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Note on the Representation of Surfaces,
by
Kmwostkre Oaura in Sendai.

Conformal representation and the principal radii
of normal curvature.

1. Bonnet solved the problem of finding applicable surfaces with
equal radii of principal curvature at corresponding points. Here we
proceed to comsider the necessary and sufficient condition that the two
swfaces S and S, which are conformally related to each other, should
have either one of the relations

\=—R, R’1=R~z} R'1=—R2}
—R’2=Rz R'2=—Rz ’ Ra—="T : B'y= ‘““R1 :

where Iy, B,; R',, B, respectively denote the principal radii of normal
carvature of S and §" at corresponding points.

In order that there may exist either one of the relations (1), it must
be

R’1 =Bl
) }

2) it

S (3) 1_12_(1__1)2
B R, NIRRT
But we have the following theorem, due to Prof. Stiackel('): It two
surfaces S, S’ be conformally related to each other and have the equal
Gauss measures of curvature K, K’ at corresponding points, then the

(four) directions, for which the squares of corresponding normal curvatures
1
B R
the given surfaces; and conversely.
Hence it is sufficient for our purpose to fmd the condition that

pencil at any point on any one of

(') P. Stiickel, * Beitriige zur Ilichentheorie,” Leipziger Berichte, 48 (1896), pp.
498-9.
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these surfaces S, S’ should have the relation (3) at corresponding points,
9, Tet us suppose that corresponding points of S and S’ have the
same parameters u and v. Since the correspondence is conformal, we
have
(4) Bi=p 0 Bl=n l, G'=x G,
where E, I, (; E', F' (' ave the fundamental quantities of the first

order of S, 8’ respectively, and « is a function of #, v.
Now the equation to the divections, for which the squares of cor-

- it torsiony .~ aro oqual, takes the for
responding geodesic torsions S are equal, takes the form

TI

{ (F’L’ e E"ﬂ[’) (ZQL:!-}‘((.;’_L’ L r/) du dv _{_r( )1':7[1/ %ol .l'm_N,) (IZU2F
(B 242 F dudo+ G do) V' E' G — "

(FL—EM)du'+(GL—EN) dudv+(GM - FN) dv* } 2

®)

"{_ (B du*+2 F dudv+ G dvt) Vv EG— 1"
L, M, N; L'y M', N being the fundamental quantitics of the second

order of S, 8" respectively. 1In consequence of (4), equation (5) reduces

b

to the two quadratic equations in dv :du
(6) (FL —EM)xx (FL-EM)|du’ +[(GL' — N+« (GL—EN)] dudv
+[(GM' —FN' )= (GM— LN )] dv*=0(").
In order that the four directions given by (6) may be harmonic, it is
necessary and sufficient that
('L —EM)+x(FL—EM)] [(GM —FN')—« (GM—IN)]
+{(FL —EMN')—x(FL—EM)] [(GM —FN')+« (GM—FN)]
—2[(GL'—EN')+«x (GL—EN)]|[(GL' — EN')—« (GL—EN)]=0,
that is, )
(FL'—EM')(GM'— FN')—(GL —EN')
=« |(FL—EM)(((M—I'N)—(GL—EN)];

;‘,Lll'.] lml] (&€

(35 '1.‘]1(: tangents to the curves (6) belong to the involution whose double rays are
I dv? —2dudv du? .
FL-EM  QL-BN GM—FN |=0.
FL—EM @(L'-EN' @M-FN
The tangents to the lines of curvature also belong to this involution. See Stickel, Uber
Abbildungen,” Math. Ann., 44 (1894), p. H53.
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(F'L'—E'M)(GM—-FN)—(G'L—LE'N'?

AT ' 7(»‘ L' G'— F'*)?

(L'L—EM)(GM—FN)—(GL—IN )’
(BG—F??

