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Trajectories in the Irreversible Field of Force on
a Surface,

by
oY
KixNosure Ocura, Osaka.

Consider a dynamical system with two degrees of freedom which si
reduced to the normal form ('):

o~ A 2
(1) P+2Q=a—r,
P
A e
Pl
P 'aq’

where p and g denote the two coordinates of the dynamical system, p
and ¢ their time derivatives, and 4, y are functions of p and ¢q. Then
equations (1) admit the first integral

2) -;-(m =yt

h being an arbitrary constant.

Throughont this paper I will consider the motion of a particle on a
surface and confine myself to the case in which 2 has a definite value.
A few properties of the trajectories have been obtained in my previous
paper (*); but in the present I will deal with certain properties of a
different nature, some of which may be considered as generalizations of
those for the conservative field (that is, for the reversible field) (*).

(*) Birkhoff, “ Dynamical systems with two degrees of freedom,” Trans Amer,
Math. Soc., 18 (1917), p. 204. i

(2) Ogura, “On a certain system of doubly infinite curves on a surface,” Tohoku
Math. Journal, 8 (1915), p. 213; « A remark on the dynamical system with two degrees of
freedom,” Tohoku Math. Journal, 15 (1919), p. 181. Hereafter these papers will be referred 2
to as O, and O, respectively.

(3) Ogura, “Trajectories in the conservative field of force,” Part I, Tohoku Math.
Journal, 7 (1915), p. 123 ; Part II, Tohoku Math, Journal, 9 (1916), p. 134; “ On the striped
net of curves without ambages in dynamies,” Proc. Tokyd Math.-Phys. Soe, I 9 (1918),
p. 284 ; “ Note Supplementary to the paper ‘on the striped net of curves without ambages
in dynamics’,” Proc. Toky6 Math.-Phys. Soe., IT 9 (1918), p. 409. Hereafter these papers
will be referred to as Oy, O,, O, O, respectively. '
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PART I. General Theorems. } we must have
The condition for »' given orbits. ' {( of ) 0 el e +( of )2 ' f
: : = v 9(] 8]) ap 0q 9paq op/ Og
1. Let the linear element of a surface S be ‘; : Dlogp Dl of ) ( ) ( - )
(3) ds’=p (dp*+dg), i - Op c) p oq oy [ op 24q }
where isothermic parameters p and ¢ arc taken for paramefrics. Then 4_( Oologe of 4 Olge Of )[( ) Of )]
the differential equation of the orbits is (') " op aﬂ a‘l g a]) 8
y -+ (A S e R e (0
(4) qrr:( 5] logal/‘)’-i- h 8 10{_) ]//‘—I-/L I) (1 +q/2) ] t 1//‘! ¢ [( 8]') ) * a 7 J 0
q op ',
a i But since the expression of the geodesic curvature o of f=const. :
I 0 | O
14 |
2(/+/) _Le;l{__(l/ of ( /‘) +( a_;z)z]_%)
where we have put 0r op A= p[ ap 2q
e PGl
(T . e 1/ - et =
e dp’ j dp? | % o4 'Lag‘: ap " 89)] }
Since y+h and p are positive, we may put gives
OFN O'f pof 0 ot G o
-1‘-]L‘_l 2 A —-1/ ) e e R 2 i -
Fan & m i oq/ op dp °Oq 9pIq op/ 9q
1 oleec it ©fsolon i Oif
th t 4 __( te Y . D )
o that (4) becomes =k 5 8]) 3p &l B
(5) gu_____( o log (l/lu 90) et o IOg (l/,u 90) (]I) (l+(]'2) af af 2 3 '
: dq op %) 3 ;
— 8 1 q
+Vpd. (14¢°)5. whence we have
The integral curves of this differential cquation () will be called the ! 1 1 (elogo Bf " Blogo” OFf
bits in the field (¢, ¢ ' ‘ (©) T "( £ e e )
orbits in the field (¢, ¢). R AT S og. . dqg
Now suppose that : 2 27
[(2LY+(2L) ] b—go.
S (p, g) =const. op 29
form a family of oo orbits in the field (¢, ¢). Since Now consider the differential parameters of the differential quadratic
i f ) | ( G )_1 form
op 9q/ Bdu*+2 Fdudv+ G dv? :
qu:_[( f) e o B (af) ; } (9}") namely
C94 0F 0 0geDhoy  \9p/ o | \ By F(an)ﬂ_ol¢,qg 9U+G,_(9U)f
ov - PO ou
(1) See 0,. 4, U= 6T ;
(%) For some properties of the integral curves, see O,. - =



