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Abstract

The demand for safety assurance of human-operated systems has been increasing as Advanced
Emergency Braking (AEB) systems become mandatory for all new cars. Technologies as typified by
AEB systems belong to a class of human assist control, as they try to assist human-operated systems
so that safety constraints are always satisfied. However, the design of a human assist controller is
challenging because it requires not only safety assurance but also continuity and optimality. The
latter properties, continuity and optimality, lead to increasing operability and passenger comfort, as
they indicate that a controller does not suddenly intervene and prevents violation of safety constraints
with minimal modification of human operator inputs.

Control Barrier Functions (CBFs) attract attention in recent nonlinear control theory as they can
establish forward invariant sets. If a prescribed set is forward invariant, the states of systems starting
from the set stay there eternally. A CBF-based controller renders a safe set where the states of sys-
tems should stay forward invariant; that is, it produces theoretical safety assurance of control systems.
There are two general types of CBFs that have contrasting properties: Reciprocal CBFs (RCBFs) that
blow up and Zeroing CBFs (ZCBFs) that vanish on the boundary of a safe set. Although RCBFs are
more suitable for some applications, ZCBFs are preferable as they are well defined outside of a safe
set. As a matter of fact, they are mainly utilized for the design of a safety filter due to their robust-
ness properties. However, the ZCBFs employed in many previous studies have some mathematical
problems. For example, they cannot yield the theoretical safety of nonautonomous systems where
human-operated systems are categorized. Moreover, a ZCBF-based safety filter fails to be continuous
without a relative degree condition, which is not ideal for human assist control.

In this dissertation, the author proposes a ZCBF-based safety (human) assist controller that guar-
antees the theoretical safety of nonautonomous systems. The results of this dissertation mainly consist
of two parts: a safety assist controller for time-invariant state constraint problems such as collision
avoidance with stationary obstacles and a safety assist controller for time-dependent state constraint
problems such as collision avoidance with moving obstacles.

For time-invariant safety constraints, the author provides a strict version of ZCBFs, Strict Zeroing
Control Barrier Functions (S-ZCBFs), that solve the problems of the conventional ZCBF definition.
Then, the author proposes an S-ZCBF-based safety (human) assist controller that renders a safe set
forward invariant, indicating that it guarantees the theoretical safety of nonautonomous systems. It is
worth emphasizing that the proposed controller prevents solutions to nonautonomous systems from
having a finite escape time; that is, solutions are global and result in forward invariance. Moreover,
the author shows that the proposed controller is continuous and minimally invasive, which is ideal for
human assist control. Lastly, considering that almost all real control systems have input constraints,
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the author proposes a safety assist controller that satisfies both state and input constraints.
For time-dependent safety constraints, the author first extends S-ZCBF to Time-varying Zeroing

Control Barrier Functions (Tv-ZCBFs). The author then proposes a Tv-ZCBF-based safety assist
controller that fulfills time-dependent state constraints while inheriting the ideal properties of the S-
ZCBF-based controller. Noticing that the velocity of time-varying obstacles is unknown to control
systems, the author also proposes a safety assist controller for control systems in unknown environ-
ments or under input disturbances. The proposed controller satisfies the safety constraints of input-
disturbed systems, although the conventional method only ensures the boundedness of the system’s
states.

In Chapter 1, the author emphasizes the importance and difficulty of human assist control. Then,
the author summarizes the recent studies on CBFs and points out the problems of conventional meth-
ods.

In Chapter 2, the author introduces some basic definitions and mathematical foundations that will
be used in this dissertation.

In Chapter 3, the author discusses a time-invariant state constraint problem. In the first part of this
chapter, the author proposes an S-ZCBF-based safety assist controller that guarantees the theoretical
safety of human-operated systems. The second part of this chapter demonstrates the design of CBFs
for input-constrained systems and proposes a safety assist controller that satisfies both state and input
constraints. The effectiveness of the proposed methods is confirmed by computer simulation.

In Chapter 4, the author discusses a time-dependent state constraint problem. In the first part
of this chapter, the author proposes a Tv-ZCBF-based safety assist controller that is applicable to
time-dependent safety constraints, having the properties of the S-ZCBF-based controller. The second
part of this chapter proposes a safety assist controller for control systems under input disturbances,
motivated by unknown time-varying obstacle velocity. The last part of this chapter confirms the effec-
tiveness of the proposed methods by computer simulation and experiments on an electric wheelchair.

In Chapter 5, the author summarizes this study and refers to open issues of the control methods
proposed in this dissertation.

Keywords:

Nonlinear Control, Control Barrier Function, Human Assist control.
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Chapter 1

Introduction

1.1 Background
Automatic Emergency Braking (AEB) systems have been mandatory on all new passenger vehicles
introduced in Japan since 2021 and in the European Union since 2022. More recently, the U.S.
Department of Transportation’s National Highway Traffic Safety Administration (NHTSA) has advo-
cated for all new passenger cars and light trucks sold in the United States to be equipped with AEB
systems. AEB is a safety technology designed to assist drivers in mitigating or avoiding collisions.
The growing demand for AEB systems is mainly due to traffic accidents caused by human errors. Ac-
cording to NHTSA, the main cause of 94 % critical pre-crash events is attributed to drivers [42, 60].
On the other hand, previous studies [21, 24] showed that vehicles equipped with AEB systems expe-
rienced approximately 38 % fewer rear-end crashes, and AEB pedestrian detection systems reduced
pedestrian fatalities by approximately 27 %, indicating the effectiveness of AEB technology. This
way of thinking about safety-critical control expands not only to cars but also to robotic systems [51],
quadrotors [9], and so on [23].

Recent research on nonlinear control systems tends to prioritize safety beyond stability as safety-
critical systems are deployed into increasingly complex real-world environments due to the rapid
development of sensing, communication, and computation technology. Technologies such as AEB
and Lane Keeping Assistance (LKA) systems are related to safety-critical control because they assist
human operators in meeting preliminarily defined safety constraints, e.g., collision avoidance with
obstacles. However, under the premise of the existence of operators or passengers, meeting safety
constraints may not be sufficient from the point of view of innocuity [31]. For example, a discontin-
uous safety assist controller interferes with the operability of human-operated systems or decreases
passenger comfort. According to the National Consumer Affairs Center of Japan, a sudden AEB in-
tervention that potentially comes from discontinuity arouses fears of passengers [52]. Moreover, it
might cause unexpected behaviors of control systems that affect the environment and result in another
risky event [42]. Therefore, theoretical safety of human-operated systems should be guaranteed by a
continuous and minimally invasive safety assist controller.
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1.1.1 Control Barrier Function
In recent nonlinear control theory, Control Barrier Functions (CBFs) have rapidly become of huge
interest as they can yield theoretical safety assurance with the notion of forward invariance [4, 31].
When we say that a prescribed set is forward invariant, then the system’s states starting from the set
stay there for all the future time [16]. CBFs are known to be a powerful tool for establishing forward
invariant sets. Concretely, a controller produced from CBFs, often referred to as a safety filter, renders
a safe set, whose outside indicates violation of safety constraints, forward invariant [7]. The basic idea
of safety filters is to modify a nominal controller that works for the primary purpose of the application,
such as equilibrium stabilization, trajectory tracking, or open-loop forcing of the system, only when a
safety violation is imminent [45]. The effectiveness of CBF-based safety filters has been successfully
confirmed through various fields and control strategies, e.g., autonomous vehicles [2, 32], robotic
systems [58], quadrotors [26, 37, 41], and multi-robot systems [28, 62].

CBFs were first defined in [69] and later refined and popularized in [7]. Currently, there are
two general types of CBF that have contrasting properties [5, 74]: a Reciprocal CBF (RCBF) and a
Zeroing CBF (ZCBF). RCBFs tend to infinity when the system’s state approaches the boundary of
a safe set, and are undefined outside the safe set, an unsafe set. The term “barrier” describes this
blow-up property and originates in optimization theory [18, 65]. While RCBFs are useful for some
applications, e.g., multiple safety constraints [33], their use makes control systems sensitive to noise,
since a large control signal is required when the system’s state is close to the boundary of a safe
set [70]. On the other hand, ZCBFs first proposed in [74] can be defined in an unsafe set, since they
vanish on the set boundary. The robustness property of ZCBFs enhances their employment for real
applications considering modeling errors or disturbances [36]. Recent vigorous research on safety-
critical systems has produced different forms of CBFs, including Input-to-State Safe CBF [2, 3, 44],
High-order CBF [65, 70, 73], Adaptive CBF [71, 72], and Integral CBF [6]; significantly, many of
them are based on a ZCBF. However, contrary to active studies on ZCBFs, mathematical problems
related to safety assurance and the theoretical limitation of the applicable range remain.

Safety Assurance Problem

In the ZCBF-based approach, Nagumo’s theorem [16] plays an essential role in theoretical safety
assurance of control systems, since it gives necessary and sufficient conditions for forward invariance.
Again, when a safe set is forward invariant, the trajectory of systems eternally stays there; that is, for a
given dynamical autonomous system ẋ = f (x) with a state x ∈ Rn and a safe set S ⊂ Rn, all solutions
starting from S satisfy x(t) ∈ S for ∀t ≥ 0. Therefore, all solutions at least need to be forward
complete to apply Nagumo’s theorem. Generally speaking, however, solutions to nonlinear systems
are not always forward complete due to their nonlinearity. That is, the states of nonlinear systems
can go to infinity in finite time, known as finite escape time [40]. As the research [70] where Brezis’s
theorem [54] is used points out this problem, many of the previous studies in the CBF community
ensure safety only for the maximal time interval of existence of solutions to control systems; in other
words, they ensure forward pre-invariance of a safe set [48]. Moreover, the uniqueness of solutions is
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also required for the use of Nagumo’s theorem, which results in investigating whether the right-hand
side of ẋ = f (x, u(x)) and a safety filter u(x) are (locally) Lipschitz continuous in x.

Another problem of Nagumo’s theorem is that it cannot ensure safety of a nonautonomous system,
which is given by ẋ = f (x, t) where the right-hand side depends not only on a state x but also on time
t ∈ R. Therefore, it is not suitable for theoretical discussion of a safety assist control such as AEB
technology, since human-operated systems are categorized into nonautonomous systems.

CBF for Input-constrained Systems

Automobiles cannot stop immediately due to maximum deceleration; in other words, a braking dis-
tance never becomes 0, unlike a thinking distance. Control theory refers to such systems as input-
constrained systems because admissible inputs are limited; in the above case, we cannot use decel-
eration inputs beyond the maximum deceleration value. Since almost all real control systems have
input constraints, the design of a safety filter that satisfies both state (safety) and input constraints is
crucial.

Studies on CBFs considering input-constrained systems have recently emerged [32]– [27]. For
a system with a dynamically defined controller, the authors in [32] introduced Control-Dependent
CBFs (CD-CBFs) by taking a controller as a new state. Related to [32], Integral CBFs (I-CBFs)
were defined in [6]. The controller based on the CBFs above succeeded in simultaneously satisfying
state and input constraints. However, these frameworks assume the differentiability of a controller
and hence are not suitable for human assist control because requiring a human operator input to be
differentiable excessively limits the scope of applications. A controller within input constraints might
render only a subset of a safe set forward invariant; hence the authors in [1] introduced the notion
of an inner safe set and defined Input-Constrained CBFs (IC-CBFs) to satisfy both state and input
constraints. However, finding an inner safe set is difficult because multiple IC-CBF candidates need
to be constructed. Moreover, these frameworks are not applicable to a nonautonomous system since
Nagumo’s theorem guarantees the system’s safety.

CBF for Input-disturbed Systems

Uncertainties such as unknown disturbances and unmodeled dynamics pose risks to safety assurance
in real-world implementations. Several studies on CBFs considering disturbances have begun to be
carried out in recent years. For example, a robust CBF-based controller is known to be an effective
technique to ensure safety of control systems under external disturbances [36, 51]. For a control sys-
tem with input disturbances, the authors in [44] proposed Input-to-State Safety CBFs (ISSf-CBFs)
and showed that an ISSf-CBF-based controller ensured the boundedness of the system state. The
notion of ISSf is an extension of Input-to-State Stability (ISS), which characterizes stability of non-
linear systems under input disturbances [61]. More recently, Tunable Input-to-State Safety CBFs
(TISSf-CBFs) were proposed in [3] with the aim of a less conservative controller design. However,
ISSf-CBF-based controllers ensure the forward invariance of a larger set dependent on the magnitude
of input disturbances, not an original safe set. That is, the controller does not eliminate the risk of
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safety violation, since the system’s state runs off the original safe set if a large input disturbance is
added to the control system.

CBF for Time-dependent State Constraint Problem

Many of studies on CBFs deal with time-invariant state constraint problems such as stationary obstacle
avoidance or moving obstacle avoidance by considering systems given as relative coordinates; that
is, a CBF candidate only depends on the state of control systems. Several studies on CBFs deal with
a time-dependent state constraint problem. Considering nonautonomous systems, the author in [73]
defined high-order Time-varying ZCBFs (Tv-ZCBFs) by generalizing first-order ZCBFs proposed in
[74]. However, this research only deals with single-input systems. Similarly to [73], the research [47]
provided the formal definition of first-order Tv-ZCBFs for autonomous systems. They also introduced
the notion of candidate Tv-ZCBFs so that a time-varying safe set is not empty. However, the formal
definition of first-order Tv-ZCBFs for nonautonomous systems is not derived. To the best of the
author’s knowledge, there are few CBF studies dealing with time-dependent state constraint problems
for nonautonomous systems; solving this problem by CBFs seems to be in an immature phase.

The difficulty of a time-dependent state constraint problem is that a safety filter needs to handle
unknown information. For example, the velocity of moving obstacles is unknown to control systems.
To design a safety filter, we need complete information about unknown environments or estimate
unknown parameters. However, in real applications, it is difficult to estimate the true value of un-
known parameters, e.g., obstacle velocities, due to the measurement noise. Therefore, a CBF-based
controller should ensure safety of control systems even if there exist estimation errors of unknown
parameters.

1.1.2 Related Work to Safety-Critical Control
In exiting AEB systems, time to collision (TTC) is often used as a trigger for entering warning or
emergency braking phases [38, 46, 59]. TTC is the time left before rear-end collisions occur if the
current velocity and course are maintained constant. A high TTC threshold can warn drivers or auto-
matically provide a braking action, which implies safer but conservative behaviors. On the other hand,
a low TTC threshold can decrease conservatism but increase the risk of safety violation. Furthermore,
TTC-based AEB systems decelerate sharply without driver involvement to avoid a potential collision
or mitigate damage from safety violations. This indicates that the existing methods produce neither a
theoretical safety guarantee nor a continuous safety assist controller.

In nonlinear control theory, Model Predictive Control (MPC) is as popular as CBF-based meth-
ods for safety-critical control [13, 17]. The basic concept of MPC is to use a dynamic model of a
control system to forecast system behaviors and optimize the forecast to produce the best decision
at each time step [35]. Thanks to the recent development of computation technology, an MPC-based
controller attracts attention in various control fields. However, its high computational cost stays still
as a problem due to, for example, the performance limit of a control computer mountable on an au-
tomobile. Generally speaking, moreover, an MPC-based controller is not explicitly obtained since a
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Figure 1.1: Human Assist Control.

mathematical programming problem yielding the controller is solved online and numerically.
As a similar concept to CBFs, Barrier-Lyapunov Functions (BLFs) is known as tools for the de-

sign of a feedback controller that simlutaneously achieve asymptotic stability of an equilibrium point
while avoiding an unsafe set [55, 66]. The drawback of BLF-based methods is about the feasibility;
that is, if the stabilization and safety objectives are in conflict, no feedback controller can be ob-
tained. In addition, since control systems with a BLF-based controller are actively repelled from the
safe set boundary, it produces a more conservative behavior compared with a CBF-based controller.
Furthermore, neither MPC nor BLFs entail the notion of a nominal control [45]. In other words,
their approach is not suitable for modifying a controller designed for prescribed control objectives or
assisting a human operator input, which do not always generate safe actions of control systems.

1.1.3 Human Assist Control
A human assist controller needs to meet not only safety constraints but also optimality and continuity.
According to [25], the human assist control problem that provides the ideal properties of a human
assist controller is introduced as follows:

1. A human assist controller renders a safe set forward invariant for any human operator inputs.

2. A human assist controller is optimal in the sense of a preliminarily defined cost function or
functional.

The first condition is related to theoretical safety assurance of human-operated systems. As men-
tioned previously, human-operated systems are classified into nonautonomous systems because they
are affected by a human operator input, which is time-varying and cannot be derived in advance.
Therefore, some other mathematical tools need to be employed for safety assurance of human-
operated systems.

11



The second condition is about the relationship between a human operator input and a human assist
controller. Similarly to previous studies on CBFs, a human assist controller should intervene only
when safety constraints are at risk of violation. This condition eliminates, for example, a controller
that fully cancels an acceleration input given by a driver and results in a stationary automobile.

To this end, the research [50] considered the control scheme shown in Fig. 1.1 and proposed
human assist control using a relaxed CBF for a human-operated system. This human assist control
enables humans to operate a system freely while guaranteeing forward invariance of a safe set. It
is worth highlighting that the human assist controller proposed in [50] is continuous without a rel-
ative degree condition, which cannot be achieved by the CBFs defined in [7, 74]. The continuity
of a controller is another essential property for human assist control because it increases operability
and passenger comfort. However, since a relaxed CBF is based on an RCBF that blows up on the
boundary, it is still sensitive to noise in control systems [65] and restricts the scope of applications.
Moreover, using a relaxed CBF may cause numerical calculation problems due to its blowing-up
property.
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1.2 Contribution
In this dissertation, the author proposes a ZCBF-based safety (human) assist controller that guar-
antees theoretical safety of nonautonomous systems. Importantly, the controllers proposed in this
dissertation are continuous and guarantee safety with minimal intervention, indicating that it is an
ideal human assist controller. As mentioned above, the employment of ZCBFs will expand the scope
of control applications compared to an RCBF-based controller and a relaxed CBF-based human assist
controller.

The results of this dissertation consist of two parts. The first contribution, given in Chapter 3,
is the establishment of safety assist control for time-invariant state constraint problems. The second
contribution, given in Chapter 4, is the establishment of safety assist control for time-dependent state
constraint problems.

