we pass to the transformation by reciprocal radii :

(9) fz—Th—ili—T; J=— ;.';?L*—.,“a 52—*—“—;‘—“
T4y +2 T+Y+2 TAY T
Iet the lines of curvature be taken as the parametric curves of a
surface 2 ;5 then the transformed surface X has the fundamental quantities :
E—: £ 3 IT:-—F :0, Z;!: 5 ’
7S 7 r*
S, , i
e b (L+2 i E) M:i_,(ﬂuzjlp):o,
7 r= r: N 1.'.3

N_: E(i\r—f—Z_I’V; '),

1

2
G-

1

where we have
=l D) 2 2
=2+ 2 Wz:vX+y Y+227,

X, Y, Z being the direction-cosines of the normals to the surface Y at
(@, y,2). Moreover, as Prof. P. Calapso has remarked G0

and T arc
absolute invariants for the inversion. Therefore we get

1 7
10 — = 2W.
(10) = T
If [S] (5,7, €) and [S] (&, 7, C) be the centres of Stickel curvature of
2 and 2’ for corresponding directions at the corresponding

points (2, ¥y, z)
and (Z, 7, z) respectively, then

S=2+ X8, y=y+¥8, ¢=2478;
E-—::T:—I—X—S, 77:?+Y:§, f=5+Z—S.

(') Calapso,« Sugl’invarianti del gruppo delle trasformazioni conformi dello spazio,”
Rend. Palermo, 22 (1906), p, 211-212.
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where
2

v

2

= W-Y, = r W—Z,
e

S %mW—X, Ve

7

from which we obtaln

S|
N

|

=

g A P 2WS

Je

' r ntr ickel curvature for
Consequently, for inverse surfaces, the cenlres of Stdacl C]. CUrEa jjth
corresponding directions at corresponding points lie on a straight line wi
the centre of inversion. o :
11. It is easily scen that the above theorem holds good, if the worc
. - ¢« pnormal curvature” (*) or “in-
«Stickel curvature” be replaced by  normal curvature )

verse curvature” respectively. Now L will consider the converse problem :

dv : A I
: 2w, v e wo  corresponding
To find the general quantity [ (u, v, 71{—;) such that any two corres; g
points
E—x+X1l, n=y+Y] C=z+21
and s
A BT =7+ Y, =7+ ZI,
T 7. X, ) same meaning as above, lie on &
2, X,.... and T, X, .... having the same meaning _

$ [ ; a7 i
straight line with the centre of inversion (9)-
Since ¢,7, { may be written

e L [ (3o WX
U5

we have o
e Wi—1z—r" ¢ X
G r (x+1X)

3.

=

5
: & . L) &, 7,C) lie a straioht line passing through
In order that (5,7,¢) and (5,7,5) lie on a o 1 o

(0,0, 0), it is necessary and sufficient that
) v

e T
Tk i A T
5 7 >

or

y of three dimensions, 5. ed, 2

(1) For example, see Salmon, Analytic geometr
(1915), p. 157.
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7 T o7 T ’ 7
CUAES I . (2W1—1)_§{,_-rfz

ey e

W12 2T
= = (:’1: Sa.Y);
i e o
)

Ly

whence

X i Z o QW l—1—Ar”

z y 2 e
which is impossible in general, unless
1 A+1=0, IWIl—1—2r=0;
or
W1 T
7 I
Y :
(10)’ L
; 7 +2W.

It follows from this that the eapression

&)

,s]zoulc% be absolutely invariant for the inversion (9); in other words, the
quantity | must take the form o

0 e e
(3 drlont
T T e e )

where ¥ denotes an absolute invariant for the inversion (9).
general solution of our problem.

For example, if we put

.

This gives the

7 o—t Edv—Gdv
2 ocEHdi+rGdv’

Il

1
o becomes the Stickel curvature
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PART IL

Remarkable Curves corresponding to Certain Special
Values of the Stackel Curvature.

A closed system.
12. Tt the lines of curvature be taken as the parametric curves
of a surface X ('), and let us put
o =0 Edv+7 G dv,
¢,=0 Ldw+7 Ndv
Then the five families of curves
S'CL:O) 902203
J (@15 ¢2)=0 (i. e. the lines of curvature),
I (@15 J (@10 02))=0 (i.e. 0 Bduw'—7t G dv*=0),
J (¢o J (91, ¢2))=0 (i.e. ¢ L du*—7 N dv*=0)

are important in developing the theory of the Stickel curvature, just
as the five families stated in § 1 play the fundamental rdle in the classical
theory of curvature.

