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'
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Part I. General Case.

1. Let the plane of the motion of a particle be the pla.ne of re-
ference and let the origin be at the centre of force. If £ be the
accelerating force at any point measured negatively towards the origin,
then the equations of motion are
5 z
(1)
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where dots denote derivatives with re%pect to the time /. Hence we
have

(2) iy — =0,
This equation gives by integration

(3) oy —yo=nh,
where 7 is an arbitrary constant whose value depends npon  the initial
conditions. Each motion corvesponds to a definite value of the constant
/5 the motion may therefore be grouped according to the values of 7.

’I‘he totality of the orbits, corresponding to a given value of /4, will be
called the central fomily.

Space-time coordinates. Curves of a linear complex.

2. It we introduce the space-time coordinates (x, 4, t), any orbit is

the orthogonal projection of the corresponding spa,ce-time curves upon
the plane of @, .

Now the condition (3) for the central family may be written
(4) o dy—y de=dt;

so the corresponding space-time curves form  the carves of the linear

complex, the axis being the ¢-axis and the chief pa,lameter being —A. .
Therefore we have the theorem :



GEOMETRY OF THE FIELD OF CENTRAT: FORCE. 29

The space-time curves coryesponding o the central family are the
curves of the lincar complex, the axis being the time-oxis and  the clief
parameler betng the given value
of the angular momentum with
opposite  sign.  Conversely, the
parallel projection of the curves
of a lincar complex in the dvrec-
tion of ils axts forms the central
Jamily, the centre of force being
the projection of the axis and
the angular momentum aboul the
centre of force being equal to
the chief parameter with op-
posite sign of the complex ().

3. If the curve

z=p(4), y=49)
belong to the central family (3),

hdt=(pq" —qp')da

where accents denote differentiation with respect to the parameter 4; so
that the orbit corresponds to a system of the space-time curves

. : [ R
e=p(2), y=q(), tzjiﬁpq—vp)dx+a

where ¢ is an arbitrary constant, and therefore the velocity-components
and the force-components along the orbit are given by

§ r

p=le— el
Pg —ap Pa'—qp
e Ay 9D 0P )
(P7 —99p) (pg —9P")

1. As a simple example, take the circle

x=cacos 4, y=asin i, (¢ being a constant)

(') For the conservative field of force having the force-function U(w, %), the equation
of energy is

i =
5 (w2 +y?) = Ulw, )+ &, (k, the energy constant);

50 that the space-time curves form the integral curves of the Monge equation
da? 4-dy? —2 (U+1lc) d?=0.
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as a central orbit. Then the space-time curves form a system of the

helices
! ’. e ll.: e
=0 COS A, Y=a SN 4, = et

I >
/

and therefore the force-components along the given civele are given by

F B, e Ji2 TRt
L= — COSA—=—"—0— Y= — CoS——(f—¢) =--oe-- ;
3 4 25 3 2 Z
(! (L (6 Gl (l
; s i B s
Y= ———8MmAi=— Yi— T=— —— SIN——({—C)==-="+-- :
(l) f"L (’,’i (f, = >

1T.  As the second example, take the parabola

Do
(S

B=As o =

2
as a central orbit. Then the space-time curves form a system of the
space cubices

and therefore the foree-components along the given parabola arve

A/ 2/ L

= — 7~U,7_——~—- ,A:.—_'['y: ...... ’
A° Yy

e 2h 20 h

.ﬂ/:~~ o o — - = — L= 8
Vi T

IIL.  Prof. E. Picard (') proved that a necessary and suflicient
condition that a plane rational curve of the m™ degree (in general)(*)
should be considered as the projection of a space rational curve of
the m™ degree (in general) belonging to the linear complex whose axis
is perpendicular to the plane of the plane curve is that the plane curve
has m points of inflexion at infinity. Consequently we have the
theorem : A necessary and sufficient  condition that « rational curve of
the m" degree (in general) belong to the central family and one of the

(') Picard, Application de la théorie des complexes linéaires a U'étude des surfaces
et des courbes gauches, Annales de 'Ecole Normale Supérieure, II, 2 (1877), p. 341.

(?) 'The parametric equations of this curve are of the form
() g )
SR R e

where P(A), Q(A) and R(A) denote polynomials of the i th degree with respect to A.
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corresponding spuce-time curve be a rational curve of the m™ degree  (in
general) 1s that the plane curve las m points of inflexion at infinity.

