With the Author's Compliments.

KINNOSUKE, OGURA.

Trajectories in the Conservative Field of Force, Part II.

Extracted from

THE TÔHOKU MATHEMATICAL JOURNAL, Vol. 8, No. 2, edited by TSURUICHI HAYASHI, College of Science,
Tôhoku Imperial University, Sendai, Japan, with the collaboration of Messrs.
M. FUJIWARA, J. ISHIWARA, T. KUBOTA, S. KAKEYA, and K. OGURA.

December 1915

Trajectories in the Conservative Field of Force, Part II,

Determination of the Function φ by the Families of Extremals in Space, especially by the Parametric Curves of Curvilinear Coordinates.

General Case.

curvilinear coordinates (u_1, u_2, u_3) such that

$$x = x (u_1, u_2, u_3), y = y (u_1, u_2, u_3)$$

Then the linear element has the expression $ds^{2} = dx^{2} + dy^{2} + dz^{2} = \Sigma a_{rs} du_{r} du_{s} \quad (r, s = 1, 2, 3),$

where

$$a_{rr} = \left(\frac{\partial x}{\partial u_r}\right)^2 + \left(\frac{\partial y}{\partial u_r}\right)^2 + \left(\frac{\partial z}{\partial u_r}\right)^2,$$

$$a_s = a_{sr} = \frac{\partial x}{\partial u_r} \frac{\partial x}{\partial u_s} + \frac{\partial y}{\partial u_r} \frac{\partial y}{\partial u_s} + \frac{\partial z}{\partial u_r} \frac{\partial z}{\partial u_s}$$

Next let us denote by a the determinant

a,

the expression

$$\frac{1}{2}\sum_{r}A_{ir}\left(\frac{\partial a_{\lambda r}}{\partial u_{\mu}}+\frac{\partial a_{\mu r}}{\partial u_{\lambda}}-\frac{\partial a_{\mu r}}{\partial u_{\lambda}}\right)$$

substituting

by

KINNOSUKE OGURA in Sendai.

CHAPTER V.

35. Let any point (x, y, z) in space be represented by any

 $u_1, u_2, u_3), \quad z = z (u_1, u_2, u_3).$

 $a_{12} \ a_{13}$

 $_{2} a_{23}$

 $a_{22} a_{33}$

and by A_{rs} the algebraic complement of a_{rs} divided by a, and by $\begin{pmatrix} \lambda & \mu \\ i \end{pmatrix}^{\pm}$

 $\frac{1}{2}\sum_{r}A_{ir}\left(\frac{\partial a_{\lambda r}}{\partial u_{\mu}} + \frac{\partial a_{\mu r}}{\partial u_{\lambda}} - \frac{\partial a_{\lambda \mu}}{\partial u_{r}}\right), \quad (i, r, \lambda, \mu = 1, 2, 3).$ And also the corresponding quantities obtained from a, A_{rs} and $\left\{\begin{matrix}\lambda & \mu\\ i\end{matrix}\right\}^{\sharp}$ by

188

KINNOSUKE OGURA:

$$\overline{a}_{rs} = \varphi^2(u_1, u_2, u_3) a_{rs}$$
 for a_{rs} (r, s=1, 2, 3)

will be expressed by \overline{a} , \overline{A}_{rs} and $\left\{\frac{\overline{\lambda} \mu}{i}\right\}'$ respectively.

Now it is well known that the extremals of

$$\int ds = \int \sqrt{\sum a_{rs} \frac{du_r}{ds} \frac{du_s}{ds}} \, ds = \min.$$

are given by

$$\frac{d^2 u_i}{ds^2} + \sum_{\lambda,\mu} \left\{ \frac{\lambda \mu}{i} \right\}' \frac{du_\lambda}{ds} \frac{du_\mu}{ds} = 0(1), \quad (i=1, 2, 3).$$

Hence if we put

$$d\overline{s} = \varphi \, ds = \sqrt{\sum \varphi^2 a_{rs} \frac{du_r}{ds} \frac{du_s}{ds}} \, ds,$$

it follows that the extremals of

 $\int d\bar{s} = \int \varphi \, ds = \min.$ (87)

are given by

88)
$$\frac{d^2 u_i}{ds^2} + \sum_{\lambda,\mu} \left\{ \frac{\overline{\lambda} \mu}{i} \right\}' \frac{du_{\lambda}}{ds} \frac{du_{\mu}}{ds} = 0(2), \quad (i=1, 2, 3).$$

From the last equations we can derive the following three equations

$$du_{1}d^{2}u_{2} - du_{2}d^{2}u_{1} + \left\{\frac{11}{2}\right\}'du_{1}^{3} - \left\{\frac{22}{1}\right\}'du_{2}^{3} + \left\{\frac{33}{2}\right\}'du_{1}du_{3}^{2} - \left\{\frac{33}{1}\right\}'du_{2}du_{3}^{3} + \left(2\left\{\frac{12}{2}\right\}' - \left\{\frac{11}{1}\right\}'\right)du_{1}^{2}du_{2} - \left(2\left\{\frac{12}{1}\right\}' - \left\{\frac{22}{2}\right\}'\right)du_{1}du_{2}^{2} \\ + 2\left\{\frac{13}{2}\right\}'du_{1}^{2}du_{3} - 2\left\{\frac{23}{1}\right\}'du_{2}^{2}du_{3} + 2\left(\left\{\frac{23}{2}\right\}' - \left\{\frac{13}{1}\right\}'\right)du_{1}du_{2}du_{3} = 0, \\ du_{2}d^{2}u_{3} - du_{3}d^{2}u_{2} + \left\{\frac{22}{3}\right\}'du_{3}^{2} - \left\{\frac{33}{2}\right\}'du_{3}^{3} + \left\{\frac{11}{3}\right\}'du_{2}du_{1}^{2} - \left\{\frac{11}{2}\right\}'du_{3}du_{1}^{2} \\ + \left(2\left\{\frac{23}{3}\right\}' - \left\{\frac{22}{2}\right\}'\right)du_{2}^{2}du_{3} - \left(2\left\{\frac{23}{3}\right\}' - \left\{\frac{33}{3}\right\}'\right)du_{2}du_{3}^{2} \\ + 2\left\{\frac{12}{3}\right\}'du_{1}du_{2}^{2} - 2\left\{\frac{13}{2}\right\}'du_{3}^{2}du_{1} + 2\left(\left\{\frac{13}{3}\right\}' - \left\{\frac{12}{2}\right\}'\right)du_{1}du_{2}du_{3} = 0, \\ (89) + 2\left\{\frac{12}{3}\right\}'du_{1}du_{2}^{2} - 2\left\{\frac{13}{2}\right\}'du_{3}^{2}du_{1} + 2\left(\left\{\frac{13}{3}\right\}' - \left\{\frac{12}{2}\right\}'\right)du_{1}du_{2}du_{3} = 0, \\ \end{array}$$

(1) For example, see Bianchi, Vorlesungen über Differentialgeometrie, 1. Aufl. (1899), p. 569.