Since
il )
N Do . J
S

0, =0 or ¢,=0 gives the directions for which the Stickel curvature becomes
infinity or zero respectively ; and J (¢, ¢,)=0 corresponds the exlreme values
of that curvature (wlhich are equal to the radii of principdl curvature).
Lastly J (¢, J(¢1, ¢2))=0 and J (@2, J (@1 ¢2))=0 are the curves whose
radii of Stickel curvature are the harmonie and arithmetic means of the
priﬁcipal radii of cwrvature respectively.

Moreover

991 :O’ J(Sp.u ‘;ol) = 09 J(Sol’ J(¢l) 90-‘)) =0 ( : )

Fform a cycle in the sense that the directions of any one of these families are
the double rays of the involution determined by the directions of the other
two ; similarly

(1) Excluding the plane, the sphere, and the surface mentioned in § 7.
(2) Each of these three families is preserved by the transformation of reciprocal radii.
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0, =0, J (¢, ¢;)=0, J(‘r"“:; J (@1, ¢2))=0

Jorm another cycle ; and these five families form « closed system.
In the following paragraphs T will deal with the two families ¢, =0
and ¢,=0 from the standpoint of Liaplace transforms.

The curves ¢,=0.

13. Cousider the first and minus first Laplace transforms 3, and

2'_, of a surface 2, the curves of 1eference being the lines of curvature
y=const., v=const. of . If we put

= (1 oF
Ly 2l o 2 2G 2v
a’={12}:‘ oeee) ] b’={12}: I o
Pl i B 12 S0
a,f:{22}=__ 1L oy b,,___{22}_ 1 26
o B W T 9G B

the corresponding points P (@, %, 2) and P_, (z_,,y_1,2.,) of P(x,1,2)
are

1 e e
11 T = 5 T = ./,
oL : gl o Tl a D
dieo
A ;
a oOwv
: 1 2oz 1. B
12 &= Y_, =1 —_____J_,
(12) . .
e il Pz
z,_l—z"'"—"-—-' %
b 2ou

By use of the fundamental equations

P o o
= b = T
o u? aau = ov i :

o' ox ox
- ! bf
Ouov 5 ou i v’

(o Vo) ow
=a +b" NX,
ov ou ow 2

8o e e e e e s s a0 2

i gy
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we get
i h'" 1 Sa ™y 17 e ?Ba’) ) Dz
T L) (PR 7 ldv-~— a'b —— P e
da, = l(] a a? 2w /( : a? \ ou ) 2w
ey (a i A’X)d@-,
a ou
: & [ / s1 (#A : 1 78 _/), _) Z&L_ 1 (a,’b' —_78_1)_, \{]’U}
([:L_l_.l(l ;J’ i /:’A, 52& ( ]),: /C;"U /
__1_(2),?'7? k +]J()Ju,
b' ov
After a short caleulation we obtain
(13) dey dew_y+dy, dy_+dedz_=A dw’+2 B du dv+ C dv?,
where
1:7770" .(a’l)’— oa )G: 1§ EO',
Sk U a' b’
: LN i ( a T-Cob! )E
O P = S — N NG
2hi= a'l’ Q. 1 o' e o2 Owu
(14) ,
ﬁ By M Ly
b’ a' a?s ow
S a” (A2 az)’ )E: 1 GT.
O:—W((L b a : a’bl

Now since w=const., v=const. are the lines of curvature, the Gauss

equation becomes

5 > @ 1 s BH RGeS
Tl ol L : [( s
2 o 3 4 E ov u
1f oG N, gb BG’:I.
+ 4G{( au)+ v 9w

On the other hand

and

aila =Bl — —
v
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L 0 '_a@};

4G Qv Ov

whence

b o od B2 e Ol N
o Tl —apl et N T e
a [a ( s dv ] v O e 4K\ Qv )

SO 06
LG oo oy

+

and similarly

val o (s 1 o G \*
ARA } ,, ( )

b’ l: ( ) w A e 4G\ D

1 oF O°OG

W D D

fl
l
Nis

Hence the Gauss equation takes the form

it - e ol 20
LN=—G@G|d'(a'—b" —_ E| &b~ :
a' [a(a I owv ]+ o’ L ¢ _ s ou ]

Consequently it follows from (14) that the coefficient B vanishes identi-

cally.
Therefore the quantity
de, do_+dy, dy_,+dz dz_,
vanishes when and only when dv:du satisfies the relation
¢ Edw+7 G dv*=0,
which is nothing but
¢, =0,

Thus we have arrived at the theorem :

The tangents to the curves, on the first and minus first Laplace trans-

Jorms (the curves of reference being the lines of curvature) of a surface,
corresponding to the curves

(15) o BEdi*+7 Gdv*=0

on that surface are perpendicular to one another at corresponding  points ;
this property is characteristic of the curves (15).

