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Abstract

In contingency table analysis, we are interested in dependency structures among
categorical variables. The independence model, where the cell probability (joint
distribution of categorical variables) is expressed as a product of the marginal cell
probabilities (marginal distributions), is one of the well known models for the de-
pendent structure among variables, and we investigate whether the data generating
process is the independent model using Pearson’s chi-squared test. Meanwhile, we
are interested in different probabilistic structures in square contingency tables, where
the row and column categorical variables have the same categories, since in most
cases the independent model does not hold. Examples are the Symmetry model that
represent the equality of cell probabilities at symmetric positions with respect to the
main diagonals of the contingency table and its special cases such as the marginal ho-
mogeneity model, some extended Symmetry models and asymmetry models. Besides
statistical hypothesis testings, there are other methods for inferring the probabilis-
tic structure in contingency tables using indexes for the degree of departure from
some model instead of the Pearson’s correlation coefficient for independence between
continuous variables. This thesis develops indexes for symmetry in two-way square
contingency tables.

Chapter 1 briefly explains backgrounds and motivations of the works given in the
subsequent chapters. Chapter 2 proposes the index which is a two-dimensional
vector with two indexes as its elements, represents the degree of departure from the
Symmetry model from a different perspective from the conventional indexes, and
allows for easier interpretation in the data analysis. Chapter 3 proposes a directional
index that can distinguish between two types of asymmetry structures, expresses
the degree of departure from them, and is easier to interpret in data analysis than
existing ones. Chapter 4 provides some discussion and concluding remarks.
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Chapter 1

Introduction

1.1 Background

This thesis highlights contingency tables and methodologies for their analysis, which

are of great importance in a wide variety of fields such as medicine, psychology, so-

cial sciences, education, sports, and so on. The contingency table is a common data

representation when all observations are categorical data, and the chi-square test of

goodness-of-fit test (Pearson, 1900), which is still very commonly used today, was

introduced more than one century ago. For a history of contingency table analy-

sis before that, see Stigler (2002). Tables formed from two binary variables (e.g.,

smoker or not and hypertension or not) and having four attributes ((smoker and

hypertension), (smoker and not hypertension), (nonsmoker and hypertension), and

(nonsmoker and not hypertension)) are referred to as 2× 2 contingency tables, and

in the case of categorical variables with multiple categories (with r and c) instead of

binary variables, they are referred to as r×c contingency tables, they are collectively

referred to as two-way contingency tables. When they are formed by more than two

1
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categorical variables, they are termed multi-way contingency tables. This thesis fo-

cuses on two-way contingency tables and does not deal with multi-way contingency

tables in the following sections, but readers who are interested in the methodol-

ogy for the analysis of multi-way contingency tables are referred to Bishop et al.

(2007) and Agresti (2010). Categorical variables that consist of contingency tables

are classified into those that have a natural ordering between categories and those

that do not, and are called nominal and ordinal categorical variables, respectively.

Examples of ordinal categorical variables are disease progression (stage 1, 2, 3, 4)

and opinion on a certain policy (disagree, neutral, agree), and the distance between

successive categories is unknown. On the other hand, nominal categorical variables

have no order between categories, such as brand of a certain product and nation-

ality. Binary variables are treated as nominal or ordinal categorical variables. The

type of categorical variable of interest, i.e., nominal or ordinal, also determines the

analysis method to be used. The method is appropriate for the analysis of nominal

categorical contingency tables if the results are invariant to arbitrary permutations

of the categories. The method for nominal categorical variables can also be used for

ordinal categorical variables unless it does not use information on the order between

categories. On the other hand, the method for ordinal categorical variables is in-

appropriate for the analysis of nominal categorical variables since it presents result

that are not invariant to arbitrary permutations of categories.

One of the interests in the analysis of r × c contingency tables is the indepen-

dence (non-association) between the two variables. The Pearson’s chi-square statis-

tic (Pearson, 1900) is often used for this purpose. There are also the log-likelihood

ratio statistic (Wilks, 1935), Freeman-Tukey statistic (Freeman and Tukey, 1950),

Neyman’s modified chi-square statistic (Neyman, 1949), modified log-likelihood ra-

tio statistic (Kullback, 1959), and the family of power-divergence statistics (Cressie
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and Read, 1984) that contain them as special cases. For theoretical properties

and other details on these statistics, see Read and Cressie (2012). See also Pardo

(2018) for the family of ϕ-divergence (f -divergence) statistics containing the family

of power-divergence statistics as a special case. These statistics are used for testing

independence under large samples asymptotically following a chi-square distribution

with (r − 1)(c− 1) degrees of freedom.

In the analysis of two-way contingency tables, besides the independence between

two variables, the association between them is of interest. The test using the above

mentioned statistic does not reveal the association between the variables, and when

we are interested in the association, other methods of analysis are used. As one

of them, there have been numerous studies on indexes measuring the strength of

the association (the degree of departure from independence) between variables in

two-way contingency tables. One of the well-known indexes of the association is

the Pearson’s phi-squared (Pearson, 1904), which is defined based on the Pearson’s

chi-square statistic. Other well-known indexes include the Tschuprow’s coefficient

(Tschuprow, 1939) and the Cramér’s coefficient (Cramér, 1946). Tomizawa et al.

(2004) proposed a family of indexes for the association including these indexes via

the power-divergence. Urasaki et al. (2023) also proposed a family of indexes for

the association via the f -divergence containing the power-divergence. The most

popular index of the association may be the odds ratio. In the analysis of 2 × 2

contingency tables, the odds ratio is highly used in medicine and other fields and of

great importance. The “local” odds ratio is defined for a subtable formed by four cells

in adjacent rows and adjacent columns of a r×c contingency table, and is a index of

“local” association. All local odds ratios in the subtables can be used to represent the

association of the contingency table (Goodman, 1969, 1979b). Models of uniform

association, row (or column) effect association, row by column effect association,
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and linear by linear association are the extended association model via the odds

ratios (Goodman, 1979b, 1985, 1986; Agresti, 1983b; Liu and Agresti, 2005). Other

analytical methods for the association between variables include the correspondence

analysis to visualize the association, see Greenacre (1984) and Beh and Lombardo

(2014) for more details.

The association in two-way contingency tables described so far is referred to as the

“symmetric” association, which is characterized by the fact that categorical variables

are not distinguished into the predictor and the response variable. In two-way con-

tingency tables formed by the predictor and response variable, we are more interested

in the “asymmetric” association than in the “symmetric” association (D’Ambra and

Lauro, 1992; Beh et al., 2007; Beh and Lombardo, 2014). That is, the predictability

of the response variable given the predictor is of interest to us. The asymmetric as-

sociation is either “directional” or “nondirectional” (Wei and Kim, 2017; Wei et al.,

2022). The directional association is when one categorical variable is the response

variable and the others are predictors, and the nondirectional association is when

each variable affects each other but in different degrees. One of the analyses for

the asymmetric association is the use of the index of the proportional reduction in

variation (PRV) from the marginal distribution to the conditional distribution of

the response variable (Agresti, 2010). The Goodman-Kruskal tau index (Goodman

and Kruskal, 1954) and the Theil’s uncertainty coefficient (Theil, 1970) are PRV

indexes defined with the Gini concentration (Gini, 1912) and the Shannon entropy

(Shannon, 1948), respectively, as the variation measure of the response variable.

Tomizawa et al. (1997) proposed a PRV index via the diversity index (Patil and

Taillie, 1982) including the Gini concentration and the Shannon entropy. Momozaki

et al. (2023) proposed a PRV index via a family of functions (termed the f -function

in the literature) including the diversity index. Moreover to the PRV index, other
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indexes for the asymmetric association have been studied in recent years, such as

the functional chi-square statistics (Zhang and Song, 2013) and the subcopula-based

index (Wei and Kim, 2017), for example. The subcopula-based index of the asym-

metric association is the index based on the subcopula-based regression, Wei and

Kim (2017) derived its theoretical properties and Wei et al. (2022) also proposed

a Bayesian inference of the index. In the analysis of the asymmetric association in

contingency tables, there are other methods such as the non-symmetrical correspon-

dence analysis (D’Ambra and Lauro, 1992) than using above mentioned indexes. For

details of the non-symmetrical correspondence analysis and other analysis methods

for the asymmetric association, see Beh and Lombardo (2014).

