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Abstract

In this thesis, we study a quantization condition in relation to the solvability of Schrödinger
equations. This quantization condition is called the SWKB (supersymmetric Wentzel–
Kramers–Brillouin) quantization condition and has been known in the context of super-
symmetric quantum mechanics for decades. Supersymmetric quantum mechanics has been
revealing various aspects of exactly solvable problems of non-relativistic quantum mechanics,
such as shape invariance. It has recently turned out that previous studies of the SWKB con-
dition fail to provide what the condition generally implies. Moreover, the existing literature
on the condition mostly regarded the SWKB condition as a quantization condition of the
energy, and few attempts have been made to apply the condition for different purposes.

The main contents of this thesis are recapitulated as follows: the foundation and the ap-
plication of the SWKB quantization condition. The first half of this thesis aims to understand
the fundamental implications of this condition based on extensive case studies. We carry out
our analyses for the conventional shape-invariant potentials, the exceptional/multi-indexed
systems, the Krein–Adler systems, the conventional exactly solvable systems by Junker and
Roy, and also classical-orthogonal-polynomially solvable systems with position-dependent ef-
fective mass. It turns out that the exactness of the SWKB quantization condition indicates
the exact solvability of a system via the classical orthogonal polynomials.

The SWKB quantization condition provides quantizations of energy, which we call the
direct problem of the SWKB. We formulate the inverse problem of the SWKB: the prob-
lem of determining the superpotential from a given energy spectrum. An assumption on
the shape of the superpotential is required to make the inverse problem well-posed. The
formulation successfully reconstructs all conventional shape-invariant potentials from the
given energy spectra. We further construct novel solvable potentials, which are classical-
orthogonal-polynomially quasi -exactly solvable, by this formulation. The term “quasi” refers
to the situation in which only a part of the eigenstate spectrum is obtained exactly by an-
alytic expressions. We have identified the rule concerning which eigenstates are classical-
orthogonal-polynomially solvable and which are not.

We further demonstrate several explicit solutions of the Schrödinger equations with the
classical-orthogonal-polynomially quasi-exactly solvable potentials, whose family is referred
to as a harmonic oscillator with singularity functions in this thesis. In one case, the energy
spectra become isospectral, with several additional eigenstates, to the ordinary harmonic
oscillator for special choices of a parameter. By virtue of this, we formulate a systematic
way of constructing infinitely many potentials that are strictly isospectral to the ordinary
harmonic oscillator.

i



The basic knowledge and reviews of previous studies in this field are also provided in this
thesis.

Highlights:

• The exactness of the SWKB quantization condition indicates that the system is exactly
solvable via the classical orthogonal polynomials.

• The inverse problem of the SWKB is formulated to construct (novel) classical-orthogonal-
polynomially solvable superpotentials.

• The exact solutions of the Schrödinger equations with a new entry of the classical-
orthogonal-polynomially (quasi-)exactly solvable potentials defined by piecewise analytic
functions: harmonic oscillators with singularity functions, are obtained.

• Infinitely many potentials that are strictly isospectral to the ordinary harmonic oscillator
are constructed methodically.

Keywords: Schrödinger equation, supersymmetric quantum mechanics, SWKB quantiza-
tion condition, exactly solvable problems, classical orthogonal polynomials, inverse problem,
piecewise analytic functions, isospectral transformations, harmonic oscillator

ii



Acknowledgement

I thank my supervisor, Prof. Nobuyuki Sawado for his invaluable supervision, continuous
support and patience during my Ph.D. study, in fact, the last nine years as his student. I also
thank Prof. Ryu Sasaki for his useful advice regarding exactly solvable quantum mechanics.
I would also like to express my gratitude to Prof. Naruhiko Aizawa, Prof. Atsushi Nakamula
and Prof. Kouichi Toda for their constant support.

I appreciate Prof. Luiz Agostinho Ferreira for his kind hospitality in Instituto de F́ısica
de São Carlos of Universidade de São Paulo (IFSC/USP) in 2022. I would like to extend my
thanks to the following individuals for their kind invitations to their institutes during my
stay in Brazil: Prof. Pawe"l Klimas (Universidade Federal de Santa Catarina), Prof. Zhanna
Kuznetsova (Universidade Federal do ABC), Prof. Gabriel Luchini (Universidade Federal
do Esṕırito Santo), Dr. Madhusudhan Raman (Instituto de F́ısica Teórica of Universidade
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Chapter 1

Introduction

1.1 Backgrounds/Brief History

In modern science, many researchers employ mathematical models to analyze and understand
the phenomena they are concerned about. Such models are expressed as partial differential
equations with frequency. Separation of variables is a powerful tool for solving partial dif-
ferential equations, and consequently, one often arrives at the eigenvalue problem for an
ordinary differential equation. Strum–Liouville problem is a major, well-known example of
this. In this thesis, we consider the Schrödinger equation, which is an example of such prob-
lems in non-relativistic quantum mechanics. A similar eigenvalue problem appears not only
in quantum physics but also in many branches of science.

Exactly solvable problems in non-relativistic quantum mechanics have been attracting
scientists’ interest in understanding the behavior of particles in various potential energy land-
scapes. Since the early days of quantum physics, various methods for the analytical solutions
of the Schrödinger equation, especially time-independent, one-dimensional ones, have been
extensively studied. One methodology is based on the factorization of Hamiltonian. This
factorization method was originally developed by E. Schrödinger, who studied an algebraic
method to obtain the energy spectrum of the hydrogen atom [1] and was later generalized
by L. Infeld and T. Hull [2]. In fact, the Schrödinger’s work is said to have been stimulated
by the ideas of P. M. Dirac [3] and H. Weyl [4].

In terms of the theory of ordinary differential equation, it was known before Schrödinger
that a first-order nonlinear differential equation called the Riccati equation is equivalent
to the corresponding second-order linear ordinary differential equation. The factorization
method in quantum mechanics can be regarded as a translation of this Riccati’s idea into
Schrödinger equation.

In particle physics, on the other hand, supersymmetry was proposed by H. Miyazawa
in 1966 [5]. Supersymmetry is a symmetry between Bosons and Fermions. Since the sym-
metry is actually broken in our universe now, we need supersymmetric field theories where
supersymmetry is spontaneously broken. In the early 1980s, E. Witten made an attempt
to understand it in a rather simple model; starting from a field theory, he constructed an
effective model at low energies in quantum mechanics [6, 7]. These days, the model is often
referred to as supersymmetric quantum mechanics [8–14].

1



2 1. Introduction

As studies in supersymmetric quantum mechanics go on, it has turned out that super-
symmetric quantum mechanics provides insights into the factorization method and the exact
solvability of the Schrödinger equation. For example, the idea of shape invariance [15], which
is a sufficient condition of the exact solvability of Schrödinger equation, was developed in this
context. Other than this, an algebraic structure underlying the solvability of Schrödinger
equation has been revealed, and new methods for constructing solvable potentials have been
established based on supersymmetric quantum mechanics. Today, supersymmetric quantum
mechanics is not only studied for understanding supersymmetry but also for exploring the
solvability of quantum mechanical systems.

Together with this aspect of supersymmetric quantum mechanics, the field of solving
Schrödinger equations analytically and constructing new solvable systems is sometimes called
exactly solvable quantum mechanics [16]. A system is exactly solvable when all the eigenval-
ues and the corresponding eigenfunctions are obtained explicitly in analytical closed forms.
Furthermore, in this thesis, we refer to quasi-exactly solvable problems [17–20], which means
that only a part of eigenvalues and the eigenfunctions are obtained analytically.

Potentials like the Coulomb potential and the harmonic oscillator have been listed as
exactly solvable models since the early days of quantum mechanics in the 1920s. Those po-
tentials appeared in the analyses of the phenomena that gave rise to quantum physics. After
that, various solvable potentials have been proposed as models describing quantum phenom-
ena. The Morse potential is an example, introduced to describe the interatomic interaction of
a diatomic molecule [21]. These potentials are typical cases where the Schrödinger equations
are solved using the factorization method.

By around 1950, a general formulation of the factorization method had been estab-
lished for several dozens of solvable potentials [2]. The method was further generalized by
Crum [22]. In the Crum’s theorem, the general structure of the solution space of the one-
dimensional Schrödinger equation was manifested. Nowadays, the theorem is understood as
a simple realization of Darboux transformation [23], which was already known in the 19th
century in mathematics.

Then in 1983, the concept of shape invariance was introduced in the context of super-
symmetric quantum mechanics [15]. The factorization method came to be understood in
this context; those potentials are exactly solvable because they possess shape invariance and
the Crum’s idea is obviously applicable to these problems. The exactly solvable appeared in
Ref. [2] are now called conventional shape-invariant potentials.

In the early 1990s, a novel class of solvable potentials with shape invariance was dis-
covered [24]. Those potentials are defined by the power series of a parameter, and known
as scaling shape-invariant potentials. Later in the 21st century, yet another class of shape-
invariant potentials has been constructed [25–27], where the eigenfunctions are expressed
in terms of the exceptional orthogonal polynomials [28, 29]. They are now understood in
the following way. That is, those potentials are Darboux transformations of conventional
shape-invariant potentials [30]. Based on this understanding, the class was generalized to
the so-called multi-indexed systems [31].

Back in the 20th century, Krein [32] and Adler [33] extended the Crum’s theorem (which
is another realization of Darboux transformation) independently. By applying this idea to a
known exactly solvable system, one can construct yet another novel class of exactly solvable
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potentials, and such deformation is sometimes referred to as Krein–Adler transformation.
Now one can see that Darboux transformation is a powerful tool for constructing novel

exactly solvable systems. However, the above-mentioned exactly solvable systems are es-
sentially all possible ones in this context. There are also other classes of exactly solvable
problems that have been constructed in different contexts. The so-called Natanzon class
of potentials [34–37] is an example. Furthermore, Abraham–Moses transformation [38] also
transforms an exactly solvable system into another one. We now know a mountain of con-
struction methods for (exactly) solvable potentials. It remains to be quite a challenge to
obtain a unified framework for these methods.

1.2 Motivations

When it comes to actually solving the eigenvalue problem for an ordinary differential equa-
tion, we have several directions: analytical and algebraic approaches, numerical computa-
tions etc. There have been numerous methods that have ever been proposed (including the
ones we mentioned in the previous section).

Among them, approaches using quantization conditions can be effective, if you seek for the
eigenvalues of your problem, which are supposed to characterize your model. Quantization
conditions were originally discussed in quantum physics, where they have played a unique
role as ‘translators’ to help us understand quantum phenomena since the very first days of
quantum physics. While some quantization conditions like Bohr–Sommerfeld quantization
condition, the one in the semi-classical regime, are known to reproduce exact bound-state
energy spectra for only a limited number of problems, they can still serve as approximate
formulae for obtaining the eigenvalue spectra for other problems.

In 1985, a quantization condition was proposed by Comtet, Bandrauk and Campbell [39],
which is often referred to as the SWKB quantization condition. It gives exact bound-state
energy spectra for all the conventional shape-invariant potentials [40–45], while for newly
discovered solvable systems, this condition is known to provide only approximate formulae for
determining the energy spectra [46–51]. Since the conventional shape-invariant potentials
play a central role in exactly solvable quantum mechanics, that is, most exactly solvable
problems can be seen as some kind of deformations of the conventional shape-invariant
systems, this fact is too good to miss.

So far, various discussions regarding the interpretation of the SWKB quantization condi-
tion have been delivered. Some argued in relation to the exact solvability of a system, while
others thought it might be somehow equivalent to the shape-invariant condition. However,
it has recently turned out that all the previous studies of the SWKB condition fail to provide
what the condition generally implies. Thus we say that an appropriate interpretation of the
SWKB quantization condition is still absent.

Moreover, the existing literature on the condition mostly regarded the SWKB condition
as a quantization condition of the energies, and few attempts have been made to apply
the condition for different purposes. A similar formulation of the WKB scheme, on the
other hand, has been applied to many different contexts such as resurgent theories. The
limitation of the SWKB is probably due to the fact that it has poor compatibility with the
wavefunctions.
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Our aim of the study is to first provide a mathematical or physical interpretation of the
SWKB quantization condition. Subsequently, based on the interpretation, we are to see how
the SWKB condition equation is applied to actual problems in physics etc. We propose a
way of constructing novel solvable potentials in terms of the SWKB formalism.

1.3 Contributions

The importance of studies in exactly solvable quantum mechanics is found in the following
context. Firstly, solvable models, in contrast to models that can only be solved numerically,
allow one to carry out analytical discussions and get richer information. It therefore be-
comes possible to demonstrate the properties of a model concretely and thereby reveal the
mathematical structures underlying natural phenomena.

However, in reality, most models that describe physical phenomena involve problems that
are not solved analytically but numerically. Even in those problems, a deep understanding
of the properties of solvable models will help, and approaching those problems based on the
knowledge of the solvable problems is an essential strategy for uncovering the mathemat-
ical structures behind the phenomena. A major example is perturbation theory, which is
an approach towards an approximate solution starting from the exact solution of a simpler
problem. It has been made great successes in various areas; even in a case where a pertur-
bation series fails to converge, i.e., a non-perturbative problem, there is a way to subtract
some information from the divergent series (cf. resurgence theory [52–55]).

Some computational calculations are based on the theory of orthogonal polynomials,
and the theory has recently been developed significantly with the knowledge of exactly
solvable quantum mechanics as was mentioned earlier. Those findings can contribute to the
development of new computational methods.

Moreover, exactly solvable quantum mechanics, or supersymmetric quantum mechanics,
has provided insights into classical integrable systems such as the Korteweg–de-Vries (KdV)
equation and the sine-Gordon equation. It is well-known in the literature that a construction
method of multi-soliton solutions of these equations is closely related to a Schrödinger-
type equation. Conversely, such soliton solutions have been used to construct new solvable
potentials. Also, the algebraic structure of the solution space of the Schrödinger equation
plays a key role in stability analyses in the context of soliton theories, where the evaluation
formula is a Schrödinger-type equation.

Moreover, Schrödinger-type equations are everywhere. It is well-known that Fokker–
Planck equation, which is applicable to models in various fields such as plasma physics,
biology, economics and financial engineering, is a Schrödinger equation in imaginary time,
and thereby we are to solve the eigenvalue problem of a negative semi-definite Hamiltonian.
Schrödinger-type equations or equations with similar algebraic structures also appear in
optics as Helmholtz equation, in cosmology, circuit theory, spin system etc. We expect that
the present studies explore new aspects of these branches of science.
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1.4 Structure of Thesis

This chapter has presented the introduction of this thesis, which consists of five sections:
the background of our study is mentioned with a brief history of the field of research in
Sect. 1.1, the motivation of the research project and its contribution to the field are found
in Sects. 1.2 and 1.3 respectively, this section provides the structure of this thesis, and in
the subsequent section, we shall have a quick review on the Schrödinger equation.

The rest of this thesis is organized as follows. Chap. 2 is a review on the so-called exactly
solvable quantum mechanics. All the knowledge that one needs to discuss in the following
chapters is contained here (and in the related Appendix), but several topics that have little
relevance to this thesis are not covered to prevent this chapter from getting lengthy. Tips
that are not usually emphasized in textbooks and review papers are also included.

In Chap. 3, we discuss SWKB formalism, starting by introducing the SWKB quantization
condition. The condition equation and several notable properties are given in Sect. 3.1.
We perform several case studies on the condition equation to understand what the SWKB
quantization condition actually means in Sect. 3.2. Of course, it is impossible to carry
out case studies for all potentials ever constructed, but our five examples are sufficient to
grasp the implication. Sect. 3.3 is devoted to the discussions based on the case studies
in the previous section, where we arrive at a conjecture on the implication of the SWKB
quantization condition. These parts are based on the author’s works [50, 51, 56].

So far we have focused on one side of SWKB formalism, where we know the superpotential
a priori and then apply the condition. In Sect. 3.4, we formulate a way of determining the
superpotential from a given energy spectrum: the inverse problem of SWKB.

In Chap. 4, we start with the solution of the Schrödinger equation with the potential
constructed at the end of the previous chapter in Sect. 4.2. The potential is classified into
the classical-orthogonal-polynomially quasi-exactly solvable potentials. We provide general
remarks on the solution of the Schrödinger equation with the potentials of this kind in
advance in Sect. 4.1. In Sect. 4.3, we consider yet other potentials in this class, which is
based on the author’s works [57–59].

Chap. 5 is the conclusion of the thesis with some perspectives of this study.
Explicit examples are provided to help the readers’ understand throughout the thesis. In

addition, supplemental materials are found in the Appendices.
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1.5 Schrödinger Equation

The Schrödinger equation (in (3 + 1) dimension) has the following form in general:

i! ∂
∂t
Ψ = HΨ . (1.1)

We consider a Hamiltonian for a single particle:

H = − !2
2m

∇2 + V (r) , (1.2)

where ∇2 is the Laplacian in three dimension, E3.
We solve the partial differential equation (1.1) by separation of variables. We assume

that Ψ(r, t) is a product of f(t) and ψ(r), Ψ(r, t) ≡ f(t)ψ(r), where the dependence of Ψ
on r, t is separated. Therefore,

i!df(t)
dt

f(t)
=

Hψ(r)
ψ(r)

= const. ≡ E , (1.3)

that is,
⎧
⎨

⎩
i!df(t)

dt
= Ef(t) , (1.4a)

Hψ(r) = Eψ(r) . (1.4b)

Eq. (1.4a) yields

f(t) = e−iE! t , (1.5)

so essentially, our problem is to solve Eq. (1.4b). Eq. (1.4b) is often referred to as time-
independent, or more simply static/stationary, Schrödinger equation.

If V (r) ≡ Vx(x) + Vy(y) + Vz(z), then Eq. (1.4b) is further reduced to three ordinary
differential equations by separating the variables, ψ(r) ≡ X(x)Y (y)Z(z),

[
− !2
2m

d2

dx2
+ Vx(x)

]
X(x) = E (x)X(x) , (1.6a)

[
− !2
2m

d2

dy2
+ Vy(y)

]
Y (y) = E (y)Y (y) , (1.6b)

[
− !2
2m

d2

dz2
+ Vz(z)

]
Z(z) = E (z)Z(z) . (1.6c)

Or, if the potential is spherically symmetric, V (r) ≡ V (r), then by ψ(r) ≡ R(r)Y (θ,ϕ), Eq.
(1.4b) becomes

[
− !2
2m

(
d2

dr2
+

2

r

d

dr
− ℓ(ℓ+ 1)

r2

)
+ V (r)

]
R(r) = ER(r) , (1.7a)

− 1

sin θ

∂

∂θ

(
sin θ

∂Y (θ,ϕ)

∂θ

)
− 1

sin2 θ

∂2Y (θ,ϕ)

∂θ2
= ℓ(ℓ+ 1)Y (θ,ϕ) , (1.7b)

where Y (θ,ϕ) = Y m
ℓ (θ,ϕ) turns out to be a spherical harmonics.



Chapter 2

Exactly Solvable Quantum Mechanics

Introduction. In this chapter, we have a review on the so-called exactly solvable quantum
mechanics. We focus exclusively on bound-state problems. Tips that are not usually emphasized
in textbooks and review papers are also included. For basic materials of non-relativistic quantum
mechanics, see, e.g., Refs. [60–62].

2.1 Problem Setting

Throughout this thesis, we consider Hamiltonians for one-dimensional quantum mechanical
systems of the following form:

H =
p̂2

2m
+ V (x̂) = − !2

2m

d2

dx2
+ V (x) , x ∈ (x1, x2) , (2.1)

where x1 and/or x2 can be infinite, and V (x) is the potential. In the formulation in Sect.
2.2, the potential is a C-infinity function, V (x) ∈ C∞ 1) . We assume that our Hamiltonian
is bounded from below. For finite x1 and/or x2, we require

lim
x→x1,2

V (x) = +∞ .

The time-independent Schrödinger equation:

Hψ(x) = Eψ(x) (2.2)

with a constant E, is a second-order differential equation. Especially, we are interested in
the eigenvalue problem, namely the problem of determining all the discrete eigenvalues {En}
and the corresponding eigenfunctions {ψn(x)} of the Hamiltonian (2.1),

Hψn(x) = Enψn(x) . (2.3)

The numbering of the eigenvalues is monotonically increasing,

E0 < E1 < E2 < · · · ,

1) In the context of exactly solvable quantum mechanics, we usually deal with the case where V (x) is an
analytic function, or a piecewise analytic function.

7
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and the eigenfunctions, ψn(x) ∈ L2(R) ∩ C1, are orthogonal,

(ψn(x),ψm(x)) :=

∫ x2

x1

ψ∗
n(x)ψm(x) dx = hnδn,m , 0 < hn < ∞ . (2.4)

In quantum mechanics with one degree of freedom, one can always take the eigenfunctions
to be real, ψn(x) ∈ R. Also, we choose ψ0(x) > 0. The oscillation theorem states that the
n-th eigenfunction ψn(x) has n nodes in the domain.

A potential is a confining potential, if

lim
x→x1

V (x) = lim
x→x2

V (x) = +∞ . (2.5)

Confining potentials have infinitely many discrete eigenvalues. Otherwise, potentials are said
to be non-confining, and they have finitely or infinitely many discrete eigenvalues.

In the following, we set 2m = 1 for simplicity otherwise noted but retain ! for rigorous
discussions on the semi-classical regime.

2.1.1 Classification of Problems

Here, we present three ways of classifying problems (2.3) in terms of the potentials.

! Analyticity of a potential

Every standard textbook on quantum mechanics deals with the square potential well and the
harmonic oscillator. They are not only two of the most significant examples that show up
in a wide range of fields in quantum physics, but they represent two of the major categories
of exactly solvable potentials.

The one represented by the square potential well is the piecewise constant interactions
(See, e.g., Ref. [63]), including so-called point interaction models [64]. Another typical
example in this class is the Kronig–Penney model [65]. The domain (x1, x2) is divided into
several subintervals,

(x1, x2) = (x1, a1) ∪ (a1, a2) ∪ · · · ∪ (aK , x2) ,

and when it comes to constructing the wavefunctions, we require the matching conditions
at x = a1 . . . , aK . The other major class with the harmonic oscillator is analytical po-
tentials whose eigenfunctions are written in closed analytical form. A substantial feature
of these examples is that they are solved by the classical orthogonal polynomials or the
exceptional/multi-indexed orthogonal polynomials [26–31]. Several deformations of this class
of potentials have been considered by employing Darboux transformation [23], Abraham–
Moses transformation [38] and other techniques (See Fig. 2.3 in Sect. 2.4 and the references
therein).

The problems lying in the intersection between these two classes, that is, potentials
defined by piecewise analytic functions, have also attracted attention. For instance, the
Coulomb plus square-well potential [66], a finite parabolic quantum well potential [67] and the
harmonic oscillator potential embedded in an infinite square-well [68] are discussed in atomic
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and nuclear physics. Moreover, the sheared harmonic oscillator [69], the inverse square
root potential [70], the symmetrized Morse-potential short-range interaction [71], and other
potentials such as −g2 exp(−|x|)-potential [72], a double well potential min[(x+d)2, (x−d)2]
and its dual single well potential max[(x+ d)2, (x− d)2] [73,74] are all defined piecewise and
solved by the matching of wavefunctions.

! Solvability of a potential

For a given potential, sometimes the whole spectra and the corresponding wavefunctions are
obtained in closed analytic forms, while many other times the eigenvalue problem (2.3) is not
solved analytically. We say a potential is exactly solvable when all the discrete eigenvalues
and the corresponding eigenfunctions are obtained in closed analytical forms.

As was mentioned above, potentials such as the harmonic oscillator and the Coulomb
potential are exactly solvable, thanks to the classical orthogonal polynomials. Most of the
well-known solvable potentials are in the class of conventional shape-invariant potentials,
and thus they are solvable by the classical orthogonal polynomials. A major subclass in
the exactly solvable potentials is polynomially solvable potentials. Other examples in this
subclass are potentials that are solved by the exceptional/multi-indexed potentials [26–31].

Even when you cannot solve Schrödinger equations via orthogonal polynomials, you still
have chances that your problems are exactly solvable through well-known special functions
such as Bessel functions [72]. Sometimes, such potentials are said to be non-polynomially
solvable.

Between the solvable and the non-solvable lie yet two other classes. One is called quasi-
exactly solvable potentials [17–20]. A potential is quasi-exactly solvable, when only several
eigenstates are solved exactly in closed analytical form while other states are not. In most
cases, the quasi-exact solvable states are related by sl(2,R) algebra [17]. Note however that
this is not the case with the quasi-exact solvable states for piecewise analytic potentials.

The other one is conditionally exactly solvable potentials, where they are exactly solvable
if model parameters satisfy some condition(s). The concept was originally introduced by
Dutra in Ref. [75], and the most well-known examples are the ones by G. Junker and P. Roy, in
which they have employed supersymmetric quantum mechanics in their construction [76,77].

2.2 Formulation

2.2.1 Factorized Hamiltonian

We consider the eigenvalue problem of a Hamiltonian (2.1). In this formulation, we choose
the lowest energy eigenvalue to be zero without loss of generality. We use the calligraphic
“E” to emphasize this instead of the Roman “E”, En ≡ En − E0. Thus, the Hamiltonian is
positive semi-definite, H ≽ 0. In linear algebra, the following theorem is known:

Theorem 2.1 (Linear algebra). Any positive semi-definite hermitian matrix A can be fac-
torized as a product of a certain matrix, say P and its hermitian conjugate P†, A = P†P.



10 2. Exactly Solvable Quantum Mechanics

Although our Hamiltonian is not a matrix, we will apply the idea of factorization to our
problem. That is, we consider that our Hamiltonian has the following factorized form:

H := A†A , (2.6)

with the two operators A and A† being

A := ! d

dx
+W (x) , A† = −! d

dx
+W (x) , (2.7)

V (x) ≡ W (x)2 − !dW (x)

dx
, H = −!2 d2

dx2
+W (x)2 − !dW (x)

dx
. (2.8)

Here, a real function W (x) is often referred to as superpotential. Note that the Hamiltonian
is invariant under unitary transformations: A → UA, UU † = U †U = I (I is the identity
operator). For example, one can also factorize the Hamiltonian in the following manner:

H =

(
−i! d

dx
+ iW (x)

)(
−i! d

dx
− iW (x)

)
.

The zero mode of A gives the ground-state wavefunction,

Aφ0(x) = 0 =⇒ A†Aφ0(x) = Hφ0 = 0 (2.9)

The first equation is a first-order differential equation, and its formal solution is given as
follows:

φ0(x) ∝ exp

[
−1

!

∫ x

W (x̄) dx̄

]
. (2.10)

Inversely, with the knowledge of φ0(x), one can always construct the superpotential and the
potential whose ground-state wavefunction is φ0(x):

W (x) = −!∂xφ0(x)

φ0(x)
= −! d

dx
lnφ0(x) , (2.11)

V (x) = !2
[(

d

dx
lnφ0(x)

)2

+
d2

dx2
lnφ0(x)

]
= !2∂

2
xφ0(x)

φ0(x)
, (2.12)

where ∂x ≡ d

dx
and ∂2x ≡ d2

dx2
. On the other hand, the zero mode of A† is the inverse of the

zero mode of A,
A†φ−1

0 (x) = 0 . (2.13)

Remark 2.1 (Multi-degrees of freedom). For the case of D degrees of freedom, the Hamil-
tonian is factorized as

H :=
D∑

j=1

A†
jAj , (2.14)

and the ground-state wavefunction is given by

Ajφ0(x) = 0 for j = 1, 2, . . . , D . (2.15)

Also, one can deal with the reduced ‘radial’ equation in our formulation for one degree
of freedom.
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1. d spacial dimensions (D = d). Suppose that the d-dimensional Schrödinger equation in
the Cartesian coordinate (x1, x2, . . . , xd) is reduced to the following ‘radial’ equation:

[
− ∂2

∂r2
− d− 1

r

∂

∂r
+
ℓ(ℓ+ d− 2)

r2
+ V (r)

]
R(r) = ER(r) , (2.16)

in which r :=
√
x2
1 + x2

2 + · · ·+ x2
d and ℓ is the angular momentum quantum number.

Also, R(r) denotes the radial wavefunction. By writing R(r) ≡ r−(d−1)/2φ(r), the equa-
tion becomes

[
− ∂2

∂r2
+

(
ℓ+ d−3

2

) (
ℓ+ d−3

2 + 1
)

r2
+ V (r)

]
φ(r) = Eφ(r) , (2.17)

and the ‘Hamiltonian’ [•] is factorized as

− ∂2

∂r2
+

(
ℓ+ d−1

2

) (
ℓ+ d−3

2

)

r2
+ V (r)

=

(
− ∂

∂r
+
ℓ+ d−3

2

r
+ W̃ (r)

)(
∂

∂r
+
ℓ+ d−3

2

r
+ W̃ (r)

)
. (2.18)

2. N-body problem (D = N). Again, suppose that the Schrödinger equation for an N -body
problem is reduced to the following ‘radial’ equation in the hypercentral formalism [78–
82]: [

− ∂2

∂x2
− 3N − 4

x

∂

∂x
+
γ(γ + 3N − 5)

x2
+ V (x)

]
X(x) = EX(x) , (2.19)

where x is the hyper radius and γ is the hyper angular momentum quantum number.
Also, X(x) denotes the hyper-radial wavefunction. By writing X(x) ≡ x−(3N−4)/2φ(x),
the equation becomes

[
− ∂2

∂x2
+
γ(γ + 3N − 5) + (3N−4)(3N−6)

4

x2
+ V (x)

]
φ(x) = Eφ(x) , (2.20)

and the ‘Hamiltonian’ [•] is factorized as

− ∂2

∂x2
+
γ(γ + 3N − 5) + (3N−4)(3N−6)

4

x2
+ V (x)

=

(
− ∂

∂x
+
γ + 3N−6

2

x
+ W̃ (x)

)(
∂

∂x
+
γ + 3N−6

2

x
+ W̃ (x)

)
. (2.21)

Remark 2.2 (Can you always factorize your Hamiltonian?). One might wonder if a Hamilto-
nian is always expressed in a factorized form (2.6). The answer is no, for the first differential
equation in Eq. (2.8) is the Riccati equation, which does not always have a solution.
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In the following, we consider a simple case where Eq. (2.8) is solvable i.e., the harmonic
oscillator:

W 2(x)− dW (x)

dx
= x2 − 1 . (2.22)

Here, we set ! = ω = 1. Apparently, W1(x) = x is a solution of Eq. (2.22). Now we write

W (x) ≡ W1(x) + W̃ (x) = x+ W̃ (x). Then, Eq. (2.22) is reduced to

dW̃ (x)

dx
− 2xW̃ (x) = W̃ (x)2 : Bernoulli eq. (2.23)

By putting W̃−1(x) ≡ w(x), this becomes a first-order ordinary differential equation:

dw(x)

dx
= −2xw(x)− 1. (2.24)

Therefore,

w(x) = e−
∫ x 2x dx

(
−
∫ x

e
∫ x 2x dx dx+ const.

)

≡ e−x2

(
C −

∫ x

ex
2
dx

)
(2.25)

∴ W̃ (x) =
ex

2

C −
∫ x

ex
2
dx

̸= 0 . (2.26)

Hence, we wind up with the general solution for Eq. (2.22):

W (x) = x+
ex

2

C −
∫ x

ex
2
dx

. (2.27)

Note that this superpotential has a singularity and so does the ground-state wavefunction

φ0(x) = e−
x2

2 e
∫ x W̃ dx, and this is not a proper quantum mechanical system. In order to

obtain an appropriate ground-state wavefunction, we have to choose a singular solution for
Eq. (2.8).