1.2.1 Safety Assist Control for Time-invariant State Constraint Problem
In the first part of Chapter 3, the author considers a generalized nonautonomous control-affine system.
The biggest contribution of this dissertation, a ZCBF-based safety assist controller, is available here.
The author firstly defines the “strict” version of a ZCBF, a Strict Zeroing Control Barrier Function
(S-ZCBF). Using the strict conditions for a ZCBF, the author then provides a global condition for an
S-ZCBF leading to the existence of global solutions, forward complete solutions, to nonautonomous
systems. Then, the author proposes a human assist controller using an S-ZCBF and proves that the
proposed controller ensures forward invariance of a safe set by employing Gronwall’s lemma that
is applicable regardless of the system’s nonautonomy. The author simultaneously proves that the
proposed controller is continuous and that any solution to a system can be arbitrarily extended, i.e.,
every solution is forward complete. The author also proves that the proposed controller is minimally
invasive. The author finally studies a mathematical example, a state constraint problem for a non-
Lipschitz system, and confirms the effectiveness of the proposed controller by computer simulation.

In the second part of Chapter 3, the author considers an input-constrained control system. In real
applications, almost all control systems have input constraints, e.g., a limit of actuators. To meet both
state and input constraints, the notion of viability kernels advocated in viability theory becomes of
interest [10]. If the state of a control system starts from a viability kernel, which is a subset of a safe
set, at least one solution remains in the safe set. In other words, we can always choose a controller
within input constraints that renders the viability kernel controlled forward invariant [19, 31]. Mo-
tivated by this, the author modifies the definition of an S-ZCBF by introducing a CBF for viability
kernels, since the objective is rephrased as guaranteeing the forward invariance of a viability kernel.
Then, the author proposes a CBF-based human assist controller that renders a viability kernel forward
invariant by restricting the scope of control systems. The author studies a double-integrator system as
an example and demonstrates how to construct a CBF for viability kernels. The effectiveness of the
proposed controller is confirmed by computer simulation.
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1.2.2 Safety Assist Control for Time-dependent State Constraint Problem
The methods proposed in Chapter 3 cannot ensure safety of nonautonomous systems when a safe
set is time-varying, i.e., a state constraint is time-dependent. In the first part of Chapter 4, the au-
thor proposes a safety assist controller that is applicable to time-dependent state constraint problems.
Importantly, the proposed controller inherits the rich properties of an S-ZCBF-based controller, con-
tinuity and optimality. The notion of forward invariance is only used for a time-invariant (fixed) safe
set. Therefore, the author considers a graph space, i.e., a subset of a product space consisting of a
system’s state and a time variable, as a safe region; in this setting, forward invariance of a graph space
implies that time-dependent safety constraints are satisfied. The author also provides assumptions
on set-valued maps that prevent a time-varying safe set from being empty. Then, the author defines
a Time-varying ZCBF (Tv-ZCBF) for nonautonomous systems by extending an S-ZCBF. Using the
conditions for a Tv-ZCBF, the author proves the compactness regarding a graph space. After that,
the author proposes a Tv-ZCBF-based human assist controller that ensures the forward invariance of
a graph space. The author simultaneously proves that the proposed controller ensures the forward
completeness of solutions. Lastly, the author confirms the effectiveness of the proposed controller by
considering a mathematical example and conducting computer simulation.

In the latter part of Chapter 4, the author considers an input-disturbed control system. Motivation
comes from the difficulty of applying the Tv-ZCBF-based controller in real experiments. Concretely,
the velocity of moving obstacles is generally unknown to control systems and needs to be estimated.
However, the estimate of the obstacle velocity contains estimation errors, and it is difficult to obtain
its true value. Estimation errors might lead to violation of state constraints as the Tv-ZCBF-based
controller allows a control system to approach considerably close to the safe set boundary. Therefore,
the author aims to design a human assist controller that renders a safe set forward invariant even if
the estimation error exists. Here, the author introduces an Input-to-State Constrained Safety ZCBF
(ISCSf-ZCBF) that ensures safety of control systems under input disturbances. The author lastly de-
signs the proposed controller for a time-dependent state constraint problem of an electric wheelchair.
The effectiveness of the proposed controller is confirmed by computer simulation and experiment.
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Chapter 2

Preliminaries

This chapter introduces some basic definitions and mathematical foundations that will be used in this
dissertation.

2.1 Notation
The sets of positive and non-negative real numbers are denoted by R>0 and R≥0. The empty set is
denoted by ∅. The boundary, the interior, and the complement of a set S ⊂ Rn are denoted by ∂S,
int(S) and Sc, respectively.

A C1 continuously differentiable function has continuous derivatives. For a C1 continously dif-
ferentiable function h(x) and a vector function f (x), define the Lie derivative notation L f h(x) :=
(∂h/∂x)(x) f (x).

2.2 Comparison Functions
The use of comparison functions has become standard in control theory. In this section, the author
introduces some comparison functions used in this dissertation.

Definition 2.1 (Class K function [40]) A continuous function α : [0, a) → R≥0 is said to belong to
class K (α ∈ K ) if it is strictly increasing and α(0) = 0.

Definition 2.2 (Class K∞ function [40]) A continuous function α : [0, a)→ R≥0 is said to belong to
class K∞ (α ∈ K∞) if it belongs to class K , a = ∞ and α(r)→ ∞ as r → ∞.

Definition 2.3 (Extended class K function [74]) A continuous function α : (−b, a) → R for some
a, b > 0 is said to belong to extended class K (α ∈ Ke) if it is strictly increasing and α(0) = 0.

Definition 2.4 (class L function [39]) A continuous function ρ : R≥0 → R>0 is said to belong to
class L (ρ ∈ L) if it is strictly decreasing and ρ(r)→ 0 as r → ∞.
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2.3 Ordinary Differential Equations
In control theory, control systems are generally modeled by a first-order ordinary differential equation
(ODE).

In this section, we consider the following ODE:

ẋ = f (x, t), (2.1)

where x ∈ Rn denotes a state, t ∈ R a time variable, and f : Rn × R → Rn a mapping, respectively. A
special case of (2.1) arises when the mapping f only depends on x, i.e.,

ẋ = f (x). (2.2)

We call the system modeled by (2.1) a nonautonomous system and the system modeled by (2.2) an
autonomous system, respectively.

A classical solution x : I → Rn to the ODE (2.1) with the initial value x(t0) = x0 is a mapping
such that the following two conditions hold [12].

1. x(t) is of class C1.

2. ẋ(t) = f (x(t), t), ∀t ∈ I.

Here, the set I is an interval of R such that t0 ∈ I ⊂ R. If I = R, a solution x(t) is said to
be global. The qualifier ”classical” is used to distinguish other concepts of ODE solutions, e.g., a
Carathéodory solution for discontinuous differential equations [20]. In this dissertation, however, we
are only interested in a classical solution; therefore, we sometimes call it a solution to the ODE (2.1)
for brevity.

2.3.1 Cauchy-Peano Existence Theorem [20]
The existence of solutions to the ODE (2.1) depends on the property of a mapping f (x, t). In this
subsection, the author introduces the Cauchy-Peano existence theorem (Peano’s theorem) that states
the existence of a classical solution.

Consider the following rectangle R about the point (x0, t0):

R : |t − t0| ≤ a, |x − x0| ≤ b (a, b > 0). (2.3)

If a mapping f (x, t) of the ODE (2.1) is continuous, it is bounded on R. Therefore, there exists a
positive constant M ∈ R>0 such that

M = max | f (x, t)| ((x, t) ∈ R). (2.4)

Let

α = min
(
a,

b
M

)
. (2.5)

Then, the following theorem is well known as the Cauchy-Peano existence theorem.
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Theorem 2.1 If a mapping f : Rn × R → Rn is continuous on the rectangle R, then there exists a
classical solution x(t) to the ODE (2.1) on |t − t0| ≤ α for which x(t0) = x0.

Importantly, Peano’s theorem only assures the existence of a local solution x(t), i.e., solutions are
not generally defined for ∀t ∈ (−∞,∞). If a solution x(t) to the ODE (2.1) is defined for ∀t ≥ 0, it is
called forward complete [8].

2.3.2 Gronwall’s Lemma [30]
In this dissertation, the author adopts the following Gronwall lemma ( [30, 40]) to ensure forward
invariance of a safe set, which is introduced later.

Theorem 2.2 Let λ ∈ R be a constant, and v : [t0, t1] → R≥0 be a non-negative continuous function.
If an absolute continuous non-negative function z : [t0, t1]→ R≥0 satisfies

z(t) ≤ λ +
∫ t

t0
v(s)z(s)ds, (2.6)

for ∀t ∈ [t0, t1], then on the same interval, the following inequality holds:

z(t) ≤ λ exp
(∫ t

t0
v(s)ds

)
. (2.7)

We can obtain the following corollary under the assumption that z(t) is a C1 continuously differ-
entiable function.

Corollary 2.1 Let v : [t0, t1] → R≥0 be a non-negative continuous function. If a non-negative C1

continuously differentiable function z : [t0, t1]→ R≥0 satisfies

ż(t) ≥ −v(t)z(t), (2.8)

for ∀t ∈ [t0, t1], then on the same interval, the following inequality holds:

z(t) ≥ z(t0) exp
(
−

∫ t

t0
v(s)ds

)
. (2.9)

In particular, if v(t) = γ ∈ R≥0 is a non-negative constant, then the following inequality holds for
∀t ∈ [t0, t1]:

z(t) ≥ z(t0) exp (−γ(t − t0)) . (2.10)

17



2.3.3 Lipschitz Continuity
Peano’s theorem ensures that at least one local solution to the ODE (2.1) exists. In other words, the
ODE (2.1) with a given initial condition might have several solutions. For example, the following
ODE

ẋ = 2x1/2, x(0) = 0 (2.11)

has a solution x(t) = t2. On the other hand, another solution x(t) = 0 to this equation exists. This
example implies that the continuity condition on f (x, t) of (2.1) is insufficient to ensure the uniqueness
of solutions.

The following sufficient condition for uniqueness of solutions to (2.1),

∥ f (x, t) − f (y, t)∥ ≤ L∥x − y∥ (2.12)

for all (x, t) and (y, t) in some neighborhood of (x0, t0), is known as the Lipschitz condition with a
Lipschitz constant L ∈ R>0. Here, the author introduces an existence and uniqueness theorem for
local solutions to (2.1) where the local Lipschitz condition is employed [40].

Theorem 2.3 Consider the ODE (2.1) with the initial value x(t0) = x0. Let f (x, t) be continuous in t
and satisfies the local Lipschitz condition:

∥ f (x, t) − f (y, t)∥ ≤ L∥x − y∥, ∀x, y ∈ B := {x ∈ Rn | ∥x − x0∥ ≤ r}, ∀t ∈ [t0, t1]. (2.13)

Then, there exists some δ ∈ R>0 such that a unique solution x(t) to (2.1) exists over [t0, t0 + δ].

Importantly, nonlinear systems of the form (2.1) may generally have a finite escape time due to its
nonlinearity (See Example 3.1). That is, a state of nonlinear systems can go to infinity in finite time.
The following theorem finds a unique global solution x(t) to (2.1) with the initial value x(t0) = x0,
i.e., x(t) is defined over [t0, t1] where t1 may be arbitrarily large [40].

Theorem 2.4 Consider the ODE (2.1) with the initial value x(t0) = x0. Let f (x, t) be continuous in t
and satisfies the global Lipschitz condition:

∥ f (x, t) − f (y, t)∥ ≤ L∥x − y∥, ∀x, y ∈ Rn, ∀t ∈ [t0, t1]. (2.14)

Then, there exists a unique solution x(t) to (2.1) over [t0, t1].
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2.4 Set-Valued Maps [11]
In this dissertation, a time-dependent constrained control problem, e.g., collision avoidance with mov-
ing obstacles, will be discussed in Section 4 using set-valued maps. Therefore, in this section, the
author introduces some basic properties of set-valued maps based on the literature [11].

A set-valued map is literally a map that associates a point with a set defined as follows.

Definition 2.5 (Set-valued map and its graph) Let X and Y be metric spaces. A set-valued map
F : X⇝ Y is characterized by its graph G(F ):

G(F ) := {(x, y) ∈ X × Y | y ∈ F (x)}, (2.15)

which is the subset of the product space X×Y. The domain of F is the subset of elements x ∈ X such
that F (x) is not empty:

Dom(F ) := {x ∈ X | F (x) , ∅}. (2.16)

It is trivial from Definition 2.5 that the following holds for any x ∈ X:

F (x) = {y ∈ Y | (x, y) ∈ G(F )}. (2.17)

Definition 2.6 (Upper semi-continuity) A set-valued map F : X⇝ Y is upper semi-continuous at
x0 ∈ Dom(F ) if and only if for any neighborhoodU of F (x0),

∃η > 0 such that ∀x ∈ BX(x0, η) := {x ∈ X | ∥x − x0∥ ≤ η}, F (x) ⊂ U. (2.18)

It is said to be upper semi-continuous if it is upper semi-continuous at every point x0 ∈ Dom(F ).

Definition 2.7 (Lower semi-continuity) A set-valued map F : X⇝ Y is lower semi-continuous at
x0 ∈ Dom(F ) if and only if for any y ∈ F (x0) and for any sequence of elements xn ∈ Dom(F ) such
that xn → x0 as n→ ∞, there exists a sequence of elements yn ∈ F (xn) such that yn → y as n→ ∞.

It is said to be lower semi-continuous if it is lower semi-continuous at every point x0 ∈ Dom(F ).

Proposition 2.1 The graph of an upper semi-continuous set-valued map F : X ⇝ Y with closed
domain and closed values is closed.

The converse is true under the assumption that Y is compact.
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2.5 Set Invariance
In recent nonlinear control theory, theoretical safety assurance agrees with set invariance. In this
section, the author introduces the notion of forward invariance and Nagumo’s theorem, which is a
necessary and sufficient condition for forward invariance regarding autonomous systems.

2.5.1 Forward Invariance
According to the literature [15, 16], forward invariance with respect to an autonomous system given
by the ODE (2.2) is defined as follows. Note that in the literature forward invariance is introduced
as positive invariance, and the role of the word “forward” (also “positive”) implies that the property
regards the future.

Definition 2.8 (Forward invariance [16]) A set S ⊂ Rn is forward invariant with respect to (2.2)
if every solution to (2.2) with the initial condition x(0) = x0 ∈ S is globally defined and such that
x(t) ∈ S for ∀t ≥ 0.

Remark 2.1 Strictly speaking, the notion of forward invariance for nonautonomous systems is differ-
ent from that regarding autonomous systems since the system (2.1) is not time-invariant [16, Definition
4.10]. However, in this study, we fix an initial time t0 to t0 = 0 so that the notion accords to the case
of autonomous systems, which is given by the definition above. Note that initializing to t0 = 0 is a
common assumption in control engineering although it leads to loss of generality.

In Definition 2.8, the existence of global solutions is assumed. As already mentioned, however,
nonlinear systems sometimes have a finite escape time. This implies that a solution to (2.2) starting
from x(0) ∈ Smay satisfy x(t) ∈ S for ∀t ∈ Dom(x) where Dom(x) ⊂ [0,∞) is a domain of a mapping
x : R→ Rn, but not over [0,∞). The notion of forward pre-invariance points out this problem peculiar
to nonlinear systems.

Definition 2.9 (Forward pre-invariance [48]) A set S ⊂ Rn is forward pre-invariant with respect
to (2.2) if every solution x(t) to (2.2) with initial condition x(0) = x0 ∈ S satisfies x(t) ∈ S for
∀t ∈ Dom(x) ⊂ [0,∞).

2.5.2 Nagumo’s Theorem [16, 49]
Nagumo’s theorem is of fundamental importance for establishing forward invariant sets as it provides
a necessary and sufficient condition for forward invariance of closed sets. The notion of a tangent
cone is useful to state the theorem. Before introducing these, we firstly define the notion of a distance
from a set.

Definition 2.10 (Distance from a set [16]) Consider a nonempty set S ⊂ Rn and a point y ∈ Rn.
Then, the distance from a set is defined as follows:

dist(y,S) = inf
w∈S
∥y − w∥. (2.19)
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Then, the following notion of Bouligand’s tangent cone plays an important role in Nagumo’s theorem.

Definition 2.11 (Bouligand’s tangent cone [16]) Consider a closed set S ⊂ Rn. Then, the tangent
cone to S at x ∈ Rn is defined as follows:

TS(x) =
{

z ∈ Rn
∣∣∣∣∣ lim inf

τ→0

dist(x + τz,S)
τ

= 0
}
. (2.20)

From the definition of tangent cone, it is easy to see that

1. if x ∈ int(S), then TS(x) = Rn.

2. if x < S, then TS(x) = ∅.

That is, the tangent cone TS(x) is non-trivial only on the boundary of S. It is worth stressing that the
boundary ∂S satisfies ∂S ⊂ S since the set S is closed.

A special case of a tangent cone can be derived when a target set is given as a practical set [16,
Definition 4.9]; if the closed set S is given as the following 0-superlevel set of a C1 continuously
differentiable function h : Rn → R:

S = {x ∈ Rn | h(x) ≥ 0},
∂S = {x ∈ Rn | h(x) = 0},

Int(S) = {x ∈ Rn | h(x) > 0},
(2.21)

then the tangent cone to S at x is given as follows [16, 63]:

TS(x) =
{

z ∈ Rn
∣∣∣∣∣ ∂h∂x (x)z ≥ 0, ∀x ∈ ∂S

}
. (2.22)

Now, we can introduce Nagumo’s theorem that states necessity and sufficiency for forward invari-
ance, which was first discovered by Mitio Nagumo [49].