As mentioned above, we are interested in the association between categorical vari-

ables in the analysis of two-way contingency tables, but this interest changes in

“square” contingency tables formed by commensurable, i.e., categorical variables

with the same classification of row and column variables. Square contingency tables

are often presented in various fields such as medicine, social sciences, psychology,

education, sports, and so on, especially in social mobility surveys and panel surveys

in which data are repeatedly observed at different points in time. In square con-

tingency tables obtained in such surveys, there is often the association between the

variables. Moreover, since the observations are concentrated in the cells on the main

diagonal, more attention is paid to the off-diagonal cells. Therefore, in the analy-

sis of square contingency tables, there have been extensive studies about models of

symmetry and marginal homogeneity. Consider an r × r square contingency table

N where the (i, j)-th cell observation is denoted by nij for i, j = 1, 2, . . . , r and its

probability distribution Π where πij denotes the probability that an observation falls

into the (i, j)-th cell. The first test for the hypothesis π1· = π·1 ⇔ π12 = π21 where

πi· =
∑2

t=1 πit and π·i =
∑2

s=1 πsi in 2×2 square contingency tables was proposed by
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McNemar (1947), and then Bowker (1948) proposed a test for the symmetry model

πij = πji for i < j

as a generalization of McNemar (1947)’s test for r × r square contingency tables.

When the symmetry model holds, πi· = π·i, that is, the marginal distributions of

categorical variables are equivalent, this is referred to as the marginal homogeneity

model. Note that even if the marginal homogeneity model holds, it does not mean

that the symmetry model holds. Stuart (1955) proposed a test for the marginal

homogeneity model. Models of symmetry and marginal homogeneity are linked

through the quasi-symmetry model originally introduced by Caussinus (1965). The

quasi-symmetry model implies that the odds ratios in the square contingency table

are symmetric with respect to the main diagonal (Goodman, 1979b). The quasi-

symmetry model has been studied extensively since then. The reader is referred

to Tahata (2022) for a review of the history of the quasi-symmetry model, related

studies, and recent progress. Since the quasi-symmetry model deals with categorical

variables as nominal, when the variables are ordinal, other models are considered,

such as the models of conditional symmetry (McCullagh, 1978, known also as trian-

gular symmetry in Goodman, 1979a) and diagonals-parameter symmetry (Goodman,

1979a). Many other models for square contingency tables of nominal and ordinal

categorical variables have been studied; see Tahata and Tomizawa (2014) and Tahata

(2020) for more details.

Although the model of symmetry is parsimonious and has good interpretability,

there are relatively few square contingency tables with the probability structure

of the symmetry model practically common. Hence, there has been a great deal

of research on the above mentioned less restrictive models and their goodness-of-

fit tests as alternatives to the symmetry model. When the symmetry model does
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not hold, a detailed analysis is conducted through the decomposition of the model

in order to investigate the cause of the failure (Tomizawa and Tahata, 2007). It

is also of interest to measure the degree of departure from the symmetry model

in certain directions. For example, for nominal square contingency tables Becker

(1990) treated the quasi-symmetry model as a model that measures the degree of

departure from the symmetry model in the direction of marginal inhomogeneity, and

introduced parameters that by reparameterizing it represent the degree. For ordinal

square contingency tables, Goodman (1979a) showed that the models of conditional

symmetry and diagonals-parameter symmetry can be interpreted as measuring the

degree of departure from the symmetry model in certain directions.

Just as there are measures of the degree of departure from independence as described

above, there have been many studies on indexes of the degree of departure from the

symmetry model in the analysis of square contingency tables. Tomizawa (1994) pro-

posed two indexes to measure the degree of departure from the symmetry model in

nominal square contingency tables. One of them is constructed using the Kullback-

Leibler divergence (or the weighted average of the conditional Shannon entropy) and

the other one using the Pearson’s chi-square type discrepancy (or the weighted aver-

age of conditional Gauss discrepancy). Tomizawa et al. (1998) proposed an index for

the symmetry model using the power-divergence including those divergences (or the

weighted average of the diversity index including the Shannon entropy and the Gauss

discrepancy). Tomizawa et al. (2001) proposed an index to measure the degree of

departure from the symmetry model in ordinal square contingency tables based on

the power-divergence or the diversity index by using certain cumulative probabili-

ties defined only for ordinal categorical variables. Iki and Tomizawa (2018) proposed

other index for the symmetry model in ordinal square contingency tables using dif-

ferent definitions of cumulative probabilities. There are also indexes that measure
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the degree of departure from models other than the symmetry model. Tomizawa

(1995) proposed two indexes, one based on the Kullback-Leibler divergence (or the

weighted average of the conditional Shannon entropy) and the other one using the

Pearson’s chi-square type discrepancy (or the weighted average of conditional Gauss

discrepancy) to measure the degree of departure from marginal homogeneity in nom-

inal square contingency tables. Tomizawa and Makii (2001) proposed an index for

marginal homogeneity based on the power-divergence (or the weighted average of

the diversity index). In ordinal square contingency tables, indexes for marginal ho-

mogeneity have been proposed for Tomizawa et al. (2003), Tahata et al. (2008),

Iki et al. (2012), and Nakagawa et al. (2020), using various definitions of cumula-

tive probabilities. Tomizawa (1992) and Tahata et al. (2004) proposed indexes to

measure the degree of departure from the quasi-symmetry model, Tomizawa and

Saitoh (1999b), Tomizawa and Saitoh (1999a), and Saigusa et al. (2021) proposed

indexes to measure the degree of departure from the conditional symmetry model,

Tomizawa and Kato (2003), Tomizawa et al. (2005), Miyamoto et al. (2010), and

Kurakami et al. (2013) proposed indexes to measure the degree of departure from

the diagonals-parameter symmetry model.

The indexes for models of symmetry and marginal homogeneity described above may

represent two probability structures at the maximum degree of departure, and they

cannot be distinguished. As the Pearson’s correlation coefficient indicates positive

correlation when the value is positive and negative correlation when the value is

negative, it is sometimes desirable to distinguish the probability structures of the

maximum degree of departure in the index for symmetry and marginal homogeneity

as well. Tahata et al. (2009) proposed an index that can distinguish between the two

probability structures, complete-upper-asymmetry and complete-lower-asymmetry,

represented by the maximum value of the indexes of Tomizawa (1994), Tomizawa
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et al. (1998), and Tomizawa et al. (2001). Tahata et al. (2010) also proposed an

index that can distinguish between complete-upper-asymmetry and complete-lower-

asymmetry using the cumulative probabilities. Yamamoto et al. (2011) and Iki et al.

(2019) proposed an index that can distinguish between two marginal inhomogeneity

represented by the maximum value of the indexes of Tomizawa et al. (2003) and Iki

et al. (2012), respectively.

While the indexes for models of symmetry and asymmetry are suitable for repre-

senting the degree of departure from the model of interest, vector type indexes that

use these indexes as elements have been studied in recent years. Vector type in-

dexes inherit the properties of the indexes that include them as elements but also

provide new capabilities to interests that could not be addressed in the analysis of

square contingency tables. Ando et al. (2017) developed a vector type index that

can visually represent which direction the probability structure is deviated from the

symmetry model, complete-upper-asymmetry or complete-lower-asymmetry, and the

degree of departure, using Tomizawa et al. (2001) and Tahata et al. (2010). Ando

(2019), Ando et al. (2019), and Ando et al. (2021) proposed vector type indexes that

can visually represent in which direction the probability structure deviates from the

marginal homogeneity to the two marginal inhomogeneities and the degree of depar-

ture. Ando (2021a) proposed a vector type index that can simultaneously visually

represent the degree of departure from the quasi-symmetry model and its direction.

Other vector type indicators are proposed by Ando et al. (2019), Ando (2020), Ando

et al. (2021), Ando (2021b), Ando (2021c), and Ando (2022).
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1.2 Overview of the thesis

This thesis proposes two indexes for symmetry. The first one is a two-dimensional

vector type index that measures the degree of departure from the symmetry model

in nominal square contingency tables. The vector type indexes can be combined

with two or more other indexes to provide additional usefulness while preserving the

properties of those indexes. Tomizawa et al. (1998) proposed an index to represent

the degree of departure from the symmetry model to a defined maximum asymmetry

structure, where both edges of its range [0, 1] are trivial to interpret (0 and 1 indicate

symmetry and its maximum asymmetry structure, respectively), but not for values

in between. To address this issue, we propose a two-dimensional vector type index

that can be combined with two kinds of indexes to give useful interpretations of the

degree of departure from the symmetry model, while retaining the interpretability

of the symmetry model and the maximum asymmetry structure in Tomizawa et al.

(1998).

The second is an (one-dimensional) index that can simultaneously represent the

degree and direction of asymmetry in ordinal square contingency tables. Iki and

Tomizawa (2018) defined two types of asymmetry structures as probability structures

of the maximum departure from the symmetry model. However, the index proposed

by Iki and Tomizawa (2018) cannot distinguish in which direction the degree of

departure is. For the purposes of applications, it may be required to interpret the

results of distinguishing two asymmetry structures. Therefore, we propose an index

that can distinguish these asymmetries and represent the degree of departure in each

direction by using the arc-cosine function.

This thesis is organized as follows. Chapter 1 introduces the background and pre-

vious works on the analysis of contingency tables, especially two-way contingency
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tables and square contingency tables, and provides an overview of each chapter in

this thesis.