(2) J. Lipka, Trans. of Amer. Math. Soc., 13 (1912), p. 80.

TRAJECTORIES IN THE CONSERVATIVE FIELD OF FORCE, PART II. 189

$$\begin{aligned} & du_{3} d^{2}u_{1} - du_{1} d^{2}u_{3} + \left\{\frac{3 \cdot 3}{1}\right\}' du_{3}^{2} - \left\{\frac{1 \cdot 1}{3}\right\}' du_{1}^{3} + \left\{\frac{2 \cdot 2}{1}\right\}' du_{3} du_{2}^{2} - \left\{\frac{2 \cdot 2}{3}\right\}' du_{2}^{2} du_{1} \\ & + \left(2\left\{\frac{1 \cdot 3}{1}\right\}' - \left\{\frac{3 \cdot 3}{3}\right\}'\right) du_{3}^{2} du_{1} - \left(2\left\{\frac{1 \cdot 3}{3}\right\}' - \left\{\frac{1 \cdot 1}{1}\right\}'\right) du_{3} du_{1}^{2} \\ & + 2\left\{\frac{2 \cdot 3}{1}\right\}' du_{2} du_{3}^{2} - 2\left\{\frac{1 \cdot 2}{3}\right\}' du_{1}^{2} du_{2} + 2\left(\left\{\frac{1 \cdot 2}{1}\right\}' - \left\{\frac{2 \cdot 3}{3}\right\}'\right) du_{1} du_{2} du_{3} = \mathbf{0}(^{1}). \end{aligned}$$
Hence a necessary and sufficient condition that the \$\pi^{2}\$ parametric

curves

$$u_2 = const.,$$

should be the extremals is

$$\left\{ \overline{11}_{2}^{1}\right\} ^{\prime} = 0,$$

which may be written

$$\begin{array}{l} \begin{array}{l} \left\{ \begin{array}{c} 1 \\ 2 \end{array} \right\}' - a_{11} \left(A_{21} \frac{\partial \log \varphi}{\partial u_1} + A_{22} \frac{\partial \log \varphi}{\partial u_2} + A_{23} \frac{\partial \log \varphi}{\partial u_3} \right) = 0, \\ \left\{ \begin{array}{c} 1 \\ 3 \end{array} \right\}' - a_{11} \left(A_{31} \frac{\partial \log \varphi}{\partial u_1} + A_{32} \frac{\partial \log \varphi}{\partial u_2} + A_{33} \frac{\partial \log \varphi}{\partial u_3} \right) = 0(2). \end{array}$$

Similarly, such a condition for the parametric curves

$$u_3 = \text{const.},$$

 $\left\{\frac{\overline{2}}{1}\right\}' = 0,$

or

is

is

1)
$$\begin{cases} \left\{ \begin{array}{c} 2 & 2 \\ 1 \end{array} \right\}' - a_{22} \left(A_{11} \frac{\partial \log \varphi}{\partial u_1} + A_{12} \frac{\partial \log \varphi}{\partial u_2} + A_{13} \frac{\partial \log \varphi}{\partial u_3} \right) = 0, \\ \left\{ \begin{array}{c} 2 & 2 \\ 3 \end{array} \right\}' - a_{22} \left(A_{31} \frac{\partial \log \varphi}{\partial u_1} + A_{32} \frac{\partial \log \varphi}{\partial u_2} + A_{33} \frac{\partial \log \varphi}{\partial u_3} \right) = 0; \end{cases}$$

and that for the parametric curves

 $u_1 = \text{const.},$

(1) For another form of these equations, see O. Staude, Leipziger Berichte, 45 72893), p. 513. (²) Compare with equations (31) and (80) in Part I of this paper, this Journal, 7

(1915).

 $u_3 = const.$

$$\left\{\frac{\overline{11}}{3}\right\}' = 0,$$

 $u_1 = \text{const.},$

$$\left\{\frac{\overline{2}}{3}\right\}' = 0,$$

 $u_2 = \text{const.}$

 $\left\{ \frac{\overline{3}}{1} \right\}' = 0, \qquad \left\{ \frac{\overline{3}}{2} \right\}' = 0,$

or

$$(92) \quad \begin{cases} 3 \ 3 \ 1 \\ 1 \end{cases} - a_{33} \left(A_{11} \frac{\partial \log \varphi}{\partial u_1} + A_{12} \frac{\partial \log \varphi}{\partial u_2} + A_{13} \frac{\partial \log \varphi}{\partial u_3} \right) = 0, \\ \left(\frac{3 \ 3}{2} \right)' - a_{33} \left(A_{21} \frac{\partial \log \varphi}{\partial u_1} + A_{22} \frac{\partial \log \varphi}{\partial u_2} + A_{23} \frac{\partial \log \varphi}{\partial u_3} \right) = 0. \end{cases}$$

36. For an example, take a triply pseudospherical orthogonal system. Let $u_3 = \text{const.}$ be a family of pseudospherical surfaces having their radii R which depend upon u_3 only, and let 2ω be the angle between the two asymptotic curves $u_1 = \text{const.}$ and $u_2 = \text{const.}$ passing through any point (u_1, u_2, u_3) on the surface $u_3 = \text{const.}$. Then the linear element has the expression

$$ds^2 = du_1^2 + 2\cos 2 \omega \, du_1 \, du_2 + du_2^2 + R^2 \left(rac{\partial \omega}{\partial u_3}
ight)^2 du_3^2 (1),$$

so that the ∞^2 curves $u_2 = \text{const.}$, $u_3 = \text{const.}$ form a system of asymptotic curves on the ∞^1 surfaces $u_3 = \text{const.}$, and also form a system of geodesics on the other ∞^1 surfaces $u_2 = \text{const.}$.

