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Chapter 1

Introduction

This thesis consists of two chapters except for this chapter. Chapter 2 gives a new
approach to Weber’s class number problem that asks whether specific infinitely many
number fields have the class number 1. Chapter 3 studies a combinatorial aspect of
some special polynomials in number theory. This thesis consists of the author’s three
works [95], [96] (Chapter 2), and [30] (Chapter 3).

1.1 Generalized Pell’s equations and Weber’s class

number problem

A number field is a finite extension over the rational number field Q. The ring of integers
of a number field is the set of roots in the number field of monic polynomials with integer
coefficients. The ring of integers is a generalization of the ring of rational integers Z.
Indeed the ring of integers of the rational number field is the ring of rational integers.
The ring of rational integers has a very important property, the uniqueness of the prime
factorization. However, the uniqueness of the prime factorization no longer holds for
the ring of integers in general. This fact was a major difficulty in the early days of the
study of the Fermat conjecture. The class number is an invariant of a number field that
determines whether the ring of integers has the uniqueness of the prime factorization.
The class number is defined by the size of the ideal class group, that is, the quotient
group of the group of fractional ideals and the group of principal ideals of the number
field. It is well-known that the class number of a number field is 1 if and only if the
ring of integers has the uniqueness of the prime factorization. Against this background,
the class number has long attracted attention as a major research subject in number
theory. However, the simple and important question of how many number fields of class
number 1 exist is unsolved at the granularity of finite or infinite. Weber’s class number
problem (conjecture) asks whether specific infinitely many number fields have the class
number 1. Let p be a prime number. Let Zp denote the ring of p-adic integers. A
Zp-extension over a number field is an infinite Galois extension whose Galois group is
isomorphic to the additive group Zp as topological groups. The statement of Weber’s
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problem is as follows.

Problem 1.1.1. Determine the class number of each intermediate field in the Z2-
extension over Q. Is the class number of any intermediate field 1?

For odd prime numbers p, similar problems have also been studied for Zp-extensions
over Q. Therefore, such problems are sometimes collectively referred to as Weber’s
problem. In Chapter 2, up to Section 2.5, we deal only with the case p = 2, and from
Section 2.6 we deal with all prime numbers. If we describe the intermediate fields of
Z2-extension over Q from small degree, we have

Q(
√
2), Q(

√
2 +
√
2), Q(

√
2 +

√
2 +
√
2), ...

There are many studies on Weber’s problem and we summarize the history here. It
all started in 1886, when Weber [92, Theorem C] proved that the class number of all
intermediate fields are odd, and calculated the class numbers of the first, second, and
third intermediate fields. The fourth and subsequent ones require computer power, the
fourth was calculated by Bauer [6, Ergebnis] and Masley [47, Theorem 3.2], the fifth by
Linden [86, Theorem 1], and the sixth, the most recent, was calculated by Miller [54,
Theorem 2.1] in 2014. In that paper, Miller also computed up to the seventh (in [54,
Theorem 2.2]), assuming the generalized Riemann hypothesis. These methods first cal-
culate the upper bound of prime numbers that may divide the class numbers, and then
verify that each prime number below the upper bound does not divide the class num-
bers, using the analytic class number formula, the class field theory, and other methods.
Since the upper bound increases with the degree of number fields, this method cannot
hope to solve the Weber’s problem. Recent studies have focused on the properties of
prime numbers that do not divide the class numbers of the intermediate fields. By
measuring the ”size” of a special unit, Horie [32, Theorem 3] gave a congruence condi-
tion for prime numbers that do not divide the class numbers of all intermediate fields.
Horie’s method was refined by Morisawa–Okazaki [55, Corollary B], and it is now proved
that all prime numbers that are not congruent to 1, −1 modulo 64 do not divide the
class numbers of all intermediate fields. By make use of generalized Bernoulli numbers,
Fukuda–Komatsu [24, Theorem 1.2] proved that for each prime number p there exists
a positive integer m satisfies that if p does not divide the class number of the mth
intermediate field, then p does not divide the class numbers of all intermediate fields.
Moreover Fukuda–Komatsu [24, Section 3] developed the algorithm which verifies a
given prime number does not divide the class number of a given intermediate field. By
using the algorithm, it is now proved that all prime numbers less than 109 do not divide
the class numbers of all intermediate fields. These are all strong results that provide
convincing affirmation of the Weber’s conjecture. However, all of them require the help
of a computer, and a complete solution to Weber’s conjecture with these methods is
also difficult. Therefore, new methods are needed to promote Weber’s conjecture.
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In this thesis, we study Weber’s problem from another point of view from previous
studies. Set Xn = 2 cos(2π/2n+2) for each n ≥ 0. Then we have

X1 =
√
2, X2 =

√
2 +
√
2, X3 =

√
2 +

√
2 +
√
2, .... (1.1)

Weber’s problem follows from the Z[Xn−1]-solutions of the equation

x2 −X2
ny

2 = 1 (1.2)

(see Section 2.3). In the case of n = 1, Eq. (1.2) becomes x2−2y2 = 1. In general, for a
non-square positive integerm, the equation x2−my2 = 1 is called Pell’s equation. There
is a one-to-one corresponding between the solutions of Pell’s equation and a subgroup
of the group of units of Q(

√
m). By Dirichlet’s unit theorem, there is a generator of

such a subgroup, and we call the corresponding solution a fundamental solution. There
is a classical algorithm to find a fundamental solution of Pell’s equation by using the
regular continued fraction expansion of

√
m. We note that the algorithm is based on

the theory of approximation, which is called the best approximation theorem.
Our strategy for solving Eq. (1.2) is to imitate the aforementioned classical algo-

rithm. We summarize our results as follows.

• By generalizing the classical continued fraction expansion algorithm, we obtain
a new continued fraction expansion of Xn over Z[Xn−1] (Definition 2.2.1 and
Theorem 2.2.4).

• We conjecture that our new continued fraction gives a generator of Eq. (1.2), and
we show that the conjecture is equivalent to Weber’s conjecture (Conjecture 2.2.6
and Theorem 2.3.5).

• By using the element that is given by our new continued fraction, we show that
the sequence of class numbers converges in Z2 (Theorem 2.5.1).

The last result is a special case of H. Kisilevsky’s work ([40, Corollary 2]). We rediscover
Kisilevsky’s result by a different proof (Theorem 2.7.1). Moreover we show that the p-
adic convergence of the certain analogues of the class numbers also holds for 3-manifolds
in the spirit of arithmetic topology (Theorem 2.8.1). It is natural to consider that the
analogues of the ideal class groups of number fields in 3-manifolds are the first homology
groups. Then the analogues of the class numbers are the sizes of the torsion parts of the
first homology groups. We also call the sizes of the torsion parts of the first homology
groups the class numbers of 3-manifolds. The analogues of Zp-extensions are the system
of p-power cyclic covers of 3-manifolds. Then we call the system of p-power cyclic covers
of the 3-manifolds Zp-covers of the 3-manifolds.

In the latter half of Chapter 2 (from Section 2.6), we study the p-adic limits of class
numbers. Our results are summarized as follows.
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• We show that the sequences of the class numbers of the intermediate fields in Zp-
extensions over global fields converge in Zp (Theorem 2.7.1, this is a rediscovery
of [40, Corollary 2]).

• We show that the sequences of the class numbers of the subcoverings in Zp-covers
over compact 3-manifolds converge in Zp (Theorem 2.8.1).

• We show that the sequences of the p-power cyclic resultants of integer coefficients
polynomials converge in Zp (Theorem 2.10.3).

• We get the formula of the p-adic limits of the p-power cyclic resultants (Theo-
rem 2.10.7).

Here the cyclic resultant of polynomial f(t) is defined by

Res(tn − 1, f(t)) =
∏
ζn=1

f(ζ)

for each positive integer n. By Fox–Weber’s formula, the class number of the cyclic
coverings of S3 branched along knots can be computed by the cyclic resultants of the
Alexander polynomials of the knots. It is also well-known that the class numbers of the
constant extensions of function fields can be computed by the cyclic resultants of the
Frobenius polynomials of the algebraic curves correspond to the base fields. Therefore,
we can calculate the p-adic limits of the class numbers numerically for the Zp-covers of
S3 branched along knots and the constant Zp-extensions of function fields. We position
a study of the p-adic limits as a variant of Weber’s problem and obtain the following
results.

• We determine when the p-adic limits are 1 for the constant Zp-extensions over
function fields of genus 1 (Proposition 2.12.8 and Proposition 2.12.10 ).

• We determine when the p-adic limits are 1 for the Zp-covers over S3 branched
along twist knots (Corollary 2.11.11).

1.2 Bijective enumerations for symmetrized poly-

Bernoulli polynomials

For each non-negative integer n, the Bernoulli number Bn is a rational number defined
by a recurrence formula

n∑
i=0

(
n+ 1

i

)
Bi = n+ 1

where
(
n
i

)
denotes binomial coefficients. There are various generalizations of the Bernoulli

number, each of which has been studied in a variety of way. For example, the general-
ized Bernoulli number played an important role in the history of Weber’s problem ([24,
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Theorem 1.2]). The poly-Bernoulli number has also been studied from a combinatorial
perspective. In Chapter 3, we study the symmetrized poly-Bernoulli polynomial which
is a generalization of the poly-Bernoulli number. We summarize some properties of the
poly-Bernoulli number and the history of a combinatorial study. For each integer k
and non-negative integer n, Kaneko [36] defined the poly-Bernoulli number B

(k)
n as the

coefficient of the series
Lik(1− e−x)

1− e−x
=
∞∑
n=0

B(k)
n

xn

n!

where Lik(t) denotes the poly-logarithm series

Lik(z) =
∞∑
i=1

zi

ik
.

Kaneko [36, Theorem 2] showed that for every positive integer n, k, we have

B(−k)
n = B

(−n)
k .

This interesting property is called the duality of the poly-Bernoulli number. Poly-
Bernoulli numbers also have the explicit formula and satisfy the recurrence relation.
We note that in the case of k < 0, B

(k)
n is a positive integer. Since Brewbaker [14] and

Launois [44] pointed out that poly-Bernoulli numbers appear in enumeration problems,
poly-Bernoulli numbers have been studied from a combinatorial viewpoint (see [8]).
For example, Brewbaker found that the number of specific matrices (lonesum matrix)
coincides with a poly-Bernoulli number, and the duality follows very naturally from
this perspective.

Just as the Bernoulli polynomial is defined from the Bernoulli number, the poly-
Bernoulli polynomial is also defined from the poly-Bernoulli number;

e−xt
Lik(1− e−t)

1− e−t
=
∞∑
n=0

B(k)
n (x)

tn

n!
.

Since B
(k)
n (0) = B

(k)
n the duality also holds for the special values in x = 0 of poly-

Bernoulli polynomials. In fact, the duality also holds for x = 1 by the following form;

B(−k−1)
n (1) = B

(−n−1)
k (1).

However, it no longer holds for x ≥ 2. Kaneko–Sakurai–Tsumura [37, Corollary 2.2]
showed that a weighted sum of special values of poly-Bernoulli polynomials

B(−k)
n (m) :=

m∑
j=0

[
m

j

]
B−k−jm (m)

satisfies the duality
B(−k)

n (m) = B(−n)
k (m)
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for each positive integer n, k and non-negative integer m. Here,
[
n
j

]
is the Stirling

number of the first kind (see [2, Section 2.1]). Since B(−k)
n (0) = B

(−k)
n (0) = B

(−k)
n

and B(−k)
n (1) = B

(−k−1)
n (1), this is a generalization of the duality of the poly-Bernoulli

polynomial. They also defined a polynomial

B̂k
n(x) =

min(n,k)∑
j=0

j!(x+ 1)j
{
n+ 1

j + 1

}{
k + 1

j + 1

}
∈ Z[x]. (1.3)

Here,
{
n
j

}
is the Stirling number of the second kind, and (x+1)j = (x+1)(x+2) · · · (x+j)

is the rising factorial. This is the (normalized) symmetrized poly-Bernoulli polynomial.

We note that B̂k
n(m) = B(−k)

n (m)/m!. By definition, the coefficients of symmetrized
poly-Bernoulli polynomials are non-negative integers. Therefore, it is natural to ask
about their combinatorial meanings.

Recently, Bényi–Matsusaka [11] introduced two combinatorial objects to answer
this question. Inspired by their research, we provide further combinatorial aspects
for the symmetrized poly-Bernoulli polynomial. Furthermore, we answer some Bényi–
Matsusaka’s problems left unsolved. First, we recall the two combinatorial objects,
(barred) Callan sequences Ckn and alternative tableaux T k

n in Section 3.1. Bényi–

Matsusaka [11] showed that both of these objects define the same polynomial B̂k
n(x).

However their proof is indirect due to using recurrence relations and it is unsolved to
give a ”combinatorial” proof. We success to present two types of combinatorial bijec-
tions between the combinatorial models of Bényi–Matsusaka. By using our bijections,
we give a combinatorial proof of Bényi–Matsusaka’s result.

To state our results more precisely, we introduce the following.

Definition 1.2.1. For a pair (P , w) of a finite set of combinatorial objects and a weight
function w : P → Z≥0, we define the polynomial

P(x) = P(x;w) =
∑
λ∈P

xw(λ).

Let (P1, w1) and (P2, w2) be two such pairs. A function f : P1 → P2 is called a bijection
between (P1, w1) and (P2, w2) if f is bijective and satisfies w2(f(λ)) = w1(λ) for any
λ ∈ P1.

If there exists a bijection between (P1, w1) and (P2, w2), then we obtain the equation
P1(x;w1) = P2(x;w2). In Section 3.1.3, we construct a direct bijection (Ckn, wlr

C ) →
(T k

n , w
st
T ), where w

lr
C and wst

T are weight functions introduced in [11]. In Section 3.2, we
give another bijection (T k

n , w
←
T )→ (Ckn, wlr

C ) via a sequence of bijections.
Throughout this Chapter 3, we provide various combinatorial objects and weights.

The following table lists the models considered herein.
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Section (P , w)
Section 3.1 (Ckn, wlr

C ), (T k
n , w

st
T )

Section 3.2.1 (T k
n , w

←
T ), (T̃ k

n , w
←
T̃ )

Section 3.2.2 (T k
n , w

ch
T ), (Ckn, wbr

C )
Section 3.3.1 (Ekn , wlr

E )
Section 3.3.2 (Ckn, wRL

C )

Section 3.4.1 (T̃ k
n , w

↓
T̃
)

Summarizing the results (Theorems 3.1.5, 3.1.9, 3.1.13, 3.2.1, 3.2.6, 3.2.7, 3.3.4
and 3.3.7) in Chapter 3, we have the following.

• The polynomials P(x;w) defined from the above nine combinatorial models all

coincide with the symmetrized poly-Bernoulli polynomial B̂k
n(x).

As we can see from (1.3), B̂k
n(x) satisfies the duality B̂k

n(x) = B̂n
k (x). However the

duality does not follow immediately from the combinatorial models of Bényi–Matsusaka.
As an application of our results, we explain the duality combinatorially in Section 3.4.1.
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Chapter 2

Generalized Pell’s equations and
Weber’s class number problem

2.1 Classical method

We briefly recall the classical method for Pell’s equation (see [59, Ch.7, §7.8] for detail).
For a non-square positive integer m, we consider Pell’s equation

x2 −my2 = 1. (2.1)

By mapping (x, y) to x+
√
my, the solutions of Pell’s equation are embedded in Z[

√
m],

and we set Pm its image. Since Pm forms a subgroup of the multiplicative group Z[
√
m]∗

and has a torsion element −1, Pm is isomorphic to Z/2Z⊕Z by Dirichlet’s unit theorem.
A fundamental solution of Pell’s equation is defined as a corresponding solution to a
generator of Pm/(Z/2Z) ∼= Z. It is classically known that a fundamental solution is
given by the regular continued fraction of

√
m.

Let

[a0, a1, a2, . . . ] = a0 +
1

a1 +
1

a2 +
.. .

be a continued fraction (ai ∈ Z). Let p−1 = 1, p0 = a0 and q−1 = 0, q0 = 1. For a
positive integer k, we define pk and qk as follows:

pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2.

Then, it holds pk/qk = [a0, . . . , ak], and the rational number pk/qk is called the k-
th convergent of the continued fraction. It is well-known that the regular continued
fraction expansion of

√
m is of the form

√
m = [a0, a1, ..., al] := [a0, a1, . . . , al, a1, . . . , al, . . . ]

10



and l is called the period of
√
m if we take the minimal l. Then we obtain a fundamental

solution of Pell’s equation

(p, q) =

{
(pl−1, ql−1) (l: even)

(p2l−1, q2l−1) (l: odd).

In Section 2.4.2, we observe a characterization of a fundamental solution of Eq. (1.2).
For comparison, we explain why the regular continued fraction expansion of

√
m gives

a fundamental solution. A solution (a, b) is a fundamental solution if and only if

| log |a+
√
mb|| = min{| log |x+

√
my|| | x, y ∈ Z, x2 −my2 = 1}, (2.2)

or equivalently,
|a| = min{|x| ∈ Z | x 6= 1, x2 −my2 = 1}.

On the other hand, the regular continued fraction of
√
m gives a best approximation

to
√
m in the following sense.

Definition 2.1.1 (best approximation, cf. [42, p.9]). Let α be an irrational number.
A best approximation to α is a rational number p/q (q > 0) such that for any rational
number p′/q′ 6= p/q with 1 ≤ q′ ≤ q, we have

|qα− p| < |q′α− p′|.

Theorem 2.1.2 (cf. [42, Theorem 6]). All of best approximations to an irrational
number α are convergents of the regular continued fraction expansion of α.

Let (x, y) 6= (±1, 0) be a solution of the Eq. (2.1) with x/y > 0. Then x/y satisfies

|
√
m− x

y
| < 1

2y2
. (2.3)

If a rational number satisfies the inequality (2.3), then the rational number is a best
approximation to

√
m (cf. [42, Corollary 2]). Thus we see that x/y is a convergent of√

m, and there exists an integer n such that x/y = pn/qn. By the theory of continued
fraction, if the period l of the regular continued fraction expansion of

√
m is even (resp.

odd), then l − 1 (resp. 2l − 1) is the index of the convergent which has the smallest
numerator in the set of convergents that can be solutions to Eq. (2.1), that is, (pl−1, ql−1)
(resp. (p2l−1, q2l−1)) is a fundamental solution.

2.2 Generalized Pell’s equation

We study the generalized Pell’s equation

x2 −X2
ny

2 = 1

with the Z[Xn−1]-solutions by imitating the classical method. We obtained a continued
fraction expansion of Xn over Z[Xn−1] by a new algorithm. First, we prepare the
algebraic property of Xn.
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2.2.1 Algebraic aspects of Xn

For non-negative integer n, set Bn = Q(Xn). Since Xn = ζ2n+2 + ζ−12n+2 we see that Bn is
the maximal real subfield of Q(ζ2n+2) where ζ2n+2 := exp(2π

√
−1/2n+2). By the theory

of cyclotomic field (see [90, Ch.2] in detail), we have that Bn is an algebraic number
field of degree 2n, and Galois extension over Q with Galois group Z/2nZ, and the ring
of integers of Bn is Z[Xn]. We see that Bn is a relative quadratic extension over Bn−1.

2.2.2 New continued fraction

We define a new continued fraction expansion algorithm over Z[Xn−1]. For n ≥ 1, we
set β0 = 1 and βk = 2 cos(kπ/2n) for each 1 ≤ k ≤ 2n−1 − 1. Then,

Bn−1 = {βk | k = 0, 1, · · · , 2n−1 − 1} (2.4)

is an integral basis of Z[Xn−1]. By embedding

φn : Bn−1 −→ R2n−1

; a 7→ (τ(a))τ∈Gal(Bn−1/Q),

the basis Bn−1 is orthogonal in R2n−1
(cf. [56, Lemma 6.3]), and Z[Xn−1] forms a com-

plete lattice in R2n−1
. Recall Xn =

√
2 +Xn−1. We define

φn(Xn) = (
√

2 + τ(Xn−1))τ∈Gal(Bn−1/Q)

and extend φn to

φn : Bn → R2n−1

; a+Xnb 7→ φn(a) + φn(Xn)φn(b)

for each a, b ∈ Bn−1 where the sum and the multiplication are component-wise. For
each x ∈ R, let round(x) denote the integer in (x− 1/2, x+1/2]. We note that for each

α ∈ Bn, there are unique rk ∈ R such that φn(α) =
∑2n−1−1

k=0 rkφn(βk).

Definition 2.2.1. For α ∈ Bn such that φn(α) =
∑2n−1−1

k=0 rkφn(βk), we define bαc =∑2n−1−1
k=0 round(rk)βk ∈ Z[Xn−1] and the sequence (ak)k≥0 as

α0 = α, a0 = bα0c,
αm = (αm−1 − am−1)−1, am = bαmc (m ≥ 1).

If αm−1 ∈ Z[Xn−1] then am−1 = αm−1 and αm is not defined.

Remark 2.2.2. By the orthogonality of φn(Bn−1), φn(bαc) is one of the closest points
to φn(α) in φn(Z[Xn−1]) for Euclidean distance of R2n−1

.

Before stating the next proposition, we note that 1 + Xn−1 ∈ Z[Xn−1] is a unit. It
will be explained in Section 2.3.
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Proposition 2.2.3. Let α = Xn ∈ Bn. Then we have

a0 = 1,

a2k−1 = 2(1 +Xn−1)
−1,

a2k = 2

for positive integers k.

Proof. By Remark 2.2.2, it suffices to show that φn(0) is

(a) a unique closest point to φn(
√
2 +Xn−1 − 1) and

(b) a unique closest point to φn((
√
2 +Xn−1 − 1)−1 − 2(1 + Xn−1)

−1) = φn((1 +√
2 +Xn−1)

−1)

in φn(Z[Xn−1]). For (a), since φn(Bn−1) is orthogonal in R2n−1
and the lengths of

φn(βk) (k = 1, · · · , 2n−1 − 1) are
√
2n (see [56, Lemma 6.3]), it is enough to show that

(a-1) ||
√
2 +Xn−1 − 1− 0|| <

√
2n/2 and

(a-2) ||
√
2 +Xn−1 − 1− 0|| < ||

√
2 +Xn−1 − 1− (±1)||.

(a-1). The left-hand side of the inequality is ||
√
2 +Xn−1 − 1|| =

√
2nAn/π, where

An :=
π

2n

2n−1∑
k=1

(
2 cos

(
2k − 1

2n+1
π

)
− 1

)2

<

∫ π
2
+ π

2n+1

− π
2n+1

(2 cos x− 1)2dx =: In.

Now (In)n≥6 is decreasing with I6 = 0.762... < π/4 and we can check numerically that
An < π/4 for the cases 1 ≤ n ≤ 5.

(a-2). We show that

(a-2-i) ||
√
2 +Xn−1 − 1|| < ||

√
2 +Xn−1 − 1− (+1)|| and

(a-2-ii) ||
√
2 +Xn−1 − 1|| < ||

√
2 +Xn−1 − 1− (−1)||.