On the other hand, the Riccati equation with the potential (2.31):

W (x)2 +
dW (x)

dx
= x2 − 1 , (2.28)

has solutions that have no singularities other than the singular solution W (x) = x. This was
already pointed out in 1980s. For more details, see Refs. [83–86].
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2.2.2 Associated Hamiltonians, Intertwining Relations, Crum’s
Theorem

! An associated Hamiltonian

In this subsection, we write

H ≡ H[0] = A[0]†A[0] = −!2 d2

dx2
+ V [0](x) =

(
−! d

dx
+W [0](x)

)(
! d

dx
+W [0](x)

)
, (2.29)

and accordingly, its eigenvalues and the eigenfunctions are denoted by E [0]
n , φ[0]

n ,

H[0]φ[0]
n = E [0]

n φ[0]
n . (2.30)

Here, we define a new Hamiltonian H[1] by

H[1] := A[0]A[0]† = −!2 d2

dx2
+ V [1](x) , V [1](x) ≡ W (x)2 + !dW (x)

dx
. (2.31)

This is an associated Hamiltonian of H[0]. Or sometimes, the two Hamiltonians H[0], H[1]

are said to be (supersymmetric) partners. The eigenvalue equation for H[1] is

H[1]φ[1]
n = E [1]

n φ[1]
n . (2.32)

Note that they are related by the following equation:

H[1] = H[0] + 2!dW
[0](x)

dx
= H[0] + 2! d2

dx2
lnφ[0]

0 (x) . (2.33)

This expression is useful to see Eq. (2.51) etc. are natural extensions of this relation.

! Intertwining relations

One can see other relations between the two Hamiltonians, that is H[0] and H[1] are related
via

A[0]H[0] = A[0]A[0]†A[0] = H[1]A[0] , (2.34)

A[0]†H[1] = A[0]†A[0]A[0]† = H[0]A[0]† , (2.35)

which is referred to as the intertwining relations.
These relations lead to the essentially isospectral property of the two Hamiltonians. Let

A[0] act on Eq. (2.30) from the left. Then we get

A[0]H[0]φ[0]
n = E [0]

n A[0]φ[0]
n = H[1]A[0]φ[0]

n , (2.36)

which means A[0]φ[0]
n is an eigenfunction of H[1] with the energy E [0]

n . Note however that, for
n = 0, the state φ[0]

0 is deleted, A[0]φ[0]
0 = 0. Also, by acting A[0]† on Eq. (2.32) from the left,

we get
A[0]†H[1]φ[1]

n = E [1]
n A[0]†φ[1]

n = H[1]A[0]†φ[1]
n , (2.37)

and therefore A[0]†φ[1]
n is an eigenfunction of H[0] with the energy E [1]

n . These imply the
following:
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1. The two Hamiltonians H[0], H[1] are essentially isospectral,

E [1]
n = E [0]

n+1 ≡ En+1 , E [0]
0 ≡ E0 = 0 , n = 0, 1, 2, . . . . (2.38)

Note that the lowest eigenstate of H[1], i.e., E [1]
0 = E1, is not zero.

2. The eigenfunctions of H[1] are

φ[1]
n (x) ∝ A[0]φ[0]

n+1(x) =
W
[
φ[0]
0 ,φ[0]

n+1

]
(x)

φ[0]
0 (x)

, n = 1, 2, . . . , (2.39)

where W[f1, . . . , fn](x) denotes the Wronskian. The operator A[0] maps an eigenfunction
of H[0] with n nodes to that of H[1] with n− 1 nodes, or deletes the lowest eigenstate of
H[0]. Usually, the coefficient of proportionality is taken to be 1/

√
En+1.

3. The eigenfunctions of H[0] are

φ[0]
n+1(x) ∝ A[0]†φ[1]

n (x) , n = 0, 1, 2, . . . , (2.40)

which means the operator A[0]† maps an eigenfunction of H[1] with n nodes to that of
H[0] with n+1 nodes. Usually, the coefficient of proportionality is taken to be 1/

√
En+1.

The transformation from H[0] to H[1] (or reversely from H[1] to H[0]) is called Darboux–
Crum transformation. We visualize the transformation in Fig. 2.1.

! Crum’s theorem

We define a sequence of Hamiltonians associated with H as follows. One can construct
associated Hamiltonian systems as many as the number of the discrete eigenvalues of H[0].

H[0] = A[0]†A[0] , H[1] = A[0]A[0]† , (2.41)

H[1] ≡ A[1]†A[1] + E1 , H[2] := A[1]A[1]† + E1 , (2.42)
...

H[j] ≡ A[j]†A[j] + Ej , H[j+1] := A[j]A[j]† + Ej , (2.43)
...

j = 0, 1, . . . (as many as the # of discrete eigenvalues of H[0]) ,

where the operators A[j] and A[j] are

A[j] := ! d

dx
+W [j](x) , A[j]† = −! d

dx
+W [j](x) , (2.44)

In what follows, φ[j]
n (x) denotes the n-th eigenfunction of H[j],

H[j]φ[j]
n (x) = En+jφ

[j]
n (x) . (2.45)
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E0 = 0

E1

E2

E3

E4

φ[0]0

φ[0]1

φ[0]2

φ[0]3

φ[0]4

H[0]

φ[1]0

φ[1]1

φ[1]2

φ[1]3

H[1]

A[0]

A[0]†

A[0]

A[0]†

A[0]

A[0]†

A[0]

A[0]†

Figure 2.1: Interrelation between the partner Hamiltonians H[0], H[1]. They are related
to each other by Darboux–Crum transformation. The spectral property can be seen as a
realization of supersymmetry in quantum mechanics.

From the definitions, H[j] and H[j+1] are related linearly by

A[j]H[j] = A[j]A[j]†A[j] = H[j+1]A[j] , (2.46)

A[j]†H[j+1] = A[j]†A[j]A[j]† = H[j]A[j]† . (2.47)

These equalities lead

φ[j+1]
n (x) ∝ A[j]φ[j]

n+1(x) , (2.48)

φ[j]
n+1(x) ∝ A[j]†φ[j+1]

n (x) , (2.49)

whose coefficients of proportionality is taken to be 1/
√

En+j+1 − Ej.
H[j+1] and φ[j+1]

n (x) are expressed in terms of in terms of H[0] and φ[0]
n (x) by virtue of the

Wronskian as follows:

H[j+1] = H[0] − 2!2 d2

dx2
ln
∣∣∣W
[
φ[0]
0 ,φ[0]

1 , . . . ,φ[0]
j

]
(x)
∣∣∣ , (2.50)

φ[j+1]
n (x) ∝

W
[
φ[0]
0 ,φ[0]

1 , . . . ,φ[0]
j ,φ[0]

n+j

]
(x)

W
[
φ[0]
0 ,φ[0]

1 , . . . ,φ[0]
j

]
(x)

with the energy En+j , (2.51)
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E0 = 0

E1

E2

E3

E4

φ[0]0

φ[0]1

φ[0]2

φ[0]3

φ[0]4

H[0]

φ[1]0

φ[1]1

φ[1]2

φ[1]3

H[1]

φ[2]0

φ[2]1

φ[2]2

H[2]

φ[3]0

φ[3]1

H[3]

A[0]

A[0]†

A[0]

A[0]†

A[0]

A[0]†

A[0]

A[0]†

A[1]

A[1]†

A[1]

A[1]†

A[1]

A[1]†

A[2]

A[2]†

A[2]

A[2]†
· · ·

Figure 2.2: A visualization of Crum’s theorem. It reveals the general structure of the
solution space of the one-dimensional Schrödinger equation.

or in terms of H[j] and φ[j]
n (x) as

H[j+1] = H[j] + 2! d2

dx2
lnφ[j]

0 (x) , (2.52)

φ[j+1]
n (x) ∝

W
[
φ[j]
0 ,φ[j]

n+1

]
(x)

φ[j]
0 (x)

with the energy En+j . (2.53)

We arrive at the following theorem:

Theorem 2.2 (Crum, 1955 [22]). For a given Hamiltonian system H ≡ H[0], there are asso-
ciated Hamiltonian systems H[1],H[2], . . ., as many as the total number of discrete eigenvalues
of the original system H[0]. They share the same eigenvalues {En} of the original system and
the eigenfunctions of H[j] and H[j+1] are related linearly by A[j] and A[j]†.

We visualize the situation of the Crum’s theorem in Fig. 2.2.

Remark 2.3 (Supersymmetric quantum mechanics). The formulation above is often referred
to as supersymmetric quantum mechanics (SUSY QM). However, it does not necessarily con-
cern supersymmetry itself. As one can see, the Crum’s theorem (1955, Ref. [22]) plays an
essential role in our formulation, but they are about a decade before the dawn of supersym-
metry (in the mid-1960s).
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2.3 Shape Invariance

2.3.1 Generalities

If the partner Hamiltonians H[0],H[1] (or generally H[j],H[j+1]) are similar in ‘shape’, that
is, the potentials are in the same functional form but different in the parameter(s) in it, say
a = (a1, a2, . . .), the Hamiltonians are said to be shape invariant [15]. More precisely, the
two Hamiltonians are shape invariant, if

−!2 d2

dx2
+W (x;a)2+!dW (x;a)

dx
= −!2 d2

dx2
+W (x; f(a))2−!dW (x; f(a))

dx
+R(a) , (2.54)

where we write the parameter dependency on the superpotential explicitly, W (x) ≡ W (x;a),
and f(a) is some function of a, e.g., f(a1, a2) = (a1+1, a2−1). R(a) is a constant depending
on the parameter(s) a. Note that if H[0],H[1] are shape invariant, then H[j] and H[j+1] for
any j are shape invariant,

− !2 d2

dx2
+W (x; f j(a))2 + !dW (x; f j(a))

dx

= −!2 d2

dx2
+W (x; f j+1(a))2 − !dW (x; f j+1(a))

dx
+

j∑

k=0

R(fk(a)) 2) . (2.55)

The shape invariance is a sufficient condition of the exact solvability of the Schrödinger
equation. The only knowledge of the ground state φ[0]

0 (x) solves the whole spectra in Fig.
2.2. For any Hamiltonian H[j], the ground-state wavefunction is

A[j]φ[j]
0 (x;a) =

(
d

dx
+W (x; f j(a))

)
φ[j]
0 (x;a) = 0

=⇒ φ[j]
0 (x;a) ∝ φ[0]

0 (x; f j(a)) . (2.56)

Then, it is almost obvious from Fig. 2.2 that the eigenfunction φ[j]
n (x) is

φ[j]
n (x) ∝ A[j]†A[j+1]† · · · A[j+n−1]†φ[0]

0 (x; f j+n(a)) . (2.57)

Note that in the context of the Crum’s theorem, the shape invariance is understood as
the relation between two eigenstates by a simple parameter change, φ[j+1]

n (x; f j+1(a)) ∝
φ[j]
n (x; f j(a)).
As for the energy eigenvalues, R plays a central role. Since

H[j] + Ej = −!2 d2

dx2
+W (x; f j(a))2 − !dW (x; f j(a))

dx
+

j−1∑

k=0

R(fk(a)) , (2.58)

2)For a function f(x) and a positive integer m, fm(x) is a shorthand for f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
m times

(x), while f(x)m

means [f(x)]m.
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one can identify

Ej =
j−1∑

k=0

R(fk(a)) . (2.59)

Actually, R(f j(a)) means the energy gap between the ground-state energies of H[j] and
H[j+1], i.e., R(f j(a)) = Ej+1 − Ej.

In summary, the n-th eigenfunction of the original Hamiltonian H[0] and its eigenvalue
are

Eigenfunction: φ[0]
n (x;a) ∝ A[0]†A[1]† · · · A[n−1]†φ[0]

0 (x; fn(a)) , (2.60)

Eigenvalue: En =
n−1∑

k=0

R(fk(a)) . (2.61)

Eq. (2.60) can be seen as the generalization of Rodrigues’ formula.

2.3.2 Conventional Shape-invariant Potentials

! 1-dim. harmonic oscillator (H)

The ground-state wavefunction of the one-dimensional (1-dim.) harmonic oscillator φ0(x) is

φ0(x) = e−
ωx2

2! , x ∈ (−∞,∞) , (2.62)

with the angular frequency ω > 0. Starting from the ground-state wavefunction, the super-
potential W (x) and the potential V [0](x) are constructed as follows:

W (x) := −! d

dx
lnφ0(x) = ωx , (2.63)

V [0](x) := W (x)2 − !dW (x)

dx
= ω2x2 − !ω . (2.64)

Now the partner potential V [1](x) is

V [1](x) = W (x)2 + !dW (x)

dx
= ω2x2 + !ω . (2.65)

Clearly, the 1-dim. harmonic oscillator is shape invariant, and no parameter changes during
the shape-invariant transformation. From (2.61), the energy eigenvalue En is

En = 2n!ω , n = 0, 1, 2, . . . . (2.66)

The Schrödinger equation is

−!2d
2φn(x)

dx2
+
(
ω2x2 − !ω

)
φn(x) = 2n!ωφn(x) , (2.67)

which is reduced to

−d2φ̌n(ξ)

dξ2
+
(
ξ2 − 1

)
φ̌n(ξ) = 2nφ̌n(ξ) (2.68)
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under x → ξ ≡
√
ω/! x and φn(x) ≡ φ̌n(ξ). The solution of this equation, i.e., the eigen-

function turns out to be

φ̌n(ξ) = e−
ξ2

2 Hn(ξ) = φn(x) = e−
ωx2

2! Hn

(√
ω

!x
)

≡ φ(H)
n (x) , (2.69)

in which Hn(x) is the Hermite polynomial of degree n.

! Radial oscillator (L)

The ground-state wavefunction of the radial oscillator φ0(x) is

φ0(x) = e−
ωx2

2! xg , x ∈ (0,∞) , g >
1

2
, (2.70)

with the angular frequency ω > 0. Starting from the ground-state wavefunction, the super-
potential W (x) and the potential V [0](x) are constructed as follows:

W (x) := −! d

dx
lnφ0(x) = ωx− !g

x
, (2.71)

V [0](x) := W (x)2 − !dW (x)

dx
= ω2x2 +

!2g(g − 1)

x2
− !ω(2g + 1) . (2.72)

Now the partner potential V [1](x) is

V [1](x) = W (x)2 + !dW (x)

dx
= ω2x2 +

!2g(g + 1)

x2
− !ω(2g − 1) . (2.73)

The radial oscillator is shape invariant under the following change of a parameter: g → g+1.
From (2.61), the energy eigenvalue En is

En = 4n!ω , n = 0, 1, 2, . . . . (2.74)

The Schrödinger equation is

−!2d
2φn(x)

dx2
+

[
ω2x2 +

!2g(g − 1)

x2
− !ω(2g + 1)

]
φn(x) = 4n!ωφn(x) , (2.75)

which is reduced to

−d2φ̌n(ξ)

dξ2
+

[
ξ2 +

g(g − 1)

ξ2
− 2g − 1

]
φ̌n(ξ) = 4nφ̌n(ξ) (2.76)

under x → ξ ≡
√
ω/! x and φn(x) ≡ φ̌n(ξ). The solution of this equation, i.e., the eigen-

function turns out to be

φ̌n(ξ) = e−
ξ2

2 ξgL
(g− 1

2 )
n (ξ2) = φn(x) = e−

ωx2

2!

(√
ω

!x
)g

L
(g− 1

2 )
n

(ω
!x

2
)
≡ φ(L)

n (x) , (2.77)

in which L(α)
n (x) is the Laguerre polynomial of degree n.
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! Pöschl–Teller potential (J)

The ground-state wavefunction of the Pöschl–Teller potential φ0(x) is

φ0(x) = (sin x)g(cos x)h , x ∈
(
0,
π

2

)
, g, h >

1

2
. (2.78)

Starting from the ground-state wavefunction, the superpotential W (x) and the potential
V [0](x) are constructed as follows:

W (x) := −! d

dx
lnφ0(x) = −!(g cot x− h tan x) , (2.79)

V [0](x) := W (x)2 − !dW (x)

dx
=

!2g(g + 1)

sin2 x
+

!2h(h+ 1)

cos2 x
− !2(g + h)2 . (2.80)

Now the partner potential V [1](x) is

V [1](x) = W (x)2 + !dW (x)

dx
=

!2g(g + 1)

sin2 x
+

!2h(h+ 1)

cos2 x
− !2(g + h)2 . (2.81)

The Pöschl–Teller potential is shape invariant under the following change of parameters:
g → g + 1, h → h+ 1. From (2.61), the energy eigenvalue En is

En = 4!2n(n+ g + h) , n = 0, 1, 2, . . . . (2.82)

The Schrödinger equation is

−!2d
2φn(x)

dx2
+

[
!2g(g − 1)

sin2 x
+

!2h(h− 1)

cos2 x
− !2(g + h)2

]
φn(x) = 4!2n(n+ g + h)φn(x) ,

(2.83)
which is reduced to

−d2φn(x)

dx2
+

[
g(g − 1)

sin2 x
+

h(h− 1)

cos2 x
− (g + h)2

]
φn(x) = 4n(n+ g + h)φn(x) . (2.84)

The solution of this equation, i.e., the eigenfunction turns out to be

φn(x) = (sin x)g(cos x)hP
(g− 1

2 ,h−
1
2 )

n (cos 2x) ≡ φ(J)
n (x) , (2.85)

in which P (α,β)
n (x) is the Jacobi polynomial of degree n.

! Other conventional shape-invariant potentials

•
1

sin2 x
-potential (*A special case of the Pöschl–Teller potenial with g = h.)

φ0(x) = (sin x)g , x ∈ (0, π) , g >
1

2
, g → g + 1 .

W (x) = −g cot x , V (x) =
!2g(g − 1)

sin2 x
− !2g2 .
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En = !2n(n+ 2g) , φn(x) = (sin x)gP
(g− 1

2 ,g−
1
2 )

n (cos x) , n = 0, 1, 2, . . . .

• Coulomb potential

φ0(x) = e
− e2x

2!2gxg , x ∈ (0,∞) , g >
1

2
, e: electric charge , g → g + 1 .

W (x) =
e2

2!g − !g
x

, V (x) =
!2g(g − 1)

x2
− e2

x
+

e4

4!2g2 .

En =
e4

4!2g2 − e4

4!2(g + n)2
, φn(x) = e

− e2x
2!2(g+n)

(
e2

2!2x
)g

L(2g−1)
n

(
e2

!2(g + n)
x

)
,

n = 0, 1, 2, . . . .

• Kepler problem on a hypersphere

e−
µ
g x(sin x)g , x ∈ (0, π) , g >

3

2
, µ > 0 , g → g + 1 .

W (x) =
!µ
g

− !g cot x , V (x) =
!2g(g − 1)

sin2 x
− 2!2µ cot x+

!2µ2

g2
− !2g2 .

En =
!2µ2

g2
− !2µ2

(g + n)2
−!2g2+!2(g+n)2 , φn(x) = e−

µ
g+nx(sin x)g+n(i−n)P (αn,βn)

n (i cot x) ,

with αn ≡ −g − n+ i
µ

g + n
, βn ≡ −g − n− i

µ

g + n
, n = 0, 1, 2, . . . .

• Morse potential

φ0(x) = ehx−µex , x ∈ (−∞,∞) , h, µ > 0 , h → h− 1 .

W (x) = !(µex − h) , V (x) = !2µ2e2x − !2µ(2h+ 1)ex + !2h2 .

En = !2n(n+ 2g) , φn(x) = ehx−µex(2µex)−nL(2h−2n)
n (2µex) , n = 0, 1, . . . , ⌊h⌋ .

•
1

cosh2 x
-potential (*A special case of the Rosen–Morse potenial with µ → 0.)

φ0(x) = (cosh x)−h , x ∈ (−∞,∞) , h >
1

2
, h → h− 1 .

W (x) = !h tanh x , V (x) = −!2h(h+ 1)

cosh2 x
+ !2h2 .

En = 2!2nh− !2n2 , φn(x) = (cosh x)n−hP (h−n,h−n)
n (tanh x) , n = 0, 1, . . . , ⌊h⌋ .

• Rosen–Morse potential

φ0(x) = e−
µ
hx(cosh x)−h , x ∈ (−∞,∞) , h >

√
µ > 0 , h → h− 1 .

W (x) =
!µ
h

+ !h tanh x , V (x) = −!2h(h+ 1)

cosh2 x
+ 2!2µ tanh x+ !2h2 +

!2µ2

h2
.

En = !2h2−!2(h−n)2+
!2µ2

h2
− !2µ2

(h− n)2
, φn(x) = e−

µ
h−nx(cosh x)n−hP (αn,βn)

n (tanh x) ,

with αn ≡ h− n+
µ

h− n
, βn ≡ h− n− µ

h− n
, n = 0, 1, . . . , ⌊h⌋ .



22 2. Exactly Solvable Quantum Mechanics

• Hyperbolic symmetric top II

φ0(x) = e−µ tan−1 sinhx(cosh x)−h , x ∈ (−∞,∞) , h, µ > 0 , h → h− 1 .

W (x) =
!µ

cosh x
+ !h tanh x ,

V (x) =
−!2h(h+ 1) + !2µ2 + !2µ(2h+ 1) sinh x

cosh2 x
+ !2h2 .

En = 2!2nh− !2n2 , φn(x) = e−µ tan−1 sinhx(cosh x)−h(i−n)P (α,β)
n (i sinh x) ,

with α ≡ −h− 1

2
− iµ , β ≡ −h− 1

2
+ iµ , n = 0, 1, . . . , ⌊h⌋ .

• Eckart potential

φ0(x) = e−
µ
g x(sinh x)g , x ∈ (0,∞) ,

√
µ > g >

1

2
, g → g + 1 .

W (x) =
!µ
g

+ !g coth x , V (x) =
!2g(g − 1)

sinh2 x
− 2!2µ coth x+ !2g2 + !2µ2

g2
.

En = !2g2−!2(g+n)2+
!2µ2

g2
− !2µ2

(g + n)2
, φn(x) = e−

µ
g+nx(sinh x)g+nP (αn,βn)

n (coth x) ,

with αn ≡ −g − n+
µ

g + n
, βn ≡ −g − n− µ

g + n
, n = 0, 1, . . . , ⌊√µ− g⌋ .

• Hyperbolic Pöschl–Teller potential

(sinh x)g(cosh x)−h , x ∈ (0,∞) , h > g >
1

2
, g → g + 1 , h → h− 1 .

W (x) = −!(g coth x− h tanh x) , V (x) =
!2g(g − 1)

sinh2 x
− !2h(h+ 1)

cosh2 x
+ !2(h− g)2 .

En = 4!2n(h− g − n) , φn(x) = (sinh x)g(cosh x)−hP
(g− 1

2 ,−h− 1
2 )

n (cosh 2x) ,

n = 0, 1, . . . ,

⌊
h− g

2

⌋
.

! On the solvability via classical orthogonal polynomials

Let us consider a Schrödinger equation for a conventional shape-invariant potential:

Hφn(x) =

[
−!2 d2

dx2
+ V (x)

]
φn(x) = Enφn(x) . (2.86)

We perform the similarity transformation of this Hamiltonian using the ground-state wave-
function,

H = −!2 d2

dx2
+ V (x) → H̃ := φ0(x)

−1 ◦H ◦ φ0(x) = −!2 d2

dx2
+ 2!W (x)

d

dx
. (2.87)
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Assuming that the wave function is of the following factorized form: φn(x) ≡ φ0(x)Pn(x),
the Schrödinger equation (2.86) becomes

H̃Pn(x) =

[
−!2 d2

dx2
+ 2!W (x)

d

dx

]
Pn(x) = EnPn(x) , (2.88)

which turns out to be one of the Hermite, Laguerre or Jacobi differential equations.

Example 2.1 (H). For the 1-dim. harmonic oscillator, the Hamiltonian with the unit
! = ω = 1:

H = − d2

dx2
+ x2 − 1 , (2.89)

is transformed into

H̃ = − d2

dx2
+ 2x

d

dx
(2.90)

under the similarity transformation via φ0(x) = e−x2/2. The resulting differential equation is

−d2Pn(x)

dx2
+ 2x

dPn(x)

dx
= EnPn(x) , (2.91)

which is equivalent to the Hermite equation (B.19) with the identification En = 2n. ⋄
Example 2.2 (L). For the radial oscillator, the Hamiltonian with the unit ! = ω = 1:

H = − d2

dx2
+ x2 +

g(g − 1)

x2
− (2g + 1) , (2.92)

is transformed into

H̃ = −4z
d2

dz2
+ 4

(
z − g − 1

2

)
d

dz
(2.93)

in terms of z = x2 under the similarity transformation via φ0(x) = e−x2/2x−g. The resulting
differential equation is

−4z
d2Pn(z)

dz2
+ 4

(
z − g − 1

2

)
dPn(z)

dz
= EnPn(z) , (2.94)

which is equivalent to the Laguerre equation (B.24) with the identification En = 4n. ⋄
Example 2.3 (J). For the Pöschl–Teller potential, the Hamiltonian with the unit ! = 1:

H = − d2

dx2
+

g(g − 1)

sin2 x
+

h(h− 1)

cos2 x
− (g + h)2 , (2.95)

is transformed into

H̃ = −4(1− y2)
d2

dy2
+ 4

[
h− 1

2
−
(
g − 1

2

)
(g + h+ 1)y

]
d

dy
(2.96)

in terms of y = cos 2x under the similarity transformation via φ0(x) = (sin x)g(cos x)h. The
resulting differential equation is

−4(1− y2)
d2Pn(y)

dy2
+ 4

[
h− 1

2
−
(
g − 1

2

)
(g + h+ 1)y

]
dPn(y)

dy
= EnPn(y) , (2.97)

which is equivalent to the Jacobi equation (B.28) with the identification En = 4n(n+g+h). ⋄
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! Interrelation among conventional shape-invariant potentials

It has been discussed that all the Schrödinger equations for the conventional shape-invariant
potentials are mapped to the Schrödinger equation for either 1-d harmonic oscillator (H),
radial oscillator (L) or Pöschl–Teller potential (J) under certain changes of variables: x 1→
z = z(x). Formally, the Schrödinger equation for a conventional shape-invariant potential:

[
−!2 d2

dx2
+ V (x)

]
φn(x) = Enφn(x) , (2.98)

changes into [
−!2 d2

dz2
+ v(z)

]
ϕn(z) = εnϕn(z) , (2.99)

with some reparametrizations (See the following example and Tab. 2.1 for the details).

Example 2.4 (Coulomb potential). For the Coulomb potential, the Schrödinger equation
is
[
−!2 d2

dx2
+

!2g(g − 1)

x2
− e2

x
+

e4

4!2g2

]
φn(x) =

(
e4

4!2g2 − e4

4!2(g + n)2

)
φn(x) , (2.100)

with

φn(x) = e
− e2x

2!2(g+n)

(
e2

2!2x
)g

L(2g−1)
n

(
e2

!2(g + n)
x

)
. (2.101)

This transforms into the Schrödinger equation for the radial oscillator under the change of
variables

x 1→ z =
√
x i.e. x = z2 . (2.102)

In the meanwhile, we write the wavefunction φn(x) ≡
√
2z ϕn(z) and also the paramters

e2

!(g + n)
≡ ω , 2g − 1

2
≡ ḡ .

The resulting differential equation is

[
−!2 d2

dz2
+

!2ḡ(ḡ − 1)

z2
+ ω2z2 − !ω(2ḡ + 1)

]
ϕn(z) = 4n!ωϕn(z) , (2.103)

with

ϕn(x) =
1√
2z
φn(x(z)) =

1√
2z

· e−
e2z2

2!2(g+n)

(
e2

2!2 z
2

)g

L(2g−1)
n

(
e2

!2(g + n)
z2
)

∝ e−
ωz2

2!

(√
ω

! z

)ḡ

L
(ḡ− 1

2 )
n

(ω
! z

2
)

. (2.104)

⋄
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Table 2.1: Interrelation among the Schrödinger equations of conventional shape-invariant
potentials.

Class Superpotential Energy
Change of variables

x 1→ z = z(x)
Relation among parameters

H
1-dim. HO

ωz
2n!ω — —

L
Radial osc.

ωz − !g
z

4n!ω — —

Coulomb pot.
e2

2!ḡ − !ḡ
x

e4

4!2ḡ2 − e4

4!2(ḡ + n)2
z =

√
x ω =

e2

!(g + n)
, g = 2ḡ − 1

2

Morse pot.
!(µex − h)

!2(2nh− n2) z = ex/2 ω = 2!µ, g = 2(h− n) +
1

2

J
Pöschl–Teller pot.
!(h tan z − g cot z)

4!2n(n+ g + h) — —

Hyperbolic symmetric top II

!
( µ

cosh x
+ h̄ tanh x

) !2(2nh̄− n2) z =
1

2
arccos(i sinh x) g = −h̄− µi, h = −h̄+ µi

Rosen–Morse pot.

!
(µ
h̄
+ h̄ tanh x

) !2
(
2nh̄− n2 +

µ2

h̄2
− µ2

(h̄− n)2

)
z =

1

2
arccos(tanh x)

g = h̄− n+
µ

h̄− n
+

1

2
,

h = h̄− n− µ

h̄− n
+

1

2

Eckart pot.

!
(
µ

ḡ
− ḡ coth x

)
!2
(
2nḡ − n2 +

µ2

ḡ2
− µ2

(ḡ + n)2

)
z =

1

2
arccos(cothx)

g = −ḡ − n+
µ

ḡ + n
+

1

2
,

h = −ḡ − n− µ

ḡ + n
+

1

2
Hyperbolic Pöschl–Teller pot.

!(h̄ tanh x− g coth x)
4!2n(h̄− g − n) z = arcsin(−i sinh x) h = −h̄
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Conventional SI Systems
Darboux transf.

virtual states

Multi-indexed
systems

S. Odake, et al.,
Phys. Lett. B 702
(2011)

Scaling SI

SI systems

Krein–Adler systems
V. É. Adler, Theor. and Math. Phys. 101 (1994)

Darboux transf. eigenstates

Counterparts
w/ position-
dependent mass

B. Bagchi, et al.,
J. Phys. A 38 (2005)

cf. Riemann sp.

Conditionally exactly solvable systems
G. Junker, et al., Annals Phys. 270 (1998)

· · · Energy shift by b
Conditionally

SI systems
B. Chakrabarti, et al.,
J. Phys. A 35 (2002)

Abraham–Moses systems
P. Abraham, et al., Phys. Rev. A 22 (1980)

Abraham–Moses transf. · · ·

Quasi-exactly solvable systems
A. Turbiner, et al., Phys. Lett. A 126 (1987)

N → ∞ · · · Natanzon
potentials

G. Natanzon,
Vestnik Leningrad.
Univ. (1971)

Figure 2.3: Several classes of exactly solvable quantum mechanical systems in connection
with the conventional shape-invariant systems.

2.4 Other Exactly Solvable Potentials: an Overview

Exactly solvable quantum mechanical potentials have been studied since the early days of
quantum mechanics. Among them is the factorization method [2], which is now understood
in connection with shape invariance. This class of exactly solvable potentials is referred to
as the conventional shape-invariant systems. The term “conventional” reflects the fact that
these systems were already known in the 1950’s.

After that, a number of classes of exactly solvable systems have been constructed in
relation to the conventional shape-invariant systems. A part of those exactly solvable quan-
tum mechanical systems (references are given in the figure) and how they are related to the
conventional shape-invariant systems are summarized in Fig. 2.3.



Chapter 3

SWKB Formalism

Introduction. In this chapter, we discuss SWKB formalism, starting with introducing the
SWKB quantization condition. The condition equation and several notable properties are given
in Sect. 3.1. We perform, in Sect. 3.2, several case studies on the condition equation were
conducted to understand what the SWKB quantization condition actually means. Sect. 3.3 is
devoted to the discussions based on the case studies in the previous section, where we arrive at
a conjecture on the implication of the SWKB quantization condition.