(3) ( e J;_\‘)g:(_‘] __J;_y
[1)’1 "": _[fl ]l,_-

As the analysis is manifestly reversible, we get the theovem : If

7

two surfaces S and S, which are conformally related to cach other, have

f/)(f ’)'('Zr/f/'m/
g
11)-/1 [g,v_) jt,‘ 1{_,

at corresponding points, then the directions, for which the squares of  cor-
responding  geodesic torsions are equal, form o larmonic  pencil ; and
conversely.

Combining this with Stickel’s theorem, we arrive ab the following
result :

When two surfuces S and S’ are conformally velated to each other,

it is necessary and sufficient that the divections jfor wlhich
b — e
should form a harimonic pencil and moreover the divections for whick
2 — 2
should form another harmonic pencid, wn order to secure that these two
surfaces should lave either one of the relations
er:]f‘l 11)1/1:‘-‘ ]*)l‘] Rl'l: lfl]
b

| ]f’]:-—/z,_,l
RBl— R e pL e

*

R,=R,|’ R.,=-R)

at corresponding  points.

Equivalent representation and the Gauss measure
of curvature.
3. Consider any two surfaces S and S’ which wre not conformally
related, and let ds and ds’ be corresponding linear elements of these

surfaces respectively.
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The 2w ' carves defined by
(7) ds'* =ds’,
i.e.
8) (B'—E)duw+2 (F'—F)dudv+(G — @) dv*=0
will be called the automecoic curves, and these defined by

(9) ('ZS”: —(,7,?"’,

(10) (E'+E)du’+2(F'+F)dudy +(G'+ G) dv*=0

the anti-automecoic curves.

Now in order that the automecoic curves passing through any point
(1, v) may be harmonic conjugate with the anti-automecoic cnrves pass-
ing through that point, it is necessary and sufficient that

(B'—E) (@ + Q) +(E+E) (G —Q)—2 (F'—F) (F +F)=0,

that is,
BG@—-F*=EG-F"

Consequently we have the theorem :

The necessary and sufficient condition that any non-conformal repre-
sentation should be equivalent is that the automecoic curves and the anti-
automecoic curves passing through any point form a harmonic pencil.,

It will be noticed that the directions of the automecoic curves and

the anti-automecoic curves belong to the involution whose double rays
are given by

dv* —dudv dut

(11) E b G =)
ol F Q!

that is, the principal curves of Tissot. The directions of the minimal
lines of the two surfaces S, S’ respectively

Edw@+2 Fdudv+ Gdv*=0 and E'dw+2F dudv+ @ dv*=0
belong also to this involution.

4, Next we consider the spherical representations of S and S’, and
let their linear elements be
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do*=cdu*+2f dudv+qg dv’, de"*=é du'+2f dudv+g' dv’
respectively.

I. When

5 v =, gi=zEg,

we have

e'q —f=eq—/". ;

IT. TIn the other case, we can prove that when and only when

gL gt "
eqg —f"=eqg—j%
the curves
de*=das* and de*= —do"

form a harmonic pencil at any point (u, »).
Hence recalling the relation
eg—/*=K*(LG—F7),
we have the theorem :
The necessary and sufficient condition that two surfuces S and S,

which are connected by an  equivalent representation, should  have the
relation

=K

between, the Gauss curvatures at corresponding points, 18 that cither

L. all the corresponding curves of the spherical representations of S,
S’ are automecoic or anti-automecoic; or

T1. the automecoic curves and the anti-automecoic curves of the
spherical vepresentations of. S, S' form a harmonic pencil at corresponding
points.

Also, the squares of Gauss curvatures of any two suifaces are cqual
al corresponding points, when the automecolc curves and the anti-automecoic
curves form a harmonic pencil and moreover the automecoic curves and the
anti-automecoic curves of the spherical representations form another harmonic
pened.