(a-2-i). Transform the inequality as following;

2n−1∑
k=1

(
2 cos

(
2k − 1

2n+1
π

)
− 1

)2

<

2n−1∑
k=1

(
2 cos

(
2k − 1

2n+1
π

)
− 2

)2

⇔ π

2n−1

2n−1∑
k=1

cos

(
2k − 1

2n+1
π

)
<

3

4
π.

Since the proof of the inequality is almost the same as in case (a-1), using a comparison
series-integral with cos x, we omit it.
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(a-2-ii). Similarly, we see that it suffices to show that

1 <
8

2n

2n−1∑
k=1

cos

(
2k − 1

2n+1
π

)
for n ≥ 1. In fact, we prove a more general case

1 < SN :=
4

N

N∑
k=1

cos

(
2k − 1

4N
π

)
(N ≥ 1).

For N = 1, we have S1 = 4 cos(π/4) = 2
√
2 > 1. For N ≥ 2, a comparison series-

integral gives that

SN ≥ IN :=
8

π

∫ 2N−1
4N

π

π
4N

cos xdx.

Since IN = 8/π(cos(π/(4N))−sin(π/(4N))) and the function x 7→ cos x−sin x decreases
in [0, π/4], we have that SN ≥ IN > I2 > 1.

Similarly to the proof of (a), we separate the proof of (b) into (b-1) and (b-2).
(b-1). We show that

∣∣∣∣(1 +√2 +Xn−1)
−1
∣∣∣∣ < √2n/2, which means that

π

2n

2n−1∑
k=1

(
1

2 cos
(
2k−1
2n+1 π

)
+ 1

)2

<
π

4
.

However, in the proof of (b-2-ii), we show that

π

2n

2n−1∑
k=1

1

2 cos
(
2k−1
2n+1 π

)
+ 1

<
π

4

and this implies the statement because 2 cos( 2k−1
2n+1 π) + 1 > 1 for all 1 ≤ k ≤ 2n−1.

(b-2). Similarly to the proof of (a-2), we separate the proof into two cases.
(b-2-i). We show that∣∣∣∣∣∣∣∣(1 +√2 +Xn−1

)−1∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣(1 +√2 +Xn−1

)−1
− (−1)

∣∣∣∣∣∣∣∣ .
This is easy because

2n−1∑
k=1

( 1

2 cos
(
2k−1
2n+1 π

)
+ 1

+ 1

)2

−

(
1

2 cos
(
2k−1
2n+1 π

)
+ 1

)2


=
2n−1∑
k=1

(
1 +

2

2 cos
(
2k−1
2n+1 π

)
+ 1

)
> 0.
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(b-2-ii).
∣∣∣∣∣∣(1 +√2 +Xn−1

)−1∣∣∣∣∣∣ < ∣∣∣∣∣∣(1 +√2 +Xn−1
)−1 − (+1)

∣∣∣∣∣∣. Similarly to the

proof of (a-2-i), it suffices to show that

π

2n

2n−1∑
k=1

1

2 cos
(
2k−1
2n+1 π

)
+ 1

<
π

4
.

Since the proof of the inequality is almost the same as in case (a-1), using a comparison
series-integral with 1/(2 cos x+ 1), we omit it.

Proposition 2.2.3 only provides a formal expansion. We see that it does converge.

Theorem 2.2.4. For n ≥ 1 and each τ ∈ Gal(Bn−1/Q), we have√
2 + τ(Xn−1) = [1, 2(1 + τ(Xn−1))−1, 2].

Here, [a0, a1, ...] denotes a0+
1

a1 + · · ·
and [a0, . . . , ar, ar+1, . . . , as] denotes the periodicity

of the part ar+1, . . . , as, namely

[a0, . . . , ar, ar+1, . . . , as] = [a0, . . . , ar, ar+1, . . . , as, ar+1, . . . , as, . . . ].

Remark 2.2.5. Theorem 2.2.4 states that the above continued fraction converges

in Euclidean space R2n−1 ϕn←↩ Bn. Namely we get a continued fraction expansion of√
2 +Xn−1 over Z[Xn−1] for each metric induced by τ ∈ Gal(Bn−1/Q). We could not

make sure whether this algorithm gives a continued fraction expansion of any element
of Bn, and whether this algorithm terminates for any element of Bn−1.

Proof. If the continued fraction [1, 2(1 + τ(Xn−1))−1, 2] converges, then we see that the
numerical value of it is

√
2 + τ(Xn−1) by an easy calculation. We show the convergence

of [1, 2(1 + τ(Xn−1))−1, 2] for each τ ∈ Gal(Bn−1/Q). We check the conditions in [15,
Theorem 4.3]. For a ∈ C, we define

D(a) =

(
a 1
1 0

)
.

For a continued fraction [a1, a2, ..., ak], we define

M([a1, a2, ..., ak]) = D(a1)D(a2) · · ·D(ak).

We should check the followings for all n ≥ 1 and τ ∈ Gal(Bn−1/Q);

(a) M([1, 2(1 + τ(Xn−1))
−1, 2, 0,−1, 0]) 6= ±

(
1, 0
0, 1

)
(b) |M([2(1 + τ(Xn−1))

−1, 2])2,2| ≤ 1
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(b’) |M([2, 2(1 + τ(Xn−1))
−1])2,2| ≤ 1

(c) Tr(M([1, 2(1 + τ(Xn−1))
−1, 2, 0,−1, 0]))2 ≥ 4

where M2,2 denotes the (2, 2)-element of a matrix M . The first three (a), (b), and (b’)
are trivial. We note that

Tr(M([1, 2(1 + τ(Xn−1))
−1, 2, 0,−1, 0]))2 = 4(2(1 + τ(Xn−1))

−1 + 1)2.

If τ(Xn−1) > −1, then we have (2(1 + τ(Xn−1))
−1 + 1)2 ≥ 1 and (c) holds. Otherwise,

we have that −2 < τ(Xn−1) < −1. So we have (1 + τ(Xn−1))
−1 < −1 and an easy

calculation shows that (c) holds.

In the case n = 1, the above theorem states that
√
2 = [1, 2, 2] and this is a classical

continued fraction expansion of
√
2.

2.2.3 Z[Xn−1]-solutions

By imitating the classical method, we formulate a conjecture for the Z[Xn−1]-solutions
of the generalized Pell’s equation. Since the period of [1, 2(1 +Xn−1)−1, 2] is 2, we look
at the first convergent

p1
q1

=
1 + 2(1 +Xn−1)

−1

2(1 +Xn−1)−1
.

It is easy to check that
p21 −X2

nq
2
1 = 1

for all n ≥ 1. We set
εn = p1 +Xnq1.

We conjecture that the element εn generates the Z[Xn−1]-solutions as a Galois module.

Conjecture 2.2.6. The Z[Xn−1]-solutions of the generalized Pell’s equation x
2−X2

ny
2 =

1 is a Gal(Bn/Q)-module generated by −1 and εn, namely,

{a+Xnb | a, b ∈ Z[Xn−1], a
2 −X2

nb
2 = 1} = 〈−1, εn〉Z[Gal(Bn/Q)].

2.3 Weber’s class number problem

At the beginning of this section, we summarize the history of Weber’s problem again.
For each positive integer n, we note that Bn is the n-th layer of the Z2-extension over
Q, that is, the unique intermediate field of degree 2n. In 1886, H. Weber [92, Theorem
C] showed that h(Bn) are odd for all positive integers n. He also showed h(Bn) = 1 for
n = 1, 2, and 3 by hand calculations.

After Weber’s study, the development of computers allowed researchers to determine
the class number of Bn as below.
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• h(B4) = 1 (Bauer [6, Ergebnis], Masley [47, Theorem 3.2])

• h(B5) = 1 (Linden [86, Theorem 1])

• h(B6) = 1 (Miller [54, Theorem 2.1])

• h(B7) = 1 under Generalized Riemann Hypothesis (Miller [54, Theorem 2.2])

Except for Bauer, they first gave an upper bound of the class number h(Bn) by using
the root discriminant for each n and then showed that h(Bn) is not divisible by prime
numbers below that upper bound. The techniques and their difficulties are briefly
summarized in the introduction of [54]. We count them as the first approach.

The second approach we present here is to determine prime numbers that do not
divide h(Bn) for all n. Fukuda beautifully summarized this approach in his book [23,
Chapter 14], which is written in Japanese. See also [26] for similar contents shortly
written in English. The explanation below is based on his book.

Horie found that there is a strong relation between a prime number dividing h(Bn)
and a certain unit in Bn. We need some preparations to explain Horie’s work. We write
ζ2n = exp(2π

√
−1/2n) for each n ≥ 1. Take a generator σ of Gal(Q(ζ2n+2)/Q(ζ22)) ∼=

Z/2nZ. For α =
∑2n−1−1

i=0 aiζ
i
2n ∈ Z[ζ2n ] (ai ∈ Z), we define

ασ =
2n−1−1∑
i=0

aiσ
i ∈ Z[Gal(Q(ζ2n+2)/Q(ζ22))]. (2.5)

For a prime number l, let Fl be the decomposition field of l in the extension Q(ζ2n)/Q
and fix an intermediate field F of Q(ζ2n)/Fl. Define

ηn = tan
π

2n+2
(2.6)

for each n ≥ 1. The following Horie’s lemma plays a key role in this approach.

Lemma 2.3.1 (cf. [31, Lemma 2]). A prime number l divides h(Bn)/h(Bn−1) if and
only if there is a prime ideal L of F dividing l such that l

√
ηασ
n ∈ Bn for all α ∈ lL−1.

By showing that “l | h(Bn)/h(Bn−1) implies l
√
ηασ
n ∈ Bn” and estimating a particular

size of ηn, Horie deduced a contradiction. He obtained the following.

Theorem 2.3.2 ([32, Theorem 3]). If a prime number l satisfies l 6≡ ±1 (mod 8), then
we have l ∤ h(Bn) for all n ≥ 1.

Many researchers have improved Horie’s result.
On the other hand, Fukuda–Komatsu [24, Theorem 1.2] showed that for each prime

number l there exists an integer ml such that l ∤ h(Bml
) implies l ∤ h(Bn) for all n ≥ 1.

They also improved their result in [25, Theorem 1.1]. By computing such ml and
showing l ∤ h(Bml

) for small l, they obtained the following.
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Theorem 2.3.3 ([25, Corollary 1.2]). If a prime number l satisfies l < 109, then we
have l ∤ h(Bn) for all n ≥ 1.

Consolidating the recent results, we can summarize as following.

Theorem 2.3.4 ([55, Corollary B]). If a prime number l satisfies l 6≡ ±1 (mod 64),
then we have l ∤ h(Bn) for all n ≥ 1.

The aim of this section is to prove the following equivalence:

Theorem 2.3.5. Conjecture 2.2.6 is true for all n ≥ 0 if and only if Weber’s conjecture
is true for all n ≥ 0.

2.3.1 Some known results

We prepare some known results. Let En be the group of units of Bn and

Cn :=

〈
−1, ζ

1−a
2

2n+2

1− ζa2n+2

1− ζ2n+2

| a : odd integers such that 1 < a < 2n+1

〉
Z

be its subgroup of cyclotomic units. Then (En : Cn) = hn, by [90, Lemma 8.1 and
Theorem 8.2]. Noticing that 3 is a generator of (Z/2n+2Z)∗/{±1} and that

1 +Xn = ζ
1−3
2

2n+2

1− ζ32n+2

1− ζ2n+2

,

by [90, Proposition 8.11], we have

Cn = 〈1 +Xn〉Z[Gal(Bn/Q)].

We set Gn/n−1 = Gal(Bn/Bn−1) and define σn/n−1 to be the non-trivial element of
Gn/n−1. We note that σn/n−1(Xn) = −Xn. We define a relative norm map by

Nrn/n−1 : Bn −→ Bn−1; x 7→ xσn/n−1(x).

Lemma 2.3.6. The restrictions Nrn/n−1|En : En −→ En−1 and Nrn/n−1|Cn : Cn −→
Cn−1 are well-defined and surjective.

Proof. Let Ĥr(Gn/n−1, En) be the r-th Tate cohomology group. It suffices to show that

Ĥ0(Gn/n−1, En) = {1} for the surjectivity of Nrn/n−1|En : En −→ En−1. Yokoi [94,
Lemma 3] showed that

Q(En) =
|Ĥ0(Gn/n−1, En)|
|Ĥ1(Gn/n−1, En)|

=
1

2
.

Therefore, it suffices to show that |Ĥ1(Gn/n−1, En)| = 2. Let Hn−1 be the maximal
unramified abelian extension of Bn−1. Then we have Bn∩Hn−1 = Bn−1 because Bn/Bn−1
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ramifies at the prime ideal lying above 2. Furthermore, Bn/Bn−1 ramifies at only one
prime, then Bn/Bn−1 satisfies the assumption of [94, Theorem 1]. Thus we have hn−1 =

|ClGn/n−1
n |. Since we have 2 ∤ hn−1 by [92, Theorem C], we get |Ĥ1(Gn/n−1, En)| = 2 by

the Corollary of [94, Theorem 2]. Thus we see that Nrn/n−1 : En −→ En−1 is surjective.
Next we consider Nrn/n−1|Cn . The presentation Cn = 〈1+Xn〉Z[Gal(Bn/Q)] and the easy

calculations Nrn/n−1(1+Xn) = −1−Xn−1 and Nrn/n−1((1+Xn)σ(1+Xn) · · · σ2n−1−1(1+
Xn)) = −1 show that Nrn/n−1 : Cn −→ Cn−1 is well-defined and surjective, where σ is
a generator of Gal(Bn/Q).

Set RE+
n = ker(Nrn/n−1|En) throughout this paper. Lemma 2.3.6 implies the follow-

ing exact sequence:

0→ RE+
n /An → En/Cn → En−1/Cn−1 → 0, (2.7)

where An := RE+
n ∩ Cn. By the exact sequence (2.7), Weber’s conjecture is equivalent

to

(RE+
n : An) = 1 for all n ≥ 1. (2.8)

2.3.2 Proof of Theorem 2.3.5

For ε ∈ RE+
n , there exist unique a, b ∈ Z[Xn−1] such that ε = a + bXn and we have

Nrn/n−1(ε) = a2 − b2X2
n. Thus we have a bijection;

RE+
n ←→ {the solutions of x2 −X2

ny
2 = 1}

∈ ∈

ε = a+Xnb ←→ (a, b)

We recall that Conjecture 2.2.6 states

{a+Xnb | a, b ∈ Z[Xn−1], a
2 −X2

nb
2 = 1} = 〈−1, εn〉Z[Gal(Bn/Q)].

Therefore, Conjecture 2.2.6 is equivalent to that RE+
n = 〈−1, εn〉Z[Gal(Bn/Q)] for all n.

Combining this formulation and (2.8), to prove Theorem 2.3.5, it suffices to prove that

An = 〈−1, εn〉Z[Gal(Bn/Q)].

By easy calculation, we have that

εn =
Xn + 1

Xn − 1

for each n ≥ 1. Since Cn = 〈−1, 1 + Xn〉Z[Gal(Bn/Q)], we have εn ∈ Cn and εn ∈
Cn ∩RE+

n = An. Thus we have 〈−1, εn〉Z[Gal(Bn/Q)] ⊂ An.

We put Ñrn/n−1|Cn : Cn/{±1} −→ Cn−1/{±1}. Let σ be a generator of Gal(Bn/Q).
We note that the basis of Cn/{±1} and Cn−1/{±1} are {σ(1+Xn), σ

2(1+Xn), . . . , σ
2n−1(1+
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Xn)} and {σ(1 +Xn−1), σ
2(1 +Xn−1), . . . , σ

2n−1−1(1 +Xn−1)} respectively. By consid-

ering the representation matrix of Ñrn/n−1|Cn , we see that the basis of the kernel of

Ñrn/n−1|Cn is {
σi

(
1 +Xn

1−Xn

)
,
2n−1−1∏
j=0

σj (1 +Xn) | i = 1, 2, ..., 2n−1 − 1

}
.

Since σi
(

1+Xn

1−Xn

)
∈
〈
−1, Xn+1

Xn−1

〉
Z[Gn]

, the rest of the proof is showing, for any e ∈ Z,
that

2n−1−1∏
j=0

σj(1 +Xn)
e ∈

〈
−1, Xn + 1

Xn − 1

〉
Z[Gn]

if Nrn/n−1

(∏2n−1−1
j=0 σj(1 +Xn)

e
)
= 1. Such e is even because

Nrn/n−1

(
2n−1−1∏
j=0

σj(1 +Xn)
e

)
=

(
2n−1−1∏
j=0

σj(1 +Xn)σ
j+2n−1

(1 +Xn)

)e

= (−1)e.

Therefore it suffices to show that
∏2n−1−1

j=0 σj(1 + Xn)
2 ∈

〈
−1, Xn+1

Xn−1

〉
Z[Gn]

. Since∏2n−1
j=0 σj(1 +Xn) = −1, we have

2n−1−1∏
j=0

σj(1 +Xn)
2 = −

2n−1−1∏
j=0

σj

(
1 +Xn

1−Xn

)
∈
〈
−1, Xn + 1

Xn − 1

〉
Z[Gn]

.

Then the assertion follows.

2.4 Results on the explicit unit εn

In this section, first we show the “minimality” of our explicit unit εn. Secondly, from
the Galois action on relative units and the explicitness of εn, we obtain a congruence
relation formula for the ratios of the class numbers.

2.4.1 The minimality of εn in RE+
n

For n = 1, ε1 = 3 + 2
√
2 comes from the continued fraction of

√
2. By the classical

method, we have that ε1 generates all the Z-solutions of Pell’s equation x2 − 2y2 = 1.
This means that ε1 is “minimal”, that is,

ε
l
m
1 6∈ RE+

1 for any reduced fraction
l

m
with 0 < | l

m
| < 1.
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It follows that Weber’s conjecture for n = 1 holds true. We show that εn is also
“minimal” for n ≥ 2.

Theorem 2.4.1. ε
l
m
n 6∈ RE+

n for any reduced fraction l
m

with 0 < | l
m
| < 1.

Proof. Let n ≥ 2. It suffices to show the statement in case l
m

= 1
p
for each prime p. We

separate the proof into two cases p = 2 or an odd prime.
Suppose p = 2. If ε

1/2
n ∈ RE+

n ⊂ Bn, then its conjugates are also included in

Bn. For τ ∈ Gal(Bn/Q), τ
(√

Xn+1
Xn−1

)2
= τ(Xn)+1

τ(Xn)−1 . On the other hand, there exists

τ ∈ Gal(Bn/Q) such that 0 < τ(Xn) < 1. For such τ , we have τ
(√

Xn+1
Xn−1

)2
< 0 and

this contradicts the fact that Bn is a totally real field. Thus we have ε
1/2
n 6∈ RE+

n .
Now assume that p ≥ 3. By [56, Proposition 6.6] for n ≥ 2 and ±1 6= δ ∈ RE+

n we
have

Trn(δ
2) ≥ 2n · 17 (2.9)

where Trn : Bn −→ Q be the trace map of Bn.
Suppose that ε

1/p
n ∈ RE+

n . For each τ ∈ Gal(Bn/Q), the conjugate of ε
1/p
n is(

τ(Xn+1)
τ(Xn−1)

)1/p
. Then we have

Trn

(
ε

2
p

)
=

2n∑
k=1

fp

(
2k − 1

2n+1
π

)
, where fp(x) :=

∣∣∣∣2 cos x+ 1

2 cos x− 1

∣∣∣∣ 2p .
Since |2 cos((2k − 1)π/2n+1) + 1| < |2 cos((2k − 1)π/2n+1)− 1| for k = 2n−1+1, . . . , 2n,
we have fp((2k− 1)π/2n+1) < 1 for such k. Therefore, by using (2.9) it suffices to show

that
∑2n−1

k=1 fp((2k − 1)π/2n+1) < 2n−1 · 17.
For k = 1, . . . , 2n−1, we have∣∣∣∣2 cos((2k − 1)π/2n+1) + 1

2 cos((2k − 1)π/2n+1)− 1

∣∣∣∣ > 1.

Then we have

fp

(
2k − 1

2n+1
π

)
< f3

(
2k − 1

2n+1
π

)
for p > 3. Therefore it suffices to show this in case p = 3. Thus our goal is to show
that

1

2n

2n−1∑
k=1

f3

(
2k − 1

2n+1
π

)
<

17

2

for n ≥ 2. Let K be the integer satisfying (2K − 1)π/2n+1 < π/3 < (2K + 1)π/2n+1.
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We write

1

2n

2n−1∑
k=1

f3

(
2k − 1

2n+1
π

)
=

1

2n

K−1∑
k=1

f3

(
2k − 1

2n+1
π

)
+

1

2n
f3

(
2K − 1

2n+1
π

)

+
1

2n
f3

(
2K + 1

2n+1
π

)
+

1

2n

2n−1∑
k=K+2

f3

(
2k − 1

2n+1
π

)
.

(2.10)

A comparison series-integral gives that

π

2n

K−1∑
k=1

f3

(
2k − 1

2n+1
π

)
+
π

2n

2n−1∑
k=K+2

f3

(
2k − 1

2n+1
π

)

<

∫ π/3

0

f3(x)dx+

∫ π/2

π/3

f3(x)dx = 6.4669....

(2.11)

We used a computer for the last integral calculations.
Finally, we claim that

1

2n
f3

(
2K − 1

2n+1
π

)
+

1

2n
f3

(
2K + 1

2n+1
π

)
< 3.

for n ≥ 2. Indeed, the continuous function defined for nonzero x by x 7→ x2 cos(π/3+x)+1
2 cos(π/3+x)−1

is increasing from −π to 0 on [−π/3, π/3]\{0}. So we have f3(π/3+x) ≤ (π/|x|)2/3 on
[−π/3, π/3]\{0}. Set r = 2n+1+3−6K. So we see that r ∈ {1, 5}, 2K−1

2n+1 π = π
3
− r

3·2n+1π
and 2K+1

2n+1 π = π
3
+ 6−r

3·2n+1π. Since
5

3·2n+1π <
π
3
for n ≥ 2, we obtain that

1

2n
f3

(
2K − 1

2n+1
π

)
+

1

2n
f3

(
2K + 1

2n+1
π

)
≤ 1

2n

(
π
1

3·2n+1π

)2/3

+
1

2n

(
π
5

3·2n+1π

)2/3

= 2
2−n
3 (3

2
3 +

(
3

5

) 2
3

) < 3

(2.12)

for n ≥ 2. Thus we have the claim and the assertion holds.

Remark 2.4.2. For n = 2, we also show that h2 = 1 by a similar method used above.
Let σ be a generator of Gal(B2/Q). Since h1 = 1, we have h2 = (RE+

2 : A2). We recall
that A2 = 〈−1, ε2〉Z[Gal(B2/Q)] and note that (RE+

2 : A2) < ∞. We should show that
εx2 ·σ (ε2)

y 6∈ RE+
2 for any x, y ∈ [−1/2, 1/2]∩Q except for x = y = 0. If εx2 ·σ (ε2)

y ∈ B2,
then we have

Tr2
(
ε2x2 · σ (ε2)

2y) = 4∑
i=1

σi (ε2)
2x · σi+1 (ε2)

2y .
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Now we define a function f2(x, y) = Tr2
(
ε2x2 · σ (ε2)

2y) on [−1/2, 1/2]2. Since ∂2f2
∂x2 (x, y)

(resp. ∂2f2
∂y2

(x, y)) > 0 for each y (resp. x)∈ [−1/2, 1/2]2 and f2 (±1/2, 0) = f2 (0,±1/2) <
f2 (±1/2,±1/2), the maximum of f2(x, y) is taken at the points (±1/2,±1/2). We have
f2 (±1/2,±1/2) = 28 < 22 · 17. This contradicts (2.9), so we have RE+

2 = A2 and
h2 = 1.