The SWKB condition equation can be used not only to evaluate the energy spectrum from
a given superpotential but to determine the superpotential from a given energy spectrum. In
Sect. 3.4, we formulate a way of doing so: the inverse problem of the SWKB.

# This chapter is based in part on the author’s works: Refs. [50, 51,56].

3.1 SWKB Quantization Condition

In 1985, A. Comtet, A. D. Bandrauk and D. K. Campbell proposed a quantization condition
in the context of supersymmetric quantum mechanics. This condition is often referred to
as supersymmetric WKB, or in short SWKB, quantization condition. In Ref. [39], it is also
called the CBC formula, which is an initialism for Comtet–Bandrauk–Campbell.

3.1.1 Condition Equation

The condition equation is

∫ aR

aL

√
En −W (x)2 dx = nπ! , n = 0, 1, 2, . . . , (3.1)

where aL, aR are the two roots of the equation En −W (x)2 = 0 with aL < aR. For the case
where the equation has more than two roots, see Sect. 3.2.4. Let ISWKB denote the left hand
side of Eq. (3.1), and call it SWKB integral in the following,

ISWKB ≡
∫ aR

aL

√
En −W (x)2 dx . (3.2)

27
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! Properties

Here, we list two well-known properties of this condition:

1. The ground state, n = 0, satisfies the condition exactly for any potentials by construction.
This is demonstrated as follows. We have taken the ground-state energy eigenvalue
E0 to be zero (See Sect. 2.2.1). Also, the superpotential W (x) has at least one zero,
at the point where the ground-state wavefunction φ0(x) takes its extremum, because
W (x) = −!∂xφ0(x)/φ0(x). We write this point x = a. Then the SWKB integral is

∫ a

a

√
0−W (x)2 dx ≡ 0 . (3.3)

2. As for the excited states, the condition is not exactly satisfied in general, but the following
exceptions. That is, the conventional shape-invariant potentials. We will give direct
proofs in Sects. 3.2.2. In this thesis, we present yet other exceptions by considering a
natural extension of the condition equation (See Sect. 3.2.6).

Furthermore, we have shown the following three properties of the condition equation in
this thesis:

3. ! can always be factored out from the condition equation. Thus, SWKB formalism should
be formulated independently from the (reduced) Planck constant ! [50]. ⇒ Sect. 3.2.

4. Although the condition equation is not exactly satisfied in most cases, the SWKB in-
tegrals remain around nπ! in many cases. We say that in those cases the condition is
approximately satisfied [50,51]. ⇒ Sect. 3.2.

5. The exactness of the SWKB quantization condition is closely related to the exact solv-
ability of a potential via classical orthogonal polynomials. ⇒ Sect.
3.3.4.

! Formal derivation of the condition equation

Historically, the SWKB quantization condition was ‘derived’ from Bohr–Sommerfeld quan-
tization condition, or the quantization condition in the context of the WKB approximation:

∫ xR

xL

√
En − V (x) dx =

(
n+

1

2

)
π! , n = 0, 1, 2, . . . , (3.4)

where xL, xR are the classical turning points, that are the two roots of the equation En −
V (x) = 0 with xL < xR.
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The idea of the derivation is rather simple; we expand the left-hand side of Eq. (3.4) in
! by assuming that En and W (x) are independent on !. That is,
∫ xR

xL

√
En − V (x) dx =

∫ xR

xL

√
En −W (x)2 + !dW (x)

dx
dx

∼=
∫ aR

aL

√
En −W (x)2 dx+

!
2

[∫ aR

aL

1√
En −W (x)2

dW (x)

dx
dx

+
√

En −W (aR)2
daR
d!

∣∣∣∣
!→0

−
√
En −W (aL)2

daL
d!

∣∣∣∣
!→0

]
+O(!2)

=

∫ aR

aL

√
En −W (x)2 dx+

!
2

∫ aR

aL

1√
En −W (x)2

dW (x)

dx
dx+O(!2) .

(3.5)

Here,
!
2

∫ aR

aL

1√
En −W (x)2

dW (x)

dx
dx =

!
2
sin−1

[
W (x)√

En

]∣∣∣∣
aR

aL

=
1

2
π! , (3.6)

and thus, if we drop O(!2), we get

∫ aR

aL

√
En −W (x)2 dx+

1

2
π! =

(
n+

1

2

)
π! , (3.7)

which is equivalent to Eq. (3.1).
However, the above derivation is only a formal one, for En and W (x) are usually de-

pendent on ! (See, e.g., Sect. 2.3.2) in various ways. Therefore the expansion in ! is not
mathematically justified.

Remark 3.1. The results that come out from the assumption of the !-independency on En
and W (x) sometimes agree with that from mathematically-justified methods, presumably
for the following facts.

The parameters always appear in the form of !g ≡ G, which behaves like an adiabatic
invariant in the classical limit ! → 0. However, these facts cannot be derived from the
shape-invariant condition or any other definitions theorems, etc.

Moreover, it is illogical when the classical limit of WKB goes to SWKB and comes to
reproduce exact bound-state spectra, even for quantum levels (lower n’s).

3.1.2 Quantization of Energy

The SWKB quantization condition is usually seen as a quantization condition for the energy.
In this subsection, we present how the condition equation quantizes the energy.

! Conventional shape-invariant potentials

As was mentioned above, the SWKB quantization condition reproduces exact bound-state
spectra for any conventional shape-invariant potential. One can deduce the energy spectra
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from the condition equation analytically in these cases. In the calculations, we refer to, e.g.,
Ref. [87].

Example 3.1 (H). The SWKB integral is

ISWKB =

∫ √
E/ω

−
√
E/ω

√
E − ω2x2 dx =

πE
2ω

. (3.8)

Therefore, the quantization condition ISWKB = nπ! yields En = 2n!ω. ⋄

Example 3.2 (L). The SWKB integral is

ISWKB =

∫ a+

a−

√

E −
(
ωx− !g

x

)2

dx =
πE
4ω

, a±
2 ≡

E + 2!ωg ±
√

E(E + 4!ωg)
2ω2

. (3.9)

Therefore, the quantization condition ISWKB = nπ! yields En = 4n!ω. ⋄

Example 3.3 (J). The SWKB integral is

ISWKB =

∫ a+

a−

√
E − !2(g cot x− h tan x)2 dx =

π

2

[√
E + !2(g + h)2 − !(g + h)

]
,

a±
2 ≡ arctan

E + 2!2gh±
√

E(E + 4!2gh)
2!2h2

. (3.10)

Therefore, the quantization condition ISWKB = nπ! yields En = 4!2n(n+ g + h). ⋄

! Other potentials

On the other hand, it is well-known that the SWKB quantization condition does not repro-
duce exact bound-state spectra for other potentials, but can provide approximate values.
The quantization of energy for such potentials has already been carried out by several au-
thors [46–49].

3.1.3 Relation to Quantum Hamilton–Jacobi Theory

An interesting correspondence between the SWKB quantization condition and the quantum
Hamilton–Jacobi theory [88, 89] was first revealed by Bhalla et al. in Ref. [90, 91]. This
subsection is a brief review on this discussion.

! Exact quantization condition in quantum Hamilton–Jacobi theory

In quantum Hamilton–Jacobi theory, an exact quantization condition has been discussed.
The condition equation is

JQHJ :=
1

2π

∮

C

p(x; En) dx , JQHJ = n! , n = 0, 1, 2, . . . , (3.11)
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where p(x; E) is the quantum momentum function, satisfying the following Riccati-type equa-
tion called the quantum Hamilton–Jacobi equation:

p(x; E)2 − i!dp(x; E)
dx

= E − V (x) , p(x; E) ≡ −i!∂xφ(x)
φ(x)

, (3.12)

and C is a counterclockwise contour in the complex x-plane enclosing the classical turning
points xL and xR. This equation means the quantization of the quantum action variable
JQHJ. This quantization condition holds exactly for any quantum-mechanical potentials
V (x).

The exactness of the condition is guaranteed by the fact that an n-th eigenfunction has n
nodes between the two classical turning points (this is known as the oscillation theorem [61]),
which produce the poles of p(x; E) having residue −i! along with the real axis. The Cauchy’s
argument principle gives Eq. (3.11). We note that Gozzi [92] discovered the same equation
independently of Leacock [88,89].

! The correspondence to SWKB

In the following, we show the correspondence between Eq. (3.11) and the SWKB condition
equation. In order to compare the two quantization conditions, we first extend our SWKB
integral to a contour integral on a complex x-plane,

ISWKB → JSWKB :=
1

2π

∮

C′

√
En −W (x)2 dx , (3.13)

where C ′ is a counterclockwise contour enclosing the branch cut of
√

En −W (x)2 from aL
to aR. This JSWKB is to be quantized as JSWKB = n!.

Now let us assume that

p(x; En) ≡ −i!
(
∂xφ0(x)

φ0(x)
+
∂xPn(x)

Pn(x)

)
= i

(
W (x)− !∂xPn(x)

Pn(x)

)
, (3.14)

or equivalently φn(x) ≡ φ0(x)Pn(x), where Pn(x) is such a function that ∂xPn(x)/Pn(x) has
the n poles of residue 1 at the same points as the nodes of φn(x) along with the real axis,
but ∂xPn(x)/Pn(x) can have other poles off the real axis. Then, the quantum action variable
becomes

JQHJ =
1

2π

∮

C

√

−
(
W (x)− !∂xPn(x)

Pn(x)

)2

dx =
1

2π

∮

C

√

En −W (x)2 + !2 d

dx

(
∂xPn(x)

Pn(x)

)
dx .

(3.15)
Comparing Eqs. (3.11) and (3.13), one can see that JSWKB = JQHJ when ∂x

(
∂xPn(x)/Pn(x)

)

does not have any singularity outside the contour C, which is to be realized for all conven-
tional shape-invariant potentials. On the contrary, for other potentials, where the quanti-
zation of ISWKB is not exact, it is easy to guess that ∂x

(
∂xPn(x)/Pn(x)

)
has singularities

outside the contour. In summary, the SWKB is exact quantization condition when the pole
structure of the quantum momentum function and that of the SWKB integrand coincide
outside the contours, i.e., ∂x

(
∂xPn(x)/Pn(x)

)
has no singularity outside the contour C.
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Example 3.4 (H). We show that the pole structures of the SWKB integrand and the
quantum action variable coincide outside the contours C and C ′ for the case of 1-dim.
harmonic oscillator (H). We put ! = ω = 1 for simplicity without loss of generality.

The SWKB integral with the complex variable x has a fixed pole at infinity, and no other
singularities outside the contour C ′. The integrand is Laurent expanded as

√
2n− x2 ∼= i

(
x− n

x
− n

2x3
− · · ·

)
, (3.16)

and therefore, the residue of the fixed pole is −in.
On the other hand, we assume that the quantum action variable in terms of a complex

variable y ≡ 1/x has the following expansion form:

p(y−1; 2n) ∼=
∞∑

j=0

ajy
j +

∞∑

k=0

bk
yk

. (3.17)

We require that the quantum action variable satisfies the quantum Hamilton–Jacobi equa-
tion:

p(y−1; 2n)2 + iy2
dp(y−1; 2n)

dy
= 2n− 1

y2
+ 1 ,

which determines the expansion coefficient {aj}, {bk} as

a1 = −in , b1 = i , otherwise aj = bk = 0 . (3.18)

One can see from this that the quantum action variable also has a fixed pole at infinity
with residue −in. The singularity structures of the quantum momentum function and the
SWKB integral outside the contours C and C ′ are exactly the same, and thereby the SWKB
condition is also an exact quantization condition by Bhalla et al.’s argument [90, 91]. ⋄

Note however that usually the contour integral for JSWKB is not so straightforward other
than in the cases of conventional shape-invariant potentials; the contour integrations for the
singularities cannot be performed analytically. Sometimes infinitely many number of poles
and branch cuts appear on the complex x-plane, which are responsible for the breaking of
SWKB condition. Instead, we give numerical computations for all of such examples below.
At the end of this section, we introduce a quantity to describe the discrepancy:

∆ := π(JQHJ − JSWKB) = nπ!− ISWKB . (3.19)

3.2 (Non-)exactness of SWKB Quantization Condition:
Case Studies

3.2.1 Overview and Structure of this Section

We carry out several case studies on whether a potential satisfies the SWKB condition
equation. As is expected, except in the case with the conventional shape-invariant potentials
(Sect. 2.3.2), the condition equation is not exactly satisfied. Furthermore, we find the
following two aspects:
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Case Studies

§ 3.2.2
§ 3.2.3
§ 3.2.4
§ 3.2.5
§ 3.2.6

Discussions

§ 3.3.2
§ 3.3.3
§ 3.3.4
§ 3.3.5

Figure 3.1: The relation between Sect. 3.2 and Sect. 3.3.

1. The SWKB integrals remain around nπ!, i.e., the condition is approximately satisfied,
in many cases [50, 51].

2. In the cases of position-dependent effective mass, where the Schrödinger equations are
solved via the classical orthogonal polynomials as in the cases of conventional shape-
invariant potentials, the SWKB-exactness is restored by considering a natural extension
of the condition equation.

The rest of this section contains five subsections, each of which is devoted to a different
class of exactly solvable potentials. Each subsection starts with a brief introduction of why we
study this case. Then, we present the condition equations and numerical(/analytical) studies
on them. We also provide numerical(/analytical) studies on the related exact quantization
condition (3.11) for comparison. The discussions based on these case studies are provided in
the subsequent section. Fig. 3.1 shows which case studies provoke which discussion(s).

3.2.2 SWKB for Conventional Shape-invariant Potentials

In this subsection, we make some comments on the SWKB quantization condition for con-
ventional shape-invariant potentials.

! Brief introduction

All the examples that were mentioned in the Comtet et al.’s original paper [39] are now
classified as the conventional shape-invariant potentials. In the next year, Dutt et al. first
demonstrated that the SWKB quantization condition reproduces the exact bound-state spec-
tra for all conventional shape-invariant potentials [40].

Later, in 1997, Hruška et al. also showed the exactness of the SWKB condition by com-
puting the integrations analytically [42]. We have also done the same calculation for our list
in Sect. 2.3.2 to obtain the same result. The details are presented in the following paragraph.
Other kinds of proofs have been given by several authors [41,43–45]. We further discuss the
interrelation of the SWKB integrals for the conventional shape-invariant potentials in Sect.
3.3.4.
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! Analytical calculations

The analytical calculations to show the SWKB-exactness are almost identical to the calcula-
tions in Sect. 3.1.2 (See Eqs. (3.8)–(3.10)). By replacing E in Eqs. (3.8)–(3.10) to En given
in Sect. 2.3.2, we obtain ISWKB = nπ!.

Example 3.5 (H). ISWKB =
π · 2n!ω

2ω
= nπ!. ⋄

Example 3.6 (L). ISWKB =
π · 4n!ω

4ω
= nπ!. ⋄

Example 3.7 (J). ISWKB =
π

2

[√
4!2n(n+ g + h) + !2(g + h)2 − !(g + h)

]
= nπ!. ⋄

3.2.3 SWKB for Exceptional/Multi-indexed Systems

! Brief introduction

It has long been considered that the SWKB quantization condition reproduces the exact
bound-state spectra for all (additive) shape-invariant potentials since Dutt et al. showed in
1986 that the SWKB is an exact quantization condition for all the shape-invariant potentials
known at that time. Starting in 1993, exactly solvable potentials with a different type of
shape invariance, i.e., scaling shape invariance, have been constructed [24]. It was soon
confirmed that the statement did not hold for this class of shape invariance [93]. After
that, it was important to mention “all additive shape-invariant potentials” when stating the
proposition.

After two and a half decades, however, Bougie et al. argued that a newly constructed
type of additive shape-invariant potentials, that is, the so-called exceptional systems (which
are special cases of the multi-indexed systems) may not satisfy the SWKB condition equation
exactly [49]. It was striking, but we saw it skeptically. This was mainly because we found a
mathematically ‘awkward’ way of introducing the superpotential in their paper 1) . Also, our
numerical experiments showed that the condition equation (3.1) held in good approximation,
and we thought we could attribute the small discrepancy to computational precision (See
Tab. 3.1). However, it turned out that their statement still held after introducing the
superpotential in a mathematically-justified way, and the small discrepancy was not due to
computational errors [50].

In the rest of this subsection, we verify Bougie et al.’s argument in our formulation, and
also extend it for the other families of exceptional systems and also for the multi-indexed
systems.

! The condition equation

For the exceptional/multi-indexed systems, the SWKB condition (3.1) reads

∫ aR

aL

√

E (M,∗)
D;n −

(
! d

dx
ln
∣∣∣φ(M,∗)

D;0 (x)
∣∣∣
)2

dx = nπ! , n = 0, 1, 2, . . . , ∗ = L, J . (3.20)

1)They employ the same idea in Refs. [94–97].
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Table 3.1: The results of several numerical experiment on the SWKB integrals (3.21) for
the type II X1-Laguerre system. The integrals divided by π are displayed with six digits.

g \ n 1 2 10 100
3 0.997674 1.99781 9.99930 100.000
10 0.999989 1.99998 9.99998 100.000
100 1.00000 2.00000 10.0000 100.000

This equation is reduced to

L :

∫ a′R

a′L

√

n− z

(
d

dz
ln
∣∣∣φ̌(M,L)

D;0 (z)
∣∣∣
)2 dz√

z
= nπ , (3.21)

J :

∫ a′R

a′L

√

n(n+ g + h)− (1− y2)

(
d

dy
ln
∣∣∣φ̌(M,J)

D;0 (y)
∣∣∣
)2 dy√

1− y2
= nπ , (3.22)

with a′L and a′R being the roots of the equations where inside the square roots are put to

zero. Here, z ≡ ωx2/!, y = cos 2x, and also φ(M,L)
D;0 (x) ≡ φ̌(M,L)

D;0 (z), φ(M,J)
D;0 (x) ≡ φ̌(M,J)

D;0 (y).
Note that these formulae depend on g and h, but are independent of ! and ω. Thus one can
safely put ! = ω = 1 without loss of generality.

! Numerical study

So far, we have no way of carrying out the SWKB integrations (3.21) and (3.22) for n $ 1
analytically. After a few numerical experiments (See Tab. 3.1), it turns out that the condition
equation is never exactly (but approximately) satisfied. This agrees with Bougie et al.’s
point [49].

In what follows, we calculate the left-hand sides of Eqs. (3.21) and (3.22) numerically
to see how accurate the SWKB condition equations hold for this class of additive shape-
invariant systems. In order to evaluate the accuracy, we introduce the following quantity,
the ‘relative error’:

Err(n) :=
ISWKB − nπ!

ISWKB
, n = 1, 2, . . . . (3.23)

For the case of n = 0, where the condition equation is always exact by construction, ISWKB =
0, we define Err = 0.

Example 3.8 (Type II X1-Laguerre systems). We take type II X1-Laguerre systems with
the parameters (a) g = 3, which corresponds to the analysis of Ref. [49], and also (b) g = 10
as examples. In Fig. 3.2, we show the results of our numerical analysis of the SWKB integrals
(3.21).

Note that we have employed the following rescaling for the plot of Err(n):

Err → sgn(Err)× 2log10 |Err| . (3.24)

We employ the same rescaling for all the plots of Err(n) hereafter. ⋄
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(b) g = 10.

Figure 3.2: The SWKB integrals for the type II X1-Laguerre systems (3.21) with several
choices of the parameter. The blue dots are the values of the SWKB integrals, and the red
squares are the corresponding relative errors defined by Eq. (3.23), while the blue solid line
and the red chain line mean that the SWKB condition is exact, Err(n) = 0.

Example 3.9 (Multi-indexed Laguerre systems). Our next examples are more general cases
of the multi-indexed Laguerre system. We fix g = 5 here. Fig. 3.3a is the results with
the choice of D = DI ∩ DII = {1} ∩ {2}, and Fig. 3.3b is those with D = DI ∩ DII =
{1, 2} ∩ {2, 3}. ⋄

Example 3.10 (Multi-indexed Jacobi systems). For the multi-indexed-Jacobi system, we
choose (g, h) = (5, 6) here. We show the results for the choices of D = DI ∩DII = {1} ∩ {2}
in Fig. 3.4a and D = DI ∩DII = {1, 2} ∩ {2, 3} in Fig. 3.4b. ⋄

One can immediately see from the numerical analyses that the condition equations are
never exactly satisfied for n $ 1, but it is notable that the relative errors are always |Err(n)| %
10−3. The behaviors look similar in all cases; the maximal errors occur at n = 1, and as
n grows, |Err(n)| gradually reduces, and in the limit n → ∞, the SWKB condition will be
restored. A similar thing can be said for the parameter g. For larger g, the relative errors
get smaller with the same D. Another feature revealed by our numerical analyses is that the
SWKB integrals are always underestimated for the multi-indexed Laguerre systems, while it
is always overestimated for the multi-indexed Jacobi systems.

3.2.4 SWKB for Krein–Adler Systems

In the previous subsection, we have evaluated the SWKB integrals for the exceptional/multi-
indexed systems, which are constructed from the conventional shape-invariant potentials by
Darboux transformations. In this subsection, we will examine the SWKB integral for Krein–
Adler systems, which are another class of exactly solvable systems constructed from the
conventional shape-invariant potentials by Darboux transformation.

Krein–Adler transformation corresponds to a deletion of eigenstates, so the energy spectra
are deformed radically during the transformation. It would be interesting to consider how
this deformation affects the SWKB integrals.
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(a) D = {1} ∩ {2}.
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(b) D = {1, 2} ∩ {2, 3}.

Figure 3.3: The SWKB integrals for the multi-indexed Laguerre systems (3.21) with
g = 5. The blue dots are the values of the SWKB integrals, and the red squares are the
corresponding relative errors defined by Eq. (3.23), while the blue solid line and the red
chain line mean that the SWKB condition is exact, Err(n) = 0.
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(a) D = {1} ∩ {2}.
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Figure 3.4: The SWKB integrals for the multi-indexed Jacobi systems (3.22) with (g, h) =
(5, 6). The blue dots are the values of the SWKB integrals, and the red squares are the
corresponding relative errors defined by Eq. (3.23), while the blue solid line and the red
chain line mean that the SWKB condition is exact, Err(n) = 0.
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! The condition equation

For the Krein–Adler systems, the SWKB condition (3.1) becomes

∫ aR

aL

√

E (K,∗)
D;n −

(
! d

dx
ln
∣∣∣φ(K,∗)

D;0 (x)
∣∣∣
)2

dx = nπ! , n = 0, 1, 2, . . . , ∗ = H,L, J . (3.25)

This equation is reduced to

H :

∫ a′R

a′L

√

2n̆−
(

d

dξ
ln
∣∣∣φ̌(K,H)

D;0 (ξ)
∣∣∣
)2

dξ = nπ , (3.26)

L :

∫ a′R

a′L

√

n̆− z

(
d

dz
ln
∣∣∣φ̌(K,L)

D;0 (z)
∣∣∣
)2 dz√

z
= nπ , (3.27)

J :

∫ a′R

a′L

√

n̆(n̆+ g + h)− (1− y2)

(
d

dy
ln
∣∣∣φ̌(K,J)

D;0 (y)
∣∣∣
)2 dy√

1− y2
= nπ , (3.28)

with n̆ ∈ {n}\D , (3.29)

in which a′L and a′R are the roots of the equations where inside the square roots equal

zero. Also, ξ ≡
√
ω/! x, z ≡ ξ2, y = cos 2x, and φ(K,H)

D;0 (x) ≡ φ̌(K,H)
D;0 (ξ), φ(K,L)

D;0 (x) ≡
φ̌(K,L)
D;0 (z), φ(K,J)

D;0 (x) ≡ φ̌(K,J)
D;0 (y). Note that these formulae depend on g and h, but are totally

independent of ! and ω. Therefore we set ! = ω = 1 hereafter.

! Prescription for cases with more than two ‘turning points’

In some cases, the equation ‘En − W (x)2 = 0’ has more than two roots, {(ai, ai+1) ; i =
1, 2, . . .}. For example, if we take ∗ = H and choose D = {4, 5}, the equation for the first
excited state has four roots (See Fig. 3.5). In such cases, we employ a prescription of
replacing the left-hand side of Eq. (3.1) as follows [50]:

∫ aR

aL

√
En −W (x)2 dx →

∑

i

∫ ai+1

ai

√
En −W (x)2 dx . (3.30)

In the following of this subsection, we restrict ourselves to the cases D = {d, d+ 1} with
d = 1, 2, · · · to simplify our discussions.

! In quantum-Hamilton–Jacobi point of view

We compare the pole structures of the SWKB integrands and those of the quantum momen-
tum functions on the complex x-plane for Krein–Adler systems. One can presume as follows.
They coincide, except for the branch cut(s) on the real axis in the former, if the SWKB is
also an exact condition; when they do not coincide, we expect that it is not exact.
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Figure 3.5: The plot of the square of the superpotential
(
∂ξ ln

∣∣∣φ̌(K,H)
D;0 (ξ)

∣∣∣
)2

for d = 4.

When n = 1, this system has two sets of turning points.

Example 3.11 (H). Take the case with ∗ = H as an example. The quantum momentum
function of the system is

p(x, En) = −i

(
−x− ∂xW[Hd, Hd+1](x)

W[Hd, Hd+1](x)
+
∂xW[Hd, Hd+1, Hn̆](x)

W[Hd, Hd+1, Hn̆](x)

)
. (3.31)

The plots of the singularity structures for both the quantum momentum function and
the SWKB integrand for the first excited state with d = 1 are displayed in Fig. 3.6. These
figures are the results of the analytic calculation; the position of each singularity is obtained
analytically. Apparently, they do not coincide with each other and the quantization of the
SWKB integral is not exact.

In what follows we obtain analytically the exact bound-state spectrum from the quanti-
zation condition for the quantum action variable (3.11). As we mentioned, C in Eq. (3.11)
is the counterclockwise contour enclosing the two classical turning points xL,R. For the
Krein–Adler systems, in general, the quantum momentum functions have an isolated pole at
x → ∞, 4d− 2 fixed poles other than that and n̆ moving poles, including n moving poles on
the real axis. For the names of the contours enclosing these poles counterclockwise, see Fig.
3.7. Hence, the following equation holds:

JΓR = JQHJ +
4d−2∑

j=1

Jγj +
n̆−n∑

j=1

Jγ̃j , J• :=
1

2π

∮

•
p(x; E) dx . (3.32)

Here, taking into account that W[Hd, Hd+1](x), W[Hd, Hd+1, 1](x) and W[Hd, Hd+1, Hn̆](x)
are polynomials of degree 2d, 2d − 2 and 2d − 2 + n̆ respectively, the second and the third
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terms of the right-hand side of the first equation in Eq. (3.32) are

4d−2∑

i=1

Jγi = (2d− 2)− 2d = −2 , (3.33)

n̆−n∑

j=1

Jγ̃j = −(2d− 2) + (2d− 2 + n̆− n) = n̆− n . (3.34)

We evaluate JΓR by changing variables x → y ≡ 1/x and then employing the Laurant
expansion of the quantum momentum function and the quantum Hamilton–Jacobi equation.
Then we obtain JΓR = E/2− 2. Therefore, the quantization condition yields E = 2n̆. ⋄

! Numerical study

In the case of the Krein–Adler systems, we again have no way of executing the SWKB
integrals (3.26)–(3.28) for n $ 1 analytically. Thus we numerically compute the left-hand
side of Eqs. (3.26)–(3.28), together with the relative error (3.23) to show the accuracy of the
SWKB condition equation.

Example 3.12 (H). Our first examples displayed in Fig. 3.8 are the Krein–Adler system
with ∗ = H and (a) d = 1, (b)d = 3, (c) d = 15. ⋄

Example 3.13 (L). For ∗ = L, we set (a) d = 3 and g = 3, (b) d = 3 and g = 30, (c) d = 15
and g = 3 as illustrations. See Fig. 3.9. ⋄

Example 3.14 (J). Next, for ∗ = J, (a) d = 3, (g, h) = (3, 4), (b) d = 3, (g, h) = (30, 40),
(c) d = 15, (g, h) = (3, 4). The numerical results are shown in Fig. 3.10. ⋄

One can immediately see from our numerical calculations that the condition equations do
not hold. What is different from the previous case is that the relative error Err(n) does not
decrease monotonically as growing n in each case here. The maximum of the error occurs
in the vicinity of the deleted levels, and also the errors tend to be of opposite sign between
the below and the above of the deleted levels. Note that the behavior at n → 0 and n → ∞
is not symmetrical, i.e., for the smaller n, the value still decreases but seems not to go to
the exact condition. For the cases of Laguerre and Jacobi, we numerically confirm that the
relative errors decrease as the larger value of the parameters g, h. A notable feature in the
case of Hermite is that when we delete higher levels, the integral value exhibits oscillating
behavior around the exact one below the deleted levels, which is likely to be caused by our
prescription (3.30).

In the following, we exclusively concentrate on the cases of the deformations/transfor-
mations of the 1-dim. harmonic oscillator for simplicity.
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(c) d = 15.

Figure 3.8: The SWKB integrals for the Krein–Adler Hermite systems (3.26) with several
choices of the parameter. The blue dots are the values of the SWKB integrals, and the red
squares are the corresponding relative errors defined by Eq. (3.23), while the blue solid line
and the red chain line mean that the SWKB condition is exact, Err(n) = 0.
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(c) d = 15 and g = 3.

Figure 3.9: The SWKB integrals for the Krein–Adler Laguerre systems (3.27) with several
choices of the parameters. The blue dots are the values of the SWKB integrals, and the red
squares are the corresponding relative errors defined by Eq. (3.23), while the blue solid line
and the red chain line mean that the SWKB condition is exact, Err(n) = 0.
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(a) d = 3 and (g, h) = (3, 4).
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(c) d = 15 and (g, h) = (3, 4).

Figure 3.10: The SWKB integrals for the Krein–Adler Jacobi systems (3.28) with several
choices of the parameters. The blue dots are the values of the SWKB integrals, and the red
squares are the corresponding relative errors defined by Eq. (3.23), while the blue solid line
and the red chain line mean that the SWKB condition is exact, Err(n) = 0.
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3.2.5 SWKB for Conditionally Exactly Solvable Potentials

In the previous subsection, we have seen that the discrepancy |Err|(n) takes its maximum
value around the deleted levels, where the energy distribution is radically different from the
rest of the spectrum. We now dig deeper into the relation between the SWKB-(non)exactness
and the level structure. Here, we would like to know what happens between the harmonic
oscillator and its Krein–Adler transformation. Since Darboux transformation (and thereby
Krein–Adler transformation) is a discrete transformation, we have no idea what is going
on between them. Now we need an exactly solvable system that smoothly connects the
harmonic oscillator and its Krein–Adler transformation with a continuous parameter.

The conditionally exactly solvable systems by Junker and Roy meet our needs, and we
shall employ them. In addition, these systems contain two continuous parameters, say b and
β. The former describes the modification of level structures, while changing the latter means
the isospectral deformation of a potential.

! The condition equation

For the conditionally exactly solvable potential with ∗ = H by Junker and Roy, the SWKB
condition (3.1) is

∫ aR

aL

√

E (C,H)
n −

(
! d

dx
ln
∣∣∣φ(C,H)

0 (x)
∣∣∣
)2

dx = nπ! , n = 0, 1, 2, . . . . (3.35)

This equation is reduced to

∫ a′R

a′L

√

2n+ b−
(

d

dξ
ln
∣∣∣φ̌(C,H)

0 (ξ)
∣∣∣
)2

dξ = nπ , (3.36)

where a′L and a′R are the roots of the equation obtained by setting the inside of the square

root equal to zero. Again, ξ ≡
√
ω/! x and φ(C,H)

0 (x) ≡ φ̌(C,H)
0 (ξ). This formula is also totally

independent of ! and ω, and thereby we fix ! = ω = 1.