4, I. By means of the theorem in §2 we can interpretate some
geometrieal theorems for the curves of a linear complex from the stand-
point of dynamics, and conversely. For example, from (2)

i T e e
O N
?/ e 'T.",:’ = :L/.T
so that we have from (3)
: Sl T — 1/
(5) Ve m
— i 3 X — Y

but sinee —#, & ij—75% ave proportional to the direction-cosines of the
binormal at (@, ¥, t), it is seen that all the complex curves through any
point (z, 7, {) have the same osculating plane at that point, which is
nothing but the theorem due to Liie and Prof. Appell (*). Thus the
well known fact that for the central orbit the angular momentum about
the centre of force is constant corresponds to Liie-Appell’s theorem for
the curves of a linear complex.

II. We see from (5) that when the position (x, y) of a particle is
given, the binormals to the space-time curves at the corresponding
points are parallel to one another. And when the position (2, y) and
the velocity-components (2, 7) are given, the principal normals to the
space-time curves at the corresponding points and directions are parallel

Next the torsion of any complex curve (4) is

(6) el

T 2+y+i
consequently when the position of a particle is given, the torsions of the
space-time curves at the corresponding points ave the same.
Also the curvature of any complex curve (4) is

17 Vit aiqat®

1 _ VFTT @—ai) .

But we have from (1) and (5)

Y e S

g i mj—gs F@y, %010

(') Lie-Scheffers, Geometrie der Beriihringstransformationen, I (1896), p. 230
Picard, Traité d'analyse, I (2, éd., 1901), p. 380,
(?) Lie-Scheffers, ibid, p. 231.
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whence

(7) e
17 AT Ve

If the force do not contain the time ¢ explicitly, 22 is independent of f.
Therefore for the central family in which the force does not contain the
time oxplicitly, the centres of curvature of the space-time curves, corre-
sponding to the given position and velocity-components of a particle, lie
on a straight line parallel to the time-axis.

5., The «? straight lines

c=at+0, y=ct+d,
where «, b, ¢, d are arbitrary constants such that bc—ad =/, are tangents
to the curves of linear complex (4). Hence on the plane of @, 7, the
o« * straicht lines
cx—ay =Ah

are tangents to the central family. But this equation is nothing but

(3), which may be written

& i, sl
l/ ' N ~
Y 7
so that the tangent to the central family at the point (v, y) in the
direction -(?/ cuts off the imtercepts
dx
i ol
R

on the ax-and y-axes respectively. From this consideration we can find
geometrically the velocity-components of a particle at the given posi-
tion in the given direction('). (See Fig. 1.) '

This may be proved divectly as follows: From (3) and

R Y
8 —_—l = Y =—
(S) - el
we have
: ) Ly’
(9) B h s I_I/‘,

xy' —y xy —1

50 that the tangent to the central family

(') For another method, see § 6.
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: 44 KINNOSUKE OGURA.
L B v
Y—y=y' (X—a) {00
X, Y being current coordinates, cuts off the intercepts ) e (8
Yy — /i
0 A S e
Y Y x Therefore we obtain the

on the z-and y-axes respectively. dual relation between the
central family and its hodo-

Hodograph. graph that the point P in

6. Let 2, , be the point-coordinates in the plane of the hodo- el ol e

graph. Then the definition of the hodograph gives family corresponds to the
oTray gives

line P, in the plane of

. =]
s = the hodograph, and the
For the central family we have from (9) point P, in the latter
/ , plane corresponds to the
(10) e ? P I - 2 : TG
i e line P @ in the former
xy —1y wy' —y _
plane. ,
whence : Pl - \
Also we can easily \
Y= e ‘ show that the contact trans- \J/ '
Gt o — : : - :
da, Z T formation (11) is nothing
But since but the combination of the Fig. 2.
: , olar reciprocation
.y ded-x dy — ]
i e = dy dy i :
\zYy _"/) Ly=—— LA =t s ) ”/':: L
5 Yy —1 2y — 1 iy
e S e M : / i |
@y —y) ’ with respect to the circle
it follows that wt - yt=h
7 ; 72 and the rotation through the angle 90° about the origin
dyl"“ y'y doy = - > (CZ?/——:Z/’ dx). 1
& (m‘[/ —‘[/) ;1‘1 == '".’/‘_“ .’,/1 — iy, :"/'1: 7 T

A ) ), 1 > 3 b ] 3 = S ?/ .3
Therefore cach of the central family ond its TLodograph is derived

e SRS (B et [ o L S ) o [ s
Jrom the other by the contact transformation which was already stated Ty Routh(").