2.4.2 Observations on the sizes of εn

In this section, by imitating the classical Pell’s equation, we observe some “sizes” of
the explicit unit εn and state the conjecture on the minimality of εn. By assuming
the conjecture, we give an upper bound for kn for small n. Let σ be a generator of
Gal(Bn/Q). By embedding ln : RE+

n → R2n−1
; ε 7→ (log |σi(ε)|)i, ln(RE+

n ) forms a

complete lattice in R2n−1
. For a positive integer p, let ||x||p = (

∑2n−1

i=1 |xi|p)1/p denote

the Lp norm of x in R2n−1
.

Definition 2.4.3 (Lp-minimal). Let S be a subset of RE+
n . For ε ∈ S \ {±1}, if ln(ε)

has a minimal Lp norm in ln(S \ {±1}), then ε is said to be Lp-minimal in S.

We note that this definition is independent of the choice of a generator σ of Gal(Bn/Q).
In the case of n = 1, if ε ∈ RE+

1 corresponds to a fundamental solution, then ε is Lp-
minimal in RE+

1 (cf. (2.2)) for any p. For p = 1, 2, we conjecture the Lp-minimality of
εn in RE+

n as an analogue of the case n = 1.

Conjecture 2.4.4. For all n, εn is L1 and L2-minimal in RE+
n .

We observe that our explicit unit εn is L2-minimal in An for 1 ≤ n ≤ 10 by using
Fincke–Pohst algorithm (qfminim command in PARI/GP). Since An = RE+

n for 1 ≤
n ≤ 6, we obtain that εn is L2-minimal in RE+

n for 1 ≤ n ≤ 6. For each ε ∈ RE+
n , we

see that ||ln(ε)||1 = log(
∏2n

i=1 max{1, |σi(ε)|}), and the value in log is called the Mahler
measure of algebraic numbers. Morisawa and Okazaki [56] investigate RE+

n by using
the Mahler measure, and obtained a lower bound for ln(RE

+
n \ {±1}) in L1 norm as

2n−1 log(2 +
√
5) (cf. [56, Lemma 3.2 and Theorem 5.3]). They also obtained a lower

bound in L2 norm as
√
2n−1 log(2+

√
5) (cf. [55, Lemma 2.5 (1)]). Note that these two

lower bounds are processed into forms that fit our definitions. We compare ||ln(εn)||p
and lower bounds for small n in Table 2.1.

In the following, by assuming that Conjecture 2.4.4 holds, we give upper bounds of
hn/hn−1 for small n. Let m be a positive integer. For a Lebesgue measurable set S in
Rm, vol(S) denote the volume of S in Lebesgue measure on Rm. For a complete lattice
L ⊂ Rm with a basis b = {b1, ..., bm}, we define the volume of L by the volume of the
fundamental parallel body of b, namely, vol(L) = | det([b1...bm])|. Then we have

(RE+
n : An) = vol(ln(An))/vol(ln(RE

+
n )). (2.13)

We use the following Blichfeldt’s theorem. Note that the following statement is pro-
cessed into our settings.
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n ||ln(εn)||1 2n−1 log(2 +
√
5) ||ln(εn)||2

√
2n−1 log(2 +

√
5)

1 1.76... 1.44... 1.76... 1.44...
2 3.22... 2.88... 2.35... 2.04...
3 6.28... 5.77... 3.54... 2.88...
4 12.47... 11.54... 5.04... 4.08...
5 24.89... 23.09... 7.20... 5.77...
6 49.76... 46.19... 10.22... 8.16...
7 99.52... 92.39... 14.48... 11.54...

Table 2.1: Comparison of ||ln(εn)||p and lower bounds

Theorem 2.4.5 (cf. [13, Theorem II, III]). There exist ε, δ ∈ RE+
n \ {±1} such that

||ln(ε)||2 ≤
√

2

π
Γ(2 + 2n−2)1/2

n−1

vol(ln(RE
+
n ))

1/2n−1

and

||ln(δ)||1 ≤
√

2n

π
Γ(2 + 2n−2)1/2

n−1

vol(ln(RE
+
n ))

1/2n−1

,

where Γ is the gamma function.

Conjecture 2.4.4 implies that εn satisfies these inequalities. Thus we have

vol(ln(An))

vol(ln(RE+
n ))
≤

vol(ln(An))
√

2n/π
2n−1

Γ(2 + 2n−2)

||ln(εn)||2
n−1

1

(2.14)

and

vol(ln(An))

vol(ln(RE+
n ))
≤

vol(ln(An))
√

2/π
2n−1

Γ(2 + 2n−2)

||ln(εn)||2
n−1

2

. (2.15)

We compute the numerical values of the right-hand sides of (2.14) and (2.15) for each
n ≤ 7 in Table 2.2. Combining the table at p = 2 and the fact that each prime factor

n\p 1 2
1 1.06... 1.06...
2 1.35... 1.27...
3 2.51... 1.55...
4 14.44... 4.89...
5 4345.05... 417.77...
6 17992212754.52... 147730099.26...
7 14822653597271460343569281399.70... 876387598588509574855259.98...

Table 2.2: Upper bounds for hn/hn−1 assuming Conjecture 2.4.4

of hn is greater than 109 for all n (cf. [25, Corollary 1.2]), we obtain hn/hn−1 = 1 for
1 ≤ n ≤ 6.
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Remark 2.4.6. By using Minkowski’s convex body theorem for the Lp norm open ball
of the radius ||ln(εn)||p, we also obtain upper bounds of hn/hn−1. In contrast to the
discussion above, in this setting, the L1-minimality of εn gives a more precise bound
than the L2-minimality.

By these arguments, the resolution of Conjecture 2.4.4 contributes to Weber’s con-
jecture and Conjecture 2.2.6. However, determining the shortest vector in a lattice is
generally a very difficult problem. If we propose to approach Conjecture 2.4.4 by imitat-
ing the classical method in Section 2.1, then we should establish “the best approximation
to Xn at Q(Xn−1)”.

2.5 The ratios of the class numbers

Set

hn/n−1 =
hn
hn−1

for each n > 1. In this section, we obtain a congruence relation formula for hn/n−1.
By (2.7) in Section 4, we have

hn/n−1 =
(
RE+

n : An

)
.

For each prime l, let (RE+
n /An)l denotes the Sylow l-subgroup of RE+

n /An, that is the
subgroup consisting of elements of l-power order. Let (hn/n−1)l = |(RE+

n /An)l|. The
next theorem is our second main theorem.

Theorem 2.5.1. For all prime l and all positive integer n, we have

(hn/n−1)l ≡ 1 (mod 2n).

This theorem shows that the sequence {hn} is a Cauchy sequence in 2-adic topology.
Thus the sequence {hn} converges in Z2.

Remark 2.5.2. Kisilevsky also obtained the p-adic convergence of the class numbers
for more general setting in [40, Corollary 2] (see Section 2.6 and Section 2.7 for details).
We give an extensive numerical study of the p-adic limits for elliptic curves and knots
in the remaining sections of this chapter.

We prepare two lemmas. We note that Gal(Bn/Q) acts on RE+
n /An and also on

(RE+
n /An)l.

Lemma 2.5.3. For δ ∈ RE+
n /An, let O(δ) be the Gal(Bn/Q)-orbit of δ in RE+

n /An. If
|O(δ)| < 2n, then δ2 = 1 in RE+

n /An.

Proof. We recall that σ is a generator of Gal(Bn/Q). |O(δ)| < 2n means σ2n−1
(δ) = δ

in RE+
n /An. Therefore, we have Nrn/n−1(δ) = δσ2n−1

(δ) = δ2 in RE+
n /An. On the other

hand, since δ ∈ RE+
n , we have Nrn/n−1(δ) = 1 in RE+

n /An. Then we have δ2 = 1 in
RE+

n /An.
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Lemma 2.5.4. Let δ ∈ RE+
n /An. If |O(δ)| = 1, then δ = 1 in RE+

n /An.

Proof. Set ε = (Xn + 1)/(Xn − 1) (abbreviate “n”). Suppose that there exists δ ∈
RE+

n /An with δ 6= 1 in RE+
n /An and |O(δ)| = 1. By Lemma 2.5.3, we have δ2 ∈ An.

Since An = 〈−1, ε〉Z[Gal(Bn/Q)], δ
2 can be represented as

±εe0σ (ε)e1 . . . σ2n−1−1 (ε)e2n−1−1

by certain integers ei. Therefore, we have

δ = ±
√
|εe0σ (ε)e1 · · · σ2n−1−1 (ε)e2n−1−1 |.

On the other hand, |O(δ)| = 1 implies σ(δ) = δ in (RE+
n /An)2. Therefore, we have√

|εe0σ (ε)e1 · · · σ2n−1−1 (ε)e2n−1−1 |

=
√
|σ (ε)e0 σ2 (ε)e1 · · · σ2n−1 (ε)e2n−1−1 |

=
√∣∣ε−e2n−1−1σ (ε)e0 · · · σ2n−1−1 (ε)e2n−1−2

∣∣ in (RE+
n /An

)
2
.

Note that σ2n−1
(ε) = ε−1. Since

{
ε, σ(ε), . . . , σ2n−1−1(ε)

}
are linearly independent over

Z in RE+
n , we have

−e2n−1−1 ≡ e0 ≡ e1 ≡ · · · ≡ e2n−1−2 ≡ e2n−1−1 (mod 2).

This implies that ei ≡ 0 (mod 2) for all i or ei ≡ 1 (mod 2) for all i. Since δ 6= 1, we

have ei = 1 for all i. Then we have
√
|εσ(ε) . . . σ2n−1−1(ε)| ∈ RE+

n .
By easy calculation, we have∣∣∣∣∣

2n−1−1∏
k=0

σk((Xn + 1)(Xn − 1))

∣∣∣∣∣ = 1.

It follows that

|εσ(ε) · · · σ2n−1−1(ε)| =
(

1

(Xn − 1) · · · σ2n−1−1(Xn − 1)

)2

.

Thus we have √
|εσ(ε) · · · σ2n−1−1(ε)| =

∣∣∣∣ 1

(Xn − 1) · · · σ2n−1−1(Xn − 1)

∣∣∣∣ .
Since Nrn/n−1

(
(Xn − 1) · · · σ2n−1−1(Xn − 1)

)
= −1 and Nrn/n−1(−1) = 1, we have

Nrn/n−1(
∣∣∣ 1

(Xn−1)···σ2n−1−1(Xn−1)

∣∣∣) = −1. This contradicts√
|εσ (ε) · · · σ2n−1−1 (ε)| ∈ kerNrn/n−1.
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Proof of Theorem 2.5.1. First, we prove this for an odd prime l. Suppose that there
exists an element δ 6= 1 in (RE+

n /An)l such that |O(δ)| < 2n. By Lemma 2.5.3, the
order of δ is 2. This contradicts 2 ∤ |(RE+

n /An)l|. Therefore, all elements except 1 in
(RE+

n /An)l have 2n distinct conjugates. This implies the statement.
Next, we consider the case l = 2, independently of Weber’s proof. Suppose that there

exists an element δ 6= 1 in (RE+
n /An)2 such that |O(δ)| < 2n and we see that |O(δ)| > 1

by Lemma 2.5.4. Let δ be an element with the smallest size of |O(δ)| = 2m. We note
that δ satisfies σ2m(δ) = δ and σ2m−1

(δ) 6= δ in (RE+
n /An)2. Since σ2m−1

(δσ2m−1
(δ)) =

σ2m−1
(δ)σ2m(δ) = σ2m−1

(δ)δ in (RE+
n /An)2, we have |O(δσ2m−1

(δ))| ≤ 2m−1. By the

assumption, we have that δσ2m−1
(δ) = 1 and δ = σ2m−1

(δ)−1 in (RE+
n /An)2. By

Lemma 2.5.3, we have σ2m−1
(δ)−1 = σ2m−1

(δ) in (RE+
n /An)2. Thus we have δ = σ2m−1

(δ)
in (RE+

n /An)2 and this is a contradiction.

Remark 2.5.5. By Theorem 2.5.1, we have 2 ∤ hn for all n ≥ 1. This result was first
proved byWeber [92, Theorem C], but the proof we have now given is independent of the
one by Weber. In the proof of Theorem 2.5.1, we use the fact that Nrn/n−1 : En/Cn −→
En−1/Cn−1 is surjective and it comes from 2 ∤ hn−1 (see the proof of Lemma 2.3.6).
Therefore it may seem like a tautology, but if we admit h0 = h(Q) = 1, the proof goes
well by induction without using Weber’s result. Moreover, our result is a much more
refined version of Weber’s result.

Remark 2.5.6. Recall that h6 = 1, then we have (h7/6)l = (h7)l. By Theorem 2.5.1,
we have

(hn)l ≡ 1 (mod 27)

for all odd primes l and positive integers n.

2.6 The p-adic limits of class numbers in Zp-towers

From this section to the end of this chapter, we study the p-adic convergence of the
class numbers for several areas. This section summarizes the story.

W. Sinnott announced in 1985 the p-adic convergence of the class numbers for a
cyclotomic Zp-extension of a CM field and for the “minus” class numbers, and Sang-
G.Han established an explicit formula [28, Theorem 4] by using an analytic argument.
Their results are specific cases of H.Kisilevsky’s theorem over any global field, that is,
a finite extension of Q or Fp′(x), p

′ being a prime number. For a Zp-extension kp∞ of a
global field, let kpn denote the n-th layer of kp∞ for each positive integer n.

Theorem 1 (Theorem 2.7.1, [40, Corollary 2]). Let kp∞ be a Zp-extension of a global
field k. Then, the sizes of the class groups C(kpn), those of the non-p-subgroups C(kpn)non-p,
and those of the l-torsion subgroups C(kpn)(l) for each prime number l converge in Zp.

The growth of p-torsions has been extensively studied in the context of Iwasawa
theory. This theorem defines a numerical invariant, say, the p-adic class number
limn→∞ |C(kpn)non-p| of a Zp-extension with any p-torsion growth.
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It is said that Gauss’s proof of the quadratic reciprocity law using Gauss sums is
based on his insight on the analogy between knots and prime numbers. In addition,
the analogy between the Alexander–Fox theory for Z-covers and the Iwasawa theory
for Zp-extensions has played an important role since the 1960s (cf. [50, 57]). A p-adic
refinement of Alexander–Fox’s theory is of its self-interests, as well as applies to the
study of profinite rigidity (cf. [79, 83, 45]). In this view, we establish an analogue of
Theorem 2.7.1 for 3-manifolds.

Theorem 2 (Theorem 2.8.1). Let (Mpn →M)n be a Zp-cover of a compact 3-manifold
M . Then, the sizes of the torsion subgroups H1(Mpn)tor, those of the non-p torsion
subgroups H1(Mpn)non-p, and those of the l-torsion subgroups H1(Mpn)(l) for each prime
number l, of the 1st homology groups converge in Zp.

By S. Kionke’s theorem [39, Theorem 1.1 (ii)] and the Poincaré duality, the p-adic
limit value limn→∞ |H1(Mpn)non-p| coincides with Kionke’s p-adic torsion. In Section 2.7
and Section 2.8, we stick to the homological argument and give proofs to these theorems
in a parallel manner. Afterward, in Section 2.9, we state a general proposition and
discuss alternative proofs.

In several contexts, the size of the n-th layer is calculated by the n-th cyclic resultant
Res(tn − 1, f(t)) =

∏
ζn=1 f(ζ) of a certain polynomial 0 6= f(t) ∈ Z[t]. In order to

pursue numerical studies, we establish the following theorems on the p-adic limits of
cyclic resultants, which are detailed versions of [40, Proposition 2]. In the proof, we
invoke an elementary p-adic number theory and the class field theory with modulus.
Let Cp denote the p-adic completion of an algebraic closure of the p-adic numbers Qp

and fix an embedding Q ↪→ Cp.

Theorem 3 (Theorem 2.10.3). Let 0 6= f(t) ∈ Z[t]. Then, the p-power-th cyclic
resultants Res(tp

n − 1, f(t)) converge in Zp. The limit value is zero if and only if
p | f(1). In any case, if Res(tp

n − 1, f(t)) 6= 0 for any n, then the non-p-parts of
Res(tp

n − 1, f(t)) converge to a non-zero value in Zp. For each prime number l, similar
assertions for the l-parts of Res(tp

n − 1, f(t)) hold.

Theorem 4 (Theorem 2.10.7, a short version). Suppose p ∤ f(t). Write f(t) = a0
∏

i(t−
αi) in Q[t] and note that |a0

∏
|αi|p>1 αi|p = 1. Let ξ and ζi denote the unique roots of

unity of order prime to p satisfying |a0
∏
|αj |p>1 αj − ξ|p < 1 and |αi − ζi|p < 1 for each

i with |αi|p = 1. Then

lim
n→∞

Res(tp
n − 1, f(t)) = (−1)p degf+#{i | |αi|p<1}ξ

∏
i; |αi|p=1

(ζi − 1)

holds in Zp. In addition, the non-p part of Res(tp
n − 1, f(t)) converges to

(−1)p degf+#{i | |αi|p<1}ξ
( ∏

i; |αi|p=1,
|αi−1|p=1

(ζi − 1)
)
p−ν

∏
i; |αi|p=1,
|αi−1|p<1

logαi
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in Zp, where log denotes the p-adic logarithm and ν is Iwasawa’s invariant defined by
p−ν =

∏
i;|αi−1|p<1 | logαi|p. If all αi’s with |αi− 1|p < 1 are sufficiently close to 1, then

pν = |f(1)|−1p holds.

In the cases of Zp-covers of knots, Fox–Weber’s formula asserts that the cyclic
resultants of the Alexander polynomials coincide with the sizes of torsion subgroups of
the 1st homology groups. We calculate the p-adic limits of |H1(Mpn)tor| for the Zp-covers
of torus knots Ta,b and twist knots J(2, 2m) to establish Propositions 2.11.3, 2.11.8,
2.11.10, completing the table of the cases with the p-adic limits being in Z. Moreover,
we give a systematic study of the Iwasawa ν-invariants and answer the following question
(Propositions 2.11.12, 2.11.16): Find Zp-covers (Mepn → Me)n with e ∈ Z>0 of twist
knots J(2, 2n) such that the base p-class numbers |H1(Xe)(p)| are small and ν’s are
arbitrarily large. In Subsection 2.11.4, we discuss several possible analogues of Weber’s
problem for knots; we remark Livingston’s results in [46] and point out further problems
in view of the Sato–Tate conjecture.

In the cases of constant Zp-extensions of function fields, the cyclic resultants of the
Frobenius polynomials coincide with the sizes of the degree zero divisor class groups. In
Section 2.12, we recollect basic facts of function fields, state an analogue of Fox–Weber’s
formula for constant extensions of function fields (Proposition 2.12.2), and study elliptic
curves over finite fields. We point out conditions for the p-adic limit value being 0 or
1 using the notions of supersingular primes and anomalous primes, as well as complete
the list of the cases with the p-adic limits being in Z (Proposition 2.12.8, 2.12.10).
We also give a systematic study of the Iwasawa ν-invariant and answer the following
question (Propositions 2.12.12, 2.12.13): Find constant Zp-extensions (kepn/ke)n with
e ∈ Z>0 of the function fields of elliptic curves over Fl such that the base p-class numbers
|Cl0(ke)(p)| are small and ν’s are arbitrarily large.

Note that we have intensionally kept our materials to the very basic, such as torus
knots, twist knots, and elliptic curves, to raise questions in a broad scope. This chapter
contains a detailed revisiting of Kisilevsky’s short article [40]. Our numerical study
of the p-adic limits gives explicit examples of Kionke’s p-adic torsions introduced in
[39]. Recent related works are due to G. Asvin [3] and M. Ozaki [62] (See Remarks
2.10.4 and 2.9.2). In addition, C. Deninger points out that there would exist a common
generalization of our work and his [18].

2.7 Global fields

A number field is a finite extension of Q. A function field is a finite extension of the
rational function field Fp′(x) of one variable over a finite field Fp′ , p

′ being a prime
number. A global field is a number field or a function field. For a global field k, let
C(k) denote the ideal class group Cl(k) if k is a number field, and the degree-zero
divisor class group Cl0(k) if k is a function field. Note that C(k) is always a finite
group. We regard C(k) as a multiplicative group. For any finite abelian group G and
a prime number l, let G(l) and Gnon-p denote the l-torsion subgroup and non-p torsion
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subgroup of G respectively. The size of a finite set X is written as |X|. A Zp-extension
kp∞ of a global field k is a direct system (kpn)n of Z/pnZ-extensions or its union

⋃
n kpn .

The following theorem was initially proved by Kisilevsky [40, Corollary 2]. We note
that although Kisilevsky’s proof is short and clear, we here give our original proof with
a purpose.

Theorem 2.7.1. Let kp∞ be a Zp-extension of a global field k. Then, the sizes of the
class groups C(kpn), those of the non-p-subgroups C(kpn)non-p, and those of the l-torsion
subgroups C(kpn)(l) for each prime number l converge in Zp.

Proof. It is well-known (see Remark 2.7.2 below) that for any n � 0, the class field
theory yields that |C(kpn−1)| divides |C(kpn)|. Hence the sequence |C(kpn)(p)| is a con-
stant for n � 0 or it converges to 0 in Zp. Thus, it suffices to prove for each prime
number l 6= p and n ∈ Z>0 the congruence formula of relative class numbers

|C(kpn)(l)|/|C(kpn−1)(l)| ≡ 1 mod pn. (2.16)

Define the relative norm map Nrn/n−1 : C(kpn)→ C(kpn−1) : [a] 7→
∏p−1

i=0 a
τ i , where τ is

a generator of Gal(kpn/kpn−1) ∼= Z/pZ.
The map Nrn/n−1 : C(kpn)(l) → C(kpn−1)(l) on the l-parts is surjective. Indeed,

there is a natural homomorphism ι : C(kpn−1)(l) → C(kpn)(l) and the composition map
Nrn/n−1 ◦ ι : C(kpn−1)(l) → C(kpn−1)(l) is given by x 7→ xp. Since l 6= p, this map
Nrn/n−1 ◦ ι is an isomorphism and hence Nrn/n−1 is surjective.

Note that |(KerNrn/n−1)(l)| = |C(kpn)(l)|/|C(kpn−1)(l)|. We study the Galois module
structure of (KerNrn/n−1)(l) to obtain the assertion. Put G = Gal(kpn/k) ∼= Z/pnZ and
let σ be a generator of G. For each [a] ∈ (KerNrn/n−1)(l), let G[a] denote the G-orbit
of [a]. If [a] 6= 1, then |G[a]| = pn. Indeed, suppose that |G[a]| < pn. Then |G[a]|
divides pn−1 and we have that [a] = [aσ

pn−1

]. Note that σpn−1
generates the group

pn−1Z/pnZ ∼= Gal(kpn/kpn−1) < G and put τ = σpn−1
. Since [a] ∈ (KerNrn/n−1)(l), we

have [a]p = [
∏p−1

i=0 a
τ i ] = 1. Since l 6= p, we obtain [a] = 1.