! In quantum-Hamilton–Jacobi point of view

We investigate the pole structure of the quantum momentum function:

p(x; En) = −i

{
∂xφ

(C,H)
0 (x)

φ(C,H)
0 (x)

+
u(H)(x)∂xφ

(C,H)
n (x)

[Cu(H)(x) + ∂xu(H)(x)]φ(H)
n (x)

+
∂xu(H)(x)

u(H)(x)

}
, (3.37)

with some constant C.
In Fig. 3.11, we display our numerical results with several b’s, where we set β = 0 and

n = 1. They reveal notable features of the quantum momentum function of the conditionally
exactly solvable system. Except for b = 0 (1-dim. harmonic oscillator) and b = 4N (Krein–
Adler), the quantum momentum function has an infinite number of poles in the complex
plane. At b = 0, there is just one pole at the origin x = 0 (Fig. 3.11b). For b ̸= 0, an infinite
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(f) b = 4.1.

Figure 3.11: The singularity structures of the quantum momentum functions for the first
excited states of the conditionally exactly solvable system with various b’s. Poles are plotted
by x-marks. The location of each pole is calculated numerically. Note that (b) and (e) are
identical to that of the 1-dim. harmonic oscillator and the Krein–Adler Hermite system with
d = 1 respectively.
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Figure 3.12: The contours of the integrations in Eq. (3.38). The dots · · · show that the
infinite number of pairwise poles lie in the plane. The dashed contour Γ is a virtual contour
that would enclose all the poles except for the one at infinity.

number of poles appear in the complex plane (Fig. 3.11c) and also 4N + 1 poles on the
imaginary axis for 4(N − 1) < b & 4N . The poles on the imaginary axis approach the origin
x = 0 as b grows, while the other poles remain almost the same locations (Fig. 3.11d). When
b reaches 4N , all the poles except the ones on the imaginary axis disappear (Fig. 3.11e).
Again, as b grows further, infinite poles appear in the complex plane (Fig. 3.11f). A notable
feature is that these poles except for the origin x = 0 (and the one at x → ∞) are pairwise
with the residues 1 and −1, respectively. Therefore, for the contour integral of JQHJ, these
contributions exactly vanish and only the residue at x → ∞ contributes to the integral;

JΓ = JQHJ +
∞∑

i=1

Jγi +
∞∑

j=1

Jγ̃j = JQHJ , (3.38)

which we have numerically verified. For the definitions of the contours, see Fig. 3.12. Note
that this is just the quantization of the quantum action variable, not the quantization of the
energy, and then there is no direct method for calculating the energy E from the quantization
condition.

On the other hand, for the SWKB integration, the situation is worse. An infinite number
of the poles appeared in the complex plane are not pairwise and then, no cancellation of the
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residue of the poles occurs (See Fig. 3.13). Also, there appear branch cuts other than the one
on the real axis (which are sometimes referred to as “other branch cuts”). They have nonzero
contributions on the contour integral JSWKB. They spread all over the complex plane, but
we do not plot in Fig. 3.13 to make it easier to see. These are origins of the non-exactness of
the SWKB conditions and also the essential difficulty for the explicit calculation of JSWKB

and let alone the quantization of energies in this formalism. This gives us an intuition that
we have to rely on a perturbative treatment to analyze the condition further.

! Numerical study

The comparison of Fig. 3.13 with Fig. 3.11 indicates that the SWKB condition (3.36) breaks,
which we demonstrate numerically.

Fig. 3.14a shows the b-dependency of the SWKB integral with β = 0, and Fig. 3.14b is
the β-dependency of the SWKB integral with b = 0. The SWKB integral grows with the
parameter b around b = 0, while it exhibits plateau behavior (but the condition is never
exactly satisfied) around β = 0. Different behaviors are seen as the parameters approach
their boundaries:

β = ±
2Γ
(
b
4 + 1

)

Γ
(
b
4 +

1
2

) . (3.39)

These statements hold for general b ̸= 0 and β ̸= 0 cases. The numerical calculations (Fig.
3.14) support our conjecture [50] that the level structure guarantees approximate satisfaction
of the SWKB condition.

At the end, we would like to point out that in the cases of ∗ = L, J, one can obtain similar
results.

3.2.6 SWKB with Position-dependent Effective Mass

Our previous case studies show that the SWKB-exactness occurs if and only if the potential is
one of the conventional shape-invariant ones, whose solvability is guaranteed by the classical
orthogonal polynomials. Since those potentials can be mapped into either H, L or J, there is
a chance that other classes of exactly solvable problems whose potentials are also mapped to
either H, L or J. Here, we test the condition by employing classical-orthogonal-polynomially
exactly solvable problems systems with position-dependent effective mass [98–103].

! Naive application of SWKB

First, we analytically show that a naive application of SWKB condition (3.1) fails to repro-
duce exact bound-state spectra for this class of exactly solvable problems. Take a deformed
harmonic oscillator:

W (x) = ωx , En = 2n!ω + !2αn2 (3.40)

as an example. The SWKB integral yields

∫ a

−a

√
2n!ω + !2αn2 − ω2x2 dx = nπ!

(
1 +

n!α
2ω

)
̸= nπ! , (3.41)
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Figure 3.13: The singularity structures of the SWKB integrands for the first excited
states of the conditionally exactly solvable system with various b’s. The poles are plotted
by x-marks and the branch cut on the real axis is shown by wavy lines. Other branch cuts
are removed from these cartoons. The location of each pole is calculated numerically. Note
that (b) and (e) are identical to that of the 1-dim. harmonic oscillator and the Krein–Adler
Hermite system with d = 1 respectively.
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Figure 3.14: The values of the SWKB integral with the conditionally exactly solvable
potential for n = 1, 2, 3. Range of each plot is limited so that the systems have no more than
two turning points. The parametric conditions yield b > −2 and |β| < 2/

√
π respectively.

where a ≡
√
2n!ω + !2αn2/ω. Clearly, the condition equation does not hold except for

α = 0, which corresponds to the ordinary harmonic oscillator.

! Extension of SWKB formula

Here, remember that we take the unit 2m = 1 throughout the thesis. Let us now take back
the m-dependency into account, for this class of exactly solvable potentials concerns ‘mass’
in the first place. The SWKB condition equation reads

∫ aR

aL

√
2m [En −W (x)2] dx = nπ! , n = 0, 1, 2, . . . . (3.42)

Our systems have a mass depending on the coordinate, i.e., we use m instead of m(x) ≡
(2η(x)2)−1. Therefore, a simple guessing tells the following extended version of the quanti-
zation condition equation:

∫ aR

aL

√
En −W (x)2

η(x)
dx = nπ! , n = 0, 1, 2, . . . , (3.43)

in which aL, aR are the two roots of the equation En −W (x)2 = 0.

Here, we have extended the SWKB condition equation by replacing the mass m by
(2η(x)2)−1, which is in accordance with the construction of the potentials.

Example 3.15 (Deformed harmonic oscillator). The simplest example of the deformed
shape-invariant systems would be the deformed harmonic oscillator, where η(x) = 1 + αx2.
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The extended SWKB integral is

∫ a

−a

√
2n!ω + !2αn2 − ω2x2

1 + αx2
dx = 2ω

∫ a

0

√
a2 − x2

1 + αx2
dx

= 2ω · 1
α

!nα
2ω

π

= nπ! . (3.44)

⋄

The extended SWKB quantization condition also holds for another type of quantum
mechanical system with position-dependent effective mass, which is solvable via the classical
orthogonal polynomials, but the Hamiltonian is not deformed shape invariant [100–102].
Here, we provide an example.

Example 3.16 (Semi-confined harmonic oscillator [103]). The superpotential, the position-
dependent effective mass and the energy eigenvalues of this system are given by

W (x) =

⎧
⎨

⎩
ωx

√
a

x+ a
x > −a

−∞ x & −a
, η(x) =

⎧
⎨

⎩

√
x+ a

a
x > −a

∞ x & −a
, En = 2n!ω . (3.45)

Then,

∫ a+

a−

√
a

x+ a

(
2n!ω − aω2x2

x+ a

)
dx = ωa

∫ a′+

a′−

√
(y − a′−)(a

′
+ − y)

dy

y

= ωa

[
−a · π

2
+

(
!n
ωa

+ a

)
π

2
− a · π

2
+

(
!n
ωa

+ a

)
π

2

]

= nπ! , (3.46)

with

x+ a ≡ y , a′± =
!n±

√
!2n2 + 2!ωa2n
ωa

− a . (3.47)

⋄

3.3 (Non-)exactness of SWKB Quantization Condition:
Discussions

3.3.1 Overview and Structure of this Section

In the previous section, we have carried out the five case studies. In this section, we discuss
the implication of the SWKB quantization condition based on them.

This section is organized as follows. First, the subsequent three subsections are devoted to
the exploration of the implication of SWKB quantization condition. In Sect. 3.3.2, we trace
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the history with our new examples given in Sects. 3.2.2–3.2.5. Next, in Sect. 3.3.3, we discuss
SWKB quantization condition in relation to the level distributions, which is indicated by
our calculations in Sects. 3.2.4 and 3.2.5. Then in Sect. 3.3.4, we also investigate the close
relation between SWKB quantization condition and the classical orthogonal polynomials.
See also Fig. 3.1. The last subsection is on an application of SWKB condition equation,
other than the quantization of energy. The arguments provided here connect our case studies
and what are discussed in the rest of the thesis.

3.3.2 Interpretation of the SWKB: Historical Arguments

It has long been explored what the SWKB implies. First, we shall have a quick review on
what have been considered together with our case studies in the previous section.

! SWKB-exactness and exact solvability

At the time of 1985, when the SWKB quantization condition was originally proposed, re-
searchers were interested in the relation between the exactness of the quantization condition
and the exact solvability of potentials. They thought that the exact solvability of potentials
perhaps explained the exactness of SWKB. Some even believed that the SWKB was exact
for all exactly solvable potentials, which situation DeLaney and Nieto expressed by the word
“folklore” [47].

In 1989, Khare and Varshni gave counter-examples of this folklore [46]. The authors
discussed the SWKB conditions for Ginocchio potential [36] and also for a potential that is
isospectral to the harmonic oscillator, both of which are exactly solvable but are not shape
invariant. Their statement is that the shape invariance may be a necessary condition for the
exactness of the SWKB condition.

Since any proof of this conjecture is absent, it is worth examining other exactly solvable,
but not conventional shape-invariant, potentials. A year after Ref. [46], D. DeLaney and M.
M. Nieto did for the Abraham–Moses systems [38], which is also SWKB-nonexact. They
also concluded that the SWKB is neither exact nor never worse than WKB for this class
of exactly solvable potentials. Years later, yet another demonstration has been carried out
by Bougie et al. for a new type of additional shape-invariant potential [49]. The examples
in the previous three subsections (Sects. 3.2.3–3.2.5) also disprove it. Now we know that
many exactly solvable potentials are not SWKB-exact, and the mere fact that a potential is
exactly solvable never explains the exactness of the SWKB quantization condition.

! SWKB-exactness and shape invariance

As was mentioned earlier, it has long been considered that the SWKB quantization condition
reproduces the exact bound-state spectra for all additive shape-invariant potentials since
Dutt et al. showed in 1986 that the SWKB is an exact quantization condition for all the
known shape-invariant potentials at that time. In 2018, Bougie et al. argued that the newly
constructed type of additive shape-invariant potentials may not satisfy the SWKB condition
equation exactly [49]. Although it contains dubious discussions, we have verified them and
extended them to more general cases in Sect. 3.2.3. Now one can safely say that the SWKB
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condition is not exact for all additive shape-invariant potentials, and one could give infinitely
many examples for this statement.

3.3.3 SWKB and Level Structures

We would like to discuss from our numerical results what guarantees the exact/approximate
satisfaction of the SWKB condition. From our numerical observations on the Krein–Adler
systems in which the maximal errors |Err| are seen around the deleted levels D and get
smaller as n steps away from D, it may be the whole distribution of the energy eigenvalues
that is responsible for the approximate satisfaction of the SWKB condition. That is, the
modifications of the conventional shape-invariant systems change the level structures of the
systems, and so do the values of the SWKB integral.

Remark 3.2. In the cases of the multi-indexed systems, the maximal errors are seen at
n = 1. This can be explained as follows. The multi-indexed systems are obtained through
the Darboux transformations with the so-called virtual-state wavefunctions as seed solutions.
This can be regarded as the deletion of ‘eigenstates with negative eigenvalues’. A similar
thing to the case with the Krein–Adler systems also happens here, i.e., the maximal error
|Err| is seen around the deleted levels. Since the condition equation for n = 0 always holds
exactly by construction, thus for n $ 1, the maximum error should appear at n = 1, the
closest to the deleted levels.

In Sect. 3.2.5, we have demonstrated numerically how the exactness of the condition
equation breaks by employing the conditionally exactly solvable potential. Also, we have
succeeded that for the isospectral deformation, the SWKB integral basically remains approx-
imately the same values as the change of continuous deformation parameter. Those results
support our statement that the approximate satisfaction of the SWKB condition is guar-
anteed by the whole distribution of the energy spectrum of a system. Or the approximate
satisfaction indicates that the level structure is quite similar to that of the corresponding
conventional shape-invariant potential.

! Series expansion of the discrepancy

Our demonstration with the conditionally exactly solvable systems allows us a perturbative
treatment of the discrepancy ∆ defined in Eq. (3.19). By series expanding the discrepancy,
we further analyze the behavior shown in Fig. 3.14, i.e., how the condition equation breaks
as the parameters b, β grow.

The basic idea is as follows. We consider small perturbations from the exact case:
b = β = 0, where the condition becomes exact, since the systems are equivalent to the orig-
inal conventional shape-invariant ones. Then we employ Taylor expansion for the SWKB
integrand around the point where the SWKB condition is exact.

However, we are not sure with which parameter the integral is supposed to be expanded
(Remember we have factored out !, and the integral has no !-dependency). It is notable that,
for the exact cases the main part of the SWKB integral is of the form

√
(x− aL)(aR − x).
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Here, we employ the following trick:

ISWKB =

∫ aR

aL

√
(x− aL)(aR − x)

√

1 +
2n+ b−W (C,H)(x)2 − (x− aL)(aR − x)

(x− aL)(aR − x)
dx

∼=
(aR − aL)2

8
π +

∞∑

k=1

(−1)k(2k)!

(1− 2k)(k!)24k

∫ aR

aL

[
2n+ b−W (C,H)(x)2 − (x− aL)(aR − x)

]k

[(x− aL)(aR − x)]k−
1
2

dx ,

(3.48)

where W (C,H)(x) denotes

W (C,H)(x) := − d

dx
lnφ(C,H)

0 (x) .

After the series expansion, we use the fact to obtain Eq. (3.48) that the integrand converges
uniformly where one can swap the orders of the integration and the limit to infinity. Note
that

2n+ b−W (C,H)(x)2 − (x− aL)(aR − x)

(x− aL)(aR − x)
(3.49)

equals zero if and only if b = β = 0. The radius of convergence for the expansion is thus

∣∣∣∣
2n+ b−W (C,H)(x)2 − (x− aL)(aR − x)

(x− aL)(aR − x)

∣∣∣∣ = 1 . (3.50)

In terms of Eq. (3.48) a choice of parameters (b, β) within this radius of convergence
corresponds to a conditionally exactly solvable system which is connected to the original
conventional shape-invariant potential. When a choice of parameters (b, β) is outside the
radius, such a system simply does not relate to the original conventional shape-invariant
potential in terms of those series. We plot the domains where the series converges for
n = 1, 2, 3 on (b, β)-plane in Fig. 3.15. One can obtain the domains by solving Eq. (3.50)
numerically. Let us call each domain Dn respectively. We have checked numerically that
as n grows, the radius of convergence is enlarged; D1 ⊂ D2 ⊂ D3 ⊂ · · · . A quantitative
argument of the inclusion relation of domains Dn supports this result. Thus we conclude
that there always exist sets of model parameters where the expansion (3.48) is possible for
any n, and it is enough to consider the domain D1 so that the expansion formula (3.48)
holds for any n.

In Fig. 3.16, we plot the SWKB integral (3.36) with different orders of the power series
approximation. For the glancing behavior of the SWKB integral (3.36), the first few orders
of the expansion formula are sufficient.
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Figure 3.15: The domains Dn for n = 1, 2, 3, where the series (3.48) converge. Here, one
can see that D1 ⊂ D2 ⊂ D3.
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Figure 3.16: Plots of the SWKB integral (3.36) for n = 1 with (a) β = 0, (b) b = 0, and
its the power series approximations in different orders with (c) β = 0, (d) b = 0. We plot
the 0th order of the expansion in gray, and the expansion up to first order in blue, up to
second order in green and up to third order in red, while the black curve shows the numerical
results. The range of each plot is determined so that the systems will not have more than
two turning points. The parametric conditions yield b > −2 and |β| < 2/

√
π respectively.

The light gray lines at (a,c) b ≈ −1.64, 1.44, (b,d) |β| ≈ 1.01 show the radius of convergence
(3.50).
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3.3.4 SWKB and Solvability via Classical Orthogonal Polynomials

In the previous subsection, we expand the SWKB integral of the conditional exactly solvable
systems around that of the harmonic oscillator. Also, our discussions above are always the
comparisons of the SWKB integral of some potential with that of a conventional shape-
invariant potential. Now, we return to the SWKB condition for the conventional shape-
invariant potentials itself to get a mathematical insight.

! SWKB for conventional shape-invariant potentials revisited

All the conventional shape-invariant potentials are exactly solvable by virtue of the classical
orthogonal polynomials. Also, we have already mentioned that all the Schrödinger equations
of the conventional shape-invariant potentials are mapped to that of either H, L, J by chang-
ing variable (See Sect. 2.3.2). Now, one might wonder if this is the case with the SWKB
condition equations. It actually is, and we have confirmed it for all the cases listed in Sect.
2.3.2. Formally,

∫ aR

aL

√
En −W (x)2 dx =

∫ αR

αL

√
εn − w(z)2 dz = nπ! . (3.51)

We provide an illustrative example below (See also Tab. 3.2).

Example 3.17 (Coulomb potential). The SWKB integral for the Coulomb potential:

∫ aR

aL

√
e4

4!2ḡ2 − e4

4!2(ḡ + n)2
−
(

e2

2!ḡ − !ḡ
x

)2

dx =

∫ aR

aL

√

− e4

4!2(ḡ + n)2
+

e2

x
− !2ḡ2

x2
dx ,

(3.52)
maps to

∫ a′R

a′L

√

− e4

!2(ḡ + n)2
z2 + 4e2 − 4!2ḡ2

z2
dz , (3.53)

under x 1→ z =
√
x. With the identification

e2

!(ḡ + n)
≡ ω , 2ḡ ≡ g ,

the integral becomes

∫ a′′R

a′′L

√
−ω2z2 + 2!ωg + 4n!ω − !2g2

z2
dz =

∫ a′′R

a′′L

√

4n!ω −
(
ωz − !g

z

)2

dz , (3.54)

which is exactly the SWKB integral for the radial oscillator (L), and equivalent to nπ!. ⋄
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Table 3.2: Interrelation among the SWKB integrals of conventional shape-invariant po-
tentials. Note that the relations among parameters differ from those in Tab. 2.1.

Class Superpotential Energy
Change of variables

x 1→ z
Relation among parameters

H
1-dim. HO

ωz
2n!ω — —

L
Radial osc.

ωz − !g
z

4n!ω — —

Coulomb pot.
e2

2!ḡ − !ḡ
x

e4

4!2ḡ2 − e4

4!2(ḡ + n)2
z =

√
x ω =

e2

!(g + n)
, g = 2ḡ

Morse pot.
!(µex − h)

!2(2nh− n2) z = ex/2 ω = 2!µ, g = 2(h− n)

J
Pöschl–Teller pot.
!(h tan z − g cot z)

4!2n(n+ g + h) — —

Hyperbolic symmetric top II

!
( µ

cosh x
+ h̄ tanh x

) !2(2nh̄− n2) z =
1

2
arccos(i sinh x) g = −h̄− µi, h = −h̄+ µi

Rosen–Morse pot.

!
(µ
h̄
+ h̄ tanh x

) !2
(
2nh̄− n2 +

µ2

h̄2
− µ2

(h̄− n)2

)
z =

1

2
arccos(tanh x)

g = h̄− n+
µ

h̄− n
,

h = h̄− n− µ

h̄− n
Eckart pot.

!
(
µ

ḡ
− ḡ coth x

)
!2
(
2nḡ − n2 +

µ2

ḡ2
− µ2

(ḡ + n)2

)
z =

1

2
arccos(cothx)

g = −ḡ − n+
µ

ḡ + n
,

h = −ḡ − n− µ

ḡ + n
Hyperbolic Pöschl–Teller pot.

!(h̄ tanh x− g coth x)
4!2n(h̄− g − n) z = arcsin(−i sinh x) h = −h̄

! Extension of SWKB formula

The extended version of the SWKB quantization condition:
∫ aR

aL

√
2m(x)[En −W (x)2] dx =

∫ aR

aL

√
En −W (x)2

η(x)
dx = nπ! , n = 0, 1, 2, . . . , (3.55)

can also be understood in the following manner, that is, in this extension 1/η(x) means a
Jacobian of the change of variables in the following sense. As is discussed in Ref. [100], the
Schrödinger equation with position-dependent effective mass:

[
−!2

(√
η(x)

d

dx

√
η(x)

)2

+ V (x)

]
φ(x) = Eφ(x) (3.56)

is mapped to the following Schrödinger-type equation under the change of variable x 1→ z =
z(x):

z(x) := κ

∫ x dx

η(x)
,

(
−!2 d2

dz2
+ v(z)

)
ϕ(z) = εϕ(z) , (3.57)

with κ being a constant, and

v(z) ≡ 1

κ2
V (x) , ε ≡ 1

κ2
E , ϕ(z) ≡

√
η(x)φ(x) . (3.58)

If v(z) is a conventional shape-invariant potential, the following SWKB condition holds:

∫ αR

αL

√

εn −
(
! d

dz
lnϕ0(z)

)2

dz = nπ! . (3.59)
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Now, let us change the variable z to x in the SWKB integral, and using (3.58), we get

∫ αR

αL

√

εn −
(
! d

dz
lnϕ0(z)

)2

dz =

∫ aR

aL

√
1

κ2
En −

(
!η(x)

κ

d

dx
ln
√
η(x)φ0(x)

)2 κ

η(x)
dx

=

∫ aR

aL

√
En −W (x)2

dx

η(x)
. (3.60)

This computation also proves that the extended SWKB condition always reproduces exact
bound-state spectra for the deformed shape-invariant systems [100–102].

! The conjecture

In this thesis, we aim to figure out what the SWKB quantization condition actually implies.
We have already realized that when you see the SWKB quantization condition as a tool for
estimating the energy spectrum for a given superpotential, the integral roughly means how
the spectrum is close to that for the conventional shape-invariant potentials. However, this
does not account fully for the SWKB-(non)exactness. From our discussions in the present
subsection, we arrive at the following conjecture:

There exists n ∈ Z$0 such that the SWKB quantization condition holds exactly, if
and only if the main part of the wavefunction φn with the same n, as well as the
ground-state wavefunction φ0, are expressed in terms of the classical orthogonal
polynomials with different orders.

At the end, we note that mathematical proof of it is still absent, but we have checked
that the conjecture holds for all the solvable systems in the author’s knowledge.

3.3.5 Application of SWKB Quantization Condition

As in the extension of exactly solvable potentials to quasi-exactly solvable problems, one
might wonder whether it is possible to realize that the SWKB condition is quasi exact: the
SWKB condition reproduces exact bound-state spectra only for several (could be infinitely
many, but not the whole spectrum) eigenstates, say n = n1, n2, . . .. A simple guess tells
that for n = nj the energy eigenvalues are exactly 2nj as the SWKB estimates, and the
corresponding eigenfunctions are expressed in terms of the classical orthogonal polynomials.

So far, we have no such systems, and our next move is to construct such potentials.
Before moving on, we summarize the basic idea of what we have done throughout the cur-
rent chapter in a single sentence: the SWKB quantization condition estimates the energy
spectrum for a given superpotential. We call a “direct problem” this problem of obtaining
spectrum for a given superpotential. In the subsequent section, we are going to formulate a
construction method of superpotentials from a given energy spectrum in the context of the
SWKB formalism.
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3.4 Inverse Problem in SWKB Formalism

In the previous several sections, we have dealt with problems of determining energy spectra
from given superpotentials,

W (x): given −→ {En} .

Now we discuss the problem in literally the inverted direction:

{En}: given −→ W (x) .

3.4.1 Formulation

We assume that W (x)2 has only one minimum at x = x0. Also, let x± (x− < x+) denote
the values of x where W (x)2 = E (See the figure below, Fig. 3.17).

x

W (x)2

E

x− x+x0

Figure 3.17: The definition of x±.

First, we differentiate the SWKB integral with respect to E ,

dI

dE = I ′(E) =
∫ x+

x−

dx

2
√

E −W (x)2
. (3.61)

After some algebra, we obtain

dI

dE =

∫ x+

x−

dx

2
√

E −W (x)2
=

1

2

∫ E

0

(
dx2

d(W 2)
− dx1

d(W 2)

)
d(W 2)√
E −W 2

. (3.62)

Now, we calculate a quantity

∫ α

0

I ′(E)√
α− E

dE ,

∫ α

0

I ′(E)√
α− E

dE =
1

2

∫ α

0

[∫ E

0

(
dx2

d(W 2)
− dx1

d(W 2)

)
d(W 2)√

(α− E)(E −W 2)

]
dE

=
1

2

∫ α

0

[(
dx2

d(W 2)
− dx1

d(W 2)

)∫ α

W 2

dE√
(α− E)(E −W 2)

]
d(W 2)

=
π

2

∫ α

0

(
dx2

d(W 2)
− dx1

d(W 2)

)
d(W 2)

=
π

2

[
x+(α)− x−(α)

]
. (3.63)
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W 2

E

O

E = W 2

E

α

(a)

W 2

E

O

E = W 2

W 2

α

α

(b)

Figure 3.18: The domain of integration in (3.63).

From the first line to the second, see Fig. 3.18, and to reduce the second line in Eq. (3.63),
we have used

∫ α

W 2

dE√
(α− E)(E −W 2)

= − arcsin

(
−2E + α +W 2

α−W 2

)∣∣∣∣
α

W 2

= π . (3.64)

On the other hand, the SWKB condition (3.1) gives

dI

dE = π!dn
dE = π!

(
dE
dn

)−1

, (3.65)

which leads to ∫ α

0

I ′(E)√
α− E

dE = π!
∫ α

0

1√
α− E

(
dE
dn

)−1

dE . (3.66)

Using Eqs. (3.63) and (3.66) with the identification α = W 2, we get

x+(W
2)− x−(W

2) = 2!
∫ W 2

0

1√
W 2 − E

(
dE
dn

)−1

dE . (3.67)

Here, we require x− can be expressed in terms of x+, say

x− = f(x+) , (3.68)

which is closely related to the symmetry of W 2. The right-hand side of Eq. (3.67) is
a function of W 2, which is denoted symbolically by 2! × F (W 2). Then, the square of
superpotential W 2 (or |W |) is obtained formally as

W 2 = W (x+)
2 =

1

2! F−1 (x+ − f(x+)) (3.69)

or |W | = |W (x+)| =
√

1

2! F−1 (x+ − f(x+)) , (3.70)

where F−1 denotes the inverse function of F .
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3.4.2 Construction of Conventional Shape-invariant Potentials

Before we move on to our problem of constructing new potentials, here we briefly show that
our formulation does actually replicate the conventional shape-invariant potentials with the
three explicit examples.

Example 3.18 (H). For a given energy spectrum:

E = E(n) = 2n!ω , (3.71)

the SWKB condition reproduces the superpotential of 1-dim. harmonic oscillator. We choose
x0 = 0 for simplicity, and assume that W 2 is symmetric, i.e.,

x+(W
2) = −x−(W

2) ≡ x(W 2) . (3.72)

Then Eq. (3.67) reads

2x(W 2) =
1

ω

∫ W 2

0

dE√
W 2 − E

=
2

ω
|W | (3.73)

therefore

W (x) = ωx . (3.74)

⋄

Example 3.19 (L). In our next example, we choose

E = E(n) = 4n!ω , (3.75)

and also assume

x−(W
2) x+(W

2) = x0
2 i.e. x−(W

2) =
x0

2

x+(W 2)
, (3.76)

to obtain the radial oscillator. Then Eq. (3.67) is

x+(W
2)− x0

2

x+(W 2)
=

1

2ω

∫ W 2

0

dE√
W 2 − E

=
1

ω
|W | . (3.77)

Hence,

|W (x−)| = −ωx− +
ωx0

2

x−
, |W (x+)| = ωx+ − ωx0

2

x+

∴ W (x) = ωx− ωx0
2

x
. (3.78)

If we write x0 ≡
√
g/ω, the resulting superpotential is exactly the same as Eq. (2.71). ⋄
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Example 3.20 (J). An energy spectrum

E = E(n) = 4n(n+ g + h) (3.79)

reproduces the Pöschl–Teller superpotential, together with

tan x−(W
2) tan x+(W

2) = tan2 x0 i.e. x−(W
2) = arctan

(
tan2 x0

tan x+(W 2)

)
. (3.80)

Eq. (3.67) is

x+(W
2)− x−(W

2) = 2

∫ W 2

0

dn√
W 2 − E(n)

∴ x+(W
2)− arctan

(
tan2 x0

tan x+(W 2)

)
= 2!

E(n)=W 2∫

E(n)=0

dn√
W 2 − 4!2(g + h)n− 4!2n2

= arctan

(
|W |

!g + !h

)
, (3.81)

where E(n) = 0 corresponds to n = 0 and E(n) = W 2 corresponds to

n =

√
W 2 + (g + h)2 − (g + h)

2! . (3.82)

Hence,
|W (x)| = !(g + h) sin2 x0 cot x− − !(g + h) cos2 x0 tan x− ,

|W (x)| = !(g + h) cos2 x0 tan x+ − !(g + h) sin2 x0 cot x+ ,
(3.83)

∴ W (x) = −!(g + h) sin2 x0 cot x+ !(g + h) cos2 x0 tan x , (3.84)

where the identification x0 ≡ arccos

(√
h

g + h

)
yields Eq. (2.79). ⋄

Remark 3.3. Since all the conventional shape-invariant potentials are reduced into one of
the above three examples by a coordinate transformation, it is sufficient to consider the three
examples to check our formulation.

3.4.3 Construction of a Novel Solvable Potentials

We have formulated the inverse problem. Now we construct superpotentials that satisfy the
SWKB condition equation exactly for several n’s but do not for other n’s. Here, we restrict
ourselves to the modulation 2) of the ordinary harmonic oscillator (H). Recall Example 3.18.

2) I personally prefer the word “modulation” to “deformation” or “transformation” when describing the
situation here, for the ‘angular velocity’ changes during the ‘modulation’ indeed.