KINNOSUKE OGURA ;

264 : : ; TRAJECTORIES IN THE IRREVERSIBLE FIELD. 265
1 G °oU _,2U\/ o o
4, U= I/E?'“_Fz{ S [(G % 81 )/ VEG—F" } i Therefore we have the theorem :
In order that @' curves
+ aav [(Egg = /I/L’O I ]} S (u, v) =const.
, may be orbits in the field (¢ (u, v, ¢ (u,v)) on the suiface having the linear
g2U BV _ (37U 3V 38U = el o S |
" Dv ov S L GHIE e ek ou Qu 3 ;
(U V)= G —F” — ! ds’=F du*+ 2 F du dv+ G dv?,
If we put it is necessary and sufiicient thal f (u, v) should satisfy
0 e 4y f 1
U=p v=g; 8 ( : ) Tor 0.
. | R i
=1 HE=0F Ei= g
2. Let the two surfaces S, S having the linear elements
equation (6) may be written |
| d*=E dw’+2 F du dv+ G dv?,
o 1 1 ; = P =
(7 —“f;“*‘m p(f, log o)+ ¢ =0, ds’=F du’*+2 If.’dw dv+ G dv*

be related by the conformal representation such that

or, by Beltrami’s formula,
B . g

- e q ’ TG ).
8 2 ( 3 ) ] 0 7! 1 p \t
() I/A1f fl/df ]/AlfF(f:O @)+ = A I €
oo 7k ifferential parameters corresponding to the surface S have tl
This is the necessary and sufficient condition that (0 D) —cories e T'hen t.he differential parameters corresponding to the urface ave the
e : : | expressions :
be orbits in the field (g, ¢) on the surface having the linear element ;
= 1 = 1
2 2 2 :——‘d ,, 2=
ds*=p (dp*+dg’). | g ¢* - L ¢*
Let us now apply the transformation | . 1 _ Z
: V(f, —‘—_:_:>— F(i’, =
| V ’lj' l/dlj
: p:p ('ll,, 'U), Q"—“Q (’LL, 'U) i =
| e 1 AU e
aud let qgo.rf]/‘jf g VAT

p(dp*+dg)=E du?+ 2 Fdu dv+ G dv*. 2 e
jhl i Sl e e f’ (}F) 2] >
Putting Tl (f’ l/df> oV 4, f (/> g ¢
J (0, =7 (u, v), ¢ (p, )= (u, ), S (p, q)=¢ (u, v) so that (8) may be written
and remembermg the invariantive property of the differential parameters, (9) _Z_f ( f )+ ¢ =0.
(8) becomes , : i VA f : |/ i

Consequently if i be the geodesic curvature of f=const. on the surface

Az_-f = i 1 = T
var (o)t a7 (Flg ) + F=0. L

S, we have
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10) =
( Pr ¢

Thus we arrive at the theorem :
By the conformal representation

ds*=¢* ds’,

the orbits f=const. in the field (@, ) on the surface S are transformed into
the curves having the geodesic curvature

Or ¢
on the surface S; and conversely.
In the particular case where ¢=const.,, we have from (7)
1 U

(
oy

On the other hand, in the reversible fiecld (that is, the case where ¢==0
identically), we have from (10)
—
e
so that f=const. arc geodesics on the surface S, which is a well kunown
result (1).
The condition for 2 «' given orbits.

3. Now we can infer from (8) the theorem immediately :
The mnecessary and sufficient condition that the 2 o'
v=const. may be orbits in the field (¢, ) on the surface S is given by

i gy o pobey :EG_F:{Qﬂ VGV EG—F{

currves w=-const.,

ou v G
al”“ , 0 log EG—17(11
(12) EP 4 p2 8P -2 N VEVEG—I (),
ou ov (2
(1) Darboux, Théorie des surfaces, 2 (1 éd, 1880), p. 453; SLL also O,, p 173
(?) In the reversible field ¢ vanishes identically; so (11) and (12) become
¢ LU e RN Jv(r_]ﬂ' {02}
da dv
2 log ¢ 2 log v 1«,0-_1*2 11)
=0 ~—F—>2 = {
oy - 9 v K 9 |

respectively. Compare with O, p, 179,

TRAJECTORIES IN THE IRREVERSIBLE FIELD. 267

where {121}, {212} denote Christoffel’s symbols, that is,

oK o or
— I =) ] e
{11}: ou o g ou
9 2 (EG—F) :
oG oG o
—F — @& 2G
{22]: o au_l_ o
i, 2 (EG—F) :

