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On the Theory of Approximating Functions with
Applications to Geomeiry, Law of Errors
and Conduction of Heat,

by .
KxxosurE Ocura, Osaka. &

The ohject of this paper is to treat the convergency of the function

2 (@) pal@t) dit

Rl e Bm@)=0 (e=ci=0),
T on (e, O)idi
when the positive variable n increases indefinitely and that of the analog-
“ous formula of interpolation, together with some special cases and certain
apphcqtlons.
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104 KINNOSUKE OGURA :

Convergency of apprc;ximating functions.

1. I will begin with the following theorem :

Theorem 1. Let ¢, (x,t) be limited, nmon-neqative and integr able ()
with respect to t in the domain a =a,t=0("); e bl
J’;x Cn (b;_t)‘dt

J& gn(m t) db and - It
Ja @n(z, t) dt @ ¥n (25 0) €

converge to zero uniformly for a=a,<a,=v=0,<b,=0b, when the posilive
variable n increases indefinitely.

Again let f(v) be an arbitracy function which ts limited and integrable
in the interval a=a=0, and M, be the fluctuation of f(%) in ai=a="0j
and 0 be a positive number assigned al pleasure.

If we consider the sequence

2 1] Jaf (&) @ (2, t) dt
v e b o, (2, ) dt

we can find a positive number N independent of x, such that

l‘f(.?())-——l"u [fkl‘)] ]<ML‘}(), )L>N

i the mterval a, =x =10,

If f(x) be continuous af a=a, (a<z,<b), then F,[f(x)] converges
to f(x) uniformly in the vicinity of that point (*).
Since

fof (@) @, (x, t) dt
Jo o (@ t) d
we have

Y BT ()] = Jo L (@) —=F ()] @n (, 8) i
J (@)= F,[f (@)]= R :

If we denote by I the fluctuation of f(x) in the interval a =a =06,
then

(1) Al infegrals in this paper are lo be taken in Riemann's sense.

KA

() Throughout this paper ¢ and ) are supposed to be any two finite numbers such
that @ <D, unless the contrary is stated.

(#) Prof. Fujiwara kindly informed me that the latter part of this theorem
can not be derived from a similar theorem due to Prof. Hobson. See Hobson, “On
a general convergence theorem, ete.,,” Proc. Liondon Math, Soc., (2), 6 (1908), p. 349.
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(2) f@—fOI=M, o=z t=0.
Hence

f (@)= F, [ f @)] | =[S @=f () | @ (2, ) dt _1[J9J:)W

Ja o, (o, %) d7 & @n (2, T) dt
— JM.

Now consider two subintervals D, (”u/’) and 0, ((1,.,, /J.,> such that

a = (( /(L”// /f)L_F/)

Then by the assumption

]./'(‘U}‘.f(/) | = M, @G =, =0, )
<0 that

’,;1' [/‘(")—/ ( ):I Cf" (;?:? lﬂ_ == '1[ .J‘:;: (rrn, (:C) {) (U
==ttt -
r Ji 0, (2, 0) di | ﬂqmmwdt
2 c,, (T z‘) db

=9l
for z in D,
Also from the assumption we can find

pendent of @), corresponding to any
that

a positive number N (inde-
assigned  positive mumber 4, such

e e — =
a Pn (@, t) df

aq&zﬂd& 2
n >N,
| Jo, LS @%ﬁaﬂcuzgd¢g<ﬂlhq”41 Nt _ o
| Jo n (1) dt | Nnlt)ds < 2
for @ in D),
Consequently we have
(3) |f @ —F,[f(@)]|<M,+0, n>N

for x in D, which proves the former part of the theorem.
Up to this point we  have placed no restriction on f(z) for con-
tinuity. .

Is continnous at == (u,(_,pb\b)

easure ; then we can take D, D, such

We assume now that J(@)
Let ¢ be a positive number at pl
that

= a,<aqa<b,<b =15 and M, <e,
Hence for a, =, < b,
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|f @)—F,[f(@)]|<e+0, n>N.

Thus F, [ f(2)] converges to f(v) uniformly in the vicinity of wz=2ay,.
which proves the latter part of the theoren.

Lastly let us turn to the general case. Since f(2) is limited and
= b, it follows from Lebesgue’s well known theoremy

integrable in a =2 =

that the points of discontinuity of that function form a set of measure
zero in the given interval. Therefore F, [f(v)] converges uniforinly  to
f@) in the interval a<a, = = b,<b, except @ set of points of measure
zero. :

9. Here I will add some simple examples :

I. Divide the square enclosed by (=0, t=1, =0, =1 into 2°"
=12 ) equal squares as indicated in the figure; and define the
function by ¢, (z,1)=2" at any point within the squares (including the
edges) along the diagonal z—t=0("), ¢,(z,{)=0 at any other point

within the given (large) square (including the boundary).

1 e Then
s e
Eesmnm B @) =0, O=n1=1)
EE e, __\ir i | and
‘ g
& 1 ) ].'»
. f‘c,, (@0)dt=1 when wx==- —
BT !
i k
: L =9 when o= =
N e 2
1] ClTu Clzz Iﬁz /‘411 (k: 1, 2, ...... A 2”"1).
If we choose a positive integer N such that
1 1
az—a1>“—é“N—a b—b,> o (O§al<a‘l<b2~§-_ 1),
we have for Ga=T=b;

611 On (Q!, t) dif = O, f}}l (7 (_’1}’ t) dt:O, n >]\T

Therefore x, 1) satisfies the conditions imposed in Theorem T.
n

II. As the second example I will prove the theorem due {o Prof.

Aviaar (2

We may take the other diagonal instead of this.

(1)
(2) Haar, “Zur Theorie der orthogonalen Funktiozensysteme,” Math. Ann, 69

{1910), p. 361.
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[.et us define a system of orthogonal functions by

o (8) =1 0=t=1,
/() =0 O=p=.2t 2
e e 2}{.
Lo o LR 2
2 2M [z
sl g . ¢
:__1/2”~1 HZ}_7~)7<£<, 72];'——17
2/1 i 211
2/L
T Ade— 2
S il
) O
e 1 1/27_’]"' o 2k
2 Tl _—:’_)'u,h
— {0} —:%']: =
(,1: T Dos e 3 ]g-—_—l, Dyeeenn 2”“1)
and let us put
KO (2, )= (&) Yy (£) -F ++eeee D () 7D () - ‘
n” (@ ) =70 () 70 (£)+ +1n° () 20> () + - +152 (@) 10> (1)-

td bl
LThen the sequence

N6 ICP (e, t) d

converges uniformly to f(x) in the interval 0<a,=ax=b,<1, except

a set of points of measure zero.
Since

EP (2,020, [ED(@Od=1 O=gt=1),

in order to prove this, it is sufficient to consider the value of the
s CR) e o s it : e 7
fu‘nctlon K52 (2, 1) graphically in a similar way as in the last example.
(See the paper of Prof. Haar.)

LI As the third example we may take the well Tnown integral of

Prof. Fejér():

1 Tel1é « TT 3 11 i s p L » =
(') Tejér, “ Untersuchungen iiber Fouriersche Reihen,” Math. Ann. 58 (1904), p. 51,
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sin—;—(l——-w)
dt, =15, - i

1
2

<in

(t—2)

In this case it is well known that

ot Ir 8111“({—@) :
o . dt=
n 7 .
. L smT(t-—z)
and
— -
s sin"_(t—z)
lim f | ——=— | @t=0,
n=w A .
2 i Sm‘l_(é——n;)
o 2
~ -2
an sin—({—2)
lim f | = dt=0,
o iy i el
sm—‘_)—(t——;z:)

uniformly for
O§(51<(12§$_S_:—bz<bx =2 .

; S ; . R ;
Therefore Fejér’s integral converges uniformly to f(2) in the interval
; R o '3 = L

0la, =2 =06,<2m, except a set of points of measure zero.

3. Next I will prove the converse theorem :

i : M
Theorem Ia. LZLet ¢, (2,t) bea function which is limdted, non-negative -

and integrable with respect to t in the domain a—=g 0. If

)= ffblf;(t) P (2, €) di /
a $n (2, ) dt

corresponding lo any function f(x) which is limited and alegrable in the

mterval a =z = b, converge to that function uniformly in the interval
a< o, = =b,<b, then both

L R AN AT
a Pn (.’E, t) di J’f‘, On (.’C, t) di ¢

(g=a, < a2§m§62<61§b)
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should necessarily converqge to zero wniformly.

In order to prove this, let ns take the function f(2) defined by

J)=0 == ==
S o Ay W<y
ay—
=— | O =0y
et Tﬁb Dy @ < )
b,—b,
:T,*.O [)]E .T_:E/).
Then
' [f(@)=f (D] ¢u (@, 1) di=Ja* ¢n(a, 1) dL, az >0,
oz =0 50,
by e
Consequently

A T2 g :,v_,__,,_,l,ﬁ,,, Sl a'l' x)—71 ()] o, (2, t) df v
I @=Falf @] ﬁ¢”%ww[ﬁ}ﬂJ.NM9d,ﬂﬁ+ﬁl

+ffi'3 +f?;1 +[" ]>f‘?: gfi” (‘T’,f) (h’ + ;:': 9’:” (.1,', f) (]{ :
an Ua J by a ¥n (51"1 f) i a ¥n (‘TJ f) ct

i

But from the assumption we can find a positive number N, inde-
pendent of @ (a, = w = b,), corresponding to any positive number ¢, such
that

f@—Ff@]|<s  n>N;

so that we have

0< _Ja* Pn (2, 1) (‘HQWL Jb @a(a,8) df

@ n> N.
Theslet)det & ke ldni

Since ¢, (2, ) is non-negative in the domain a =, t =0, the above in-
equalities show us that both

Eia) a7 @n (.13, 1) t and J"A, O (2, 1) (t ((L. s Z).)
a Pn (@, 1) @, (x, 1) dt ey

converge to zero uniformly.
4, 1 will now prove the gereral theorem :
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Theorem Il. If ¢, (v,t) satisfy the conditions imposed in  Theorem
I, and if f(x) be limited and integrable in a =x =0, then the sequence
F, [ f(2)] converges strongly (') with respect to any positive fixed exponent
to the function f(x) in the interval a =z =0b; that is.