Theorem 2.5 (Nagumo’s theorem [16]) Consider the autonomous system (2.2). Assume that for each
initial condition x(0) in an open set O ⊂ Rn, it admits a unique solution defined for ∀t ≥ 0. Let S ⊂ O
and ∂S ⊂ S be a closed set and its boundary. Then, S is forward invariant with respect to (2.2) if and
only if the following condition holds:

f (x) ∈ TS(x), ∀x ∈ ∂S. (2.23)

The theorem assumes that a solution is unique. If the assumption fails to be satisfied, Nagumo’s
theorem only ensures weak forward invariance [16, Definition 4.2], i.e., there exists at least one global
solution x(t) to (2.2) with x(0) ∈ S such that x(t) ∈ S for ∀t ≥ 0.
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2.6 Convex Optimization
In control engineering, a controller needs to be optimal somehow in many cases. In this section, we
consider the following inequality-constrained optimization problem:

minimize f (u) (2.24)
subject to g1(u) ≤ 0, . . . , gr(u) ≤ 0, (2.25)

where mappings f : Rn → R and gi : Rn → R are C1 continuously differentiable convex functions.
Since both a cost function f (u) and a constrained function gi(u) are convex, this is classified as an
inequality-constrained convex optimization problem (IC-COP). Accordingly, a local minimum for
the IC-COP (2.24) (2.25) corresponds to its global minimum due to the convexity of the problem.

Let Act(u) be the set of active inequality constraints:

Act(u) = {i | gi(u) = 0}. (2.26)

Define the Lagrangian function for the IC-COP (2.24) (2.25) as follows:

L(x, λ) = f (u) +
r∑

i=1

λigi(u). (2.27)

Then, the following proposition is known as the Karush-Kuhn-Tucker (KKT) condition that is neces-
sary for optimal solutions. Note that the KKT condition also becomes sufficient if the optimization
problem is convex.

Proposition 2.2 (Karush-Kuhn-Tucker (KKT) condition [14]) Let u∗ be a local minimum of the IC-
COP (2.24) (2.25). Assume that there exists a feasible vector ū satisfying

gi(ū) < 0, ∀ j ∈ Act(u∗). (2.28)

Then, there exists a unique Lagrange multiplier vector λ∗ = (λ∗1, . . . , λ
∗
r) such that

∇uL(u∗, λ∗) = 0, (2.29)
λ∗i ≥ 0, i = 1, . . . , r, (2.30)
λ∗i = 0, ∀i < Act(u∗). (2.31)

Here, the assumption (2.28) is called the Slater constraint qualification, which guarantees the exis-
tence of Lagrange multipliers, which is standard for convex inequalities [14, Proposition 3.3.9].
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Chapter 3

Safety Assist Control via Zeroing Control
Barrier Function

In this chapter, the author proposes a safety assist controller (human assist controller) for nonau-
tonomous control systems. The state constraint problem considered in this chapter is time-invariant,
i.e., a safe set where we wish the system’s states to stay is fixed and does not shrink or grow depending
on time. The safety assurance will be achieved by designing a safety assist controller that renders a
safe set forward invariant.

This chapter starts with an autonomous control system and introduces a Zeroing Control Barrier
Function (ZCBF) proposed in [7, 74]. Then, the author points out the technical problems of the
conventional ZCBF definition when considering nonautonomous systems. Concretely, Nagumo’s
theorem employed for theoretical safety assurance in the literature generates mathematical problems;
Section 3.2 will motivate the first objective of this chapter. Before designing a controller, the author
defines what an “ideal” human assist controller is in Section 3.3. In Section 3.4, the author provides a
formal definition of a ZCBF that can ensure the safety of nonautonomous systems. Then, the author
proposes a safety assist controller that solves the problems of the conventional method, which is the
biggest contribution of this research. The author will show that the proposed controller not only
ensures the safety of nonautonomous systems but is also continuous and optimal, indicating that it
is ideal for human assist control. The effectiveness of the proposed controller will be confirmed by
considering a mathematical example.

The second part of this chapter considers input-constrained control systems. Here, the author aims
to design a safety assist controller that ensures both state and input constraints. To achieve the objec-
tive, the notion of viability kernels will become of interest. The viability kernel is a subset of a safe
set, and we can find a controller that ensures the safety of control systems starting from there within
input constraints. In Section 3.5, therefore, a ZCBF will be defined for viability kernels when consid-
ering input-constrained systems. Moreover, the author proposes a safety assist controller that renders
a viability kernel forward invariant, indicating that state constraints are satisfied while meeting input
constraints. The author lastly illustrates how to construct a ZCBF for viability kernel by considering
double-integrator systems and conducts computer simulations for effectiveness verification.
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3.1 Zeroing Control Barrier Function for Autonomous System
[7, 74]

In this section, we consider the following nonlinear autonomous control system:

ẋ = f (x) + g(x)u, (3.1)

where x ∈ D ⊂ Rn denotes a state, u ∈ Rm a control input, respectively. Assume that mappings
f : Rn → Rn and g : Rn → Rn×m are locally Lipschitz continuous. If a state feedback controller
u = k(x) is (locally) Lipschitz continuous, there exists a maximal time interval I(x0) ⊂ R for the
initial state x0 = x(0) such that the unique solution x(t) to (3.1) exists for ∀t ∈ I(x0). Here, we assume
that the unique solution x(t) is forward complete, i.e., I(x0) = [0,∞) to simplify the discussion.

Similarly to Subsection 2.5.2, we define the following closed set Sa ⊂ D as the 0-superlevel set
of a continuously differentiable function ha : D → R:

Sa = {x ∈ D | ha(x) ≥ 0},
∂Sa = {x ∈ D | ha(x) = 0},

Int(Sa) = {x ∈ D | ha(x) > 0},
(3.2)

where ∂Sa and Int(Sa) are the boundary and the interior of Sa, respectively. If x ∈ Sa, the system
(3.2) is safe, and we refer to the set Sa as a safe set in this section.

To establish the safety of autonomous systems, Xu et al. introduce the following Zeroing Control
Barrier Function (ZCBF).

Definition 3.1 (Zeroing Control Barrier Function [74]) Consider the system (3.1) and the safe set Sa

defined by (3.2). Then, a function ha : D → R is a Zeroing Control Barrier Function (ZCBF) if there
exists an extended class K function ᾱ ∈ Ke such that the following inequality holds:

sup
u∈Rm

ḣa(x, u) = sup
u∈Rm

[L f ha(x) + Lgha(x)u]

≥ −ᾱ (ha(x)) , ∀x ∈ D.
(3.3)

Given a ZCBF, we can define the set:

K(x) = {u ∈ Rm | L f ha + Lghau + ᾱ (ha(x)) ≥ 0}, (3.4)

which is the admissible control set for ∀x ∈ D. Then, the forward invariance of Sa is ensured by the
following theorem.

Theorem 3.1 ( [7, 74]) Consider the system (3.1) and the safe set Sa ⊂ D defined by (3.2). If a
function ha : D → R is a ZCBF, then any Lipschitz continuous controller u = k(x) ∈ K(x) ensures
the forward invariance of Sa.

Since the safe set Sa is defined as a practical set, it is easy to see that Nagumo’s theorem ensures the
forward invariance of Sa. That is, for any x ∈ ∂Sa, ḣa(x) ≥ −ᾱ (ha(x)) = 0 with a Lipschitz controller
u = k(x) ∈ K(x) as the function ᾱ (h(x)) belongs to extended class K .
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3.2 Motivation
The result given in [7, 74] cannot be applied directly to nonautonomous systems. This section points
out the problems of the conventional method.

For the sake of simplicity, in the preceding section, we assumed that a solution to the system
(3.1) is forward complete. Importantly, Nagumo’s theorem does not guarantee forward invariance
without the forward completeness of solutions. However, as mentioned in Section 2.3.3, the states of
nonlinear systems can go to infinity in finite time, called finite escape time [40, 48]. The following
example illustrates the case of forward pre-invariance.

Example 3.1 Consider the following system:

ẋ = −x2 + u (3.5)

with the initial state x0 = x(0) = −1. Assume that a safe set Sa is given by

Sa = {x ∈ R | x ≤ 0}. (3.6)

Since the right-hand side of (3.5) is locally Lipschitz continuous in x, the unique solution to (3.5)

x(t) =
1

t − 1
(3.7)

exists over I(x0) = [0, 1) and satisfies x(t) ∈ Sa for ∀t ∈ I(x0) with u ≡ 0. Although Sa is forward
pre-invariant, it is not forward invariant since the solution has a finite escape time T = 1 due to the
nonlinearity of (3.5).

Nagumo’s theorem also requires the uniqueness of solutions for forward invariance. This imposes
the (local) Lipschitz continuity on mappings of the system (3.1) and a controller u ∈ K(x), which
might restrict the scope of applications.

Moreover, Nagumo’s theorem only ensures forward invariance of a safe set for autonomous sys-
tems. The following example illustrates that it is not applicable to nonautonomous systems [63].

Example 3.2 Consider the following system:

ẋ = t3, (3.8)

with the initial state x0 = x(0) = 0. Assume that a safe set Sa is given by Sa = {0}. At t = 0,
f (x, t) = t3 ∈ TSa(x) for each x ∈ ∂Sa, indicating that Nagumo’s condition (2.23) holds. However, the
solution to (3.8)

x(t) =
1
4

t4, (3.9)

implying that x(t) < Sa for t ∈ (0,∞). Therefore, Sa is not forward invariant.

In addition, using the ZCBF condition given by Definition 3.1, a ZCBF-based controller might not
be continuous without a relative degree condition, as clarified in the following section (see Remark
3.3 and Example 3.3).
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3.3 Problem Statement
Consider the following nonlinear time-varying (nonautonomous) control system with a human oper-
ator input uh(t):

ẋ = f (x, t) + g(x, t) [u + uh(t)] , (3.10)

where x ∈ D ⊂ Rn denotes a state, u ∈ Rm a control input, respectively. Assume simply that a
mapping uh : R → Rm is continuous and that mappings f : Rn × R → Rn, g : Rn × R → Rn×m are
continuous in (x, t) ∈ Rn × R.

Then, divide a state space D into a safe set S and an unsafe set Sc, i.e., S ∪ Sc = D. Assume
that the safe set S, namely where the system state should stay, is open and time-invariant. Moreover,
assume that the safe set S is defined as the strict 0-superlevel set of a C1 continuously differentiable
function h : D → R:

S = {x ∈ D | h(x) > 0},
∂S = {x ∈ D | h(x) = 0}, (3.11)

where ∂S is the boundary of S (Fig. 3.1). Note that the open safe set implies S = Int(S) and x ∈ S
denotes state constraints.

To clarify what conditions the ideal human assist controller should fulfill, the definition of the
human assist control problem is introduced as follows.

Definition 3.2 (Human Assist Control (Based on [25])) Consider the system (3.10) and the safe set S
defined by (3.11). Then, a controller u = k(x, t) is a human assist controller if the following conditions
hold:

(P1) For any human operator input uh : R → Rm, the controller u = k(x, t) renders S forward
invariant in the sense of Definition 2.8, i.e., if the initial state x0 := x(0) satisfies x0 ∈ S, then
x(t) ∈ S for ∀t ≥ 0.

(P2) The controller u = k(x, t) is optimal in the sense of a preliminarily defined cost function, i.e.,
the controller u renders S forward invariant with minimal intervention.

(P3) The controller u = k(x, t) is continuous in (x, t) ∈ Rn × R.

The condition (P1) is related to the theoretical safety assurance. As mentioned in Remark 2.1, the
notion of forward invariance with respect to nonautonomous systems is not the same as the one with
respect to autonomous systems. Again, since we fix an initial time t to t = 0, forward invariance given
by Definition 2.8 is employed in the human assist control problem. The condition (P2) concerns the
optimality. Due to this condition, a controller that fully cancels a human operator input is not a human
assist controller; e.g., an automobile at rest while a human operator steps on an accelerator is safe but
not optimal. The condition (P3) is unique to this study, which leads to increasing operability and
passenger comfort.

Problem 3.1 The first objective of this chapter is to design a human assist controller u = k(x, t) for
the system (3.10) satisfying the conditions (P1), (P2) and (P3).
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Figure 3.1: Safe Set.

3.4 Strict Zeroing Control Barrier Function for Continuous Safety
Assist Control

In this section, the author proposes a human assist controller for nonautonomous systems using a
ZCBF.

3.4.1 Strict Zeroing Control Barrier Function
In this subsection, the author defines the “strict” version of a ZCBF to solve the problems of the
conventional ZCBF given by Definition 3.1.

Definition 3.3 (Strict Zeroing Control Barrier Function) Consider the system (3.10) and the safe set
S defined by (3.11). Then, a C1 continuously differentiable function h : D → R is a Strict Zeroing
Control Barrier Function (S-ZCBF) if the following conditions hold.

(A1) h(x) is a proper function for ∀x ∈ S; for any positive constant L ∈ R>0, the superlevel set
{x|h(x) ≥ L} is compact.

(A2) There exists a locally Lipschitz continuous extended class K function α such that the following
inequality holds:

sup
u∈Rm

ḣ(x, t, u, uh(t)) > −α (h(x)) , ∀x ∈ D. (3.12)
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Remark 3.1 The significant property obtained from the condition (A1) is that the solution x(t) to
the system (3.10) does not have a finite escape time, which will be clarified in the next subsection.
Moreover, the invariance of the CBF’s properties through coordinate transformation will hold if the
condition (A1) is satisfied [64].

Remark 3.2 The condition (A2) requires that an extended class K function α is locally Lipschitz
continuous in h, whereas a ZCBF for autonomous systems given in Definition 3.5 simply requires
continuity [47]. The easiest way to confirm that S-ZCBF candidates satisfy the condition (A2) is to
verify whether the following strict inequality holds:

Lgh(x) = 0 ⇒ ḣ = L f h(x) > −α(h(x)). (3.13)

Using the strict conditions for an S-ZCBF, the following theorem that provides a global condition
leading to a global solution to (3.10) can be obtained.

Theorem 3.2 Consider the system (3.10) and the safe set S defined by (3.11). Then, a C1 contin-
uously differentiable function h : D → R is an S-ZCBF if and only if the condition (A1) and the
following condition hold.

(A2’) There exists a positive constant γ ∈ R>0 such that the following inequality holds:

sup
u∈Rm

ḣ(x, t, u, uh(t)) > −γh(x), ∀x ∈ S. (3.14)

To prove Theorem 3.2, the author first introduces the following lemma.

Lemma 3.1 Consider the system (3.10) and the safe set S defined by (3.11). Assume that x ∈ S. If
a C1 continuously differentiable function h : D → R is an S-ZCBF, i.e., h(x) is a proper function and
satisfies the inequality (3.12), then there exists a positive constant γ ∈ R>0 such that

γ ≥ α (h(x))
h(x)

, ∀x ∈ S. (3.15)

Proof Note that x ∈ S implies h(x) > 0. Since a function α is locally Lipschitz continuous, α can be
represented as follows:

α (h(x)) = γ1h(x) + δ(h(x)), (3.16)

where γ1 ∈ R>0 is a positive constant and δ : R→ R is a higher-order term of h(x). Then consider the
following limit:

lim
h→0

1
h

(
1
2
γ1h − δ(h)

)
=

1
2
γ1 > 0. (3.17)
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Hence there exists a positive constant L ∈ R>0 such that

1
2
γ1h(x) ≥ δ(h(x)), (3.18)

for ∀x ∈ W := {x| h(x) < L} ⊂ S. (3.16) and (3.18) imply that there exists a positive constant
γ (> γ1) ∈ R>0 such that

γ ≥ α (h(xa))
h(xa)

, ∀xa ∈ W ⊂ S. (3.19)

Thus, we now consider the case of h(x) ≥ L, i.e., x ∈ S\W. Since h(x) is a proper function for
∀x ∈ S, a superlevel set S\W = {x| h(x) ≥ L} is compact. Hence there exists a positive constant
γ ∈ R>0 such that

γ ≥ α (h(xb))
h(xb)

, ∀xb ∈ S\W ⊂ S, (3.20)

due to the extreme value theorem [53].
Therefore, according to (3.19) and (3.20), there exists a positive constant γ ∈ R>0 such that

γ ≥ α (h(x))
h(x)

, ∀x ∈ S, (3.21)

and the above discussion completes the proof. □
Using Lemma 3.1, we can now prove Theorem 3.2.

Proof Note that x ∈ S implies h(x) > 0. According to Lemma 3.1, in the case of x ∈ S, (A2) can be
rewritten as follows:

sup
u∈Rm

ḣ(x, t, u, uh(t)) > −α (h(x)) = −α (h(x))
h(x)

h(x)

≥ −γh(x), ∀x ∈ S. (3.22)

Thus, (A2) is equivalent to the global condition (A2’). Therefore, h(x) is an S-ZCBF if and only if the
conditions (A1) and (A2’) hold. □

Theorem 3.2 provides the global Lipschitz condition for an S-ZCBF, which is the powerful result
for the indefinite extension of the solution x(t) to (3.10). This will be discussed in the following
subsection.

3.4.2 Human Assist Control using Strict Zeroing Control Barrier Function
In the preceding subsection, the author provided the strict conditions for a ZCBF. Using an S-ZCBF,
the author proposes a human assist control law for the nonautonomous system (3.10) in this subsec-
tion.
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Theorem 3.3 Consider the system (3.10), the safe set S defined by (3.11) and an S-ZCBF h : D → R
satisfying the conditions (A1) and (A2’). Then, for any continuous mapping uh : R → Rm, the
following human assist controller u = k(x, t) ensures the forward invariance of S.

u = k(x, t) =


− I(x, t, uh(t)) − J(x)

||Lgh(x, t)||2 (Lgh(x, t))T

if I(x, t, uh(t)) < J(x)
0 if I(x, t, uh(t)) ≥ J(x),

(3.23)

where functions I : D× R × Rm → R and J : D → R are defined by

I(x, t, uh) = L f h(x, t) + Lgh(x, t) · uh(t),
J(x) = −γh(x).

(3.24)

Proof Denote the closed-loop system (3.10) with the initial state x0 = x(0) ∈ S and the proposed
human assist controller (3.23) as follows:

ẋ = fcl(x, t, k(x, t), uh(t))
= f (x, t) + g(x, t) [k(x, t) + uh(t)] . (3.25)

The first step is to prove the continuity of the proposed controller (3.23) to ensure that there exists
a local solution x(t) to (3.25).