In order to interpret this condition geometrically, let us apply the
conformal representation such that

ds’=¢" ds”.
Then (11) and (12) are equivalent to

g
Pu - @ o ¢
respectively (§2); from which we find
(13) =
Pu Po

Converzely, consider the parametric curves u, v on a surface S, such that

o (-JI’(IL v), say).

u

Take any function ¢ (1,¢) and put ¢=¢ ®. Then u, v will be orbits
in the field (¢, ¢) on the surface S, which is obtained from S by the

conformal transformation

—ds'=ds".

99 &

Thus we have the theorem :

In order that 2 curves wu, v may be orbits on a surface S in an
irreversible field of force, it is necessary and sufjicient that the corresponding
curves on the surface S, obained from S by a certain conformal transfor-

mation, should have the property

1 1

——— i

Pu Po
4, Since (11), (12) may be written
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1 [ = Olog F 2log o il
14 e U A e
< VEG-F-| o VG ov J Tal
5 1 M I Qlog —elh i
15 Lt o S b AT a e S SR
) vEGEEE VB o v R
respectively, if we put
Lo P edlonge F—_¢ Ologg
VG 2w ol D
Eu: s _902 9&) ];ru’: (,.C‘-’ _902 ¢

uw 40 v

we can derive the two equations :

10, S @ <
(16) F, cos —2—+Fu, sin 7:HJ cos —+ I, sin -

2 2

. (O] w . «w v w
(17) I, sin —2~—-E¢, s — F sin —5—+J<‘,._, COS &2'_’
o -

@ being the angle between u=const. and v=const..
o T . . - i
Now denote by F, the vector having 77, as its magnitude and the

(positive) direction of the curve w=const. as its direction, and by ¥, the -
vector having F), as its .magnitude and the direction to the centre of

geodesic curvature of u=const. as its direction ; also define §, and %, in
similar ways with respect to v=const.. Then it follows from (16) and
(17) that the projections of the resultant of &w and T, upon the two
bisectors of the angles (internal and external) between u=const., »=-const.
are equal to those for §, and &, upon the same bisectors respectively.

Consequently we arrive at the dynamical interpretation of the condi-
tions (11) and (12):

A necessary and suficient condition that w=const. and v—const. ey
be orbits in the field (¢, &) is that the resultant of the two veclors §, and
B 18 equal to the resultant of &» and F, ().

In the reversille ficld (@=0), if Fu (Feo) and Fuwo (Fwo) be the
components of force tangential and normal to the orbit 1 —=const. (v=const.)
respectively, we have the well known relations -

=% P2lep 7 ¢ Plogy
VG v e

(1) Compare with O,, p. 140,
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; D* s @*
[(H'L): ‘g‘j_) -F’U'O‘-:"’_ :
‘f)u s

5. In this paragraph I will give three pairs of the formulae con-
cerning the geodesic curvatures of 2 o' orbits w=const., v=const. and
their related eurves:.

I. TLet ds(w) and ds(v,) be the arc elements of the curves u,=const.
and v,=const. which are the bisectors of the angles, external, between
w=const. and v=coust. respectively. Then

t’-) ;' ﬂ e 2_ 1 o) = ____]:: ,,,,ai l o e 1 : a ; 1 =
(lg)\d > = a'*’(’h)( ol V'E Du (log ¢) VG 2o Cog (f)’
. (t a 1 a 1 8
2 '08 — *i e e 1 o e ]( o O el et 17 o :
co 2 a S(Ul)( ()b 90) ]/J'j a 0 ( )E'J S’ ) + I/(.,i a 5 ( ﬂt) SD)

Therefore by mecans of (18) we find from (14) and (15) the following
formulae of importance :

gms £l = 9 (lcw @):i(_lﬁ_._l_),

19) 2 9du) " 2\p.