(4) lim % | fi(@)—=Fou [ [ (2)] [P de=0

Jor any positive number p.

Already Prof. A. Hurwitz(*) proved this theorem for p=2 (and
7 being an integer) in the case of I'ejér’s integral. Ilis method of proof
may be applicable to the general case as follows:

Since f () is integrable (in Riemaan’s sense) in the interval D (a, b),
for any pair of positive numbers w, ¢, there exists a division of /), such
that the sum of the lengths of the subintervals of that division in which
the fluctnation of f(x) is >w, is<e. If we denote these subintervals
by A, and the remaining subintervals of D by ), the fluctuation of f(z)
is not greater than @ for each interval of D). Next take an interval in
the inner part of ecach subinterval of [);; and denote by 1), these new
subintervals aud by D, the remaining subintervals of /). TLastly suppose
that we have taken 1), such that the sum of lengths of the subintervals
of Dy is smaller than e.

Then fir any point of each subinterval of 1), {from (3), we can
choose a positive number .V independent of @, such that

|f @) =F[f(@)] |[<w+d n>N.
And for any point of cach subinterval of D, and A we have from (2)
|f (@) —F.[f(2)] | = M.

NOW fr.nn

)
i dx

/ VW @=Pu[f @] de= ] [ [f@—Fli@)
a D,Y D,

+ f+2
0,4 D,

A YA,

we obtain

(!) In the sense of Prof. F. Riesz. Sce F. Riesz, « Untersuchungen iiber Systeme
integrierbarer Funktionen,” Math. Ann., 62 (1910), p. 464,

(?) Hurwitz, “Uber die Fourierschen Konstanten integrierbarer Funklionen,’
Math, Ann., 57 (1903), p. 433.
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f” _/a(.i")—f':l'jﬁ(.r')l 1ﬂrl,1!<(ﬂ) +0"1J2.‘““])17;: ﬂ[}JZ‘I):mLJ[,"ZA /L>AV
ah D. A

D, ;
(1 r))" (b—a)-+MP et M?e n>N.

Since 0,  and ¢ may be taken arbitrarily small, we have

b »
mf f @)=, [f@)]] de=0

L=
=00 5

for -any positive number p, which proves the theorem.

Approximating functions of the form fu/ () ¢, (f—2) dt.
5. Recently the convergence-problem of the functions of the form

2 f@t) @, ({t—w)dt, or J2f () @, (t—zx)dt

has been the subject of numerous researches ('). I will now proceed to

establish the theorem :

Theorem III.  Let o, (1) be a function which is non-negative, limited
and integrable in the interval a—b =t =b—a and is such that

(5) li.llf""“"g,, (1) dt=1

n=coc —

uniformly in the interval a—b< —e, <0< e, <b—a.

If f(x) be limited and integrable in @= x = b, then

(6) F, [ f @)]=Jfaf (&) gu(t—) dE(*) (c=a=10)
converges strongly with respect to any positive exponent to the function, when
n increases indefinitely. :

Particularly if f(x) be continuous at z=wu, (a<lxy<<b), then the above

function converges uniformly to f(x) in the vieinity of that point.

(1) Lebesgue, “Sur les intégrales singulieres,” Ann. Fac. Toulouse, (3), 1 (1909),

p. 25; W. B. Ford, Studies on divergent series and summability (1916), p. 115; Ford,
« (On the representation of arbitrary functions by definite integrals,” Amer. Jour. of Math.,
38 (1916), p. 397; Y. Okada, * On measure of discontinuity and approximative represen-
tation of a function,” Tohoku Math. Journ., (1919), p. 1.

(2) or

fo (8) op (t—wx) dt
Jhon (t—wx)dt
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The Jatter part of this theorem is essentially the same as one given
by Prof. Lebesgue.
Y

Suppose that @ is an inner point of the interval («,®). Then we

can take a;, a, b,, b, such that

&

a=a<a, = b,<b = b.

But we have by (5)

/) h—m
lim f o, (t—x) dt=lim f o, (1) dt

il

B f Mo ({—2) dt=1im [ f * o (1) dt+ f "o (1) (N}

n=x e n=uxL (l—L
=1 —1=0,

: [i} 2 —Cy b—x

lsz ¢, (t—a) di=1im [f @, (t)dt +f @ (1) (.'Zt]

=00 b) n=% Z)l—m -
et i—0

uniformly for @, =@ =10, Therefore the theorem follows as an immediate

consequence of lheomm.:. I and IL

6. Next we state the converse theorem which is essentially due to
Prof. Lebesgue:
Theorem IIla. If ¢,

and integrable in the interval a—b={=b—a, and if

(6) Fy[f @)= 50f () gu (t=2) d

converge to f () in the interval a<<ax<b, for any continuous Sfunction f (x)
(a=a=10), then it must be

(t) be a function whicl is non-negative, limited

il Co QA1 for a-be-—o<0<o<ba

n=x (,

If we take f(x)=1, then from (6) we have

h—wx
lim f o () dt=1, a<lz<b.
a—x

n=w

Next let ns choose a,, @, b, b, such that ¢ = a,<a, =2 = b,<b, =0, and
take the function f(2) defined in §3. Then
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lim § f (@) —

n=2x1

,"*f(f)J(:”(/——a}rh‘+ +f f }
) by
—lim {ff O (E—1) ¢ /-{f (t—a) 17!:13

<0 that we must have

Fo[f ()]

. (£) di=0.

i (0, —@ s . bh—w
lim @, (1) dt=0, llm %
nN=uxr oL — n= , —

Cace I: O<e< (b—a)—e,.
Since a+¢,<<b, we can take a, and 0, such that
a=a,<a+e<ato+e,=0b<Lb.

Then

e '1:— -} h— ,.-1,—‘1
lim f o) rh‘:lim[ f G [0 dt:l :
=0y a

i e —(a+-c,) by—(a+ey)
—1,
Case Il: d=(b—a)—q¢.
In thiz case we can choose @, and b, such that

<

g == < a+e<b =b, a=a,<b—c,<2b—a—0—c=b=0b

T'hen

e b—(a+c b—(b—e,
lim f 0, (Z)(H:lim[ f R g (KT (t)dt]
n=»J —¢, (=2 a—(a+e,) by, —(b—¢,)

=1

w. Here I will add some illustrative examples:
I (@) If we put

@n (O)=n | t|e="",

then

1imfcgon (£) dt:-}—— for ¢>0
5 2

n=x
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uniformly. Since ¢, (t) is even, [, [ f(2)] has the form

—n (t—w)?
el

wliere @ and & arc any two fixed numbers such that a< 0.

In similar ways we can take the following forms as approximating

functions :

ff f)__,~ —z| t, alb;

1+9a (t )‘
9 n ( “_ll —dt, . a<b,
213 J, ]+n| —a |
ete. (1)

(i) Also the function o, (f), which is exc edingly simple, defined

by (°)
¢, (t)=0 -—CO<15<‘”‘*1—;
T
e L el
2 L

(1) We can find many examples of positive functions such that

C
lim g, (¢) =0. limf gy (t) dt=a positive finite constant (independent of ¢),
n=axr n=aw 0

in Osgood, Bull. Amer. Math. Soc, (2), 3 (1896), p. 69; Osgood, Amer. Journ. of Math-
19 (1897), p. 155; Hayashi, Tohoku Math. Journ, 2 (1912), p. 43.
(2) In this case if we take a=0, h=1,

1 1
33+-—~ T

2 n
Fn[f(t)]=ff(t) %z(t—m)dtzf F ) on (t—2 )dt:—Z ACEUT
0 L

n T
1
(0<——<m<1wik)
¥ pe
In other words, the approximating function becomes the inteyral mean of f(f) about the

point {=». If f(x) satisfy the Lipschitz condition

[f(my)=f (2,) | <A T, —, |,
then we can show that

0<e,, x, <1,

2
]
7

_Ealf @] = (0<—<oc1——)

THEORY OF APPROXIMATING FUNCTIONS. 115.

-

—0 =
i

may be taken for our purpose; and similarly for

|
—( <t oo
)
or
N0 ke L
on(t)= SRl
3 fivesst ona s
=2 p(l-n*tt) ——=t=—,
{ 7 1
=8 ——<ll<+OO,
n
etc..

II. The following are some classical approximating functions be-

longmg to our type:

b 4 ’ = A2TN p
& Jaf @ [1—=(—2)]"dt 7 - =1},
2 J5 (L —E)"dt
When 2 is taken to be a positive integer, this function becomes 2.
polynomial (Liandau’s polynomial in the case where a=0, b=1) ().
(ii) Trigonometrical polynomials :

2 sin — (t—a) §
ST 7 (t) 2 dt, (b—a=27, n=132-- ).
2nw ' sin —1-— (t—=)
a 2

(Fejér’s integral in the case where a=0, b=2 7).

fbf (1) [cos —-i—~ (t—w) t\-n ot
sz i:cos L}mt“
0 2

(!) Landau, «{'ber die Approximation einer stefigen Funktion durch eine ganze
rationale Funktion,” Rend. Palermo, 25 (1908), p. 337.

(b—a =2,
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(Vallée Poussin’s integral in the case where a—=—m, b=+m) ().
2 (t—n)?
(i) f,(f dt, (a<b)(*).
(Weierstrass' transcendental integral function in the case where a= —co,
b=+) ().