5. Here we will give some examples.

T. Tet us take the two surfaces of translation (')

(*) S.Nakagawa, “Zur Theorie des Ga uss’schen Kriimmungsmasses,” Proceedings
of the Tokydo Mathematico-Physical Society, II, 4 (1907-8, p. 183. In this example, cor-
responding normals to the two surfaces are parallel. For such an equivalent representa-
tion, see (. Guichard, “Sur les surfaces qui se correspondent avec parallélisme des plans
tangents et conservation des aires,” Comptes Rendus, (1903), p. 151.
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(EG—F) 1 P—~(EG'+ GE'-2 FI") P+ (L' G'—F")=0.
Hence

(15) T

FG—F*
1 LB R B+ Gr —2 Fr"
16 S Ay ) == i,
& T 2 (HG—F?)

We will call these quantities the total quadratic magnification and the

mean quadratic magnification respectively.

Thus the necessary and sufjicient condition that any  non-conformal
representation should be equivalent 1s that the total quadratic magnification
s equal to umity. (For the analogous ecase with respect to the mean

quadratic magnification, see § 8).

7. Particularly, let us suppose that the spherical representation of

S has been taken for the swrface S’. Then the linear element of S’
given by

ds*=do*=e du*+2f du dv + g dv*
=(HL—KE)dw+2 (HM — KF') dudv+(HN— KG ) dv?,

where K and H denote the total and mean curvatures of S respectively.
Hence the differential equation of the principal curves becomes

dv* —du dv da?
H F Gal=01 )
L M N
and we have
2
17 e s R
S e 7 T R.R,

1 N9 LW Eg+ Ge_2 Ff
18 — /\ ! /l')z — —
) o 2 (EG—F?) 2

Theretore we arrive at the theorem :

The dwrections corresponding to the extremes of the quadralic magni-
Jicatvon of the spherical representation of « surfuce (excluding the minimal
surface) with respect to the given surface are
curvature of the guen surface.

(*) When 8 is a minimal surface, the principal curves become indeterminate.

¢ the tangents to the lines of
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The total quadratic magnification and the meon quadralic magnifica-
tion of the spherical representation with r(:.s'pcr'f to a swrface are the Gauss
curvature and the Casorati cuwrvature (1) of the qwen surface respec-
tively.

Infinitesimal equivalent representation.

8. Let (z, 9, z) and (', 9, #') respectively be the co-ordinates of
two surfaces S and S, the latter being obtained from the former by a
very small deformation. TIf we put

(19) o' =x+ewx, y=y+ecy, F=ztez,
where ¢ denotes a small constant and 2, 7,; 2, are functions of » and v,
then
,r:l L \C 'J: ) 3 | 9 Y
L9 S L Ll =G+2¢ E' L4+ G,
z—‘ Qu  ou ao 'r)v
ﬁ”""— '1 i ’_Z( aCC ?_j-l:l —l_. a.:f.' al‘l) _:-_J ﬁ‘fl %
=1 ¢ = = < ;
ou ov ov  Ju
so that
| or
Ble = Fi= g e aiy O e
ou ou 87, ov
T zi‘ ( ow oz, L - axl) + terms of higher orders in e.
ou v ov Ou
If

de. " o I or on
GZ ou ou 3 ov ov

e or o ox ax,)
gl

(20)

corvesponding small arveas of § and S are equal to within terms of the
second order in e,

When ¢ is taken so small that ¢ may be neglected, the surface S’
detined by (19) and (20) will be said to have been derived from S by
un 'z'y{/f7zfiie.s£z'frnz'll (’(_]’u'[’U((cht ’)'6’1)7‘6’88%1’({15'50?1.