Now the G-orbital decomposition yields that (KerNrn/n−1)(l) ≡ 1 mod pn, hence the
claimed formula Eq. (2.16). Therefore, both (|C(kpn)(l)|)n and (|C(kpn)non-p|)n are p-adic
Cauchy sequences and converge in the completed ring Zp, and so does (|C(kpn)|)n.

Remark 2.7.2. The following well-known argument completes the first paragraph of
the proof.

(1) For each number field k, let k̃ denote the Hilbert class field, that is, the maximal
unramified abelian extension of k. Then the class field theory asserts that Cl(k) ∼=
Gal(k̃/k). If k′/k is a ramified extension of degree p, then we have k̃ ∩ k′ = k and

that k̃k′/k′ is an unramified extension of degree |Cl(k)|, and hence |Cl(k)| divides
|Cl(k′)| = deg(k̃′/k).

If kp∞/k is a Zp-extension, then the inertia group of a ramified prime is an open
subgroup of Zp = Gal(kp∞/k), and hence kpn/kpn−1 is a ramified p-extension for any
n� 0.
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(2) For a function field k, let k̃ denote the maximal unramified abelian extension

of k. Let Fp′ denote the algebraic closure of Fp′ , so that we have Gal(Fp′/Fp′) ∼= Ẑ =

lim←−r
Z/rZ. Then an analogue of the class field theory assets that Cl0(k) ∼= Gal(k̃/kFp′).

(i) If k′/k is a constant extension of degree p, then by k′Fp′ = kFp′ , k̃/kFp′ is a

subextension of k̃′/k′Fp′ , and hence |Cl(k)| divides |Cl(k′)|.
(ii) If k′/k is a geometric ramified extension of degree p, then a similar argument to

(1) yields that |Cl(k)| divides |Cl(k′)|.
For a Zp-extension kp∞/k of a function field, kpn/kpn−1 is a constant extension for

all n ∈ Z>0 and (i) applies, or kpn/kpn−1 is a geometric ramified extension for all n� 0
and (ii) applies. In the latter case, we always have p = p′.

Remark 2.7.3. In a view of the analogy between number fields and function fields,
Iwasawa pointed out so-called Iwasawa’s class number formula (cf. [34],[90, Section
7.2]), which asserts that if kp∞ is a Zp-extension of a number field k, then there exist
some λ, µ, ν ∈ Z≥0 such that for any n� 0,

|C(kpn)(p)| = pλn+µpn+ν

holds. A similar formula with µ = 0 holds for a constant Zp-extension of a function
field [66, Theorem 11.5] and λ is related to the genus of an algebraic curve in several
senses.

In many literature of number theory, the suffix is shifted as k′n = kpn−1 . Note that
λ′n+ µ′pn + ν ′ = λ(n− 1) + µpn−1 + ν implies µ = pµ′, λ = λ′, ν = ν ′ + λ.

Gold–Kisilevsky [27] pointed out that in a geometric Zp-extension the p-parts can
grow arbitrarily fast. Even in such a case, Theorem 2.7.1 persists.

Remark 2.7.4. Let l 6= p be a prime number. Washington [89] proved that in a
cyclotomic Zp-extension of a number field abelian over k, for each prime number l 6= p,
the l-part of the class numbers are bounded, and hence the sequence is constant for
n � 0. The assertion on the l-part in our Theorem 2.7.1 is a weak generalization of
Washington’s one.

Remark 2.7.5. Weber’s class number problem for function fields over finite fields is
solved; Shen–Shi [70] completed the list of the only existing 8 exceptional cases.

2.8 3-manifolds

In this section, we establish a theorem of p-adic convergence in the context of 3-
dimensional topology. A Zp-cover of a compact 3-manifold M is a compatible system
(Mpn →M)n of Z/pnZ-covers. The following is an analogue of Theorem 2.7.1.

Theorem 2.8.1. Let (Mpn → M)n be a Zp-cover of a compact 3-manifold M . Then,
the sizes of the torsion subgroups H1(Mpn)tor, those of the non-p torsion subgroups
H1(Mpn)non-p, and those of the l-torsion subgroups H1(Mpn)(l) for each prime number
l, of the 1st homology groups converge in Zp.
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The following lemma helps to prove the assertion in a parallel manner to Theorem
2.7.1.

Lemma 2.8.2. Let (Mpn → M)n be a Zp-cover of a compact 3-manifold. Then,
(H1(Mpn)tor)n is a surjective system for n� 0.

Proof of Lemma 2.8.2. Since a Zp-cover corresponds to a surjective homomorphism
π̂1(M) ↠ Zp from the profinite completion of π1(M) to the ring of p-adic integers,
we see that a fixed layer Mpn+1 → M is a subcover of some Z-cover M∞ → M . So, it
suffices to consider the Zp-cover obtained from a Z-cover.

For each n ∈ Z>0, the Wang exact sequence yields the short exact sequence

0→ H1(M∞)/(t
n − 1)H1(M∞)→ H1(Mn)→ Z→ 0

of finitely generated abelian groups. We may take a compatible system of sections
sn : Z→ H1(Xn), so that

H1(M∞)/(t
n − 1)H1(M∞) ∼= H1(Mn)/sn(Z)

forms a compatible surjective system. Note that H1(Mn)/sn(Z)tor ∼= H1(Mn)tor. Since

H1(M∞)/(t
pn+1−1)H1(M∞) ∼= H1(M∞)/(t

pn−1)H1(M∞)⊕H1(M∞)/
tp

n+1 − 1

tpn − 1
H1(M∞),

their torsion subgroups also form a surjective system for n� 0, and so does H1(Mpn)tor.

Remark 2.8.3. (1) In general, a Zp-cover is not obtained from a Z-cover. Even in that
case, if we put H = lim←−H1(Mpn)/spn(Z), then we still have an exact sequence

0→ H/(tn − 1)H → H1(Mpn)→ Z→ 0.

If f(t) =
∏

i fi(t) is the characteristic polynomial of an approximating Z-cover, then the
characteristic ideal of H is given by (f(tv)) with some v ∈ Z∗p. An example is obtained
from a 2-component link L = K1 ∪ K2 in S3 with meridians µ1 and µ2; consider the
surjective homomorphism π̂1(S

3 − L) ↠ Z5 defined by µ1 7→ 1 and µ2 7→
√
−1.

(2) Theorem 2.8.1 applies to Zp-cover of the exterior of a finite link in S3. In
addition, for a link L =

⋃
i∈Z>0

Kj with countably infinite disjoint component in S3, if

we define a surjective homomorphism τ : π̂1(M − L) ↠ Zp;µi 7→ pi from the profinite
completion, µi being a meridian of Ki, then we obtain a branched Zp-cover branched
along an infinite link. By considering τn : π̂1(M −

⋃
i≤nKi) ↠ Zp;µi 7→ pi on each

layer, Theorem 2.8.1 applies.

Proof of Theorem 2.8.1. As we observed in the proof of Lemma 2.8.2, H1(Mpn)tor forms
a surjective system, and hence |H1(Mpn−1)tor| divides |H1(Mpn)tor| for any n. Therefore
|H1(Mpn)(p)| is a constant for n� 0 or converges to zero in Zp.
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It suffices to show for each prime number l 6= p and n ∈ Z>0 the congruence formula

|H1(Mpn)(ℓ)|/|H1(Mpn−1)(ℓ)| ≡ 1 mod pn. (2.17)

Write h :Mpn →Mpn−1 and h∗ : H1(Mpn) ↠ H1(Mpn−1). Consider the transfer map h! :
H1(Mpn−1)→ H1(Mpn) defined by [c] 7→ [

∑
σ∈Gal(h) σc1], where c is an open chain and c1

is a lift of c. Then the composition map is h∗ ◦ h! : H1(Mpn−1)→ H1(Mpn−1); [c] 7→ p[c].
By Lemma 2.8.2, these maps h∗ and h

! restrict to H1(Mpn−1)(l) and H1(Mpn)(l).
Put G = Gal(Mpn → M) ∼= Z/pnZ and let σ be a generator of G. For each

[c] ∈ (Kerh∗)(l), let G[c] denote the G-orbit of [c]. If [c] 6= 1, then |G[c]| = pn. Indeed,

suppose that |G[c]| < pn. Then |G[c]| divides pn−1 and we have that [c] = [σpn−1
c]. Note

that σpn−1
generates the group pn−1Z/pnZ ∼= Gal(h) < G and put τ = σpn−1

. Since
[c] ∈ (Kerh∗)(l), we have [c]p =

∏p−1
i=0 τ

i[c] = 1. Since l 6= p, we obtain [c] = 1.
Now the G-orbital decomposition yields that Kerh∗(l) ≡ 1 mod pn, hence the claimed

formula Eq. (2.17). Therefore, both (|H1(Mpn)(l)|)n and (|H1(Mpn)non-p|)n are p-adic
Cauchy sequences and converge in the completed ring Zp, and so does (|H1(Mpn)tor|)n.

Remark 2.8.4. In the situation of Theorem 2.8.1, we have an analogue of the Iwasawa
class number formula; Let Mpn → M be a Zp-cover. Then there exists some λ, µ, ν ∈
Z≥0 such that for any n� 0,

|H1(Mpn)(p)| = pλn+µpn+ν

holds (cf. [29, 35, 78]). For a Zp-cover of a knot exterior in S3, by [77, Theorem 7], we
always have |H1(Mpn)(p)| = 1.

2.9 Alternative proofs

Here we state a general proposition to discuss alternative proofs of the p-adic conver-
gence theorems (Theorems 2.7.1, 2.8.1).

Proposition 2.9.1. Let p be a prime number. Let Γ be a multiplicative group isomor-
phic to the additive group Zp of p-adic integers. For each n ∈ Z>0, put Γn = Γpn and
Gn = Γ/Γn.

(1)[40, Proposition 1] Let A be a discrete Γ-module such that the Γn-invariant sub-
group An = AΓn = {a ∈ A | γ(a) = a for all γ ∈ Γn} is a finite group for every n.
Then we have

|An| ≡ |An−1| mod pn.

(2) Let H be a compact Γ-module such that the Γn-coinvariant quotient group Hn =
HΓn = H/{(1− g)a | g ∈ Γn, a ∈ H} is a finite group for every n. Then for any prime
number l 6= p, the sizes of the l-parts satisfy

|Hn(l)| ≡ |Hn−1(l)| mod pn.
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Proof. (1) Let B = {a ∈ An | γ(a) 6= a for all γ ∈ Gn} and write An = BtC. Since Gn

is a cyclic group, every c ∈ C is fixed by the unique subgroup of Gn of order p, so we have
C ⊂ AΓn−1 = An−1. Since An−1 ∩ B = ∅, we have An−1 ⊂ C. Thus we have C = An−1.
Since B is the disjoint union of orbits of size pn, we have |An| = |B|+ |An−1| ≡ |An−1|
mod pn.

(2) [Proof 1] We omit “(l)”. It suffices to show that |Hn|/|Hn−1| = |Ker(Hn ↠
Hn−1)| ≡ 1 mod pn. Let us prove that if 0 6= [a] ∈ Ker(Hn ↠ Hn−1), then Gn =
〈t〉 = Γ/Γn

∼= Z/pnZ acts on [a] freely. Let [a] ∈ Ker(Hn ↠ Hn−1) and suppose
|Gn[a]| < pn, so that we have [a] = tp

n−1
[a]. Put σ = tp

n−1
. Note that we have a

standard direct decomposition Hn = (
∑p−1

i=0 σ
i)Hn ⊕ (1 − σ)Hn with an isomorphism

Hn−1 ∼= (
∑p−1

i=0 σ
i)Hn and that the natural surjection Hn ↠ Hn−1 ∼= (

∑p−1
i=0 σ

i)Hn is
given by a 7→ (

∑p−1
i=0 σ

i)a. Since [a] ∈ Ker(Hn ↠ Hn−1), we have p[a] = (
∑p−1

i=0 (σ
i)[a] =

0 in Hn. Since l 6= p, we have [a] = 0.
[Proof 2] By the natural injections Hn−1 ∼= (

∑p−1
i=0 σ

i)Hn ⊂ Hn, we obtain an injec-
tive system (Hn)n. If we put A = lim−→Hn, then the assertion (1) applies.

The common argument in our proofs in the previous sections may be general-
ized to the first proof of (2). Kisilevsky [40] applied the assertion (1) to the di-
rect limit of the class groups in a Zp-extension to obtain his result. In the topology
side, we may also consider the direct limit A = lim−→H1(Mn)tor via the transfer maps

h! : H1(Mn−1) → H1(Mn) : [c] 7→ [
∑

σ∈Gal(h) σc1] and apply (1) to obtain the result.

Kionke’s general framework [39] for the p-adic limits of topological invariants instead
considers the injective system of the cohomology groups H i(Xn;Z). The proof of Theo-
rem 2.5.1 is very different from those in the above and uses the unit groups. We wonder
if it extends to general cases and may be translated into analogous contexts. In fact,
an analogue of the unit group is still in mystery (cf. [85]).

Remark 2.9.2. After Sinnott’s announcement in 1972, Han [28, Theorem 4] established
an explicit formula for the p-adic limit of class numbers in a Zp-extension of a CM field
by using an analytic argument.

Recently, Ozaki [62] generalized the p-adic convergence theorem of class numbers
to a general extension of a number field with a finitely generated pro-p Galois group
by developing an analytic method, to reveal relationships amongst several arithmetic
invariants; the class numbers, the ratios of p-adic regulators, the square roots of dis-
criminants, and the order of algebraic K2-groups of the ring of integers. Studying their
analogues in the knot theory side would give a new cliff to extend the dictionary of
arithmetic topology.

Remark 2.9.3. J. Schettler proved that in a Zp-extension of a Zp-field, Iwasawa’s λ
converges in Zp [69, Corollary 11]. It would be interesting to establish analogous results
for 3-manifolds or function fields and give numerical investigations.
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2.10 Cyclic resultants

Let p be a prime number as before. In various situations, in a Zp-tower, the class
number or its analogue of the layer of degree pn is given by the pn-th cyclic resultant of
a certain polynomial invariant. In this section, we study the p-adic limits of p-power-th
cyclic resultants of a polynomial in Z[t].

2.10.1 Signatures

For each n ∈ Z>0, the n-th cyclic resultant of 0 6= f(t) ∈ Z[t] is defined by the
determinant of Sylvester matrix, or equivalently, by

Res(tn − 1, f(t)) =
∏
ζn=1

f(ζ),

where ζ runs through n-th roots of unity in a fixed algebraic closure Q of Q. If f(t) =
a0
∏

i(t − αi), then Res(tn − 1, f(t)) = (−1)n degf(t) an0
∏
(αn

i − 1) holds. The n-th
cyclotomic polynomial Φn(t) ∈ Z[t] for each n ∈ Z>0 is an irreducible polynomial
determined by tn − 1 =

∏
m|n Φm(t) (m,n ∈ Z>0) recursively. The non-p part of an

integer x = mpr with m ∈ Z and r ∈ Z≥0 is defined to be m. For each prime number
l, the l-part of an integer x is defined to be the maximal l-power dividing x, that is,
|x|−1l . The following lemma reduces the calculation of the limits of p-power-th cyclic
resultants to that of the absolute values.

Lemma 2.10.1. Let 0 6= f(t) ∈ Z[t].
(1) If Res(tn−1, f(t)) 6= 0, then we have Res(tn−1, f(t)) > 0 if and only if (i) 2 | n

and f(1)f(−1) > 0 or (ii) 2 ∤ n and f(1) > 0.
(2) Suppose that n ∈ Z>0. If p 6= 2, then we have Res(tp

n − 1, f(t)) > 0 if and only
if f(1) > 0. If p = 2, then we have Res(tp

n − 1, f(t)) > 0 if and only if f(1)f(−1) > 0.

Proof. For anym ∈ Z>2, we have
∏

ζ; Φm(ζ)=0 f(ζ) = NrQ(ζm)/Qf(ζm) > 0, where ζm is an

arbitrary taken primitivem-th root of unity. By Res(tn−1, f(t)) =
∏

m|n
∏

ζ; Φm(ζ)=0 f(ζ),
we obtain the assertion.

2.10.2 p-adic convergence

The p-adic convergence theorem (Theorem 2.10.3) for a polynomial may be proved by
applying Proposition 2.9.1 to the compact module H = lim←−Λ/(f(t), tp

n−1). Here, we
give another proof by invoking the global field theory with modulus. For a number
field k, let I(k) and P (k) denote the ideal group and the principal ideal group of k
respectively. In addition, for a divisor M =

∏
i p

ei
i

∏
j∞j of k, where pi’s are distinct

prime ideals of k with ei ∈ Z>0 and ∞j’s are distinct real places, set IM(k) = {a ∈
I(k) | (

∏
i p

ei
i , a) = 1} and PM(k) = {a ∈ IM(k) ∩ P (k) | a ≡ 1 mod∗ M}, where

a ≡ 1 mod∗ M means that there exists some α ∈ k such that (i) a = (α) and the
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multiplicative pi-adic valuation satisfies vpi(α − 1) ≥ ei for all pi and (ii) α > 0 at all
∞j. Then we have the following.

Lemma 2.10.2 (Artin reciprocity law, cf. [90, Appendix §3, Theorem 1(i)]). Let the
notation be as above. Let k′/k be a finite extension and suppose that the conductor f of
k′/k divides M. Then there is a natural isomorphism called Artin’s reciprocity map

IM(k)/PM(k)Nrk′/k(IM(k′))
∼=→ Gal(k′/k).

The following theorem on p-adic convergence yields alternative proofs of Theorems
2.7.1 and 2.8.1 for several situations, as we will exhibit later.

Theorem 2.10.3. Let 0 6= f(t) ∈ Z[t]. Then, the p-power-th cyclic resultants Res(tp
n−

1, f(t)) converge in Zp. The limit values are zero if and only if p | f(1). In any case,
if Res(tp

n − 1, f(t)) 6= 0 for any n, then the non-p-parts of Res(tp
n − 1, f(t)) converge

to a non-zero value in Zp. For each prime number l, similar assertions for the l-parts
of Res(tp

n − 1, f(t)) hold.

Proof. If Res(tp
n − 1, f(t)) = 0 for some n, so that the limit value is zero, then we have

Φpm(t) | f(t) for some m | n and hence p | f(1).
Assume Res(tp

n − 1, f(t)) 6= 0. For each n ∈ Z>0, let ζpn be an arbitrary taken
primitive pn-th root of unity. Then we have

Res(tp
n − 1, f(t))

Res(tpn−1 − 1, f(t))
=

∏
0≤i<pn;(i,p)=1

f(ζ ipn) = NrQ(ζpn )/Qf(ζpn).

If p | f(1), then we have f(t) ≡ (1− t)g(t) mod p and f(t) = (1− t)g(t) + ph(t) for
some g(t), h(t) ∈ Z[t]. Since (1− ζpn) is a unique prime ideal of Z[ζpn ] dividing (p), we
have p | NrQ(ζpn )/Qf(ζpn), and hence Res(tp

n − 1, f(t)) converges to zero in Zp.
Suppose instead that p ∤ f(1). Let us prove that NrQ(ζpn )/Qf(ζpn) ≡ 1 mod pn for

each n ∈ Z>1. Note that we have (1−ζpn) ∤ f(ζpn) in Z[ζpn ]. Indeed, if (1−ζpn) | f(ζpn),
then f(t) ≡ (1− t)g(t) mod Φpn(t) and hence f(t)− (1− t)g(t) = Φpn(t)h(t) for some
g(t), h(t) ∈ Z[t]. By putting t = 1, we obtain f(1) = ph(1), and hence p | f(1).

By (1 − ζpn) ∤ f(ζpn) in Z[ζpn ], we have (f(ζpn)) ∈ Ipn(Q(ζpn)). Applying Lemma
2.10.2 for K/k = Q(ζpn)/Q and M = (pn)∞, we obtain a natural isomorphism

Ipn(Q)/Ppn∞(Q)NrQ(ζpn )/Q(Ipn(Q(ζpn)))
∼=→ Gal(Q(ζpn)/Q) ∼= (Z/pnZ)∗

sending NrQ(ζpn )/Qf(ζpn) to 1 mod pn. This means that NrQ(ζpn )/Qf(ζpn) ≡ 1 mod pn.
Hence (Res(tp

n − 1, f(t)))n is a p-adic Cauchy sequence and converges in the p-adic
completion Zp of Z. In this case, the limit value is not zero.

Even if p|f(1), if we replace f(ζpn) in above by its non-p part apn = f(ζpn) (1 −
ζpn)

−vn ∈ IpnQ(ζpn), where vn = v(1−ζpn )(f(ζpn)), then a similar argument shows that
NrQ(ζpn )/Qapn ≡ 1 mod pn and hence the assertion on the non-p parts of Res(tp

n −
1, f(t))’s.

For each l 6= p, if p ∤ f(1), then |NrQ(ζpn )/Qf(ζpn)|
−1
l ≡ 1 mod pn holds. A similar

argument proves the assertion for the l-parts. The assertion for the p-parts is clear.
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Remark 2.10.4. In a study of l-adic convergence in Iwasawa towers of varieties over
finite fields, G. Asvin recently proved a result close to our heart by using a method
different from ours; His result [3, Corollary 5] asserts that if f(t) and g(t) are monic
in Zl[t], then Res(f(t), g(tl

n+1
)) ≡ Res(f(t), g(tl

n
)) mod ln+1. He derives the assertion

from a variant of Fermat’s little theorem due to Arnold–Zarelua [97, Theorem 4]; For
A ∈ Mr(Zl), tr(A

ln+1
) ≡ trAln mod ln+1 holds.

2.10.3 Explicit formula

Let Cp denote the p-adic completion of an algebraic closure of the p-adic numbers Qp

and fix an embedding Q ↪→ Cp. Let Zp denote the closure of p-adic integers Zp in Cp.
Since extensions of Fp are cyclotomic extensions of degrees prime to p, an elementary
p-adic number theory yields the following basic fact.

Lemma 2.10.5 (cf. [80, Lemma 2.10]). If α ∈ Cp satisfies |α|p = 1, then there exists a
unique root of unity ζ of order prime to p satisfying |α− ζ|p < 1.

The following lemma is also elementary and classically known.

Lemma 2.10.6. Let α, ζ ∈ Cp with |α|p = |ζ|p = 1.
(1) If |α− ζ|p < 1, then limn→∞ α

pn − ζpn = 0 in Cp.

(2) If |α − 1|p < 1, then limn→∞
αpn−1

pn
= logα in Cp, where log denotes the p-adic

logarithm defined by log(1 + x) =
∑∞

n=1
−(−x)n

n
on Zp.

(3) If |α− 1|p < p−1/(p−1), then | logα|p = |1− α|p.