Now the condition (90) for these ∞^2 curves to be extremals is given by the differential equations

$$\cos 2\omega \frac{\partial \log \varphi}{\partial u_1} - \frac{\partial \log \varphi}{\partial u_2} - 2\sin 2\omega \frac{\partial \omega}{\partial u_1} = 0, \qquad \frac{\partial \log \varphi}{\partial u_3} = 0,$$

which have always common integrals. Since we have $\frac{\partial \varphi}{\partial u_3} = 0$ from the second equation, the gradient vector of φ at any point (u_1, u_2, u_3) touches the surface $u_3 = \text{const.}$ at this point, while $u_2 = \text{const.}$, $u_3 = \text{const.}$ constitute a family of asymptotic curves on $u_3 = \text{const.}$. Therefore from Art. 9, we can infer the theorem :

In a triply pseudospherical orthogonal system, the ∞^2 curves $u_3 = const.$ $u_3 = const.$ form a system of the free paths (described by a particle in the conservative field of force) on the ∞^1 pseudospherical surfaces $u_3 = cons'...$

In exactly the same way it may be proved that the ∞^2 curves $u_1 = \text{const.}, u_3 = \text{const.}$ form the other system of the free paths on $u_3 = \text{const.}$, and the function φ for these trajectories is determined by

$$-\frac{\partial \log \varphi}{\partial u_1} + \cos 2 \omega \frac{\partial \log \varphi}{\partial u_2} - 2 \sin 2 \omega \frac{\partial \omega}{\partial u_2} = 0, \quad \frac{\partial \log \varphi}{\partial u_3} = 0.$$

(1) Bianchi, loc. cit., p. 530.

TRAJECTORIES IN THE CONSERVATIVE FIELD OF FORCE, PART II. 191

Systems of parametric curves as extremals.

tems of parametric curves are the extremals. It will be seen from Art. 35 that a necessary and sufficient condition for the 3 ∞^2 curves

$$u_2, u_3 = \text{const.}; u_3, u_1 = \text{const.}; u_1, u_2 = \text{const.}$$

common integral. Now in order that these equations should be consistent, we must have

$$(93) \quad \frac{1}{a_{22}} \left\{ \begin{array}{c} 2 & 2 \\ 1 \end{array} \right\}' = \frac{1}{a_{33}} \left\{ \begin{array}{c} 3 & 3 \\ 1 \end{array} \right\}', \quad \frac{1}{a_{33}} \left\{ \begin{array}{c} 3 & 3 \\ 2 \end{array} \right\}' = \frac{1}{a_{11}} \left\{ \begin{array}{c} 1 & 1 \\ 2 \end{array} \right\}', \quad \frac{1}{a_{11}} \left\{ \begin{array}{c} 1 & 1 \\ 3 \end{array} \right\}' = \frac{1}{a_{22}} \left\{ \begin{array}{c} 2 & 2 \\ 3 \end{array} \right\}';$$

and if the condition be satisfied, it will be sufficient to consider only the three equations

$$A_{11} \frac{\partial \log \varphi}{\partial u_1} + A_{12} \frac{\partial \log \varphi}{\partial u_2} + A_{13} \frac{\partial \log \varphi}{\partial u_3} = \frac{1}{a_{22}} {\binom{2 2}{1}}',$$

(94)
$$A_{21} \frac{\partial \log \varphi}{\partial u_1} + A_{22} \frac{\partial \log \varphi}{\partial u_2} + A_{23} \frac{\partial \log \varphi}{\partial u_3} = \frac{1}{a_{33}} {\binom{3 3}{2}}',$$

$$A_{31} \frac{\partial \log \varphi}{\partial u_1} + A_{32} \frac{\partial \log \varphi}{\partial u_2} + A_{33} \frac{\partial \log \varphi}{\partial u_3} = \frac{1}{a_{11}} {\binom{1 1}{3}}'.$$

If we introduce a new dependent variable f such that

$$f = f(v, u_1, u_2, u_3)$$

and transform the equations (94) by means of the relations

95)
$$\frac{\partial f}{\partial v} \frac{\partial v}{\partial u_i} + \frac{\partial f}{\partial u_i} = 0 \qquad (i=1, 2, 3),$$

then the integral will be given by the equation

$$f(v, u_1, u_2, u_3) = \text{const.}.$$

But since

A11 A12 A $A_{21} \ A_{22} \ A_{22}$ A31 A32 4

37. In Art. 3, we have proved that the function φ can be determined if we know $3 \infty^2$ out of the totality of ∞^4 extremals, each of three systems of ∞^2 curves passing through each point of space. Here we will give a detailed discussion with the case where the three sys-

to be the extremals is that the six equations (90), (91), (92) have a

), where $v = \log \varphi$,

$$\begin{vmatrix} \mathbf{I}_{13} \\ \mathbf{I}_{23} \\ \mathbf{I}_{33} \end{vmatrix} = \frac{a^2}{a^3} = \frac{1}{a},$$

we find from (94) and (95),

(96)
$$\frac{\partial f}{\partial u_1} + \{1\} \frac{\partial f}{\partial v} = 0, \quad \frac{\partial f}{\partial u_2} + \{2\} \frac{\partial f}{\partial v} = 0, \quad \frac{\partial f}{\partial u_3} + \{3\} \frac{\partial f}{\partial v} = 0,$$

KINNOSUKE OGURA :

where

$$\{1\} = \frac{a_{11}}{a_{22}} \{ \begin{array}{c} 2 & 2 \\ 1 \end{array} \}' + \frac{a_{12}}{a_{33}} \{ \begin{array}{c} 3 & 3 \\ 2 \end{array} \}' + \frac{a_{13}}{a_{11}} \{ \begin{array}{c} 1 & 1 \\ 3 \end{array} \}',$$

$$\{2\} = \frac{a_{21}}{a_{22}} \{ \begin{array}{c} 2 & 2 \\ 1 \end{array} \}' + \frac{a_{22}}{a_{33}} \{ \begin{array}{c} 3 & 3 \\ 2 \end{array} \}' + \frac{a_{23}}{a_{11}} \{ \begin{array}{c} 1 & 1 \\ 3 \end{array} \}',$$

$$\{3\} = \frac{a_{31}}{a_{22}} \{ \begin{array}{c} 2 & 2 \\ 1 \end{array} \}' + \frac{a_{32}}{a_{33}} \{ \begin{array}{c} 3 & 3 \\ 2 \end{array} \}' + \frac{a_{33}}{a_{11}} \{ \begin{array}{c} 1 & 1 \\ 3 \end{array} \}',$$

But equations (96) have a common integral when and only when they form a complete system; and the condition of completeness of the system is found to be

(98)
$$\frac{\partial \{2\}}{\partial u_1} = \frac{\partial \{1\}}{\partial u_2}$$
, $\frac{\partial \{3\}}{\partial u_2} = \frac{\partial \{2\}}{\partial u_3}$, $\frac{\partial \{1\}}{\partial u_3} = \frac{\partial \{3\}}{\partial u_1}$