8. TIncidentally I will prove the following theorem whose application
will be found in § 23 below.
Theorem IV. Let ¢ (t) and ¢ (t) be even, non-negative, limited and

integrable in the inferval 0 =t =b—a; and lel %))A varies monotonously
S &

Gl nd b f(x) be a function which is

when t increases from 0 to

=

Limated and integr able in the interval G0 and

Fl<(or>)f@) when |a—2T0 | > l i
| = |

Then if ¢ (1) decrease,
¢ (1)

e e

2_—_c(or>)r(2E2),

ath a-+b 2
LVG 9 yt L¢@wﬁ_y

—

-and if - g incerease,
¢
f(i)gf (t-— “fl’ )dt RO (t—— 0 )dt .
2 < {ior )l b ot <(Ol’>)f( “:{‘ )

b
f go(t-u a—l—b)dt f”(r/,(t_ a+b)(_lt N 2
0 2 3 2

1 will now confine myself to the case where (ig) decreases when ¢
¢ \t)

(') Vallée Poussin, “Sur l'approximation des fonctions d’une variable réclle,
ete.,”” Bull. Acad. Belgique, (1908), p. 193.

(%) Ford, loc. cit. (the latter), p. 401.
() Weierstrass, « Uber die analytische Darstéllbarkeit sogennanter willkiirlicher
Funktionen einer reellen Verinderlichen,” Sitz. Akad. Berlin (1835), p. 633, p. 789. See

also Maurer, ¢ Uber die Mittelwerthe der Funktion einer reellen Variabeln.” Math. Ann.
47 (1896), p. 263: Lebesgue, loc. cit, p. 91.
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; . b—a A Bor 4 ¢ ' Ty
increases from 0O to —— and f(;“t'l)(/(.r..) tor |2, — & ',,),;‘); J);—‘(f 255 =
2 ' el | IR e et

1 I
N : ; a-+b a=b . =il
When ¢ anereases from a to i N — i increases from ——-—% +to
2 2 2

95(/_ ((,—‘:—-/j)
2

0; and since ¢ (f) and ¢ ({) arc cven, increases monotonously.

Moreover f(f) increases mounotonously when ¢ increases from a to

Congequently by an extension of Tchebycheff’s inequality (') we have

a+h a+ 1,

= atb
fa J() ¢ (f—-———?—) dt

R e N N e S I gt

a-+l a+

f | g"(z‘,——a—?:b—)dt f : gp(i——(ii;u/)—)dt

—

In a similar way we can prove that

f' )¢ (t_-_‘”)‘b )dz f _7’(t)ga<t—_‘fj}i>dt
a+h 2 at+b :
<

-~

- 53
] (‘p({___”’__*—!)__) dt %

f 2 ‘f"(ze—M)dt:f’ ‘F(t—.ﬁi)(lc
@ Sb 2 (L'*'ﬂ(;l" 2

we obtain

7] j
ool R
: 2 = o

(1) Correspondance d'Hermite et de Stieltjes, II, p. 193 (The Iletter of
Stieltjes, dated December 2, 1891). See also Fujiwara, “ Ein von Brunn vermuteter
Satz, n.sw.,” Tohokun Math. Journ., 13 (1918), p. 231.



118 KINNOSUKILE OGURA :

Lastly since

o 7.( (t-i}-]

). o=t - =

we have

which proves the theorem.
For example, if we put

A=tF _ g@=—C"TL_, @>0)

0 ()=

2p(1—6)dl 2(1—-eyds
we getb
e(®) _ J(l=t)dt oy e
s(t) St

. i _|' S
which increases monatonously when t increases from 0 to 1. Hence

ff(i) t~]7)d¢§ “ j “‘f(f.)gy({,_%)(“
fu(t—-—_})_jdf - 7<7) S

+ Again if we put

¢ ()=

fl d'(,——1_> i
: 9
O —

(1 )n+1 &)= — (l LS s (n>0),

..‘)j”(l t)ru-l([[ QJU(I_—t)" (t ’

we obtain

R GRL
)n+1 Zt

@) _
d(t)  fi1—

which decreases monotonously when ¢ increases from O to 1.

=0

ol 810 ,d;(t__%_) dt
e
fo (t—§>dt fog,(t Q)dt

9. Now we pass to the differentiation of the function

fbf (t) Cn (t—'m) dt.

Let @,(t) be a function which is limited and non-negative, and has the

|
|
:
|
|

Therefore

THEORY OF APPROXIMATING FUNCTIONS.

S ]

iy s . r Bl : -
CONLINUOUS f/!’/'f!‘((."/l‘t (7 (f) m a—>b: =L =0—a and moreover POSIESSECS

PToJI /'f‘.'/

f=Cay
(5) ]E:n[ ) @, () di=1,

uniformly.  Again let f(z)

a—>b —C < (»)-_‘i{‘:ry’rjj—-—((

27

have the continuous derivative ' ()

i -

a=x=/.

Then from

(6) LS ()= f FO on(t—2)dt, a=a=,
we have
I SR
= P [f@)] 0 (t—2) dt.
dz

Since

h 5 t=0 b L a
f J (;Z) (f—( Jz‘-—‘i/(/ f—r):l —f Tl
a > t=c a o a‘?‘.

=10)¢0~2) =) (o~ [ )

0, (t—a) dt

?t oot —2)

we obtain

—

119

{‘/If'

11

r/l’,

= ] : b _ ; "
M 2 Fli@]= [ r@gt—o)it+fia)ea—a) —)gus ).
o £

But by the assnmption that f(2) is continuous in the interval as=n—b

we find from Theorem IIT that

s [ 1 0) gult—2) di=F" ()

n=w .
uniformly for the interval a< @< b ; whence

(8)
lim 2P [ f)] =) +1im © P A=) =)o~

n= 00111_ Nn=0m

From this we have the theorem immediately :

Theorem V. Let ¢,(t) be a function which satisfies the conditi

cited above and further
lim @, (t)=0 (")

n=0w

NS

(1) See the foot-note in 7 8, I (i).
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uniformly for
a—b<t<cO and O<Li<b—a.

; smivative () 2 <x=0, and put
If f(x) have the continuous derivative ' (x) in a=2=0, ;

F,[f @)= f 7(t) oult—1) dt

then
Tt i B e ] == £ (o)
1 =~ [

N= o e

uniformly in the interval a<x<0D.
As an example, if we take

- /
i ——
1 2

o {t)= ‘i
(r’n() o 7T L Rmf J
2

s (=0 =y

R r<l< 0, O<ic 2,

we have
' lim 0,()=0, —27<i<0, 0<i<27
NnN=w

uniformly.. Hence the approximating function [the first mean of Fouricr’s
series corresponding to f(v)] has the properties

lim .l f@)l=r(z), w2,

= Blrol=r (=), O<e<2m
ox

Iim

n=w

- : - = =9
- . . y 1 - '____"L___ 7[’.
uniformly, provided that j/(z) is continuous in the 1nte11va.1’ OT ==
This is the result which was already proved by Prof. Fejér ().
As the second example, if we take

go.,,,(t):\/%‘(l—t’)”, O==i=1,

we have

lim ¢,()=0, —1<t<0, 0<t<]

aniformly. It follows from this the following theorem at once, Whi(ﬂ,l
was shown by Prof. Vallée Poussin(*): If L,(x) be Landauj

(1) Fejér, loc. cit., p. 61,
(2) Vallée Poussin, Cours d’analyse infinitésimale, t 2, 2. ed. (1912), p. 129.

THEORY OF APPROXIMATING FUNCTIONS. DA |
j-)f//.l//Ir')lflz'r,(/, then
lim L, (v)=f(2), izl
T L
s l F PR
im —— L, (2)=f"(»), Qa1
N=1r f/,/,'
- '{’. 1. ...7!,1 5% o y o iy Ma 1 | 5 3 vy e
untformly, provided that f/(x) 1s continnous in the interval 0=2=<1,
g1 IS PR 0, (t) be a function which is limited and non-negative,
and has the continuvous derivative in a—b=t=0b—a, and moreover P08sesses

the property

W=

Innf = Oplidi= ])' , a—bl —e<l<e,-

=0 iy
(.1 pad}

uniformly. Let f(x) have the continuous derivative in a=az=0b, and moreover

let lim — F. [ f(x)] exvist. But f'(z) is not equal to lim (l F [ ()]

n=w» v i

throughout the interval a<<w<b in general.
In order to show this, take the upper half of the (f, v) — plane, and
consider the parabola passing through

(1— L ,O), 1, (1+_1_,0>
n n

and having (1,1) as the vertex.

Draw the two circular ares which

Y touch the parabola and also touch the ¢—
G ¢ : 27 2
; T1 : axis at (1— = U) and <1+—-, O)
i 7 n
Dfilg Bfi{p :
s 00, I ;] = . Tespectively ; then construet the curve

EE X o A1lE

0ABCDE® as indicated in the figure.
This curve combined with its image —coE'D'C'B'A’ with respect
to the y—axis is taken for the graph of the function

Y= (1), — 0 <1< + 0.

Then ¢, (¢) is limited, even and non-negative, and its derivative is con-

tinuous, and

lim ¢, (t)=1 =
=0 1i}¢1;
and
u.nfc;rr,;(z) dt=0 ¢==0
ne o 0



§.29 KINNOSUKE OGURA :

uniformly (' ).

Now define the function ¢,(f) by
—{2 y 7
¢, (l)=n l { l i ,d'n U)

Then ¢, (¢) is limited, even and non-negative, and its derivative 1s con-

tinuous, and

lim g, ({)=1 o =1
=() ==
and moreover
]imf @ (t) r?t:—‘];r, e >0
N= o 0 2
£ |
uniformly. Consequontl_y (8) becomes
Iim Fal ()l =1"(z) when | 2 |==1
n=o. (I

when [ @]=1.

SidE EA0) —F(1)
satisfies the conditions imposed

Then the

II. Let ¢,(t) be a function which
in 1; and let f(z) have the continuous derivative in «=x"=b.

— does not converge in general.
dw
To show this, consider the function y,(f) (n=1,2,----- ) such that
Yn()=¢m (@) defined in I above when n=2m ( > )
T=y Ay view oo 5
=0 | when n=2m—1
and put
ou=nt] e £y (1=1,2, ).