The content in Chapter 2 comes from Momozaki et al. (2021). In the analysis of two-

way contingency tables, the degree of departure from independence is measured using

measures of association between row and column variables (e.g., Yule’s coefficients

of association and of colligation, Cramér’s coefficient, and Goodman and Kruskal’s

coefficient). On the other hand, in the analysis of square contingency tables with the

same row and column classifications, we are interested in measuring the degree of

departure from symmetry rather than independence. Over past years, many studies

have proposed various types of indexes based on their power divergence (or diversity

index) to represent the degree of departure from symmetry. This study proposes a

two-dimensional index to measure the degree of departure from symmetry in terms

of the log odds of each symmetric cell with respect to the main diagonal of the table.

By measuring the degree of departure from symmetry in terms of the log odds of

each symmetric cell, the analysis results are easier to interpret than existing indexes.

Numerical experiments show the utility of the proposed two-dimensional index. We

show the usefulness of the proposed two-dimensional index by using real data.

The content in Chapter 3 comes from Momozaki et al. (2023). For square contin-

gency tables with ordered categories, an index based on Cressie and Read (1984)’s

power-divergence (or Patil and Taillie (1982)’s diversity-index) has been proposed

in order to measure the degree of departure from symmetry. Although there are two

types of maximum asymmetry (i.e., whether (1) all the observations concentrate in

the top-right cell in the table, or (2) they concentrate in the bottom-left cell) repre-

sented by the maximum value of Iki and Tomizawa (2018)’s index, the existing index

cannot distinguish the two directions of maximum asymmetry. This paper proposes
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a directional index based on the arc-cosine function in order to simultaneously rep-

resent the degree and directionality of asymmetry. The proposed index would be

useful for comparing degrees of asymmetry for several square contingency tables.

Numerical examples show the utility of the proposed index using some datasets. We

evaluate the usefulness of the proposed index by applying it to real data of the clin-

ical study. The proposed index provides analysis results that are easier to interpret

than the existing index.

Chapter 4 provides some discussion and concluding remarks.



Chapter 2

Two-Dimensional Index of Departure

from the Symmetry Model for

Square Contingency Tables with

Nominal Categories

2.1 Introduction

For two-way contingency tables, an analysis is generally performed to see whether

the independence between the row and column classifications holds. Meanwhile, for

the analysis of square contingency tables with the same row and column classifica-

tions, there are many issues related to symmetry rather than independence. This

is because, in square contingency tables, there is a strong association between the

row and column classifications. Consider an r× r square contingency table. Let πij

denote the probability that an observation will fall in the ith row and jth column of

13
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the table (i, j = 1, . . . , r). Bowker (1948) proposed the symmetry model defined by

πij = πji for all i < j.

This symmetry model, however, often does not hold when applied to real data. When

the symmetry model fits real data poorly, other symmetry (e.g., quasi symmetry

(Caussinus, 1965) and partial symmetry (Saigusa et al., 2016)) models, or asym-

metry (e.g., conditional symmetry (McCullagh, 1978), linear diagonals-parameter

symmetry (Agresti, 1983a), and conditional difference asymmetry (Tomizawa et al.,

2004)) models are applied to these real data.

In the analysis of two-way contingency tables, the degree of departure from inde-

pendence is assessed by using measures of association between the row and column

variables. Measures of association include, for example, Yule’s coefficients of associ-

ation and of colligation (Yule, 1900, 1912), Cramér’s coefficient (Cramér, 1946), and

Goodman and Kruskal’s coefficient (Goodman and Kruskal, 1954). For details, see

Bishop et al. (2007) and Agresti (2013).

In addition, in the analysis of square contingency tables with the same row and

column classifications, we are interested in measuring the degree of departure from

the symmetry model. Over the past few years, many studies have proposed indexes

to represent the degree of departure from the symmetry model. Tomizawa et al.

(1998) and Tomizawa et al. (2001) proposed the various types of indexes based on

power divergence (or the diversity index) to represent the degree of departure from

the symmetry model. Ando et al. (2019) and Ando (2020) proposed two-dimensional

indexes to represent the degree of departure from symmetry. A two-dimensional

index allows us to visually compare the degrees of departure from symmetry in
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multiple data sets by using confidence regions and allows us to easily interpret the

results of data analysis.

This study proposes a two-dimensional index to measure the degree of departure

from the symmetry model in terms of the log odds of each symmetric cell with

respect to the main diagonal of the table. By measuring the degree of departure

from symmetry in terms of the log odds of each symmetric cell, the analysis results

are easier to interpret than existing indexes. This paper is organized as follows.

Section 2.2 introduces the proposed index and shows the properties of the proposed

index. Section 2.3 derives the confidence region of the proposed index. Section 2.4

shows the usefulness of the proposed index by applying it to real data. Section

2.5 discusses properties of the proposed index by using several asymmetry models.

Section 2.6 describes the concluding remarks.

2.2 Two-Dimensional Index and Its Properties

This section proposes a two-dimensional index to measure the degree of departure

from the symmetry model in terms of the log odds of each symmetric cell with re-

spect to the main diagonal of the table. By using the weighted geometric mean

indexes of the diversity index as the elements of the proposed two-dimensional in-

dex, the proposed two-dimensional index has more useful properties than the index

proposed by Tomizawa et al. (1998), which measures the degree of departure from

the symmetry model. Section 2.2.1 describes two univariate indexes of weighted

geometric mean type that are elements of the proposed two-dimensional index and

their characteristics. Section 2.2.2 shows the relationship between the elements of

the proposed two-dimensional index and describes the properties of the proposed

two-dimensional index.
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2.2.1 Univariate Index of Weighted Geometric Mean Type

For an r× r square contingency table with nominal categories, Saigusa et al. (2016)

proposed the weighted geometric mean of the diversity index as follows. Assuming

that πij + πji > 0 for all i < j, for λ > −1,

τ (λ) =
∏
i<j

[
ϕ
(λ)
ij

](π∗
ij+π∗

ji)

,

where

ϕ
(λ)
ij = 1− λ2λ

2λ − 1
H

(λ)
ij , H

(λ)
ij =

1

λ

[
1− (πc

ij)
λ+1 − (πc

ji)
λ+1
]
,

πc
ij =

πij

πij + πji

, π∗
ij =

πij

δ
, δ =

∑
i ̸=j

πij.

The values at λ = 0 are taken to be the continuous limit as λ → 0. Note that

H
(λ)
ij is Patil and Taillie (1982)’s diversity index of degree λ including the Shannon

entropy (λ = 0), and the real number λ is chosen by the user. The index τ (λ) has

the following characteristics: (i) 0 ≤ τ (λ) ≤ 1; (ii) τ (λ) = 0 if and only if πij = πji

for at least one i < j; and (iii) τ (λ) = 1 if and only if the degree of asymmetry is

maximum in the sense that πij = 0 (then πji > 0) or πji = 0 (then πij > 0) for all

i < j.

For an r× r square contingency table with nominal categories, we define a weighted

geometric mean univariate index of the diversity index, which has a different formula

from index τ (λ), as follows. Assuming that πij + πji > 0 for all i < j, for λ > −1,

Φ(λ) = 1−
∏
i<j

[
1− ϕ

(λ)
ij

](π∗
ij+π∗

ji)

.

The values at λ = 0 are taken to be the continuous limit as λ → 0. Note that
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H
(λ)
ij is Patil and Taillie (1982)’s diversity index of degree λ including the Shannon

entropy (λ = 0), and the real number λ is chosen by the user. The index Φ(λ)

has the following characteristics: (i) 0 ≤ Φ(λ) ≤ 1; (ii) Φ(λ) = 0 if and only if the

symmetry model holds; and (iii) Φ(λ) = 1 if and only if πij = 0 (then πji > 0) or πji =

0 (then πij > 0) for at least one i < j.

2.2.2 Two-Dimensional Index of Symmetry

Assuming that πij + πji > 0 for all i < j, we propose a two-dimensional index

defined by

Λ(λ) = (Φ(λ), τ (λ))⊤ for λ > −1,

where Φ(λ) and τ (λ) are described in section 2.2.1 and a⊤ is the transpose of a. The

values at λ = 0 are taken to be the continuous limit as λ → 0. Note that H(λ)
ij is the

diversity index of degree λ in Patil and Taillie (1982) including the Shannon entropy

(λ = 0), where λ is a real number chosen by the user.

By noting that the indexes Φ(λ) and τ (λ) are expressed using the weighted geomet-

ric mean of the diversity index, the following theorem concerning the relationship

between Φ(λ) and τ (λ) holds.

Theorem 2.1. The inequality τ (λ) ≤ Φ(λ) holds, and that equality holds if, and only

if, the conditional difference asymmetry model defined by Tomizawa et al. (2004) as

πij = e∆ijπji for all i < j,

where |∆ij| = ∆ and {∆ij} are unspecified real-valued parameters, holds.