If the condition (9S) be satisfied, the system (96) has one common integral which is given by

$$f = v - \int \{1\} du_1 + \{2\} du_2 + \{3\} du_3 = \text{const.},$$

 $\varphi = k e^{\int \{1\} du_1 + \{2\} du_2 + \{3\} du_3}$

and hence

(99)

here
$$k$$
 denotes an arbitrary constant. Thus we have arrived at a neorem :

the

A necessary and sufficient condition that the three systems of parametric curves

$$u_2, u_3 = const.; u_3, u_1 = const.; u_1, u_2 = const.$$

should be the extremals of the integral

$$\int \varphi(u_1, u_2, u_3) ds = min.$$

is that

tł

$$\frac{1}{a_{22}} {\binom{2}{1}}' = \frac{1}{a_{33}} {\binom{3}{1}}', \quad \frac{1}{a_{33}} {\binom{3}{2}}' = \frac{1}{a_{11}} {\binom{1}{1}}', \quad \frac{1}{a_{11}} {\binom{1}{1}}' = \frac{1}{a_{33}} {\binom{2}{2}}'$$
and

$$\frac{\partial \{2\}}{\partial u_1} = \frac{\partial \{1\}}{\partial u_2}, \quad \frac{\partial \{3\}}{\partial u_2} = \frac{\partial \{2\}}{\partial u_2}, \quad \frac{\partial \{1\}}{\partial u_3} = \frac{\partial \{3\}}{\partial u_1};$$

and if the condition be fulfilled, the function φ is given by

$$-ke^{\int \{1\}du}$$

where k denotes an arbitrary constant. Now we add a remark that any two systems of parametric curves. as extremals are sufficient to determine the function φ . For, if the $2 \infty^2$ parametric curves

$$u_2, u_3 = \text{const.}$$

should be the extremals we must have from (90) and (91)

$$-\frac{1}{a_{11}} \left\{ \frac{1}{3} \right\}$$

and if the condition be satisfied, we have

$$A_{11} \frac{\partial \log \varphi}{\partial u_1} + A_{12} \frac{\partial \log \varphi}{\partial u_2} + A_{13} \frac{\partial \log \varphi}{\partial u_3} = \frac{1}{a_{22}} {\binom{2 \, 2}{1}}',$$
$$A_{21} \frac{\partial \log \varphi}{\partial u_1} + A_{22} \frac{\partial \log \varphi}{\partial u_2} + A_{23} \frac{\partial \log \varphi}{\partial u_3} = \frac{1}{a_{11}} {\binom{1 \, 1}{2}}',$$

$$A_{31} \frac{\partial \log \varphi}{\partial u_1} + A_{32} \frac{\partial \log \varphi}{\partial u_2} + A_{33} \frac{\partial \log \varphi}{\partial u_3} = \frac{1}{a_{11}} \left\{ \frac{1}{3} \right\}'$$

 φ , if it exist, up to a constant multiple.

The differential equation of all extremals.

38. Suppose that the function φ has been found, under which the $3 \infty^2$ parametric curves

$$u_2, u_3 = \text{const.}; u_3, u_3$$

are extremals. Then we can find the differential equations of all extremals for this function φ .

For, in consequence of (99), we find

$$\binom{\mu}{i}' = \binom{\lambda}{i} \binom{\mu}{i}' + \frac{\mu}{i} (A_{i1} a_{.1} + A_{i2})$$

+ $\lambda \langle (A_{i1} a_{\mu 1} + A_{i2} a_{\mu 2} + A_{i3} a_{\mu 3}) - a_{\lambda \mu} (A_{i1} \rangle 1 \langle + A_{i2} \rangle 2 \langle + A_{i3} \rangle 3 \rangle),$

so that

TRAJECTORIES IN THE CONSERVATIVE FIELD OF FORCE, PART II. 193

 $u_1 + \{2\}du_2 + \{3\}du_3$

 $:; u_3, u_1 = \text{const.}$

$$=\frac{1}{a_{22}} \left\{ \frac{2}{3} \right\}';$$

Hence by a similar reasoning as before, we can determine the function

 $u_1 = \text{const.}; \quad u_1, u_2 = \text{const.}$

 $a_{\Lambda 2} + A_{i3} a_{\Lambda 3}$

Hence it follows, from the first and the third of equations (89), that the differential equations of the extremals for φ are

$$\begin{aligned} \frac{d^{2} u_{2}}{du_{1}^{2}} &= 2\left(\left|\binom{2 \ 3}{1}\right|' - \frac{a_{23}}{a_{22}}\right|\binom{2 \ 2}{1}'\right)\left(\frac{du_{2}}{du_{1}}\right)^{2} \frac{du_{3}}{du_{1}} \\ &\quad - \left(2\left|\binom{1 \ 2}{1}\right|' - \left|\binom{2 \ 2}{2}\right|' + \frac{a_{22}}{a_{33}}\right|^{3} \frac{3}{2}\right)' - 2\frac{a_{12}}{a_{22}}\left|\binom{2 \ 2}{1}\right|'\right)\left(\frac{du_{2}}{du_{1}}\right)^{2} \\ &\quad + 2\left(\left|\binom{2 \ 3}{2}\right|' - \left|\binom{1 \ 3}{1}\right|' + \frac{a_{13}}{a_{22}}\right|^{2} \frac{2 \ 2}{1}\right)' - \frac{a_{23}}{a_{33}}\left(\frac{3 \ 3}{2}\right)'\right)\frac{du_{2}}{du_{1}}\frac{du_{3}}{du} \\ &\quad + \left(2\left|\binom{1 \ 2}{2}\right|' - \left|\binom{1 \ 1}{1}\right|' + \frac{a_{11}}{a_{22}}\right|^{2} \frac{2}{2}\right)' - 2\frac{a_{12}}{a_{33}}\left(\frac{3 \ 3}{2}\right)'\right)\frac{du_{2}}{du_{1}}\frac{du_{3}}{du} \\ &\quad + \left(2\left|\binom{1 \ 3}{2}\right|' - \frac{a_{13}}{a_{33}}\right|^{3} \frac{3 \ 3}{2}\right)'\right)\frac{du_{4}}{du_{1}} = 0, \end{aligned}$$