Note that L f h(x, t), Lgh(x, t) and uh(t) are all continuous mappings, and hence functions I(x, t, uh)
and J(x) are continuous. Moreover, u → 0 as I → J uniformly when Lgh(x, t) , 0. Hence (3.23)
is continuous when Lgh(x, t) , 0. Thus, we need to prove the continuity of (3.23) at Lgh(x, t) = 0.
According to the condition (A2’) for an S-ZCBF, for ∀t0 ≥ 0 such that Lgh(t0) = Lgh(x(t0), t0) = 0,
the following inequality holds:

ḣ = L f h(t0) > −γh(t0). (3.26)

This implies that there exists ε ∈ R>0 such that

ḣ = L f h(t0) − ε ≥ −γh(t0). (3.27)

Since Lgh(x, t) · uh(t) is a continuous mapping, there exists a neighborhood V ⊂ D × R of (x(t0), t0)
such that

||Lgh(x, t) · uh(t)|| ≤ ε, ∀(x, t) ∈ V. (3.28)

Thus, the following inequality holds for any (x, t) ∈ V:

L f h(x, t) + Lgh(x, t) · uh(t) ≥ −γh(x). (3.29)
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Accordingly, this implies that I(x, t, uh) ≥ J(x). Hence u = k(x, t) = 0 for any (x, t) ∈ V, and this
implies that there exists a neighborhood V of Lgh(x, t) = 0 such that u = k(x, t) = 0 for ∀(x, t) ∈ V.
Thus, u = k(x, t) is continuous for ∀(x, t) ∈ D × R. Therefore, for any continuous mapping uh(t), the
mapping fcl is continuous in (x, t) and hence there exists a local solution x(t) to (3.25).

The second step is to show that the proposed controller (3.23) ensures the forward invariance of
the safe set S.

The time-derivative of an S-ZCBF h is calculated as follows:

ḣ =
dh
dx

dx
dt

= L f h + Lgh · k(x, t) + Lgh · uh(t). (3.30)

Case 1: I ≥ J.
Since u = 0, the following inequality holds:

ḣ = I(x, t, uh) = L f h + Lgh · uh(t) ≥ −γh(x). (3.31)

Case 2: I < J.
Substituting (3.23) into (3.30) yields

ḣ = J(x) = −γh(x). (3.32)

Hence in both cases 1 and 2, the following inequality holds:

ḣ ≥ −γh(x). (3.33)

Since the right-hand side of (3.33) is globally Lipschitz continuous in h for ∀x ∈ S, there exists
a unique lower bounded function h(t) over [0, t1], where t1 ∈ R>0 can be arbitrarily extended by
Theorem 2.4. Here, the open safe set implies that h(x0) > 0. Thus, the following inequality holds
according to Gronwall’s lemma 2.1:

h(x(t)) ≥ h(t) = h(x0) exp (−γt)
≥ h(x0) exp (−γt1) > 0,∀t ∈ [0, t1], (3.34)

for any local solution x(t) starting from x0 ∈ S. Since h(x) is a proper function for ∀x ∈ S, the set
M := {x| h(x) ≥ h(x0) exp (−γt1)} ⊂ S is compact, and hence there exists a positive constant r ∈ R>0

such that {x| ∥x − x0∥ ≤ r} ⊃ M. Then consider the following rectangle R:

R : 0 ≤ t ≤ t1, ∥x − x0∥ ≤ r, (3.35)

where r is sufficiently large. Since the mapping fcl is continuous in (x, t) on the rectangle R, there
exists at least one solution x(t) to (3.25) defined on [0, t1] by Theorem 2.1, and t1 ∈ R>0 can be
extended indefinitely by (3.34); for any constant t1 ∈ R>0, there exists a solution x : [0, t1] → S for
any initial state x0 ∈ S. Therefore, the proposed controller (3.23) ensures the forward invariance of
S, i.e., x(t) ∈ S for ∀t ≥ 0. □
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Remark 3.3 The first part of the proof indicates the continuity of the proposed human assist con-
troller (3.23). In [74], the continuity of a controller is ensured only in the case that the relative degree
one condition, Lgha(x) , 0 for ∀x ∈ D, is satisfied. On the other hand, the proposed controller (3.23)
is continuous for ∀(x, t) ∈ D × R even in the case of Lgh(x, t) = 0, i.e., the continuity of the mapping
fcl in (x, t) is guaranteed regardless of the relative degree condition. Note that if the inequality in the
condition (A2’) (or (A2)) is not strict, the proposed controller might fail to be continuous at Lgh = 0.

The following example illustrates the case that a controller fails to be continuous when the inequality
(3.12) (or (3.14)) is not strict.

Example 3.3 Consider the following system:

ẋ1 =
Kx4

1 − x1

2Kx3
1 + 1

+ x2, (3.36)

ẋ2 = u + uh(t), (3.37)

where K ∈ R>0 is a positive constant. Assume that a safe set is given by

S = {x ∈ R2 | x1 < 0}. (3.38)

Here, define the following S-ZCBF candidate:

h(x) =
x1

Kx3
1 + x1x2

2 − 1
, (3.39)

so that it satisfies the condition (A1) regarding the properness of functions. In this case, choosing
γ = 1 yields ḣ = −γh(x) at x2 = 0, indicating that h(x) does not satisfy the strict condition (A2’) and
results in the discontinuity of u at Lgh = 0.

Figures 3.2, 3.3 illustrate computer simulation results for x0 = (−5,−2), uh = 3, K = 0.001, and
γ = 1. From Fig. 3.2, we can confirm that the proposed controller (3.23) satisfies the state constraint
x(t) ∈ S as x1(t) < 0 for ∀t ≥ 0. However, from Fig. 3.3, we can also confirm that the controller is
discontinuous at x2 = 0 due to the discussion above.
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Figure 3.2: Computer Simulation: State (Example 3.3).
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Figure 3.3: Computer Simulation: Input (Example 3.3).
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Remark 3.4 The second part of the proof indicates the forward invariance of S. Using the condition
(A1), the proposed human assist controller can ensure the forward completeness of solutions to the
closed-loop system (3.25). Note that S is not forward invariant if solutions have a finite escape time.

If a ZCBF candidate is not proper, i.e., the condition (A1) does not hold, solutions to (3.25) might not
be forward complete. That is, a safe set S is not forward invariant. The following example illustrates
the importance of the condition (A1).

Example 3.4 Reconsider the modified Example 3.1, i.e.,

ẋ = −x2 + u + uh(t), (3.40)

with the initial state x0 = x(0) = −1 and uh(t) ≡ 0. Assume that a safe set S is given by

S = {x ∈ R | x < 0}. (3.41)

Then, a ZCBF candidate ha(x) and an S-ZCBF h(x) candidate are constructed as follows:

ha(x) = −x, (3.42)

h(x) = − x
1 − Kx3 , (3.43)

where K ∈ R>0 is a positive constant. Note that these candidates are valid as both Lgha(x) , 0 and
Lgh(x) , 0 are always satisfied.

Figures 3.4, 3.5 illustrate computer simulation results for x0 = −1, uh = 0, K = 0.01, and γ = 1.
From Fig. 3.4, we can confirm that the proposed controller (3.23) with the S-ZCBF (3.43) extends the
solution and consequently ensures the forward invariance of S. On the other hand, from Fig. 3.5, the
controller with the ZCBF (3.42) does not work although the solution has a finite escape time T = 1.
Accordingly, the conventional ZCBF-based controller does not render S forward invariant.

34



0 1 2 3 4 5

Time [sec]

-100

-80

-60

-40

-20

0

S
ta

te

Figure 3.4: Computer Simulation: State (Example 3.4).

0 1 2 3 4 5

Time [sec]

0

500

1000

1500

2000

2500

3000

In
p

u
t

Figure 3.5: Computer Simulation: Input (Example 3.4).
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Remark 3.5 Importantly, Gronwall’s lemma is valid for safety assurance regardless of whether con-
trol systems are autonomous or nonautonomous, whereas Nagumo’s theorem is only applicable to
autonomous systems. The alternative approach to ensure the forward invariance of S can be seen
in [28,47], where comparison lemma is used. In [57], Gronwall’s lemma is applied under the assump-
tion that there exists γ ∈ R>0 such that (3.14) holds. Note that an S-ZCBF satisfying the conditions
(A1) and (A2) ensures the existence of such γ, which yields the global condition (A2’).

The author next proves that the human assist controller (3.23) is minimally invasive. The proof
of this property implies the optimality of (3.23) described in the second condition of Definition 3.2.
This property improves the operability of a human-operated system and increases passenger comfort
when considering, for instance, a human-operated automobile.

Lemma 3.2 Consider the system (3.10), the safe set S defined by (3.11) and an S-ZCBF h : D → R.
Then, the human assist controller (3.23) minimizes the Euclidian norm ∥u∥ for ∀(x, t) ∈ D×R≥0 such
that the following inequality holds:

I(x, t, uh) + Lgh(x, t)u ≥ J(x). (3.44)

Proof When I(x, t, uh) ≥ J(x), u = 0 by (3.23) and ∥u∥ = 0; this implies that (3.23) minimizes
the Euclidian norm. Therefore, we consider the case of I(x, t, uh) < J(x). Finding the controller that
minimizes the Euclidian norm ∥u∥ satisfying (3.44) is equivalent to solving the following optimization
problem:

Minimize ∥u∥2

s. t. L f h(x, t) + Lgh(x, t)u + Lgh(x, t)uh(t) ≥ −γh(x).
(3.45)

The KKT optimality conditions given by Proposition 2.2 for (3.45) imply there exists Lagrange mul-
tiplier λ ≥ 0 such that

2uT − λLgh(x, t) = 0,

λ
(
−I(x, t, uh) − Lgh(x, t)u + J(x)

)
= 0.

(3.46)

When λ = 0, u = 0 and this implies I(x, t, uh) ≥ J(x). Hence, we consider the case of λ , 0 and
I(x, t, uh) < J(x). Then, Lagrange multiplier λ is uniquely determined by (3.46) as follows:

λ = −2
I(x, t, uh) − J(x)
||Lgh(x, t)||2 . (3.47)

Note that the KKT optimality conditions for a nonlinear optimization problem are necessary but not
sufficient; however, it is sufficient because the optimization problem considered here is convex. Thus,
the unique Lagrange multiplier λ given by (3.47) minimizes the Euclidian norm ∥u∥.
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Therefore, the following controller u is the solution to the optimization problem (3.45):

u = − I(x, t, uh) − J(x)
||Lgh(x, t)||2 (Lgh(x, t)),T (3.48)

when I(x, t, uh) < J(x). This is equivalent to (3.23) in the case of I(x, t, uh) < J(x), and the above
discussion completes the proof. □

3.4.3 Mathematical Example: Non-Lipschitz Control System
In this section, we study a mathematical example, a system whose g(x, t) is continuous in (x, t) but
not Lipschitz continuous in x, to confirm the effectiveness of the proposed human assist controller.

Consider the following control system:

ẋ1 = x2,

ẋ2 = g2(x, t) (u + uh(t)) ,
(3.49)

where x = [x1, x2]T ∈ R2 denotes a state, u ∈ R a control input, and uh : R → R a human operator
input, respectively. Moreover, we assume that a mapping g2(x, t) is of the form:

g2(x, t) = 3 +
∞∑

n=0

an cos(bnπx1) + 0.5 sin t, (3.50)

where a ∈ (0, 1), b ∈ R>0 is a positive odd integer, and ab > 1 + 3π/2. The second term of (3.50) is
known as the Weierstrass function, which is continuous everywhere, but differentiable nowhere and
not Lipschitz continuous in x1 [68]. Note that the first term of (3.50) avoids g2(x, t) = 0. Note also
that substituting f (x) = [x2 0]T , g(x) = [0 g2(x, t)]T into (3.10) yields the system (3.49).

A safe set is given by S = (−∞, 0) × R ⊂ R2, whereas an unsafe set Sc = R2\S ⊂ R2. We assume
that the initial state x0 = x(0) is safe, i.e., x0 ∈ S.

Controller Design

Firstly, in a similar fashion to [50], we construct a relaxed CBF candidate B : S → R as follows:

B(x) = − 1
x1
+ L1x2

1 + L2x2
2, (3.51)

where L1, L2 ∈ R>0 are positive constants. Since a relaxed CBF is based on a reciprocal CBF, the
relationship between a reciprocal CBF and a ZCBF according to [7] yields the following S-ZCBF
candidate illustrated in Fig. 3.6 that satisfies the condition (A1):

h(x) =
1

B(x)
=

x1

L1x3
1 + L2x1x2

2 − 1
. (3.52)
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Figure 3.6: Mathematical Example: S-ZCBF (3.52) for L1 = 0.001 and L2 = 0.05.
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As can be seen in Fig. 3.6, the condition (A1) generates an S-ZCBF whose shape resembles a moun-
tain in the corresponding safe set.

The Lie derivative of h is calculated as follows:

L f h(x) = −
2L1x3

1 + 1(
L1x3

1 + L2x1x2
2 − 1

)2 x2,

Lgh(x, t) = −
2L2x2

1x2(
L1x3

1 + L2x1x2
2 − 1

)2 g2(x, t).
(3.53)

From (3.53), we can confirm that there exists x ∈ S such that Lgh = 0, where x2 = 0 in this case,
as previously mentioned in Remark 3.3. However, we can also see that L f h = 0 when Lgh = 0.
Therefore, the following strict inequality holds at x2 = 0 for any locally Lipschitz function α : R→ R:

ḣ = 0 > −α(h(x)), ∀x ∈ S, (3.54)

indicating that the S-ZCBF candidate (3.52) satisfies the condition (A2).
Consequently, we can design a human assist controller for the system (3.49) using (3.23).

Computer Simulation

Figures 3.7–3.9 illustrate computer simulation results for x0 = (−5,−1), uh(t) = 1 − 0.5 cos(πt/20),
L1 = 0.001, L2 = 0.05, γ = 0.3, the summation n from 0 to 100 in (3.50) with a = 0.5, b = 15. Figures
3.7–3.9 denote the time series of g2(x, t), the system’s state, and the input time series, respectively.

As shown in Fig. 3.8, the state x2 decreases as the state x1 approaches the unsafe set Sc. Conse-
quently, we can confirm that the system state x starting from the safe set S remains in S. From Fig.
3.9, the human assist controller u works properly to keep the system state in S, whereas uh(t) drives
the system into Sc. We can also confirm that the controller u is continuous at x2 = 0, which is the case
of Lgh = 0, because the constructed ZCBF (3.52) satisfies the strict inequality in the condition (A2’).
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Figure 3.7: Computer Simulation: Function g2(x, t) (Mathematical Example).
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Figure 3.8: Computer Simulation: State (Mathematical Example).
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Figure 3.9: Computer Simulation: Input (Mathematical Example).

3.5 Input-constrained Safety Assist Control
In real applications, control systems generally have input constraints. For example, human-operated
automobiles cannot instantly stop due to a stopping distance, which consists of a thinking distance
and a braking distance. A thinking distance is unique to human-operated automobiles, and it might be
shortened or ideally eliminated by constructing a human assist controller. However, it is impossible
to eliminate a braking distance because maximum deceleration values are bounded. In this case, the
maximum deceleration indicates the existence of input constraints.

While the S-ZCBF-based safety assist controller proposed in Section 3.4 ensures the safety of
human-operated systems, it cannot consider input-constrained systems. The following example mo-
tivates the problem.

Example 3.5 Consider the following double-integrator automobile system with an input constraint
u + uh ∈ [−a, a], a > 0:

ẋ1 = x2,

ẋ2 = u + uh(t),
(3.55)

where x1 ∈ R denotes a position, x2 ∈ R a velocity, respectively. Let the safe set S be

S = {x ∈ R2 | x1 < 0}. (3.56)
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In this example, another approach is taken to design an S-ZCBF; that is, the following S-ZCBF is
designed by multiplying a proper function p : R2 → R>0:

h(x) = −x1 p(x) = − x1

1 + K(x2
1 + x2

2)
, (3.57)

where K ∈ R>0 is a positive constant. Then, the Lie derivative of h is calculated as follows:

L f h(x) = −
1 − K(x2

1 − x2
2)(

1 + K
(
x2

1 + x2
2

))2 x2, Lgh(x) =
2Kx1x2(

1 + K
(
x2

1 + x2
2

))2 . (3.58)

Accordingly, we can design a human assist controller for the system (3.55) using (3.23). Note that we
choose a locally Lipschitz function α : R→ R as follows:

J(x) = −α(h(x)) = −γ1h(x) − γ2h2(x), (3.59)

where γ1, γ2 ∈ R>0 are positive constants.
Figures 3.10, 3.11 illustrate the results of computer simulation for x0 = (−10, 10), uh(t) = 1.5 −

0.5 cos(πt/5), K = 0.001, γ1 = γ2 = 1.0, a = 10. Figure 3.10 denotes the state of the system (3.55),
and Fig. 3.11 the control input, respectively. From Fig. 3.10, we can confirm that the state constraint
x(t) ∈ S is satisfied as x1(t) < 0 for ∀t ≥ 0. However, from Fig. 3.11, we can also confirm the violation
of the input constraint u + uh(t) ∈ [−a, a]. This seems to be caused by the neglect of input constraints
when designing an S-ZCBF.
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Figure 3.10: Computer Simulation: State (Motivation).
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Figure 3.11: Computer Simulation: Input (Motivation).

As almost all real control systems have input constraints, a safety assist controller needs to satisfy
not only state constraints but also input constraints.

3.5.1 Problem Setup
In this section, consider the following nonlinear control system with a constrained human operator
input uh : R→Us:

ẋ = f (x) + g(x)[u + uh(t)], (3.60)

where x ∈ Rn denotes a state, u ∈ Rm a control input, and Us ⊂ Rm a bounded input constraint on
uh(t). Assume that the total control input u + uh has the same bounded input constraint as uh(t), i.e.,
u+uh ∈ Us. Accordingly, assume that there exists an input constraint u ∈ U := {u ∈ Rm | u+uh ∈ Us}
whereU is a convex bounded subset of Rm. Assume also that a mapping uh : R → Us is continuous
in t, and mappings f : Rn → Rn, g : Rn → Rn×m are continuous in x.