Proof. (1) Define a (ωn)n by ω1 = gcd{p(α−ζ), (α−ζ)p} and ωn+1 = gcd{pωn, ω
p
n} for all

n, where gcd of a finite subset A ⊂ Zp means the maximal power of a fixed uniformizer
dividing all elements of A. Then we have ζp

n
= (α− (α− ζ))pn = (αp+pg1(α, ζ)+(α−

ζ)p)p
n−1

= (αp + ω1h1(α, ζ))
pn−1

= · · · = αpn + ωnhn(α, ζ) for some gi(α, ζ), hi(α, ζ) ∈
Z[α, ζ]. Since limn→∞ ωn = 0 and |hn(α, ζ)|p ≤ 1, we have limn→∞ |αpn − ζpn |p = 0.

(2) If we put ε = α− 1, then by an elementary p-adic calculus assures that

lim
n→∞

αpn − 1

pn
= lim

n→∞

(1 + ε)p
n − (1 + ε)0

pn
=

d

dx
exp((log(1+ε))x)|x=0 = log(1+ε) = logα.

(3) Put ε = α− 1. Then the strong triangle inequality yields

| log(1 + ε)|p = |
∞∑
n=1

(−1)n−1εn/n|p ≤ sup{|εpk/pk|p | k ∈ Z≥0} = |ε|p,

and the equality holds if the sequence |εpk/pk|p takes distinct values when k moves. By
the assumption, we have |ε|p > |εp/p|p, hence the equality.

The following explicit formula is a key to our numerical study.
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Theorem 2.10.7. Let 0 6= f(t) ∈ Z[t] and let pµ denote the maximal p-power dividing
f(t). Write f(t) = a0

∏
i(t−αi) in Q[t] and note that |p−µa0

∏
|αi|p>1 αi|p = 1. Let ξ and

ζi denote the unique roots of unity of orders prime to p satisfying |p−µa0
∏
|αj |p>1 αj −

ξ|p < 1 and |αi − ζi|p < 1 for each i with |αi|p = 1.
(1) (i) If p | f(t), so that µ > 0, then limn→∞Res(tp

n − 1, f(t)) = 0 holds in Zp.
(ii) If p ∤ f(t), so that µ = 0, then

lim
n→∞

Res(tp
n − 1, f(t)) = (−1)p degf+#{i | |αi|p<1}ξ

∏
i; |αi|p=1

(ζi − 1)

holds in Zp, and the limit value is zero if and only if ζi = 1 for some i.
(2) In any case, the non-p part Res(tp

n − 1, f(t))non-p = Res(tp
n − 1, f(t)) |Res(tpn −

1, f(t))|p converges to

(−1)p degf+#{i | |αi|p<1}ξ
( ∏

i; |αi|p=1,
|αi−1|p=1

(ζi − 1)
)
p−ν

∏
i; |αi|p=1,
|αi−1|p<1

logαi

in Zp, where log denotes the p-adic logarithm and ν ∈ Z is defined by p−ν =
∏

i; |αi−1|<1 | logαi|p.
If all αi’s with |αi − 1|p < 1 are sufficiently close to 1, that is, if they all satisfy
|αi − 1|p < p−1/(p−1), then pν = |f(1)|−1p holds.

Put λ = #{i | |αi− 1|p < 1}. Then these λ, µ, ν are the Iwasawa invariants of f(t),
that is, |Res(tpn − 1, f(t))|−1p = pλn+µpn+ν holds for any n� 0.

If f(t) is monic and degf is even, then our theorem recovers [40, Proposition 2]:

Res(tp
n − 1, f(t))non-p = (−1)λ

( ∏
i; |αi−1|p=1

(1− ζi)
)
p−ν

∏
i; |αi−1|p<1

logαi.

Proof. It suffices to verify the case with µ = 0. By Lemma 2.10.5, if α ∈ Cp satisfies
|α|p = 1, then there exists a unique root of unity ζ of orders prime to p satisfying
|α− ζ|p < 1, and hence Lemma 2.10.6 (1) yields limn→∞ α

pn− ζpn = 0 in Cp. Note that

Res(tp
n − 1, f(t)) = (−1)pndegfap

n

0

∏
i

(αpn

i − 1) = (−1)p degfap
n

0

∏
i

(αpn

i − 1)

for n > 0. Since p ∤ f(t), the Newton polygon verifies |a0
∏
|αi|p>1 αi|p = 1. Hence we

have

lim
n→∞

ap
n

0

∏
i

(αpn

i − 1) = lim
n→∞

ap
n

0

∏
i; |αi|p>1

(αpn

i − 1)
∏

i; |αi|p=1

(αpn

i − 1)
∏

i; |αi|p<1

(αpn

i − 1)

= lim
n→∞

ξp
n
∏

i; |αi|p=1

(ζp
n

i − 1)
∏

i; |αi|p<1

(−1).

Take m ∈ Z with p ∤ m and ξm = ζmi = 1 for all i, and note that pn ≡ 1 mod m holds
if n ≡ 0 mod ϕ(m). Since the sequence (ξp

n∏
i(ζ

pn

i − 1))n is periodic and converges by
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Theorem 2.10.3, we have ξp
n∏

i(ζ
pn

i − 1) = ξp
φ(m)∏

i(ζ
pφ(m)

i − 1) = ξ
∏

i(ζi − 1) for any
n ∈ Z≥0. Therefore, the limit value is (−1)p degf+#{i | |αi|p<1}ξ

∏
i; |αi|=1(ζi − 1).

For each root αi with |αi − 1|p < 1, by Lemma 2.10.6 (2), we have limn→∞(α
pn

i −
1)/pn = logαi. If we put pν = |

∏
i; |αi−1|<1 logαi|−1p , then we obtain the limit value as

asserted. In addition, if all αi’s with |αi − 1|p < 1 are sufficiently close to 1, then by
Lemma 2.10.6 (2), we have pν = |

∏
i; |αi−1|<1(αi − 1)| = |f(1)|−1p .

The p-adic Weierstrass preparation theorem [90, Theorem 7.3] and a standard ar-
gument of Iwasawa theory show that there exists some λ, µ, ν ∈ Z satisfying the equal-
ity f(1 + T ) =̇ pµ(T λ + p(lower terms)) up to multiplication by units in Zp[[T ]] and
|Res(tpn − 1, f(t))|−1p = pλn+µpn+ν for any n � 0. These λ, µ, ν clearly coincide with
those in above.

Remark 2.10.8. In the case of a Zp-extension or a Zp-cover, in general, Iwasawa’s ν is
the sum of several contributions; that of the torsion of the base space, that of the pseudo
isomorphism between the Iwasawa/Alexander module and the standard module, and
that given in above. We will study examples with large ν’s in Subsubsections 2.11.3
and 2.12.2.

Remark 2.10.9. The Mahler measure of a polynomial f(t) is defined by the integral
along the unit circle as m(f(t)) =

∫
|z|=1

log |f(z)|dz
z
and coincides with the limit of the

average of the values of log |f(z)| at roots of unity. Its p-adic analogue due to Besser–
Deninger is given by Shnirel’man’s integral, that is, the p-adic limit of the average of
values at roots of unity of orders prime to p (cf. [80]). Our p-adic limits in Theorem
2.10.7 may be seen as p-adic analogues of the Mahler measures in another direction.

Corollary 2.10.10. Let 0 6= f(t) ∈ Z[t] with leading coefficient 1. If f(t) ≡ Φm(t) mod
p for m ∈ Z>0 with p ∤ m, then

lim
n→∞

Res(tp
n−1, f(t)) = Φm(1) =

{
l if m = le for a prime number l and e ∈ Z>0

1 if otherwise
in Zp.

Proof. We have limn→∞Res(tp
n−1, f(t)) = (−1)pφ(m)

∏
ζ; Φm(ζ)=0(ζ−1) = (−1)(p+1)φ(m)Φm(1).

If m = 2, then by p ∤ m, p is odd. If m 6= 2, then ϕ(m) is even. In both cases, we have
(−1)(p+1)φ(m) = 1, hence the assertion.

The following lemma is useful to study Zp-covers in a Ẑ = lim←−n∈Z Z/nZ -cover.

Lemma 2.10.11. Let m ∈ Z>0 with p ∤ m and α ∈ Q. Then

Res(tmpn − 1, t− α) =
∏

ζm=1, ξpr=1

(ζξ − α) =
∏

ξpr=1

(ξ − αm) = Res(tp
n − 1, t− αm).

2.11 Knots

In this section, we apply our theorems to Zp-covers of knots to examine concrete exam-
ples and point out remarks on analogues of Weber’s class number problem.
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2.11.1 Alexander polynomial and Fox–Weber’s formula

Let K be a knot in S3 and let Mn → S3 denote the branched Z/nZ-cover, that is, the
Fox completion of the Z/nZ-cover Xn →M = S3−K. Let ∆K(t) denote the Alexander
polynomial of K normalized by ∆K(1) = 1. If ∆K(t) does not vanish on n-th roots of
unity, then we have

Proposition 2.11.1 (Fox–Weber’s formula, cf. [91]).

|H1(Mn)| = |H1(Xn)tor| = |Res(tn − 1,∆K(t))|.

Since ∆K(1) = 1, Lemma 2.10.1 assures that we have Res(tn − 1,∆K(t)) < 0 if and
only if 2 | n and ∆K(−1) < 0. Thus, both our Theorems 2.8.1 and 2.10.7 apply. We
will exhibit concrete examples in the succeeding subsections.

We remark that Fox–Weber’s formula has several variants (cf. Sakuma [67, 68],
Mayberry–Murasugi [49], and Porti [64] for links and graphs; Tange and Ueki [75, 84]
for representations of knot groups). We may replace tp

n−1 by (tp
n−1)/gcd(tpn−1, f(t))

in Theorems 2.10.3 and 2.10.7 and apply to these situations.

2.11.2 Torus knots

Let (a, b) be a coprime pair of integers. The Alexander polynomial

∆K =
(1− t)(1− tab)
(1− ta)(1− tb)

=
∏
m|ab

m∤a,m∤b

Φm(t)

of the (a, b)-torus knot K = Ta,b is the product of cyclotomic polynomials. For each

Figure 2.1: Torus knot Ta,b

n ∈ Z>0, let ϕ(n) denote Euler’s totient function. We invoke Apostol’s result;

40



Lemma 2.11.2 ([1, Theorem 4]). Suppose that m > n > 1 and (m,n) > 1. Then,
Res(Φm,Φn) = pφ(n) if m/n is a power of a prime p, and Res(Φm,Φn) = 1 if otherwise.

Proposition 2.11.3. Let p be a prime number and let (a, b) be a coprime pair of
positive integers. Assume that p ∤ b and write a = pra′ with r, a′ ∈ Z, p ∤ a′. Let
(Mpn → M)n denote the Zp-cover of the exterior of the torus knot Ta,b in S3. Then

|H1(Mpn)tor| = bp
min{n,r}−1 holds for every n ∈ Z≥0, and hence

lim
n→∞

|H1(Mpn)tor| = bp
r−1 holds in Zp.

In particular, for each pair (a, b), we have limn→∞ |H1(Mpn)tor| = 1 for almost all p’s.

Proof. Note that we have ∆K(−1) = (1+ ta+ · · · tab)/(1+ t+ · · ·+ tb)|t=−1 = 1 or b > 0
according as 2 ∤ a or 2 | a. By Fox’s formula and Lemma 2.10.1, we have

|H1(Mpn)tor| = Res(tp
n − 1,∆K(t))

= Res(
∏

0≤i≤n

Φpi(t),
∏
m|ab

m∤a,m∤b

Φm(t))

=
∏

0≤i≤n

∏
m|ab

m∤a,m∤b

Res(Φpi(t),Φm(t))).

Since (a, b) is a coprime pair, Lemma 2.11.2 assures that Res(Φpi(t),Φm(t))) 6= 1 if
and only if m = pilj for some prime number l and an integer j ∈ Z>0 satisfying
lj | b. Let vl(b) denote the standard multiplicative l-adic valuation of b. Then, by∑

0≤i≤n ϕ(p
i) = pn − 1, we have

|H1(Mpn)tor| =
∏

0≤i≤min{n,r}

∏
l|b

∏
0≤j≤vl(b)

Res(Φpi(t),Φpilj(t)))

=
∏

0≤i≤min{n,r}

∏
l|b

∏
0≤j≤vl(b)

lφ(p
i)

= bp
min{n,r}−1.

Hence we obtain the assertion.

Example 2.11.4. Let K = T2,3 = J(2, 2) = 31 (trefoil). Then we have ∆K(t) = t2 −
t+1 = Φ6(t). We have Res(t2

n − 1,∆K(t)) = 3 = 32−1, Res(t3
n − 1,∆K(t)) = 4 = 23−1,

and Res(tp
n − 1,∆K(t)) = 1 = 3p

0−1 for p 6= 2, 3 for all n ∈ Z>0.

2.11.3 Twist knots

For each m ∈ Z, the Alexander polynomial of the twist knot K = J(2, 2m) is given
by ∆J(2,2m)(t) = mt2 + (1 − 2m)t +m. The convention is due to [33], so that we have
J(2, 2) = 31 and J(2,−2) = 41 for instance.
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Figure 2.2: Twist knot J(2, 2m)

Observations for K = 41

We first examine K = 41 to demonstrate the usage of our results and raise questions.

Example 2.11.5. Let K = J(2,−2) = 41 (the figure-eight knot). Then we have
∆K(t) = −t2 + 3t− 1 and

p 2 3 5 7 · · ·
limn→∞ |H1(Mpn)tor| −3 −2 −4

√
2− 2 · · · ,

where α =
√
2 ∈ Z7 denotes the element satisfying α2 = 2 and α ≡ 3 mod 7. By using

PARI/GP [63], we may verify that

n 1 2 3 4 5 6 · · ·
Res(t7

n − 1,∆K(t)) mod 7n 1 8 106 2164 4565 38179 · · · .

We have limn→∞ |H1(Mpn)tor| ∈ Z only for p = 2, 3, 5.

Proof. Since ∆K(−1) = −5 < 0, we have limn→∞|H1(M2n)tor| = −limn→∞Res(t
2n −

1,∆K(t)) in Z2 and limn→∞|H1(Mpn)tor| = limn→∞Res(t
pn − 1,∆K(t)) in Zp for p 6= 2

by Lemma 2.10.1.
If p = 2, then ∆K(t) ≡ t2+ t+1 = Φ3(t) mod 2. Hence by Theorem 2.10.7, we have

limn→∞Res(t
2n − 1,∆K(t)) = Res(t2 − 1,Φ3(t)) = 3 in Z2. limn→∞|H1(M2n)tor| = −3

in Z2.
If p = 3, then ∆K(t) ≡ −(t2+1) = −Φ4(t) mod 3, and hence limn→∞|H1(M3n)tor| =

Res(t3 − 1,−Φ4(t)) = −2 in Z3.
If p = 5, then ∆K(t) ≡ −(t+1)2 = −Φ2(t)

2 mod 5, and hence limn→∞|H1(M5n)tor| =
Res(t5 − 1,−(t+ 1)2) = −22 = −4 in Z5.

If p = 7, then ∆K(t) ≡ −((t + 2)2 − 3) ≡ −φ+
8 mod 7, where Φ8 = t4 + 1 = φ+

8 φ
−
8 ,

φ±8 = t2±
√
2t+1. Let ζ be a primitive 8th root of unity satisfying ζ+ζ ≡ −4 ≡ 3 mod 7.

Then limn→∞|H1(M7n)tor| = −(ζ−1)(ζ−1) = −(2−(ζ+ζ)) = −(2−(
√
2)) = −2+

√
2.

Since deg Φm(t) = ϕ(m), the only cyclotomic polynomials of degree ≤ 2 are those
for m = 1, 2, 3, 4, 6, and t2 − 3t + 1 mod p for p ≥ 7 is not obtained as the product of
them. Hence we have limn→∞ |H1(Mpn)tor| ∈ Z only for p = 2, 3, 5.
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Example 2.11.6. Let us examine the Z/312nZ-covers of K = 41. Write ∆K(t) =
−t2+3t−1 = −(t−α)(t−β). Put ∆3(t) = −(t−α3)(t−β3). Then we have ∆3(t) = −t2+
(α3+β3)t−α3β3 = −t2+18t−1 ≡ −(t−1)2 mod 2, ∆3(1) = 16 > 0, ∆3(−1) = −20 < 0.
By Lemmas 2.10.1 and 2.10.11, we have |H1(M3·2n)tor| = −Res(t3·2

n − 1,∆K(t)) =
−Res(t2n − 1,∆3(t)) for n > 0. By |a3 + b3|2 = |18|2 = 1/2 and α3β3 = 1, we have
|α3|2 = |β3|2 = 1. Since α3 − 1 and β3 − 1 are roots of ∆3

K(t + 1) = t2 − 16t − 16, we
see that |α3 − 1|2 = |β3 − 1|2 = 1/4 < 2−1/(2−1) = 1/2 and hence 2−ν = |f(1)|2 = 2−4.
The value |H1(M3·2n)non-2| = |H1(M3·2n)tor| 2−(2n+4) = −Res(t3·2n − 1, ∆K(t))2

−(2n+4) =

−Res(t2n − 1, ∆3(t))2
−(2n+4) converges to − (logα3)(log β3)

24
= −9

16
logα log β, where log

denotes the 2-adic logarithm extended to C2 so that log 2 = 0.

n 0 1 2 3 4 5 6 7 8 9 10 · · ·
−Res(t3·2n − 1,∆K(t))2

−(2n+4) 1 5 405 10498005 · · · · · ·
mod 2n 1 1 1 5 5 21 21 85 213 213 213 · · ·

Kionke [39] discusses whether the p-adic Betti number belongs to Z, as the p-adic
analogue of Atiyah’s conjecture. It also would be interesting to ask when the p-adic
torsion belongs to Z. The observations for J(2,−2) = 41 raise the following questions,
to which we will give answers in the rest of this subsection.

Question 2.11.7. Consider the cyclic covers Xn →M = S3 − J(2, 2m).
(1) Find all pairs (p,m) with limn→∞ |H1(Mpn)tor| ∈ Z ⊂ Zp and their limit values.

Find all pairs (p,m) with limn→∞ |H1(Mpn)tor| = 1.
(2) Find conditions of (e, p) with p ∤ e such that limn→∞ |H1(Mepn)tor| = 0 holds,

and study the values of ν. Can ν be arbitrarily large, with |H1(Me)tor| being small?

Cases with lim |H1(Mpn)tor| ∈ Z

We discuss both of the cases with p | m and p ∤ m.

Proposition 2.11.8. If p | m, then the Zp-covers of K = J(2, 2m) satisfies

lim
n→∞

|H1(Mpn)tor| =

{
−sgn(4m− 1) if p = 2,

1 if p 6= 2
in Zp.

Proof. Write ∆K(t) = m(t−α)(t−β). Then by |α+β|p = |(2m−1)/m|p = |1/m|p > 1
and αβ = 1, we may assume that |α|p > |β|p and hence |α|p = |α + β|p = |1/m|p.
Then limn→∞Res(t

pn − 1,∆K(t)) = limn→∞m
pn(αpn − 1)(βpn − 1) = limn→∞− (mα)p

n
.

The minimal polynomial of mα is (t − mα)(t − mβ) = t2 − m(α + β) + m2αβ =
t2 + (1 − 2m)t + m2 ≡ t2 + t = t(t + 1) mod p. Thus mα ≡ −1 mod p and hence
limn→∞ − (mα)p

n
= −1 if p = 2, limn→∞ − (mα)p

n
= 1 if p 6= 2 in Zp. Note that if

p = 2, then we have an additional term sgn∆(−1) = sgn(4m−1) by Lemma 2.10.1.

Example 2.11.9. Let K = J(2, 4) = 52. Then ∆K(t) = 2t2− 3t+2, ∆K(−1) = 7 > 0,
and
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n 1 2 3 4 · · ·
Res(t2

n − 1,∆K(t)) 7 63 63 60543 · · ·
mod 2n 1 3 7 15 · · ·

.

Let K = J(2,−4). Then ∆K(t) = −2t2 + 5t− 2, ∆K(−1) = −9 < 0 and

n 1 2 3 4 · · ·
−Res(t2n − 1,∆K(t)) −9 −225 −65025 −4294836225 · · ·

mod 2n 1 1 1 1 · · ·
.

Let K = J(2, 6). Then ∆K(t) = 3t2 − 5t+ 3 and

n 1 2 3 4 · · ·
Res(t3

n − 1,∆K(t)) 64 18496 30417519283264 1729618048727305550814328969659247936576 · · ·
mod 3n 1 1 1 1 · · ·

.

Proposition 2.11.10. Suppose p ∤ m. Then the Zp-cover of K = J(2, 2m) satisfies
lim = limn→∞ |H1(Mpn)tor| ∈ Z in Zp if and only if one of the following holds.

• p = 2 ; lim = sgn(4m− 1) · 3 = ±3.

• p = 3 ; 3 | m− 1, lim = 4 or 3 | m+ 1, lim = −2.

• p = 5 ; 5 | m+ 1, lim = −4.

• p 6= 2, 3 ; p | m− 1, lim = 1.

Proof. In what follows, x ≡ y stands for x ≡ y mod p if otherwise mentioned. Let ξ and
ζ denote the unique root of unity of order prime to p with |m − ξ|p < 1 and ∆K(t) ≡
ξ(t− ζ)(t− ζ−1) mod p. Note that if limRes(tp

n − 1,∆K(t)) = ξ(1− ζ)(1− ζ−1) ∈ Z,
then we have ξ = ±1 and ζ6 = 1, so ∆K(t)/m ≡ (t− 1)2, (t+ 1)2, t2 + t+ 1, t2 + 1, or
t2 − t+ 1. Note that ξ ≡ ±1 is equivalent to that p | m2 − 1.

Since Res(∆K(t), (t + 1)2) = (4m − 1)2, Res(∆K(t), t
2 + t + 1) = (3m − 1)2,

Res(∆K(t), t
2 + 1) = (2m − 1)2, and Res(∆K(t), t

2 − t + 1) = (m − 1)2, we have
∆K(t) ≡ m(t+1)2 if p | 4m− 1, ∆K(t) ≡ m(t2+ t+1) if p | 3m− 1, ∆K(t) ≡ m(t2+1)
if p | 2m − 1, and ∆K(t) ≡ m(t2 − t + 1) if p | m − 1, while ∆K(t) ≡ m(t − 1)2 is not
the case.

Suppose p | m− 1, so that m ≡ 1. If ∆K(t) ≡ (t+1)2, then by 0 ≡ (4m− 1)2 ≡ 32,
we have p = 3. If ∆K(t) ≡ t2 + t + 1, then by 0 ≡ (3m − 1)2 ≡ 22, we have p = 2. If
∆K(t) ≡ t2 + 1, then 0 ≡ (2m− 1)2 ≡ 1, which is not the case. If ∆K(t) ≡ t2 − t + 1,
then by 0 ≡ (m− 1)2, we just have p | m− 1. (In this case, we need p 6= 2, 3.)