The proof of this theorem is given in Appendix A.1.
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Based on the above properties of the elements Φ(λ) and τ (λ) of the proposed two-

dimensional index Λ(λ), Λ(λ) has the following characteristics:

(1) The value of Λ(λ) lies on the sides and inside the triangle at vertices (0, 0),

(1, 0), and (1, 1);

(2) Λ(λ) = (0, 0)⊤ if, and only if, the symmetry model holds;

(3) Λ(λ) = (1, 1)⊤ if, and only if, the degree of asymmetry is maximum in the

sense that πij = 0 (then πji > 0) or πji = 0 (then πij > 0) for all i < j;

(4) Λ(λ) = (t, t)⊤, where t is a constant for 0 ≤ t ≤ 1 if, and only if, the conditional

difference asymmetry model holds.

The conditional difference asymmetry model holds if, and only if, the absolute value

of the log odds of each symmetric cell with respect to the main diagonal of the table

can be expressed by the constant ∆. Namely, the proposed two-dimensional index

can represent the degree of departure from the symmetry model in terms of the log

odds log(πij/πji).

Remark 2.2. Similar to the index proposed by Tomizawa et al. (1998) (see Appendix

A.2), the proposed two-dimensional index represents the degree of departure from

the symmetry model, and πij = 0 (then πji > 0) or πji = 0 (then πij > 0) for all i < j

when the degree of asymmetry is maximum. However, the proposed two-dimensional

index represents it in terms of the log odds of each symmetric cell with respect to the

main diagonal of the table, which makes the analysis results easier to interpret than

the Tomizawa et al. (1998)’s index. Section 2.4 shows the usefulness of the proposed

two-dimensional index by using an example. This may be one of the advantages of

the proposed two-dimensional index, which cannot be represented only by using the

indexes Φ(λ) and τ (λ), which are elements of the proposed two-dimensional index.
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2.3 Approximate Confidence Region for the Pro-

posed Index

Let nij denote the observed frequency in the ith row and jth column of the table

(i, j = 1, . . . , r). Assume that a multinomial distribution applies to the r × r table.

The sample proportions of {πij; i, j = 1, . . . , r} are {pij = nij/n} with n =
∑

i,j nij.

The estimator of the proposed index Λ(λ), Λ̂(λ) is provided by replacing {πij} with

{pij}.

Let p and π be the r2 × 1 vectors

p = (p11, p12, . . . , p1r, p21, . . . , prr)
⊤ and π = (π11, π12, . . . , π1r, π21, . . . , πrr)

⊤,

respectively. Then
√
n(p−π) asymptotically (as n → ∞) has a normal distribution

with the zero mean vector and the covariance matrix diag(π)− ππ⊤, where diagπ

is a diagonal matrix with the elements of π on the main diagonal. Therefore, by the

delta method (see, e.g., Agresti, 2013),
√
n(Λ̂(λ) −Λ(λ)) asymptotically (as n → ∞)

has a bivariate normal distribution with the mean zero vector and the covariance

matrix

Σ[Λ(λ)] =

(
∂Λ(λ)

∂π

)⊤ (
diag(π)− ππ⊤)(∂Λ(λ)

∂π

)

=

 σ11 σ12

σ21 σ22

 ,
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where

σ11 =
∑
i,j

πij

(
∂Φ(λ)

∂πij

)2

−

(∑
i,j

πij
∂Φ(λ)

∂πij

)2

,

σ12 =
∑
i,j

πij
∂Φ(λ)

∂πij

∂τ (λ)

∂πij

−

(∑
i,j

πij
∂Φ(λ)

∂πij

)(∑
i,j

πij
∂τ (λ)

∂πij

)

= σ21,

σ22 =
∑
i,j

πij

(
∂τ (λ)

∂πij

)2

−

(∑
i,j

πij
∂τ (λ)

∂πij

)2

with

∂Φ(λ)

∂πij

=



1− Φ(λ)

δ

log 1− Φ(λ)

1− ϕ
(λ)
ij

+
λ+ 1

1− 2−λ

πc
ji

1− ϕ
(λ)
ij

{
(πc

ij)
λ − (πc

ji)
λ
} for λ ̸= 0,

1− Φ(0)

δ

log
1− Φ(0)

1− ϕ
(0)
ij

+
1

log 2

πc
ji

1− ϕ
(0)
ij

log
πc
ij

πc
ji

 for λ = 0,

∂τ (λ)

∂πij

=



τ (λ)

δ

log ϕ
(λ)
ij

τ (λ)
+

λ+ 1

1− 2−λ

πc
ji

ϕ
(λ)
ij

{
(πc

ij)
λ − (πc

ji)
λ
} for λ ̸= 0,

τ (0)

δ

log
ϕ
(0)
ij

τ (0)
+

1

log 2

πc
ji

ϕ
(0)
ij

log
πc
ij

πc
ji

 for λ = 0.

Let Σ̂[Λ(λ)] denote Σ[Λ(λ)] with {πij} replaced by {pij}. The approximate 100(1−

α)% confidence region of Λ(λ) is given as

n(Λ̂(λ) −Λ(λ))⊤Σ̂[Λ(λ)]−1(Λ̂(λ) −Λ(λ)) ≤ χ2
(1−α;2),

where χ2
(1−α;2) is the 1 − α quantile of the chi-square distribution with two degrees

of freedom. Note that the confidence region is computable when 0 < Φ(λ) < 1 and
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0 < τ (λ) < 1.

Since the delta method for multinomial distributions assumes asymptotic normality

for the observed frequencies of each cell, the asymptotic normality of the index

obtained by the delta method may be affected when the observed frequencies are

small near the corners of the contingency table (see, e.g., Agresti, 2013, p.589).

2.4 Example

This section demonstrates the usefulness of the proposed two-dimensional index Λ(λ)

compared with the index of Tomizawa et al. (1998) (denoted by ζ(λ); see Appendix

A.2), which measures the degree of departure from the symmetry model by using

the real data cited from Hashimoto (1999, 2003) (2.1).

These real data are the cross-classification of fathers’ and sons’ occupational status

categories in Japan, which were examined in 1955 and 1995. Their status could be

classified as (1) capitalist, (2) new middle, (3) working, (4) self-employed, and (5)

farming.
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Table 2.1: The cross-classification of father’s and his son’s occupational status
categories in Japan which were examined in 1955 and 1995

Father’s Son’s status

status (1) (2) (3) (4) (5) Total

(a) in 1955; source Hashimoto (1999)

(1) 39 39 39 57 23 197

(2) 12 78 23 23 37 173

(3) 6 16 78 23 20 143

(4) 18 80 79 126 31 334

(5) 28 106 136 122 628 1020

Total 103 319 355 351 739 1867

(b) in 1995; source Hashimoto (2003)

(1) 68 48 36 23 1 176

(2) 33 191 102 33 3 362

(3) 25 147 229 34 2 437

(4) 48 119 146 129 5 447

(5) 40 126 192 82 88 528

Total 214 631 705 301 99 1950

Table 2.2 represents estimates of indexes Φ(λ) and τ (λ), approximate standard errors

for Φ̂(λ) and τ̂ (λ), and approximate 95% confidence intervals for Φ(λ) and τ (λ) for the

real data in Hashimoto (1999, 2003).

Note that from the delta method, the approximate confidence intervals for Φ(λ) and

τ (λ) can be obtained by using the (1, 1) and (2, 2) components of the estimator of
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the covariance matrix Σ̂[Λ(λ)] of Λ(λ), respectively. When λ = 1, the estimates of

the two-dimensional index Λ(1) are

Λ̂
(1)
1955 =

0.340

0.252

 and Λ̂
(1)
1995 =

0.656

0.222

 ,

respectively, and the estimates of Σ are

Σ̂1955[Λ
(1)
1955] =

2.021 1.410

1.410 4.700

 and Σ̂1995[Λ
(1)
1995] =

4.295 0.641

0.641 3.291

 ,

respectively. Figure 2.1 shows point estimates and approximate 95% confidence

regions of the two-dimensional index Λ(1) for the real data in Hashimoto (1999,

2003). The vertical and horizontal axes in Figure 2.1 represent the values of indexes

Φ(λ) and τ (λ), respectively. Since these confidence regions do not overlap, it is inferred

that these data have different probability structures. From Table 2.2 and Figure 2.1,

we can see that the degree of departure from the symmetry model for the data in

Hashimoto (2003) is lager than for the data in Hashimoto (1999). Additionally, the

confidence region of Λ(1) for the data in Hashimoto (1999) includes the line passing

through the points (0, 0) and (1, 1), but the confidence region of Λ(1) for the data

in Hashimoto (2003) does not. Therefore, the probability structure of the data in

Hashimoto (1999) may have conditional difference asymmetry, and we can see that

the father’s occupational status in Japan in 1955 has a greater influence on his son’s

status than in 1995.