64 3. SWKB Formalism

! Construction of superpotentials

Here, instead of Eq. (3.72), we take

x+(W
2) = −γx−(W

2) , (3.85)

where a positive constant γ describes the modulation. One can take 0 < γ & 1 without
loss of generality. γ = 1 corresponds to the ordinary harmonic oscillator (Example 3.18).
Thereby, for the given E = E(n) = 2n!ω, we get

(1 + γ)x2(W
2) =

1

ω

∫ W 2

0

dE√
W 2 − E

=
2

ω
|W | ∴ W (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 + γ

2
ωx (x < 0)

1 + γ

2γ
ωx (x > 0)

, (3.86)

where the corresponding potential is

V (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 + γ

2

)2

ω2x2 − 1 + γ

2
ω (x < 0)

(
1 + γ

2γ

)2

ω2x2 − 1 + γ

2γ
ω (x > 0)

. (3.87)

In Sect. 4.2, we shall solve the Schrödinger equation for this potential.

! On SWKB-(non)exactness

SWKB quantization condition (3.1) predicts the energy spectrum of this system as

E = E (SWKB)
n = 2n!ω . (3.88)

Here, the SWKB integral is

ISWKB =

∫ 0

aL

√

E −
(
1 + γ

2

)2

ω2x2 dx+

∫ aR

0

√

E −
(
1 + γ

2γ

)2

ω2x2 dx =
πE
2ω

,

aL =
2
√
E

(1 + γ)ω
, aR =

2γ
√
E

(1 + γ)ω
. (3.89)

This prediction does not agree with the exact bound-state spectrum for n $ 1 in general.
However, when γ is a rational number, say γ = p/q with p and q being relatively prime, the
quantization is ‘quasi-exact’. If p + q is an even number, then it gives an exact value only
for

n =
p+ q

2
k , k = 0, 1, 2, . . . .

On the other hand, if p+ q is an odd number, then

n = (p+ q)k , k = 0, 1, 2, . . . .

Note that the corresponding eigenfunctions with such n’s are expressed in terms of the
Hermite polynomials.
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3.4.4 Classical Analogue

! Determination of the potential energy from the period of oscillation

In classical mechanics, there is a classical problem of determining the potential energy from
the period of oscillation.

Let us consider a particle (mass 1/2) under a potential U(x) moving back and forth
repeatedly between x− and x+ (turning points) with the period T . When the particle
possesses the energy E, the period of oscillation is

T = T (E) =

∫ x+

x−

dx√
E − U(x)

. (3.90)

One is to identify the potential energy U(x) from this equation with the knowledge of the
period of oscillation T (E). Mathematically, this is a problem of solving the integral equation
(3.90) about an unknown function U(x). Suppose U(x) has only one minimum. x = x(U)
is two-valued, and let x− denote the smaller value and x+ the larger one. Then, Eq. (3.90)
becomes

x+ − x− =
1

π

∫ U

0

T (E) dE√
U − E

(3.91)

The simplest example would be the determination of a harmonic potential U(x) ∝ x2 from a
constant period T = const. Here, one needs to assume that U(x) is symmetric, i.e., x− = −x+

to obtain the harmonic potential. Therefore,

x =
T

2π

∫ U

0

dE√
U − E

=
T

π

√
U =⇒ U(x) =

π2

T 2
x2 (3.92)

(For more details, see, e.g., Ref. [104]).

! Construction of isochronous potentials

In the early modern period, Galilei discovered that the period of oscillating pendulums
of equal length is constant, or isochronous, regardless of the amplitude, which turned out
to be wrong. Huygens proved that oscillators moving along cycloidal curves are actually
isochronous. Since then, scientists have asked how to construct isochronous oscillators.

One method for constructing potentials that realize isochronous motions of a particle is
to solve the integral equation (3.90) with T = const. under different anzats. For example,
suppose U(x) has only one minimum at x = 0 and call the coordinate on the left x1 < 0 and
right x2 > 0. Then the ansatz x1(U) = −γx2(U) where γ is a positive parameter realizes
isochronous potential energy U(x) other than the harmonic potential:

U(x) =

⎧
⎪⎪⎨

⎪⎪⎩

π2(1 + γ)2

T 2
x2 (x < 0)

π2(1 + γ)2

T 2γ2
x2 (x > 0)

(3.93)

They are all isochronous, regardless of the value of γ. For further discussions, see, e.g.,
Refs. [105–108].
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! Inverse problem in WKB formalism

We can also consider this kind of inverse problem, that is, the problem of determining
a potential V (x) from a given energy spectrum {En} in semi-classical theories, using the
Bohr–Sommerfeld quantization condition (3.4). One can find simple cases in exercises of a
basic quantum mechanics course (See, e.g., Ref. [63]). Note that the energy spectrum {En}
coincides exactly with the energy eigenvalues of the resulting V (x), only in the cases where
Bohr–Sommerfeld quantization condition reproduces exact bound-state spectra.

In solving the inverse problem, first we differentiate the sides of Eq. (3.4) in E,

d

dE

∫ x2

x1

√
E − V (x) dx =

∫ x2

x1

dx

2
√
E − V (x)

= π! dn
dE

, (3.94)

where the integral ∫ x2

x1

dx√
E − V (x)

can be regarded as a quantum analogue of the period of oscillation. The quantization
condition specifies ‘the period’ as π! dn/dE, which is constant if E is linear in n. Thus, in
quantum mechanics, the concept of isochronism is translated into the equidistance of energy
spectra.

Similar to the case of isochronous deformation of potentials in classical mechanics, one
can construct ‘isochronous’ potentials:

V (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 + γ

2

)2

ω2x2 (x < 0)

(
1 + γ

2γ

)2

ω2x2 (x > 0)

(3.95)

in the context of WKB approximation. Here, we have assumed that E = 2n!ω. However,
the energy spectrum of this potential is not exactly equidistant, which is considered as a
quantum effect. [109,110]. When

γ =
4k + 1

4ℓ+ 1
≡ p

q
or γ =

4k + 3

4ℓ+ 3
≡ p

q
, k, ℓ ∈ Z$0 ,

we have such energy spectrum that is equidistant every
p+ q

2
states from n =

p+ q − 2

4
.

For further discussions, see Refs. [111,112].
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3.5 Summary of Chapter 3

In this chapter, we have thoroughly investigated SWKB quantization condition (3.1), aiming
mainly to understand what the condition actually implies. We first introduced the condition
equation with its several properties in Sect. 3.1.

Our study began in Sect. 3.2 with extensive case studies: the SWKB integrals of the
conventional shape-invariant potentials, the exceptional/multi-indexed systems, the Krein–
Adler systems, the conventional exactly solvable systems by Junker and Roy, and classical-
orthogonal-polynomially solvable systems with position dependent effective mass are ana-
lyzed. For the classical-orthogonal-polynomially solvable systems with position-dependent
effective mass, the condition is naturally extended to reflect the position-dependency of mass.
During the calculations, we learned the following two notable properties of the condition:
(1) ! is always factored out of the condition equation and the SWKB can be discussed
outside the context of semi-classical approximation, (2) the SWKB condition holds in good
approximation in many examples, which seems to be guaranteed by the distribution of the
whole energy spectrum. After several discussions, we have concluded in Sect. 3.3 that the
exactness of the SWKB quantization condition indicates that the system is exactly solvable
via the classical orthogonal polynomials.

The SWKB quantization condition provides quantizations of energy, which we call the
direct problem of the SWKB. Our study was in this course so far. Sometimes, modeling
a phenomenon from the experimental data of a spectrum is a central issue in physics and
other sciences. It is quite natural to consider the inverse problem of the SWKB, that is,
the problem of determining the superpotential from a given energy spectrum, which we
have formulated in Sect. 3.4. An assumption on the shape of superpotential is required
to make the inverse problem well-posed. Since we have revealed that SWKB is related to
the classical-orthogonal-polynomial solvability of a system, one expects that this formula-
tion allows one to construct novel classical-orthogonal-polynomially solvable superpotentials.
First, we reconstructed conventional shape-invariant potentials from a given energy spectra
as a test of our formulation. Then we have constructed novel superpotentials, which are
classical-orthogonal-polynomially quasi -exactly solvable and satisfy the SWKB quantization
condition quasi-exactly. The solution is discussed in the subsequent chapter.

! Main statements of this chapter

• The exactness of the SWKB quantization condition indicates that the system is exactly
solvable via the classical orthogonal polynomials (Sect. 3.3).

• The inverse problem of the SWKB is formulated to construct (novel) classical-orthogonal-
polynomially solvable superpotentials (Sect. 3.4).





Chapter 4

Modulations of Harmonic Oscillator:
Novel Solvable Potentials

Introduction. In this chapter, we start with solving the Schrödinger equation with the
potential constructed at the end of the previous chapter in Sect. 4.2. The potential is classified
into the classical-orthogonal-polynomially quasi-exactly solvable potentials. We provide general
remarks on the solution of the Schrödinger equation with the potentials of this kind in advance
in Sect. 4.1. In Sect. 4.3, we consider yet other potentials in this class, which is abstracted as
“harmonic oscillator with singularity functions”.

# This chapter is chiefly based on the author’s works: Refs. [57–59].

4.1 Solution Method: General Remarks

All the potentials we consider in this chapter are confining potentials on the real line, x ∈
(−∞,∞),

lim
x→+∞

V (x) = lim
x→−∞

V (x) = +∞ ,

and thereby have infinitely many discrete eigenstates and no scattering solutions. Also,
the eigenfunctions are square-integrable: ψn(x) ∈ L2(R) ∩ C1, which leads to the following
boundary conditions:

lim
x→+∞

ψ(x) = lim
x→−∞

ψ(x) = 0 . (4.1)

Moreover, our potentials are not analytic at x = 0, so in solving the Schrödinger equations
one must be careful about the matching condition there:

lim
x→0+

ψ(x) = lim
x→0−

ψ(x) , lim
x→0+

dψ(x)

dx
= lim

x→0−

dψ(x)

dx
, (4.2)

or simply

lim
x→0+

d

dx
ln |ψ(x)| = lim

x→0−

d

dx
ln |ψ(x)| . (4.3)

69



70 4. Modulations of Harmonic Oscillator: Novel Solvable Potentials

In addition, it is convenient for us to note that the general solution of the following
second-order ordinary differential equation:

−d2ψ(x)

dx2
+
(
x2 − 1

)
ψ(x) = Eψ(x) , (4.4)

is

ψ(x) = e−
x2

2

[
α 1F1

(
−E

4
;
1

2
; x2

)
+ βx 1F1

(
−E − 2

4
;
3

2
; x2

)]
, (4.5)

where α and β are constants, and 1F1(a; c; x) denotes the Kummer’s confluent hypergeometric
function. Of course, in the case of the ordinary harmonic oscillator, we require the square-
integrability of ψ(x) in (−∞,∞), and get

E = En = 2n , ψ(x) = φ(H)
n (x) = e−

x2

2 Hn(x) , n = 0, 1, 2, . . . , (4.6)

where Hn(x) is the n-th order Hermite polynomial.

4.2 SWKB-induced Quadratic Oscillator

4.2.1 The Potential

In this section, we consider the potential (3.87), constructed in Sect. 3.4.3. Here, we set
ω = 1 without loss of generality,

V (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 + γ

2

)2

x2 − 1 + γ

2
(x < 0)

(
1 + γ

2γ

)2

x2 − 1 + γ

2γ
(x > 0)

. (4.7)

We should emphasize here that this potential has a finite gap at x = 0, which plays a key
role in its isospectral property.

Moreover, we are allowed to restrict ourselves to 0 < γ & 1, since the potential is invariant
under the parity transformation and the discrete transformation of the parameter, γ ↔ 1/γ.
At γ = 1, this potential reproduces the ordinary harmonic oscillator. On the other hand,
the limit γ → 0 makes the potential a harmonic oscillator on the negative half line.

4.2.2 The Solutions

We solve the Schrödinger equation with the potential (4.7):
[
− d2

dx2
+

(
1 + γ

2

)2

x2 − 1 + γ

2

]
φ(x) = Eφ(x) (x < 0) , (4.8a)

[
− d2

dx2
+

(
1 + γ

2γ

)2

x2 − 1 + γ

2γ

]
φ(x) = Eφ(x) (x > 0) , (4.8b)
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which is piecewise solvable and the wavefunction is

φ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−
1+γ
2

x2

2

[
α− 1F1

(
−

E
1+γ

2
;
1

2
;
1 + γ

2
x2

)
+ β−

√
1 + γ

2
x 1F1

(
−

E
1+γ − 1

2
;
3

2
;
1 + γ

2
x2

)]

(x < 0)

e−
1+γ
2γ

x2

2

[
α+ 1F1

(
−

γE
1+γ

2
;
1

2
;
1 + γ

2γ
x2

)
+ β+

√
1 + γ

2γ
x 1F1

(
−

γE
1+γ − 1

2
;
3

2
;
1 + γ

2γ
x2

)]

(x > 0)

,

(4.9)
with α±, β± being constants to be determined from the connecting condition (4.2). The
condition yields the following relations among the constants:

α+ = α− , β+ =
√
γ β− . (4.10)

Next, we determine the energy eigenvalues from the boundary condition at x → ±∞,
Eq. (4.1). Since the asymptotic forms of φ(x) are

φ(x)
x→−∞∼

⎡

⎢⎢⎣α−
Γ
(
1
2

)

Γ

(
−

E
1+γ

2

) − β−
Γ
(
3
2

)

Γ

(
−

E
1+γ−1

2

)

⎤

⎥⎥⎦ e−
1+γ
2

x2

2

(√
1 + γ

2
x

)−
E

1+γ
2 − 1

2

, (4.11a)

φ(x)
x→+∞∼

⎡

⎢⎢⎣α+

Γ
(
1
2

)

Γ

(
−

γE
1+γ

2

) + β+
Γ
(
3
2

)

Γ

(
−

γE
1+γ−1

2

)

⎤

⎥⎥⎦ e−
1+γ
2γ

x2

2

(√
1 + γ

2γ
x

)−
γE
1+γ
2 − 1

2

, (4.11b)

it follows that E, α±, β± satisfy both of the following two transcendental equations:

α−
Γ
(
1
2

)

Γ

(
−

E
1+γ

2

) − β−
Γ
(
3
2

)

Γ

(
−

E
1+γ−1

2

) = 0 , (4.12a)

α+

Γ
(
1
2

)

Γ

(
−

γE
1+γ

2

) + β+
Γ
(
3
2

)

Γ

(
−

γE
1+γ−1

2

) = 0 , (4.12b)

which lead to

Γ

(
−

γE
1+γ−1

2

)

Γ

(
−

γE
1+γ

2

) = −√
γ

Γ

(
−

E
1+γ−1

2

)

Γ

(
−

E
1+γ

2

) , (4.13)

with

β− = 2

Γ

(
−

E
1+γ−1

2

)

Γ

(
−

E
1+γ

2

) α− , β+ = −2

Γ

(
−

γE
1+γ−1

2

)

Γ

(
−

γE
1+γ

2

) α+ . (4.14)
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One is to solve the transcendental equation (4.13) graphically to determine the energy eigen-
values as in the case with the finite square potential well, but with the following two excep-
tions.

We have two kinds of exact roots of the equation (4.13). One is with E such that

E
1+γ

2
∈ Z$0 ∧

γE
1+γ

2
∈ Z$0 , (4.15)

i.e., E is a multiple of 2(1 + γ) and
2(1 + γ)

γ
at the same time. Here, β± = 0 but α± ̸= 0.

The other one is with E such that

E
1+γ − 1

2
∈ Z$0 ∧

γE
1+γ − 1

2
∈ Z$0 , (4.16)

which means E is an odd multiple of 1 + γ and
1 + γ

γ
simultaneously, and we set α± =

0, β± ̸= 0 in this case. Note that these E’s do not cover the whole spectrum except for
γ = 1.

! Case γ ∈ Q: Hermite-polynomial solutions

Here, let us assume γ is a rational number, γ ∈ Q, which is a necessary condition for E’s to
exist such that Eqs. (4.15) and (4.16). We write

γ ≡ p

q
, (4.17)

where p and q are relatively prime integers or p = q = 1. Then, the Schrödinger equation
becomes

[
− d2

dx2
+

(
p+ q

2q

)2

x2 − p+ q

2q

]
φ(x) = Eφ(x) (x < 0) (4.18a)

[
− d2

dx2
+

(
p+ q

2p

)2

x2 − p+ q

2p

]
φ(x) = Eφ(x) (x > 0) . (4.18b)

In this parametrization, Eqs. (4.15) and (4.16) read

qE

2(p+ q)
∈ Z$0 ∧ pE

2(p+ q)
∈ Z$0

and
qE

2(p+ q)
− 1

2
∈ Z$0 ∧ pE

2(p+ q)
− 1

2
∈ Z$0 ,

respectively, meaning that E is a multiple of p + q. If E is an even multiple of p + q, then
α± ̸= 0 and β± = 0; while if E is an odd multiple of p+ q, then α± = 0 and β± ̸= 0.
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Taking the fact that E = 0 is always a root of Eqs. (4.13) with α± ̸= 0 and β± = 0 into
account, we identify that the energy

E = (p+ q)m , m ∈ Z$0 (4.19)

is the (p + q)m/2-th excited-state energy. Therefore, we can say that if p + q is even, the
spectrum is equidistant for every (p + q)/2 states, and if odd, the spectrum is equidistant
for every p+ q states.

The corresponding eigenfunctions are written in terms of Hermite polynomials of piece-
wise different orders. For the case where p + q is even, the eigenfunction with energy
E = (p+ q)k, k = 0, 1, 2, . . . is

φn(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N (−)
k e−

p+q
4q x2

Hqk

(√
p+ q

2q
x

)
(x < 0)

N (+)
k e−

p+q
4p x2

Hpk

(√
p+ q

2p
x

)
(x > 0)

, n =
p+ q

2
k . (4.20)

N (±)
k are constants, whose ratio N (−)

k /N (+)
k is determined by the matching condition (4.2),

N (−)
k

N (+)
k

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(pk)! qk2 !

(qk)!pk2 !
(k: even)

(−1)
p−q
2

√
p

q
·
(pk − 1)! qk−1

2 !

(qk − 1)!pk−1
2 !

(k: odd)

. (4.21)

On the other hand, for p+ q is odd, the eigenfunction with energy E = 2(p+ q)k, k = 0, 1,
2, . . . is

φn(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N (−)
k e−

p+q
4q x2

H2qk

(√
p+ q

2q
x

)
(x < 0)

N (+)
k e−

p+q
4p x2

H2pk

(√
p+ q

2p
x

)
(x > 0)

, n = (p+ q)k , (4.22)

with
N (−)

k

N (+)
k

= (−1)k
(2pk)!(qk)!

(2qk)!(pk)!
. (4.23)

Example 4.1. Take γ = p/q = 1/2 as our first example, where 3n′-th eigenvalues (n′ =
0, 1, 2, . . .) are explicitly known, while for other eigenstates we are to solve Eq. (4.13) graphi-
cally (See Fig. 4.1). First several energy eigenvalues are displayed in Tab. 4.1. The solutions
are summarized in Fig. 4.2. ⋄

Example 4.2. Take γ = p/q = 1/3. Here, 2n′-th eigenvalues (n′ = 0, 1, 2, . . .) are explicitly
known, while for other eigenstates we are to solve Eq. (4.13) graphically (See Fig. 4.3).
First several energy eigenvalues are displayed in Tab. 4.2. The solutions are summarized in
Fig. 4.4. ⋄
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Figure 4.1: Graphical solution of Eq. (4.13) with γ = 1/2. The blue curves correspond
to the left-hand side of the equation, while the red ones are the right-hand side. The
intersections of these curves determine the energy eigenvalues. The numerical solutions are
displayed in Tab. 4.1.

Table 4.1: First several energy eigenvalues for Eq. (4.18) with (p, q) = (1, 2) with six
digits. These values are obtained by solving Eq. (4.13) or finding the intersections in Fig.
4.1 numerically. The energy gaps between two successive eigenstates are roughly 2, while
those for the harmonic oscillator are exactly 2 in our unit.

n En

0 0 (exact)
1 1.96156
2 4.02277
3 6 (exact)
4 7.98757
5 10.0101
6 12 (exact)
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Figure 4.2: The solutions of the eigenvalue problem (4.18) with (p, q) = (1, 2). Thin
lines show the energy spectrum, and the colored curve on each line is the corresponding
eigenfunction. The states plotted in yellow possess the Hermite-polynomial solvability, while
those colored in blue do not. The potential is also plotted in this figure by a black curve.
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Figure 4.3: Graphical solution of Eq. (4.13) with γ = 1/3. The blue curves correspond
to the left-hand side of the equation, while the red ones are the right-hand side. The
intersections of these curves determine the energy eigenvalues. The numerical solutions are
displayed in Tab. 4.2.

Table 4.2: First several energy eigenvalues for Eq. (4.18) with (p, q) = (1, 3) with six
digits. These values are obtained by solving Eq. (4.13) or finding the intersections in Fig.
4.3 numerically. The energy gaps between two successive eigenstates are roughly 2, while
those for the harmonic oscillator are exactly 2 in our unit.

n En

0 0 (exact)
1 1.92412
2 4 (exact)
3 6.03248
4 8 (exact)
5 9.97945
6 12 (exact)
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Figure 4.4: The solutions of the eigenvalue problem (4.18) with (p, q) = (1, 3). Thin
lines show the energy spectrum, and the colored curve on each line is the corresponding
eigenfunction. The states plotted in yellow possess the Hermite-polynomial solvability, while
those colored in blue do not. The potential is also plotted in this figure by a black curve.
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Table 4.3: For γ = p′/12 (p′ = (0, )1, 2, . . . , 12), the energy spectra are equidistant every
N states.

p′ (0) 1 2 3 4 5 6 7 8 9 10 11 12

N (1) 13 7 5 2 17 3 19 5 7 11 23 1

Table 4.4: The choice(s) of (p, q) for several N ’s, which means every how many states the
energy spectra are equidistant.

N (p, q)

1 (1, 1)
2 (1, 3)
3 (1, 2) (1, 5)
4 (1, 7) (3, 5)
5 (1, 4) (1, 9) (2, 3) (3, 7)

Example 4.3 (γ = p′/12). We show every how many states the energy spectra are equidis-
tant for the choices of γ = p′/12 (p′ = (0, )1, 2, . . . , 12) in Tab. 4.3. ⋄

4.2.3 Discussions

! Equidistance of energy spectra

We have learned that for a given γ = p/q, the spectrum is equidistant for every (p + q)/2
states for even p+ q and every p+ q states for odd p+ q. It would be interesting to consider
the other way around. That is, suppose you want an energy spectrum that is equidistant for
every N states. Then what value of γ should you choose? We provide the set(s) (p, q) for
the first several N ’s in Tab. 4.4. Note that we have N ′ sets of (p, q) for N = 2N ′ − 1 or 2N ′

with N ′ = 1, 2, . . ..

! Comments on a finite jump in potentials in physics

One might feel that the potentials with a finite jump, such as (4.7), are artificial and have
no meaning in reality. However, motivation for exploring problems with a finite jump in
potential is found in the following courses:

1. To investigate phenomena that occur at the interface between two different materials
such as polar ZnO/MgxZn1−xO heterostructures [113] (See Fig. 4.5).

2. To analyze phenomena by reproducing the doubly degenerated (except for the ground
state) energy spectra, as in the case of the Landau levels of the edge states of graphene
ribbons for an armchair edge [114] (See Fig. 4.6).
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In summary, one can find a finite jump in potentials when considering interfacial phe-
nomena (cf. The Heaviside step function is employed for a simple (rough) model of the free
electron in metals).

MgxZn1−xO

[0001̄]

ZnO

(a) Schematic picture of the ZnO/
MgxZn1−xO heterostructure.

(b) Potential diagram near the heterointer-
faces. This figure is taken from the middle
panel of Fig. 1C in Ref. [113].

Figure 4.5: A potential with a finite jump in the ZnO/MgxZn1−xO heterostructure.

(a) Schematic picture of the armchair edge. (b) A virtual potential for describing the
Landau-level structures of graphene ribbons
for an armchair edge. This figure is taken
from Fig. 4 in Ref. [114].

Figure 4.6: A virtual potential with a gap describing the Landau-level structures of
graphene ribbons for an armchair edge.
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4.3 Harmonic Oscillator with a Step

4.3.1 The Potential

We consider a potential

V (x) = V (x; a) =

{
x2 − 1− a (x < 0)

x2 − 1 (x > 0)
(4.24)

(See Fig. 4.7). Although the Schrödinger equation is not invariant under a ↔ −a, it is
sufficient to consider the case where a is a positive constant, a > 0, by considering the parity
transformation plus constant shift of the energy.
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10

15

V(x), E

Figure 4.7: The potential (4.24). Here, the parameter a is set to be 4 as an example.

4.3.2 The Solutions

Let us first consider the most general case, i.e., arbitrary a > 0. The Schrödinger equation:

[
− d2

dx2
+ x2 − 1− a

]
ψ(x) = Eψ(x) (x < 0) (4.25a)

[
− d2

dx2
+ x2 − 1

]
ψ(x) = Eψ(x) (x > 0) , (4.25b)

is piecewise solvable, whose solution is

ψ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

e−
x2

2

[
α 1F1

(
−E + a

4
;
1

2
; x2

)
+ βx 1F1

(
−E + a− 2

4
;
3

2
; x2

)]
(x < 0)

e−
x2

2

[
α 1F1

(
−E

4
;
1

2
; x2

)
+ βx 1F1

(
−E − 2

4
;
3

2
; x2

)]
(x > 0)

, (4.26)
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with α and β being constants. The energy eigenvalues En are determined through the
boundary conditions at infinity (4.1), that is,

α
Γ
(
1
2

)

Γ
(
−E+a

4

) − β
Γ
(
3
2

)

Γ
(
−E+a−2

4

) = 0 and α
Γ
(
1
2

)

Γ
(
−E

4

) + β
Γ
(
3
2

)

Γ
(
−E−2

4

) = 0 . (4.27)

From these equations, one obtains the following transcendental equations about E, whose
roots are the eigenvalues:

−
Γ
(
−E

4

)

Γ
(
−E−2

4

) =
Γ
(
−E+a

4

)

Γ
(
−E+a−2

4

) . (4.28)

Note however that, technically, Eq. (4.28) can only be applicable to the case a ̸= 4ℓ (ℓ =
0, 1, 2, . . .), where α ̸= 0. For the case where a = 4ℓ, we shall discuss it in detail in the
subsequent subsection.

Example 4.4. We show the case of a = 2 as an example. We first solve Eq. (4.28) with
a = 2 to obtain the energy spectrum. This equation is transcendental, and we are to solve
it graphically (See Fig. 4.8). The first several energy eigenvalues are displayed in Tab. 4.5
with six digits. The corresponding eigenfunctions are expressed in terms of En as

ψn(x) ∝

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−
x2

2

[

1F1

(
−En + 2

4
;
1

2
; x2

)
− 2

Γ
(
−En−2

4

)

Γ
(
−En

4

) x 1F1

(
−En

4
;
3

2
; x2

)]
(x < 0)

e−
x2

2

[

1F1

(
−En

4
;
1

2
; x2

)
− 2

Γ
(
−En−2

4

)

Γ
(
−En

4

) x 1F1

(
−En − 2

4
;
3

2
; x2

)]
(x > 0)

.

(4.29)
The solutions are summarized in Fig. 4.9. ⋄

! Case a = 4ℓ (ℓ = 1, 2, . . .): Hermite-polynomial solutions

Next let us consider the case where a is a multiple of 4, a = 4ℓ or V (x; a) = V (x; 4ℓ)
(ℓ = 1, 2, . . .), where all the non-negative eigenfunctions are expressed with the Hermite
polynomials as we shall demonstrate below. The Schrödinger equation is

[
− d2

dx2
+ x2 − 1− 4ℓ

]
ψ(x) = Eψ(x) (x < 0) (4.30a)

[
− d2

dx2
+ x2 − 1

]
ψ(x) = Eψ(x) (x > 0) . (4.30b)

For this case, the transcendental equations (4.28) reduce to rather simple algebraic equations,
and all the eigenfunctions with E $ 0 are expressed by the Hermite polynomials {Hn(x)}.
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Figure 4.8: Graphical solution of Eq. (4.28). The blue curves correspond to the left-hand
side of the equation, while the red ones are the right-hand side. The intersections of these
curves determine the energy eigenvalues. The numerical solutions are displayed in Tab. 4.5.

Table 4.5: First several energy eigenvalues for V (x; 2) with six digits. These values are
obtained by solving Eq. (4.28) or finding the intersections in Fig.4.8 numerically. The energy
gaps between two successive eigenstates are roughly 2, while those for the harmonic oscillator
are exactly 2 in our unit.

n En

0 −1.30908
1 1.09714
2 2.93715
3 5.04459
4 6.96479
5 9.02870
6 10.9756
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Figure 4.9: The solutions of the eigenvalue problem (4.25) with a = 2. Thin blue lines
show the energy spectrum, and the blue curve on each line is the corresponding eigenfunction.
The potential V (x; 2) is also plotted in this figure by a black curve.
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Before we solve Eq. (4.30), let us summarize the solutions of Eqs.(4.30a) and (4.30b)
solved on the real line, x ∈ R, respectively. They are

(4.30a) ⇒ E(−)
n = 2n− 4ℓ , ψ(−)

n (x) = N (−)
n e−

x2

2 Hn(x) , n = 0, 1, 2, . . . ,
(4.31a)

(4.30b) ⇒ E(+)
n = 2n , ψ(+)

n (x) = N (+)
n e−

x2

2 Hn(x) , n = 0, 1, 2, . . . . (4.31b)

Here, they share all non-negative energy eigenvalues. This suggests that Ej = 2j (j =

0, 1, 2, . . .) are the eigenvalues of the system (4.30) if the coefficients N (±)
n are chosen so that

they satisfy the continuity conditions of the wavefunction and its first derivative at the origin
(4.2).

For E = 0, the wavefunctions are

ψ(−)
2ℓ (x) ∝ e−

x2

2 H2ℓ(x) , ψ(+)
0 (x) ∝ e−

x2

2 . (4.32)

Since

e−
02

2 H2ℓ(0) = (−1)ℓ
(2ℓ)!

ℓ!
, e−

02

2 = 1 ,
dψ(−)

2ℓ (0)

dx
=

dψ(+)
0 (0)

dx
= 0 , (4.33)

the continuity conditions at the origin (4.2) yields the wavefunction with E = 0 for the
original problem (4.30) in the following form:

ψE=0(x) =

⎧
⎨

⎩
(−1)ℓ

ℓ!

(2ℓ)!
e−

x2

2 H2ℓ(x) (x < 0)

e−
x2

2 (x > 0)
. (4.34)

This is a square-integrable, smooth function of ℓ nodes, so from the oscillation theorem, one
can safely say that this corresponds to the ℓ-th excited state, ψE=0(x) ≡ ψℓ(x).

Similarly, one can obtain the square-integrable wavefunctions for all the non-negative
energies. The n-th excited-state energy eigenvalue for Eq. (4.30) is En = 2(n− ℓ), where n
is greater than or equal to ℓ, and the corresponding eigenfunction is

ψn(x) =

{
Nn e−

x2

2 Hn+ℓ(x) (x < 0)

e−
x2

2 Hn−ℓ(x) (x > 0)
, n = ℓ, ℓ+ 1, ℓ+ 2, . . . , (4.35)

where

Nn = (−1)ℓ
(n− ℓ)!

(
n+ℓ
2

)
!

(n+ ℓ)!
(
n−ℓ
2

)
!

if (n− ℓ) is even , (4.36a)

Nn = (−1)ℓ
(n− ℓ)!

(
n+ℓ−1

2

)
!