In consequence of

(') Casorati, “ Mesure de la courbure des surfaces suivant l'idée commune,
Acta Mathematica, 14 (1890-91), p. 95.
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or Oz Or Ox
De L S 9 N\ 1 =G -G,
Z ou ou L Oy OV

(2 2m, % B _pop
ou ov ov ou

(O}

equation (20) becomes
(21) GE'+EG'—2 FF'=2 (EG—F?),

which is nothing but the necessary and suflicient condition that the re-
presentation (19) should be infinitesimally equivalent. Thus we have
from § 6 the theorem :

When S' is derived from S by a wvery small deformation, a necessary
and sufficient condition that S and S' should be infinitesimally equivalent is
that the mean quadyratic magnification of S' with respect to S is equal to unity.

9. If the automecoic curves of § and &

(B'— E) dit+2 (F' = F) dudv+ (G — ) dv*=0

/

and the minimal lines of S
Edw?+2 Fdudv+ Gdv=0
be harmonic at any point (u, v), it must be

(B —F) G+ (¢~ Q) E—2 (F'—F) F=0,

GE'+EG@ —-2FF" =2 (EG-1"7%);
and conversely.

Hence, when S' is obtained from S by « wvery small deformation, «
necessary and sufficient condition that S and S" should be in initesimeddly
equivalent s that the automecoic curves of S, S' and the minimal lines on
S form a harmonic pencil at any point (u, v).

Here we add an example of a family of swmrfaces of translation,
which are infinitesimally equivalent to each other :

z=a U,+b 1, y =b U—aV, v =U,;
o =x+e(b U+aV,), y=y+e(—alU-+b W) ti=a-te W,

where ¢ and O are constants, and the U’s and V7’s are functions of «
and v alone respectively.

10. I. It is well known that for the infinitesimal isometric repre-
sentation the Gauss cwrvature is invariantive to within terms of the

NOTES ON THE REPRESENTATION OF SURFACES. a7

second order in e. DBut the converse is not necessarily true, even when

the 1_v(»_])1‘(r.<<:11’c:1’tiqm is infinitesimally equivalent.

For example, from the general surface of revolution
@ —ucosv, Y =usinv, z=qo(u)
we can derive the helicoid
o =wucosv, Yy =usinv, 2=d(u)+ev

by the infinitesimal equivalent representation.  Although these two sur-
tacos have the equal Gauss curvatures up to terms of the second orler
in e they are not infinitesimally isometric; for

<

B =11/ u), =0 G =u*;
]L”:]' 7"' (bu:(”)’ ['”:5 (bu(”): (’:’: 7"'2‘*' 52 5
[411 (’r{! i {'Tfhw o z 1,1[’1/ = 2 ([411 (; EA /,12),

K= (vbu(?f) (bmr(f()‘ , i _”;d)i’:)_ (I)iw(}l) -—:gi :
u [14+d (W] [+ 02 (1) + €T

As the second example, we can take
= 2 —bu; z =a d(u)+b d(v),
' =a(l+e)u, y'=b1—e)v, #=a(l+e) $b(u)+b (1—:2) ¢(v),

@, b being constants.

II. Now we consider the parallel surface S’ obtained by measuring
along the normal an infinitesimally small distance ¢ from the surface S.
If X, Y, Z be the direction-cosines of the normal to S, then

o =x+cX, y'=y+tecl Z=ztei;

and therefore

B —F*=(1—¢ B+ K} (BG—I7),

K

I = — .
l—s H+e K

Hence a necessary and Szg[ﬁcient condition that the parallel suiface S’
at an infinitesimally small distance € from the surfuce S should have the
same Gauss curvature as S is that S may be obtained from S by an
infinitesimal equivalent representation ; and such @ case occurs when and
only when S is a minimal surface.

11, Lastly, let us consider a surface S which can Dbe obtained



U=y, P=Z—vien.

be ob i ed S by an infinitesimal equivalent repre-
must have by (21)

Eg+Ge—2Ff=2(EG—F"),

Sl

 senfation, ve

% 5
) A

be equal to unity, in order to secure that the surfuce
mally equivalent to its spherical representation. :

Y
Ll
if 3 K s : =
¥ X - = i ¥
-
X 5
1% s
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