On the other hand, even using the existing index ζ(λ) of Tomizawa et al. (1998),

which measures the degree of departure from the symmetry model, since confidence

intervals of ζ(1) for the real data in Hashimoto (1999, 2003) are (0.265, 0.381) and

(0.399, 0.482), respectively, we can see the degree of departure from symmetry for the



Chapter II. Two-Dimensional Index for Symmetry 24

data in Hashimoto (2003) is larger than for the data in Hashimoto (1999). However,

the existing index ζ(λ) does not allow us to determine which the data in Hashimoto

(1999, 2003) show that the father’s occupational status has more influence on his

son’s status.

The proposed two-dimensional index Λ(λ) is not only capable of representing the

degree of departure from the symmetry model, but also can take into account the

log odds of each symmetric cell with respect to the main diagonal of the table (i.e.,

the degree of departure from the conditional difference asymmetry model). It can,

therefore, provide more interpretable analysis results, as above.

Table 2.2: Estimates of indexes Φ(λ) and τ (λ), approximate standard errors for
Φ̂(λ) and τ̂ (λ), and approximate 95% confidence intervals for Φ(λ) and τ (λ) for the

real data in Hashimoto (1999, 2003)

λ Estimated Index Standard Error Confidence interval

(a) For Hashimoto (1999)’s data

Φ(λ) 1 0.340 0.033 (0.276, 0.404)

0.5 0.316 0.031 (0.254, 0.377)

0 0.262 0.027 (0.209, 0.316)

τ (λ) 1 0.252 0.050 (0.154, 0.350)

0.5 0.233 0.047 (0.142, 0.325)

0 0.193 0.039 (0.117, 0.270)

(b) For Hashimoto (2003)’s data

Φ(λ) 1 0.656 0.047 (0.564, 0.748)

0.5 0.631 0.049 (0.536, 0.726)

0 0.558 0.049 (0.462, 0.655)

τ (λ) 1 0.222 0.041 (0.142, 0.303)

0.5 0.209 0.039 (0.133, 0.285)

0 0.179 0.034 (0.113, 0.245)
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Figure 2.1: Point estimates and approximate 95% confidence regions of the two-
dimensional index Λ(1) for the real data in Hashimoto (1999, 2003)

2.5 Discussion

This section discusses properties of the proposed index Λ(λ) for several asymmetry

models. Consider the conditional symmetry model (McCullagh, 1978) and the linear

diagonals-parameter symmetry model (Agresti, 1983a) as asymmetry models. The

conditional symmetry model is defined by

πij = γπji for all i < j.
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The linear diagonals-parameter symmetry model is defined by

πij = θj−iπji for all i < j.

Note that if the conditional symmetry model holds, then the conditional differ-

ence asymmetry model holds, but the reverse is not true. In contrast, if the linear

diagonals-parameter symmetry model holds, the conditional difference asymmetry

model does not always hold.

Figure 2.2 plots the values of the proposed index Λ(1) for γ = 1, 2, 3, 5, 10, 100, 1000

in the conditional symmetry model. The vertical and horizontal axes in Figure 2.2

represent the values of indexes Φ(λ) and τ (λ), respectively. From Figure 2.2, as the

value of γ increases, the value of Λ(1) approaches (1, 1) and lies on the straight line

passing through (0, 0) and (1, 1). On the other hand, Figure 2.3 plots the values

of the proposed index Λ(1) for θ = 1, 2, 3, 5, 10, 100, 1000 in the linear diagonals-

parameter model. The vertical and horizontal axes in Figure 2.3 represent the values

of indexes Φ(λ) and τ (λ), respectively. As can be seen in Figure 2.3, the value of Λ(1)

approaches (1, 1) as the value of θ increases, but the value of Λ(1) does not lie on the

straight line passing through (0, 0) and (1, 1) for all values of θ. Similar results are

observed for another value of λ, although the details are omitted. This difference is

due to the fact that the proposed index Λ(λ) measures the degree of departure from

symmetry in terms of the log odds of each symmetric cell with respect to the main

diagonal in the table.

Therefore, the proposed index Λ(λ) is suitable for measuring the degree of departure

from symmetry and can visually distinguish the asymmetry models as described

above.
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Figure 2.2: The values of the proposed index Λ(1) under the conditional sym-
metry model with parameter γ
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Figure 2.3: The values of the proposed index Λ(1) under the linear diagonals-
parameter symmetry model with parameter θ

2.6 Conclusions

This paper proposed a two-dimensional index to measure the degree of departure

from symmetry in terms of the log odds of each symmetric cell with respect to the

main diagonal in the square contingency tables. By measuring the degree of depar-

ture from symmetry in terms of the log odds of each symmetric cell, the proposed
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two-dimensional index provides more interpretable analysis results than the existing

index of Tomizawa et al. (1998), which measures the degree of departure from the

symmetry model. Additionally, the proposed two-dimensional index allows us to vi-

sually compare the degrees of departure from symmetry in multiple data sets using

confidence regions and easily interpret the results of data analysis.

The proposed index Λ(λ) is invariant under arbitrary same permutations of the row

and column categories; namely, the value of Λ(λ) does not depend on the order of

the categories. Therefore, it is possible to use the proposed index for data with nom-

inal categories. Moreover, if we may not use the information about the categories’

ordering, it is possible to use the proposed index for data on an ordinal scale.





Chapter 3

An Index for the Degree and

Directionality of Asymmetry for

Square Contingency Tables with

Ordered Categories

3.1 Introduction

For two-way contingency tables, an analysis is generally performed to see whether

the independence between the row and column classifications holds. On the other

hand, for the analysis of square contingency tables with the same row and column

classifications, there are many issues related to symmetry rather than independence.

This is because, in square contingency tables, there is a strong association between

the row and column classifications.

31
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Consider an r × r square contingency table. Let πij denote the probability that an

observation will fall in the ith row and jth column of the table (i, j = 1, . . . , r).

Bowker (1948) proposed the symmetry model defined by

πij = πji for all i < j.

The symmetry model can be expressed as

Uij = Lji for all i, j,

where

Uij =
i∑

s=1

r∑
t=j

πst, Lji =
r∑

s=j

i∑
t=1

πst.

Note that the cumulative probabilities {Uij, Lji} that may contain diagonal proba-

bilities {πii} can be defined for ordered categories.

The symmetry model, however, often does not hold when applied to real data. When

the symmetry model fits real data poorly, other symmetry or asymmetry models (see,

e.g., Tahata and Tomizawa, 2014) are applied to real data.

We are also interested in measuring the degree of asymmetry when the symme-

try model does not hold. When the symmetry model does not hold for multiple

datasets, we may compare degrees of asymmetry. Over past years, many studies

have proposed indexes to represent the degree of asymmetry. Tomizawa et al. (1998)

proposed an index based on power divergence (or diversity index) to represent the

degree of departure from the symmetry model for square contingency tables with

nominal categories. Moreover, Iki and Tomizawa (2018) proposed an index based on

power divergence (or diversity index) to represent the degree of departure from the

symmetry model for square contingency tables with ordered categories. For square
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contingency tables with ordered categories, we may be interested in distinguishing

two types of maximum asymmetry (i.e., whether (1) all the observations concentrate

in the top-right cell in the table, or (2) they concentrate in the bottom-left cell). The

index of Iki and Tomizawa (2018), however, cannot distinguish the two directions of

maximum asymmetry (see Appendix B.1 for the details of the index).

This paper proposes a directional index that can distinguish the two kinds of maxi-

mum asymmetry. Section 3.2 introduces the proposed index and shows the utility of

the proposed index. Section 3.3 derives an approximate confidence interval for the

proposed index. Section 3.4 shows the usefulness of the proposed index by applying

it to real data of the clinical study. Section 3.5 describes the concluding remarks.

3.2 Directional index and its utility

This section proposes a directional index that can distinguish two types of maximum

asymmetry and shows the utility of the proposed index.

3.2.1 Directional index via an arc-cosine function

Assuming that π1r + πr1 > 0, we propose a directional index defined by

Γ =
4

π

∑
i,j

(i,j)̸=(r,1)

(U∗
ij + L∗

ji)
(
θij −

π

4

)
,

where

U∗
ij =

Uij

τ
, L∗

ji =
Lji

τ
, τ =

∑
i,j

(i,j)̸=(r,1)

(Uij + Lji), θij = arccos

 Uij√
U2
ij + L2

ji

 .
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The range of Γ is −1 to 1 since the range of θij is 0 ≤ θij ≤ π/2. The index Γ has

the following characteristics: (i) Γ = −1 if and only if π1r = 1, (ii) Γ = 1 if and only

if πr1 = 1; and (iii) if the symmetry model holds then Γ = 0.

Using the index Γ, we can see whether the degree of asymmetry departs toward the

structure such that all the observations concentrate in the top-right cell (1, r) in the

table or the structure such that they concentrate in the bottom-left cell (r, 1) in the

table. As the index Γ approaches −1, the asymmetry structure is closer to π1r = 1,

and as the index Γ approaches 1, it is closer to πr1 = 1.