$$(101) \qquad \frac{d^{2} u_{3}}{du_{1}^{2}} - 2\left(\left|\binom{2 \ 3}{1}\right|' - \frac{a_{23}}{a_{22}}\right|^{2} \frac{2 \ 2}{1}\right)'\right)\frac{du_{2}}{du_{1}}\left(\frac{du_{3}}{du_{1}}\right)^{2} \\ &\quad - \left(2\left|\binom{1 \ 3}{1}\right|' - \left|\binom{3 \ 3}{3}\right|' + \frac{a_{33}}{a_{11}}\left|\frac{1 \ 3}{3}\right|' - 2\frac{a_{13}}{a_{22}}\left|\frac{2 \ 2}{1}\right|'\right)\left(\frac{du_{3}}{du_{1}}\right)^{2} \\ &\quad + 2\left(\left|\binom{1 \ 2}{1}\right|' - \left|\binom{2 \ 3}{3}\right|' + \frac{a_{33}}{a_{11}}\left|\frac{1 \ 3}{3}\right|' - 2\frac{a_{13}}{a_{22}}\left|\frac{2 \ 2}{1}\right|'\right)\left(\frac{du_{3}}{du_{1}}\right)^{2} \\ &\quad + 2\left(\left|\binom{1 \ 2}{1}\right|' - \left|\binom{2 \ 3}{3}\right|' + \frac{a_{33}}{a_{11}}\left|\frac{1 \ 3}{3}\right|' - 2\frac{a_{13}}{a_{22}}\left|\frac{2 \ 2}{1}\right|'\right)\frac{du_{2}}{du_{1}}\frac{du_{3}}{du_{1}} \\ &\quad + 2\left(\left|\binom{1 \ 2}{1}\right|' - \left|\binom{2 \ 3}{3}\right|' + \frac{a_{33}}{a_{11}}\left|\frac{1 \ 3}{3}\right|' - 2\frac{a_{13}}{a_{22}}\left|\frac{2 \ 2}{1}\right|'\right)\frac{du_{2}}{du_{1}}\frac{du_{3}}{du_{1}} \\ &\quad + 2\left(\left|\binom{1 \ 2}{3}\right|' - \left|\binom{1 \ 1}{1}\right|' + \frac{a_{11}}{a_{22}}\left|\frac{2 \ 2}{1}\right|' - 2\frac{a_{13}}{a_{22}}\left|\frac{1 \ 3}{3}\right|'\right)\frac{du_{3}}{du_{1}} \\ &\quad + 2\left(\left|\binom{1 \ 2}{3}\right|' - \frac{a_{12}}{a_{11}}\left|\frac{1 \ 3}{3}\right|'\right)\frac{du_{2}}{du_{1}} = 0. \end{aligned}$$

TRAJECTORIES IN THE CONSERVATIVE FIELD OF FORCE, PART II. 195

39. In the following lines we will deal with the particular case where the parametric surfaces

$$u_1 = \text{const.}, \quad u_2 =$$

form a triply orthogonal system. In this case the linear element takes the form

$$ds^2 = H_1^2 du_1^2 + J_2^2$$

and therefore

$$a_{ii} = H_i^2, \qquad a_{ij} = 0,$$

$$A_{ii} = \frac{1}{H_i}, \qquad A_{ij} = 0,$$

$$A_{ij} = 0,$$

$$(i, j = 1, 2, 3; i \neq j);$$

$$A_{ij} = 0,$$

$$\left(\begin{array}{c} i \\ i \end{array}\right)' = \frac{1}{H_i} \frac{\partial H_i}{\partial u_i}, \qquad \left(\begin{array}{c} i \\ j \end{array}\right)' = -\frac{H_i}{H_j^2} \frac{\partial H_i}{\partial u_j},$$

$${\binom{ij}{j}}' = \frac{1}{H_j} \frac{\partial H_j}{\partial u_i}, \qquad {\binom{ij}{k}}' = 0, \quad {\binom{i,j,k=1,2,3}{i\neq j,j\neq k,k\neq i}}.$$

Now since equations (90) become

$$rac{\partial H_1}{\partial u_2} + H_1 rac{\partial \log \varphi}{\partial u_2} = 0,$$

we see that the condition for the ∞^2 parametric curves $u_2 = const.$, $u_3 = const.$ to be the extremals for the function φ is given by

(102)
$$H_1 \varphi = \Psi_1(u_1),$$

where $\Psi_1(u_1)$ is an arbitrary function of u_1 only. Similarly, such conditions for $u_3 = \text{const.}$, $u_1 = \text{const.}$ and $u_1 = \text{const.}$, $u_2 = \text{const.}$ are

$$(103) H_2 \varphi = \Psi_2 (u_2)$$

and

(104)
$$H_3 \varphi = \Psi_3 (u_3)$$

of u₃ only.

For example, if we take the elliptic coordinates (u_1, u_2, u_3) such that

$$x^{2} = \frac{(a^{2} + u_{1})(a^{2} + u_{2})(a^{2} + u_{3})}{(a^{2} - b^{2})(a^{2} - c^{2})}$$

logonal system.

const., $u_3 = \text{const.}$

 $H_2^{2} du_2^{2} + H_3^{2} du_3^{2},$

$$\frac{\partial H_1}{\partial u_3} + H_1 \frac{\partial \log \varphi}{\partial u_3} = 0,$$

respectively, where $\Psi_{2}(u_{2})$ is an arbitrary function of u_{2} only and $\Psi_{3}(u_{3})$

$$y^{2} = \frac{(b^{2} + u_{1}) (b^{2} + u_{2}) (b^{2} + u_{3})}{(b^{2} - c^{2}) (b^{2} - a^{2})}$$

$$z^{2} = \frac{(c^{2} + u_{1})(c^{2} + u_{2})(c^{2} + u_{3})}{(c^{2} - a^{2})(c^{2} - b^{2})}, \quad (a, b, c, \text{ arbitrary constants}),$$

the linear element has the expression

$$ds^{2} = \frac{1}{4} \left\{ \frac{(u_{1} - u_{2})(u_{1} - u_{3})}{(a^{2} + u_{1})(b^{2} + u_{1})(c^{2} + u_{1})} du_{1}^{2} + \frac{(u_{2} - u_{3})(u_{2} - u_{1})}{(a^{2} + u_{2})(b^{2} + u_{2})(c^{2} + u_{2})} du_{2}^{2} + \frac{(u_{3} - u_{1})(u_{3} - u_{2})}{(a^{2} + u_{3})(b^{2} + u_{3})(c^{2} + u_{3})} du_{3}^{2} \right\}.$$

Hence the function φ under which the parametric curves $u_2 = \text{const.}$, $u_{s} = \text{const.}$ can be the extremals is given by

$$\varphi = \frac{\Psi_1\left(u_1\right)}{\mathcal{V}\left(u_1 - u_2\right)\left(u_1 - u_3\right)}$$

These ∞^2 curves which are orthogonal trajectories of the confoca quadrics $u_1 = \text{const.}$ form a family of lines of curvature on the other confocal quadrics $u_3 = \text{const.}$ (or $u_2 = \text{const.}$)(¹).

40. For the orbits in the conservative field of force, the results in the last article can also be obtained by using Prof. Joukovsky's method (Art. 22).