Then ¢,(f) is limited, even and non-negative, and its derivative is con-
tinuous, and moreover

hmf ¢ (1) dt._m c ¢>0

(1) We may take

_1{ "( ) Zhl =
=g (1tos[2(121-1)]} for 1-2T = =142 =120,

2 2
) for 0§|t|§1—-7}-h g :—-<it|<+oc..

instead of the function defined in the text,

THEORY OF APPROXIMATING FUNCTIONS, ]

Lo

nniformly ; and

lim ¢, (1)=0

i oo

(1) oscillates

when } { }:_1:],

between O and ]

[
when | |==1, - Folf(@)]
o '

but the sequence ¢, when |¢]=1.

(1”.11( =) r . - AP \ % i) B 4 \
( 1(1[1(1111} z(;][\‘_l:(i"(., 1.) / ({'l, on

the contrary when | |=1, this
7 (@) -+5(0) = ().
11. On the other hand I ecan state the
Theorem VI.
of § 10.

sequence oscillates Letween f/(z) and

theorem :
Let o, (1) be a function which salisfies the condilions

vposed in If f(x) have the continuous derivative in the in-

e d

terval a=x=0, then ——
dx

ponent 1 lo the function f'(x)

. ])
[im
nN=uxr (’r.,

Since f’(z) 1s continuous in the interval a=x=5b, it follows from
Theorem I that, if we put

ol ()] converges strongly with respect to ex-

in the interval ala,=0=<b,< b; that is,

-;ﬁlmf@\ rqqru~o
L

(¢

[0 eut=)dt=p @) +7,0)

we can find a positive number N independent of « (a<a,=2=b,<b),
corresponding to any assigned positive number ¢, such that

| 7 (@) | <, n=> .

Hence we have from (7)

)

9) |l f@)]- f’()1 <+ @] eula—2) +]7O)]- gu(6—),

A<= = h<.0, n> N.

Now from the supposition that

S pnes ‘
lnnf Pa(t) dt=1, a—d< —e,<0<e,<b—aq,
=y

N=co

we have

]un] ¢p(a—a)de= —lim[fc2 @, (L) di -I-fm-—h2 @ (t) (HJ
R=wn a—da, C, ;

2—1—}-1:0;
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and similarly

b
1imf ‘¢, (b—w) de=0.
(1

n=auan [-.3
Hence
b, PR
limf)’ 4 Fn[f(:r)]—f’(.p)‘([.v_:__s(/)._,——ai).
n=o @, (614

Sitce ¢ may be taken arbitrarily small, we obtain

. l}'.)
lim
NnN=<x a5

which proves the theorem.

Farther we have the theorem :

Theorem VIL Let ©,() be a function which satisfies the conditions
imposed i 1. of § 10, and moreover let

,ﬁ;f‘ 7.[ f(@)]—f() i de=0;
L

le, @) ]| < K for a—b<t<0, 0<i<b—aq,

where K is a finite constant independent of n and t. If f(x) have the
d

continuous derivative in a=x=0b, then F,[ f(x)] econwverges strongly

iz

with respect to exponent 2 to the function f'(x) in the interval
A g —b< b

And there exisis a sequence of positive integers

Ny <My < evenen TNy v ;
P [ f(x)] converges to f'(z) essential-uniformly in the

for awhich
dx

anterval a<la,=x=20,<0.
From the inequalities (9) and

lo. () |< K for a—b<i<0, 0<t<b—aq,

we obtain

{

L R L@~ @)

dx

<&+ 2: K[| ()| + ]SO+ Q)| nla—a) + | fB)pnlb—) 3
<+ 2:K[| fla)]+| /(0)| ]+ K| fla) pala—2)
+ 2K f(a)]-| /10)|- eula—2) + K| fb) P ¢u(b—2),
a< ai—=1=0,<b; n N

THEORY OF APPROXIMATING FUNCTIONS. 16245

&)
Ot

But since

. 7’2 g < ; b,
]lmf @y (_(!.—;7‘) (7,z::1]mj 5 9’,[(/)—9,‘) f[.??:(),
(¢ (877,

N=x ) 3 nN=2x

we have

" o
lim
N=7<w f!‘)

1.C.

lEd e Sl T TN ;
L Rif@)]-f (,r)‘! Ao =]+ 2K fa)| + 10N} (b

1' ])z (] ; ~ ] U
| e ] ) T B
””j | dx £ [.-”," )] —J (r) ( .

=< 9/ |
2
which proves the first part of the theorem. In other words,
T]',,[f(.v)J converges on the average (in the sense of Prof. E. Fischer)
o
to f'(x) in the inlerval a<a,=x=0,<0.
The second part of the theorem follows from this immediately by =
theorem due to Prof. Weyl(').
12. T pass now to the integration of approximating functions.
Theorem VIIL. Let ¢,(t) be a function which satisfies the conditions
amposed in 1. of § 10. If f(z) be limited and integrable in the interval

=20, lhen f Fo[ f(x)] de converges uniformly to j[ f(x) de in the

interval a<a, v<D.
If we put

f T di=¢ ),
a<io—=w<b,

j : e (t—a)de=D,(t, x)

F(® is limited and integrable in a=%¢=5b, and hence ¢ (f) is continuous

in the same interval; so that

f ) Dty @) di= [94 OXAG J} = f () fjg- (L, ) dt.

a a
But since

]

On (f = Cb) dx
T

*‘;ée—t“ wn ({‘7 ’U) :f:_‘"a@z_ Pn ([‘—Q:) de= .—‘f:

=@, (t—a)—¢ga(t—2),

(s Weyly & Uber die Konvergenz von Reihen, die nach Orthogonalfunktionen
fortschreiten,” Math. Ann., 67 (1909), p. 243.
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the above equutiou becomes

f"(;, (£) @u(t—2) dt :f'f(/‘) @, (t, x) r{H—f & (1) @n(t—a) dt
a a

@

+ ¢ (a) @, (a, x)—¢ (b) @, (b, @)

Now
lim @,(a, z)= li_n:frgn (@a—a) dv
= —lim L[ i 0, (1) JH—f (h‘]
n=o| Ja—e
=—14+1=0;
similarly

lim d)n L{), ;l..') ==

n=x

Since ¢ () is co:tinuous in the interval a=t¢=0,
b
f 6 (t) gu(t—a) dt
a
converges uniformly to ¢ (v) (a<<z<b); consequently

limfb(,’i (t) op(t—a) di=¢ (2)=0.

n=w

Therefore

lim j F(O) @yt 2) di=¢ (2)

aniformly for a<<@x<b, which proves the theorem.

Convergency of interpolating functions.

13. Take four fixed numbers a,,a,,b,,b, in a given finite intcrval
(a, b) such that
a=a;<a,< b,<b=b;

and let us put

b—a . .
h=a+——12, 3=0,1,2 ....0m;
n

and determine positive integers p, p., ¥, ¥y such that
by = @ <l +1,
tl’1<b]_§tll+])

t.u']_ §(tl<tl“] +1,
tyz <62:<_§tV2 +1’
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] I

these integers being functions of . Lastly let 7, 7, be two fixed non-

negative integers independent of o ( ).

Now I can state the following theorem after the analogy of Theorem
[ and T :

Lheorem IX.  Let ¢,(x,t) be limited and non-negative in the domeain
’15:~f’, Yl;[) and let botl,

K i

A
'\' @nl, f, ) 2 Dn (.?,!, t
',yn : L=V *:'-1
S and =
” _|/1 ; ’:B—")/t
. 2 ,ﬁn(l’; !,) . > Oy (.l‘, {
==y Y=Y

converge uniformly to zero o=t y=x=0b,, when the positive integer n
increases indefinitely.  Again let f(x) be an arbitrary function which is
limited in the interval a=x=0b, and M, be the Sluctuation of f(x) in the
mterval o, =x=b,, and & be a positive number assigned at pleasure.

If we take the sequence of interpolating funections

n—'y ( ) (
t) @n (2,

(10) ?Fn[f (')] T 1_?:)7
e

L=,

we can find a positive integer N, independent of x, such that

(@)= Tl f@] <M+, n>N

. the interval

IA

a,

;L'—E—b. 3

)
“

If jf(x) be continvous at x=w, (a<2y<D), then W,[f (@)] converges to
f(x) uniformly in the wvicinity of that point.
Since

I?.--’y

2 f(@) ¢n(z, £)
f(l) = ‘=% )

n—7,
\' o
S @, ('7’) ie)
b=90
we have
(1) We may assume that
o=ty Tl =Snsy,.
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=7y
2 [f@)—ft)] gale, t)
’ i ~ 7 v :lyl‘ X
f(/L) s yﬂ [.I’ (I)] = n—y, .
> @0, (2, ,)
i:'yﬂ

Let M be the fluctuation of f(a) in the interval a =a=0; then

i@ = o =a—~0b;
so that

R el =M, - a=a=0b.

Also since

e == o =c=0b,, pm+l=i=y,,

we get
Vl., y!T
o= 1[f (@) =f ()] ¢n(a, b) f o (% 4)
I:;,Ll—i— <J|[ V=, +
n—"y EEeh 1 n-—-")/l e
\‘E : (,9;2 (ﬂ"p f:) -E' SI:’” (Q", {r)
i:'yt‘) ' ?.':’)’.,

ol —a=—0,.

But by the assumption we can find a positive integer N independent of
Z, corresponding to any assigned positive number 0 such that

‘u':]i 7 #11
2 [F@)=f0)] gulart) 2ol
V=%s e éﬂ[ — < ) ;
| S (il 2 on(z,ty)
E i‘:'yu Z=‘y“
ﬂ’_,-‘yl n—:)’1
§ 2 [f(fv) —f(fi)] Pn (CU, ti) : = Pn (:L', ti)
Z=V1+1 <MQ’=V1+1 <
91,—1,1 == 'n,...:yl )
: 2 Sﬁn (fb‘, t!) X 2 san (Q"r ta)
I=9, ¥=%o

in the interval a,=z=05,.
Consequently
| fl@)— Z,[ flz)] | <M 406, n>N

for a,—=r=—10,

The Iatter part of the theorem can be proved in the same way as

in § 1.