Note that for all {i, j|(i, j) ̸= (r, 1)}, (θij − π/4) is zero when Uij = Lji, negative

value when Uij > Lji, and positive value when Uij < Lji. Since the index Γ is

the weighted sum of (θij − π/4), the value of Γ is zero if and only if the weighted

average of (θij − π/4) is zero. If we shall refer to the structure of Γ = 0 as the

average cumulative symmetry, the index Γ represents the degree of departure from

the average cumulative symmetry towards the two types of maximum asymmetry.

3.2.2 The utility of the proposed index

This subsection demonstrates the utility of the proposed index. First, we compare

the proposed index Γ with the indexes of Iki and Tomizawa (2018) (denoted by

κ(λ); see Appendix B.1) and Tahata et al. (2009) (denoted by φ; see Appendix B.2).

Tahata et al. (2009)’s index φ can distinguish whether (I) the complete upper asym-

metry or (II) the complete lower asymmetry (i.e., whether (I) all the observations

concentrate in the upper right triangle cells in the table, or (II) they concentrate in

the lower left triangle cells). We consider the 4×4 structures of probability that have

different asymmetric structures in Tables 3.1a to 3.1i. Table 3.2, however, represents

that the values of κ(1) applied to Tables 3.1a and 3.1i, 3.1b and 3.1h, 3.1c and 3.1g,
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and 3.1d and 3.1f are equal. Additionally, it is impossible to calculate the values of

φ applied to Tables 3.1a, 3.1b, 3.1h, and 3.1i because the existing index φ can be

used under the condition πij + πji > 0 for all i < j. In contrast, all values of Γ are

different, and the proposed index Γ can be applied to all of Tables 3.1a through 3.1i.

When measuring the degree of asymmetry, it is important to distinguish between

the two possible directions of maximum asymmetry, such that π1r = 1 and πr1 = 1.

This is because the interpretation of the result changes depending on whether the

degree of asymmetry departs toward π1r = 1 and πr1 = 1. It is also important to

note that the value of the proposed index changes depending on the asymmetric

structure. This is useful for comparing the degree of asymmetry among contingency

tables. Thus, when measuring the degree of asymmetry, we suggest that analysts

use the proposed index that can distinguish between the two directions of maximum

asymmetry.

Table 3.1: The 4× 4 structures of probability

(a)
0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

(b)
0.0000 0.0000 0.3333 0.3334
0.0000 0.0000 0.0000 0.3333
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

(c)
0.1000 0.1000 0.1000 0.1000
0.0000 0.1000 0.1000 0.1000
0.0000 0.0000 0.1000 0.1000
0.0000 0.0000 0.0000 0.1000

(d)
0.0769 0.0769 0.0770 0.0770
0.0769 0.0769 0.0769 0.0770
0.0000 0.0769 0.0769 0.0769
0.0000 0.0000 0.0769 0.0769

(e)
0.0625 0.0625 0.0625 0.0625
0.0625 0.0625 0.0625 0.0625
0.0625 0.0625 0.0625 0.0625
0.0625 0.0625 0.0625 0.0625

(f)
0.0769 0.0769 0.0000 0.0000
0.0769 0.0769 0.0769 0.0000
0.0770 0.0769 0.0769 0.0769
0.0770 0.0770 0.0769 0.0769

(g)
0.1000 0.0000 0.0000 0.0000
0.1000 0.1000 0.0000 0.0000
0.1000 0.1000 0.1000 0.0000
0.1000 0.1000 0.1000 0.1000

(h)
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.3333 0.0000 0.0000 0.0000
0.3334 0.3333 0.0000 0.0000

(i)
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000
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Table 3.2: The values of Γ, κ(1), and φ for Table 3.1

Index Table number

3.1a 3.1b 3.1c 3.1d 3.1e 3.1f 3.1g 3.1h 3.1i

Γ −1.000 −0.916 −0.561 −0.324 0.000 0.324 0.561 0.916 1.000

κ(1) 1.000 0.846 0.324 0.113 0.000 0.113 0.324 0.846 1.000

φ NA NA −1.000 −0.333 0.000 0.333 1.000 NA NA

Note that, in addition to the structure of probability where the symmetry model

holds as shown in Table 3.1e, there is also a structure of probability where the value

of the proposed index Γ is zero as shown in Table 3.3. Average cumulative symmetry

includes such a structure of probability.

Table 3.3: The 4× 4 structure of probability

0.150 0.025 0.050 0.025

0.050 0.150 0.025 0.025

0.025 0.025 0.150 0.050

0.025 0.050 0.025 0.150

3.3 Approximate confidence interval for the pro-

posed index

Let nij denote the observed frequency in the ith row and jth column of the table

(i, j = 1, . . . , r). Assume that a multinomial distribution applies to the r × r table.

The sample proportions of {πij; i, j = 1, . . . , r} are {pij = nij/n} with n =
∑

i,j nij.
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The estimator of the index Γ, Γ̂ is provided by replacing {πij} with {pij}. This

section derives the asymptotic distribution of Γ̂ using the delta method (see, e.g.,

Agresti, 2013), and the approximate confidence interval of Γ.

Let p and π be the r2 × 1 vectors

p = (p11, p12, . . . , p1r, p21, . . . , prr)
⊤ and π = (π11, π12, . . . , π1r, π21, . . . , πrr)

⊤

respectively, where a⊤ is the transpose of a. Then
√
n(p − π) has an asymptot-

ically normal distribution with the mean zero vector and the covariance matrix

diag(π) − ππ⊤, where diag(π) is a diagonal matrix with the elements of π on the

main diagonal. Since

Γ̂ = Γ + d(π)(p− π) + op(1)

with d(π) = ∂Γ/∂π⊤,
√
n(Γ̂ − Γ) asymptotically (as n → ∞) has a normal distri-

bution with the mean zero and the variance

σ2[Γ] = d(π)(diag(π)− ππ⊤)d(π)⊤

=
∑
k,l

πkl

(
∂Γ

∂πkl

)2

−

(∑
k,l

πkl
∂Γ

∂πkl

)2

,

where

∂Γ

∂πkl

=
4

πτ

∑
i,j

(i,j)̸=(r,1)

(I[k ≤ i, j ≤ l] + I[j ≤ k, l ≤ i])
(
θij −

π

4
(Γ + 1)

)

+
4

πτ

∑
i,j

(i,j)̸=(r,1)

(Uij + Lji)
UijI[j ≤ k, l ≤ i]− LjiI[k ≤ i, j ≤ l]

U2
ij + L2

ji

and I[·] is the function, I[·] = 1 if true, 0 if not.
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Let σ̂2[Γ] denote σ2[Γ] with {πij} replaced by {pij}. The square root of σ̂2[Γ]/n is

an estimated standard error of Γ̂, and

Γ̂± zα/2
√
σ̂2[Γ]/n

is an approximate 100(1−α)% confidence interval for Γ, where zα/2 is the percentage

point of the standard normal distribution corresponding to a two-tail probability of

α.

3.4 Examples

Example 1: First, consider the data in Tables 3.4a and 3.4b, cited from Sugano

et al. (2012). In this study, 343 Japanese adult patients (aged ≥ 20 years) with

a history of peptic ulcers were randomly assigned to treatment (esomeprazole, 175

patients; placebo, 168 patients). The modified LANZA score indicates that “0” is the

best score and “+4” is the worst score. Thus, for the data in Tables 3.4a and 3.4b,

the more all the observations concentrate in the top-right cell in the tables, the more

improvement is shown. On the contrary, the more all the observations concentrate

in the bottom-left cell in the tables, the more ingravescence is shown. As a matter

of clinical interest, we would like to determine whether patients in the esomeprazole

group improved more than patients in the placebo group. Therefore, for these data

in Tables 3.4a and 3.4b, we are interested in comparing the degree of asymmetry as

well as distinguishing the directionality for the two types of asymmetry. Table 3.5

represents that (i) the degree of asymmetry for the data in Table 3.4a departs toward

the asymmetric structure, where all the observations concentrating in the top-right

cell in the table since the confidence interval for Γ is negative, and (ii) the degree

of asymmetry for the data in Table 3.4b departs toward the asymmetric structure,
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where all the observations concentrating in the bottom-left cell in the table since

the confidence interval for Γ is positive. Thus, using the proposed index, we can see

that patients in the esomeprazole group have experienced an improvement in terms

of the change from baseline to endpoint in the modified LANZA score, and patients

in the placebo group have experienced an ingravescence.

Note that the Tahata et al. (2009)’s index φ can be used only under the condition

πij + πji > 0 for all i < j. Therefore, it is impossible to calculate the values of φ

applied to the data in Table 3.4 because p25+p52 = 0 for the data in the esomeprazole

group and p14+p41 = 0 for the data in the placebo group. In contrast, the proposed

index Γ can apply to the data if the data satisfy the only condition p1r + pr1 > 0.

Comparing these conditions, π1r + πr1 > 0 and πij + πji > 0 for all i < j, the

proposed index Γ has high applicability and can be easily applied to the sparse data

like the data in Table 3.4.
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Table 3.4: Change in the modified LANZA score from baseline to end of study
in (a) the esomeprazole group and (b) the placebo group; source Sugano et al.