The kinetic energy T of a particle with unit mass is given by

$$T = rac{1}{2} \left(H_1^2 \, \dot{u}_1^2 + H_2^2 \, \dot{u}_2^2 + H_3^2 \, \dot{u}_3^2
ight),$$

where dots denote differentiations with respect to the time t; and Lagrange's equations of motion become therefore

(105)
$$\frac{d}{dt} (H_1^2 \dot{u}_1^2) - \frac{1}{2} \frac{\partial H_1^2}{\partial u_1} \dot{u}_1^2 = \frac{\partial U}{\partial u_1}$$

(106)
$$-\frac{1}{2} \frac{\partial H_1^2}{\partial u_2} \dot{u}_1^2 = \frac{\partial U}{\partial u_2}$$

(107)
$$-\frac{1}{2} \frac{\partial H_1^2}{\partial u_3} \dot{u}_1^2 = \frac{\partial U}{\partial u_3}$$

where U denotes the force-function under which the ∞^2 parametric curves

> $u_{,}=\mathrm{const.},$ $u_2 = \text{const.}$

can be described by the particle. But equation (105) may be written, as in Art. 22,

(¹) Compare with Art. 25, III

TRAJECTORIES IN THE CONSERVATIVE FIELD OF FORCE, PART II. 197

(108)
$$\frac{1}{2} \frac{\partial}{\partial u_1} ($$

I. Now in the case where

$$\frac{\partial H_1}{\partial u_2} \neq 0$$

eliminating \dot{u}_1^2 among (106), (107) and (108), we have

$$\frac{\partial}{\partial u_1} \left(\frac{H_1^2 \frac{\partial U}{\partial u_2}}{\frac{\partial H_1^2}{\partial u_2}} \right) + \frac{\partial U}{\partial u_1} = 0,$$

from which we obtain as in Art. 22

$$H_1^2 \frac{\partial U}{\partial u_2} + U \frac{\partial H_1^2}{\partial u_2} = -h \frac{\partial H_1^2}{\partial u_2}, \quad H_1^2 \frac{\partial U}{\partial u_3} + U \frac{\partial H_1^2}{\partial u_3} = -h \frac{\partial H_1^2}{\partial u_3},$$

h being the total energy which is constant. Integrating the last two equations we get

$$(102)' H_1^2 (U+h) = \Phi (u_1),$$

where $\Phi(u_1)$ is an arbitrary positive function of u_1 only. II. Next, in the case where

$$\frac{\partial H_1}{\partial u_2} = 0$$
 and $\frac{\partial H_1}{\partial u_3} \neq 0$,

it follows from (106) that H_1 and U are independent of u_2 . Eliminating \dot{u}_1^2 from (107) and (108), and integrating with respect to u_1 , we see that $H_1^2(U+h)$ is independent of $u_3(1)$. Hence we have also the same result as before.

III. Lastly, in the case where

$$\frac{\partial H_1}{\partial u_2} = 0$$

it follows, from (106) and (107), that H_1 and U are independent of u_2 and $u_3(^2)$. Hence we have also the same result as before.

196

$$H_1^2 \, \dot{u}_1^2) \!=\! rac{\partial \, U}{\partial \, u_1} \, .$$

and
$$\frac{\partial H_1}{\partial u_3} \neq 0$$
,

$$\frac{\partial}{\partial u_1} \left(\frac{H_1^2}{\partial u_3} \frac{\partial U}{\partial u_3}}{\frac{\partial H_1^2}{\partial u_3}} \right) + \frac{\partial U}{\partial u_1} = 0;$$

and
$$\frac{\partial H_1}{\partial u_3} = 0$$
,

In this case the parametric surfaces $u_1 = \text{const.}$ must be a family of parallel surfaces, provided H_1 is a function of u_1 only. Conversely, if

^{(1), (2)} In these cases equation (108) expresses the conservation of energy which is trivial; hence $\Phi(u_1)$ can be taken as an arbitrary function.

 $u_1 = \text{const.}$ be a family of parallel surfaces belonging to a triply orthogonal system, H_1 and hence φ (or U) becomes a function of u_1 only. But it is well known that any family of parallel surfaces belongs to a triply orthogonal system. Thus a necessary and sufficient condition that the ∞^2 normals of a family of ∞^1 parallel surfaces should be the extremals of the form

$$\int \varphi \, ds = \min.$$

is that the ∞^1 (equipotential) surfaces

$$\varphi = const.$$

coincide with the given family of parallel surfaces. For example, if we put

$$x = \frac{a}{b} u_{1} + \frac{a^{2} - b^{2}}{b} \frac{b \cos u_{2} - u_{1}}{a - b \cos u_{2} \cos u_{3}},$$

$$y = \frac{\sqrt{a^{2} - b^{2}} (a - u_{1} \cos u_{3})}{a - b \cos u_{2} \cos u_{3}} \sin u_{2},$$

$$z = \frac{\sqrt{a^{2} - b^{2}} (b \cos u_{2} - u_{1})}{a - b \cos u_{2} \cos u_{3}} \sin u_{3},$$

a and b being constants, then we have $H_1=1$; and therefore $u_1=$ const. form a family of Dupin's cyclides which are parallel surfaces, and so the function φ , for which all normals of the family of cyclides are extremals, is an arbitrary function of u_1 only.

41. A necessary and sufficient condition that the $2 \infty^2$ curves

 $u_1 = \text{const.}, u_2 = \text{const.}; \text{ and } u_3 = \text{const.}, u_1 = \text{const.}$

should be the extremals is, from (102) and (103), that

$$rac{H_1}{arpsilon_1\left(u_1
ight)}\!=\!rac{H_2}{arpsilon_2\left(u_2
ight)}\,;$$

and if the condition be fulfilled, φ is given by

(109)
$$\varphi = \frac{H_1}{\Psi_1(u_1)} = \frac{H_2}{\Psi_2(u_2)}.$$

Now in this case the linear element on the surface $u_s = \text{const.}$ is of the form

$$ds^{2} = \frac{1}{\varphi^{2}} \left\{ \Psi_{1}^{2}(u_{1}) du_{1}^{2} + \Psi_{2}^{2}(u_{2}) du_{2}^{2} \right\}$$

TRAJECTORIES IN THE CONSERVATIV FIELD OF FORCEE, PART II. 199

surfaces $u_3 = \text{const.}$ form a family of isothermal surfaces.