As in Section 3.3, a state spaceRn is divided into a safe setS and an unsafe setSc, i.e., S∪Sc = Rn.
To design a safety assist controller that satisfies both state and input constraints, we employ the

notion of a viability kernel advocated in viability theory [10]. The motivation for its employment
comes from the definition of forward invariance. Specifically, when we say that the safe set S is
forward invariant, “all” the initial states contained in S must satisfy x(t) ∈ S for ∀t ≥ 0. However,
it is impossible to guarantee the forward invariance of S for some x0 ∈ S when considering input
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Figure 3.12: Viability Kernel.

constraints, i.e., only a subset of a safe set might be forward invariant within input constraints. There-
fore, forward invariance of a safe set is not always a correct statement on input-constrained systems.
Motivated by this, we consider a viability kernel for a safe set [10]. Originally, the subset of a safe set
is a viability kernel if at least one solution starting from there remains in the safe set (Fig. 3.12). For
systems with control inputs, a viability kernel is defined as follows [19].

Definition 3.4 (Viability Kernel [10, 19]) The viability kernel is a subset of a safe set, i.e., VS :=
Viab(S) ⊆ S, defined as follows:

VS = {x ∈ S | ∃u ∈ U such that x(t) ∈ S, ∀t ≥ 0}. (3.61)

In other words, as long as the initial state satisfies x0 ∈ VS, there exists a controller u ∈ U that ensures
both the state constraint x(t) ∈ S and the input constraint u + uh(t) ∈ Us for ∀t ≥ 0. Accordingly,
to satisfy both state and input constraints, a human assist controller at least renders a viability kernel
forward invariant. Importantly, the viability kernelVS is a subset of its safe set, the forward invariance
ofVS implies that x(t) ∈ S for ∀t ≥ 0.

Problem 3.2 The second objective of this chapter is to design a human assist controller u = k(x, t) for
the input-constrained system (3.60) satisfying the conditions (P2), (P3) and the following condition:

(P1’) For any human operator input uh : R → Rm, the controller u = k(x, t) renders the viability
kernel VS forward invariant, i.e., if the initial state x0 := x(0) satisfies x0 ∈ VS, then x(t) ∈
VS ⊂ S for ∀t ≥ 0.
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3.5.2 Zeroing Control Barrier Function for Viability Kernel
In Section 3.4 (or the literature [7]), ZCBF candidates are defined as positive (or non-negative) func-
tions in a safe set as defined in (3.11). Outside the viability kernel Vc

S = R
n\VS, however, any

controllers within the input constraints cannot render the safe set S forward invariant. That is, there
is no valid ZCBF enforcing itself if x0 ∈ Vc

S because the corresponding solution to the closed-loop
system of (3.60) starting from x0 ∈ Vc

S has to leave S for ∀u ∈ U. Therefore, a CBF should be
defined for a viability kernel, not for the safe set itself.

Definition 3.5 Consider the system (3.60), and a viability kernel VS for the safe set S. Then, a C1

continuously differentiable function h : Rn → R is a (zeroing) control barrier function (for a viability
kernel) if the following conditions hold.

(B1) The viability kernelVS for the safe set S is defined as the strict 0-superlevel set of h(x):

VS = {x ∈ Rn | h(x) > 0}, (3.62)
∂VS = {x ∈ Rn | h(x) = 0}, (3.63)
Vc
S = {x ∈ Rn | h(x) ≤ 0}. (3.64)

(B2) h(x) is proper for ∀x ∈ VS; for any positive constant L ∈ R>0, the superlevel set {x|h(x) ≥ L} is
compact.

(B3) For any continuous mapping uh : R → Us, there exists a locally Lipschitz continuous function
α ∈ Ke such that the following inequality holds:

sup
u∈U

ḣ (x, u, uh(t)) > −α(h(x)), ∀x ∈ VS. (3.65)

The following result ensures the forward invariance of the viability kernel defined by (3.62).

Theorem 3.4 Consider the system (3.60), the viability kernel VS defined by (3.62) and a ZCBF
h : Rn → R. Then, any continuous controller u = k(x, t) such that ḣ ≥ −α (h(x)) renders the viability
kernelVS forward invariant and accordingly ensures x(t) ∈ S for ∀t ≥ 0.

Proof Note that the continuity of u = k(x, t) implies that there exists a local solution to (3.60). Note
also that x0 ∈ VS implies h(x0) > 0. Then, the time-derivative of a CBF satisfies ḣ ≥ −α (h(x)) by the
assumption. The extension of Lemma 3.1 implies that there exists a positive constant η ∈ R>0 such
that

ηh(x) ≥ α (h(x)) , ∀x ∈ VS, (3.66)

and hence

ḣ ≥ −α (h(x)) ≥ −ηh(x), ∀x ∈ VS. (3.67)
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Thus, the following inequality holds according to Gronwall’s lemma 2.1:

h(t) ≥ h(x0) exp (−ηt) > 0, ∀t ∈ [0, t1], (3.68)

where t1 ∈ R>0 can be arbitrarily extended by Theorem 2.4. Since h(x) is a proper function for
∀x ∈ VS, the level set {x|h(x) ≥ h(x0) exp (−ηt1)} ⊂ VS is compact; therefore, any continuous
controller u = k(x, t) such that ḣ ≥ −α (h(x)) renders the viability kernel VS forward invariant, and
the inclusionVS ⊆ S implies that x(t) ∈ S for ∀t ≥ 0. □

To find a minimally invasive controller, we seem to re-solve the optimization problem considering
input constraints. However, if we restrict the scope of control systems, the S-ZCBF-based controller
can be directly applied to an input-constrained human assist control problem.

Lemma 3.3 Consider the following single-input system (m = 1) with the norm input constraint:

ẋ = f (x) + g(x)[u + uh(t)], (3.69)
u ∈ U = {u ∈ R | |u + uh(t)| ≤ a, a > 0}, (3.70)

and a CBF h : Rn → R for the viability kernel VS defined by (3.62). Then, for any continuous
mapping uh : R → Int(Us) = {uh ∈ R | |uh| < a, a > 0}, the following human assist controller
u = k(x, t) rendersVS forward invariant while always satisfying the input constraint (3.70):

k(x, t) =


− 1

Lgh(x)
(I(x, uh(t)) + α (h(x)))

if I(x, uh(t)) < −α (h(x))
0 if I(x, uh(t)) ≥ −α (h(x)) ,

(3.71)

where α : R → R is a locally Lipschitz continuous extended class K function and a function I :
Rn × R→ R is defined by

I(x, uh(t)) = L f h(x) + Lgh(x)uh(t). (3.72)

Proof The proposed controller (3.71) ensures the forward invariance ofVS by Theorem 3.4 because
applying (3.71) to the time-derivative of a CBF h yields ḣ ≥ −α (h(x)) in both cases I(x, uh(t)) <
−α (h(x)) and I(x, uh(t)) ≥ −α (h(x)).

When I(x, uh(t)) ≥ −α (h(x)), i.e., k(x, t) = 0, the input constraint (3.70) is evidently satisfied due
to the assumption uh ∈ (−a, a). Hence, we consider the case of I(x, uh(t)) < −α (h(x)). If Lgh ≥ 0, the
control input uM = −uh(t) + a maximizes ḣ and satisfies

max
u∈U

ḣ (x, u, uh) = L f h + Lgh a > −α (h(x)) , (3.73)

by the condition (B3) for a CBF. Hence, the following inequality holds:

− 1
Lgh

(
L f h + α (h(x))

)
< a. (3.74)
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When I(x, uh(t)) < −α (h(x)), (3.71) is rewritten as follows:

k(x, t) + uh(t) = − 1
Lgh

(
L f h + α (h(x))

)
. (3.75)

Accordingly, k(x, t) + uh(t) < a is satisfied. If Lgh < 0, the control input um = −uh(t) − a maximizes ḣ
and k(x, t)+uh(t) > −a is satisfied in a similar fashion to the case of Lgh ≥ 0. Therefore, the proposed
controller (3.71) satisfies the input constraint (3.70). □

Here, the proposed controller (3.71) is a single-input form of the S-ZCBF-based controller (3.23)
in Theorem 3.3. Moreover, Lemma 3.3 implies that the controller (3.71) does not render the input
constraint (3.70) active. Therefore, by the continuity of the controller (3.23), the following theorem
is immediately obtained.

Theorem 3.5 Consider the single-input system (3.69), the input constraint (3.70) and a CBF h :
Rn → R for the viability kernel VS defined by (3.62). Then, for any continuous mapping uh : R →
(−a, a), the human assist controller u = k(x, t) defined by (3.71) is continuous in (x, t) ∈ Rn × R.

3.5.3 Example: Double-Integrator System
In this subsection, we reconsider Example 3.5 to confirm the effectiveness of the proposed controller
(3.71). Consider again the following double-integrator automobile system with an input constraint
u + uh ∈ [−a, a], a > 0:

ẋ1 = x2,

ẋ2 = u + uh(t),
(3.76)

where x1 ∈ R denotes a position, x2 ∈ R a velocity, respectively. Let the safe set S be

S = {x ∈ R2 | x1 < 0}. (3.77)

Derivation of Viability Kernel

Note that we handle the case of x2 ≥ 0 and u + uh(t) ≥ −a, because the system moves away from
the unsafe set Sc in the case of x2 < 0. Using the maximum deceleration value a > 0, the minimum
braking distance dmin is calculated as follows:

dmin = x2τ −
1
2

aτ2

= x2
x2

a
− 1

2
a
( x2

a

)2
=

x2
2

2a
, (3.78)
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where τ ∈ R≥0 is the time taken to stop with −a < 0. Hence we derive the viability kernel of the safe
set S = (−∞, 0) × R ⊂ R2 as follows:

VS =
{

x ∈ R2

∣∣∣∣∣∣ − x1 −
x2

2

2a
> 0

}
. (3.79)

If x0 ∈ VS, there exists a controller u ∈ U that renders x(t) ∈ S for ∀t ≥ 0.

Remark 3.6 Considering the case of x2 < 0, the viability kernel VS can be formally derived as
follows:

VS =
{

x ∈ R2

∣∣∣∣∣∣ − x1 −
x2

2 + |x2|x2

4amax
> 0

}
. (3.80)

As mentioned above, in the case of x2 < 0, the system (3.76) does not approach Sc. This implies that
VS = S = {x ∈ R2 | x1 < 0} as confirmed by (3.80).

Controller Design

Modifying the viability kernel (3.80) yields the following ZCBF h : R2 → R illustrated in Fig. 3.13:

h(x) = −
(
x1 +

x2
2 + |x2|x2

4a

)
p(x)

= −
(
x1 +

x2
2 + |x2|x2

4a

)
1

1 + K(x2
1 + x2

2)
, (3.81)

where K ∈ R>0 is a positive constant. Note that the function p : R2 → R>0 is required to satisfy the
condition (B2) maintaining the conditions for a CBF w.r.t. the viability kernel (3.80). Then, the Lie
derivative of h for x2 ≥ 0 is calculated as follows:

L f h(x) = −
a − K(ax2

1 − ax2
2 + x1x2

2)

a
(
1 + K(x2

1 + x2
2)
)2 x2,

Lgh(x) = − 1 + K(x1 − 2a)x1

a
(
1 + K(x2

1 + x2
2)
)2 x2. (3.82)

Note that the ZCBF (3.81) is differentiable at x2 = 0. Consequently, we can obtain a human assist
controller for the system (3.76) by (3.71). Note that we design the function α as follows: for non-
negative constants η1, η2 ∈ R≥0,

α (h(x)) = η1h(x) + η2h2(x). (3.83)
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Figure 3.13: Control Example: ZCBF (3.81) for K = 0.001.
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Computer Simulation: Time-varying Human Operator Input

Figures 3.14, 3.15 illustrate computer simulation results for x0 = (−10, 10), a = 10, uh(t) = 1.5 −
0.5 cos(πt/5), K = 0.001, η1 = η2 = 1. Figure 3.14 denotes the system state, and Fig. 3.15 the control
input, respectively. Note that the simulation condition is the same as in Example 3.5.

As seen in Fig. 3.14, the system (3.76) smoothly decelerates and stays in the safe set S. In
addition, Fig. 3.15 shows that the proposed controller does not violate the input constraint u+uh ≥ −a;
this is because the initial state x0 = (−10, 10) is contained in the viability kernel (3.80).
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Figure 3.14: Computer Simulation: State (Time-varying Human Operator Input).

Computer Simulation: Parametric Properties

To confirm the parametric properties of the controller (3.71), the parameter η1 ∈ R≥0 is chosen for
some cases. Figures 3.16–3.18 illustrate the results of computer simulation for x0 = (−10, 10), a = 10,
uh = 0, K = 0.001, η2 = 1 and η1 = 0.1, 10, 1000. Figure 3.16 denotes the position x1, Fig. 3.17 the
velocity x2, and Fig. 3.18 the control input, respectively.

Figure 3.16 shows that the controller (3.71) keeps the system state in S for each η1 ∈ R≥0. Fur-
thermore, Fig. 3.18 shows that the controller (3.71) satisfies the input constraint u + uh ≥ −a for each
η1 ∈ R≥0 and the larger η1 yields the steep property of the controller within the input constraint.
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Figure 3.15: Computer Simulation: Input (Time-varying Human Operator Input).
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Figure 3.16: Computer Simulation: Position (Parametric Properties).
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Figure 3.17: Computer Simulation: Velocity (Parametric Properties).
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Figure 3.18: Computer Simulation: Input (Parametric Properties).
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Computer Simulation: Boundary of Viability Kernel

As confirmed previously, the system (3.76) stays in S by the controller (3.71) while satisfying the
input constraint u + uh ≥ −a if x0 ∈ VS. In the case of x2(0) = 10, according to the viability kernel
(3.80) and the CBF (3.81), the boundary ofVS is determined as x = (−5, 10) ∈ ∂VS. To confirm the
controller property on the boundary ∂VS, we show the following results of computer simulation for
x2(0) = 10.

Figures 3.19–3.21 illustrate computer simulation results for x1(0) = −9, −7, −5, x2(0) = 10,
a = 10, uh = 0, K = 0.000001, η1 = η2 = 1. Figure 3.19 denotes the position x1, Fig. 3.20 the
velocity x2, and Fig. 3.21 the control input, respectively.

Figure 3.19 shows that the controller (3.71) starts to work at an earlier time as x1(0) approaches
the boundary ∂VS. Since the safe set S and the corresponding viability kernel VS are open, in the
case of x0 = (−5, 10) ∈ ∂VS, the system reaches the boundary ∂S, which implies violation of state
constraints; however, the input constraint is satisfied as seen in Fig. 3.21.
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Figure 3.19: Computer Simulation: Position (Boundary of Viability Kernel).
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Figure 3.20: Computer Simulation: Velocity (Boundary of Viability Kernel).
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Figure 3.21: Computer Simulation: Input (Boundary of Viability Kernel).
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Chapter 4

Safety Assist Control via Time-varying
Zeroing Control Barrier Function

In this chapter, the author deals with a time-dependent state constraint problem such as collision
avoidance of moving obstacles, and proposes a safety assist controller for a nonautonomous control
system. The safety assurance mentioned here will be achieved by rendering a graph space forward
invariance. The motivation for the employment of a graph space comes from the notion of forward
invariance. Concretely, the notion is only applicable to time-invariant sets; therefore, it cannot be
directly used for time-dependent sets. Considering this problem, the author will focus on a subset of
product space (x, t) ∈ Rn × R and apply the notion of forward invariance for time-dependent sets by
regarding its subset, a graph space, as time-invariant.

This chapter starts with a generalized nonautonomous control-affine system, which was consid-
ered in the first part of Chapter 3. In Section 4.1, the author first introduces the notion of a graph
space and then provides a definition of Time-varying ZCBF (Tv-ZCBF) for nonautonomous systems
by extending an S-ZCBF. Second, the author proposes a safety assist controller that renders a graph
space forward invariant, which indicates the satisfaction of time-dependent safety constraints. The
author also shows that the proposed controller is continuous and optimal as in the case of a time-
invariant state constraint problem. The effectiveness of the proposed controller will be confirmed by
considering a mathematical example.

The method proposed in the first part of this chapter assumes that a human assist controller con-
tains complete information on the motion of environments. However, generally speaking, the velocity
vector of moving obstacles is unknown to control systems and needs to be estimated. In real applica-
tions, the existence of noise or disturbance makes it difficult to obtain the true value of the obstacle
velocity. This problem specific to time-dependent safety constraints motivates the goal of the second
part of this chapter. In Section 4.2, the author proposes a safety assist controller for control sys-
tems under input disturbances with the new type of ZCBFs, Input-to-State Constrained Safety ZCBF
(ISCSf-ZCBF). The proposed safety assist controller can ensure the safety of input-disturbed systems
for arbitrary unknown input disturbances while satisfying continuity and optimality.

In the last part of this chapter, Section 4.3, we return to the time-dependent state constraint prob-
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lem under the assumption that the obstacle velocity is unknown. The author proposes an ISCSf-
ZCBF-based safety assist controller that renders a graph space forward invariant by considering
the estimation error of the obstacle velocity as input disturbances. That is, the proposed controller
meets time-dependent safety constraints without knowledge of the motion of environments. The ef-
fectiveness of the proposed controller will be confirmed by conducting experiments on an electric
wheelchair.

4.1 Time-dependent State Constraint Problem
In this chapter, we firstly consider the following time-varying nonlinear control-affine system with a
human operator input uh(t):

ẋ = f (x, t) + g(x, t)[u + uh(t)], (4.1)

where x ∈ Rn denotes a state, u ∈ Rm a control input. Assume that a mapping uh : R → Rm is
continuous in t, and mappings f : Rn ×R→ Rn, g : Rn ×R→ Rn×m are continuous in (x, t). Note that
the uniqueness of a solution x : [0, t1]→ Rn to (4.1) with the initial state x0 := x(0) is not guaranteed
as the Lipschitz continuity in x to the mappings f (x, t) and g(x, t) is not required.