(n+ ℓ)!
(
n−ℓ−1

2

)
!

if (n− ℓ) is odd . (4.36b)

Note that this wavefunction satisfies either Neumann or Dirichlet boundary condition at the
origin. For the case where (n− ℓ) is even, it complies with

ψn(0) ̸= 0 ,
dψn(0)

dx
= 0 : Neumann boundary condition, (4.37)
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while for odd (n− ℓ),

ψn(0) = 0 ,
dψn(0)

dx
̸= 0 : Dirichlet boundary condition. (4.38)

For E $ 0, our problem (4.30) would be rephrased as finding square-integrable solutions of
(4.25) under the Neumann/Dirichlet boundary condition at the origin.

For the ℓ lowest eigenstates, the eigenfunctions are not expressed by the Hermite poly-
nomials anymore. So we need to go back to the problem of solving the piecewise differential
equation (4.30) under the boundary conditions (4.1), (4.2). Eq. (4.1) yields

−
Γ
(
−E

4

)

Γ
(
−E−2

4

) =
Γ
(
−E+4ℓ

4

)

Γ
(
−E+4ℓ−2

4

) . (4.39)

This may look a transcendental equation, however, after some algebras, one finds that it is
a degree ℓ algebraic equation:

−
ℓ∏

k=1

(E + 4k − 2) =
ℓ∏

k=1

(E + 4k) . (4.40)

Here the roots of this equation are denoted by E0, E1, E2, . . . , Eℓ−1 from the lowest to higher.
Therefore, for E < 0, the wavefunctions are

ψn(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−
x2

2

[

1F1

(
−En + 4ℓ

4
;
1

2
; x2

)
− 2

Γ
(
−En−2

4

)

Γ
(
−En

4

) x 1F1

(
−En + 4ℓ− 2

4
;
3

2
; x2

)]

(x < 0)

e−
x2

2

[

1F1

(
−En

4
;
1

2
; x2

)
− 2

Γ
(
−En−2

4

)

Γ
(
−En

4

) x 1F1

(
−En − 2

4
;
3

2
; x2

)]

(x > 0)

,

n = 0, 1, . . . , ℓ− 1 . (4.41)

Example 4.5. The energy eigenvalues and the corresponding eigenfunctions for ℓ = 1 are

E0 = −3 , ψ0(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−
x2

2

[

1F1

(
−1

4
;
1

2
; x2

)
− 2

Γ
(
5
4

)

Γ
(
3
4

)x 1F1

(
1

4
;
3

2
; x2

)]
(x < 0)

e−
x2

2

[

1F1

(
3

4
;
1

2
; x2

)
− 2

Γ
(
5
4

)

Γ
(
3
4

)x 1F1

(
5

4
;
3

2
; x2

)]
(x > 0)

,

(4.42)

En = 2(n− 1) , ψn(x) =

{
Nn e−

x2

2 Hn+1(x) (x < 0)

e−
x2

2 Hn−1(x) (x > 0)
, n = 1, 2, 3, . . . , (4.43)
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Figure 4.10: The solutions of the eigenvalue problem (4.30) with ℓ = 1. The potential
V (x; 4) is displayed in this figure by a black curve. Thin lines show the energy spectrum,
and the colored curve on each line is the corresponding eigenfunction. The states plotted in
yellow possess the Hermite-polynomial solvability, while that colored in blue does not.

where

Nn = − 1

2n
if n is odd , (4.44a)

Nn = − 1

2(n+ 1)
if n is even . (4.44b)

They are summarized in Fig. 4.10. ⋄

Example 4.6. The energy eigenvalues and the corresponding eigenfunctions for ℓ = 6 are

ψn(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−
x2

2

[

1F1

(
−En + 24

4
;
1

2
; x2

)
− 2

Γ
(
−En−2

4

)

Γ
(
−En

4

) x 1F1

(
−En + 22

4
;
3

2
; x2

)]
(x < 0)

e−
x2

2

[

1F1

(
−En

4
;
1

2
; x2

)
− 2

Γ
(
−En−2

4

)

Γ
(
−En

4

) x 1F1

(
−En − 2

4
;
3

2
; x2

)]
(x > 0)

,

n = 0, 1, . . . , 5 , (4.45)

En = 2(n− 6) , ψn(x) =

{
Nn e−

x2

2 Hn+6(x) (x < 0)

e−
x2

2 Hn−6(x) (x > 0)
, n = 6, 7, 8, . . . , (4.46)

where

Nn =
(n− 6)!

(
n+6
2

)
!

(n+ 6)!
(
n−6
2

)
!

if n is even , (4.47a)

Nn =
(n− 6)!

(
n+5
2

)
!

(n+ 6)!
(
n−7
2

)
!

if n is odd . (4.47b)
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They are summarized in Fig. 4.11, and the negative energy eigenvalues are displayed in
Tab. 4.6.

⋄

Table 4.6: The negative energy eigenvalues for V (x; 24) with six digits. These values
are obtained by solving Eq. (4.40) with ℓ = 6. The energy gaps between two successive
eigenstates are roughly 4, while those for the harmonic oscillator on the positive half line are
exactly 4 in our unit.

n En

0 −22.4357
1 −18.6885
2 −14.8995
3 −11.1005
4 −7.31152
5 −3.56427
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Figure 4.11: The solutions of the eigenvalue problem (4.30) with ℓ = 6. The potential
V (x; 24) is displayed in this figure by a black curve. Thin lines show the energy spectrum,
and the colored curve on each line is the corresponding eigenfunction. The states plotted in
yellow possess the Hermite-polynomial solvability, while those colored in blue do not.
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Remark 4.1 (On the algebraic equation (4.40)). Although we do not have a general formula
for solving the ℓ-th degree algebraic equation (4.40), it turns out that the ℓ roots have the
following property: if E = −1 − 2ℓ + α is a root of Eq. (4.40), E = −1 − 2ℓ − α is also a
root. Here, we give the proof:

Proof. We change the variable E → Ẽ − 1− 2ℓ. By this, the equation (4.40) becomes

ℓ∏

k=1

(Ẽ + 4k − 2ℓ− 3) +
ℓ∏

k=1

(Ẽ + 4k − 2ℓ− 1) = 0 . (4.48)

Now under the transformation: Ẽ → −Ẽ, the equation transforms

ℓ∏

k=1

(−Ẽ + 4k − 2ℓ− 3) +
ℓ∏

k=1

(−Ẽ + 4k − 2ℓ− 1)

= (−1)ℓ
(

ℓ∏

k=1

(Ẽ − 4k + 2ℓ+ 3) +
ℓ∏

k=1

(Ẽ − 4k + 2ℓ+ 1)

)

=(−1)ℓ
(

ℓ∏

k=1

(Ẽ + 4k − 2ℓ− 3) +
ℓ∏

k=1

(Ẽ + 4k − 2ℓ− 1)

)
= (−1)ℓ × [l.h.s. of Eq. (4.48)] .

Therefore, if Ẽ = α satisfies Eq. (4.48), Ẽ = −α also satisfies the equation.

Note that this property guarantees even numbers of roots of the algebraic equation. For
the odd-ℓ case, E = −1− 2ℓ is also a root of Eq. (4.40), which corresponds to α = 0 above.

4.3.3 Discussions

! Wigner distribution function

We aim to explore the behavior of a particle under the potential (4.24) by using the analogy
of classical dynamics. Here, the idea of formulating quantum mechanics in the phase space is
a powerful tool to do so, where the Wigner quasiprobability distribution [115] plays a central
role (See, e.g., Ref. [116]). Numerous analyses of the Wigner function have been carried out
in this context (See, e.g., Ref. [117] and references therein).

We compute the Wigner distribution function:

W(p, x) =
1

4π2

∫∫
dλdµ e−i(λp+µx) ⟨ψ| eiλp̂+iµx̂ |ψ⟩ , (4.49)

of the system (4.24). In terms of the eigenfunctions, Eq. (4.49) is reduced to

Wn(p, x) =
1

2π

∫ ∞

−∞
ψ∗
n

(
x− 1

2
x̄

)
ψn

(
x+

1

2
x̄

)
e−ipx̄ dx̄ , (4.50)
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where ψn(x) is normalized,

∫ x2

x1

|ψn(x)|2 dx = 1. Note that the Wigner function is a real

function, Wn(p, x) ∈ R.
In our problem, the potential is defined on the whole real line, x ∈ (−∞,∞), and the

wavefunctions are piecewise analytic functions, symbolically in the following way:

ψn(x) =

{
ψ(−)
n (x) x & 0

ψ(+)
n (x) x $ 0

. (4.51)

Therefore, the Wigner distribution function is

Wn(p, x) =
1

2π

[ ∫ 2x

−∞
ψ(+)
n

(
x− x̄

2

)
ψ(−)
n

(
x+

x̄

2

)
e−ipx̄ dx̄

+

∫ −2x

2x

ψ(−)
n

(
x− x̄

2

)
ψ(−)
n

(
x+

x̄

2

)
e−ipx̄ dx̄

+

∫ ∞

−2x

ψ(−)
n

(
x− x̄

2

)
ψ(+)
n

(
x+

x̄

2

)
e−ipx̄ dx̄

]
(4.52)

for x & 0, and

Wn(p, x) =
1

2π

[ ∫ −2x

−∞
ψ(+)
n

(
x− x̄

2

)
ψ(−)
n

(
x+

x̄

2

)
e−ipx̄ dx̄

+

∫ 2x

−2x

ψ(+)
n

(
x− x̄

2

)
ψ(+)
n

(
x+

x̄

2

)
e−ipx̄ dx̄

+

∫ ∞

2x

ψ(−)
n

(
x− x̄

2

)
ψ(+)
n

(
x+

x̄

2

)
e−ipx̄ dx̄

]
(4.53)

for x $ 0.
In the case of the ordinary harmonic oscillator, a → 0, it is well-known that the Wigner

distribution function (4.50) is computed analytically, and one obtains

Wn(p, x) =
(−1)n

π
e−(p2+x2)L(0)

n

(
2(p2 + x2)

)
, (4.54)

where L(α)
n (x) denotes a Laguerre polynomial of degree n. Here, the Wigner function is

circular symmetric.
On the other hand, we do not have the closed-form expression of the Wigner function

for arbitrary a (or ℓ) and n in our current problem (4.24). With specific choices of ℓ and n,
one could obtain the closed-form expressions, but it would be too complicated to show here.
Instead, we display several numerical calculations of the Wigner function in Figs. 4.12 and
4.13. Our analyses are exclusively focused on the cases with a = 4ℓ for simplicity.

Example 4.7 (n = 0). We show the Wigner functions of the ground states of this sys-
tem (4.24) with various ℓ’s in Fig. 4.12. ⋄

Example 4.8 (n $ ℓ). Here, we show the Wigner function of the eigenstates whose wave-
functions are expressed in terms of the Hermite polynomials, in Fig. 4.13. ⋄
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(d) ℓ = 10.

Figure 4.12: Wigner distribution functions (4.50) for n = 0 with several choices of ℓ’s.
These ground-states are not Hermite-polynomially solvable.
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(a) ℓ = 1, n = 1.
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(b) ℓ = 1, n = 2.
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(c) ℓ = 1, n = 3.
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(d) ℓ = 1, n = 4.
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(e) ℓ = 1, n = 15.
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Figure 4.13: Wigner distribution functions (4.50) for several choices of (ℓ, n). Our choices
of n here are all corresponding to Hermite-polynomially solvable states.
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Our results show that, in comparison to the case of the ordinary harmonic oscillator, the
Wigner functions remain symmetric in the p-direction, while the finite jump at x = 0 of the
potential (4.24) causes asymmetry in the x-direction. For n = 0, the Wigner function tends
to localize in x < 0, and as ℓ grows, less and less probability density is seen in x > 0, which is
as expected because a larger ℓ means a deeper pocket of the potential well to trap a particle.

An interesting property of the Wigner function of the system is that the distribution is
anisotropic in the phase space. The local extrema appear in certain directions. Although it
seems that the Wigner functions are circular symmetric in a wide view for n− ℓ ≫ 1, they
continue to be asymmetric on closer look around the origin of the phase space. The circular
symmetry will never be restored at n− ℓ→ ∞.

We would like to further point out that the Wigner distribution functions of the sys-
tem (4.24) take on negative values for any n. For n $ 1, we have regions of negative values
concentrically in the phase space, which is also observed in the case of the ordinary har-
monic oscillator. Our model has other negative-valued regions outside the concentric ones
with larger |p|’s even for n = 0. This is also attributed to the finite jump of the potential
energy.

! On the isospectral properties

Let H[0]
ℓ denote the Hamiltonian of our one-dimensional quantum mechanical system with

a = 4ℓ (4.30):

H[0]
ℓ = − d2

dx2
+ V (x; 4ℓ) . (4.55)

Also, we write Eℓ,n and ψ[0]
ℓ,n (n = 0, 1, 2, . . .) for the energy eigenvalues and the corresponding

eigenfunctions hereafter.
According to the Crum’s theorem [22], there are infinitely many associated Hamiltonian

systems H[M ]
ℓ ,M = 1, 2, . . ., which are essentially isospectral to H[0]

ℓ . They are

H[M ]
ℓ := H[0]

ℓ − 2
d2

dx2
lnW

[
ψ[0]
ℓ,0,ψ

[0]
ℓ,1,ψ

[0]
ℓ,2, . . . ,ψ

[0]
ℓ,M−1

]
(x) , (4.56)

in which W[f1, . . . , fm](x) is the Wronskian defined as

W[f1, . . . , fm](x) := det

(
dj−1fk(x)

dxj−1

)

1&j,k&m

. (4.57)

H[M ]
ℓ is such a system that the M lowest eigenstates are deleted from H[0]

ℓ , and shares all

the eigenvalues above Eℓ,M with H[0]
ℓ . The corresponding eigenfunctions {ψ[M ]

ℓ,n } are related

to {ψ[0]
ℓ,n} by the Dourboux–Crum transformation [22,23]:

ψ[M ]
ℓ,n (x) =

W
[
ψ[0]
ℓ,0,ψ

[0]
ℓ,1, . . . ,ψ

[0]
ℓ,M−1,ψ

[0]
ℓ,n+M

]
(x)

W
[
ψ[0]
ℓ,0,ψ

[0]
ℓ,1, . . . ,ψ

[0]
ℓ,M−1

]
(x)

, (4.58)

which satisfies the following Schrödinger equation:

H[M ]
ℓ ψ[M ]

ℓ,n (x) = Eℓ,n+Mψ
[M ]
ℓ,n (x) , n = 0, 1, 2, . . . . (4.59)
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Figure 4.14: The solutions of the eigenvalue problem (4.56) with ℓ = 1 and M = 1. Thin
blue lines show the energy spectrum, and the blue curve on each line is the corresponding
eigenfunction. The potential of this system is also plotted in this figure by a black curve.

Example 4.9. Let us take ℓ = 1 andM = 1 as an example. In the context of supersymmetric
quantum mechanics, the associated Hamiltonian with M = 1 is often referred to as the
(supersymmetric) partner. Here, the Hamiltonian is

H[1]
1 = H[0]

1 − 2
d2

dx2
lnψ[0]

1,0(x) , H[1]
1 ψ

[1]
1,n(x) = E1,n+1ψ

[1]
1,n(x) , n = 0, 1, 2, . . . , (4.60)

where

ψ[1]
1,n(x) =

W
[
ψ[0]
1,0,ψ

[0]
1,n+1

]
(x)

ψ[0]
1,0(x)

. (4.61)

We plot them for the first several eigenstates in Fig. 4.14.
Note from the explicit calculation that H[0]

1 and H[1]
1 are not shape invariant [15]. The

same can be applied to H[M ]
ℓ and H[M+1]

ℓ . One might guess that the Hermite-polynomial
solvability of our system is due to the shape invariance as in the case of the harmonic
oscillator. However, this is not the case.

⋄

We choose M = ℓ here. The resulting Hamiltonian is

H[ℓ]
ℓ = H[0]

ℓ − 2
d2

dx2
lnW

[
ψ[0]
ℓ,0,ψ

[0]
ℓ,1,ψ

[0]
ℓ,2, . . . ,ψ

[0]
ℓ,ℓ−1

]
(x) , (4.62)

which corresponds to the deletion of all negative-energy states of H[0]
ℓ . This Hamiltonian is

strictly isospectral to the 1-dim. harmonic oscillator potential HHO(x) = x2− 1. Since ℓ can
be any positive integer, we now have infinitely many isospectral potentials of the harmonic
oscillator in our procedure above. We plot the first several potentials of the sequence {H[ℓ]

ℓ }
(ℓ = 1, 2, . . .) in Fig. 4.15.



94 4. Modulations of Harmonic Oscillator: Novel Solvable Potentials

-3 -2 -1 1 2 3
x

-5

5

10

15

V(x), E

Figure 4.15: The sequence {H[ℓ]
ℓ }. The potentials for ℓ = 1, 2, 3 are plotted in red, green

and blue respectively. Those potentials are all isospectral to the 1-d harmonic oscillator
potential (dashed black curve). H[ℓ]

ℓ ’s are non-analytic at x = 0, but never diverge.

Remark 4.2 (Krein–Adler transformation). A further generalization of the isospectral de-
formation, i.e., deletions of the eigenstates from the original system, was formulated by
Krein and Adler independently [32, 33]. During this deformation, the eigenstates with the
following indices are deleted:

D := {d1, d1 + 1 < d2, d2 + 1 < · · · < dN , dN + 1} , d1, . . . , dN ∈ Z$0 , (4.63)

where taking d1 = 0 and dj+1 = dj + 2 for all j corresponds to the case of the Crum’s
theorem. The Hamiltonian is

HD
ℓ := H[0]

ℓ − 2
d2

dx2
lnW

[
ψ[0]
ℓ,d1

,ψ[0]
ℓ,d1+1, . . . ,ψ

[0]
ℓ,dN+1

]
(x) , (4.64)

which shares all the energy spectrum with H[0]
ℓ except that those indexed by D are deleted.

The eigenfunctions are

ψD
ℓ,ñ(x) :=

W
[
ψ[0]
ℓ,d1

,ψ[0]
ℓ,d1+1, . . . ,ψ

[0]
ℓ,dN+1,ψ

[0]
ℓ,ñ

]
(x)

W
[
ψ[0]
ℓ,d1

,ψ[0]
ℓ,d1+1, . . . ,ψ

[0]
ℓ,dN+1

]
(x)

, ñ ∈ Z$0\D , (4.65)

satisfying
HD

ℓ ψ
D
ℓ,ñ(x) = Eℓ,ñψ

D
ℓ,ñ(x) . (4.66)

Example 4.10. Taking ℓ = 1 and D = {1, 2}, we get

H{1,2}
1 = H[0]

1 −2
d2

dx2
lnW

[
ψ[0]
1,1,ψ

[0]
1,2

]
(x) , H{1,2}

1 ψ{1,2}
1,ñ (x) = E1,ñψ

{1,2}
1,ñ (x) , ñ = 0, 3, 4, . . . ,

(4.67)
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Figure 4.16: The solutions of the eigenvalue problem (4.64) with ℓ = 1 and D = {1, 2}.
Thin blue lines show the energy spectrum, and the blue curve on each line is the correspond-
ing eigenfunction. The potential of this system is also plotted in this figure by a black curve.

where

ψ{1,2}
1,ñ (x) =

W
[
ψ[0]
1,1,ψ

[0]
1,2,ψ

[0]
ℓ,ñ

]
(x)

W
[
ψ[0]
1,1,ψ

[0]
1,2

]
(x)

, (4.68)

(See Fig. 4.16). ⋄

4.3.4 Harmonic Oscillator with a Step and a Ramp

We add a linear potential −gx to the potential (4.24) for x < 0,

V (x) =

⎧
⎨

⎩
x2 − 1− a− gx =

(
x− g

2

)2
− 1− a− g2

4
(x < 0)

x2 − 1 (x > 0)
, (4.69)

where g is a real constant. This is also a confining potential and has infinitely many discrete
eigenvalues {En}. Taking g = 0 coincides with the potential (4.24). Note that the function
x θ(x) is often referred to as the ramp function, which is named after the shape of its graph
(See Fig. 4.17).

Remark 4.3. In this paper, we restrict ourselves to a > 0 in the potential (4.69). Note
that, unlike the case of a harmonic oscillator with a step (4.24), the constraint on a breaks
the generality. For a < 0, discussions are almost parallel to those for a > 0 (See the follow-
ing), but a kind of double-well potentials appear and they are more likely to be physically
applicable.
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Figure 4.17: The ramp function, x θ(x).

! The solutions

One can construct the eigenfunctions for arbitrary a and g:

ψn(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−
(x− g

2 )2

2

[
α− 1F1

(
−
En + a+ g2

4

4
;
1

2
;
(
x− g

2

)2
)

+β−
(
x− g

2

)
1F1

(
−
En + a+ g2

4 − 2

4
;
3

2
;
(
x− g

2

)2
)]

(x < 0)

e−
x2

2

[
α+ 1F1

(
−En

4
;
1

2
; x2

)
+ β+ x 1F1

(
−En − 2

4
;
3

2
; x2

)]
(x > 0)

,

(4.70)
in which α±, β± are constants. From the boundary conditions at x = 0 (4.2), α+ and β+ are

α+ = ψn(0
−) , β+ =

dψn(0−)

dx
.

On the other hand, those at x → ±∞ (4.1) yield the following simultaneous transcendental
equations:

1

ψn(0−)

dψn(0−)

dx
= −

2Γ
(
−En−2

4

)

Γ
(
−En

4

) ,
β−
α−

=
2Γ
(
− En+a+ g2

4 −2

4

)

Γ
(
− En+a+ g2

4
4

) , (4.71)

which are to be solved graphically, and determine the energy eigenvalues {En} as is shown
in the following example.

Example 4.11. We first solve equations (4.71) with a = 2 and g = 1 to obtain the energy
spectrum (See Fig. 4.18). The first several energy eigenvalues are displayed in Tab. 4.7 with
six digits. With the knowledge of the energy spectrum, one can determine the coefficients
α±, β± for each n, and therefore the eigenfunction ψn(x). The solution of the Schrödinger
equation with the potential (4.69) with a = 2 and g = 1 is summarized in Fig. 4.19.

⋄
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Figure 4.18: Graphical solution of Eqs. (4.71). The blue curves correspond to the left-
hand side of the equation, while the red ones are the right-hand side. The intersections of
these curves determine the energy eigenvalues. The numerical solutions are displayed in Tab.
4.7.

Table 4.7: First several energy eigenvalues for (4.69) with a = 2 and g = 1 with six digits.
These values are obtained by solving Eq. (4.71) or finding the intersections in Fig.4.18
numerically.

n En

0 −1.97196
1 0.343665
2 2.12101
3 4.02740
4 5.91817
5 7.81348
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Figure 4.19: The solution of the Schrödinger equation with the potential (4.69) with
a = 2 and g = 1. Thin blue lines show the energy spectrum, and the blue curve on each line
is the corresponding eigenfunction. The potential is also plotted in this figure by a black
curve.
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Figure 4.20: The first six eigenvalues En as functions of g for a = 0. They are all
monotonically increasing in g, but never be equidistant for g ̸= 0.

! Case a → 0: Harmonic oscillator with a ramp

Here, let us concentrate on the case a → 0, where the potential consists of a harmonic
oscillator plus a ramp function only,

V (x) =

⎧
⎨

⎩
x2 − 1− gx =

(
x− g

2

)2
− 1− g2

4
(x < 0)

x2 − 1 (x > 0)
. (4.72)

Here, we show how the energy spectrum changes as the external field is imposed. Remember
that in the case of a harmonic oscillator plus a homogeneous external field, what happens
is a constant shift of energies. However, for our present case, Fig. 4.20 shows that that is
not the case and the spectrum is never equidistant except for g = 0. For each n, the energy
eigenvalue En increases monotonically in g.

! Hermite-polynomial solutions

As was mentioned, a potential is said to be quasi -exactly solvable, when several eigenstates
are explicitly obtained whereas the others are not [18,19]. In our model (4.69), we can make
only one state solvable via the Hermite polynomials, while for other states the wavefunctions
are expressed only by the confluent hypergeometric functions and they are not reduced to
any orthogonal polynomials. This situation is similar to those in Refs. [73, 74].

The construction is as follows. First we choose g such that φ(H)
m (x − g/2) has one of

either zeros or extrema at x = 0 (See Tab. 4.8). Suppose that φ(H)
m (−g/2) is the j-th zero

[extremum] from the left. Then, when the remaining model parameter a is set to

a = 2k − g2

4
, (4.73)
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Table 4.8: The zeros and extrema of φ(H)
n (x) = e−x2/2Hn(x) for n = 0, 1, 2, 3, 4.

Order n 0 1 2 3 4 · · ·

Zeros — x = 0 x = ± 1√
2

x = 0,±
√

3

2
x = ±

√
3

2
±
√

3

2

Extrema x = 0 x = ±1 x = 0,±
√

5

2
x = ±

√
9±

√
57

2
x = 0,±

√
7

2
±
√

11

2

where k ∈ Z>0 is smaller than or equal to, and of the opposite parity to [same parity as] m,
the

(
j + m−k−1

2

)
-th [

(
j + m−k

2 − 1
)
-th] excited state is Hermite-polynomially solvable. Such

a state is of the energy eigenvalue

Ej+m−k−1
2

= 2j +m− k − 1
[
Ej+m+k

2 −1 = 2j +m− k − 2
]
, (4.74)

and the corresponding wavefunction is

ψj+m−k−1
2

(x)
[
ψj+m+k

2 −1(x)
]
=

⎧
⎨

⎩
N (−)e−

(x− g
2 )2

2 Hm

(
x− g

2

)
(x < 0)

N (+)e−
x2

2 Hm−k(x) (x > 0)
(4.75)

with N (±) are constants to be determined from the boundary condition at x = 0.

Example 4.12. Let us pick such g’s that φ(H)
2 (x − g/2) has an extremum at x = 0. There

are two extrema, j = {1, 2}, and −g/2 = ±1/
√
2. Then, only k = 1 is allowed, and a is

specified as a = 3/2.
For g = −

√
2, the first excited-state wavefunction consists of Hermite polynomials,

ψ1(x) =

⎧
⎪⎨

⎪⎩
2e

1
4 e−

(
x+ 1√

2

)2

2 H2

(
x+ 1√

2

)
(x < 0)

e−
x2

2 H1(x) (x > 0)

, (4.76)

and the energy is E1 = 2. On the other hand, for g =
√
2, the Hermite polynomials constitute

the second excited-state wavefunction with the energy E2 = 4:

ψ2(x) =

⎧
⎪⎨

⎪⎩
−2e

1
4 e−

(
x− 1√

2

)2

2 H2

(
x− 1√

2

)
(x < 0)

−e−
x2

2 H1(x) (x > 0)

. (4.77)

The solutions of the Schrödinger equation with the potential (4.69) with g = ∓
√
2 and k = 1

are plotted in Fig. 4.21.
⋄
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Figure 4.21: The solutions for the potential (4.69) with (a) g = −
√
2 and (b) g =

√
2.

The potential (4.69) is displayed in each figure by a black curve. Thin lines show the energy
spectrum, and the colored curve on each line is the corresponding eigenfunction. The states
plotted in yellow possess the Hermite-polynomial solvability, while that colored in blue does
not.

Example 4.13. One application of our present work is to construct a sequence of the
solvable potentials where only the ground-state wavefunction can be expressed by Hermite
polynomials of different orders.

Such sequence is constructed as follows. First we choose g such that φ(H)
m (−g/2) is the

first extremum from the left of φ(H)
m (x − g/2). Here, m can be any non-negative integer,

and we choose k = m. Then we identify the parameter a using equation (4.73). In this
manner, one can construct infinitely many potentials whose ground-state wavefunctions are
expressed by the Hermite polynomials but other eigenfunctions are not. We show first several
potentials Vm(x), m = 1, 2, 3, 4, in Fig. 4.22a and the ground-state eigenfunctions ψ(m)

0 (x):

ψ(m)
0 (x) =

⎧
⎨

⎩
Nme−

(x− g
2 )2

2 Hm

(
x− g

2

)
(x < 0)

e−
x2

2 (x > 0)
, (4.78)

with Nm being a constant (See table 4.9) in Fig. 4.22b. They all have the energy E0 = 0.
Taking m = 0 means the ordinary harmonic oscillator.

Note that a similar procedure can be applied to construct a sequence of potentials such
that only the N -th excited states can be expressed by Hermite polynomials of different
orders.

⋄
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Table 4.9: Parameters of the wavefunction ψ(m)
0 (x) for m = 1, 2, 3, 4.

m 1 2 3 4

g 2 2

√
5

2

√
9 +

√
57 2

√
7

2
+

√
11

2

Nm −
√
e

2

e5/4

8
− e

9+
√
57

8

2
√

6(39 + 5
√
57)

e
7+

√
22

4

32(4 +
√
22)
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(a) Potentials Vm(x).

m=1

m=2

m=3

m=4

-4 -2 0 2 4
x

(b) The ground-state wavefunctions ψ(m)
0 (x).

Figure 4.22: The sequence {Vm(x)}, ψ(m)
0 (x). (a) The potentials for m = 1, 2, 3, 4 are

plotted in red, orange, green and blue respectively, and m = 0 (harmonic oscillator) by a
black dashed curve. For x > 0, they all share the same function, so we plotted them in the
same color: black. (b) The ground-state wavefunctions of those potentials, whose energies
are zero, are expressed in terms of Hermite polynomials with different orders. They are
plotted in the same colors as the potentials. The black dashed curves are the ground-state
wavefunctions of the harmonic oscillator.
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Table 4.10: The Singularity Functions.

order n ⟨x− x0⟩n a.k.a.

n & −1
d−n−1

dx−n−1
δ(x− x0) ≡ δ(−n−1)(x− x0)

...
...

−2
d

dx
δ(x− x0) ≡ δ(1)(x− x0)

−1 δ(x− x0) Dirac delta function
0 θ(x− x0) Heaviside step function
1 (x− x0)θ(x− x0) Ramp function
2 (x− x0)2θ(x− x0)
...

...
n $ 0 (x− x0)nθ(x− x0)

4.3.5 Harmonic Oscillator with Singularity Functions

In this section, we have considered a harmonic oscillator with a step and/or a ramp. The
potentials (4.24), (4.69) and (4.72) can be abstracted as “harmonic oscillators with singularity
functions”. For the singularity function, see Tab. 4.10.

The case of a harmonic oscillator with a Dirac delta function has already been considered
in Ref. [118]. The SWKB-induced quadratic oscillator (4.7) we have dealt with in Sect. 4.2
is a special case of harmonic oscillators with a step and a parabolic ramp, while the potential
(3.95) can be seen as a harmonic oscillator only with a parabolic ramp [111, 112]. It would
be quite a challenge to consider the general case of “harmonic oscillators with singularity
functions”.
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4.4 Summary of Chapter 4

This chapter has been devoted to the exact solutions of the Schrödinger equations with
the classical-orthogonal-polynomially quasi-exactly solvable potentials defined by piecewise
analytic functions. General remarks on the solution methods are provided in Sect. 4.1.

In Sect. 4.2, we have solved the Schrödinger equation for the novel solvable potential we
have constructed in the previous chapter. The potential is classical-orthogonal-polynomially
quasi-exactly solvable. We have identified the rule concerning which eigenstates are classical-
orthogonal-polynomially solvable and which are not.

In order to dig deeper into the problem of the classical-orthogonal-polynomially quasi-
exactly solvable potentials defined by piecewise analytic functions, we have considered simple
modulations of the harmonic oscillator in Sect. 4.3. Here are our two illustrative examples:
(1) a harmonic oscillator with a step, (2) a harmonic oscillator with a step and a ramp.
We note here that these problems, including the SWKB-induced one, are abstracted as har-
monic oscillators with singularity functions, which is a new entry in the classical-orthogonal-
polynomially (quasi-)exactly solvable potentials defined by piecewise analytic functions.