w  Now consider the first integral of the equations of motion in the

]I’ , » . ¥
(11) = Y =— hy' e oeneral field of force
/ ; =
Ty —y xy' —y z i | SRR P o o
or "Z':¢' ("" Y, T Y, [',): N=¢ (:'U7 Y5 T, Y, é)
; If the first inteoral contain the time explicitly, the hodograph loses its
I, y / / . i 1 . .3
B = — *i'ﬁ_#, a—=Yi proper meaning. Yor, since the proper hodograph has the form
Tilfr=Yx oy —y, @ Sl S TR, : S |

Hence we have, as i 1 ‘ S (') Routh, Treatise on dynamics of a particle (1898), p. 253. He did not introduce
: > have, as in Fig. 2, the parallelogr . - . _
: ’ 2 ’ p(uallclogmm OFP QP 1 whose area is the notion of contact transformation only, but did not give the analytical expressions of

T} o e »
equal to 2. For, equation (3) may be written the hodograph.
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G e ! SRS v 3
n=X@5y), n=Yy1y),
by elimination of 7' we must have a velation among =z, 7, 2, . Hence
we assume that the first integral has the form
(12) 2 (z, ¥ 21, Y1) =c,
where ¢ is an arbitrary constant.
If each of the two families of the orbits for the given value of «
and their hodographs be derived from the other by a contact transforme-
tion, it must be

/ ulge X e 99 ) 00 Y150
ox JyY o, Oy :

o0 co

ow cy

19} .
of o' o0°9

AE _— ; ( == 1
oz’ ©Oxzom - you, o
of o0 oL
\ Sy Oxdy, Oyoy,
under the conditions
(14) =it G
I"Cl ] 4)(33’?/’:‘811?/1:{)
Therefore the generating equation (the first integral)
Q=c
must satisfy
(1-’3) x1'~———~ag + o =1, ¢ ?_{2—‘ *L"'“ag =0.
ox oy e

8. L Particularly, for the central family and its hodograph, we
have had the generating equation
L=y, —ym =c.

In this case

29 00
&Ly S + ) 5 =2 Y — Y 2, =0,
09 08 _ F(z,y,,1,!t
b= = DU YY) -
dz, I Vot T

A=yz, —y, o= —c=0.

() Lie-Scheffers, ibid, p. 54.
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We have already shown that the generating equation determines
particular case of general duality of Mobius (§6). But we can PLOVE
the theorem :
The only orbit, which is derived from its hodograph by the general
duality, belongs to « central Jamily.
For, by the assumption the funetion
L=(ma+by+a) s+ (ayatbyy+c) i+ (ay 240y y +c5)

must satisty the identities

(g @+t Yy + ag) 2+ (b @+ by 4y +-03) 21, =0,
(x40, y+c) b+ (a, x40,y + ;) =0,
The former gives
=0 aa=05 U0 bi=0sa === =
and hence
A= —U [by (@ y —ayn) + (¢ 2t )] = =0 =0
consequently the latter becomes

& e bhy+a

i

o 3 by x—c,

which shows us that the force passes through the fixed point

Swis
b, i

1. Tor the conservative field of force having the force-function

b

(e, //),

Q=—(at+m)— Ulz, y)=c.
D)

In this case, since
A=0;
we have no eontact transformation.
Tt the central foree be conservative, that is, the force depends upon

the distance from the centre only, we have

[ p e b L
g =) - (i +y)— U@+ y°)=k.

4
Hence the hodograph is derived from the orbit by the point transformi-

tion
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Part II. Positional Force.

Geometrical characterization of the central family.

9. In what follows we will confine ourselves to consider the most
important case where the central force is positional. Then the equations
of motion are

- z \ 5 Y . o
16 = - s T — R SR A 6 T

Now since

: ’lzl_ =y = _rz;-—yz_,
dz* 75
we have from (2) and (1)
O il 2 pingl!
e . Pyt
@y’ —y) @y —u)°
Hence it follows that
- i L
17 e S e R DA T T B ) L ) )
(17) Y T (zy' —y)

which is the differential equation of the central family for the positional
force.
If (X,Y) be the centre of curvature at (, 7),

‘?/’ == :E'i ] ,Z/H :‘(JY_—z:i;_)“’i(_l“f:q): ;
; Y—y ; Ok

hence the locus of the centres of enrvature of all curves belonging to
the central family at the point (z,7) is the cubic curve

(@, y)

[(X—2)*+ (Y —9)*].