(L x

li&'in @ . r——aﬁ( 0g @)= }, (_1__ L 1 )_ .
2 osv) FN o

IT. Next suppose that ' =const., »' =const. are the orthogonal tra-

jectories of w=const., v=const. respectively. Then we have

G { iy { 22 @ G 9w
S } - ]’ —— T T o 3
B\ 2 G L D VEG-I* Qv

(20) : |
R s {zzL_ VT i o Dl L
(Blel @1l T, VEBC=EEOw

Now {rom (11), (12) and (20) we get

k)'

1 olpe 1 g Soeigng b
V& B0 py VEG—F 94 VEG
1 Plege 17 VB TCOOREBG

VE 2u - p, VEG 0D Voo

Applying (18) to these two equations we find the formulae :

(') For an application of these formulae, see Ogura, “On a generalization of the
Bonnet-Darboux theorem concerning the line of striction,” Proc. Tokyd Math.-Phys.,
Soe., II, 9 (1918), p. 304; where these formulae have been printed incorrectly.
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0] 1 W 2w 1( 1 )
- Hp et Iy S mppi e ins
e as(u])( g o, O ok

. o 1 At a(u_ (‘1— ’_")
(QU‘Mn?;-gggfbb¢}+2csm%2 Os(m) 2\p i

w
e Cot? . JL/'.

TIT. La§tly applying the following formulac of Prof Lilienthal (')

:sinﬂ.( L >+ cor? (L +-14>,
o 2 -

2 @ ( 1 1 ) ) ( 1 i )
= —C08—— .| ——— +Sl]1-——- —
P ('Ul) 2 Jou Ov 2 [Ou’ Oy

I

o ) @ da - 1
5, s(ul) W 2 o s(u,) p(vl) ;
(22)
e = o) 1 AT
- log cot— . = —cosec— . ¢,
0 S(T'l) 2 2 9s(m) p(w) 2

PART II. Some Particular Cases.

2 «' orbits comprising a constant angle.

6. Hereafter we will consider some system of 2 =!' orbits in the
field (¢, ¢), which are of geometrical interest.

We begin with the case wheve the angle w between u=const., v=const.
s constant.

In this case (19), (21) and (22) give

(‘OS_EU_ : a (lor Sf):i(._..];_—ui_)’
2T 280, o,

; 1572 1
Slpret | p) = —-—( = __),
b
o s(uy) 0 (v))

so that we find

(1) Ll]lenthal Yorlesungen iiber Dlﬂcrcnhq]geometne II ( 913) pp. 240-241,
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2 cos’
(23) : _;,:_(L - )
‘f) (? 1) ‘”u ‘nt
2 sin——
(24) = 2 1 T3 i
‘” (?.L) [”u’ lnL
Similarly
2 sin% , 1
(25) — = ,
o () 0y £
w
2 cos—
(26) =
0 (”-1) L O

Since the product of the right hand sides of (23) and (25) is equal
to that for (24) and (26), we have

T 1

2

rf)“‘ JO,”." ‘ni' pu‘

Adding the squares of (23), (24), (25) and (26),
2( 1 - 1 )__ 1 1 1 1

2 ¥ R 2
o) p (o) 03 0 ‘0“, ‘nl,.

From the last two equations we obtain

3 o s . =
7. As a simple application, let us consider the 2 o

curves 1, v
which make a constant angle and may be orbits in the irveversible field
determined by

(1) These four formulae have certain similarities with the following four concerning

a net of curves without ambages @ =const., v=const. :

o il ) 2 cos . Z‘J’ Lol
S L | e G . el 2 ) 018 B =/
P (Ul) Pl-( pL p(‘p ) \ pu pu
4 sin-2-
MR Sbekelt s o ey
p(&,) = pa  po’ p@,) — 2 \pw " pvf

@ being the angle between # and ©. See Lilienthal, loc. cit., pp 244-245.
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¢ =const., ¢=-const..