(2012)

End of study Baseline Total

0 +1 +2 +3 +4

(a) Esomeprazole group

0 78 9 26 3 1 117

+1 1 5 6 4 0 16

+2 9 1 10 3 1 24

+3 1 0 1 0 0 2

+4 3 0 1 1 2 7

Total 92 15 44 11 4 166

(b) Placebo group

0 41 2 19 0 0 62

+1 8 0 4 0 0 12

+2 12 4 14 3 0 33

+3 0 1 1 3 0 5

+4 29 7 11 6 0 53

Total 90 14 49 12 0 165
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Table 3.5: Estimates of indexes Γ and κ(1), approximate standard errors for Γ̂
and κ̂(1), and approximate 95% confidence interval for Γ and κ(1) for the data in

Tables 3.4a and 3.4b

Estimated index Standard error Confidence interval

(a) For Table 3.4a

Γ −0.198 0.056 (−0.308,−0.088)

κ(1) 0.053 0.024 (0.005, 0.101)

(b) For Table 3.4b

Γ 0.430 0.057 (0.317, 0.542)

κ(1) 0.217 0.037 (0.144, 0.291)

Example 2: Next, consider the clinical trial data in Tables 3.6a and 3.6b, cited from

Lundorff et al. (2005). This study was a randomized (surgery plus Oxiplexw/Ap Gel

group and surgery only group), the third party blinded, parallel-group design con-

ducted at four centers in Europe. Patients were 18-46 years old requiring peritoneal

cavity surgery by way of laparoscopy and expected to undergo a second-look la-

paroscopy as part of their treatment plan 6-10 weeks after the initial surgery. The

American Fertility Society (AFS) adnexal adhesion score is determined by assess-

ing the extent (area of adnexal organ covered by adhesions) and severity (severe: if

the adhesion requires cutting to remove or tears peritoneal surfaces when removed

bluntly or requires hemostasis; filmy if not severe) of the adhesions involving the

Fallopian tube and ovary. Summing the scores for the Fallopian tube and the ovary

provided a clinical category for the adhesion score: Minimum (0-5), Mild (6-10),

Moderate (11-20), and Severe (21-32). Thus, for the data in Tables 3.6a and 3.6b,

the more all the observations concentrate in the top-right cell in the tables, the more
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ingravescence is shown. On the contrary, the more all the observations concentrate

in the bottom-left cell in the tables, the more improvement is shown. As a matter

of clinical interest, we would like to determine whether patients in the surgery plus

Oxiplexw/AP Gel group improved more than patients in the surgery-only group.

Therefore, for these data in Tables 3.6a and 3.6b, we are interested in comparing

the degree of asymmetry as well as distinguishing the directionality of the two types

of asymmetry. Table 3.7 represents that (i) the degree of asymmetry for the data

in Table 3.6a departs toward the asymmetric structure, where all the observations

concentrating in the bottom-left cell in the table since the confidence interval for Γ is

positive, and (ii) the degree of asymmetry for the data in Table 3.6b departs toward

the asymmetric structure, where all the observations concentrating in the top-right

cell in the table since the confidence interval for Γ is negative. Thus, using the pro-

posed index, we can see that patients in the surgery plus Oxiplexw/AP Gel group

have experienced an improvement in terms of the change from baseline to second-

look in the AFS score, and patients in the surgery-only group have experienced an

ingravescence.
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Table 3.6: Change in the American Fertility Society (AFS) score category from
baseline to second-look in (a) the surgery plus Oxiplexw/AP Gel group and (b)

the surgery-only group; source Lundorff et al. (2005)

Baseline Second-look Total

Minimal Mild Moderate Severe

(a) Surgery plus Oxiplexw/AP Gel group

Minimal 22 1 0 0 23

Mild 2 2 1 0 5

Moderate 2 1 1 1 5

Severe 1 1 2 8 12

Total 27 5 4 9 45

(b) Surgery-only group

Minimal 13 7 1 2 23

Mild 0 0 3 1 4

Moderate 0 0 1 4 5

Severe 0 0 1 8 9

Total 13 7 6 15 41
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Table 3.7: Estimates of indexes Γ, κ(1), and φ, approximate standard errors for
Γ̂, κ̂(1), and φ̂, and approximate 95% confidence interval for Γ, κ(1), and φ for the

data in Tables 3.6a and 3.6b

Estimated index Standard error Confidence interval

(a) For Table 3.6a

Γ 0.195 0.081 (0.036, 0.355)

κ(1) 0.063 0.043 (−0.021, 0.147)

φ 0.538 0.285 (−0.022, 1.099)

(b) For Table 3.6b

Γ −0.394 0.070 (−0.532,−0.256)

κ(1) 0.206 0.054 (0.100, 0.313)

φ −0.918 0.094 (−1.101,−0.734)

3.5 Concluding remarks

This paper proposed a directional index based on an arc-cosine function that can

distinguish between the two directions of maximum asymmetry, namely, the struc-

ture such that all the observations concentrate in the top-right cell (1, r) or the

structure such that they concentrate in the bottom-left cell (r, 1) in the table. Nu-

merical examples demonstrated the utility of the proposed index by showing that

the values of the proposed index for some asymmetric probability structures were

all different, while the values of the existing index were partially the same. We

recommend the proposed index for measuring the degree of asymmetry because the

proposed index provides an easier interpretation for the analysis results than the

existing index. Since the proposed index lies between −1 and 1 not depending on
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the number of categories r and the sample size n, the proposed index is useful to

compare the degree of asymmetry for several square contingency tables. Note that

the value of the proposed index Γ depends on the main diagonal cell probabilities

{πii}, but does not the Tahata et al. (2009)’s index φ. Therefore, Γ rather than φ

would be useful when one wants to utilize the information of the observations in the

main diagonal cells of the table.

The proposed index should be applied to the tables with the ordered categories of the

same row and column because the proposed index is not invariant under arbitrary

similar permutations of the row and column categories.





Chapter 4

Discussion and Concluding Remarks

4.1 Discussion

Our proposed index Λ(λ) in Chapter 2 depends on the real value λ(> −1) chosen

by the user. Analysts may be interested in which λ value to use. Momozaki et al.

(2023) and Urasaki et al. (2023) discuss the choice, and I agree with them.

Momozaki et al. (2023) and Urasaki et al. (2023) recommend the use of various

values of λ, not just one value. Suppose we have two square contingency table data

(A and B), and we compare their degree of departure from the symmetry model

using Λ(λ). The analysts who compare them with the value λ1 obtain the result

that the degree of departure from the symmetry model is larger for data A than for

data B. On the other hand, for those who compare with the value λ2, the degree

is larger for data B than for data A. Thus, using only one value of λ may miss

the contradictory results. I argue that we should use multiple values of λ to check

whether the results are consistent.

47
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4.2 Concluding Remarks

This thesis proposed two indexes for models of symmetry: (i) a two-dimensional

vector type index that measures the degree of departure from the symmetry model

for square contingency tables with nominal categories (Chapter 2), and (ii) an index

of the degree and direction of the two asymmetries for square contingency tables with

ordered categories (Chapter 3). By combining the two indexes, the vector type index

can represent the degree of departure from the symmetry model to the maximum

asymmetry structure defined by Tomizawa et al. (1998) in terms of the log odds of

each symmetric cell probability, and therefore provides more interpretable analysis

results than the existing index. The index proposed in Chapter 3 can distinguish

between two kinds of maximum asymmetry structures defined in Iki and Tomizawa

(2018) while the index in Iki and Tomizawa (2018) cannot. Hence the proposed

index is useful when one is interested in which maximum asymmetric structure the

probability structure is closer to. As described in Chapter 1, there has been an

enormous amount of research on indexes in contingency tables. I would like to

discuss some cautions in the use of these indexes.

It is important to note whether the indexes are suitable for contingency tables com-

posed of nominal or ordinal. As mentioned in Chapter 1, nominal categorical vari-

ables have no order among categories, while ordinal categorical variables have order.

Some indexes may or may not be invariant under arbitrary permutations of the row

and column categories. As discussed in Sections 2.6 and 3.5, those indexes whose

values are invariant under arbitrary permutation of the row and column categories

are applicable to nominal categorical contingency tables, and those whose values

are not invariant are applicable to ordinal categorical contingency tables. Note that

the indexes for nominal category contingency tables are also applicable to ordinal



Chapter IV. Discussion and Concluding Remarks 49

category contingency tables if the information about the order among categories is

not used.

We should also choose the indexes to be used according to the purpose of the data

analysis, such as which model to measure the degree of departure and in which di-

rection. For example, even if we measure the degree of departure from the symmetry

model, the maximum asymmetry structures defined in Tomizawa et al. (2001) and

Iki and Tomizawa (2018) are different, and the interpretation of the analysis results

will clearly differ from each other. If we want to distinguish the structures of the

maximum asymmetry, we may consider using the index of Tahata et al. (2009) or the

index proposed in Chapter 3. In this way, one should understand the properties of

the index (e.g., which model is the degree of departure, what is the defined structure

of the maximum asymmetry, etc.) and choose the index according to the purpose of

the data analysis.