In the case of a harmonic oscillator with a step, we have shown that the energy spectra
become isospectral, with several additional eigenstates, to the ordinary harmonic oscillator
for special choices of a parameter. We have further demonstrated that, using the Darboux–
Crum transformation, one can systematically construct infinitely many potentials that are
strictly isospectral to the ordinary harmonic oscillator.

! Main statements of this chapter

• The exact solutions of the Schrödinger equations with a new entry of the classical-
orthogonal-polynomially (quasi-)exactly solvable potentials defined by piecewise analytic
functions: harmonic oscillator with singularity functions, are obtained (Sects. 4.2 and
4.3).

• Infinitely many potentials that are strictly isospectral to the ordinary harmonic oscillator
are constructed methodically (Sect. 4.3).



Chapter 5

Conclusion

5.1 Conclusion

In this thesis, we have studied the SWKB quantization condition and several solvable
Schrödinger equations. First, we have applied the condition to various exactly solvable
quantum mechanical systems, attempting to obtain a fundamental understanding of the
quantization condition. It has turned out that the exactness of the SWKB quantization
condition indicates that the system is exactly solvable via the classical orthogonal poly-
nomials. Moreover, we have formulated the inverse problem of the SWKB to construct
(novel) classical-polynomially solvable superpotentials. We have obtained the conventional
shape-invariant potentials in our formulation and also an Hermite-polynomially quasi-exactly
solvable potential, which is a member of the class of “harmonic oscillators with singularity
functions”. The exact solutions of the Schrödinger equations with the potentials in this class
are also provided.

The SWKB quantization condition is a quantization condition like the Bohr–Sommerfeld
quantization condition and was proposed in the context of supersymmetric quantum me-
chanics. Supersymmetric quantum mechanics, or exactly solvable quantum mechanics, has
successfully been revealing various aspects of the exact solutions of Schrödinger equation,
such as Crum’s theorem and shape invariance. It is well-known that the condition amazingly
reproduces exact bound-state spectra for all the conventional shape-invariant potentials.
However, it has recently turned out that it is not straightforward to put an interpretation
on the condition, though there have been several attempts. Moreover, the existing literature
on the condition exclusively regarded it as a quantization condition of the energy, and few
attempts have been made to apply the condition for different purposes.

Therefore, our first goal of the thesis was to understand the fundamental implication of
the SWKB quantization condition, and then, based on this interpretation, we have explored
how the condition can be applied to practical problems.

To begin with, we have carried out extensive case studies to understand the physical
meaning of the SWKB quantization condition. First, we have confirmed that this condition
holds exactly for any conventional shape-invariant potentials, which have been well-known
in the 1980s, by performing the integrals directly. Next, we have verified Bougie’s argument
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that additive shape-invariant potentials do not always satisfy the condition equation. We
have further extended the argument in more general cases of the multi-indexed systems, and
have found that the condition does not hold exactly, but it is still satisfied approximately.

In order to dig deeper into the approximate satisfaction of the condition, we have focused
on the construction method of the multi-indexed systems. They are constructed through
the Darboux transformation of conventional shape-invariant potentials. The other class of
exactly solvable potentials that are also constructed through the Darboux transformation
of conventional ones are the Krein–Adler systems. We have applied the condition to those
systems, and the result shows that the condition did not hold here, too. A remarkable thing
in the result is the following. The condition estimates the energy with lower accuracy for
n’s around the deleted levels. This implies that the deviation is related to how the level
structure of the system differs from that of the corresponding conventional shape-invariant
system.

We then have worked out the way of evaluating the implications quantitatively. Here,
we have employed in our analysis the conditionally exactly solvable potentials by Juker
and Roy, where conventional shape-invariant potentials are connected to Krein–Adler ones
with a continuous parameter. By varying this parameter, we have observed how the SWKB
integrals change according to the shift of the level structure. The potentials we employed also
contain a parameter that realizes an isospectral deformation of conventional shape-invariant
potentials, and we delivered a similar analysis with respect to this parameter. These analyses
have revealed that the SWKB condition indeed serves as an indicator of how much the level
structure of the systems deviates from that of conventional shape-invariant ones, and the
approximate satisfaction of the condition equation is guaranteed by the similarity between
the level structures. However, it has also become clear to us that it would be too difficult to
make a mathematical statement regarding an interpretation of the SWKB condition.

In order to obtain a mathematical statement on an interpretation of the SWKB condition,
we have reconsidered the exactness of the SWKB condition for conventional shape-invariant
systems, particularly in a uniform manner. All the conventional shape-invariant potentials
are exactly solvable, and the solvability is guaranteed by the classical orthogonal polynomials.
We have focused on this aspect and demonstrated that the condition equations are actually
reduced to three integral formulas, where the number three corresponds to the number of
classical orthogonal polynomials that satisfy the precondition of Bochner’s theorem and
also have positive-definite weight functions. Furthermore, we have succeeded in verifying
the statement with different classes of exactly solvable problems that are also solvable via
classical orthogonal polynomials by considering a natural extension of the condition equation.
Thus, we have concluded that the SWKB condition signifies the solvability by the (three)
classical orthogonal polynomials.

Based on the conclusion, we have then moved on to the matter of applying the SWKB
quantization condition to some practical problems. From the relation between the SWKB
condition and the solvability through the classical orthogonal polynomials, we have come to
the idea that the SWKB may have a meaning more than a mere quantization condition. So
far, our discussion was exclusively on the SWKB for obtaining the energy spectra from given
superpotentials. Now we would like to consider the other way around; we are to construct
superpotentials from given energy spectra by means of the SWKB. We have formulated this
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idea as an inverse problem concerning an integral equation. To ensure the uniqueness of
the solutions and make it a well-posed problem, we have imposed an additional condition
regarding the shape of the resulting superpotential. We note that this inverse problem can
be seen as an analogue of a classical problem of determining the potential energy from the
period of oscillation in classical mechanics.

Our formulation successfully reconstructs all the shape-invariant potentials from given
energy spectra. We then turned to the problem of constructing novel solvable potentials
by modifying the additional condition. The resulting superpotentials are considered to be
‘modulations’ of conventional shape-invariant potentials (In this thesis, we have exclusively
focused on modulations of the harmonic oscillator), and such a system is expected to exhibit
solvability through the classical orthogonal polynomials, such as the Hermite polynomials.
In these systems, as they undergo modulations, not all the eigenfunctions can be expressed
in terms of the classical orthogonal polynomials as in the case of the ordinary harmonic oscil-
lator. Instead, only a partial, but an infinite number of, eigenfunctions and their eigenvalues
are equivalent to those of the undeformed one. As a result, while in the case of the harmonic
oscillator, the whole spectrum is equidistant, in the modulated problem, the spectra become
equidistant with certain intervals. We have discussed in detail conditions on the appearance
of solvability through the Hermite polynomials and the equidistant nature of the spectra.

The inverse problem of the SWKB, particularly the deformation of the harmonic oscilla-
tor, has provided us with a new perspective on solvable quantum-mechanical potentials. That
is, solvable quantum-mechanical potentials defined by piecewise analytic functions, especially
polynomially solvable ones. Such potentials have gained attention not only in the context of
the SWKB but also in other areas. Historically, they were discussed in subatomic physics,
describing confinement in nuclei or nucleons. Recently, there has been a great interest in the
context of non-polynomially solvable quantum-mechanical systems. In this thesis, we have
solved the Schrödinger equations with potentials defined by piecewise quadratic functions
and discussed their Hermite-polynomial (quasi-)solvability and their spectral properties. We
have also presented a systematic method of constructing an infinite number of potentials
that are completely isospectral to the ordinary harmonic oscillator.

5.2 Perspectives

The history of the problem of solving Schrödinger equation goes back to the beginning of the
20th century, or if we extend it to a more general problem of the eigenvalue problem for a
differential equation, it is much older. Thus, one might think that there are few problems to
solve in this context. However, exactly solvable quantum mechanics is an ongoing research
subject, and throughout this thesis, we have shown a new aspect of it regarding the SWKB
formalism.

We would like to comment on another theme of exactly solvable quantum mechanics
that has recently been discussed: discrete quantum mechanics [119–123]. It deals with
second-order difference equations, instead of Schrödinger equation, which is a second-order
differential equation. We have richer problems with classical-polynomial solvability here. It
would be quite interesting to extend the SWKB formalism to discrete quantum mechanics.
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Moreover, the profound understanding of the SWKB formalism could be a powerful
tool for exploring new kinds of dualities in physics. In the early days of quantum physics,
quantization conditions played a significant role in understanding microscopic phenomena
by classical, macroscopic theories. In the case of WKB approximation, which is based on
a perturbative treatment on !, it was founded mathematically by A. Voros in exact WKB
analysis [124]. This is now employed to understand non-perturbative phenomena in quantum
physics. Here, one finds a duality between perturbative and non-perturbative. This idea is
often referred to as resurgence theory [52–55]. Another example is called the ODE/IM corre-
spondence [125–127]. It has recently been discussed a relation between ordinary differential
equations (ODE) and quantum integrable models (IM) through the exact WKB analysis. A
future study formulating exact ‘SWKB’ analysis would be interesting.

Another possible area of future research would be to extend the ideas we have pro-
vided in the thesis to different theories with similar, but differential, equations. As we have
mentioned in the introduction, similar equations to Schrödinger equation are everywhere in
mathematical science. When mathematical models of some phenomena are involved with a
Schrödinger-type eigenvalue problem, the knowledge of the solvability of Schrödinger equa-
tions studied in this thesis can contribute to understanding phenomena and revealing the
mathematical structures behind them. Such phenomena can be found in soliton theories,
spin systems, cosmology, optics, circuit theories, non-equilibrium statistical mechanics, the-
oretical/mathematical biology, information science, economics, financial engineering etc.



Appendix A

Several Exactly Solvable Potentials

A.1 Krein–Adler Systems

A.1.1 The Construction Method

The Krein–Adler transformation is a Darboux transformation with the choice of the seed
solutions whose indices are

D = {d1, d2, . . . , dM} , dj ∈ Z$0 , (A.1)

in which the following conditions:

∀n ∈ Z$0 ,
M∏

j=1

(n− dj) $ 0 , (A.2)

are satisfied. These condition mean that the set D is

D = {ℓ1, ℓ1 + 1 < ℓ2, ℓ2 + 1, . . . , ℓM ′ , ℓM ′ + 1} , ℓj ∈ Z$0 ,

where the choice ℓ1 = 0, ℓj+1 = ℓj + 2 simply corresponds to the case of the Darboux–Crum
transformation. The conditions (A.2) are required so that the resulting potential has no
singularity points in the domain.

The Krein–Adler transformation maps a Hamiltonian H to

H(KA)
D := H− 2!2 d2

dx2
ln |W[ψd1 , . . . ,ψdM ] (x)| , (A.3)

whose eigenvalue equation is

H(KA)
D ψ(KA)

D;n (x) = E (KA)
D;n ψ(KA)

D;n (x) , n = 0, 1, 2, . . . , (A.4)

E (KA)
D;n = En̆ , ψ(KA)

D;n (x) =
W [ψd1 , . . . ,ψdM ,ψn̆] (x)

W [ψd1 , . . . ,ψdM ] (x)
, n̆ ∈ Z$0\D . (A.5)

It should be emphasized here that the transformation corresponds to the deletion of the
eigenstates with the indices D.
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A.1.2 Examples

In the following, we restrict ourselves to the cases of D = {d, d + 1} for simplicity. Here, n
and n̆ are related by

n̆ =

{
n (0 & n & d− 1)

n+ 2 (n $ d)
. (A.6)

! 1-dim. harmonic oscillator

The Krein–Adler transformation of the 1-dim. harmonic oscillator:

H(H) = −!2 d2

dx2
+ ω2x2 − !ω , H(H)φ(H)

n (x) = E (H)
n φ(H)

n (x) ,

is

H(K,H)
D = H(H) − 2!2 d2

dx2
ln
∣∣∣W
[
φ(H)
d ,φ(H)

d+1

]
(x)
∣∣∣ , (A.7)

whose eigenvalues and the corresponding eigenfunctions are

E (K,H)
D;n = 2n̆!ω , φ(K,H)

D;n (x) =
W
[
φ(H)
d ,φ(H)

d+1,φ
(H)
n̆

]
(x)

W
[
φ(H)
d ,φ(H)

d+1

]
(x)

. (A.8)

With the formulae for the Wronskian (B.2) and (B.3), the eigenfunction are reduced to

φ(K,H)
D;n (x) = e−

ξ2

2
W[Hd, Hd+1, Hn̆] (ξ)

W [Hd, Hd+1] (ξ)
, ξ ≡

√
ω

! x . (A.9)

Especially, the ground-state wavefunction is

φ(K,H)
D;0 (x) = e−

ξ2

2
W[Hd, Hd+1, 1] (ξ)

W [Hd, Hd+1] (ξ)
. (A.10)

! Radial oscillator

The Krein–Adler transformation of the radial oscillator:

H(L) = −!2 d2

dx2
+ ω2x2 +

!2g(g − 1)

x2
− !ω(2g + 1) , H(L)φ(L)

n (x) = E (L)
n φ(L)

n (x) ,

is

H(K,L)
D = H(L) − 2!2 d2

dx2
ln
∣∣∣W
[
φ(L)
d ,φ(L)

d+1

]
(x)
∣∣∣ , (A.11)

whose eigenvalues and the corresponding eigenfunctions are

E (K,L)
D;n = 4n̆!ω , φ(K,L)

D;n (x) =
W
[
φ(L)
d ,φ(L)

d+1,φ
(L)
n̆

]
(x)

W
[
φ(L)
d ,φ(L)

d+1

]
(x)

. (A.12)
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With the formulae for the Wronskian (B.2) and (B.3), the eigenfunction are reduced to

φ(K,L)
D,n̆ (x) = e−

z
2 z

g+2
2

W
[
L
(g− 1

2 )
d , L

(g− 1
2 )

d+1 , L
(g− 1

2 )
n̆

]
(z)

W
[
L
(g− 1

2 )
d , L

(g− 1
2 )

d+1

]
(z)

, z ≡ ω

! x2 . (A.13)

Especially, the ground-state wavefunction is

φ(K,L)
D;0 (x) = e−

z
2 z

g+2
2

W
[
L
(g− 1

2 )
d , L

(g− 1
2 )

d+1 , 1
]
(z)

W
[
L
(g− 1

2 )
d , L

(g− 1
2 )

d+1

]
(z)

. (A.14)

! Pöschl–Teller potential

The Krein–Adler transformation of the Pöschl–Teller potential:

H(J) = −!2 d2

dx2
+

!2g(g − 1)

sin2 x
+

!2h(h− 1)

cos2 x
− !2(g + h)2 , H(J)φ(J)

n (x) = E (J)
n φ(J)

n (x) ,

is

H(K,J)
D = H(J) − 2!2 d2

dx2
ln
∣∣∣W
[
φ(J)
d ,φ(J)

d+1

]
(x)
∣∣∣ , (A.15)

whose eigenvalues and the corresponding eigenfunctions are

E (K,J)
D;n = 4!2n̆(n̆+ g + h) , φ(K,J)

D;n (x) =
W
[
φ(J)
d ,φ(J)

d+1,φ
(J)
n̆

]
(x)

W
[
φ(J)
d ,φ(J)

d+1

]
(x)

. (A.16)

With the formulae for the Wronskian (B.2) and (B.3), the eigenfunction are reduced to

φ(K,J)
D;n (x) = (1− y)

g+2
2 (1 + y)

h+2
2

W
[
P

(g− 1
2 ,h−

1
2 )

d , P
(g− 1

2 ,h−
1
2 )

d+1 , P
(g− 1

2 ,h−
1
2 )

n̆

]
(y)

W
[
P

(g− 1
2 ,h−

1
2 )

d , P
(g− 1

2 ,h−
1
2 )

d+1

]
(y)

. (A.17)

where y ≡ cos 2x. Especially, the ground-state wavefunction is

φ(K,J)
D;0 (x) = (1− y)

g+2
2 (1 + y)

h+2
2

W
[
P

(g− 1
2 ,h−

1
2 )

d , P
(g− 1

2 ,h−
1
2 )

d+1 , 1
]
(y)

W
[
P

(g− 1
2 ,h−

1
2 )

d , P
(g− 1

2 ,h−
1
2 )

d+1

]
(y)

. (A.18)

A.2 Multi-indexed Systems

The eigenfunctions of the multi-indexed systems are expressed in terms of the multi-indexed
polynomials. The modifier “multi-indexed” reflects that the symbol has many superscripts
and subficies as we shall show in Eqs. (A.33) and (A.34) etc.
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A.2.1 The Construction Method

! Virtual-state wavefunctions

Let HL(x; g) and HJ(x; g, h) denote the Hamiltonians H(L) and H(J) without the constant
terms. They are invariant under the following discrete symmetry transformations:

L : g → 1− g ; J : g → 1− g , h → 1− h , (A.19)

and also HL(x; g) changes its sign under the discrete transformation of the coordinate: x →
ix,

L : HL(ix; g) = !2 d2

dx2
− ω2x2 − !2g(g − 1)

x2
≡ −HL(x; g) , (A.20)

HL(x; 1− g) = −!2 d2

dx2
+ ω2x2 +

!2(1− g)(−g)

x2
≡ HL(x; g) , (A.21)

J : HJ(x; 1− g, h) = −!2 d2

dx2
+

!2(1− g)(−g)

sin2 x
+

!2h(h− 1)

cos2 x
≡ HJ(x; g, h) , (A.22)

HJ(x; g, 1− h) = −!2 d2

dx2
+

!2g(g − 1)

sin2 x
+

!2(1− h)(−h)

cos2 x
≡ HJ(x; g, h) . (A.23)

Note that these transformations do not hold the differential equations (4.13f) and (4.13f)
invariant. Moreover, the eigenfunctions transformed by these transformations are no longer
square-integrable. However, they remain solutions of the Schödinger equations; the discrete
transformations map a solution of the Schrödinger equation to another.

We solve the eigenvalue problems for the Hamiltonians (A.20)–(A.23) by virtue of the
discrete transformations. Here we add constants to the Hamiltonians to make them positive
semi-definite, and also we write z ≡ ωx2/! and y ≡ cos 2y in the following. For Eq. (A.20),
the eigenvalues and the corresponding eigenfunctions are

E (L),I
v /!ω = −4

(
g + v +

1

2

)
, ϕ(L),I

v (x) = e
z
2 z

g
2L

(g− 1
2 )

v (−z) , v = 0, 1, 2, . . . , (A.24)

and for Eq. (A.21),

E (L),II
v /!ω = −4

(
g − v − 1

2

)
, ϕ(L),II

v (x) = e−
z
2 z

1−g
2 L

( 12−g)
v (z) ,

v = 0, 1, . . . ,

⌊
g − 1

2

⌋′
. (A.25)

On the other hand, for Eq. (A.23),

E (J),I
v /!2 = −4

(
g + v +

1

2

)(
h− v − 1

2

)
, ϕ(J),I

v (x) =

(
1− y

2

) g
2
(
1 + y

2

) 1−h
2

P
(g− 1

2 ,
1
2−h)

v (y) ,

v = 0, 1, . . . ,

⌊
h− 1

2

⌋′
, (A.26)
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and for Eq. (A.22),

E (J),II
v /!2 = −4

(
g − v − 1

2

)(
h+ v +

1

2

)
, ϕ(J),II

v (x) =

(
1− y

2

) 1−g
2
(
1 + y

2

)h
2

P
( 12−g,h− 1

2 )
v (y) ,

v = 0, 1, . . . ,

⌊
g − 1

2

⌋′
. (A.27)

The eigenfunctions ϕv(x)’s are often referred to as virtual-state wavefunctions, satisfying the
following five conditions:

• ϕv(x) has no zeros in the domain (x1, x2);

• ϕv(x) has negative energy;

• ϕv(x) is a polynomial;

• ϕv(x) is not square-integrable;

• ϕ−1
v (x) is not square-integrable, too.

! Construction of the systems

In what follows, we choose the virtual-state wavefunctions as the seed solutions whose indices
are

D = DI ∪DII = {dI1, . . . , dIM} ∪ {dII1 , . . . , dIIN} (A.28)

with
dI1 < · · · < dIM ∈ Z>0 , dII1 < · · · < dIIN ∈ Z>0 . (A.29)

Moreover,

L : g > max

{
N +

3

2
, dIIj +

1

2

}
, (A.30)

J : g > max

{
N + 2, dIIj +

1

2

}
, h > max

{
M + 2, dIj +

1

2

}
. (A.31)

so that all the virtual-state wavefunctions are accommodated. Note that D = DI ∪ DII =
{ℓ} ∪ ∅ and D = DI ∪DII = ∅ ∪ {ℓ} correspond to type I/II exceptional Xℓ systems.

A multi-indexed system is constructed by the Darboux transformation of the Hamiltonian
H(∗) with the seed solutions above,

H(MI∗)
D := H(∗) − 2!2 d2

dx2
ln
∣∣∣W
[
ϕ(∗),I
dI1

, . . . ,ϕ(∗),I
dIM

,ϕ(∗),II
dII1

, . . . ,ϕ(∗),II
dIIN

]
(x)
∣∣∣ , ∗ = L, J , (A.32)

whose eigenvalue equation is

H(MI∗)
D φ(MI∗)

D;n (x) = E (MI∗)
D;n φ(MI∗)

D;n (x) , n = 0, 1, 2, . . . , (A.33)

E (MI∗)
D;n = En , φ(MI∗)

D,n (x) =
W
[
ϕ(∗),I
dI1

, . . . ,ϕ(∗),I
dIM

,ϕ(∗),II
dII1

, . . . ,ϕ(∗),II
dIIN

,φ(∗)
n

]
(x)

W
[
ϕ(∗),I
dI1

, . . . ,ϕ(∗),I
dIM

,ϕ(∗),II
dII1

, . . . ,ϕ(∗),II
dIIN

]
(x)

. (A.34)

Note that the resulting Hamiltonians are also shape invariant.
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Example A.1 (Type I X1-Laguerre). The Darboux transformation of H(L) with the seed
solution:

ϕI
1(x) = e

z
2 z

g
2

(
z + g +

1

2

)
,

yields

HI
1 = −!2 d2

dx2
+ ω2x2 +

!2g(g − 1)

x2
− 2!2 d2

dx2
ln
∣∣ϕI

1(x)
∣∣

= −!2 d2

dx2
+ ω2x2 +

!2g(g + 1)

x2
− 16!3ω(2g + 1)

(2ωx+ 2!g + !)2 +
8!2ω

2ωx+ 2g + 1
− !ω(2g + 3) .

(A.35)

The partner potential is computed as

ω2x2 +
!2(g + 1)(g + 2)

x2
− 16!3ω(2g + 3)

(2ωx+ 2!g + 3!)2 +
8!2ω

2ωx+ 2g + 3
− !ω(2g + 1) , (A.36)

therefore one can see that the system is shape invariant under g → g + 1. The energy
eigenvalues are turned out to be E (MIL),I

1;n = 4n!ω ⋄

A.3 Conditionally Exactly Solvable Systems by Junker
and Roy

A.3.1 The Construction Method

Let W0(x) be a conventional shape-invariant superpotential (it can be any exactly solvable
superpotential in general). We assume that the superpotential of the conditionally exactly
solvable systems is of the following form:

W (CES)(x) := W0(x) +W1(x) , (A.37)

where W1(x) is a function of x to be determined later.
The Hamiltonian reads

H[0]
CES =

(
−! d

dx
+W (CES)(x)

)(
! d

dx
+W (CES)(x)

)

= −!2 d2

dx2
+W0(x)

2 − !dW0

dx
+ 2W0(x)W1(x) +W1(x)

2 − !dW1

dx
, (A.38)

while the partner Hamiltonian is

H[1]
CES =

(
! d

dx
+W (CES)(x)

)(
−! d

dx
+W (CES)(x)

)

= −!2 d2

dx2
+W0(x)

2 + !dW0

dx
+ 2W0(x)W1(x) +W1(x)

2 + !dW1

dx
. (A.39)
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In each equation, the first three terms are a conventional shape-invariant Hamiltonian.
Now let us assume that the last three terms in Eq. (A.39) correspond to a constant shift

of energy, say b,

2W0(x)W1(x) +W1(x)
2 + !dW1

dx
= b , (A.40)

where b has to satisfy
b > E0 − E1 = −E1 , (A.41)

because the lowest energy of H[1]
CES cannot be smaller than, or equal to, that of H[0]

CES. We
call this condition Condition I. In order to determine W1(x), we solve the Ricatti-type
differential equation (A.40). Substituting

W1(x) = !∂xu(x)
u(x)

= ! d

dx
ln u(x) , (A.42)

it follows that u(x) satisfies the following second-order linear differential equation:

!2d
2u

dx2
+ 2!W0(x)

du

dx
− bu(x) = 0 , (A.43)

whose general solution is a two-parameter family, say α and β. We are to specify those
parameters so that u(x) has no zero, and therefore W1(x) is not singular, in the domain. We
call this condition Condition II.

A.3.2 Example

! 1-dim. harmonic oscillator

Take W0(x) = ωx as an example. Then, the partner Hamiltonian H[1]
CES is

H[1]
CES = −!2 d2

dx2
+ ω2x2 + !ω + b′!ω , b ≡ b′!ω , (A.44)

whose eigenvalues and the corresponding eigenfunctions are

E [1]
n = [2(n+ 1) + b′]!ω , φ[1]

n (x) = e−
ωx2

2! Hn

(√
ω

!x
)

. (A.45)

From Condition I, the parameter b′ satisfies

b′ > −2 . (A.46)

Eq. (A.43) reads

!2d
2u

dx2
+ 2!ωxdu

dx
− b′!ωu(x) = 0 , (A.47)

whose general solution is

u(x) = α1F1

(
−b′

4
,
1

2
;−ω!x

2

)
+ β

√
ω

! x 1F1

(
1

2
− b′

4
,
3

2
;−ω!x

2

)
=: u(H)(x) , (A.48)
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which has no zero if

∣∣∣∣
β

α

∣∣∣∣ <
2Γ
(
b
4 + 1

)

Γ
(
b
4 +

1
2

) : Condition II . (A.49)

We fix α = 1 without loss of generality.
Hence, the conditionally exactly solvable Hamiltonian H[0]

CES is obtained as

H[0]
CES = −!2 d2

dx2
+ ω2x2 + !ω + b′!ω − 2!2

[
∂2xu

(H)(x)

u(H)(x)
−
(
∂xu(H)(x)

u(H)(x)

)2
]

= −!2 d2

dx2
+ ω2x2 + !ω − b′!ω + 2!∂xu

(H)(x)

u(H)(x)

[
2ωx+

∂xu(H)(x)

u(H)(x)

]
. (A.50)

The eigenvalues and the corresponding eigenfunctions are

E (C,H)
0 = 0 , φ(C,H)

0 (x) =
e−

ωx2

2!

u(H)(x)
, (A.51)

E (C,H)
n = E [1]

n−1 = (2n+ b)!ω , φ(C,H)
n (x) =

(
−! d

dx
+ ωx+ !∂xu

(H)(x)

u(H)(x)

)
φ[1]
n−1(x)

for n $ 1 . (A.52)

A.4 Deformed Shape-invariant Systems

A.4.1 The Construction Method

! Position-dependent effective mass

We consider a situation where the mass of a particle has a position dependency, m → m(x),
whose idea was originally introduced to explain the tunneling of electrons in superconduc-
tor [128,129]. A naive guessing would tell you that the kinetic term, say T , of a Hamiltonian
is replaced as

T = − !2
2m

d2

dx2
→ − !2

2m(x)

d2

dx2
. (A.53)

However, this operator is not Harmitian. The Hermitian kinetic term with a position-
dependent effective mass proposed by von Roos [99] reads

T = −!2
4

[
m(x)α

d

dx
m(x)β

d

dx
m(x)γ +m(x)γ

d

dx
m(x)β

d

dx
m(x)α

]
. (A.54)

Since [•] has the dimension of M−1L−2, the parameters α, β, γ satisfy

α + β + γ = −1 . (A.55)
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For example, BenDaniel–Duke kinetic energy operator is a kinetic energy operator with a
position-dependent effective mass proposed by BenDaniel and Duke in 1966 [98,130], which
corresponds to the case α = γ = 0, β = −1,

T = −!2
2

d

dx

1

m(x)

d

dx
. (A.56)

When dealing with the factorization of a Hamiltonian:

H = T + V (x) =
(
− π̂ +W (x)

)(
π̂ +W (x)

)
,

it is convenient to write
1

2m(x)
≡ η(x)2 , η(x) > 0 . (A.57)

Then, Eq. (A.54) changes into

T = −!2
2

[
η(x)ρ

d

dx
η(x)σ

d

dx
η(x)τ + η(x)τ

d

dx
η(x)σ

d

dx
η(x)ρ

]
, ρ+ σ + τ = 2 , (A.58)

which is simplified to

T = −!2
2

[
2η2

d2

dx2
+ 4η∂xη

d

dx
+ (ρ+ τ)η∂2xη + (ρ+ τ − 2ρτ)(∂xη)

2

]

= −!2
[(

√
η
d

dx

√
η

)2

− 1− ρ− τ

2
η∂2xη −

(
1

2
− ρ

)(
1

2
− τ

)
(∂xη)

2

]
. (A.59)

Thereby the Hamiltonian with a position-dependent effective mass is

H = T + V (x) = −!2
(√

η(x)
d

dx

√
η(x)

)2

+ Veff(x) ≡ −π̂2 + Veff(x)

= −!2η(x)2 d2

dx2
− 2!2η(x)∂xη(x)

d

dx
− !2

4

(
2η(x)∂2xη(x) + [∂xη(x)]

2
)
+ Veff(x) , (A.60)

where the effective potential Veff(x) ∈ R is

Veff(x) ≡ !2
[
1− ρ− τ

2
η(x)∂2xη(x) +

(
1

2
− ρ

)(
1

2
− τ

)
[∂xη(x)]

2

]
+ V (x) . (A.61)

! Deformed SUSY QM and deformed shape invariance

We define a Hamiltonian H[0] as a product of two operators A±,

H[0] := A+A− , A± := ∓!
√
η(x)

d

dx

√
η(x) +W (x) , (A.62)

where those operators are defined in x ∈ (x1, x2), and W (x) is the superpotential of this
system. This Hamiltonian has the lowest energy zero. The Hamiltonian H[0] is

H[0] =

(
−!
√
η(x)

d

dx

√
η(x) +W (x)

)(
!
√
η(x)

d

dx

√
η(x) +W (x)

)

= −!2
(√

η(x)
d

dx

√
η(x)

)2

+W (x)2 − !η(x)dW (x)

dx
. (A.63)
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The effective potential V [0]
eff (x) is identified as

V [0]
eff (x) ≡ W (x)2 − !η(x)dW (x)

dx
. (A.64)

The Schrödinger equation is

H[0]φ[0]
n (x) = Enφ[0]

n (x) , n = 0, 1, 2 . . . ,

where the ground-state wavefunction is determined by A−φ[0]
0 = 0,

φ[0]
0 ∝ 1√

η(x)
exp

[
−1

!

∫ x W (x̄)

η(x̄)
dx̄

]
. (A.65)

Note that η(x) ≡ const. corresponds to the ordinary quantum mechanical system discussed
in Chap. 2. Also, this system can be seen as a quantum mechanical system on the curved
space whose metric function is

g(x) ≡ 1

η(x)2
(A.66)

(See also Refs. [101,131]).

As in the ordinary quantum mechanics, we require that φ[0]
n (x) is

(i)

∫ x2

x1

∣∣φ[i]
n (x)

∣∣2 dx < ∞ : square integrability,

and also

(ii)
∣∣φ[i]

n (x)
∣∣2 η(x) → 0 as x → x1,2 : Hermicity of Hamiltonian.