=M,

n>N

GBS

A i

THEORY OF APPROXIMATING T UNCTIONS. 1

1D

j

Lheorem X Tf @, (@, t) satisfy the conditions imposed in Theorem
IX, and if f(2) be Umited and integrable in the nterval a=w=0b, then
the sequence [ f@)] converqges strongly to the Sunetion S(x) with respect
to any posilive exponent in the interval a=x=0b. Also the sequence con-
verges wniformly to f(x) in the interval d< ==l <.}, c.v;('(y;\l a set of

2=

points of measiure zero.

As an example, consider the funetion

et e e
S =———{f—m i
I 5 (t—x) |
O (2, 1) :J e when « @=k1,
M Sin — (t—2a)
foi o
2 = <3
=1 when = a=t;
and put
Ny = A
W= Sh==27r, y—— o po—=1 ri=0
n

Then it 1s easily seen that
Ti
N R
< @ feil) =1

Next for g (v) and 2 such that

/ -
by =0 <G =0 =0,<b =, ,,

L=

we can find a fixed positive quantity @ for which

|
| sin — (6 —2) | > w.
2
Hence
e by L
s S — (,—) i y
1 3 2 . 1 i *
e Z Goamrame e il >, |sin — (L—2)
e : o' - 2
=1 YR (is‘—-’l-') =it
2 \
L =
w0’ w*n

so that

n=r

Mq
Litn E‘ @, (o) =0, & et
o

uniformly.  Similarly
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w
i R e =0 =,
N=rcoo - &
t=v, +1
uniformly.

o

Hence we have the Jormula of trigonometric interpolation :

e e R S b
. . Sin — oot
ey . ) 7
V[ F@)]= 2 f( ) 2
= 2 n sin ! ( 2 7') j
a2 n J

which is due to Prof. R. D. Jackson (1).
14. As an application of Theorems IX and X, I wi
tollowing theorem which is analogous to Theorem IIJ -
Theorem XI. Ie Cn(®) be mon-negative and limited in the interval
e b—a=0b—-q and hyk be any positive wntegers which satis

@+ réth.} Zlﬁ».“ng __0:

2

Il establish the

Y .

7,0 leing any assigned  simall positive

there exists a positive integer
- giwen arbitrary

numbers.  Moreover assume that
N independent of h,
positive quantity 7, such that

(11) /1—- j‘ g,o,z(v—# 04 -z)

t= =]y n

k, corresponding to «

<7, n>N

Jor

Uil =g —=() (or D=0 il )
n )
If f(@) be lLmited and integrable in the interval a=2=b, then the
sequence
77.-')'1
(12) V.l f@)]= Z JSt) ¢u(ti—w), A==
=i

: A

conrerges strongly with respect to any positive exponent to f (). : !
If f(x) be continuous at T=2 (@<ay<d), then the abope sequence

converges uniformly to f(a,) in the vicinity of that point (),

Suppose that @ is an jnner point of the interval (@, 0). We can

(1) R. D. Jackson,
{(1914), p. 371,

(?) Compare with Jackson,
39 (1915), p. 230.

“A formula of trigonometric interpolation,” Rend, Palermo, 37

“ Note on trigonometric interpolation,” Rend. Palermo.
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o
—t

% = / < !I}
) > ~ < M< , < B¢ ;
» ] 1 o (l (f /)‘ /). “1“‘1] ‘ll:l! (L 7(11‘7(" “A M“-' Y [
1‘11 ) l;”ll\ [l_;(", ]”‘»:“IQ']‘ iy ) b 1 b '

4

> 3 D8 T k. l(:*
! / [V Vs Y as 11‘(,‘,[(1)1'(' (\'Q ')’)- \.()\
anda 1]1(‘}1 l"“)ﬁ',-’ y ~1 I Y

L =gt

e {3
then
(l’—/l
T
) sue hat
If we choose 3 and o such tl

=
e A, el S e
4. 20 «a (l ¥ 0 /1—//. ‘2,':-3'1; /)a /)‘ fip s
=~ il O G0y 7 2 3
a,—a< 2t 205 G,

tive intecer m, for which
and take a positive integer n,

Dy v,
t >a _:F‘/ { 7 2”.’_;’9 /a—r.» f)‘_"T.r; - )
Fimit M = ==
then e R
((‘r‘*:' }"’\ﬁ(’_'_—}":fi—” s ".!“\ )
At <Aty =0 =+ by~
N =
N
z /)—(l; /:S_Z)——(U,_.‘—ar)</)""“;
— {"11-1'1—}&_ ‘n-719. 5 =

o e
at+y<Lattha—G=0+b1—b,

[ R D)
s pe K= e ==

A= n

n>N;
at 1s
- t t t . <b—0, n>mn.
a + ;’< L)."Tu )y Yn—-1ry1—AN A—Hq—

0 0 Ln--[ )tr 011
O

| ’ ® ), such
Jonsequently U e of m), e
iti(‘:r(:zl incieoer N independent of 4 (that 1%, indeper
PABLE g
that
N—7,—A ‘ b—a i]
‘ L= 2 "o"[(t‘—:b)_i- n
) i=_(7\_"“0)
n—1r; ’n) .
j— <7y n>N(> 0/
= 1— Z‘ gpn(t‘ ’L)
i=7,
so that - :
lim Z Qon(tl"'"w):
DR,

uniformly for a,<a<b,.
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Again
n+r,—A
T b
1 { (‘—"\';1{({{’—7)—1\*
el A )
n—r, F
=l E ‘ &
1 . 9'2(111 2) i\/v’ 7L>
t=u,; +1 )
whence
n—rl
e S5 o
n=n:, : ‘F’n\(ti“l): 18
- L=, +1
uniformly.  Therefore
mq n—71 =

nN=w .
=00 n=w 7 "
)

uniformly for a,<z<p,
In a similar way we can show that

=71
lim E \ Oulti—2) =0
n=wp

’r-‘—DJ_-I-].

uniformly in the same interval.
m
Thus the theorem follows from Theorems
Lastly we remark thas when @, (2) is an
Dy ;

replaced by

1 k
) 90(@ g
2 o

n

15. Here I will add some illustrative ex
I Take the function defined by

1

=0 = st

—_—

v
On (=)=, (z) ;

and put a=0, p=1.

Then for O§v<i and —1—-<r, 0 we have
n

n

i)'<‘7, n>N, 0=v<

O_.S_n:<_1_,

A< 1)._,

T =

li 5 Sl :
1m Ot — ) =1im Z Ot — ) —lim 2 Oti—2)=1—1=0

i=pg+l

IX and X immediately.
even function, (11) may be

b—a
n

amples :

1,

lIA

iR
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k )
S Y = N
where 0<y = =it et

n

independent of £, such that

k "
il it
24 PP T o St

i=1
The interpolating function 1s

s ‘_w”%:’ 7 2 ) _2‘) O'{"{:l(i‘)
T @= > o), == T

i=rg

IT. Next if we put

' 1 ‘ T e e Ot
(,‘,‘ll (2) :—'——( [1 T (.():_.‘:2— = =

— 4 7T 4 9T i
1‘1(,)1‘ 0 S_ O e 125 s 2 S e é s 7 7T,
e A 7
47 : 4
— () for <ol 2m——ry
7 i

(frll( i :IU) = (,:n ('T‘) 3

/\ji[_< -0 we have

= 7
and put a=0, b=2m, then for 0 =1 -
£ ) ks 1
_'/_L'I / : ARy =
Z I (@A = ,>:”‘”U)—I—S{‘ﬂ<i "I'_'_’) i
: n n %
i=U
where
Qmk
e el

S : " ek i
whence there exists a positive integer N independent of & such th

iﬁ (T | 2%7:): 1
izul 997? 1 n 2

Consequently the interpolation formula becomes
2 ﬂ) 0=2=27,

r 1= 200 )0 (5

1=7

A;I;l; then ‘Fn[f(‘-b‘o)]——-'i,‘[f(j:")'*‘f( A;:l )]

n> N.

(=]

A
(r) It T(m‘,(
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which is essentially the same as one used by Prof. G. I

Taber (1).
1yl Lastly let us take the even function
SULp (1—a°)"
() = .

2 Z (1—=¢7)"

and let

- ]
a=0b=1; =" 7=0, 7n=0
n
g' - —_— 7 1 — i“ ~
omee 0 =v<— and then { =v+—<t,,,, we have
n )
k+1 A K
) s D e
Seutr< Sen(v+-)< 3 g0
=1
L\U“'

' Z(l—f 2_ (1_f
2’:;,0,),(‘1{;): =0

ATy fﬂ'n-i-L
n
i={) 1 2\n N ¢ 2\n
2 30— 23—
4 i=0 i=U
If we put
_ O =g 1.
then

Z(l V& Z<l—- e <n(l—s)n

i=k+1 i=k+1

On the other hand

n

: » T -
2air=2(1-1)% 2 (- 1)
i=U i=0 n- r'.:U n”
>[|/H](1— )
n
where [IVn ] denotes thc integral part of pn . It follows therefore
that

520 - Cal WS TIPL, S

22(1 oy 2[Vn] _757);

so that there exists a positive integer N independent of %, corresponding
to any assigned positive quantity 7, such that

(1Y) Faber, « Uber stets konvergente Interpolati>ncformeln,” Jahresb. Deuts. Math
Ver,, 19 (1910), p. 142; Jackson, loc. cit. (the second paper)
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[ A l

IR e e
! Pl e "-(f')JI 7 >0

A

The same result is true for X ¢, (4), since
=1

A
@y (t)=2 i (t) S—'”(f’n +1) — @n fifr"-

Consequently the same conclusion holds for

“};‘(Tr11<’.”;* / ); (()‘(3(1 )
i=0 7l e T

1
Thus we have
to Mr. W. G.

arrived a

Simon ():
_"./‘( : ) P —(J__.,-H
s e i=0 ) M B
o ,,Lf (= J - ‘! o b (0 =z ==l
2 ¥ 1_(L,>' |
A=Y i

It is evident that the mode of convergence of the above interpolation
formula is equivalent to that of

e
i=0 ”. % ?VP- ; :

Approximating curves and surfaces.
16.

