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In this note I will give a syn'hetic proof of the following theorem
on a space cubie, which may be considered as a generalization(') of the
Pascal theorem on a conie :

When 1,2,3,------, 12 are any twelve points on a space cubic, the four
points

[(L,2,3); (5,6, 7), (9, 1007,

[(2,3,4), (6,7, 8), (10,11,19)], | ghe
[(3,4,6), (7,8, 9), (11,12, 1)],
[(4,5,6), (8,9,10), (12, 1, 2)]

.

(1)

are in a plane( *).

(1) TYor other generalizations concerning a space cubic, see Encyclopédie des sciences
mathématiques, (3) 4, fase. 1 (1914), p. 128.

() Leté; (i=1,2,----,12) be any given quantities and fj, j,» denote the binary
cubic forms (v—0; 9)(x—0; ¥) (®—0; y). Then the theorem is equivalent to any one of
the following two algebraic theorems :

I There exist the twelve constants A, u, v, --~,»'", for which we have the identities

AS, 2, 3+ fs, 6, 74+v 9,10, n=N 2,3, 4+ 4/ 16,7, 8+ fo, 11, 12
=N 38, 007 f1,0, 04V 11,12, 1=M fu, 5, 6+ #7756, 10+ v f12,1, 2.

For the case of a conie, see iaguerre, Sur la représentation des formes binaires dans
le plan et dans l'espace, Bull. de la Soe. Philomatique, (1) 40 (1872), p. 221 [ =Oeuvres,
II, p. 277]. :

IL. There exist the four constants ky, les, ks, kes, for which we have the identity

fer K (f, 2, 35 S5, 6,75 J9, 10, n)+He2 K (fa, 3, 45 fo,7, 85 S, 1, 12)
+hes IC(fa, 4,55 fr, 8,05 Jun, 10, 1) e J(fy, 5, 65 f5, 9, 105 fiz, 1,2)=0,
K (f, o, ¥) standing for the determinant
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Let us suppose that 2,3,4,------ , 12 are eleven fixed points on a

oiven space cubic; and consider the correspondence between the points 1
and 1, for which the four points
A=[(1,2,3), (6,6, T7), ( 9,10,11)],
B=[(2,3,4), (6,7, 8), (10,11,12)],
o C=[@,4.5), (7,8, 9), (11,12, 1)],
D=[(:5,6), (89 10), (12, I, 2)]
are in a plane.
When 1 is given, the two points A and B are fixed and lie on the

fixed line AB(=(). Also C'is on the fixed line
m= {(3,4,5), (7,8,9)},
and D on the fixed line
n={(4,5,6), (8,9,10){;

and the line C7) intersccts the line /. Let us take any point 1’ on the
cubie, and let €’ be the point of intersection of m and the plane
(11,12,1'), and 0" be that of » and the line cutting / and n and passing
through C’. If 1” be the third point of intersection of the cubic and
the plane (12, 1), 2), then there exists a one-one correspondence between
1 and 1”5 so that there are two self-corresponding points (that is, the
points I, for which the four points (IT) are in a plane).  Denote these
points- by 1, and I,.

Conversely, when I, is given the three points B, C, D) are deter-
mined uniquely. Hence the plane, passing through 2, 3 and the point
of intersection of the plane (B, €, D) and the line 10,6,170),1(9,10, 11) 1},
- cuts the cubic at the third point 1. When I, is given, a similar result
will be obtained.

It follows that we have a one-two correspondence hetween 1 and 1;
so that there are three or oo self-corresponding points (that is, the
points 1, for which the four points (I) are in a plane).

But we can prove that the locus of the points 1 in space, for which

which was treated by Profs. Rosanes, Lindemann and Hayashi. (See Ogura,
Binary forms and duality, Toholu Matl, Journ., (1918), p. 290.)

For the case of a conic, see Hesse, Zur Involution, Crelle's Journal, 63 (1864)
[=Werke, p. 515]; and Fr. M eyer, Allgemeine Formen- und Invariantentheorie, 1 (1909),
p. 361.,. where Prof. Meyer proposed to solve the question ”. ... Wie lantet die entsprech-
ende Ubertragung anf Iubische Raumkurven ?
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the four points (I) are in a plane (P), is a cubic surface. Consider the

tetrahedron having the faces

@il o) s e L T s GO

which contain

the fixed point [(2, 3, 4), (6,7, 8), (10, 11,12)];

1 7O 1 3 \ 2 .

the fixed line SR a8

the fixed line BRI G

and the fixed line 112, 2}

respectively.  Since the three edges
(P (1L,23)]; (P), (1,18, 1)}; (P), (12,1, 2);
cut the three fixed lines
1106, 10, (9, 1O, LY (85 6y 18 9)i; {(4,5,6),(8,9,10)}

respectively, we obtain three trilinear point ranges. Hence the three
faces

(522, 8)s S o SO oo

form three trilinear axial pencils; whence the locus of the vertex 1 is a
cubic surface( !).

Therefore we have, at least, nine points 1 on the space cubic, for
which the four points (I) are in a plane; and congequently any point
on the cubic can be taken as the point 1. Thus the theorem has been
established.

Lastly we remark that « similar theorem holds good for the rational

curve in space of n dimensions :
I e ==L F o= m =
Py =0 p@,=0% e 0G0 S0 T

0 being the parameter.

Ikeda near Osaka, March 1918.
() F. August, De superficiebus tertii ordinis, Diss. Berlin 1862: F. London,
Zur Theorie der trilinearen Verwandtschaft dreier einstufiger Grundgebilde, Math. Ann.,
44 (1894), p. 405; R. Sturm, Die Lehre von den geometrischen Verwandtschaften, 1

(1908), p. 324.
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