The curves (15) form an orthogonal system when and only when
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so @ mnecessary and sufficient condition that a surface be inverse-isothermic
is that the curves (15) should form an orthogonal, system.

Similarly, a necessary and sufficient condition that a surface be isothermic
g that the curves (15) form an inverse-orthogonal system.

The curves ¢,=0.

14. In bis famous paper entitled “The general theory of congru-
ences,” Prof. Wilczynski(') treated the ray-congruence, that is, the
totality of the straight lines joining the corresponding points of the first
and minus first Laplace transforms X, and 2, of a surface 2. The
developable surfaces of the ray-congruence correspond to the ray-curves
on the surface 2

In the particular case where the Liaplace transforms are performed
with reference to the lines of curvature w=const., v=const. on the sur-

face Y, the differential equation of the ray-curves is of the form

(16) A" dw*+ 2 B' du dv+ C' dv*=0,

where

Al=—L ((L’/}'*——?£>=L a,

U

(17) ,4‘2 B =L 1|:(L’(a'-b”)+ ?;L ——a”_/)’:l—NI:(L’(/)’-—(L)—Q— 9b —a'b] :
D

U

¢'=N (@b~ ZZ’ )=—Nz(*).

3
The double lines of the involution determined by the ray-curves and

the lines of curvature have the directions given by

g Ldvl+z Ndv=0,

which coincides with

>
I
©

Thus we infer the theorem :
When the Laplace transforms are performed with reference to the

(1) Trans. Amer. Math. Soc, 16 (1915), p. 311 .

(2) G. M. Green, loc. cit., equation (9). [There are some misprints in equations
(8), (9), (14), (15), (16), etc. of this paper]. It is inconvenient, for our purpose, to use
Wilezynski’s original form.
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lines of curvature w=const., v=const. on a surface, the tangents to the curves
(18) o Lduw+7 Ndv'=0

on that surface wre the double lines of involution determined by the ray-
curves and the lines of curvature ; this is a property characteristic for the
curves (18).

We add the following two theorems which can be easily proved :

A necessary and sufficient condition that « mnon-developable surface be
inverse-isothermic is that the curves (18) form a conjugate system, in other
words, the ray-curves (16) form an inverse-conjugale system.

A necessary and sufficient condition that a non-developable surface be
isothermic s that the curves (18) form an inverse-conjugale system, in other
words, the ray-curves (16) form a conjugale system (*). .

15. Let the Liaplace transforms be performed with refereuce.to
any conjugate system u=const., v=const. on a surface. Then the equa-
tion of the ray-curves takes the same form as (16) also, if’ we take

a—{ll} a,_{l?} (L,,_{QQ}
i e el 05
b={2 v={5} =13}
and
ool e L
ou ov

Therefore if a surface be referred to a conjugate system and if o, T

be the Laplace-Darboux invariants of the equation

e

the tangents to the curves
(18)’ - o Ldv’+7 Ndv*=0

are the double lines of involution determined by the conjugate system and
the ray-curves ; this property is characteristic of the curves (18)".
On the other hand, the quantity

(}) The laiter part of this theorem is contained in Wilczynski's theorem : A
conjugate system on a non-developable surface has equal Liap lace-Darboux invariants,
if and only if its ray-curves also form a conjugate system.
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- ] o JJ‘ (Zl"':*i“r _\T(zi.‘;'
1/]5(,1‘ — % I du’ + 2 Fdu ’{?ij-r- (w’(h\

aQQ Yt 3 s R > { ) 3 1
has been treated by Prof. A. Voss in detail and called by him the para-
meter curvatwre (“ Parameterkrimmung ) (*). He said Ebenso
existieren im Allgemeinen zwei Richtungen, fiir welche die Parameter-

krimmung Null ist; sie sind den asymptotischen Richtungen zu verglei-

3 NT
chen....”. Now I can state the theorem :
When a surface is referr “onj » systes
i rface is referred to a conjugate system, the parameter cur-
vature vanmshes for and only for the two directions which form the double
lines of involution determined by the conjugate system and the ray-curves

Tkeda near Osaka, February 1919.

(1) Voss, “Zur Theorie der Kriinmung der Flichen,” Math. Ann., 39 (1891), p.
179.
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