Suppose instead p | m + 1, so that m ≡ −1. If −∆K(t) ≡ (t + 1)2, then by
0 ≡ (4m−1)2 ≡ 52, we have p = 5. If −∆K(t) ≡ t2+ t+1, then by 0 ≡ (3m−1)2 ≡ 24,
we have p = 2. If −∆K(t) ≡ t2 + 1, then by 0 ≡ (2m − 1)2 ≡ 32, we have p = 3. If
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−∆K(t) ≡ t2− t+ 1, then by 0 ≡ (m− 1)2 ≡ 22, we have p = 2. (In this case, by 2 | 6,
Corollary 2.10.10 does not apply, while −∆K(t) ≡ t2 + t+ 1 also holds.)

If p = 2, then ∆K(t) ≡ t2−t+1. Lemma 2.10.1 yields |H1(M2n)tor| = sgn(∆K(−1))Res(t2n−
1, ∆K(t)) = sgn(4m− 1)Res(t2n − 1,∆K(t)) and hence lim = sgn(4m− 1) · 3. If p = 3
and 3 | m−1, then lim = Res(t−1, (t+1)2) = 22 = 4. If p = 3 and 3 | m+1, then lim =
Res(t−1,−(t2+1)) = −2. If p = 5 and 5 | m+1, then lim = Res(t−1,−(t+1)2) = −4.
If p 6= 2, 3 and p | m− 1, then lim = Res(t− 1, t2− t+1) = 1. Combining these above,
we obtain the assertion and complete the table.

By Propositions 2.11.8 and 2.11.10, we may conclude the following.

Corollary 2.11.11. We have limn→∞ |H1(Mpn)tor| = 1 if and only if one of the follow-
ing holds.

• p = 2, m is even, and 4m− 1 < 0.

• p 6= 2 and p|m.

• p 6= 2, 3 and p|(m− 1).

Particularly, for each m 6= 0, we have limn→∞ |H1(Mpn)tor| = 1 for only finitely many
p’s.

We discuss further problems about the cases with lim = 1 in Subsection 2.11.4.

Can ν be large with re being small?

We next investigate the Iwasawa ν-invariants of Zp-covers (Mepn → Xe)n of K =
J(2, 2m) with e ∈ Z>0, whilst essential cases would be those with p ∤ e. Put rn =
Res(tn − 1,∆K(t)). We have ν > 0 if limn→∞ |H1(Mepn)tor| = 0 in Zp. More precisely,
we have the following. Note that repn = 0 for some n is equivalent to m = 1 and 6 | ep.

Proposition 2.11.12. For the Zp-cover (Mepn → Xe)n of K = J(2, 2m) and repn 6= 0,
the following conditions are equivalent.

• lim |H1(Mepn)tor| = 0 in Zp.

• lim |H1(Mepn)non-p| 6∈ Q.

• |H1(Me)tor| ≡ 0 mod p.

• (Mepn → Xe)n has ν > 0.

Furthermore, except for the following special cases, we have p−ν = |H1(Me)tor|p.

• p = 3, 2 | e, |r2|3 = |re|3 = 1/3.

• p = 2, |re|2 = 1/4.
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Proof. Write ∆K(t) = m(t− α)(t− β) and put ∆e(t) = me(t− αe)(t− βe), so that we
have re = me(1 − αe)(1 − βe) = me(2 − (αe + βe)), ∆e(t) = met2 + (re − 2me)t +me,
and ∆e(t+ 1) = me(t− (αe − 1))(t− (βe − 1)) = met2 + ret+ re.

Suppose that p | re. Then we have |αe − 1|p = |βe − 1|p = |re|1/2p . If p > 3,

then |re|1/2p ≤ p−1/2 < p−1/(p−1), and hence | logαe|p = | log βe|p = |re|1/2p and p−ν =

|H1(Me)tor|p. If instead p = 3 and 32 | re, then by |re|1/2p ≤ p−1 < p−1/(p−1), we obtain

a similar result. If instead p = 2 and 24 | re, then by |re|1/2p ≤ 2−2 < 2−1 = p−1/(p−1),
we obtain a similar result. Thus, we obtain the assertion.

Example 2.11.13. Let K = J(2, 2) = 31 with ∆K(t) = t2− t+1. For e ≤ 10, we have

e 1 2 3 4 5 6 7 8 9 10
Res(te − 1,∆K(t)) 1 3 22 3 1 0 1 3 22 3

,

• ν = 1 for (e, p) = (2, 3), (4, 3), (6, 3), (8, 3),

• ν = 2 for (e, p) = (3, 2), (9, 2).

Let K = J(2,−2) = 41 with ∆K(t) = −t2 + 3t− 1. For e ≤ 10, we have

e 1 2 3 4 5 6 7 8 9 10
Res(te − 1,∆K(t)) 1 −5 24 −325 112 −285 292 −325172 24192 −53112 ,

• ν = 1 for (e, p) = (2, 5), (4, 5), (6, 5), (8, 5),

• ν = 2 for (e, p) = (4, 3), (5, 11), (7, 29), (8, 3), (8, 7), (9, 19), (10, 11),

• ν = 4 for (e, p) = (3, 2), (9, 2).

Let K = J(2, 4) = 52 with ∆K(t) = 2t2 − 3t+ 2. For e ≤ 10, we have

e 1 2 3 4 5 6 7 8 9 10
Res(te − 1,∆K(t)) 1 7 52 327 112 527 132 327 52 71112

,

• ν = 1 for (e, p) = (2, 7), (4, 7), (6, 7), (8, 7),

• ν = 2 for (e, p) = (3, 5), (4, 3), (5, 11), (6, 5), (7, 13), (8, 3), (9, 5), (10, 11).

Example 2.11.14 (Large base p-class number). For K = J(2, 2m), we have r2 =
4m − 1, r3 = 9m2 − 6m + 1 = (3m − 1)2, and r4 = (2m − 1)2(4m − 1). Under the
assumption of Proposition 2.11.12, if p | 4m − 1 with exponent 1, then we have ν = 1
for even e. If instead p ∤ 4m− 1 and p | re, then ν is even.

For any p > 3 and a ∈ Z≥0, if we put m = (pa + 1)/2, then we have pa = 2m − 1
and |r4|p = p−2a. Hence for e = 4, we have ν = 2a.

For any p with p ≡ 3 mod 4 and a ∈ Z≥0, if we put m = (32a+1 + 1)/4, then we
have r2 = 4m− 1 = p2a+1. Hence for e = 2, we have ν ≥ 2a+ 1.

For p = 2 and a ∈ Z≥0, if we put m = (22c+1 +1)/3, then we have r3 = (3m− 1)2 =
22+2b = 22+4c. Hence for e = 3, we have ν ≥ 2 + 4c.
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Example 2.11.15 (Small base p-class number and large ν). Let us examine the two
exceptional cases in Proposition 2.11.12. In these cases, |re|p = 1/p holds and ν becomes
arbitrarily large.

(1) Suppose p = 3 and |r2|3 = 1/3. Then, since r2 = 4m − 1, we have m = 3a + 1
with a = 3b or 3b + 1, and hence m = 9b + 1 or 9b + 4, b ∈ Z. (i) If m = 9b + 1,
then r6 = 35b2(12b + 1)(27b + 2)2, |r6|3 = |35b2|3. By Proposition 2.11.12 and λ = 2,
we have ν = v3(r6) − 2 = 5 + 2v3(b) − 2 = 3 + 2v3(b). For instance, if we put
b = 3c with c ∈ Z, then we obtain m = 3c+2 + 1 and ν = 3 + 2c for (p, e) = (3, 2).
More concretely, if we put c = 8, then we see that the Z3-cover (M213n → X3)n of
K = J(2, 2(310 + 1)) = J(2, 118100) with e = 2 has ν = 19. (ii) If instead m = 9b+ 4,
then by |r6|3 = 1/33, (M213n → X3)n has ν = 1.

(2) Suppose p = 2 and |r3|2 = 1/4. Then by r3 = (3m − 1)2, we have 3m − 1 =
2(2a + 1), a = 3b, m = 4b + 1, b ∈ Z. Since r6 = 26b2(6b + 1)2(16b + 3) and λ = 2,
Proposition 2.11.12 yields that ν = v2(r6) − 2 = 6 + 2v2(b) − 2 = 4 + 2v2(b). For
instance, if we put b = 2c with c ∈ Z, then we have m = 2c+2 +1 and ν = 4+ 2c. More
concretely, if we put c = 48, then the Z2-cover (M2n31 → X3)n of K = J(2, 2(250 + 1))
with e = 3 has ν = 100.

By Examples 2.11.14 and 2.11.15, we may conclude the following.

Proposition 2.11.16. For any p and arbitrary large N > 0, we may find K = J(2, 2m)
and p ∤ e such that the Zp-cover (Mepn → Xe)n has ν > N . Furthermore, for (p, e) =
(2, 3), (3, 2), we may find such Zp-covers with the base p-class number |H1(Xe)(p)| = 4, 3
respectively.

For a general knot K and a small p, we may have a slightly large ν, namely, p−ν <
|H1(Xe)tor|p holds. Nevertheless, such p is bounded by the degree of ∆K(t), and hence
a fixed K has bounded ν’s when (p, e) moves.

Remark 2.11.17. For any Zp-cover (Mepn → Xe)n of a knot K in S3, we always
have ν ≥ 0. This is not the case for a general link in S3. Indeed, let Lm = K1 ∪ K2

be the m-twisted Whitehead link in S3 with the Alexander polynomial ∆(t1, t2) =
m(1− t1)(1− t2) and let Mn →M = S3−Lm denote the “total linking number” Z/nZ-
cover, that is, the cover corresponding to the kernel of the surjective homomorphism
π1(M) ↠ Z/nZ sending all meridians of Lm to 1. If we put m = pµ with µ ∈ Z≥0,
then a formula of Mayberry–Murasugi [49] or Porti [64] yields that |H1(Mpn)tor| =
pn
∏

ζ; ζpn=1, ζ ̸=1 ∆(ζ, ζ) = p3n+µpn−µ and hence ν = −µ may take any non-positive
integer if µ moves. The cases of links with multivariable Alexander polynomials will be
extensively discussed in [76].

2.11.4 Livingston’s results

In the knot theory side, we may choose the extension degree p and the branch locus K
independently, so we may consider several analogues of Weber’s class number problem.
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Livingston’s result in the following considers the set of all prime numbers. We may also
verify this assertion by using Lemma 2.11.2.

Proposition 2.11.18 (Livingston [46, Theorem 1.2]). Let K be a knot in S3. Then,
the equality |H1(Mpn)tor| = 1 holds for every prime number p and positive integer n
if and only if every non-trivial factor of the Alexander polynomial ∆K(t) is the m-th
cyclotomic polynomial with m being divisible by at least three distinct prime numbers.

Example 2.11.19. Note that a knot with any prescribed Alexander polynomial may be
constructed by Rolfsen’s method in [65]. Namely, if we have ∆(t) ∈ Z[t] with ∆(1) = 1
and ∆(t) = tdeg∆(t)∆(1/t), then we have a knot K with ∆K(t) = ∆(t).

There are many knots with ∆K(t) = 1. A knot K with ∆K(t) = Φ30(t) = t8 + t7 −
t5−t4−t3+t+1 would be the initial example with ∆K(t) 6= 1 satisfying |H1(Mpn)tor| = 1
for all p and n. A systematic study of such knots would be of further interest.

If p is a fixed prime number, then a knot K with ∆K(t) = Φ30(t)+p(t
6− t5− t3+ t2)

satisfies limn→∞ |H1(Mpn)tor| = 1 and (|H1(Mpn)|)n 6= (1). We wonder if there exists a
knot with limn→∞ |H1(Mpn)tor| = 1 and (|H1(Mpn)tor|)n 6= (1) for infinitely many p’s.

A subtle question from a viewpoint of the Sato–Tate conjecture in number theory
(cf. Subsubsection 2.12.2) is to ask whether there exist a knot K such that the set P (K)
of p’s with limn→∞ |H1(Mpn)tor| = 1 is an infinite set but the density of P (K) in the
set of all prime numbers is zero. As we have seen in Proposition 2.11.3 and Corollary
2.11.11, torus knots Ta,b and twists knots J(2, 2m) 6= 01 are two extreme cases on
the opposite sides; they satisfy limn→∞ |H1(Mpn)tor| = 1 and 6= 1 for almost all p,
respectively. We wonder if there is a class with an intermediate behavior.

Another approach to formulating an analogue of the Sato–Tate conjecture is to con-
sider an infinite family (Ki)∈Z>0 of disjoint knots in S

3 satisfying some equidistribution
theorem, such as the Chebotarev law (cf. [52, 53, 81, 82]). It would be interesting to
study the density of knots with the p-adic torsion being 1 for each fixed p. A possible
clue is Dehornoy’s study on the Lorenz knots (≒ modular knots) in [17], which is an
analogue of the Riemann/Weil conjecture in a view of Noguchi [60].

For a branched Zp-cover (Mpn → M1)n, to ask whether all Mpn ’s are QHS3’s, or
equivalently, to whether every H1(Mpn) is a finite group, is also a weak analogue of
Weber’s problem. By ∆K(1) = 1, we have the following.

Proposition 2.11.20 ([46, Corollary 3.2]). The branched Z/pnZ-cover of a knot in S3

is always a QHS3.

This proposition means that Kionke’s p-adic Betti number is zero. It would be also
interesting to study p-adic refinements of [46, Theorem 1.1] and [38] on concordance.

2.12 Algebraic curves

Theorems on the p-adic limit of cyclic resultants are applicable to algebraic curves
(function fields) as well. We examine the cases of elliptic curves as examples and point
out conditions for the p-adic limit value being zero and one.
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2.12.1 A formula for function fields

Let us recollect some properties of function fields to obtain an analogue of Fox–Weber’s
formula. Basic references are due to Rosen [66] and Stichtenoth [72].

Let k be a finite extension of Fl(x), l being a prime number. (We use l instead of
p′.) Let F(k) denote the constant field of k and put q = le = |F(k)|. Let Dk, Pk, and Ek
denote the set of divisors, that of principal divisors, and that of effective divisors of k
respectively. Put Dn

k = {A ∈ Dk | degA = n} and Enk = {A ∈ Ek | degA = n} for each
n ∈ Z≥0. Let g(k) denote the genus of k. The congruent zeta function of k is defined
by

ζk(s) =
∑
A∈Ek

1

(qdegA)s

and satisfies

ζk(s) =
∞∑
n=0

|Enk |
(qn)s

=
∏
P∈Pk

(
1− 1

(qdegP )s

)−1
.

This Dirichlet series is known to absolutely converges to a holomorphic function on
Re(s) > 1. Moreover, we have the following.

Proposition 2.12.1 (Hasse–Weil, cf. [93], [66, Theorem 5.9]). There exists Lk(t) ∈ Z[t]
of degree 2g(k) satisfying

ζk(s) =
Lk(q

−s)

(1− q−s)(1− q1−s)

on Re(s) > 1.

This Lk(t) is called the L-polynomial of k. The right-hand side is an analytic con-
tinuation of ζk(s) to C as a meromorphic function. In addition, we have the following.

• Lk(0) = 1, Lk(1) = |Cl0(k)|,

• Lk(t) = qg(k)t2g(k)Lk(
1

qt
),

• Lk(t) =
∏2g(k)

i=1 (1− αit) for some algebraic integers αi with |αi| =
√
q.

If we write Lk(t) = a2g(k)t
2g(k) + · · ·+ a1t+ a0, then we have a0 = 1, a1 = |E1k | − (q+1),

a2g(k) = qg(k), and a2g(k)−i = qg(k)−iai for 0 ≤ i ≤ 2g(k). If kn/k be a constant extension

of degree n, then we have kn = k F(kn), g(kn) = g(k), Lkn(t) =
∏2g(k)

i=1 (1 − αn
i t), and

hence

|Cl0(kn)| = Lkn(1) =

2g(k)∏
i=1

(1− αn
i ) = Res(tn − 1, t2g(k)Lk(1/t)).

For any prime number l′ 6= l, the Frobenius polynomial Fk(t) of k is defined as the char-
acteristic polynomial of the geometric Frobenius action on the l′-adic étale cohomology
of the algebraic curve corresponding to k and satisfies Fk(t) = t2g(k)Lk(1/t) (cf. [4]).
Hence we obtain the following (See also [40, Section 2]).
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Proposition 2.12.2. Let k be a function field and kn/k a constant extension of degree
n. Then

|Cl0(kn)| = |Res(tn − 1, Fk(t))|.

This formula may be seen as an analogue of Fox–Weber’s formula (Proposition
2.11.1) for a constant extension of a function field.

In a geometric extension of a function field, the genera may grow (cf. [41]). In the
cases of knots, if we remove the assumption that ∆K(t) does not vanish on roots of
unity, then the 1st Betti numbers grow. We may expect further analogies there.

2.12.2 Elliptic curves

We observe the cases of elliptic curves as examples. Basic literatures are Silverman [71]
and Diamond–Shurman [19]. Let E be an elliptic curve over a finite field F and let k
denote the function field of E, that is, we have kE = Frac(F[x, y]/(E(x, y))). In addition,
let E(F) denote the Model–Weil group, that is, the union of the set of F-rational points
of E and {∞}. Write FE(t) = Fk(t). Then, we have |Cl0(kE)| = FE(1) = |E(F)|. Let
F′/F be a finite extension and let EF′ denote the same elliptic curve with the coefficient
field replaced by F′. Then we have kEF′ = F′kE and |Cl0(kEF′ )| = FEF′ (1) = |E(F

′)|. If
F = Fl, then the Frobenius polynomial of E is given by

FE(t) = t2 − (l + 1− |E(Fl)|)t+ l.

Write FE(t) = (t − α)(t − β). For each e ∈ Z>0 and n ∈ Z≥0, write EF
lep

n = Elepn .
Then,

FE
lep

n (t) = (t− αepn)(t− βepn)

coincides with the Frobenius polynomial of the constant Z/pnZ-extension kE
lep

n of kEle
.

In what follows, we first examine a fixed elliptic curve over F5 for p = 2, 3, 5 and
e = 1, 3 and raise a question. Secondly, we study conditions for limn→∞ |Cl0(kE

lp
n )| ∈ Z

with focus on the cases with p = l. Finally, we discuss the Iwasawa ν-invariants for the
cases with limn→∞ |Cl0(kE

lp
n )| = 0.

Observations

We examine the cases of E : y2 = x3 + 3x+ 3, l = 5, e = 1, 3, p = 2, 3, 5.

Example 2.12.3. Let l = 5 and E : y2 = x3 +3x+3. Then |E(F5)| = FE5(1) = 5 and
FE5(t) = t2 − (5 + 1− 5)t+ 5 = t2 − t+ 5.

If p = 2, then by t2 − t+ 5 ≡ (t2 + t+ 1) = Φ3(t) mod 2 and FE5(−1) = 5 > 0, we
have limn→∞ |Cl0(E52n )| = Φ3(1) = 3.

If p = 3, then by t2 − t + 5 ≡ t2 + 2t + 2 mod 3, we have limn→∞ |Cl0(E53n )| =
1−−1+

√
−1

2
= 3−

√
−1

2
, where ζ = −1+

√
−1

2
is a primitive 8-th root of unity with ζ+ζ ≡ −2,

ζζ ≡ 2 mod 3.
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If p = 5, then by FE5(1) = 5, we have limn→∞ |Cl0(E55n )| = 0 in Z5. Let α = 1+
√
−19
2

denote the larger root of FE(t) = t2 − t + 5, so that |α|l holds. Since α − 1 is the
smaller root of EF (1 + t) = t2 + t + 5, we see |α − 1|5 = 5−1 < 5−1/4. Thus, we have
λ = ν = 1 and the value |Cl0(E55n )non-5| = |Cl0(E55n )| 5−(n+1) converges to a non-zero

value limn→∞Res(t5
n − 1, t2 − t+ 5)5−(n+1) = limn→∞

1−α5n

5n+1 = − logα
5

= −1
5
log 1+

√
−19
2

;

n 1 2 3 4 5 6 · · ·
Res(t5

n − 1, FE5(t)) 5
−(n+1) 112 112 × 19704014845201 · · · · · ·

mod 5n 1 21 71 321 1571 14071 · · ·
.

Example 2.12.4. Let the notation be as in Example 2.12.3 and put q = 53 for instance.
Then FE53

(t) = (t− α3)(t− β3) = t2 + 14t+ 125, FE
53p

n (t) = (t− α3pn)(t− β3pn), and

hence |Cl0(E53pn )| = FE
53p

n (1) = Res(tp
n − 1, t2 + 14t+ 125). Note that FE53

(1) = 140.

If p = 2, then by 2 | 140, we have limn→∞ |Cl0(E53·2n )| = 0 in Z2. Since t2 + 14t +
125 ≡ t2 +1 = (t− 1)2 mod 2, we have λ = 2 and |Cl0(E53·2n )|2−2n converges to a non-
zero value in Z2. Since |α3 − 1|2 < 1, |β3 − 1|2 < 1, and |(α3 − 1)(β3 − 1)|2 = |140|2 =
2−2 ≥ (2−1)2, we may have ν > 2. In fact, we have ν = 4; If we put ε = α3−1 or β3−1,
then a direct calculation shows that |ε|2 = |ε2/2|2 = 1/2, |ε − ε2/2|2 = |ε4/4|2 = 1/4,
|ε − ε2/2 − ε4/4|2 = 1/4, while other terms satisfy |εn/n|2 < 1/4. Thus, we have
| logα3|2 = | log β3|2 = 2−2, ν = 4, and limn→∞ |Cl0(E53·2n )non-2| = 2−4(logα3)(log β3) =
9
16
(logα)(log β), where log denotes the 2-adic logarithm extended to C2 so that log 2 = 0;

n 0 1 2 3 4 5 6 7 8 9 10 · · ·
Res(t2

n − 1, FE53
(t))2−2n−4 35/4 7 245 953785 · · ·

mod 2n 1 1 1 1 17 17 17 145 401 401 · · ·
.

If p = 3, then by 3 ∤ 140 and t2 + 14t + 125 ≡ t2 + 2t + 2 mod 3, the limit is the
same as the case with q = 5.

If p = 5, then by 5 | 140, we have limn→∞ |Cl0(E53·5n )| = 0. By |α3 − 1|5 =
|FE53

(1)| = 5−1 < 5−1/4 and |β3 − 1|5 = 1, we have λ = ν = 1, and the value

|Cl0(E53·5n )non-5| = |Cl0(E53·5n )|5−(n+1) converges to a non-zero value − logα3

5
= −3 logα

5
=

−3
5
log 1+

√
−19
2

.

The following question is an analogue of Question 2.11.7 for elliptic curves;

Question 2.12.5. Consider the constant Z/nZ-extensions of the function field of an
elliptic curve over Fl.

(1) Find all cases with lim = limn→∞ |Cl0(kE
lp

n )| ∈ Z. Find conditions for the limits
being specific values, especially for the case with lim = 1.

(2) Find conditions of (e, p) with p ∤ e such that limn→∞ |Cl0(kE
lep

n )| = 0 holds, and

study the values of ν. Can ν be arbitrarily large, while |Cl0(kEle
)| being small?
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Cases with lim |Cl0(kE
lp

n )| ∈ Z

First, we focus on the cases with p = l.