In this chapter, the author aims to design a human assist controller that satisfies x ∈ S(t) for
∀t ≥ 0. To this end, first divide a state space Rn into time-dependent subsets: a safe set S(t) ⊂ Rn and
an unsafe set Sc(t) = Rn\S(t) ⊂ Rn. We assume that the safe set S(t) is open and defined as the strict
0-superlevel set of a C1 continuously differentiable function h : Rn × R→ R:

S(t) = {x ∈ Rn | h(x, t) > 0},
∂S(t) = {x ∈ Rn | h(x, t) = 0}. (4.2)

The method proposed in Section 3.4 cannot ensure the safety of nonautonomous systems when
a safe set S ⊂ Rn is time-dependent, i.e., when x ∈ S(t) denotes the state constraint. Moreover, the
notion of forward invariance cannot be directly used for time-dependent sets. Therefore, consider the
following time-invariant graph space G ⊂ Rn+1 illustrated in Fig. 4.1:

G = {(x, t) ∈ Rn+1 | x(t) ∈ S(t)}, (4.3)

which is a fixed subset of the product space Rn+1 [11, 34]. It is worth stressing that (x, t) ∈ G if
x(t) ∈ S(t). This implies that the forward invariance of G corresponds to x(t) ∈ S(t) for ∀t ≥ 0.
Assume that for any (x(t0), t0) ∈ G, there exists an open neighborhoodV ⊂ G of (x(t0), t0) to prevent
∃te ∈ R>0 such that S(te) = ∅.

Problem 4.1 The first objective of this chapter is to design a human assist controller u = k(x, t) for
the nonautonomous system (4.1) satisfying the conditions (P2), (P3) given in Definition 3.2 and the
following condition:
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Figure 4.1: Graph Space.

(P1”) For any human operator input uh : R → Rm, the controller u = k(x, t) renders the graph space
G forward invariant,

(x(0), 0) ∈ G
⇒ {(x(t), t) ∈ Rn+1 | ∀t ≥ 0} ⊂ G, (4.4)

indicating that x(t) ∈ S(t) for ∀t ≥ 0.

4.1.1 Time-varying Safe Set
When considering a time-dependent state constraint problem, we need to derive the conditions ensur-
ing S(t) , ∅ for ∀t ≥ 0. To this end, the literature [47] introduced a candidate Tv-ZCBF, which is a
conservative assumption as a solution x(t) ∈ S(t) needs to exist.

In this chapter, as mentioned in the preceding section, we set the assumption regarding a graph
space G, i.e., for any (x(t0), t0) ∈ G, there exists an open neighborhood V ⊂ G of (x(t0), t0). This
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assumption evidently ensures S(t) , ∅ for ∀t ≥ 0. Importantly, this assumption also avoids ∃tu ∈
R>0 such that S(tu) = {x(tu)} where {x(tu)} ⊂ Rn is a singleton, i.e., we cannot choose the open
neighborhood of (x(tu), tu) ∈ G because a singleton is a closed set. In other words, Case A illustrated
in Fig. 4.1 will never happen under the assumption because states of the system are always on a safe
set boundary when a safe set is a singleton, which implies that the safety constraint is not satisfied.
Accordingly, the assumption is useful to ensure that S(t) is open for ∀t ≥ 0.

Remark 4.1 The assumptions include the case that there exists ts ∈ R>0 such that the separation of
a safe set occurs. For example, Case B illustrated in Fig. 4.1 satisfies that for any (x(ts), ts) ∈ G,
∃V ∈ G of (x(ts), ts), and that the safe set S(t) is open because {x(ts)} 1 S(ts) is a singleton. However,
in this case, the time-varying function h : Rn × R→ R for the safe set S(t) defined by (4.2) might fail
to be differentiable at ts. Therefore, we remove the separation cases in this dissertation.

Remark 4.2 The time-varying safe set S(t) can be regarded as a set-valued map S : t⇝ Rn and the
continuity of S seems to prevent S(t) , ∅ for ∀t ≥ 0. However, the continuity of a set-valued map, in
particular the lower semicontinuity, is generally defined on the following domain [11]:

Dom(S) := {t ∈ R | S(t) , ∅}. (4.5)

Accordingly, the following set-valued map S : t⇝ R is continuous in t:

S(t) =
{

(0, 1) if t ∈ [0, te]
∅ if t ∈ (te,∞). (4.6)

Therefore, the continuity of a set-valued map is insufficient for ensuring S(t) , ∅ for ∀t ≥ 0.

4.1.2 Time-varying Zeroing Control Barrier Function
In this subsection, the author defines a Tv-ZCBF for the nonautonomous system (4.1).

Definition 4.1 Consider the system (4.1) and the graph space G for the safe set S(t) defined by (4.2).
Then, a C1 continuously differentiable function h : Rn × R → R is a time-varying zeroing control
barrier function (Tv-ZCBF) if the following conditions hold.

(C1) For any fixed t0 ∈ R, h(x, t0) is a proper function w.r.t. ∀x ∈ S(t0); the superlevel set {x|h(x, t0) ≥
L} is compact for any positive constant L ∈ R>0.

(C2) There exists a locally Lipschitz continuous function α ∈ Ke such that the following inequality
holds:

sup
u∈Rm
ḣ(x, t, u, uh(t)) > −α (h(x, t)) , (4.7)

where

ḣ = L f h(x, t) + Lgh(x, t) · (u + uh(t)) +
∂h

∂t
(x, t).
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Using the condition (C1) for a Tv-ZCBF, we can ensure the compactness of a graph space by the
following lemma.

Lemma 4.1 Consider the system (4.1) and the graph space G for the safe set S(t) defined by (4.2).
Let t1 ∈ R>0, L ∈ R>0 be positive constants. If a C1 continuously differentiable function h : Rn×R→ R
is a Tv-ZCBF, the following graph β1(L, t1) is compact for any t1 and satisfies β1(L, t1) ⊂ G.

β1(L, t1) = {(x, t) ∈ Rn+1 | h(x, t) ≥ L, t ∈ [0, t1]}. (4.8)

Proof Consider the following set-valued map β : t⇝ Rn:

β(t) = {x ∈ Rn | h(x, t) ≥ L}. (4.9)

Note that β(t) is upper semicontinuous since h(x, t) is a C1 continuously differentiable function. Here,
the graph β1(L, t1) defined by (4.8) can be rewritten as follows:

β1 = {(x, t) ∈ Rn+1 | x ∈ β(t), t ∈ [0, t1]}. (4.10)

Accordingly, for any fixed t1 ∈ R≥0, the graph β1(L, t1) is closed as β(t) with the closed domain [0, t1]
is upper semicontinuous by Proposition 2.1.

Due to the compactness of a Tv-ZCBF given by the condition (C1), there exists M(t0) ∈ R>0 such
that

M(t0) ≥ ∥x(t0)∥, ∀x ∈ β(t0), (4.11)

for any fixed t0 ∈ R>0. Hence there exists a positive constant M ∈ R>0 such that the following
inequality holds:

M ≥ M(t0) ≥ ∥x(t0)∥, ∀x ∈ β(t0), (4.12)

for any t ∈ [0, t1]. Therefore, the graph β1(L, t1) is bounded because the following inequality holds for
any t ∈ [0, t1]:

∥(x, t)∥ ≤
√

M2 + t2
1. (4.13)

Thus, the graph β1(L, t1) is compact. Moreover, since L ∈ R>0 is a positive constant, x ∈ β(t) ⊂ S(t)
and hence (x, t) ∈ β1(L, t1) ⊂ G for any t ∈ [0, t1]; the above discussion completes the proof. □

Then, the following result will be useful to ensure the forward completeness of a solution x(t) to
(4.1).

Theorem 4.1 Consider the system (4.1) and the graph space G for the safe set S(t) defined by (4.2).
Assume that (x, t) ∈ H := {(x, t)|x ∈ S(t), t ∈ [0, t1]} for any positive constant t1 ∈ R>0. If a C1

continuously differentiable function h : Rn × R → R is a Tv-ZCBF, there exists a positive constant
η ∈ R>0 such that the following inequality holds:

ηh(x, t) ≥ α (h(x, t)) , ∀(x, t) ∈ H . (4.14)
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Proof Note that (x, t) ∈ H ⊂ G implies that h(x, t) > 0 for ∀t ∈ [0, t1]. Since a function α ∈ Ke is
locally Lipschitz continuous, it can be rewritten as follows:

α (h(x, t)) = η1h(x, t) + δ (h(x, t)) , (4.15)

where η1 ∈ R>0 is a positive constant and δ : R → R is a higher-order term of h(x, t). Accordingly,
there exists a positive constant L ∈ R>0 such that

1
2
η1h(x, t) ≥ δ (h(x, t)) , (4.16)

for ∀(x, t) ∈ β0 := {(x, t)|0 < h(x, t) < L, t ∈ [0, t1]} ⊂ H . Therefore, there exists a positive constant
η ∈ R>0 such that the following inequality holds:

ηh(x, t) ≥ α (h(x, t)) , ∀(x, t) ∈ β0. (4.17)

Next, consider the case that (x, t) ∈ β1 = {(x, t)|h(x, t) ≥ L, t ∈ [0, t1]} ⊂ H . According to Lemma
4.1, the graph β1 is compact. Therefore, there exists a positive constant η ∈ R>0 such that the following
inequality holds:

η ≥ α (h(x, t))
h(x, t)

, ∀(x, t) ∈ β1, (4.18)

due to the extreme value theorem [53]. Thus, the inequality (4.14) holds by (4.17) and (4.18) as
β0 ∪ β1 = H . □

4.1.3 Safety Assist Control via Time-varying Zeroing Control Barrier Func-
tion

The author proposes a human assist controller that ensures the safety of the nonautonomous system
(4.1) using a Tv-ZCBF, which is the main result of this section.

Theorem 4.2 Consider the system (4.1), the graph space G for the safe set S(t) defined by (4.2), a
Tv-ZCBF h : Rn × R→ R and the following control input:

u = k(x, t) =


− I(x, t, uh(t)) + α (h(x, t))

||Lgh(x, t)||2 (Lgh(x, t))T

if I(x, t, uh(t)) < −α (h(x, t))
0 if I(x, t, uh(t)) ≥ −α (h(x, t)) ,

(4.19)

where a function α ∈ Ke is locally Lipschitz continuous and a function I : Rn×R×Rm → R is defined
by

I(x, t, uh(t)) = L f h(x, t) + Lgh(x, t) · uh(t) +
∂h

∂t
. (4.20)

Then, the control input defined by (4.19) is a human assist controller that ensures the forward invari-
ance of G, i.e., x(t) ∈ S(t) for ∀t ≥ 0.
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Proof Consider the following closed-loop system:

ẋ = fcl(x, t, k(x, t), uh(t))
= f (x, t) + g(x, t) [k(x, t) + uh(t)] , (4.21)

which is the system (4.1) with the proposed human assist controller (4.19).
Firstly, we will prove the continuity of the proposed controller (4.19) to ensure the existence

of a local solution x(t) to (4.21). Note that L f h(x, t), Lgh(x, t) are continuous in (x, t), and uh(t) is
continuous in t; hence the function I(x, t, uh(t)) is also continuous in (x, t). Moreover, uniformly
k(x, t) → 0 as I(x, t, uh(t)) → −α (h(x, t)) when Lgh(x, t) , 0. Theorefore, (4.19) is continous in (x, t)
when Lgh(x, t) , 0. Thus, we need to prove the continuity of (4.19) at (x, t) where Lgh(x, t) = 0. Since
h(x, t) is a Tv-ZCBF, the following inequality hold:

ḣ = L f h(t0) +
∂h

∂t
(t0) > −α (h(t0)) , (4.22)

for ∀t0 ≥ 0 such that Lgh(t0) = Lgh (x(t0), t0) = 0. This implies that there exists ε ∈ R>0 such that

ḣ = L f h(t0) +
∂h

∂t
(t0) − ε ≥ −α (h(t0)) . (4.23)

Since a mapping Lgh(x, t) · uh(t) is continuous, there exists a neighborhood U ⊂ Rn × R of (x(t0), t0)
such that

∥Lgh(x, t) · uh(t)∥ ≤ ε, ∀(x, t) ∈ U. (4.24)

Therefore, the following inequality holds for any (x, t) ∈ U:

L f h(x, t) + Lgh(x, t) · uh(t) +
∂h

∂t
(x, t) ≥ −α (h(x, t)) . (4.25)

This implies that I(x, t, uh(t)) ≥ −α (h(x, t)), and accordingly k(x, t) = 0 for any (x, t) ∈ U. Therefore,
in the neighborhood of Lgh(x, t) = 0, k(x, t) = 0 is always satisfied; (4.19) is continuous for ∀(x, t) ∈
Rn × R. Thus, there exists a local solution x(t) to (4.21) as the mapping fcl is continuous in (x, t) ∈
Rn × R.

Secondly, we will prove that the proposed controller (4.19) ensures the forward invariance of
the graph space G. Note that x0 ∈ S(0) implies h(x0, 0) > 0, and S (t) , ∅ for ∀t ≥ 0 due to the
assumptions on G. By applying (4.19) to the time-derivative of a Tv-ZCBF h, i.e.,

ḣ = L f h + Lgh · k(x, t) + Lgh · uh(t) +
∂h

∂t
, (4.26)

the following inequality holds:

ḣ ≥ −α (h(x, t)) , (4.27)
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in both I(x, t, uh(t)) < −α (h(x, t)) and I(x, t, uh(t)) ≥ −α (h(x, t)). According to Theorem 4.1, there
exists a positive constant η ∈ R>0 such that the following inequality holds:

ḣ ≥ −α (h(x, t)) ≥ −ηh(x, t), (4.28)

for ∀(x, t) ∈ H = {(x, t)|x ∈ S(t), t ∈ [0, t1]} ⊂ G. Since the right-hand side of (4.28) is globally
Lipschitz continuous in h, there exists the unique lower bounded function h(t) over [0, t1] where
t1 ∈ R>0 can be arbitrarily extended by Theorem 2.4 Moreover, the following inequality holds by
Gronwall’s lemma 2.2:

h(x(t), t) ≥ h(t) = h(x0, 0) exp (−γt)
≥ h(x0, 0) exp (−γt1) := L > 0, (4.29)

for ∀t ∈ [0, t1] due to the existence of a local solution x(t) to (4.21). Therefore, (x(t), t) ∈ β1(L, t1) ⊂ G
for ∀t ∈ [0, t1], according to Lemma 4.1. Thus, x(t) ∈ S(t) is ensured over [0, t1]. Since t1 can be
arbitrarily chosen, the proposed controller (4.19) ensures the forward invariance of G, i.e., x(t) ∈ S(t)
for ∀t ≥ 0. □

Remark 4.3 The proposed human assist controller (4.19) is continuous in (x, t) regardless of the
relative degree condition. Note that its continuity is guaranteed by requiring the inequality (4.7) in
the condition (C2) to be strict. Moreover, a solution to (4.21) having a finite escape time might exist
without the properness of a Tv-ZCBF.

The proposed human assist controller (4.19) is minimally invasive, which is the desired property
of a human assist control. The proof of the following lemma is done exactly the same way as in
Lemma 3.2.

Lemma 4.2 Consider the system (4.1), the graph space G for the safe set S(t) defined by (4.2) and
a Tv-ZCBF h : Rn × R → R. Then, the human assist controller (4.19) minimizes the Euclidian norm
∥u∥ for ∀(x, t) ∈ Rn × R while satisfying the following inequality:

I(x, t, uh(t)) + Lgh(x, t) · u ≥ −α(h(x, t)). (4.30)

4.1.4 Mathematical Example
In this section, we consider a system whose g(x, t) is not Lipschitz continuous in x because the require-
ment on mappings f and g of the system (4.1) is simply to be continuous in (x, t) as in Section 3.3.
Then, we confirm the effectiveness of the proposed human assist controller by computer simulation.

Consider the following control system:

ẋ1 = f1(x, t),
ẋ2 = g2(x, t) (u + uh(t)) ,

(4.31)
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where x = [x1, x2]T ∈ R2 denotes a state, u ∈ R a control input, uh : R → R a human operator input,
and mappings f1 : R × R→ R and g2 : R × R→ R are of the form:

f1(x, t) = x2 − 0.1t, (4.32)

g2(x, t) = 3 +
∞∑

n=0

an cos(bnπx1) + 0.5 sin t, (4.33)

where a ∈ (0, 1), b ∈ R>0 is a positive odd integer, and ab > 1 + 3π/2. Note that the second term
of (4.33) is the Weierstrass function that is not Lipschitz continuous in x1, and the first term avoids
g2(x, t) = 0.

Assume that the state x1 has a time-dependent constraint x1 ∈ S1(t) = (−∞, xo(t)), and a safe set
is defined by S(t) = S1(t) × R, where xo : R → R is a smooth time-varying function. Note that an
unsafe set is denoted by Sc(t) = R\S1(t) × R. Then, the graph space for the safe set S(t) is denoted
by G = {(x, t) ∈ R2|x1 < xo(t)}.

Controller Design

Define the following Tv-ZCBF candidate:

h(x, t) = −(x1 − xo(t))p(x, t)

= − x1 − xo(t)
1 + L1(x1 − xo(t))2 + L2(x2 − ẋo(t))2 , (4.34)

where L1, L2 ∈ R>0 are positive constants. We can easily confirm that the function (4.34) satisfies
the conditions for a Tv-ZCBF. Firstly, for any fixed t0 ∈ R, h(x, t0) → 0 as x → −∞ or x → ∂S(t0),
which implies the function (4.34) satisfies the condition (C1). Secondly, L f h, Lgh and ∂h/∂t can be
calculated as follows:

L f h =
[
L1(x1 − xo)2 − L2(x2 − ẋo)2 − 1

]
p2(x, t) f1(x, t),

Lgh =2L2(x1 − xo)(x2 − ẋo)p2(x, t)g2(x, t),
∂h

∂t
= −

[
L1(x1 − xo)2 − L2(x2 − ẋo)2 − 1

]
p2(x, t)ẋo

− 2L2(x1 − xo)(x2 − ẋo)p2(x, t)ẍo. (4.35)

Considering x1 < xo(t) as x ∈ S(t), we can confirm that there exists x ∈ S(t) such that Lgh = 0, i,e.,
x2 = ẋo(t). Then, in the neighborhood of ∂S(t) with L1 ≪ 1, the following inequality holds:

L f h +
∂h

∂t
= −0.1t

[
L1(x1 − xo)2 − 1

]
p2(x, t) > 0

> −α(h(x, t)), (4.36)

for any locally Lipschitz continuous function α ∈ Ke, which implies that the function (4.34) satisfies
the condition (C2). Therefore, the function h(x, t) defined by (4.34) is a Tv-ZCBF. Accordingly, we
can design a human assist controller u = k(x, t) for the system (4.31) by using (4.19).
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Computer simulation

Figures 4.2–4.5 show computer simulation results for x0 = (0,−3), uh(t) = 1 − 0.5 cos(πt/20),
(xo(0), ẋo(0)) = (5, 0), ẍo = −0.01t, L1 = 0.0001, L2 = 0.05, the summation n from 0 to 100 in
(4.33) with a = 0.5, b = 15. Note that we chose α(h(x, t)) = ηh(x, t) where η = 0.3. Figures 4.2–4.5
denote the time series of g2(x, t), the state x1, the state x2, and the control input, respectively.