Lastly, we discuss the development of some of indexes in contingency tables for

future research. The small number of observations per cell in contingency tables

affects poorly not only the accuracy of estimation of cell probabilities, but also the

accuracy of estimation of indexes. Such a possibility is more likely to occur as

the number of categories increases, and is also a very important topic in multiway

contingency tables, although it was not covered in this thesis. As one of the solutions

for estimation of indexes, Momozaki et al. (2023) proposed an estimation procedure

using Bayesian estimators of cell probabilities that minimize the mean squared error

of the indexes. Another possible solution is that instead of using the large sample

theory (n → ∞) in deriving the asymptotic distribution of index, an asymptotic

theory that also addresses the increasing number of categories (r and/or c → ∞)

would be necessary. See Chapter 10 of Kateri (2014) and Chapters 16 and 17 of
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Agresti (2013) for other discussions on inference for the small sample and high-

dimensional categorical data.

Some may consider merging categories in contingency tables to avoid small cell ob-

servation frequencies. In addition, merging categories is easier to interpret, and in

clinical research they are often merged to form 3× 3 table, and such a contingency

table is called a “collapsed” table. However, it may be unreasonable to do so without

due care and attention. Tomizawa (1994)’s index to measure the degree of departure

from the symmetry model is defined using the Kullback-Leibler divergence, and it is

possible that the degree of departure increases as the number of categories increases

due to the properties of the Kullback-Leibler divergence. Namely, if the categories

are inadvertently merged, the index may possibly underestimate the degree of depar-

ture from the symmetry model. See Tahata et al. (2008), Yamamoto et al. (2012),

Yamamoto et al. (2013), and Yamamoto et al. (2016) for works on models of sym-

metry for collapsed tables, and Miyamoto and Tomizawa (2005), Yamamoto et al.

(2010), Yamamoto et al. (2015), Yamamoto et al. (2020), Aizawa et al. (2021), Iki

et al. (2021), and Shinoda et al. (2023) for works on indexes for models of symmetry.

The development of indexes in contingency tables is expected to continue for the

future. According to the applied fields, the probability structures (models) of interest

are different, and the desired properties of the indexes can also change with them.

There is a need to come up with new models as necessary. We will discuss closely with

the applied researchers to develop new indexes and their usefulness, and possibly

develop packages in popular programming languages such as R and Python so that

anyone can use the indexes.

Also, vector type indexes are composed of a combination of various indexes, and there

may be countless possible combinations. Conventional vector type indexes have been

developed with the motivation of measuring the degree of departure from certain
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models and representing the degree of asymmetry and its direction simultaneously,

or motivated by the decomposition of models. Meanwhile, the vector type index

proposed in Chapter 2 is motivated to provide a new perspective on the degree of

departure from the symmetry model by defining a new index that is best suited to be

combined with the existing index. Chapter 3 proposed a directional index that can

distinguish whether all the observations concentrate in the top-right cell (1, r) or the

bottom-left cell (r, 1) in the table. This index does not exactly measure the degree of

departure from the symmetry model, since the necessary and sufficient condition for

the value of 0 is not that the symmetry model holds. Similar to the index proposed

in Ando et al. (2017), we can propose a vector-type index that can measure the

degree of departure from the symmetry model, distinguish the directionality for

two maximum asymmetry structures, and represent the degree by using Iki and

Tomizawa (2018)’s index and our proposed index in Chapter 3.
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Appendix of Chapter 2

A.1 The Proof of Theorem 2.1

Proof of Theorem 2.1. Since

Φ(λ) ≥ 1−
∑
i<j

(π∗
ij + π∗

ji)
[
1− ϕ

(λ)
ij

]
, τ (λ) ≤

∑
i<j

(π∗
ij + π∗

ji)ϕ
(λ)
ij

holds from Jensen’s inequality, τ (λ) ≤ Φ(λ) holds. This equality holds if, and only

if, {ϕ(λ)
ij } are constant. Moreover, {ϕ(λ)

ij } are constant if, and only if, {H(λ)
ij } are

constant, which is equivalent to the fact that the conditional difference asymmetry

model holds.

A.2 The Index of Symmetry

For an r×r square contingency table with nominal categories, the index to represent

the degree of departure from the symmetry model is proposed by Tomizawa et al.
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(1998), as follows. Assuming that πij + πji > 0 for all i < j, for λ > −1,

ζ(λ) =
∑
i<j

(π∗
ij + π∗

ji)ϕ
(λ)
ij ,

where

ϕ
(λ)
ij = 1− λ2λ

2λ − 1
H

(λ)
ij , H

(λ)
ij =

1

λ

[
1− (πc

ij)
λ+1 − (πc

ji)
λ+1
]
,

πc
ij =

πij

πij + πji

, π∗
ij =

πij

δ
, δ =

∑
i ̸=j

πij.

The ζ(0) is defined as

lim
λ→0

ζ(λ) =
∑
i<j

(π∗
ij + π∗

ji)ϕ
(0)
ij ,

where

ϕ
(0)
ij = 1− 1

log 2
H

(0)
ij , H

(0)
ij = −πc

ij log π
c
ij − πc

ji log π
c
ji.

Note that H(λ)
ij is Patil and Taillie (1982)’s diversity index of degree λ including the

Shannon entropy (λ = 0), and the real number λ is chosen by the user. The index

ζ(λ) has the following characteristics: (i) 0 ≤ ζ(λ) ≤ 1; (ii) ζ(λ) = 0 if, and only if, the

symmetry model holds; and (iii) ζ(λ) = 1 if, and only if, the degree of asymmetry is

maximum in the sense that πij = 0 (then πji > 0) or πji = 0 (then πij > 0) for all

i < j.
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Appendix of Chapter 3

B.1 Index based on the power divergence

Iki and Tomizawa (2018) proposed the index to represent the degree of departure

from the symmetry model as follows. Assuming that π1r + πr1 > 0, for λ > −1,

κ(λ) =
λ(λ+ 1)

2λ − 1
I(λ),

where

I(λ) =
1

λ(λ+ 1)

∑
i,j

(i,j) ̸=(r,1)

{
U∗
ij

[(
U∗
ij

Wij

)λ

− 1

]
+ L∗

ji

[(
L∗
ji

Wij

)λ

− 1

]}
,

with

U∗
ij =

Uij

τ
, L∗

ji =
Lji

τ
, Uij =

i∑
s=1

r∑
t=j

πst, Lji =
r∑

s=j

i∑
t=1

πst,

τ =
∑
i,j

(i,j)̸=(r,1)

(Uij + Lji), Wij =
U∗
ij + L∗

ji

2
.
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The κ(0) is defined as

lim
λ→0

κ(λ) =
1

log 2
I(0),

where

I(0) =
∑
i,j

(i,j)̸=(r,1)

(
U∗
ij log

U∗
ij

Wij

+ L∗
ji log

L∗
ji

Wij

)
.

The I(λ) is the power divergence between {U∗
ij, L

∗
ji} and {Wij,Wji}, and especially,

I(0) is the Kullback Leibler information between them. The index κ(λ) has the

following characteristics: (i) 0 ≤ κ(λ) ≤ 1; (ii) κ(λ) = 0 if and only if the symmetry

model holds; and (iii) κ(λ) = 1 if and only if the degree of asymmetry is maximum in

the sense that π1r = 1 or πr1 = 1. However, index κ(λ) cannot distinguish between

the two directions of maximum asymmetry. Namely, we cannot see whether the

degree of asymmetry increases toward the structure such that all the observations

concentrate in the top-right cell (1, r) in the table or toward the structure such that

all the observations concentrate in the bottom-left cell (r, 1) in the table.

B.2 Index of complete asymmetry

Tahata et al. (2009) proposed the directional index to distinguish whether (I) the

complete upper asymmetry or (II) the complete lower asymmetry (i.e., whether

(I) all the observations concentrate in the upper right triangle cells in the table,

or (II) they concentrate in the lower left triangle cells) as follows. Assuming that

πij + πji > 0 for all i < j,

φ =
4

π

∑
i<j

(π∗
ij + π∗

ji)
(
ωij −

π

4

)
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where

π∗
ij =

πij

δ
, δ =

∑
i ̸=j

πij, ωij = arccos

 πij√
π2
ij + π2

ji

 .

The directional index φ has the following characteristics: (i) −1 ≤ φ ≤ 1; (ii)

φ = −1 if and only if πij > 0 for all i < j (then πji = 0 for all i < j), say, complete-

upper-asymmetry; (iii) φ = 1 if and only if πji > 0 for all i < j (then πij = 0 for all

i < j), say, complete-lower-asymmetry; and (iv) if the symmetry model holds then

φ = 0.
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