The second requirement is to ensure that the Hermicity of the ‘deformed’ momentum oper-
ator π:
∫ x2

x1

ψ(x)
√
η(x)

(
−i

d

dx

)√
η(x)φ(x) dx =

[∫ x2

x1

φ(x)
√
η(x)

(
−i

d

dx

)√
η(x)ψ(x) dx

]∗
.

(A.67)
Furthermore, the partner Hamiltonian of H[0] is defined as

H[1] := A−A+ = −!2
(√

η(x)
d

dx

√
η(x)

)2

+W (x)2 + !η(x)dW (x)

dx

≡ −!2
(√

η(x)
d

dx

√
η(x)

)2

+ V [1]
eff (x)− E1 , (A.68)

satisfying
H[1]φ[1]

n (x) = En+1φ
[1]
n (x) , n = 0, 1, 2 . . . ,

The partner Hamiltonians are connected by the following intertwining relations

A−H[0] = H[1]A− , A+H[1] = H[0]A+ . (A.69)
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Thus, a similar argument to the case in ordinary quantum mechanics tells that the two
Hamiltonians are isospectral except for the ground state of H[0]. It is important to note here
that the eigenstates are never degenerated,

0 = E0 < E1 < E2 < · · · .

Now, let us write the dependency of the model parameters explicitly to discuss the
shape-invariant property in the above formalism with a position-dependent effective mass,
W (x) ≡ W (x;a), A± ≡ A±(a) and φ[i]

n (x) ≡ φ[i]
n (x;a). The system possesses the deformed

shape invariance, or is deformed shape-invariant, when

W (x;a)2 + !η(x)dW (x;a)

dx
= W (x; f(a))2 − !η(x)dW (x; f(a))

dx
+R(a) . (A.70)

That is, we impose the deformed shape-invariant condition on the effective potential V [i]
eff (x),

not on the potential V (x).
For the deformed shape-invariant system, the energy eigenvalues and the corresponding

eigenfunctions are expressed as

En =
n−1∑

k=0

Rk(a) , φ[0]
n (x; a0) ∝ A+(a)A+(f(a)) · · · A+(fn−1(a))φ[0]

0 (x; fn(a)) . (A.71)

A.4.2 Example

! Deformed harmonic oscillator

For a superpotential
W (x) = ωx , x ∈ (−∞,∞) , (A.72)

a characteristic function η(x) of the following form realizes deformed shape invariance:

η(x) = 1 + αx2 . (A.73)

α = 0 corresponds to the ordinary harmonic oscillator. The effective potentials V [0]
eff (x),

V [1]
eff (x) are

V [0]
eff (x) = ω2x2 − !ω(1 + αx2) , V [1]

eff (x) = ω2x2 + !ω(1 + αx2) . (A.74)

One can see that the system is shape invariant under ω → ω + !α. The energy eigenvalues
turned out to be En = 2!ωn+ !2αn2.

The Schrödinger equation for this system is

− !2(1 + αx2)2
d2φ[0]

n (x)

dx2
− 4!2αx(1 + αx2)

dφ[0]
n (x)

dx
+
[
−!2α(2αx2 + 1)

+V [0]
eff (x)

]
φ[0]
n (x) = (2!ωn+ !2αn2)φ[0]

n (x) , (A.75)
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which transforms to that for the
1

sin2 x
-potential under x 1→ z = z(x) = cot−1

√
α x with the

identification g ≡ ω/!α. Thus, the eigenfunction φ[0]
n (x) is turned out to be

φ[0]
n (x) =

(
1√

1 + αx2

) ω
!α+1

P
( ω
!α+ 1

2 ),(
ω
!α+ 1

2 )
n

( √
α x√

1 + αx2

)
. (A.76)

Remark A.1 (Semi-confined harmonic oscillator). We emphasize here that there is an-
other kind of exactly solvable, especially classical-orthogonal-polynomially solvable, quan-
tum mechanical system with a position-dependent effective mass other than the deformed
shape-invariant systems. The Hamiltonian is

H = −!2 d

dx

1

M(x)

d

dx
+M(x)ω2x2 − !ω (A.77)

with

M(x) =

{ a

x+ a
(x > −a)

∞ (x & −a)
. (A.78)

This Hamiltonian is completely isospectral to the ordinary harmonic oscillator:

En = 2!ωn ,

and the eigenfunctions are

φn(x) =

⎧
⎪⎨

⎪⎩

(
1 +

x

a

)ωa2

!
e−

ωa
! (x+a)L

( 2ωa2

! )
n

(
2ωa

! (x+ a)

)
(x > −a)

0 (x & −a)

. (A.79)

For more details, see Refs. [103,117,132–134].



Appendix B

Definitions, Theorems and Formulae

B.1 Wronskian

! Definition

W[f1, . . . , fm] (x) := det

(
dj−1fk(x)

dxj−1

)

1&j,k&m

(B.1)

! Formulae

W[gf1, gf2, . . . , gfn] (x) = g(x)nW[f1, f2, . . . , fn] (x) (B.2)

W [f1(y), f2(y), . . . , fn(y)] (x) = y′(x)
n(n−1)

2 W[f1, f2, . . . , fn] (y) (B.3)

W
[
W[f1, f2, . . . , fn, g] ,W[f1, f2, . . . , fn, h]

]
(x)

= W [f1, f2, . . . , fn] (x)W [f1, f2, . . . , fn, g, h] (x) (B.4)

B.2 Maximum and Minimum

! Maximum

max{x, y} =

{
x (x $ y)

y (x < y)
(B.5)

! Minimum

min{x, y} =

{
x (x & y)

y (x > y)
(B.6)
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B.3 Floor and Ceiling Function

! Floor function

⌊x⌋ := max{n ∈ Z;n & x} (B.7)

⌊x⌋′ := max{n ∈ Z;n < x} (B.8)

! Ceiling function

⌈x⌉ := min{n ∈ Z;n $ x} (B.9)

⌈x⌉′ := min{n ∈ Z;n > x} (B.10)

B.4 Sign Function

! Definition

sgn(x) :=

⎧
⎨

⎩

x

|x| (x ̸= 0)

0 (x = 0)
(B.11)

B.5 Hypergeometric Function

B.5.1 Hypergeometric Function

! Definition

pFq

(
α1, · · · ,αp

β1, · · · , βq

∣∣∣∣ z
)

≡ pFq(α1, . . . ,αr; β1, . . . , βs; z) :=
∞∑

n=0

(α1)n · · · (αp)n
(β1)n . . . (βq)n

zn

n!
(B.12)

where (a)n is the Pochhammer’s symbol:

(a)n :=

⎧
⎪⎨

⎪⎩

1 (for n = 0)
n∏

k=1

(a+ k − 1) = a(a+ 1) · · · (a+ n− 1) (for n $ 1)
. (B.13)

Especially, for p = 2, q = 1,

2F1

(
α, β
γ

∣∣∣∣ z
)

≡ 2F1(α, β; γ; z) ≡ 2F1(α, β, γ; z) =
∞∑

n=0

(α)n(β)n
(γ)n

zn

n!
(B.14)

is the Gaussian hypergeometric function, and for p = q = 1,

1F1

(
α
γ

∣∣∣∣ z
)

≡ 1F1(α; γ; z) ≡ 2F1(α, γ; z) =
∞∑

n=0

(α)n
(γ)n

zn

n!
(B.15)

is the confuluent hypergeometric function (Kummer’s function).
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B.5.2 Confluent Hypergeometric Function (Kummer’s Function)

! Definition

Confluent hypergeometric function (Kummer’s function):

1F1(α, γ; z) :=
∞∑

n=0

(α)n
(γ)n

zn

n!
, (B.16)

satisfies the following Kummer’s equation:

z
d2u

dz2
+ (γ − z)

du

dz
− αu = 0 . (B.17)

! Asymptotic expansion

1F1(α, γ; z) ∼
(

Γ (γ)

Γ (γ − α)
z−α +

Γ (γ)

Γ (α)
ezzα−γ

)(
1 +O(z−1)

)
, |z| → ∞ (B.18)

B.6 Classical Orthogonal Polynomials

B.6.1 Hermite Polynomials

! Differential equation

y′′(x)− 2xy′(x) + 2ny(x) = 0 (B.19)

! Rodrigues’ formula

Hn(x) = (−1)nex
2 dn

dxn
e−x2

(B.20)

! Recurrence relations

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (B.21)

H ′
n(x) = 2nHn−1(x) (B.22)

! Orthogonality
∫ ∞

−∞
e−x2

Hm(x)Hn(x) dx = 2nπ1/2n!δm,n (B.23)

B.6.2 Laguerre Polynomials

! Differential equation

xy′′(x) + (α + 1− x)y′(x) + ny(x) = 0 (B.24)
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! Rodrigues’ formula

L(α)
n (x) =

exx−α

n!

dn

dxn
(e−xxn+α) (B.25)

! Recurrence relation

(n+ 1)L(α)
n+1(x)− (2n+ α + 1− x)L(α)

n + (n+ α)L(α)
n−1 = 0 (B.26)

! Orthogonality
∫ ∞

0

e−xxαL(α)
m (x)L(α)

n (x) dx =
(n+ α)!

n!
δm,n (B.27)

B.6.3 Jacobi Polynomials

! Differential equation

(1− x2)y′′(x)− [β − α(α + β + 2)x]y′(x) + n(n+ α + β + 1)y(x) = 0 (B.28)

! Rodrigues’ formula

P (α,β)
n (x) =

(−1)n

2nn!

1

(1− x)α(1 + x)β
dn

dxn

[
(1− x)n+α(1 + x)n+β

]
(B.29)

! Recurrence relation

2(n+ 1)(n+ α + β + 1)(2n+ α + β)P (α,β)
n+1 (x)

= (2n+ α + β + 1)
[
(2n+ α + β + 2)(2 + α + β)x+ α2 − β2

]
P (α,β)
n (x)

− 2(n+ α)(n+ β)(2n+ α + β + 2)P (α,β)
n−1 (x) (B.30)

! Orthogonality
∫ 1

−1

(1− x)α(1 + x)βP (α,β)
m (x)P (α,β)

n (x) dx =
2α+β+1

2n+ α + β + 1

(n+ α)!(n+ β)!

(n+ α + β)!n!
δm,n (B.31)

B.7 Integral Formulae

B.7.1 Ref. [42]

• For 0 < a < b, ∫ b

a

√
(y − a)(b− y)

dy

y
=
π

2
(a+ b)− π

√
ab . (B.32)
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• For a < b,

∫ b

a

√
(y − a)(b− y)

dy

y2 + 1
=

π√
2

√√
(1 + a2)(1 + b2)− ab+ 1− π . (B.33)

• For −1 < a < b < 1,

∫ b

a

√
(y − a)(b− y)

dy

1− y2
=
π

2

[
2−

√
(1− a)(1− b)−

√
(1 + a)(1 + b)

]
. (B.34)

• For 1 < a < b,

∫ b

a

√
(y − a)(b− y)

dy

y2 − 1
=
π

2

[√
(a+ 1)(b+ 1)−

√
(a− 1)(b− 1)− 2

]
. (B.35)

B.7.2 Ref. [87]

∫
cos2 x

a cos2 +c sin2 x
dx =

1

4(a− c)2

[
(a− c)x+− c(a− c)√

ac− b2
arctan

c tan x+ b√
ac− b2

]

for ac > 0 (B.36)

∫ √
a+ bx+ cx2

x(x+ p)
dx =

1

p

[∫ √
a+ bx+ cx2

x
dx−

∫ √
a+ bx+ cx2

x+ p
dx

]
(B.37)

∫ √
a+ bx+ cx2

x
dx =

√
a+ bx+ cx2 + a

∫
dx

x
√
a+ bx+ cx2

+
b

2

∫
dx√

a+ bx+ cx2

(B.38)
∫ √

a+ bx+ cx2

x+ p
dx = c

∫
x√

a+ bx+ cx2
dx+ (b− cp)

∫
dx√

a+ bx+ cx2

+ (a− bp+ cp2)

∫
dx

(x+ p)
√
a+ bx+ cx2

for x+ p > 0

(B.39)

∫
dx

x
√
a+ bx+ cx2

=
1√
−a

arctan
2a+ bx

2
√
−a

√
a+ bx+ cx2

for a < 0 (B.40)

∫
dx√

a+ bx+ cx2
= − 1√

−c
arcsin

2cx+ b√
b2 − 4ac

for c < 0 and b2 − 4ac > 0 (B.41)

∫
dx

(x+ p)
√
a+ bx+ cx2

=
1√

a+ bx+ cx2
arcsin

−2(a+ bx+ cx2) + b+ 2p√
b2 − 4ac

for
1

x+ p
> 0 and b2 − 4ac > 0 (B.42)
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B.7.3 Others

∫ √
a2 − x2

(p+ qx)(x+ a+ 1)(x+ a− 1)
dx

=

√
1− 2a

2(p+ q − aq)
arctan

a2 + ax− x√
1− 2a

√
a2 − x2

−
√
1 + 2a

2(p− q − aq)
arctan

a2 + ax+ x√
1 + 2a

√
a2 − x2

+

√
p2 − a2q2

(p+ q − aq)(p− q − aq)
arctan

a2q + px√
p2 − a2q2

√
a2 − x2

(B.43)

B.8 Darboux Transformation

Let us consider a Schrödinger-type differential equation:

Hψ(x) = Eψ(x) , H = −!2 d2

dx2
+ V (x) . (B.44)

Here, the Darboux transformation can be applicable to generic equations of the above form,
and E , V (x) ∈ C.

! General formulation

Let {ϕj(x), Ẽj} (j = 1, 2, . . .) be distinct solutions of Eq. (B.44):

Hϕj(x) = Ẽjϕj(x) , j = 1, 2, . . . ,M . (B.45)

Here, ϕj(x) does not have to be square-integrable, and Ẽj can take complex values. They
are called seed solutions.

First, we do formal factorization of the Hamiltonian H in terms of a seed solution ϕ1(x),

H = !2
(
− d

dx
− d

dx
ln |ϕ1(x)|

)(
d

dx
− d

dx
ln |ϕ1(x)|

)
+ Ẽ1 ≡ !2A†

ϕAϕ + Ẽ1 . (B.46)

We define a new Hamiltonian H(1) by

H(1) := !2AϕA†
ϕ + Ẽ1 = !2

(
d

dx
− d

dx
ln |ϕ1(x)|

)(
− d

dx
− d

dx
ln |ϕ1(x)|

)
+ Ẽ

= H− 2!2 d2

dx2
ln |ϕ1(x)| . (B.47)

These two Hamiltonian are related via the following intertwining relations:

H(1)Aϕ = AϕH , A†
ϕH(1) = HA†

ϕ . (B.48)

Thus

ψ(1)(x) := Aϕψ(x) =
W[ϕ1,ψ](x)

ϕ1(x)
(B.49)

ϕ(1)
j (x) := Aϕϕj(x) =

W[ϕ1,ϕj](x)

ϕ1(x)
, j = 2, 3, . . . , (B.50)
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are solutions of the Schrödinger equation for H(1). Moreover,

A†
ϕϕ

(1)
1 (x) = 0 =⇒ ϕ(1)

1 (x) =
1

ϕ1(x)
, (B.51)

is also a solution. Namely,

H(1)ψ(1)(x) = Eψ(1)(x) , (B.52)

H(1)ϕ(1)
j (x) = Ẽjϕ(1)

j (x) , j = 1, 2, . . . ,M . (B.53)

By repeating the above Darboux transformation M times, we arrive at the following
theorem:

Theorem B.1 (Darboux, 1882 [23]). Let ψ(x) be a solution of the original Schrödinger
equation:

Hψ(x) = Eψ(x) .

Then the functions

ψ(M)(x) :=
W[ϕ1, . . . ,ϕM ,ψ](x)

W[ϕ1, . . . ,ϕM ](x)

ϕ(M)
j (x) :=

W[ϕ1, . . . ,ϕj−1,ϕj+1, . . . ,ϕM ](x)

W[ϕ1, . . . ,ϕM ](x)
, j = 1, 2, . . . ,M ,

where
Hϕj(x) = Ẽjϕj(x) , j = j = 1, 2, . . . ,M ,

satisfy the following Schrödinger equation with the same energy:

H(M)ψ(M)(x) = Eψ(M)(x) ,

H(M)ϕ(M)
j (x) = Ẽjϕ(M)

j (x) , j = 1, 2, . . . ,M ,

with

H(M) := H− 2!2 d2

dx2
ln |W[ϕ1, . . . ,ϕM ](x)| .

Remark B.1. In Sect. A, we have constructed two solvable systems through Darboux
transformations. Let us summarize which choices of seed solutions {ϕdj(x)} correspond to
which constructions below.

• ϕdj(x)’s are the eigenfunctions of the original Hamiltonian H.

⇒ Krein–Adler systems (Sect. A.1).

• ϕdj(x)’s are the virtual-state wavefunctions of the original Hamiltonian H.

⇒ Multi-indexed systems (Sect. A.2).
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structure, and quantization conditions. Journal of High Energy Physics 2020, 114
(2020). URL https://doi.org/10.1007/JHEP12(2020)114.

[56] Nasuda, Y. Several Exactly Solvable Quantum Mechanical Systems and the SWKB
Quantization Condition. In Dobrev, V. (ed.) Lie Theory and Its Applications in
Physics, 339–349 (Springer Nature Singapore, Singapore, 2022).

[57] Nasuda, Y. & Sawado, N. Harmonic Oscillator with a Step and its Isospectral Prop-
erties (2023). 2307.14251.

[58] Nasuda, Y. Harmonic oscillator with a step and/or a ramp. Journal of Physics: Confer-
ence Series 2667, 012068 (2023). URL https://dx.doi.org/10.1088/1742-6596/
2667/1/012068.

[59] Nasuda, Y. Harmonic oscillator with a step and its wigner function (2023). Manuscript
submitted for publication.

[60] Leonard I, S. QUANTUM MECHANICS (McGraw-Hill, 1968), third edn.

[61] Landau, L. D. & Lifshitz, E. M. Quantum Mechanics; Non-relativistic Theory, vol. 3
of Course of Theoretical Physics (Pergamon Press, 1977), third edn.

[62] Sakurai, J. J. Modern Quantum Mechanics (Addison Wesley Longman, 1994), revised
edn.

[63] Constantinescu, F. & Magyari, E. Problems in Quantum Mechanics (Pergamon Press,
1971).

[64] Albeverio, S., Gesztesy, F., Høegh-Krohn, R. & Holden, H. Solvable Models in Quan-
tum Mechanics. No. XIV in Theoretical and Mathematical Physics (Springer Berlin,
Heidelberg, 1988), 1 edn.

[65] L., K. R. D. & George, P. W. Quantum mechanics of electrons in crystal lattices.
Proceedings of the Royal Society A 130, 499–513 (1931).

[66] Preston, M. A. The Theory of Alpha-Radioactivity. Phys. Rev. 71, 865–877 (1947).
URL https://link.aps.org/doi/10.1103/PhysRev.71.865.

[67] Yuen, W.-P. Exact analytic analysis of finite parabolic quantum wells with and without
a static electric field. Phys. Rev. B 48, 17316–17320 (1993). URL https://link.aps.
org/doi/10.1103/PhysRevB.48.17316.

https://www.sciencedirect.com/science/article/pii/S0370157319300730
https://www.sciencedirect.com/science/article/pii/S0370157319300730
https://doi.org/10.1007/JHEP12(2020)114
2307.14251
https://dx.doi.org/10.1088/1742-6596/2667/1/012068
https://dx.doi.org/10.1088/1742-6596/2667/1/012068
https://link.aps.org/doi/10.1103/PhysRev.71.865
https://link.aps.org/doi/10.1103/PhysRevB.48.17316
https://link.aps.org/doi/10.1103/PhysRevB.48.17316


134

[68] Marin, J. L. & Cruz, S. A. On the harmonic oscillator inside an infinite potential well.
American Journal of Physics 56, 1134–1136 (1988). URL https://doi.org/10.1119/
1.15738. https://pubs.aip.org/aapt/ajp/article-pdf/56/12/1134/11961850/
1134_1_online.pdf.

[69] Stillinger, F. H. & Stillinger, D. K. Pseudoharmonic oscillators and inadequacy
of semiclassical quantization. The Journal of Physical Chemistry 93, 6890–6892
(1989). URL https://doi.org/10.1021/j100356a004. https://doi.org/10.1021/
j100356a004.

[70] Ishkhanyan, A. M. Exact solution of the Schrödinger equation for the inverse square
root potential. Europhysics Letters 112, 10006 (2015). URL https://dx.doi.org/
10.1209/0295-5075/112/10006.

[71] Znojil, M. Morse potential, symmetric Morse potential and bracketed bound-state
energies. Modern Physics Letters A 31, 1650088 (2016). URL https://doi.org/10.
1142/S0217732316500887. https://doi.org/10.1142/S0217732316500887.

[72] Sasaki, R. & Znojil, M. One-dimensional Schrödinger equation with non-analytic
potential V (x) = − exp(−|x|) and its exact Bessel-function solvability. Journal of
Physics A: Mathematical and Theoretical 49, 445303 (2016). URL https://dx.doi.
org/10.1088/1751-8113/49/44/445303.

[73] Znojil, M. Displaced Harmonic Oscillator V ∼ min[(x+ d)2, (x− d)2] as a Benchmark
Double-Well Quantum Model. Quantum Reports 4, 309–323 (2022). URL https:
//www.mdpi.com/2624-960X/4/3/22.

[74] Sasaki, R. Exactly solvable piecewise analytic double well potential VD(x) = min[(x+
d)2, (x− d)2] and its dual single well potential VS(x) = max[(x + d)2, (x− d)2]. Jour-
nal of Mathematical Physics 64, 022102 (2023). URL https://doi.org/10.1063/5.
0127371.

[75] de Souza Dutra, A. Conditionally exactly soluble class of quantum potentials.
Phys. Rev. A 47, R2435–R2437 (1993). URL https://link.aps.org/doi/10.1103/
PhysRevA.47.R2435.

[76] Junker, G. & Roy, P. Conditionally exactly solvable potentials: a supersymmetric
construction method. Annals of Physics 270, 155–177 (1998).

[77] Junker, G. & Roy, P. Supersymmetric construction of exactly solvable potentials and
nonlinear algebras. Physics of Atomic Nuclei 61, 1736–1743 (1998).

[78] Delves, L. Tertiary and general-order collisions. Nuclear Physics 9, 391–399 (1958).

[79] Delves, L. Tertiary and general-order collisions (II). Nuclear Physics 20, 275–308
(1960).

[80] Ballot, J. & de La Ripelle, M. F. Application of the hyperspherical formalism to the
trinucleon bound state problems. Annals of physics 127, 62–125 (1980).

https://doi.org/10.1119/1.15738
https://doi.org/10.1119/1.15738
https://pubs.aip.org/aapt/ajp/article-pdf/56/12/1134/11961850/1134_1_online.pdf
https://pubs.aip.org/aapt/ajp/article-pdf/56/12/1134/11961850/1134_1_online.pdf
https://doi.org/10.1021/j100356a004
https://doi.org/10.1021/j100356a004
https://doi.org/10.1021/j100356a004
https://dx.doi.org/10.1209/0295-5075/112/10006
https://dx.doi.org/10.1209/0295-5075/112/10006
https://doi.org/10.1142/S0217732316500887
https://doi.org/10.1142/S0217732316500887
https://doi.org/10.1142/S0217732316500887
https://dx.doi.org/10.1088/1751-8113/49/44/445303
https://dx.doi.org/10.1088/1751-8113/49/44/445303
https://www.mdpi.com/2624-960X/4/3/22
https://www.mdpi.com/2624-960X/4/3/22
https://doi.org/10.1063/5.0127371
https://doi.org/10.1063/5.0127371
https://link.aps.org/doi/10.1103/PhysRevA.47.R2435
https://link.aps.org/doi/10.1103/PhysRevA.47.R2435


135

[81] Ferraris, M., Giannini, M., Pizzo, M., Santopinto, E. & Tiator, L. A three-body force
model for the baryon spectrum. Physics Letters B 364, 231–238 (1995).

[82] Rosati, S. The hyperspherical harmonic method: a review and some recent develop-
ments. Introduction To Modern Methods Of Quantum Many-Body Theory And Their
Applications 339–378 (2002).

[83] Mielnik, B. Factorization method and new potentials with the oscillator spectrum.
Journal of mathematical physics 25, 3387–3389 (1984).

[84] Fernández, D. J. New hydrogen-like potentials. letters in mathematical physics 8,
337–343 (1984).

[85] Leach, P. Exact solutions of the Schrödinger equation for a class of anharmonic oscil-
lators. Physica D: Nonlinear Phenomena 17, 331–338 (1985).

[86] Mitra, A., Roy, P., Lahiri, A. & Bagchi, B. Nonuniqueness of the factorization scheme
in quantum mechanics. International journal of theoretical physics 28, 911–916 (1989).

[87] Zwillinger, D., Moll, V., Gradshteyn, I. & Ryzhik, I. (eds.) Table of Integrals, Series,
and Products (Academic Press, Boston, 2014), eighth edition edn.

[88] Leacock, R. A. & Padgett, M. J. Hamilton–Jacobi theory and the quantum action
variable. Physical Review Letters 50, 3 (1983).

[89] Leacock, R. A. & Padgett, M. J. Hamilton-Jacobi/action-angle quantum mechanics.
Physical Review D 28, 2491 (1983).

[90] Bhalla, R., Kapoor, A. & Panigrahi, P. Exactness of the supersymmetric WKB ap-
proximation scheme. Physical Review A 54, 951 (1996).

[91] Bhalla, R., Kapoor, A. & Panigrahi, P. Quantum Hamilton–Jacobi formalism and the
bound state spectra. American Journal of Physics 65, 1187–1194 (1997).

[92] Gozzi, E. Nodal structure of supersymmetric wave functions. Physical Review D 33,
3665 (1986).

[93] Barclay, D., Khare, A. & Sukhatme, U. Is the lowest order supersymmetric WKB
approximation exact for all shape invariant potentials? Physics Letters A 183,
263–266 (1993). URL https://www.sciencedirect.com/science/article/pii/
0375960193904526.

[94] Bougie, J., Gangopadhyaya, A. & Mallow, J. V. Generation of a complete set of
additive shape-invariant potentials from an Euler equation. Physical review letters
105, 210402 (2010).

[95] Bougie, J., Gangopadhyaya, A., Mallow, J. & Rasinariu, C. Supersymmetric quantum
mechanics and solvable models. Symmetry 4, 452–473 (2012).

https://www.sciencedirect.com/science/article/pii/0375960193904526
https://www.sciencedirect.com/science/article/pii/0375960193904526


136

[96] Bougie, J., Gangopadhyaya, A., Mallow, J. V. & Rasinariu, C. Generation of a novel
exactly solvable potential. Physics Letters A 379, 2180–2183 (2015).

[97] Mallow, J. V., Gangopadhyaya, A., Bougie, J. & Rasinariu, C. Inter-relations between
additive shape invariant superpotentials. Physics Letters A 384, 126129 (2020).

[98] BenDaniel, D. J. & Duke, C. B. Space-Charge Effects on Electron Tunneling. Phys.
Rev. 152, 683–692 (1966). URL https://link.aps.org/doi/10.1103/PhysRev.152.
683.

[99] von Roos, O. Position-dependent effective masses in semiconductor theory. Phys. Rev.
B 27, 7547–7552 (1983). URL https://link.aps.org/doi/10.1103/PhysRevB.27.
7547.

[100] Bagchi, B., Banerjee, A., Quesne, C. & Tkachuk, V. M. Deformed shape invariance
and exactly solvable Hamiltonians with position-dependent effective mass. Journal of
Physics A: Mathematical and General 38, 2929 (2005). URL https://dx.doi.org/
10.1088/0305-4470/38/13/008.

[101] Quesne, C. Point Canonical Transformation versus Deformed Shape Invariance for
Position-Dependent Mass Schrödinger Equations. SIGMA. Symmetry, Integrability
and Geometry: Methods and Applications 5, 046 (2009). URL https://www.emis.
de/journals/SIGMA/2009/046/.

[102] Quesne, C. Deformed Shape Invariant Superpotentials in Quantum Mechanics and
Expansions in Powers of !. Symmetry 12 (2020). URL https://www.mdpi.com/
2073-8994/12/11/1853.

[103] Jafarov, E. I. & Van der Jeugt, J. Exact solution of the semiconfined harmonic oscillator
model with a position-dependent effective mass. The European Physical Journal Plus
136, 758 (2021). URL https://doi.org/10.1140/epjp/s13360-021-01742-z.

[104] Landau, L. D. & Lifshitz, E. M. Mechanics, vol. 1 of Course of Theoretical Physics
(Pergamon Press, 1976), third edn.

[105] Osypowski, E. & Olsson, M. G. Isynchronous motion in classical mechanics. Amer-
ican Journal of Physics 55, 720–725 (1987). URL https://doi.org/10.1119/1.
15063. https://pubs.aip.org/aapt/ajp/article-pdf/55/8/720/11373664/720_
1_online.pdf.

[106] Antón, C. & Brun, J. L. Isochronous oscillations: Potentials derived from a parabola
by shearing. American Journal of Physics 76, 537–540 (2008). URL https:
//doi.org/10.1119/1.2839560. https://pubs.aip.org/aapt/ajp/article-pdf/
76/6/537/13137051/537_1_online.pdf.

[107] Terra, P., de Melo e Souza, R. & Farina, C. Is the tautochrone curve unique?
American Journal of Physics 84, 917–923 (2016). URL https://doi.org/10.1119/
1.4963770. https://pubs.aip.org/aapt/ajp/article-pdf/84/12/917/13098581/
917_1_online.pdf.

https://link.aps.org/doi/10.1103/PhysRev.152.683
https://link.aps.org/doi/10.1103/PhysRev.152.683
https://link.aps.org/doi/10.1103/PhysRevB.27.7547
https://link.aps.org/doi/10.1103/PhysRevB.27.7547
https://dx.doi.org/10.1088/0305-4470/38/13/008
https://dx.doi.org/10.1088/0305-4470/38/13/008
https://www.emis.de/journals/SIGMA/2009/046/
https://www.emis.de/journals/SIGMA/2009/046/
https://www.mdpi.com/2073-8994/12/11/1853
https://www.mdpi.com/2073-8994/12/11/1853
https://doi.org/10.1140/epjp/s13360-021-01742-z
https://doi.org/10.1119/1.15063
https://doi.org/10.1119/1.15063
https://pubs.aip.org/aapt/ajp/article-pdf/55/8/720/11373664/720_1_online.pdf
https://pubs.aip.org/aapt/ajp/article-pdf/55/8/720/11373664/720_1_online.pdf
https://doi.org/10.1119/1.2839560
https://doi.org/10.1119/1.2839560
https://pubs.aip.org/aapt/ajp/article-pdf/76/6/537/13137051/537_1_online.pdf
https://pubs.aip.org/aapt/ajp/article-pdf/76/6/537/13137051/537_1_online.pdf
https://doi.org/10.1119/1.4963770
https://doi.org/10.1119/1.4963770
https://pubs.aip.org/aapt/ajp/article-pdf/84/12/917/13098581/917_1_online.pdf
https://pubs.aip.org/aapt/ajp/article-pdf/84/12/917/13098581/917_1_online.pdf


137

[108] Cross, D. J. Every isochronous potential is shear-equivalent to a harmonic potential.
American Journal of Physics 86, 198–200 (2018). URL https://doi.org/10.1119/
1.5019025. https://pubs.aip.org/aapt/ajp/article-pdf/86/3/198/13115775/
198_1_online.pdf.
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