From Figs. 4.3–4.5, the state x1 satisfies x1 ∈ S1(t), and hence x(t) ∈ S(t) is satisfied by the
proposed controller u = k(x, t). From Figs. 4.4–4.5, we can also confirm that the proposed controller
u = k(x, t) is continuous at x2 = ẋo where Lgb = 0. As we mentioned in Remark 4.3, this continuity is
ensured because the constructed Tv-ZCBF (4.34) satisfies the condition (C2).
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Figure 4.2: Computer Simulation: Function g2(x, t) (Mathematical Example).
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Figure 4.3: Computer Simulation: State x1 (Mathematical Example).
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Figure 4.4: Computer Simulation: State x2 (Mathematical Example).
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Figure 4.5: Computer Simulation: Input (Mathematical Example).

4.2 Input-disturbed Safety Assist Control
In this chapter, we secondly consider the following nonlinear control-affine system with a human
operator input uh(t) and an input disturbance d(t):

ẋ = f (x) + g(x) [u + uh(t) + d(t)] , (4.37)

where x ∈ Rn denotes a state, u ∈ Rm a control input. Assume that mappings uh : R → Rm,
d : R → Rm are continuous, and mappings f : Rn → Rn, g : Rn → Rn×m are continuous. Assume
moreover that an input disturbance d(t) is unknown but bounded.

Consider the following time-invariant open set S:

S = {x ∈ Rn | h(x) > 0},
∂S = {x ∈ Rn | h(x) = 0}, (4.38)

where a function h : Rn → R is a C1 continuously differentiable function. Here we assume that a
solution x(t) to the system (4.37) is forward complete to simplify the discussion. Then, the set S is
forward invariant if for every initial state x0 := x(0) ∈ S, x(t) ∈ S for ∀t ≥ 0, and we call S a safe
set where the state of the system (4.37) should stay. Accordingly, the state constraint is denoted by
x ∈ S.
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4.2.1 Input-to-State Safety [3, 44]
This subsection introduces the notion of input-to-state safety (ISSf) and input-to-state safety control
barrier functions (ISSf-CBFs) firstly proposed by [44].

Consider the following control system with an input disturbance d(t):

ẋ = f (x) + g(x) [u + d(t)] , (4.39)

where x ∈ Rn denotes a state, u ∈ Rm a control input. Assume that a continuous mapping d : R→ Rm

is bounded, i.e., ∃λ̄ ∈ R>0 such that ∥d∥∞ := supt≥0 ∥d(t)∥ ≤ λ̄, and mappings f : Rn → Rn, g : Rn →
Rn×m are locally Lipschitz continuous. A safe set S̄ for the system (4.39) is defined as a closure of
(4.38), i.e., S̄ = cl(S) and hence x ∈ ∂S is safe in this subsection.

Then, the notion of ISSf and ISSf-CBFs are defined as follows [3].

Definition 4.2 Consider the system (4.39) with a bounded input disturbance d(t) satisfying ∥d∥∞ ≤ λ̄,
the safe set S̄ and a C1 continuously differentiable function h : Rn → R. Then, the system (4.39)
is input-to-state safe (ISSf) if there exists a function κ ∈ K∞ such that the following set S̄λ̄ ⊇ S̄ is
forward invariant.

S̄λ̄ := {x ∈ Rn | h(x) + κ(λ̄) ≥ 0},
∂S̄λ̄ := {x ∈ Rn | h(x) + κ(λ̄) = 0},

int(S̄λ̄) := {x ∈ Rn | h(x) + κ(λ̄) > 0}.
(4.40)

In this case, the safe set S̄ is said to be an input-to-state safe set (ISSf set).

Definition 4.3 Consider the system (4.39) with a bounded input disturbance d(t) satisfying ∥d∥∞ ≤ λ̄,
the safe set S̄ and a C1 continuously differentiable function h : Rn → R with (∂h/∂x)(x) , 0 when
h(x) = 0. Then, h is an input-to-state safe control barrier function (ISSf-CBF) on S̄ if there exists a
function α ∈ K∞,e and a positive constant δ ∈ R>0 such that the following inequality holds:

sup
u∈Rm

ḣ(x, u) ≥ −α (h(x)) +
∥Lgh(x)∥2
δ

. (4.41)

Designing any Lipschitz continuous controller satisfying u ∈ KISSf(x) where

KISSf(x) =
{

u ∈ Rm

∣∣∣∣∣∣ ḣ ≥ −α (h(x)) +
∥Lgh(x)∥2
δ

}
, (4.42)

ensures the forward invariance of S̄λ̄, and consequently renders the safe set S̄ ISSf [3, Theorem 2].
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4.2.2 Problem Statement
An ISSf-CBF-based controller u ∈ KISSf(x) renders the system state bounded for any bounded input
disturbance. For designing more flexible controllers, [3] extended an ISSf-CBF to a tunable ISSf-
CBF (TISSf-CBF) using the value of a function h(x). Concretely, parametrizing a function κ(h(x), δ)
in (4.40) (or equivalently a function δ(h(x)) in (4.41)) where κ(r, ·) ∈ K∞ for ∀r ∈ R results in
less invasive controllers compared to u ∈ KISSf(x). However, these frameworks ensure the forward
invariance of a larger set S̄λ̄ ⊇ S̄, not the original safe set S̄; they are effective only for small input
disturbances since the set S̄λ̄ grows as λ̄ becomes larger. Moreover, modifying the safe set S̄ by the
set S̄′ ⊆ S̄ so as to S̄′

λ̄
⊆ S̄ might also increase conservatism.

The S-ZCBF-based human assist controller proposed in Section 3.4 ensures the forward invariance
of the original safe set S only when d(t) ≡ 0, not allowing ∃td ≥ 0 such that d(td) , 0 for ∀t ≥ td

since it maintains a human operator input to a maximal degree.

Problem 4.2 The second objective of this chapter is to design a human assist controller u = k(x, t) for
the input-disturbed system (4.37) satisfying the conditions (P1), (P2) and (P3). Importantly, satisfying
the condition (P1) inidicates the forward invariance of the original safe set S.

4.2.3 Input-to-State Constrained Safety Zeroing Control Barrier Function
In this subsection, we introduce an ISCSf-ZCBF as follows.

Definition 4.4 Consider the system (4.37) and the safe set S defined by (4.38). Then, a C1 continu-
ously differentiable function h : Rn → R is an input-to-state constrained safety zeroing control barrier
function (ISCSf-ZCBF) if the following conditions hold.

(D1) h(x) is a proper function for ∀x ∈ S; the superlevel set {x|h(x) ≥ L} is compact for any positive
constant L ∈ R>0.

(D2) There exists a locally Lipschitz continuous function α ∈ Ke and a function ρ ∈ L such that the
following inequality holds:

h(x) ≤ ρ(∥d(t)∥)
⇒ sup

u∈Rm
ḣ(x, u, uh(t), d(t)) > −α(h(x)). (4.43)

Since the time-derivative of an ISCSf-ZCBF contains an unknown input disturbance d(t), it is
difficult to construct a human assist controller directly using the condition (D2). Thus, we introduce
the following theorem that provides the equivalent condition to (D2) and enables us to construct a
controller without using or estimating the unknown input disturbance d(t).

Theorem 4.3 Consider the system (4.37) and the safe set S defined by (4.38). Then, a C1 continu-
ously differentiable function h : Rn → R is an ISCSf-ZCBF if the condition (D1) and the following
condition holds.
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(D2’) There exists a locally Lipschitz continuous function α ∈ Ke and a function ρ ∈ L such that the
following inequality holds:

h(x) ≤ ρ(∥d(t)∥)
⇒ L f h(x) + Lgh(x) · (u + uh(t))

> −α(h(x)) +
[
ρ−1 (h(x))

]2
. (4.44)

To prove Theorem 4.3, the following lemma is introduced.

Lemma 4.3 Consider the system (4.37) and the safe set S defined by (4.38). Then, for any continuous
mappings uh : R→ Rm and d : R→ Rm, there exists a control input u ∈ Rm such that

ḣ(x, u, uh(t), d(t)) > − α(h(x))

+
[
ρ−1 (h(x))

]2
+ Lgh(x) · d(t), (4.45)

if and only if there exists a control input u ∈ Rm such that

ḣ(x, u,uh(t), d(t)) > −α(h(x))

+
[
ρ−1 (h(x))

]2
+
∥Lgh(x)∥2

4
+ Lgh(x) · d(t). (4.46)

Proof The time-derivative of h is calculated as follows:

ḣ = L f h(x) + Lgh(x) · (u + uh(t)) + Lgh(x) · d(t). (4.47)

Assume that there exists a control input ua ∈ Rm such that the inequality (4.45) holds, i.e., we suppose

L f h(x) + Lgh(x) · (ua + uh(t)) + Lgh(x) · d(t)

> −α(h(x)) +
[
ρ−1 (h(x))

]2
+ Lgh(x) · d(t). (4.48)

Then, choosing u = ua + (Lgh(x))T/4 yields

L f h(x) + Lgh(x) · (u + uh(t)) + Lgh(x) · d(t)

> −α(h(x)) +
[
ρ−1 (h(x))

]2
+
∥Lgh(x)∥2

4
+ Lgh(x) · d(t). (4.49)

The sufficiency is proved vice versa; the above discussion completes the proof. □
Now, we can prove Theorem 4.3.

Proof Note that x ∈ S implies h(x) > 0. The boundedness of an unknown input disturbance d(t)
implies that there exists a positive constant λ ∈ R>0 such that ∥d(t)∥ ≤ λ for ∀t ≥ 0. Owning to
ρ ∈ L, the inequality ρ(∥d(t)∥) ≥ ρ(λ) holds. Then, in the case of h(x) > ρ(∥d(t)∥), the inequality
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h(x(t)) > ρ(λ) holds. Hence x(t) ∈ S is evidently ensured for ∀t ≥ 0 as long as d(t) is bounded since
h(x) is a proper function; the level set {y|h(y) ≥ ρ(λ)} is compact and hence {y|h(y) ≥ ρ(λ)} ⊂ S.

Thus, we consider the case that there exists t1 ≥ 0 such that h(x) ≤ ρ(λ) holds. Then, the following
inequality holds:

h(x(t)) ≤ ρ(λ) ≤ ρ(∥d(t)∥), (4.50)

for ∀t ≥ t1 due to ρ ∈ L. Then, substituting (4.44) into the time-derivative of h yields

ḣ =L f h(x) + Lgh(x) · (u + uh(t)) + Lgh(x) · d(t)

> −α(h(x)) +
[
ρ−1 (h(x))

]2
+ Lgh(x) · d(t). (4.51)

According to Lemma 4.3, there exists a control input u ∈ Rm such that the inequality (4.49) holds.
Hence by the Cauchy–Schwarz inequality,

∥Lgh(x)∥2
4

+ Lgh(x) · d(t) + ∥d(t)∥2 ≥ 0, (4.52)

the following inequality holds:

ḣ > −α(h(x)) +
[
ρ−1 (h(x))

]2
+
∥Lgh(x)∥2

4
+ Lgh(x) · d(t)

≥ −α(h(x)) +
[
ρ−1 (h(x))

]2
− ∥d(t)∥2,

≥ −α(h(x)) +
[
ρ−1 (h(x))

]2
− λ2. (4.53)

Here considering ρ ∈ L, an inverse function ρ−1 is also strictly decreasing. Hence the following
inequality holds:

ρ−1 (h(x(t))) ≥ λ ≥ ∥d(t)∥, (4.54)

according to (4.50). Thus, substituting the square of (4.54) into (4.53) yields ḣ > −α(h(x)); therefore,
the condition (D2’) is equivalent to (D2), and the above discussion completes the proof. □

4.2.4 Safety Assist Control via ISCSf-ZCBF
In this subsection, the author proposes an ISCSf-ZCBF-based human assist controller that ensures the
forward invariance of S.

Theorem 4.4 Consider the system (4.37), the safe set S defined by (4.38) and an ISCSf-ZCBF h :
Rn → R satisfying the conditions (D1) and (D2). Then, for any continuous mappings uh : R → Rm
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and d : R → Rm, the following human assist controller u = k(x, t) ensures the forward invariance of
S.

u = k(x, t) =


− I(x, uh(t)) − J(x)

||Lgh(x)||2 (Lgh(x))T

if I(x, uh(t)) < J(x)
0 if I(x, uh(t)) ≥ J(x),

(4.55)

where functions I : Rn × Rm → R, J : Rn → R and β : R→ R≥0 are defined by

I(x, uh(t)) = L f h(x) + Lgh(x) · uh(t),

J(x) = −α(h(x)) + β (h(x)) +
∥Lgh(x)∥2

4
,

β (h(x)) ≥
[
ρ−1 (h(x))

]2
.

(4.56)

Proof We denote the closed-loop system (4.37) with the proposed human assist controller (4.55) as
follows:

ẋ = fcl(x, k(x, t), uh(t), d(t))
= f (x) + g(x) (k(x, t) + uh(t)) + g(x)d(t). (4.57)

Note that x ∈ S implies h(x) > 0, and the time-derivative of an ISCSf-ZCBF h is denoted by (4.47).
Similarly to the first part of the proof of Theorem 4.3, the state constraint x(t) ∈ S is satisfied for

any ∀t ≥ t0 ≥ 0 if h(x) > ρ(∥d(t)∥) holds for ∀t ≥ t0 due to the boundedness of d(t) and the properness
of h(x).

Thus, we consider the case that there exists t1 ≥ 0 such that h(x) ≤ ρ(∥d(t)∥), i.e., the inequality
(4.50) holds for ∀t ≥ t1.
Case 1: I(x, uh(t)) < J(x).

Substituting the proposed controller (4.55) into the time-derivative (4.47) and applying the Cauchy–Schwarz
inequality (4.52) yield

ḣ = J(x) + Lgh(x) · d(t)

≥ J(x) −
∥Lgh(x)∥2

4
− ∥d(t)∥2

≥ J(x) −
∥Lgh(x)∥2

4
− λ2

≥ J(x) −
∥Lgh(x)∥2

4
−

[
ρ−1 (h(x))

]2
, (4.58)

since a function ρ belongs to classL. Hence by the definition of a function β, the following inequality
holds:

ḣ ≥ J(x) −
∥Lgh(x)∥2

4
− β((h(x))) = −α (h(x)) . (4.59)
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Case 2: I(x, uh(t)) ≥ J(x).
In a similar fashion to the case of I(x, uh(t)) < J(x), substituting k(x, t) = 0 into (4.47) yields

ḣ = I(x, uh(t)) + Lgh(x) · d(t)

≥ I(x, uh(t)) −
∥Lgh(x)∥2

4
− β (h(x))

≥ J(x) −
∥Lgh(x)∥2

4
− β (h(x)) = −α (h(x)) . (4.60)

Accordingly, the following inequality holds in both cases I(x, uh(t)) < J(x) and I(x, uh(t)) ≥ J(x)
by the proposed controller (4.55) when the inequality (4.50) is satisfied:

ḣ ≥ −α (h(x)) . (4.61)

Since an ISCSf-ZCBF h is proper, there exists a positive constant γ ∈ R>0 that satisfies the inequality
(3.15) according to Lemma 3.1, i.e., the following inequality holds for ∀x ∈ S:

ḣ ≥ −α (h(x)) ≥ −γh(x). (4.62)

Hence the following inequality holds according to Gronwall’s lemma 2.2 for ∀t ∈ [t1, t2]:

h(t) ≥ h(x0(t1)) exp (−γ(t − t1))
≥ h(x0(t1)) exp (−γ(t2 − t1)) > 0. (4.63)

where t2 ≥ t1 ≥ 0, and t2 can be arbitrarily extended by Theorem 2.4. Similarly to the case of
h(x) > ρ(∥d(t)∥), the properness of an ISCSf-ZCBF h implies that the level set {y|h(y) ≥ h(x(t))} is
compact and hence {y|h(y) ≥ h(x(t))} ⊂ S. Thus, the state constraint x(t) ∈ S is satisfied for ∀t ≥ t1 in
the case of h(x) ≤ ρ(∥d(t)∥).

Therefore, the closed-loop system (4.57) satisfies x(t) ∈ S for ∀t ≥ 0, i.e., the proposed controller
(4.55) ensures the forward invariance of S. □

The proposed human assist controller (4.55) has the other outstanding properties described by the
following lemma, which indicates that it satisfies the condition (P2) and (P3).

Lemma 4.4 The human assist controller (4.55) is continuous in (x, t) ∈ Rn × R regardless of the
relative degree condition Lgh(x) , 0 for ∀x ∈ R.

Lemma 4.5 The human assist controller (4.55) minimizes the Euclidian norm ∥u∥ for ∀(x, t) ∈ Rn×R
such that the following inequality holds:

L f h(x) + Lgh(x) · uh(t) + Lgh(x) · u

≥ −α (h(x)) + β (h(x)) +
∥Lgh(x)∥2

4
. (4.64)
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4.3 Time-varying Obstacle Avoidance for Electric Wheelchair
In this section, we aim to design a human assist controller to avoid collisions with a time-varying
obstacle xo(t) ∈ Rl whose velocity ẋo(t) is unknown by using the methods proposed in Section 4.1 and
4.2.

Consider the following control system:

ẋ = f (x) + g(x) [u + uh(t)] , (4.65)

where x ∈ Rn denotes a state, u ∈ Rm a control input. Assume that mappings uh : R → Rm is
continuous, and mappings f : Rn → Rn, g : Rn → Rn×m are continuous.