From (19) we have

L = =const. (=%, say) ;
e 0y
so that from (23) and (25)
L =0, L r‘:_i—-——:(?OHSt..
o (vy) o (1)) s

Consequently by well known theorems the surface must be a pzeudospheri-
cal surface of revolution of the parabolic type or a surface applicable to

. w W
it, and w=const., v=const. make constant angles (—9— and ——~ Tespec-
P ey

tively) with the geodesic parallels u,=const.. Conversely if a surface have
the linear element
2l

dsi—du, +ete - du’

a, ¢ being constants, we have

1 :.O, ==t}
o (v) pu) a

Hence equations (22) are satisfied by

w=const.,, ¢=const., ¢=const., where cosec(—u-.g.":l.
2 @
Therefore in order that the 2 ' curves w=const., v=-const. which
make a constant angle and may be orbits in an irreversible field of the form
(p=const., ¢ =const.), it is necessary and sufiicient that the swrface should
be a pseudospherical surface of revolution of the parabolic type or a swrface
applicable to it, and moreover the biseclors of the external angles of u, v
should be geodesic parallels. '

The isothermal system as orbits.

8. Ior the reversible field of force (i. e. ¢ =0 identically), I have
proved the theorem (*): A necessary and sufficient condition that 2 o’
curves belonging to an ortlmgonal system may be orbits in a reversible

) Ou p. 168, p. 173, p. 180,
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field of force is that these eurves form an isothermal system. Now I
proceed to establish the following theorem concerning the irreversible
field of force (¢, ¢):

Consider an orthogonal system w=const., v=const.. If any three of
the four propositions be true :

(i) that u, v form an isothermal system ;

(ii) that w, v form a net of curves without ambages ;

(iii) that ¢ is constant along each bisector w,=const. of the external
angles of u, v;

(iv) that w, v may be orbits in the field of the foa n (gﬁ, ) ; then
the fourth is true also.

In virtue of #=0, the necessary and sufficient conditions for (i), (i),

(iii), (iv) are given by

ctlog B etloo GE

(1) 2udv QOuov

s ST oV
b Sres
(i) we 2l g
10 o
8 IO’)‘ o 1 8 100 0 ==
s DR =T B 2 71
(iv) ou 0 Jdu B
v
o log ¢ 1 9log E e
e e R R e B kel G.d
o e "

respectively.
Firstly suppose that (i), (ii), (iii) are true. Then we have

ok __;__ /' 8 l/]J -I/__L“
2 auazr+ - Qv i av

_ ko otlook + o e VG a‘r’

2 Qudv s ou Qu

which shows us that

1 9l @ 1 QlogE
1 9osG E . a ( VG, h)d
( O o il ) L T e :

(') See, for example, R. Rothe, ¢ Bemerkungen iiber die Gewebe (Kurvennetze
ohne Umwege) auf einer Fliche,” Jahresb. Deuts, Math. Ver, 17 (1903), p. 325.
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is an exact differential. Hence if we define the function ¢ by

f(l 310gG+]/E g)d +(l alaogL e )

v

cquations (iv) are satisfied ; that is, u, » may be orbits in the field (¢, ¢).
Next suppose that (i), (iil), (iv) are true. Then (iv) gives the con-
dition of integrability

1 ollog @ ,31/1] I/Lau
o e e

o alon B , OV G e o¢
A Quodv i Ju ks Ou’

from which we find, by means of (i) and (iii)

EI/E: 81/(7_
ov ou

In similar ways we can prove other two cases.

The striped net of curves without ambages as orbits.

9. It is well known that 2 = geodesics #, v may be orbits in a
reversible field when and only when ¢ isconstant ('). A generalization
of this can be obtained from (19) immediately :

If 2 o' curves u=const., v=const. such that

1 il

Pu . Po

may be orbits in an irreversible Jield, the function ¢ must be constant alony
w=const.. When the condition is fulfilled, ¢ is determined by

1 Q)
romsin Dl g)
where we have put
L
a e

Already I have dealt with the condition that a stri p(,d net of curves

(X)) OFr p:=1885p, A8

T
X
-
T
&
&
o
1
i
¥
P
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without ambages should be orbits in a reversible field (*). Now we can
prove the theorem :

Let w=const.,, v=const. be a striped net of curves without ambages,
If any two of the three propositions be true :

(i) (hat each of w,=const. has a constant geodesic curvature ;

(ii) that ¢ is constant along w,==const. ;

(iii) that w, v may be orbits in the field of the form (¢, ¢);
then the third s true also; and ¢ is constant along w,=-const.