(13)

where @

Consider the plane curve € defined by

v=2z (¢), y=y (9)
(¢) and y (#) are limited and inlegrable in the interval a =0 =10
and denote by D the closed least

convex domain which econtains the curve
G et @, (0,0 (=12,

------ ) be limited, non-negative and integrable
with respect to ¢ in the domain @ =#6,{ =10 ; and let us put
v a ﬂ nHi(i’t # v :;? ﬂC, 6,{(Zf
I, [a, (6)]:_-_,;(“_% _(_) . ]fn[y((g)]: J {,( y z( )
5 O (0, 1) dt fo e, (0,0 de

Then it follows by Weierstrass’ theorem that all the approzimating
curves (), :

(19  2=FR0O)] y=F.@E] 0=12

(') W.G, Simon «A formula of polynomial interpolation

," Annals of Math., (2) 19
(1918), p. 242,

t the formula of polynomial interpolation due
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ave contained in the domain D for a =6 = 0.
Let us now adopt the definition:  The distance 0 (K, I) of two
eurves

K a=—7 (0 y=y, (9), (@=10=15)
and
TG &=, (0); Y= (0); (=0=1b)

with respeet to the parameter 0 is measured by the inteoral

f V[ (0) —2:(0) + [0 (0) —9.(0)F 9 ().

Then the distance of € and €, with respect to 6 is

3(6, C=[ V12 @)= Falz O+ 1y O) = 7. [y 01117 8.

Since we have %the inequalitics

0=V"{x(0)—L,[x )]+ {y ) —F, [y ()]}
= |2 (0)—F [20)] |+ y(0)—F. [y (]|,

if
e g a0 0dE
b =
n=w ja @n (H, t) i n=w J;g‘“_ (6’ l‘) ot

uniformly for a = a,<a, =6 =0,<b, =0, then by Theorem II
lim Jalz(@)—F,[z(0)] |d 6=0,

lim fo |y (0)—F,[y(6)] | d 6=0;
so that
lian 0506 C,)=0:

N=5%
Thus we get the theorem :

Theorem XII. Let ¢, (0,t) be limited, non-negative and integrable
with respect to t in the domain a =0,t =10, and morewer let

lim S BOID o g S (00,
n=®w fa @n (6; t) dt n=w 2" sgn( 3, {,) ot

(1) The distance § thus defined satisfies the following properties :
1. 3(K,, K,) becomes zero when and only when
x, (0) =, (0), Y1 (6)=Y, (), (a=0=0),
except a set of points of measure zero. -
258 (K0 5 B = o (R0 TR )
3. (K, K,)+3(K,, K)=5(K,, K,).
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t)

rx : £ = 5 [ EEANE I T
uniformly for a = a,<a, = 0 = by b, ="0. Then the approximating curve

C', lies in the domain D ; and the distance 0 (C, C,) becomes zero when n
inereases infinitely.

Further we will adopt the definition of Prof. Fréchet concerniug
the limit of @ sequence of curuves (*). Then from Theorem [ and Préchet’s
theorem () we can infer the following at once :

Theorem XIIL IF ¢, (6,1) satisfy the conditions imposed in Theorem
XII, and if «(8) and y (0) be continuois throughout the interval a = 0 =0,
the approximating curve Gy tends to C when n increases indefinitely for
ate=0=0b—¢ = being an arbitrary small posilive quantity.

Some parts of Theorem XII and NIIT were already obtained by

Prof. Fejér (') for the approximating curve

i sin " t—6) |
T= — ; (T o l[f,
2n r:_[, ® i
S1u) — (t—10)
K . (”:1, 2‘ ...... )
C i =
sin— ({—46
1 2 = (t—46)
Y= R y (1) = dt,
T sin — (t—6)
2 o

o

17. If we apply Theorem XII and XTIT to the rational curve
Jha (&) [1—(0—=0]" dt

A —
A=

Ri=@=trds
(15) (n=1,2;-— e
Sy [ —E=0]
e
(8 7, II), we obtain the theovem :
Theorem XILV. Any plane curve C defined by
n=2a (8), -.1[:.1/ (5), (Oggél)

ean be approvimated by rational plané curves (15) which are contained in

the domain 1.

(1), (%) Fréchet, < Sur quelques points du ealeul fonctionnel,” Rend. Palermo, 22
(1906), p. 55.

(1) Fejérx, Uber gewisse durch die Fouriersche und Laplacesche Reihe de-
finierten Mittelknrven und Mittelflichen,” Rend. Palermo, 38 (1914). e 72.  See also Ogura,
«(On certain mean curves defined by the series of orthogonal functions,” Tdhokn Math.

Journal, 15 (1919), p. 172.
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This theorem holds good for the space curve:
e=aw (), y=y (), 2=z (0), (O=0=1)
if we choose the approximating rational curves
5 J‘ll‘ :?' (l') [1 —-(H—-ﬂ:]” (]l‘ A j‘“ i,’ n I'] e (i -—I' ‘_"]iz ”I{ :
= G gta - U= hrg-ra
_ e @O—@—01
So[1—=(0—1)"]" dt

Moreover the above theorem can be generalised to a surface. Consi-

~
~

der the surface S defined by
(16) =2 (u, v), y=1 (v, v), z=2(u, v),
where @ (u,7), y (4, v), z(u,v) are lmited and infegrable in the domain
O0=wu,v=1; and let D be the closed leas! convex domain which contains the
s*wface S ( (Bi=w o= 1) If we put
A7) Fle ()= JoJoz o) [L—(u—tV]" [l —(v—z"]"didr 5
fufu[l uw—{) ]",_l——(f—-) A dt dr
....................... (L),
the rational surface S, :
(18) =1, [z (u;0)];
(= wv=1)
is contained in the domain D. Further in a similar way as in § 16, we
can prove that whenever @ (v, 2), v (1, ), z (%, v) are continuous, the ra-
tional surface S, tends to S for °<u,'u<1—s ¢ being an arbitrary
small quantity. Thuos we have the theorem :

y=1%, [y (1, v)], =1 [z (u, v)],

Theorem XV. Any surface S (16) can be approvimated by rational

surface S, (18) which are contained in the domain D.
18. Ior an example, let us take the surface of translation S :

z (v, v)=f1 (u)+ ¢, (v),
(19) y (u, v)=f, (W) + ¢, (v), ==,
z (u, v)=f; () + @5 (v),
in which the generating curves
Cay (u)=fi (u), , (v)=¢, (v),
Gt { y (0)=f (), G | 5 ()=g (),
L2 (0)=f (), 2 (1) =g, (v)

(1) See Vallée Poussin, Analyse, Vol. 2, p, 133.

-A_qwi S

A e

i
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form a conjugate system.
In this case (17) becomes
5o Jo Lfi (w)+ ¢, (0)] [1—(uw—8)%]" [1 —(v—1)*]* dt dr
\.Jull—A”—f Cl—fr = didc
_ Jufi @) N—(u=07]"dt |, [ie @) [1—@—27]d:
N =G
=1, [2, (W] +ZF, [z, (v)];

<0 that the :tpprnxinmﬁng surface has the form

/.-” I, (i,/’ Q)I

| =T, [, (u)]+ I, [ (v) ],
(_2()) Y= /i 7 [I/l (”ﬂ '}" ’;( l.”/’ (7‘;]]’
== / l A (”)] +].'1 "_ (()J'

Therefore any surface of translation S (19) can be approvimated by
rational surfaces of translation S, (20) which are contained in the domain
D("). The generating curve C, (G) of the given surfuce S is approvimaled
by the rational curves C,, (Cy,) lying in the least convex domain D which
contains the given curve C (G), and moreover C,,, C,, are the generating
curves of the surface S, (20) ; the conjuyate system consisting of the gener ating
curves is preserved in this approvimation.

19. I will now considgr the approvimating cwrves defined by Stieltjes-
Landaun’s po]ynmninls:
=T, [ (6)]= Jor (&) [1—=(6—¢)7]" dt

a0 (L—¢*)" i

Tl SO fe
2 Jo (1—=t7," dt

Since :

Ffe (o) = e QU=E=0 & _{[1- @07

SS[1=0—0ard 2550 —0)rd

and
S [1—=(0—tP]"dt= 57 (1 — )" di
=0 (L—=)"di+ f§=° (1 —8)" dt
<2 fi(L—28)™d,

we have

(1) In asimilar way we can state the theorem: Any ruled surface can be approximated
by rational ruled surfaces which are contained in the domain I).
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B, [ (0)]=1 (6), D2 QIO T & ) (p)<i)
N RN R
Similarly
L e L) S SN 72
e e
SE[1—(t—t 2" dt
Consequently all the approvimating curves €, lie in a domain IV
determined geometrically from the shape of the least convew domain 1) con-
taining the given curve C: Some typical cases are indicated in the figures.

)
2 G
) e
FD‘ : “ H B [ x “
o Hl” w : bt

It follows from this theorem that iof L and [ be the upper and lower
limits of x(0) (0=0=1) respectively, and if L=0 and I =0, then
IS F, [ @]=L(").
A similar result is also true for F) [y (9)].
20. I pass now to the approximating curves of interpolations.
Consider the plane curve C defined by
(21) v=2 (6), y=y (®),
where @ (0) and y (9) are limited in the interval a =0 =05, and denote
by D the closed least convex domain which contains the curve €. Tet

¢, (0,8 (n=1, 2,----- ) be limited and non-negative in the domain a =40,

t=2>0; and put
N vt

BETOPRCE)

(22) 7, [» (0)]=="2— :
X gan @, ¢)
"§Jm?uw>
Lty O="" ,
A ="’ S[’n (6J t ) .