= const. and u_2 = const. respectively. Then by the well known formulae (1)

$$\frac{1}{r_{31}} = \frac{1}{H_3 H_1} \frac{\partial H_1}{\partial u_3} = \frac{1}{H_3 \varphi. \Psi_1(u_1)} \cdot \Psi_1(u_1) \frac{\partial \varphi}{\partial u_3} = \frac{1}{H_3 \varphi} \frac{\partial \varphi}{\partial u_3},$$
$$\frac{1}{r_{32}} = \frac{1}{H_3 H_2} \frac{\partial H_2}{\partial u_3} = \frac{1}{H_3 \varphi. \Psi_2(u_2)} \cdot \Psi_2(u_2) \frac{\partial \varphi}{\partial u_3} = \frac{1}{H_3 \varphi} \frac{\partial \varphi}{\partial u_3},$$

so that

$$\frac{1}{r_{31}}$$

planes).

must be

$$\frac{1}{r_{31}} = \frac{1}{r_{32}}$$
,

or

$$-rac{1}{H_3 H_1} rac{\partial H_1}{\partial u_3} = rac{1}{H_3 H_2} rac{\partial H_2}{\partial u_3},$$

from which we get

$$H_1 = I$$

the linear element on the surface $u_3 = \text{const.}$ takes the form

$$ds^2 = H_2^2 \{f^2\}$$

the surface $u_3 = \text{const.}$, the function f must take the form

$$f(u_1, u_2)$$

so that

(1) Bianchi, loc. cit, p. 489.

so that $u_1 = \text{const.}$ and $u_2 = \text{const.}$ form an isothermal system on the surface $u_3 = \text{const.}$. But by Dupin-Darboux's theorem these curves are lines of curvature on this surface. Therefore it follows that the ∞^1

Next, let r_{31} and r_{32} be the principal radii of curvature of the surface $u_3 = \text{const.}$ along the curves of intersection with the surfaces u_1

$$=\frac{1}{r_{32}}$$
 .

Hence the ∞^1 surfaces $u_3 = \text{const.}$ must be a family of spheres (or Conversely, if the surfaces $u_3 = \text{const.}$ be spheres (or planes), it

$H_2f(u_1, u_2),$

where $f(u_1, u_2)$ denotes an arbitrary function of u_1 and u_2 only. Hence

$$(u_1, u_2) du_1^2 + du_2^2$$
.

Moreover, if $u_1 = \text{const.}$ and $u_2 = \text{const.}$ form an isothermal system on

$$=rac{arWeylengthwidtharpoonup arU_1\left(u_1
ight)}{arWeylengtwidtwidtwidt)}$$
 ,

 $rac{H_1}{|arPsi_1|(u_1)|} \!=\! rac{H_2}{|arPsi_2|(u_2)|} \; .$

Hence we can infer the theorem :

A necessary and sufficient condition that in the triply orthogonal system $u_1 = const.$, $u_2 = const.$, $u_3 = const.$, the two families of parametric curves

 $u_2 = const., u_3 = const.;$ and $u_3 = const., u_1 = const.$

should be the extremals is that the parametric surfaces $u_3 = const.$ are spheres (or planes), and the curves $u_1 = const.$ and $u_2 = const.$ on these spheres (or planes) form isothermal systems.

For example, in the polar coordinates (u_1, u_2, u_3) where

$$x = u_3 \cos u_1 \sin u_2$$
, $y = u_3 \sin u_1 \sin u_2$, $z = u_3 \cos u_2$,

or

$$\operatorname{tg} u_1 = \frac{y}{x}$$
, $\operatorname{tg}^2 u_2 = \frac{x^2 + y^2}{z^2}$, $u_3^2 = x^2 + y^2 + z^2$,

the linear element is

$$ds^2 = u_3^2 \sin^2 u_2 \, du_1^2 + u_3^2 \, du_2^2 + du_3^2,$$

so that

$$\Psi_{1}(u_{1}) = \frac{1}{k}, \quad \Psi_{2}(u_{2}) = \frac{1}{k \sin^{2} u_{2}},$$

where k denotes an arbitrary constant. Hence the function φ , under which all meridians u_3 , $u_1 = \text{const.}$ and parallels u_3 , $u_2 = \text{const.}$ of concentric spheres $u_3 = \text{const.}$ are the extremals, is given by

$$\varphi = \frac{k}{u_3 \sin u_2} = \frac{k}{\sqrt{x^2 + y^2}} \,.$$

42. Now a necessary and sufficient condition that the $3 \infty^2$ curves

$$u_2, u_3 = \text{const.}; \quad u_3, u_1 = \text{const.}; \quad u_1, u_2 = \text{const.}$$

should be the extremals is, from (102), (103) and (104), that

$$\frac{H_1}{\Psi_1(u_1)} = \frac{H_2}{\Psi_2(u_2)} = \frac{H_3}{\Psi_3(u_3)}$$

and if the condition be satisfied, φ is given by

(110)
$$\frac{f}{\varphi} = \frac{H_1}{\Psi_1(u_1)} = \frac{H_2}{\Psi_2(u_2)} = \frac{H_3}{\Psi_3(u_3)},$$

so that the linear element takes the form

$$ds^{2} = \frac{1}{\varphi^{2}} \left\{ \Psi_{1}^{2}\left(u_{1}\right) du_{1}^{2} + \Psi_{2}^{2}\left(u_{2}\right) du_{2}^{2} + \Psi_{3}^{2}\left(u_{3}\right) du_{3}^{2} \right\}.$$

Therefore if we put

$$\xi_i = \int \Psi_i(u_i) \, du_i \quad (i = 1, 2, 3), \quad \varphi_1(\xi_1, \xi_2, \xi_3) = \varphi(u_1, u_2, u_3),$$

we have

(111)
$$dx^2 + dy^2 + dz^2 = \frac{1}{\varphi_1^2\left(\xi_1, \, \xi_2, \, \xi_3\right)} \left(d \, \xi_1^2 + d \, \xi_2^2 + d \, \xi_3^2\right),$$

which shows us that the space $(\hat{\xi}_1, \hat{\xi}_2, \hat{\xi}_3)$ is nothing but the conformal representation of the space (x, y, z). Now according to a theorem due to Liouville(1), we have either

(112)
$$\varphi_1 = c,$$

or

(113)
$$\varphi_1 = \frac{1}{k} \left\{ (\hat{\xi}_1 - a_1)^2 + \right.$$

where c, k, a_1, a_2, a_3 are arbitrary constants.

extremals are ∞^4 straight lines.

II. In the second case, the conformal transformation is any transformation of reciprocal radii, up to any motion in space. Hence by applying a proper motion, we find

$$\begin{split} \xi_{1}-a_{1} &= \frac{k\left(x-b_{1}\right)}{(x-b_{1})^{2}+(y-b_{2})^{2}+(z-b_{3})^{2}}, \quad \xi_{2}-a_{2} = \frac{k\left(y-b_{2}\right)}{(x-b_{1})^{2}+(y-b_{2})^{2}+(z-b_{3})^{2}}, \\ \xi_{3}-a_{3} &= \frac{k\left(z-b_{3}\right)}{(x-b_{1})^{2}+(y-b_{2})^{2}+(z-b_{3})^{2}}, \quad (b_{1}, b_{2}, b_{3}, \text{ constants}); \end{split}$$

so that

(1) See Bianchi, loc. cit., p. 487 and Encyklopidie der mathematischen Wissenschaften, Bd. III 3, p. 59 and p. 370.