We also consider the following time-dependent open safe set S(xo(t)):

S(xo(t)) = {x ∈ Rn | h(x, xo(t)) > 0},
∂S(xo(t)) = {x ∈ Rn | h(x, xo(t)) = 0}, (4.66)

where a function h : Rn+1 → R is a C1 continuously differentiable function. Then, we consider the
pair (x, t) ∈ Rn+1 such that

G = {(x, t) ∈ Rn+1 | x(t) ∈ S(xo(t))}, (4.67)

since the notion of forward invariance is only applicable for a time-invariant safe set, which was
discussed in Section 4.1. Again, we call a time-invariant set G a graph space.

Problem 4.3 The last objective of this chapter is to design a human assist controller u = k(x, t) for
the system (4.65) satisfying the conditions (P1”), the forward invariance of the graph space (4.67),
(P2) and (P3) given in Definition 3.2, under the assumption that the obstacle velocity vector ẋo(t) is
unknown.

4.3.1 ISCSf-ZCBF for Time-varying Obstacle Avoidance
As the safe set S(xo(t)) is time-dependent, the time-derivative of h along a solution to the system
(4.65) is calculated as follows:

ḣ = L f h + Lgh(u + uh(t)) +
∂h

∂xo
ẋo. (4.68)

Here, we need to estimate the unknown ẋo(t) to design a human assist controller u = k(x, t). Hence
we employ the following high-gain observer based first-order differentiator proposed by [67]:

˙̂z1 = ẑ2 + (α1/ε)(xo(t) − ẑ1),
˙̂z2 = (α2/ε

2)(xo(t) − ẑ1), (4.69)

y = ẑ2 = ˆ̇xo(t),
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where the polynomial s2 + α1s + α2 is Hurwitz, and ε ∈ R>0 is a positive constant. Note that the
observer gain Ko is given by

Ko =

[
α1

ε
,
α2

ε2

]T
. (4.70)

Ideally, the estimation error d(t) := ˆ̇xo(t) − ẋo(t) shrinks to zero as the observer gain Ko grows to
infinity, i.e., ε → 0. However, a large gain magnifies the measurement noise, and hence we need to
choose the suitable bounded gain; as a result, the estimation error d(t) necessarily remains. Therefore,
the direct substitution of ˆ̇xo(t) into ẋo(t) leads to the failure of theoretical safety assurance.

To this end, the author proposes the following ISCSf-ZCBF for a time-dependent state constraint
problem by regarding the estimation error d(t) as input disturbance.

Definition 4.5 Consider the system (4.65), the safe set (4.66) with the graph space (4.67) and the
high-gain observer (4.69). Then, a C1 continuously differentiable function h : Rn+1 → R is an input-
to-state constrained safety zeroing control barrier function (ISCSf-ZCBF) if the following conditions
hold.

(E1) For any fixed t0 ∈ R, h(x, xo(t0)) is a proper function w.r.t. ∀x ∈ S(xo(t0)); the superlevel set
{x| h(x, xo(t0)) ≥ L} is compact for any positive constant L ∈ R>0.

(E2) There exists a locally Lipschitz continuous function α ∈ Ke and a function ρ ∈ L such that the
following inequality holds:

h(x, xo(t)) ≤ ρ(∥d(t)∥)
⇒ sup

u∈Rm
ḣ(x, xo(t), u, uh(t), d(t)) > −α(h(x, xo(t))), (4.71)

where

ḣ = L f h + Lgh(u + uh(t)) +
∂h

∂xo
( ˆ̇xo(t) − d(t)).

According to Theorem 4.3 and 4.4, the following corollaries are immediately obtained.

Corollary 4.1 Consider the system (4.65), the safe set (4.66) with the graph space (4.67) and the
high-gain observer (4.69). Then, a C1 continuously differentiable function h : Rn+1 → R is an ISCSf-
ZCBF if the condition (E1) and the following condition hold.

(E2’) There exists a locally Lipschitz continuous function α ∈ Ke and a function ρ ∈ L such that the
following inequality holds:

h(x, xo(t)) ≤ ρ(∥d(t)∥)

⇒ L f h + Lgh · (u + uh(t)) +
∂h

∂xo

ˆ̇xo(t)

> −α(h(x, xo(t))) +
[
ρ−1 (h(x, xo(t)))

]2
. (4.72)
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Corollary 4.2 Consider the system (4.65), the safe set (4.66) with the graph space (4.67), and an
ISCSf-ZCBF h : Rn+1 → R with the following high-gain observer:

˙̂z1 = ẑ2 + (α1/ε)(xo(t) − ẑ1),
˙̂z2 = (α2/ε

2)(xo(t) − ẑ1), (4.73)

y = ẑ2 = ˆ̇xo(t).

Then, for any continuous mappings uh : R→ Rm and the estimation error d : R→ Rm, the following
human assist controller u = k(x, t) ensures the forward invariance of G.

u = k(x, t) =


− I(x, xo(t), uh(t)) − J(x, xo(t))

||Lgh(x, xo(t))||2 (Lgh(x, xo(t)))T

if I(x, xo(t), uh(t)) < J(x, xo(t))
0 if I(x, xo(t), uh(t)) ≥ J(x, xo(t)),

(4.74)

where functions I : Rn+1 × Rm → R, J : Rn+1 → R and β : R→ R≥0 are defined by

I(x, xo(t), uh(t)) = L f h(x, xo(t)) + Lgh(x, xo(t)) · uh(t) +
∂h

∂xo

ˆ̇xo(t),

J(x, xo(t)) = −α(h(x, xo(t))) + β (h(x, xo(t))) +
1
4

∣∣∣∣∣∣∣∣∣∣ ∂h∂xo

∣∣∣∣∣∣∣∣∣∣2 ,
β (h(x, xo(t))) ≥

[
ρ−1 (h(x, xo(t)))

]2
. (4.75)

4.3.2 Application to Electric Wheelchair
In this subsection, we experimentally confirm the effectiveness of the proposed human assist con-
troller by using an electric wheelchair WHILL model CR (Fig. 4.6) whose model is described as
follows:

ẋ =
1
80

(u + uh(t)) , (4.76)

where x[m] ∈ R denotes a position, u ∈ R a control input, and uh ∈ R a human operator input. Note
that the input to the system (4.76) is given within |u+ uh(t)| ∈ [0, 100][%], and the electric wheelchair
moves forward at 0.125[m/s] when u + uh(t) = 10[%]. Note also that the function g(x) = 1/80 was
identified through the experiment with the input u + uh(t) = 50[%].

Consider the time-varying state constraint problem illustrated in Fig. 4.8 where xo(t) ∈ R denotes
an obstacle and its velocity ẋo(t) is unknown. We employ Intel Real Sense Depth Camera D435i
(shortly, D435i) whose technical specification is given in Appendix A to get a distance xo(t) − x (Fig.
4.7). Then, we set a time-varying safe set S(xo(t)) = {x ∈ R | x + 0.3 < xo(t)} considering the ideal
range of D435i. Accordingly, a graph space G for the safe set S(xo(t)) is obtained as follows:

G = {(x, t) ∈ R2 | x + 0.3 < xo(t)}. (4.77)
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As the velocity ẋo(t) is unknown, we employ the following high-gain observer-based differentiator:

˙̂z1 = ẑ2 + (α1/ε)(xo(t) − ẑ1),
˙̂z2 = (α2/ε

2)(xo(t) − ẑ1), (4.78)

y = ẑ2 = ˆ̇xo(t).

Figure 4.6: Electric Wheelchair WHILL model CR.
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Figure 4.7: Depth Sensor D435i.

Figure 4.8: Control Model.

Controller Design

For the graph space (4.77) and the high-gain observer based differentiator (4.78), we construct the
following ISCSf-ZCBF:

h(x, xo(t)) = (xo(t) − x − 0.3)p(x, xo(t))

=
xo(t) − x − 0.3

1 + L(x − xo(t))2 , (4.79)

where L ∈ R>0 is a positive constant. Here, the function p : R2 → R>0 is required to satisfy the
condition (E1), but we choose L sufficiently small to approximate p(x, xo) = 1 in the controller design
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below; note that this function is needed to ensure the forward completeness of a solution x(t) to (4.76).
Accordingly, we have

L f h = 0, Lgh = −
1

80
,
∂h

∂xo

ˆ̇xo(t) = ˆ̇xo(t). (4.80)

Moreover, we design a class L function ρ and a function β as follows:

ρ(h(x, xo(t))) =
γ

h2(x, xo(t))
, (4.81)

β(h(x, xo(t))) =
[
ρ−1 (h(x, xo(t)))

]2
=

γ

h(x, xo(t))
, (4.82)

where γ ∈ R>0 is a positive constant. Finally, we design the following human assist controller u =
k(x, t):

k(x, t) =


80 (I(x, xo(t), uh(t)) − J(x, xo(t)))

if I(x, xo(t), uh(t)) < J(x, xo(t))
0 if I(x, xo(t), uh(t)) ≥ J(x, xo(t)),

(4.83)

where functions I and J with positive constants η1, η2 ∈ R>0 are defined by

I(x, xo(t), uh(t)) = −uh(t)/80 + ˆ̇xo(t), (4.84)

J(x, xo(t)) = −η1h(x, xo(t)) − η2h
2(x, xo(t)) +

γ

h(x, xo(t))
+

1
4
. (4.85)

Simulation Result

Figures 4.9–4.11 illustrate computer simulation results for x(0) = 0, uh = 15, η1 = 0.5, η2 = 0,
γ = 0.0001, (z1(0), z2(0)) = (2, 0), α1 = 3, α2 = 2, ε = 0.5. Note that the position of the time-varying
obstacle xo(t) is given by

xo(t) =
{

2.0 if t < 3
1.25 + 0.75 cos π6 (t − 3) if t ≥ 3.

Figure 4.9 denotes the position, Fig. 4.10 the output of the high-gain observer-based differentiator
(4.78) and Fig. 4.11 the control input.

From those figures, we can confirm that the wheelchair position satisfies x ∈ S(xo(t)) with the
proposed controller (4.83) while the high-gain observer-based differentiator with ε = 0.5 remains the
estimation error.
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Figure 4.9: Computer Simulation: Wheelchair Position.
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Figure 4.10: Computer Simulation: Estimate of ẋo(t).
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Figure 4.11: Computer Simulation: Velocity Input.

Experimental Result 1: Comparison to Computer Simulation

Figures 4.12–4.14 illustrate experimental results for x(0) = 0, uh = 15, η1 = 0.5, η2 = 0, γ = 0.0001,
(z1(0), z2(0)) = (2, 0), α1 = 3, α2 = 2, ε = 0.5, which is the same condition as Simulation Result.
Figure 4.12 denotes the position, Fig. 4.13 the output of the high-gain observer-based differentiator
(4.78) and Fig. 4.14 the control input.

From Fig. 4.12, we can confirm that the time-varying state constraint x ∈ S(xo(t)) is satisfied.
From Fig. 4.13, we can confirm that the high-gain observer-based differentiator (4.78) properly es-
timates the obstacle velocity ẋo(t) compared to Fig. 4.10. From Fig. 4.14, we can confirm that the
proposed controller (4.83) works when the obstacle xo(t) approaches the wheelchair position. We
can also confirm that the proposed controller (4.83) vanishes when the obstacle xo(t) is far from the
wheelchair position.
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Figure 4.12: Experimental Result 1: Wheelchair Position.
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Figure 4.13: Experimental Result 1: Estimate of ẋo(t).
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Figure 4.14: Experimental Result 1: Velocity Input.

Experimental Result 2: Time-varying Human Operator Input

Figures 4.15–4.17 illustrate experimental results for x(0) = 0, η1 = 0.5, η2 = 0, γ = 0.0001,
(z1(0), z2(0)) = (0, 0), α1 = 3, α2 = 2, ε = 0.5. In this experiment, a human operator provides a
time-varying control input uh(t). Figure 4.15 denotes the position, Fig. 4.16 the output of the high-
gain observer-based differentiator (4.78) and Fig. 4.17 the control input.

From Fig. 4.15, we can confirm that the time-varying state constraint x ∈ S(xo(t)) is satisfied.
From Fig. 4.16, we can confirm that the high-gain observer-based differentiator (4.78) estimates
the obstacle velocity ẋo(t). From Fig. 4.17, we can confirm that the proposed controller (4.83) works
when the obstacle xo(t) approaches the wheelchair position by the time-varying human operator input.
Specifically, the human operator is meant to avoid collisions when the obstacle approaches. When it
is not enough to do so, the human assist controller works to satisfy the state constraint.
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Figure 4.15: Experimental Result 2: Wheelchair Position.
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Figure 4.16: Experimental Result 2: Estimate of ẋo(t).
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Figure 4.17: Experimental Result 2: Velocity Input.
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Chapter 5

Conclusion

5.1 Summary
In this dissertation, the author proposed a safety assist controller that ensured safety of nonautonomous
systems. The author pointed out the problems of the conventional method related to Zeroing Control
Barrier Functions (ZCBFs) for autonomous systems [7].

The author firstly considered a time-invariant state constraint problem. The author provided the
formal definition of ZCBFs, Strict ZCBFs (S-ZCBFs). Then, the author proposed an S-ZCBF-based
safety assist controller that guaranteed safety of nonautonomous systems. The author simultaneously
proved that the proposed controller was continuous and optimal. Moreover, the author showed that the
proposed controller avoided solutions to nonautonomous systems from having a finite escape time, in-
dicating the forward completeness of solutions. Next, the author considered input-constrained control
systems and proposed a safety assist controller that met both state and input constraints employing the
notion of viability kernels. The effectiveness of the proposed controllers was confirmed by computer
simulation.

The author next considered a time-dependent state constraint problem. The author provided the
definition of Time-varying ZCBFs (Tv-ZCBFs) with the notion of graph space. Then, the author pro-
posed a Tv-ZCBF-based safety assist controller that rendered graph space forward invariant, which
implied that the time-dependent safety constraint was satisfied. Importantly, the proposed controller
inherited the properties of the S-ZCBF-based controller. Then, the author proposed a safety assist con-
troller for input-disturbed systems. Here, an Input-to-State Constrained Safety ZCBF (ISCSf-ZCBF)
was introduced. Using an ISCSf-ZCBF, the proposed controller ensured the safety of input-disturbed
systems. The author lastly applied an ISCSf-ZCBF-based controller to time-varying obstacle avoid-
ance of an electric wheelchair. The effectiveness of the proposed controller was confirmed by com-
puter simulation and experiment.
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5.2 Future Work
In this section, the author refers to open issues of the methods proposed in this dissertation.

5.2.1 Advantages of the Use of Zeroing Control Barrier Function
Here, the author lists the future advantages of using ZCBFs instead of reciprocal CBFs. Importantly,
these advantages will be due to the property of ZCBFs that can be defined outside of a safe set or a
viability kernel.

Damage Mitigation Controller

When considering input-constrained systems, there might be a case such that violation of safety con-
straints is inevitable. This implies that the system’s states start from outside of viability kernels.
Moreover, when considering time-dependent state constraint problems, a safe set might be empty at
some point; e.g., moving obstacles approaching control systems from various directions narrow a safe
set and eventually make it empty. In these cases, a controller must be designed so that the damage of
safety violation is minimized.

Robust Controller

In practical problems, control systems generally have modeling errors that make their states leave a
safe set in finite time. The author believes that there are mainly two approaches for this problem.
The first method is to design a CBF for a subset of viability kernels considering the worst case of
disturbances or response delays. This method will increase conservatism, since it takes a margin
between a control system and an obstacle, but does not give up the forward invariance of an original
safe set. The second method is to keep the state of control systems as close to a safe set or a viability
kernel as possible even after the violation of safety constraints occurs. This method might also be
achieved by using the ZCBF property similarly to the case of a damage mitigation controller.

5.2.2 Open Issues
Theoretical Issues

In this dissertation, the continuity of mappings in control system models given as an ODE plays an
essential role for theoretical safety assurance. However, control systems or controllers are not always
continuous in general problems. For example, a CBF-based decision making controller is known as
a discontinuous controller because in this case a CBF fails to be differentiable [56]. While there are
some studies on nonsmooth ZCBFs, their methods does not produce a decision making controller as
Filippov’s operator is applied for dealing with a differential inclusion [28, 29]. Therefore, it is still
challenging to ensure the safety of discontinuous control systems using ZCBFs.
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In Section 3.5, the author restricted control systems to single-input systems with norm input con-
straints. This is because the continuity of solutions to optimization problems is not ensured when
considering multi-input systems even if input constraints are affine [7]. Moreover, explicit solutions
to an optimization problem for a minimally invasive controller will be difficult to derive and need to
be solved numerically. Therefore, guaranteeing the continuity and the explicitness of a safety assist
controller for input-constrained multi-input systems remains future works.

Practical Issues

In this dissertation, the author mainly focused on the theoretical aspect of ZCBFs and only dealt with
simple control systems for the effectiveness validation. Therefore, future work needs to establish
ZCBF design methods for more complex control systems. For example, a more detailed automobile
model contains an actuator time delay, a rolling resistance, a self aligning torque, a friction circle
constraint, and so on. Moreover, for the improvement of passenger comfort, considering a jerk as an
input constraint and deriving a viability kernel for a jerk-constrained automobile model will improve
passenger comfort. This practical factors should be taken into account for the ZCBF design. In other
words, once a ZCBF can be obtained, it is easy to design a safety assist controller proposed in this
dissertation.

The consideration of a shape of control targets or obstacles should also be studied. The research
on reciprocal CBFs considering this problem is progressing compared with ZCBFs, and the literature
[25, 75] will be useful for the ZCBF design.
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Appendix A

Intel RealSense Depth Camera D435i [22]

In the experiment shown in Subsection 4.3.2, Intel RealSense Depth Camera D435i (Fig.4.7) is em-
ployed to measure the distance between an electirc wheelchair and an obstacle. Table A.1 lists the
technical specification of D435i [22, 43]. The reason of its employment is that it is cheaper, more
easily available than Laser Range Finder [43]. Most importantly, it has a short measurement period
that leads to a smooth intervention of a safety assist controller.

Table A.1: Technical Specification of D435i
Depth Technology Stereoscopic

Measurement Period [sec] 0.0111
Ideal Range [m] 0.3 to 3

Minimum Depth Distance at Max Resolution [m] 0.28
Horizontal Field of View [◦] 87 ± 3

Vertical Field of View [◦] 58 ± 1
Depth Stream Output Frame Rate [fps] 90
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