(1) Incidentally we will add « remark: Prof. F. Riesz stated incorrecth 7 that these
inequalities hold for L <0 or >0 also, in his paper “ Uber die Approximation einer Funk-
tion durch Polynome,” Jahresb. Deuts. Math. Ver,, 17 (1908), p. 208.

ﬂﬁh&a-ﬂ»_.,m._mibuw._‘
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where j, 7, denote two fixed non-negative intesers and

#i =00 + _‘{)——h“i_

n
Now by Weierstrass’ theorem the approximating curve

(23)  2=7,[20)] y=T@O) @=6=9)

lies in the least convex polyeon ), which contains the n—y—y, +1 points
F=w(t,); =gl
@E=re 7o +1, oo s — L)
But since these points are on the given curve €, the polygon D, lies in
the domain 7). Thus we have the theorem :
Theorem XVI. Al the approzimating curves (23) defined by the
interpolation formulae (22) lie in the domain D.
Further it is almost evident that the theorems analogous to Theorem
XII and XTII are also true.
The approximating curves defined by Jackson’s trigonometric inter-

polation (') :

(1) On the contrary, the approvimating curves defined by the ordinary i{rigonometrical

interpolation :

i b ) Lo mf 2R
n-1 : :sm—_—( —f s 1 sin— —8
(277:&) A e j(ﬁ"fz) 2 n
= 2 ; & 1 4 1 : >
. n 2":3 1/ 2mi
i=0 wsm — t=0 nsin— ——0
2 7

(059%27:)

do mot lie necessarily in the domain D. For, if we take the functions

x (8)=4, 0=0=27; Y (0)=y(2m)=1,
y0)=0, 0<fh<2m,
the domain D is the rectangle bounded by x=0, ®=2m, y=0, y=1. But we have
n ‘
n B 7}
Yo 0)l=————- 5 Fothat N, )J == = U for = n>3
nsin% nsin 2 =

The approxvimating curve shows us the Gibbs phenmnenon:

lim ¥, [J

n=w
(See Faber, “ Uber stetige Funktionen,” Math. Ann., 69 (1910), p. 417).
On the other hand {kis phenomenon disappears for the approvimaling curve defined by
Jackson's inferpolation with respect to the functions defined above.

371:'
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= “) * i
. s Z 7T d
i 3 L7 ; a4 n ]
=T o@D ) B
bz n s 2w )
{1 Ssin- ;f)—(——f ——=t) |
g Jo

0=0=2n)

~

n - - {" Glnl—;< 2.7.;__ 2 H)
y="ly (O)]= 2, 2/( - ) Tt

!
=
; . t.).l
= 7%511&1( aL __H) |
2 n i

and alsy those defined by

L

0=6=1),

n ¥ ¥ 271n
() [i-(9)]
; » i=0 7 n

y= Y, [y (9)]= - . —
¥ 1—(3_-9)"
=0 n
belong to this class. In addition to this, we can ecstablish the theoreme
analogous to those in § 17 for the latter curves.

Lastly the approximating curves defined by Simon’s polynomial
interpolation can be treated in a similar way as in § 19 (G5

b

On the law of errors,

21. In the theory of errors Gauss’ law is usually adopted, *“ As
a matter of fact, however, the cases are quite exceptional in which the

(1) On the contrary, in the ordinary equidistant polynomial interpolation, the approvimas
ting curves :
(9—150)- (0—=1%;-1) (9-t0'+1)‘ '(O“tn—-l)
(Bi—to) - (te—ti-1) (ti—tya1)s «(i—tn_1)

-1
m=vi [3(0)]='2 £ (i)

=
Il
~

=L 50 g=ge
i

do not lie necessarily in the domain 1/ (4 19). (See Borel, Legons sur les fonctions de vari-
ables réelles (1905), p. 75).. o
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errors arve found to follow really the law ™ (). I will now consider a
aeneral type of the law of errors containing that of Gauss as a particular
casc.

When ¢, () -satisfies the following five conditions, tlis Sunetion will be
called the law of errors, ¢ and L being the error of observation and the
measure of precision respectively (*) :

»

(1) ¢, (¢) 1s a function of ¢, containing a positive parameter /&, which

is even, non-negative, limited and integrable in the interval —co=:=
L 0.
(il) ¢, (¢) decreases monotonously when ¢ increases from 0 to co,
1

).
: = 1

111) @l die=—r== :

( [ @ g

(h being fixe

(iv) Let @, , be the quantity such that

¢, (€)>0 for O=le<tyn
@ (5):(;,[, (5):() (/t’,\>h) for ”’h,h.’,ésg co.

4 e ) . Ao AN OAS -y =
Then Bl (I' >1) decreases monotonously when ¢ increases from 0- to
9} <
@ (2)
Mh. h

(v) lim‘['fg.o,,, (E€)idie= . ;
0

h==n

Lo

uniformly where ¢ is any positive finite constant independent of /.
Some illustrative examples are as follows :
Ex. I. Gauss’ law:

hidcr alies

=T

(O}

(24) @n

i which

Upy, e = CO.

(1) Newcomb, “A generalizel theory of the combination of observations, efc.,

Amer, Journ. of Math,, 8 (1886), p. 343. - 1

(2) The former three conditions are found in common text books, for e.\;unp e,
Helmert, Die Ausgleichungsrechnung nach der Methode der kleinsten Quad?a-te, 2. Anfl.
(1907), pp. 7-9. But the reason why % may be taken as the measure of preeision can not

be interpreted by use of these three conditions only.

(1) Secew§ 7, II (iii).
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Ex. 1I. Helmert's first law (') =
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s h 1
25) P () ==
(25, ¢ (9) B ==
=0 —;l—»<€< o,
in which
o U
h
Ex. III. Helmert’s second law (*):
(26) B(e)=h (1) 0=e=_1,
. 4 /
0 L oo,
h
in which
Oy = —L (i h).
/L‘
Ex. IV, Lastly we can take
1 SN sZ)h.
27 oy (€)= ( 05351("
( ) b () 2J-5(L__52)1.,(is iy e )
=0 liie<ico;

in which
alﬂ., % == 1'

22. Now I will prove the theorem which gives the reason why /

may be taken as the measure of precision.
Theorem XVIL. ZThe probability P, (0) which an error lies between

—o0 and +0 increases when h increases.

It is easily seen from the conditions (i), (ii), (iii) and (iv) that there
exists one and only one value of ¢(¢=¢, , say) in the interval 0

.y such that

=

on (&)=, () (W>h)  according as

=

O é € < Ch. 1%
E=0C), w

s
Cp, 1 L& = Up, 1

(1) (%) Helmert, loc. cit,, p. 138, See §7, T (ii).

(3) See §7, I (i).
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Hence if 0< 0 = ¢ 5, then
6 o~ ~
[Jtew @1 ds0.

Next if ¢ = ¢, », then

b}
f NCACRTACIL:
Ch, L' : i)
= [ ™" [ow O —eu ()] d=— f [ (8) = ¢u (£)] e
Ch, I’

0
Ch, h! 0
> [ o @=pn @1 de= [ Tpn 9= ow (9] &
0 Cn,
=[ [ow () —gu ()] d=
b
2 2

Therefore we have the inequality in general

f 2o () dz > f Yo O ds 0 Bk
0 0

But in virtue of the definition

S sy 5
o (0) ——f o, (&) de= Qf @ (€) ds,
—F 0

we obtain
@)l (0) for Tl
93. Next we consider the measure of exactitude.

Let f(2) Le a function such that
FO=F (=9
and

Ffle) =1 e when leidlis el

and let the integral

o0

Tkes E] (e ¢y (2)-de

exist. Then the integral denotes the risk of errors (Fehlerrisiko) (*).
@

(1) Czuber, Wahrscheinlichkeitsrechnung, I (2. Aufl., 1908), p. 267.
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Now I proceed to prove the theorem which gives the reason why the

visk of errors may be taken as the measure of evactituwle.

Theorem XVIIL. e rvisk of errors decreases when the measure of

JIPCCISION, TNCIreases.
e,
Putting .

(‘" —— SDIL. (5)’ S’f’ =5 gjh (5), . s Ulr. ' i-' = _L Mh, n'

and remembering the condtion (iv) and the definition of f'(z), Theorem I'V

(§8) gives

+an, v 7 ay 3
[Fr@a@d [T @0

o G & T D A S T et S /L/ =),
; *tap, S —an, i ( - )
j (,DIL’ (E) dE f (folz (E) (Z:'.'
— @, W — @0, 1
Since
On (€)=¢w (e)=0 for & = &= 0O,

the above inequality becomes

| fwf (¢) @w () de +xf (c) ¢, (¢) de

i

+w 00 J (/L’>/!)‘
f o () de ¢ () de
Bat we have from the condition (iii) f

f o, (¢) ds :f Wprle) de=1;

s0 that we arrive at

f_+mf (5) P (5) s <f +mf ('3) o, (8) dg’

Ight ‘< .Zgh‘ ﬂ)[‘ h >]l-

It is evident that if ¢, , be finite for any positive value of e
this theorem holds good when f(¢) is limited and integrable in the interval
Lepeie< a0, :

Particularly, the risk of errors becomes the average error (Durchsch-

nittsfehler) # in the case where f(e)=|¢|; and the square of the mean
error g in the case where f(g)=¢: i. e.
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+ 7

T ~f [ £ E @, (:) dz,
s

v f*qma&
-

For Ex. I (Gauss’ law) in § 21, we hive

‘ 1 ]

O S

R

for Kx. IT (Helmert’s first law)

( 1 1 y
//4 = : ul s — ( ) ’
; 2 h & LB En
for Ex. III (Helmert’s second law)
, 3 1 2

,“/1 ==

Sh’

and lasily for Ex. IV.