200

TRAJECTORIES IN THE CONSERVATIVE FIELD OF FORCE, PART IL 201

 $+(\hat{\xi}_2-a_2)^2+(\hat{\xi}_3-a_3)^2\},$

I. In the first case, the conformal transformation is any similar transformation, up to any motion in space. Hence the triply orthogonal system ξ_1, ξ_2, ξ_3 consists of three families of parallel planes, any two planes of different families cutting at right angles to each other; so that the given $3 \infty^2$ extremals form three families of straight lines which are parallel to three straight lines which are at right angles to each other. And also since the function φ becomes a constant, all the

$$\varphi = \frac{k}{(x-b_1)^2 + (y-b_2)^2 + (z-b_3)^2}$$

and the triply orthogonal system ξ_1, ξ_2, ξ_3 consists of three families of spheres touching each other at the same point O, any two spheres of different families cutting at right angles to each other. But the equations (101) of all the extremals become

$$\frac{d^2 \, \hat{\xi}_2}{d \, \hat{\xi}_1^2} = 0, \quad \frac{d^2 \, \hat{\xi}_3}{d \, \hat{\xi}_1^2} = 0$$

so that

$$\xi_2 = c_1 \xi_1 + c_2, \quad \xi_3 = c_3 \xi_1 + c_4,$$

where c_1, c_2, c_3, c_4 denote arbitrary constants; whence all the extremals are the ∞^4 circles passing through the same point O.

Thus we have arrived at the theorem :

In order that the three families of parametric curves of a triply orthogonal system should be the extremals, it is necessary and sufficient that either (i) each family of parametric surfaces consists of all parallel planes, or (ii) each family of parametric surfaces consists of spheres touching each other at the same point O. In the first case, the function φ is constant, and all the extremals are all straight lines in space; and in the second case, the function φ is given by

$$\varphi = \frac{k}{(x-b_1)^2 + (y-b_2)^2 + (z-b_3)^2}$$

k, b_1 , b_2 , b_3 being constants, and all the extremals are the ∞^4 circles passing through the same point O(1).

(To be continued)

(1) Compare with Kasner, Transactions of the American Mathematical Society, 12 (1911), p. 70.

A. Brack

CORRIGENDA

on my note "Trajectories in the conservative field of force, Part I," Vol. 7 (1915), pp. 123-186. P. 134, 1. 16; read "(11)'" for "(12)." P. 136, l. 23: read "(11)'" for "(12)." P. 146, l. 5: read " $-\frac{2E}{\partial E}$" for " $-\frac{2G}{\partial E}$" P. 147, 1. 23: read " $\log(U+h) = - \int \cdots$ " for "] P. 155, l. 11: read " $\frac{dz}{dy}$ " for " $\frac{dz}{dy}$ " **P.** 160, 1. 9: read "f(x, y, z, p, q) s" for "f(x, y, z, p, q)P. 160, ls. 13, 19: read "(56)'" for "(52)." P. 162, 1. 2: read " $2 pqt (-s \pm \cdots)$ " for "2 pqt (sP. 165, l. 7: read " $\left\{ E\left(\frac{\partial u_1}{\partial v}\right)^2 - \cdots \right\}$ " for " $\left\{ E\left(\frac{\partial u_2}{\partial v}\right)^2 - \cdots \right\}$ " P. 165, l. 14 : read ".... $\frac{\partial E_1}{\partial v_1} \dot{u}_1^2 + \dots$ " for "... P. 167, l. 9: read " $U_{u_1} + h$ " for " $U_{v_1} + h$." P. 168, I. 3: read "that there exists a" for "that the." P. 168, 1. 22: read "of Liouville's type" for "Liouville's type." P. 169, l. 24: read "if" for "fi." P. 170, l. 10: read " $(-c^2 > u > -b^2 > v > -a^2)$ " for " $(-c^2 > u^2 > -b^2 > v^2 > -a^2)$." P. 171, l. 6: read "S" for "S." P. 172, l. 1: read "-2 $F \frac{\partial v_1}{\partial v} \frac{\partial v_1}{\partial u} + G \left(\frac{\partial v_1}{\partial u} \right)^2$ " fo P. 173, l. 23: read "that there exists a" for "that P. 174, l. 19: read " of Liouville's type" for "Liouville's type." P. 178, l. 29: read " $\left\{ \begin{array}{c} 1 \\ 2 \end{array} \right\}$ " for " $\left\{ \begin{array}{c} 1 \\ 2 \end{array} \right\}$." P. 180, 1. 16: read " $\frac{\lambda(u, v)}{L^2}$ " for " $\lambda(u, v)$." P. 180, l. 20: read " $\sqrt{\lambda(u,v)}$ " for " $\lambda(u,v)$." P. 181, l. 16: read " $\sqrt{\sin \omega}$ " for "sin ω ." P. 182, l. 24: read ", for ", ". P. 183, l. 1: read " $\sqrt[4]{-}$ " for " $\sqrt{-}$." P. 183, 1. 2 of the foot-note : read " $\cdots + F \frac{\partial E}{\partial n} - 2$ P. 185, ls. 6, 7 of the foot-note: read "(86)'" for "(86)."

202

$$og (U+h) = -\frac{1}{2} \int \cdots$$

r "-2
$$F \frac{\partial v_1}{\partial v} \frac{\partial v_1}{\partial u} G + \left(\frac{\partial v_1}{\partial u}\right)^2$$
."
the "

$$F\frac{\partial F}{\partial u}$$
 "for " $\cdots + F\frac{\partial E}{\partial v} + 2F\frac{\partial F}{\partial u}$."

Kinnosuke Ogura.

THE TÔHOKU MATHEMATICAL JOURNAL.

The Editor of the Journal, T. HAYASHI, College of Science, Tôhoku Imperial University, Sendai, Japan, accepts contributions from any person.

. Contributions should be written legibly in English, French, German Italian or Japanese and diagrams should be given in separate slips and in proper sizes.

The author has the sole and entire scientific responsibility for his work.

Every author is entitled to receive gratis 30 separate copies of his memoir; and for more copies to pay actual expenses.

All communications intended for the Journal should be addressed to the Editor.

Subscriptions to the Journal and orders for back numbers should

be addressed directly to the Editor T. HAYASHI, or to the bookseller Y. ÔKURA, No. 19, Tôri-itchôme, Nihonbashi, Tôkyô, Japan.

Price per volume (consisting of four numbers) payable in advance 3 yen=6 shillings=6 Marks=7,50 francs=1.50 dollars. Postage inclusive.