If we put
(19) =2 &X=2)+y (Y—y)

Vi rtngE e

el (X—ax)+2 (¥Y—y)
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(18) becomes

5%

5 < 2L Lo

(20) =0 (S +Y),
where

: l*

(21) ) =— el

(.rf 97) i

This cubiec 1s nothing but the cubica!

duplicatriz of Tiongehamps (1), The

E 5 b . 0 &
point P (5=0, 7=0) will be ecalled the >
fundamental point (*) and the point A (z=w, Hig. /3.

7=0) the verfex of the curve (*). These definitions and equations (19)
lead us to the result: The fundamental point and the vertex are colli-
near with the centre of force.

Therefore we have arrived at the theorem

The centres of curvature of all curves of the central fumily passiig
through any point P lic on the cubical duplicatriz, the jundamental point
being at P and the wverter A being collinear with P ond the centre of
force (.

Conversely it is easily seen that if the centres of curvature of the
o * curves passing through any point P lic on the cubical duplicatriz, the

Jundamental point being at P and the vertex A being collinear with P

and o fized point O (independent of the position of P), then these oo*
curves form the central family, the centre of force being the fized point O.
Thus the property given by the above theorem is completely character-
istic to the central family for positional force.

10. If we put

CANY

to =1

O

UARY

= )

the cubical duplicatrix (20) may be represented parametrically
= ~94 i 0N
;:m(]_—{—/.), = (1'1_/.)/..

The intersections 4, 4,, 4, of this curve and any straight line

ai+bn+c=0

(') Longchamps, Yssai sur la géométrie de la regle et de 1'équerre (1890), p.
J2-94. See also Loria, Spezielle ebene Kurven, 2. Aufl., Bd. 1 (1910), p. 93; Wieleitner-
Spezielle ebene Kurven (1908), p. 371.

(?) This point is the isolate point of the curve.

5] ]T.i‘: w.
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are given by
bowlltawlP+bwit(awsc)=0,
so that
A Ao At 2 A =1.
Hence the points of inflexion (') are determined by
ol :

A= 116,

o =m0

It is vemarkable that the maguitude of this angle is independent of
the magnitude of force.
11. Here we add some properties of the curve (20).

I
F:1F1+ Fz:
then
g 1
0w, Wy

IL. In order that the vertex 4 coincide always with the centre of
force 0, it is necessary and sufficient that

—i“ ST 1/12"?"??/ Y
(& +y) F

(=4 y°).

In general the necessary and sufficient condition that the vertex
A divide the segment OP in a constant ratio is that the central force
be proportional to the inverse cube of the distance from its centre.

IIT. The necessary and sufficient condition that o= const. =0
say) is \
I

o)
C

Vi

In this ease the curves (20) for all positions of P are congruent, and
conversely.

But the central family for the force which is proportional to the
mverse square of the distance is consisted of the homofocal conics whose
common focus is the centre of force, and conversely ( #).
obtain the geometrical theorem :

Therefore we

(') 'The third point of inflexion is at infinity,
(?2) Routh, ibid, p. 216.
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The cenlres of curvature of all homofocal conics passing through any
point P lie on the cubical duplicatriz, the Sundamental pount  being at P
and the vertex A being collinear with P and the common focus O ;and
these cubical duplicatriz jor all positions of P are congruent wz’z’;/a one
another.  Conversely, of" the centres of curvature of all the w? curves
passing through any point P lie on the cubical duplicatriz, the Jundamental
point being at P and the wvertew A being collinear with P and « fiwed
point O (undependent of the position of P), and these cubical (Z?,zplz'c:uf-rim

Jor all positions of P be congruent, then the w?* curves must be the homo-
Jocal conics whose common focus is at the fixed point O.

12. We will give the characteristic property of the space-time
curves corresponding to the central family for positional foree.
If a, B, 7 be the direction-cosines of the tangent to the space-time

curves,
e 1 .
=
14 2°+9*
whence the radins of enrvature
1 V w+ o+ I .
LT) e e i ;——_‘_—_j 4 (.’L‘, Y, .’i‘, _?'/, f-)
B VotyvVita+y
TIVES
§ 'l/l,')ﬁ o
(2_;) jt)}’:: Sy 1

Vot ]"(JV, Y, &, 7, t)_ :

Thervefore @ necessary and sufjicient condition that the ceniral foree
be positional is that the quantity Ry* of the space-time curves correspond-
g to the central jfumily depend wpon the position of the particle only.