. 24, Let f(2) be a function which is limited in —co<a< + oo and
is such that the integral :

fwf(ﬂ'quE) on(e)de  (—<ay<l + )

exists. Then the integral gives the probable value of f(x) at x=u,.
Theorem XIX. If f(x) be continuous at x=u, (— oo <ay< + ™),
the probable value of that function at that point converges uniformly to f (),
when the measure of precision increases indefinitely.
We have the identity

f+°°f(_q‘0+ &) ¢ (¢) cls:fiwf (e) @ (e—ay) d=

and the condition (v) that

(1), (2) Helmert, loc. cit, p. 22
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: g 1 gk
llmf @, (€) (Zs:k),‘ (0<e< o)
h=x 0 ‘-' «

uniformly. Tt follows therefore from Theorem IIL (35) that

+X L
Iimf f(@+e) @, (¢) de=f ()

=2 o

uniformly.

For example, if we adopt Gauss’ law, the probable value of f ()

at @=ua, is equal to

h + 2 ¢
e L

which is nothing but Weierstrass’ integral (&G L (i),

—h*(e—n,)*
dz,

25, I. In n measurements of equal precision, if we adopt Gauss’
law, the most probable values of observed quantities are given by the

condition (the principle of least squares) :

(28) e e L oo =—min,,

BpsEay e , <. being the errors of the m measurements respectively.

In the same case, if we assume the law

1_;‘:)14
27 O (€)= ( OEE
=0 2 () DR =

—0 1<E<OO,

A

L

we have the condilion
2 2 T R
(1—¢) (1—e5)----- (1—¢)=max.,
that s,
(29) Y-t gl €3eere gl =i,
under the supposition

= <l (1=1,2, ---4:= S

Therefore in the case where the errors are extremely small, the condition

(29) may be replaced by (283).

II. If we follow Gauss’ law when n direct observations {4, [,
[, on a single qnantity are of equal precision, the arithmetic mean

Zl+z2+......+ln
1

-
=

------
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is the most ])m\):ll)h‘, value of the quantity.
On the other hand, if we assume the law of errors (27), the most
probable value @ is determined by
[1—(z=0)] [l —(z—"0)*]----- [1—(x—{,)]=max.,
W l 1€LE

(30) 1—(_.‘—/, >0 =il 2 s , n).

Differentiating the left hand of the above equation and equating to zero

; —r & —1 t—1,
(31) F(x)= S e
1 —(x—1{,)" 1—(z—1)
—1
o | ,, n ‘ ﬁ()-
l—(.f'—//,)'
Let { and L be the minimum and the maximum among [, £, ------ t

/,. Then remembering the inequalities (30) we obtain

(1) <0, F(L)>0.
But since

A= el w 1@l

: SHE A AL e : >0,
J [1—(z—{ 7] e

it follows that there exists one wed only one root of the equalion (31) bet-
ween { and L. This root gives the most probable value of the given quan-

tity ().

On the conduction of heat.

26. TFirstly I will consider the lnear flow in a doubly-infinite solid.
Let @ be the distance, ¢ the time, w («, {) the temperature and a a positive
constant (¢* being the diffusivity of the substance); and let

(1) The following simplest cases will serve to interpret the relation between © and
the arithmetic mean &,

(1) When' n=2, x=¢§

(ii) Tet n=3 and let, for example, -1, =¢/,>0, ¢—I,=¢/,>0. Then t=ly,=¢',=
—(e’, +¢/,)<0; and consequently

S 1 1 ) / ( 1 = 1 ):/ <0
1‘ (E)““( 1—€’i e 1—5’;‘: € 1+ 1—5/;' 1—5/;': MR

Therefore x lies between the arithmetic mean ¢ and I, (that is, the observation is in the
greatest difference from the arithmetic mean).
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; o u s O° U X
(32) w?-ﬁ-:u‘ SN foy WA O Lt o o —c<<al + o ;
! ot o @’
(33) G0 =71 for OO s - 0O,
(34) limu (2, {) =lim f (2 for 0%
=40 { Te=db

'y

where f(2) 1s limited in the interval —co =2 = 4+ co0 and continuous

for —co<a<+co. Then we have

limw (2, 8)=f () Jor

t=+0

—{eohllui < o Lieo)

unaformly (*).
It is well known that the function wu(z,¢), which satisfies all the
above conditions, is uniquely determined by
1 R A~ TR —-‘52 B
T -

In the ease where t>0, if we put 7p=x+2 atV ¢t the above ex-
pression becomes

I
1 +® 4 2t
(e e R 7)e dn :
: () Z(Ll/jft —x,f(/ /0
so that we have
lima i =1 (@), — o< + o
t=+0

uniformly (§7, IL (iii)).
It will be noticed that if the boundary condition (34) be dropped the

above result does not Lold good in general (*). In order to show this, take
the function :

% (2, == lim L,
n=+xn 14nt

Then

(1) Compare with Weierstrass, loc. cit.; Sommerfeld, «“Randwe.taufgaben,
u. 5. w.,” Encyk., d. math. Wiss., IL 1, p. 535.

(2) H. Weber stated incorrectly that wu (v.¢) is uniquely determined by (32) and
(33) only, in his Part. Dif. Gleichnngen d. Math. Physik, II (1901), p. 92.
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8”_4 .-a:u

(2, ) =2 (t>0); TR

lim u (2, t) === co (t>0);

w (%, 0)=0 (= co =<~ cols
and

lim (2, 1) ==.
t=+0

97. Next we consider the linear flow in a semi-infinite solid. Let

o U . O U
35 e LS 0<t< 4+ 00, <z 4-00;
( 35) = a S Or e +
(36) w (e, 0)==>(z) - for <= Feo;
% (0, ) =F (¢) for 0t = -tco,
(37) lim w (=, §)=lim F(z) for O0<t<+ o,

where u (5,0) and w (0, &) are limited in the interval 0 =&=+co and

1 e = m 0 230
continuous for 0<c<< +oo. Then we have

lini v (ee; o) = o (o) e o 0<e< +

t=+0
uniformly, and

lim v (2, {)=F (t) Jor 0<t< 4o g

z=+0
wniformly ().
(i) Let 7 () be a function such that
T (zv)=F (z),
U (—a)=—F(v), for 20,
and let us put

=

F0t 3 sy 2
u, (2, t)=—]—/L—7;—-‘/\ ?ZT(x+2a;1/t Jiel ede & or Fe=n 0

"This function wu; (2, ¢) satisfies the differential equation (35) for @>0,
>0 ; and

(') If the latter of the boundary conditions (37) be dropped this result does not hold
in general, which is seen from the function defined by

nt

b =qu1:sz 1+4+nt’
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o
>
o

U (2, 0)= ¥ (v) =1 (x) for x>0, Also in the case where @ >0, w, (2, {) may be written (')
lim (z, {)=lim & (v | for t>0. e AT
:!:=+:o( ¥ ) T=+4+% ( ) ( s (,f') {)_-t[ D (//) “:(_]r_, 7 —[)([47
Also in the case where ¢>0, u, (v, 1) may be written A
where
NElTETIE
T e, YTy e B v
ey e S s I (n) e dn : = Lo\ & By A, kaRE ol e ey
l ’ 2‘“1/77:/ f—x» { < S(—_r‘“"j)-— ._);(!,]/71' ( | : o j<(,
so that =0 ford £=40
el Y
o "~ 4dq2t el s ST | Thus we have
u; (0, 1) = ]} : U T(—p)e (l-q-+f Tpe (by:l o s :
el 0 u, (2, t)=[ @) s’( ”’f—f)'l”’
=0, £>0. = @
Now we have from §7, IT (iii) that j and consequently
a
lim Uy (‘1:) t): v (.1-‘) Uy (,?', U) —0 for >0 3
t=+0
=LAt (ep), O<ae< 4+ and
lim w, (2, ) =0 for {>0.
uniformly. Also it is easily scen that ool
_ (p—w)? (n+w)2 Now it is casily seen that
T (@ =T oL oL e o e s fom 0< @< + 00
R e Qav 7t . § ! [ - } 7 {111110 s (=L 01 <l
L]
=0 O<<t<i=L o ' } uniformly.
uniformly. | Again
(i) Next let us put ‘i g(_l‘, ;“)%(), @ >0.
: &v
(I)(t):f(é), 08 ; S
. ince
(I’ (O) :O 3 1 T = i
and take ( i :)_ d 2 #f 2un/ —& (:—S-d:j] for' £6<0, >0,
| Cl——— G = s
% A1 = Fom .
o e Al ST e e . ~ Al i
Wy ('L, t) 1/; f 5 (I’(t 1 a! 51 )C d, for t>0, T = O. we have
2aat T Dol =t
: ; | € s (.]::__“_2____ 208/ —¢ c_-g dZ— Zﬁ_f e i<
Then the function w, (z,t) satisfies the differential cquation (35) for z>>0, | f s 95( % ’*> R Vr J-=

{>0; and

:1',
2 fm(;#yd:—l for —CD<5\03
VT

-0

u: (0,0)=—2— [ Toe
0

=f(t) for £>0. (') Compare, with H. Weber, loc. cit, P. e
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and
0 3 x
: ?'I,Erlg’::.—. 90( ,Edf-l—fgffi,fdf
—0 T ) 0 T
2 R
o =il
Lz ;
=1 for0i=22 too:

Therefore for any constants ¢, d, such that

L

g —o< —e<0<d< + 0,

we have
- = it
A

a
o e

i L T
R e 2 _mc_gzdt:—l
TJ) - : .
g0 that
| lim d_go( : ;e )dé=2— ]/2;[_ : e—gzrl.i_'

‘C(";nsequentl‘y we have from Theorem IIL (§5) that

lim | 113(77)90 ,p_t)czyy D (1)

L )

i L ¢ 3

(e

umformly for O<t< +o; that- s,
hmuz (, t)_f(t) Ly 0e b Foo =

- ) ;Lastly If' we put - = _ .
_ o ! ‘%, e u(m, t) 'u.1 (:a, t)-{-fu,,l (a,, B
"en"u @0 satisfies all the conditions (35), (36), (37)
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