Example 2.12.6. Let E : y2 = x3 − 1 with good reduction at l 6= 2, 3. Let us
investigate the Zl-extension of kE. We have FE(t) = t2 − (l + 1 − |E(Fl)|)t + l. By
Hasse’s bound |E(Fl)| − (l + 1)| ≤ 2

√
l, we have l | (l + 1 − |E(Fl)|) if and only if

l + 1 − |E(Fl)| = 0. By [19, Exercise 8.3.6], we have |E(Fl)| ≡ 1 if and only if l ≡ 2
mod 3. Thus, if l ≡ 2 mod 3, then both roots of FE(t) = t2 + l are smaller than 1, and
hence limn→∞ |Cl0(kE

ll
n )| = 1. If instead l ≡ 1 mod 3, then the larger root α of FE(t)

satisfies |α|l = 1 and limn→∞ |Cl0(kE
ll
n )| = 1− ζ holds for the l-prime-th root of ζ with

|α− ζ|l < 1. We have ζ = 1 if and only if |E(Fl)| ≡ 1− (−1)(l−1)/6
(
(l−1)/3
(l−1)/2

)
≡ 0 mod l,

which is in fact not the case by [61].

Definition 2.12.7 (cf.[51, 43, 19]). Let E be an elliptic curve over Q with good re-
duction at Fl. If |E(Fl)| ≡ 1 mod l, then l is called a supersingular prime of E. If
|E(Fl)| ≡ 0 mod l, then l is called an anomalous prime of E. We say that E has
complex multiplication (CM ) over Q(

√
D) with D < 0 if End(E) is isomorphic to an

order of the ring of integers of Q(
√
D).

Put a = 1 + l − |E(Fl)|. Since FE(t) = t2 − at + l ≡ t(t − a) mod l, we have
limn→∞Res(tl

n − 1, FE(t)) ∈ Z, then we have limn→∞Res(tl
n − 1, FE(t)) = 0, 1, 2 in

Zl according as t − a ≡ t − 1, t, t + 1 mod l and |E(Fl)| ≡ 0, −1, 1 respectively. By
Hasse’s bound |a| ≤ 2

√
l, we always have FE(1) ≥ 0 and FE(−1) ≥ 0. Hence these

limits coincide with limn→∞ |Cl0(kE
ll
n )| for any l. Thus, we obtain the following.

Proposition 2.12.8. Let E be an elliptic curve over Q with good reduction at Fl. If the
limit limn→∞ |Cl0(kE

ll
n )| in Zp is a rational integer, then limn→∞ |Cl0(kE

ll
n )| = 0, 1, 2.

Moreover,
• We have limn→∞ |Cl0(kE

ll
n )| = 0 in Zl if and only if l is an anomalous prime,

that is, |E(Fl)| ≡ 0 mod l holds. We mostly have ν = 1 and the only exceptional cases
are those with l = 2, |E(Fl)|2 = 1/2, and ν = 2 (see Propositions 2.12.13 and Example
2.12.14).
• We have limn→∞ |Cl0(kE

ll
n )| = 1 in Zl if and only if l is a supersingular prime

of E, that is, |E(Fl)| ≡ 1 mod l holds. If in addition E has CM over Q(
√
D) with

D < 0, then limn→∞ |Cl0(kE
ll
n )| = 1 in Zl if and only if the Legendre symbol satisfies

(D
l
) 6= −1.
• We have limn→∞ |Cl0(kE

ll
n )| = 2 if and only if |E(Fl)| ≡ 2 mod l holds.

Let E be an elliptic curve over Q and put al = 1 + l − |E(Fl)|. If l ≥ 5, then the
Hasse bound |al| ≤ 2

√
l yields the following table of lim = limn→∞ |Cl0(kE

ll
n )|.

|E(Fl)| al lim l

l 1 0 anomalous
l + 1 0 1 supersingular
l + 2 −1 2 –
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Elkies [22] proved that every E has infinitely many supersingular primes. Mazur asked
in [51, Section 1, b)] whether there are infinitely many anomalous primes, which is
now proved in the affirmative for most cases [5, Corollary 4.3]. Primes with al ≡ −1
also appears in [5, Remark 2.6]. In addition, Namba–Sato and Serre–Tate’s conjecture
in the 1960s and Lang–Trotter’s refinement expect the following: Let NE denote the
conductor of E, let r ∈ Z, and assume additionally r 6= 0 if E is CM. Then, πE,r(x) =
{l | l < x, al = r, l ∤ NE} ∼ CE,r

√
x/ log x for a constant CE,r ≥ 0 (cf. [43, 88]). Hence,

by the prime number theorem π(x) = {l | l < x} ∼ x/ log x and the Hasse bound, the
density of each of such primes in the set of all primes is expected to be zero, assuming
r 6= 0 if E is CM.

Example 2.12.9. Let E : y2 = x3−5. Then l = 37 is known to be an anomalous prime
of E. We have FE(t) = t2− t+37 ≡ t(t−1) mod 37 and hence limn→∞ |Cl0(kE

ll
n )| = 0.

Put α = 1+
√
−147
2

and β = 1−
√
−147
2

so that we have FE(t) = (t − α)(t − β) with 1/l =
|β|l < |α|l = 1. Since α−1 is the smaller root of FE(1+t) = t2+t+37, we have |α−1|l =
1/l < l−1/(l−1) and hence | logα|l = 1/l. By Proposition 2.12.2 and Theorem 2.10.7, we
have λ = ν = 1 and the value |Cl0(kE

ll
n )non-l| = |Cl0(kE

ll
n )| l−(n+1) converges to a non-

zero value limn→∞Res(tl
n − 1, FE(t))l

−(n+1) = limn→∞
1−αln

ln+1 = − logα
l

= −1
37

log 1+
√
−147
2

;

n 0 1 2 3 · · ·
Res(t37

n − 1, FE(t))37
−(n+1) mod 37n 1 1 741 13062 · · · .

Next, let us briefly examine the cases with p 6= l. Since FE(t) is monic, the argument
becomes much easier than the case of twist knots in Proposition 2.11.10, yielding the
following.

Proposition 2.12.10. If lim = lim |Cl0(kE
lep

n )| ∈ Z, then according as FE(t) = t2 −
at + l ≡ (t + 1)2, (t − 1)2, (t + 1)(t − 1), t2 + t + 1, t2 + 1, t2 − t + 1 mod p, we have
lim = 4, 0, 0, 3, 2, 1 respectively. Especially, lim = 1 if and only if l ≡ 1 and a =
2− |E(Fl)| ≡ −1 mod p.

Propositions 2.12.8, 2.12.10 complete the list of the cases with the p-adic limit being
in Z. The cases with lim = 0 will be further discussed in below.

Can ν be large with re being small?

For an elliptic curve E over Fl with the function field k, let kn/k denote the constant
Z/nZ-extension. Here we give a slightly systematic study of the Iwasawa ν-invariants
and answer the following question.

Question 2.12.11 (A paraphrase of Question 2.12.5 (2)). For any N > 0, find a
Zp-extension kepn/ke with p ∤ e, |C(ke)(p)| < pν, ν > N .

Put F (t) = t2− (l+1−|E(Fl)|)t+ l, a = l+1−|E(Fl)|. By Hasse’s bound, we have
|a| ≤ 2

√
l. Put rn = Res(tn − 1, F (t)), so that we have |r1| = |E(Fl)|, |rn| = |C(kn)|.

If we write F (t) = (t − α)(t − β), then we have rn = 1 + ln − (αn + βn). A similar
argument to Proposition 2.11.12 yields the following.
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Proposition 2.12.12. For any e ∈ Z>0, the following conditions are equivalent.

• limn→∞ |C(kepn)| = 0 in Zp

• limn→∞ |C(kepn)non-p| 6∈ Q

• |C(ke)| ≡ 0 mod p

• (kepn/ke)n has ν > 0.

Furthermore, except for the following special cases, we have pν = |C(ke)(p)|.

• p = 3, |re|3 = 1/3.

• p = 2, |re|2 = 1/2, 1/4.

Since F (t) has less symmetricity than the ∆K(t) of twist knots, we have slightly more
exceptional cases than in Proposition 2.11.12. More precisely, we have the following.

Proposition 2.12.13. (1) If p ∤ le − 1, then Fe(t) has just one root which is close to
1, and the only exceptional cases are p = l = 2, |re|2 = 1/2, ν = 2.

(2) If p | le − 1, then Fe(t) has two roots αe, βe close to 1. The only exceptional
cases are p = 2, |re|2 = 1/2, 1/4 and p = 3, |re|3 = 1/3.

(i) If in addition |re + (le − 1)|p ≤ |re|1/2p , then we have |αe − 1|p = |βe − 1|p.
(ii) If instead |re + (le − 1)|p > |re|1/2p , then then we have |αe − 1|p 6= |βe − 1|p.

Proof. If we put Fn(t) = (t − αn)(t − βn), then we have rn = Fn(1), Fn(t) = t2 −
(αn + βn)t + ln = t2 − (ln + 1 − rn)t + ln, Fn(t + 1) = (t − (αn − 1))(t − (βn − 1)) =
t2+(2−αn−βn)t+(αn−1)(βn−1) = t2+(rn− (ln−1))t+rn. Thus, whether p | ln−1
or not determines the number of roots of Fm(t) that are close to 1.

Suppose p | le−1, so that |1−αe|p < 1 and |1−βe|p < 1. If |1−αe|p = |1−βe|p, then
|re−(le−1)|p = |(1−αe)+(1−βe)|p ≤ |1−α|p = |re|1/2. If instead |1−αe|p > |1−βe|p,
then by rn = (1−αe)(1−βe), we have |re−(le−1)|p = |(1−αe)+(1−βe)|p = |1−α|p >
|re|1/2.

Most part of the assertion is proved by a similar argument to Proposition 2.11.12.
Example 2.12.14 completes the assertion (1). Example 2.12.15 completes the assertion
(2).

Let us study the exceptional cases in Proposition 2.12.13 (1).

Example 2.12.14. Suppose p = l (so that p ∤ le − 1). If p = 2 and |r1|2 = 1/2, then
we have ν = 2. If otherwise, we have ν = 1.

Proof. By Fe(t + 1) ≡ t2 − (ln + 1)t 6≡ t2 − t, Fe(t) has just one root αe such that
|r1| = |αe − 1|p < 1. If p > 3, then by |re|p ≤ 1/p < 1/p1/(p−1), we have |re|p =
|αe − 1|p = | logα|p = p−ν . If p = 2 and 4 | re, then by |re|2 ≤ 1/4 < 1/2, we have
the same. Note that if 2 ∤ e, then re/r1 is the square of an integer. Hence if p = 2
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and |re|2 = 1/2, then we have |re|2 = |r1|2 = 1/2. If p = l = 2 and e = 1, then by
Hasse’s bound |a| ≤ 2

√
2 and that r1 = F (1) = 3 − a, we have |3 − a|1 = 1/2, and

hence a = 1. In this case we have F (t) = t2 − t + 2 and ν = 2 > 1. For instance,
E : y2 + xy − x3 − x = 0 is such a case. In addition, we have F3(t) = t2 + 5t + 8 and
(r312n)n also have ν = 2.

We next study exceptional cases in Proposition 2.12.13 (2) (i) with e = 1. Note
that λ = 2.

Example 2.12.15. Let p = 2 and 2 | l − 1.
• Let |r1|2 = |l + 1 − a|2 = 1/2. For instance, let l = b21+c + 1, 2 ∤ b, b, c ∈ Z≥0.

Note that such a prime number exists for arbitrary large c by Dirichlet’s theorem
on arithmetic progressions. If a = 0, then we have r1 = F (1) = 2(b2c + 1), r4 =
22c+4b2(b2c+1)2, v2(r4) = 2c+4. By λ = 2, Proposition 2.12.12 yields ν = v2(r4)−2·2 =
2c, while |r1|2 = 1/2.
• Let |r1|2 = |l + 1 − a|2 = 1/4. For instance, if l = b2c+2 + 1, 2 ∤ b, b, c ∈ Z≥0,

a = −2, then v2(r1) = 2, v2(r4) = 2c+ 6, ν = 2c+ 6− 4 = 2c+ 2.
• If |r1|2 = 1/2d with d > 2, then ν is determined by r1.

Example 2.12.16. Let p = 3. If 3 | l − 1, then we have |r1|3 = |l + 1 − a|3 = 1/3.
For instance, if l = b32+c + 1 with 3 ∤ b, b, c ∈ Z≥0 and a = 2, then v3(r33) = c + 8,
ν = c+ 8− 6 = c+ 2.

Examples 2.12.15 and 2.12.16 answer Question 2.12.11. Cases in (2) (ii) may be
treated similarly.

Remark 2.12.17. For any elliptic curves over Fl, we have ν ≥ 0, as in the cases of
knots. We wonder if there is an analogous situation to the cases of links with arbitrary
negative ν (cf. Remark 2.11.17). A systematic study of the Iwasawa ν-invariants of
number fields may be found in Sumida-Takahashi’s works [73, 74].

Remark 2.12.18. We may study Zp-covers of a 3-manifold and constant Zp-extensions

of a function field as subcovers or subextensions of the Ẑ-cover or the Ẑ-extension in a
parallel manner. We expect further interactions between these objects.
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Chapter 3

Bijective enumerations for
symmetrized poly-Bernoulli
polynomials

First we recall the definition of the symmetrized poly-Bernoulli polynomial. For non-
negative integers n, k ≥ 0, the (normalized) symmetrized poly-Bernoulli polynomial

B̂k
n(x) is defined by

B̂k
n(x) =

min(n,k)∑
j=0

j!(x+ 1)j
{
n+ 1

j + 1

}{
k + 1

j + 1

}
∈ Z[x]. (3.1)

Here,
{·
·

}
is the Stirling number of the second kind (see [2, Section 2.1]), and (x+1)j =

(x + 1)(x + 2) · · · (x + j) is the rising factorial. We study this polynomial from a
combinatorial perspective in this chapter.

3.1 A bijection between two combinatorial models

Bényi and Matsusaka [11] introduced combinatorial models for symmetrized poly-

Bernoulli polynomial B̂k
n(x). In this section, we first recall these models, and then

provide a bijection between these models.

3.1.1 Double Callan permutations

Throughout this chapter, let n and k be non-negative integers.

Definition 3.1.1. A double Callan permutation of size n × k is a pair of (possible
empty) strings S1 = a1 · · · ar and S2 = b1 · · · bs with r + s = n+ k such that

(1) the terms satisfy {a1, · · · ar} t {b1, . . . , bs} = {1, . . . , n, 1, . . . , k} with r, s ≥ 0,
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(2) a1 is blue, and b1 is red, and

(3) consecutive elements of the same color are decreasing.

We let Ckn denote the set of all double Callan permutations of size n× k.
Example 3.1.2. The following is an example of double Callan permutations of size
7× 6:

S1 = 676513132 and S2 = 4452.

The double Callan permutations are essentially the same as the barred Callan se-
quences studied in [11]. Indeed, we can express a pair of strings as

S1 = B1R1 · · ·BℓRℓBℓ+1 and S2 = R′1B
′
1 · · ·R′mB′mR′m+1, (3.2)

where R and B are substrings consisting of red and blue elements, respectively. Here,
`,m ≥ 0 and the substrings Bℓ+1 and R′m+1 could be empty. This expression defines
a barred Callan sequence (B1;R1) · · · (Bℓ;Rℓ)|(B′m;R′m) · · · (B′1;R′1)(Bℓ+1, ∗;R′m+1, ∗).
Therefore, by reusing the terminology for barred Callan sequences, we refer to Bℓ+1, R

′
m+1

as extra blocks and refer to other substrings R,B as ordinary blocks. Moreover, we refer
to a pair of red and blue blocks having the same sub-(super-)script as a Callan pair.
Note that if ` = 0 (resp. m = 0), then the block B1 (resp. R′1) is the extra block.

Definition 3.1.3. For each double Callan permutation λ = (S1, S2) ∈ Ckn given as in
(3.2), we define its weight wlr

C (λ) ∈ Z≥0 using the left-to-right minimum as follows:

(1) Consider the minimum of each blue substring B1, . . . , Bℓ in S1 to obtain a sequence
π = π1π2 · · · πℓ. Here, we ignore the last blue substring Bℓ+1.

(2) Count the number of 1 ≤ i ≤ ` such that if j < i then πi < πj.

For the above example, we obtain the sequence π = 613. Then, the weight is given
by wlr

C (λ) = 2.

Definition 3.1.4. For any n, k ≥ 0, we define the Callan polynomial by

Ckn(x) = Ckn(x;wlr
C ) =

∑
λ∈Ckn

xw
lr
C (λ).

The following explicit properties of the Callan polynomials are known.

Theorem 3.1.5 ([11]). The Callan polynomials satisfy the explicit formula

Ckn(x) =
min(n,k)∑

j=0

j!(x+ 1)j
{
n+ 1

j + 1

}{
k + 1

j + 1

}
, (3.3)

and the generating function
∞∑
n=0

∞∑
k=0

Ckn(x)
Xn

n!

Y k

k!
=

eX+Y

(eX + eY − eX+Y )x+1
.

In particular, by (3.1), we have Ckn(x) = B̂k
n(x).
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Remark 3.1.6. For positive integers n and k, the Stirling number of the second kind{
n
k

}
counts the number of ways to divide a set of n elements into k nonempty sets. The

Stirling numbers satisfy the recurrence formula{
n+ 1

k

}
=

{
n

k − 1

}
+ k

{
n

k

}
with the initial values

{
0
0

}
= 1 and

{
n
0

}
=
{
0
k

}
= 0 (n, k 6= 0). From this definition, the

above explicit formula (3.3) immediately follows (see [11, Section 3]).

3.1.2 Alternative tableaux

The second combinatorial model for B̂k
n(x) is given by alternative tableaux of rectan-

gular shape. An alternative tableau of general shape was introduced by Viennot [87]
and studied by Nadeau [58]. Here, we recall its definition and the weight function
wst
T : T k

n → Z≥0 introduced in [11].

Definition 3.1.7. Let n, k be positive integers. An alternative tableau of rectangular
shape of size n×k is a rectangle with a partial filling of the cells with left arrows ← and
down arrows ↓, such that all cells pointed by an arrow are empty. We let T k

n denote
the set of all alternative tableaux with a rectangular shape and a size of n× k.

For each λ ∈ T k
n ,

(1) consider the first from the top consecutive rows that contain left arrows ←, and

(2) count the number of left arrows ← such that all ← in the upper rows are located
further to the right.

We let wst
T (λ) denote the number of such left arrows, (the superscript “st” of which is

an abbreviation of “stair”).

Example 3.1.8. The following alternative tableau λ ∈ T 6
7 has a weight wst

T (λ) = 2.

←
←

←
↓

←
↓

↓
←

←

Figure 3.1: An alternative tableau of size 7 × 6 with an indication of its weight.

In a similar manner as above, we define the polynomial T k
n (x) as

T k
n (x) = T k

n (x;w
st
T ) =

∑
λ∈T k

n

xw
st
T (λ).
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Theorem 3.1.9 ([11]). Let T 0
n (x) = T k

0 (x) = 1. For any integers n, k ≥ 0, the

polynomial T k
n (x) coincides with Ckn(x), i.e., T k

n (x) = B̂k
n(x).

This theorem was proven by showing that both polynomials Ckn(x) and T k
n (x) satisfy

the same recursion

B̂k
n(x) = (n+ 1)B̂k−1

n (x) + x
n−1∑
j=0

(
n

j

)
B̂k−1

j (x) +
n−1∑
j=1

(
n

j − 1

)
B̂k−1

j (x). (3.4)

3.1.3 A combinatorial bijection

In this subsection, we construct a bijection between these two models.
Both combinatorial models have their own advantages and disadvantages. On one

hand, although it is quite easy to show that the polynomial T k
n (x) satisfies the recursion

in (3.4), it is difficult to check the explicit formula (Theorem 3.1.5) for T k
n (x). On the

other hand, as we mentioned in Remark 3.1.6, the explicit formula immediately follows
from the definition of Ckn(x) by simply enumerating the objects. However, it is slightly
complicated to show that the Callan polynomials Ckn(x) satisfy the recursion.

Indeed, the authors [11, Theorem 14] used the following auxiliary map ϕ to show
the recursion for the Callan polynomials. Here, we recall this map.

Definition 3.1.10. For any integers n ≥ 0 and k > 0, we define a map ϕ : Ckn →
Ck−1≤n :=

⋃n
i=0 C

k−1
i as follows. Let (S1, S2) ∈ Ckn be expressed as in (3.2).

(1) If k is in the extra block Bℓ+1, then remove k.

(2) If k is alone in the first ordinary block B1, then remove the first Callan pair B1R1.

(3) Otherwise, let R be the ordinary red block that forms a Callan pair with the
blue block containing k. Then, remove k and replace R with the red element 0.
Finally, rearrange the position of 0 in decreasing order if needed.

After that, we rearrange red elements from 1.

Example 3.1.11. For a double Callan permutation (S1, S2) = (621445, 7632531) ∈ C67 ,
we have

ϕ : (621445, 7632531) 7→ (445, 7632531) 7→ (425, 5432311), · · · (2)
ϕ : (425, 5432311) 7→ (42, 5432311), · · · (1)
ϕ : (42, 5432311) 7→ (∅, 5432311) 7→ (∅, 4332211), · · · (2)
ϕ : (∅, 4332211) 7→ (∅, 02211) 7→ (∅, 12321), · · · (3)
ϕ : (∅, 12321) 7→ (∅, 0321) 7→ (∅, 3201) 7→ (∅, 3211), · · · (3)
ϕ : (∅, 3211) 7→ (∅, 0) 7→ (∅, 1). · · · (3)
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As mentioned above, the polynomials Ckn(x) and T k
n (x) satisfy the same recursion

(3.4). This tells us that two models (Ckn, wlr
C ) and (T k

n , w
←
T ) have the same recursive

structure. Using the map ϕ, we construct a bijection from Ckn to T k
n in a stepwise

manner on k. We first define the map from Ckn to T 1
n .

Definition 3.1.12. For a given double Callan permutation λ ∈ Ckn, we create an alter-
native tableau λk ∈ T 1

n by following the steps below. If k is not in the extra block, let
R be as described in Definition 3.1.10 (3).

(1) If k is in the extra block, then λk = ∅.

(2) If k is alone in the first ordinary block B1, then the (1,1)-entry is ←. Moreover,

(a) if 1 ∈ R, then the (`, 1)-entry is ← for ` ∈ R, and
(b) if 1 6∈ R, then the (m, 1)-entry is ↓ for m = maxR, and the (`, 1)-entry is ←

for ` ∈ R \ {m}.

(3) Otherwise,

(a) if |R| = 1, then the (`, 1)-entry is ↓ for ` ∈ R,
(b) if |R| > 1 and 1 ∈ R, then the (`, 1)-entry is ← for ` ∈ R \ {1}, and
(c) if |R| > 1 and 1 6∈ R, then the (m, 1)-entry is ↓ for m = maxR, and (`, 1)-

entry is ← for ` ∈ R \ {m}.

We next define the desired map Ckn → T k
n inductively. By Definition 3.1.12, we have

λk ∈ T 1
n . If λk contains ` left arrows, then ϕ(λ) ∈ Ck−1n−ℓ . By applying the map in

Definition 3.1.12 again to ϕ(λ) ∈ Ck−1n−ℓ , we obtain λk−1 ∈ T 1
n−ℓ. By repeating the steps,

we have a sequence λ1λ2 · · ·λk. The concatenation gives an alternative tableau in T k
n

with the same weight as wlr
C (λ).