I Firstly we will deduce (iii) from (i) and (ii). Since u, v form
a striped net of curves without ambages, we may take

U Y ou, ou du
oy p=(2n) pun S
e o ou Oduwv e % ov

where o is a function of wu, alone and wu,=const. are the bisectors of the

external angles between w and » (*). Moreover we have
B0 M
(28) pte:PU _10’ D".}‘)( )‘
But I have proved the following lemma (*): When u, v form a striped

net of curves without ambages, each of w,=const. has a constant geodesic

i
curvature —— when and only when p is constant along w,=const.
P ()

][mw‘ it follows from (i) that p is a function of u, only. More-
over we see from (ii) that ¢ is also a function of w, only. If we define

log ¢ —f'ot(—u (——(,')rhc

the function ¢ by

then
Qlog e D (_1__ ,) ou,
ou 2 0 ou
dlogo _ o2 ( 1 —u) 0w
ov o By E

Consequently we have from (27), (28) and the last two equations

1 Ve cdlogp = I alog@:’: L
VEG—JI*”I: Qu VG " ov 0

(1) O,, pp. 284-286; consult with 0, also.
(2),(®) Rothe, loc. cit.
()

(14)




276 EINNCOSUKE OGURA :
= 1 2 loo — 9 loo ¢ 1
15 e s BR OB Y Syl g0 4L
& S [ e O ] T

Thus the proposition (iii) has been obtained.

II. Next we will deduce (ii) from (i) and (iii). Since w, » form a
striped net of curves without ambages, (28) must hold. Hence in order
that (iii) is true, by the first theorem in this paragraph, ¢ must be a
function of w, only. But from (27) and (iii) we have

1 [l/ﬁ 0 log ¢ F Olog e ]:tg g ol o5 )

I/JTL’CT'-—F2 g G Oy A

P
Moreover we sce from (i) and the lemma above mentioned that o Is a
function of w; only ; so that ¢ must be a function of u, only.
III. Lastly we will deduce (i) from (ii) and (iii). From (iii) we
get

& w (u,) 1

2 du,

But by (ii) ¢ is a function of u, only; so that p must be a function of

u, alone. Therefore by the above lemma, each of u,=const. has a constant
geodesic curvature.

1
log @ (w)=——¢.
Z

10. Now we see, from the lust theorem, that if a striped net of
curves without ambages w=const., v=const. may be orbits in the field
(¢, f(u,)), then each of u,=const. should have a constant geodesic cur-
vature. On the other hand, since u, v form a striped net of curves
without ambages, u,=const. are geodesic parallels (*). Hence it follows
that the linear element must take the form

ds*=du*-+ U, (w,) dv?,

U, (w;) being a function of w, alone; and the surface should be applicable
to a surface of revolution.

Conversely, if a surface be applicable to a surface of revolution and

u, v form a striped net of curves without ambages, then we must bave

: w il
ds’=sec  —du’+ 1 sin*—dv,?
2 T

:secﬂ(?')duf +11 (w) fo (v) dv ),

(') Rothe, lac. cit.

T e

T VO S

s —

o R NI R T
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-1
~1

where @ and f (u,) are functions of u, alone and f, (») of v, alone; so
that p2 takes the form £ (w,) I7, (v,). DBut in virtue of the formula

2 Ld a . ) (’) ( 1 )
— =S log( g sin*—
Iz (”1) 5] IR T 2 5

it

o (1) should be a function of 1, alone. Therefore, by the last theorem, u, v
may be orbits in the field of the form (¢, ¢ (1)). Thus we have

theorem :
In order that a surface may have a striped net of curves without ambages

u, v which can be orbits in the field (¢, ¢ (w,)), it is necessary and sufficient
that the surface should be applicable to « surface of revolution.

Moreover we can state the following theorem (*):

In order that u, v constitute a striped net of ecurves awithout ambages
which can be orbits in the field of the form (¢, ¢ (w,)), i is necessary and

sufficient that the linewr element should take the form
ds* =2 (u-+ 'r)[(lw'" +27 (utv) dudv+ clv"’],

where & and 7 are functions of w4-v only.

Lastly we add the theorem :

If « striped net of cwrves without ambages w, v be orbits in the rever-
sible field (¢, V), then the nel may be orbils in the irreversible field of the

Jorm (¢, ¢ () also.

e

Tkeda near Osaka, June 1918.

(') Rothe, loc. cit.
(2) Tor the method of proof, sce Oy, pp. 287-288.
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