Also we have from (6) and (22) the remarkable formula

) L

Pl =V,
R;“'I//z, 8

138. TLastly we add the case where the force is parallel, that is,
the centre of force is at infinity-
The equations of motion are then of the form
= (z,y), y=0;
so that the first integral becomes

y=const. (=a, say).
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Whence the differential equation of the orbits having the given value
a is

L
Let (X, Y) be the centre of curvature at J :
(z, y), and let T ,‘\
SIZAY*LL‘, = Y — s !. f
Then we have also the cubical duplicatrix P e F_’\"_\ A s
B—o (E47) ‘
where | _ e
a’ I | \
S T
¢ (@, Q/) Fig. 4.
Collineation.

14. Let the equations of motion be

20) 3=¢ (z, y)=F (, 2 — =i — ,__.“L__
(25} 2= (z, g} =T( J)l/x+ y=¢ @ y)=1F(z, /)

Then the differential equation of the central family is

(17) i ?J” ]‘l/ff—{_/) (L 1/

Now we proceed to prove the theorem :

=0

By a collineation the central Jamaly s transformed into o central
Samaly.

By a collineation the ovigin is transformed into cither a point at
finite distance or a point at infinity.

In the former case we may suppose that the origin is invariant,
without any loss of generality. Then the collineation takes the form

(24) = ax+by Vi a' z+b y
' x4 b y—|-(,'” : "ot b ?/—{—C”
or
@y Com - il B By
Ca+C y+C" Ca+C y,+ O
where a, b, ----- are arbitrary constants and A, B veias the algebraic
complements of «, &, -.-.. in the determinant
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I (l /) (
i i e
l f/” /)” f’l
If we put, for convenience,
S=da+A 4, mn=Bz-+B Yy, &=Cx+Cyt0,
‘ / 1/
_1-_-Jlf/‘1l ’/1, 0’1:])‘t" ') ,//l! ‘1_ +C ?/1’
where
frae 0o Ay,
’/]—- .) | e )
(/]Il (]',L‘l-
we have
o n | 3 1
e S it D, 5Py
Y = A T T T &£ L) #
SIS S (SIS SIS

| A Al ) \
B o
1 0 04 Ou ‘l
Whenece the differential equation (17) becomes
/)2 ])] :'I’ )/”1*: F(1‘1 f/) [(]))_: — A7 “)*i"( b -1—1‘1 /‘\?] 1] :0,
@l
or

b —a'b)

e, ) . (2 y'v— 1)’ =0.
P l/_ *);:L J4y ( 1 1

Ry’ +

Clonsequently, if we put

¢y (21, Y1) =~ - L[_L/) IIIT( [“ ¢ (2, y)+0 & (, hls
(x 0 —a' b |

"(a' x40 Y+ e e 1
(o)=L C VLT [ )+ V9 oY

and

)h) ¢1KL1"‘/1)—] (Llyf/l) l/ =55 %) 9” (‘2’1:[/1)—‘1 (‘7'1:711) l/

+7 'f’l/x,

the above equation becomes

Iy + 1;/(11—;_/1) (& ?/,1_'?/1)3:0’
)+ Y1
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which has the same form as (17). Thus it is seen that the centrql
family (17) 4s transformed into the other central family having the force-
components determined by (25).

Since

CL’—I—b' §,)(.’L', Z/)

o (@, 1) &l b (2. y) ’
&1 (215 ) a+b ¢ (z, y)
bz, )

the direction of the force is transformed projectively, which is an
obyious result.

In a similar way we can treat the case where the origin is trans-
formed into a point at infinity.

15. Now we consider the accompanied transformation of the time ¢.

Since from (24)

da _ dn &t [ (,dy_, do
dt, dat | di; di dt
+B _(Zi—A’ dy 1" :Ilf 112 o
dt dt | (o x+b0" y+c'") di,
‘ dx dy 1 di
S Bl g1 g
: o dt dt / (&' x+b" y+c") df
iy (07 p dr dy s dt
Al Lo D (e == )
dt, o dt dt J (@' o+b" y+c") di
we obtain
1 t
e 0 (g o
dt, dt, (a" x+b" y+c') dt ar 7 dty

G dt
(L Fblytc?) df

Consequently, in order that the transformed orbits may be the central
family having the constant 7, it is necessary and sufficient that

: dt. — ab —a'b :
£t (a.{t a?+b” y-{—C”)z
Thus we infer the theorem : By Appell’s transformation ()

(') Appell, De I'nomographie en mécanique, American Journal of Mathematies,
12 (1890), p. 103.
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