The bijectiveness can be checked inductively. We sketch the idea of the proof. For
any n and k = 1, the map C1n → T 1

n defined in Definition 3.1.12 is a bijection preserving
the weight. We let T 1

n,ℓ denote the subset of T 1
n such that λ ∈ T 1

n contains ` left arrows.

Then, our maps induce a bijection Ckn →
⋃n

ℓ=0(C
k−1
n−ℓ × T 1

n,ℓ) : λ 7→ (ϕ(λ), λk). By the

inductive assumption, Ck−1n−ℓ is isomorphic to T k−1
n−ℓ . Thus, Ckn → T k

n is bijective. Note
that Case (2) in Definition 3.1.10 and Case (2) in Definition 3.1.12 affect the weight.
In particular, we can check that the bijective map preserves the weight.

In conclusion, we have the following:

Theorem 3.1.13. The above map gives a bijection (Ckn, wlr
C )→ (T k

n , w
st
T ).

Example 3.1.14. For a double Callan permutation λ = (621445, 7632531) ∈ C67 , we
already computed the images under ϕ in Example 3.1.11. The corresponding sequence
λ1λ2 · · ·λ6 of the alternative tableaux and their concatenation are as follows. This is
the alternative tableau given in Example 3.1.8.
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←
←

λ1
...

(3)b

↓

λ2
...

(3)a

↓
←

λ3
...

(3)c

↓
←

λ4
...

(2)b

λ5
...

(1)

←
←

λ6
...

(2)a

←
←

←
↓

←
↓

↓
←

←

→

Figure 3.2: The sequence λ1 · · ·λ6 and their concatenation.

3.2 A sequence of bijections

In the previous section, we studied two combinatorial polynomials Ckn(x) and T k
n (x),

both of which have definitions of the form

P(x) = P(x;w) =
∑
λ∈P

xw(λ)

for a pair (P , w), where P is a set of combinatorial objects and w : P → Z≥0 is a
suitable weight function. In this section, we introduce two additional combinatorial
polynomials, T̃ k

n (x) and T k
n (x), and show that all polynomials coincide. In particular,

we construct a sequence of bijections T k
n → T̃ k

n → T k
n → Ckn preserving the weight.

3.2.1 Packed alternative tableaux

Let T k
n be the set of alternative tableaux of rectangular shape of size n × k as in

Definition 3.1.7. We consider another weight w←T : T k
n → Z≥0 defined by the number of

columns that contain ← but does not contain ↓.

Theorem 3.2.1. The polynomial T k
n (x;w

←
T ) =

∑
λ∈T k

n
xw
←
T (λ) coincides with B̂k

n(x).

Proof. We can check that the polynomials T k
n (x;w

←
T ) satisfy the recursion in (3.4) by

cutting out the rightmost column and the rows that contain← in the rightmost cell.

The packed alternative tableaux introduced by Nadeau [58] complement alternative
tableaux by adding lacking arrows.

Definition 3.2.2. A packed alternative tableau of rectangular shape of size n× k is a
rectangle of size (n+ 1)× (k + 1) with a partial filling of the cells with left arrows and
down arrows, such that
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(1) all cells pointed by an arrow are empty,

(2) each row (resp. column) except for the bottom row (resp. the leftmost column)
contains exactly one left arrow ← (resp. exactly one down arrow ↓), and

(3) the bottom row (resp. the leftmost column) does not contain ← (resp. ↓).

We let T̃ k
n denote the set of all packed alternative tableaux of rectangular shape of size

n× k. For each λ ∈ T̃ k
n , the weight w←T̃ (λ) counts the number of columns that contain

a ↓ in its bottom cell, and at least one ← elsewhere.

By cutting out the bottom row and the leftmost column of a packed alternative
tableau of size n× k, we obtain an alternative tableau of size n× k. It is clear that the
operation defines a bijection (T̃ k

n , w
←
T̃ )→ (T k

n , w
←
T ). Thus, the polynomial

T̃ k
n (x) = T̃ k

n (x;w
←
T̃ ) =

∑
λ∈T̃ k

n

xw
←
T̃

(λ) (3.5)

coincides with T k
n (x;w

←
T ), i.e., T̃ k

n (x) = B̂k
n(x).

Example 3.2.3. The λ ∈ T 6
7 given in Example 3.1.8 corresponds to the following

packed alternative tableau and has a weight of w←T̃ (λ) = 2.

←
←

←
↓

←
↓

↓
←

←

←

↓ ↓ ↓

Figure 3.3: Packed alternative tableau of size 7 × 6.

3.2.2 Double alternative trees

Alternative trees and forests were studied by Nadeau [58]. Based on this idea, we
consider a pair of alternative trees and introduce a suitable weight to the trees.

Definition 3.2.4. A double alternative tree of size n × k is a pair of labeled rooted
trees (T1, T2), such that

(1) the vertex set satisfies V (T1) t V (T2) = {0, 1, . . . , n, 0, 1, . . . , k},

(2) the roots of the trees T1 and T2 are 0 and 0, respectively,
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(3) all children of each red (resp. blue) vertex are blue (resp. red), and

(4) for each vertex, its descendants have a different color or are larger than the vertex.

We let T k
n denote the set of all double alternative trees of size n× k.

Example 3.2.5. This is an example of double alternative trees.

0 0

1 5 6 4

1 3 6 7 2 4

3 5

2

Figure 3.4: Double alternative tree of size 7 × 6.

For each double alternative tree λ ∈ T k
n , we define its weight wch

T (λ) by the number
of non-leaf (blue) children of 0. Here, a vertex is called a leaf if it does not have any
child. For instance, the weight of the above λ ∈ T 6

7 is wch
T (λ) = #{1, 6} = 2.

Theorem 3.2.6. The polynomial T k
n (x) = T k

n (x;wch
T ) coincides with the polynomial

T̃ k
n (x) defined in (3.5), i.e., T k

n (x) = B̂k
n(x).

Proof. We can easily check that the map T̃ k
n → T k

n defined by

0

...

a
n

0 · · · b · · · k

← 7→
a

b

0

...

a
n

0 · · · b · · · k

↓ 7→
b

a

is a bijection (T̃ k
n , w

←
T̃ )→ (T k

n , w
ch
T ).

Under the above bijection, the packed alternative tableau given in Fig. 3.3 corre-
sponds to the double alternative tree in Fig. 3.4.

Theorem 3.2.7. There is a bijection (T k
n , w

ch
T )→ (Ckn, wlr

C ), i.e., the polynomial T k
n (x)

coincides with the polynomial Ckn(x) defined in Definition 3.1.4.
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Proof. We define a bijection φ from the set of labeled rooted trees to the set of strings
inductively. For a singleton T = v, we put φ(T ) = v. Let T be the following rooted
tree:

v0
T =

Tm · · · T1

In this expression, assume that T1, . . . , Tm are rooted trees, the roots R(T1), . . . , R(Tm)
of which satisfy the condition R(Tm) < · · · < R(T1). We define φ(T ) = φ(v0)φ(T1) · · ·φ(Tm).
The desired bijection is given by 0S1 = φ(T1) and 0S2 = φ(T2), which preserves the
weight.

Example 3.2.8. Under the above bijection, the example given in Fig. 3.4 corresponds
to (S1, S2) = (676513132, 4452).

In conclusion, we obtain another bijection between Ckn and T k
n by a sequence of

bijections

(T k
n , w

←
T )→ (T̃ k

n , w
←
T̃ )→ (T k

n , w
ch
T )→ (Ckn, wlr

C ). (3.6)

By the bijection in Theorem 3.1.13, the alternative tableau in Example 3.1.8 cor-
responds to the double Callan permutation (621445, 7632531) as explained in Exam-
ple 3.1.14. On the other hand, by the bijection in (3.6), the alternative tableau cor-
responds to (676513132, 4452) as in Example 3.2.8. The difference arises from the
existence of two weight functions wst

T and w←T for the set of alternative tableaux T k
n .

By translating the weight wst
T via the bijections T k

n → T̃ k
n → T k

n → Ckn, we can

obtain new weight functions for T̃ k
n ,T

k
n , and Ckn. For example, the new weight wbr

C :
Ckn → Z≥0 is defined as follows:

Definition 3.2.9. For each double Callan permutation λ = (S1, S2) ∈ Ckn,

(1) if the string S2 does not start from n, then mark the blue element just before n,
and if S2 starts from n, then we stop the steps,

(2) consider the next largest red element,

(i) if the element is the leading element of S2, then we stop the steps,

(ii) if the element is after a blue element and the blue element is smaller than
the last marked element, then we mark the blue element,

(iii) otherwise, we do nothing, and

(3) repeat Step (2) until we reach 1 or until the step stops.

Then, we define wbr
C (λ) by the number of marked blue elements.
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Example 3.2.10. Let λ0 ∈ T 6
7 be as in Example 3.1.8. By the bijections of (3.6),

λ0 corresponds to the double Callan permutation λ = (676513132, 4452), as in Exam-
ple 3.2.8.

We first mark 6. Since the next largest red element 6 is located after 7, we ignore
this element. The next 5 is after a blue element. Since 4 is smaller than the last
marked 6, we mark 4. The next 4 is the leading element of S2. Thus, we stop the steps
here. The weight is given by wbr

C (λ) = #{6, 4} = 2, which coincides with wst
T (λ0). In

particular, the indicated left arrows in Example 3.1.8 are in 4th and 6th columns.

Corollary 3.2.11. We have a bijection (T k
n , w

st
T )→ (Ckn, wbr

C ), i.e., Ckn(x;wbr
C ) = T k

n (x;w
st
T ) =

B̂k
n(x).

3.3 Further combinatorial models and weights

In this section, we provide another combinatorial model (Ekn , wlr
E ) and prove that the

polynomial Ekn(x;wlr
E ) is equal to B̂k

n(x). We here explain two types of proofs. One type
is by checking the recursion (3.4), and the other type is by constructing a bijection
(Ckn, wRL

C )→ (Ekn , wlr
E ) with a new weight wRL

C : Ckn → Z≥0.

3.3.1 Excedance set of permutations

We introduce the fifth combinatorial set for the symmetrized poly-Bernoulli polynomial
B̂k

n(x) using an excedance set of a permutation, which was studied by Ehrenborg–
Steingŕımsson [21].

Definition 3.3.1. Let [n] = {1, 2, . . . , n}. An excedance set of a permutation λ : [n] ↠
[n] is defined by E(λ) = {i ∈ [n] | λ(i) > i}. For non-negative integers n, k ≥ 0, we set
Ekn = {λ : [n+ k + 1] ↠ [n+ k + 1] | E(λ) = [n]}.

Example 3.3.2. The following lists all elements λ =
(

1 2 3 4
λ(1) λ(2) λ(3) λ(4)

)
in E12 .(

1 2 3 4
2 3 1 4

)
,

(
1 2 3 4
2 4 1 3

)
,

(
1 2 3 4
2 4 3 1

)
,

(
1 2 3 4
3 4 1 2

)
,(

1 2 3 4
3 4 2 1

)
,

(
1 2 3 4
4 3 1 2

)
,

(
1 2 3 4
4 3 2 1

)
We define the weight function wlr

E : Ekn → Z≥0 by the left-to-right minimum.

Definition 3.3.3. We define the weight function wlr
E : Ekn → Z≥0 by

wlr
E (λ) = #{n+ 1 < i ≤ n+ k + 1 | λ(i) < λ(j) for any n < j < i}.

For instance, the permutation

λ =

(
1 2 3 4 5 6 7
7 5 3 2 4 6 1

)
∈ E42 (3.7)
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has the weight wlr
E (λ) = #{4, 7} = 2.

We can express elements in Ekn using the following chessboard of size n+ k+1 with
cracked squares, (see Clark–Ehrenborg [16]).

n k + 1

n+ 1

k

: cracked square

Then, the ways of placing n + k + 1 non-attacking rooks on a cracked chessboard
correspond to the elements of Ekn . For instance, the element λ ∈ E67 given in (3.7) is
expressed as follows:

R

R

R

R

R

R

R
1 2 3 4 5 6 7

1
2
3
4
5
6
7

Figure 3.5: The expression of λ =

(
1 2 3 4 5 6 7
7 5 3 2 4 6 1

)
∈ E42 with the indication of

its weight.

Theorem 3.3.4. Let E0n(x) = Ek0 (x) = 1. For any integers n, k ≥ 0, the polynomial

Ekn(x) = Ekn(x;wlr
E ) =

∑
λ∈Ekn

xw
lr
E (λ)

coincides with the polynomial B̂k
n(x).

To prove this theorem, we define the auxiliary map ψ : Ekn → Ek−1≤n :=
⋃n

i=0 E
k−1
i as

follows.

Definition 3.3.5. For λ ∈ Ekn ,

(1) If λ(n + k + 1) = n + k + 1, then ψ(λ) ∈ Ek−1n with ψ(λ)(i) = λ(i) for any
1 ≤ i ≤ n+ k.
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λ =
λ′

R

7→
λ′

= ψ(λ)

(2) If λ(a) = n+k+1, λ(n+k+1) = b, and b > a, then ψ(λ) ∈ Ek−1n with ψ(λ)(a) = b
and ψ(λ)(i) = λ(i) otherwise.

λ =

a

b

R

R 7→ R = ψ(λ)

(3) If λ(a) = n+k+1, λ(n+k+1) = b, and b ≤ a ≤ n, then we set D = {b ≤ i < a |
λ(i) = i+1} ⊂ [n−1]. Then, we define ψ′(λ) by ψ′(λ) = λ on [n+k]− (D∪{a}).
From ψ′(λ), we construct ψ(λ) ∈ Ek−1n−|D|−1 by rearranging numbers from 1.

λ =

a
b

R

R

R
7→ 7→ = ψ(λ)

Proof of Theorem 3.3.4. We split the set Ekn into disjoint subsets by the above condi-
tions (1), (2), and (3).

(1) The function ψ gives a bijection from {λ ∈ Ekn | λ(n + k + 1) = n + k + 1} to
Ek−1n , which preserves the weight. Thus, we have∑

λ∈Ekn|(1)

xw
lr
E (λ) = Ek−1n (x).

(2) In this case, the function ψ : {λ ∈ Ekn | (2)} → Ek−1n is n-to-1, which preserves
the weight, i.e., ∑

λ∈Ekn|(2)

xw
lr
E (λ) = nEk−1n (x).
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(3) If b = 1, the function ψ reduces the weight by one. In this case, we obtain

∑
λ∈Ekn|(3)

b=1

xw
lr
E (λ) = x

n∑
a=1

a−1∑
|D|=0

(
a− 1

|D|

)
Ek−1n−|D|−1(x) = x

n−1∑
d=0

(
n

d+ 1

)
Ek−1n−d−1(x).

If b > 1, ψ does not affect the weight. In a similar manner, we have

∑
λ∈Ekn|(3)

b>1

xw
lr
E (λ) =

∑
2≤b≤a≤n

a−b∑
|D|=0

(
a− b
|D|

)
Ek−1n−|D|−1(x) =

n−2∑
d=0

(
n

d+ 2

)
Ek−1n−d−1(x).

By summation, we have the recurrence formula

Ekn(x) = (n+ 1)Ek−1n (x) + x

n−1∑
d=0

(
n

d

)
Ek−1d (x) +

n−1∑
d=1

(
n

d− 1

)
Ek−1d (x),

which coincides with that in (3.4).

3.3.2 Another proof by a combinatorial bijection

First, we label the cracked chessboard as follows:

n · · · 1 k · · · 1 0

n

...
1
0
k

...
1

For each double Callan permutation (S1, S2) ∈ Ckn, the placement of n+ k+1 rooks
on the chessboard are as follows: We set S = S10S20.

(1) For each adjacent same colored pair xy (resp. xy) in S, place a rook on y-row,
x-column (resp. x-row, y-column).

(2) Let S = x1x2 . . . xn+k+2. We perform the following operations in the order i =
1, 2, . . . , n+ k + 1:

(i) If there is already a rook in the xi-column, then we do nothing.

(ii) If there is no rook in the xi-column, then we place a rook at the xi-column
and the topmost row among the rows of a different color from xi without
rooks.
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Example 3.3.6. From the double Callan permutation (S1, S2) = (213, 231), we obtain
the string S = 21302310. The corresponding placement of rooks is as follows:

3 2 1 3 2 1 0
3
2
1
0
3
2
1 R

R

R

R

R

R

R

Theorem 3.3.7. The correspondence is well-defined and is a bijection Ckn → Ekn.

Proof. If there are r adjacent red pairs and b adjacent blue pairs in the string S, then
there are n + 1 − r red substrings and k + 1 − b blue substrings. By the definition of
double Callan permutations, the equation n+ 1− r = k + 1− b holds.

By the definition of Step (1), rooks are located on non-cracking squares. The equa-
tion n− r = k − b guarantees the well-definedness of the map. Since we can define the
inverse map, this map is bijective.

Throughout the above bijection, the weight wlr
E allows us to define a new weight

wRL
C for Ckn.

Definition 3.3.8. For each λ = (S1, S2) ∈ Ckn, we consider the string S = S10S20 as
before. Let ` be the number of blue substrings in S. We define the weight wRL

C (λ) using
the right-to-left maximum as follows:

(1) Consider the maximum of each blue substring in S to obtain a sequence π =
π1 · · · πℓ.

(2) Count the number of 1 ≤ i ≤ ` such that, if i < j, then πj < πi.

(3) Subtract 1 from the number.

Example 3.3.9. For λ = (621445, 7632531), we have S = 621445076325310 and π =
64531. The weight of λ is given by wRL

C (λ) = #{6, 5, 3, 1} − 1 = 3. Similarly, we have
wRL
C ((213, 231)) = #{3} − 1 = 0.

Corollary 3.3.10. The above map defines a bijection (Ckn, wRL
C ) → (Ekn , wlr

E ), i.e.,
Ckn(x;wRL

C ) = Ekn(x;wlr
E ).

By direct enumeration of Ckn with the weight wRL
C , we can see that Ckn(x;wRL

C ) satisfies

(3.1). Thus, again, we have Ekn(x;wlr
E ) = B̂k

n(x).
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3.4 An application and remarks

Now, we have various pairs of combinatorial models, (Ckn, wlr
C ), (T k

n , w
st
T ), (T̃ k

n , w
←
T̃ ),

(T k
n , w

ch
T ), (Ekn , wlr

E ), etc. These models all provide the same polynomial B̂k
n(x) and

have their own characteristics. In this last section, we provide an application of the
model (T̃ k

n , w
←
T̃ ).

3.4.1 Combinatorial explanation of the duality

Although the definition of the symmetrized poly-Bernoulli polynomial (3.1) clearly im-

plies the duality B̂k
n(x) = B̂n

k (x), it is unclear from the definitions of our combinatorial
polynomials. To explain the duality combinatorially, we introduce another weight func-
tion for the packed alternative tableau. For each λ ∈ T̃ k

n , the weight w↓
T̃
(λ) counts the

number of rows that contain a ← in its leftmost cell, and at least one ↓ elsewhere.

Theorem 3.4.1. For any n, k ≥ 0, we have T̃ k
n (x;w

←
T̃ ) = T̃

k
n (x;w

↓
T̃
).

Proof. We construct a bijection (involution) f : (T̃ k
n , w

←
T̃ )→ (T̃ k

n , w
↓
T̃
). For λ ∈ T̃ k

n , we

define f(λ) by the following operations simultaneously:

(1) Consider all columns that contain a ↓ in its bottom cell, and at least one ←
elsewhere. For each such column, we slide up the ↓ to the location of the lowest
← in the column, and slide left the lowest ← to the leftmost cell in the same row.

(2) Consider all rows that contain a← in its leftmost cell, and at least one ↓ elsewhere.
For each such row, we slide right the ← to the location of the most-left ↓ in the
row, and slide down the most-left ↓ to the bottom cell in the same column.

←
←

←
↓↓

↓

f7−→ ←
←
←

↓

↓
↓

Figure 3.6: Example of the mapping.

The map is a well-defined involution. Moreover, we have w←T̃ (λ) = w↓
T̃
(f(λ)) for all

λ ∈ T̃ k
n .

By reflecting packed alternative tableaux, we have T̃ k
n (x;w

←
T̃ ) = T̃

n
k (x;w↓

T̃
). Thus,

we obtain the duality
T̃ k
n (x;w

←
T̃ ) = T̃

n
k (s;w←T̃ ).

This provides a combinatorial interpretation of the duality formula.
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As the above argument suggests, it seems natural to consider a two-variable poly-
nomial defined by the weight function and its “suitable” dual weight function. Here,
we will only introduce a few considerations. For instance, the pair of weights (w←T̃ , w

↓
T̃
)

defines the polynomial

T̃ k
n (x, y;w

←
T̃ , w

↓
T̃
) :=

∑
λ∈T̃ k

n

xw
←
T̃

(λ)yw
↓
T̃
(λ).

The two-variable polynomial clearly satisfies T̃ k
n (x, y;w

←
T̃ , w

↓
T̃
) = T̃ n

k (y, x;w←T̃ , w
↓
T̃
) by

reflecting packed alternative tableaux.
Similarly, Bényi–Matsusaka [11] considered a dual weight of wst

T : T k
n → Z≥0 by

reflecting alternative tableaux and all notions. Of course, the same duality formula in
two variables holds, but the resulting polynomials are different generally. In fact, their
two-variable polynomial defined in [11, Section 6] for n = k = 2 is given by

T 2
2 (x, y) = x2y + xy2 + x2 + 7xy + y2 + 7x+ 7y + 6.

On the other hand, ours is given by T̃ 2
2 (x, y;w

←
T̃ , w

↓
T̃
) = 2x2+4xy+2y2+11x+11y+1.

In connection with this topic, Bényi–Matsusaka [10] introduced (r, s)-extended Callan
sequences, and showed a relation to Bayad–Hamahata’s two-variable poly-Bernoulli
polynomials (see also [7]).

3.4.2 Concluding remarks

Recently, Bényi and Matsusaka [10] and Bényi–Ramı́rez [12] introduced combinatorial
models for (non-symmetrized) poly-Bernoulli polynomials, poly-Euler numbers, and
poly-Cauchy numbers based on the idea of Callan sequences. Using the interpretations,
they provided combinatorial proofs for a large variety of known or new equations. It
would be interesting to understand these polynomials and numbers using our various
combinatorial models. As explained in this chapter, our combinatorial objects and
weights have their own advantages. Do our models provide new aspects of these poly-
nomials and numbers?

For each combinatorial set P , there are many possibilities for weight functions. In
this chapter, we defined three weights, wlr

C , w
br
C , and w

RL
C , for the set of double Callan

permutations. As a similar phenomenon, for instance, Dumont–Foata [20] introduced
three weights for the set of (surjective) pistols. The corresponding three polynomials
define the same polynomial, namely, the Gandhi polynomial. Furthermore, it is known
that the Gandhi polynomial coincides with the anti-diagonal alternating sum of the
symmetrized poly-Bernoulli polynomials [48]. This result was shown indirectly by using
the recurrence relations. Is it possible to provide its combinatorial proof? (See also
Bényi–Josuat-Vergès [9]).
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