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Chapter 1

Introduction

1.1. Historical Background

The behavior of elementary particles is governed by four fundamental forces, namely strong
interaction, electromagnetic interaction, weak interaction, and gravitational interaction. Quantum
field theory provides a theoretical framework to understand the first three interactions. However,
the fourth interaction, gravity, poses significant difficulties when it comes to quantization. Incor-
porating gravity into the quantum framework that has been successfully applied to the other three
forces is a challenging task due to notable difficulties. The superstring theory is a way of under-
standing quantum gravity by imagining elementary particles as one-dimensional strings instead of
points. These strings have various vibration modes, which means that a single string can represent
many different particles. From this perspective, gravitons, which are hypothetical particles that
facilitate gravitational interaction, naturally arise. This approach helps to overcome problems
that arise when trying to understand quantum gravity using point particles. However, there is a
significant issue in string theory because there are an infinite number of stable vacuums that exist.
Each vacuum implies different spacetime dimensions and matter compositions. Understanding
which vacuum describes our observable universe requires a non-perturbative approach. In 1974 a
string field theory was proposed[38, 39]; by 1985 a free string field theory was proposed[48, 49].
Later, in 1986, two types of string field theories were proposed: HIKKO model[25, 26, 27, 28, 29],
and the model devised by Witten[52]. They add an interaction to the action of the free string
field theory. In 1996 we saw the development of a non-perturbative formulation of superstring
theory using matrices. This matrix model called the IKKT matrix model[34, 3], is an example of
a candidate non-perturbative formulation, as are the BFSS model[4, 50] and various string field
theories. It is also known that noncommutative spaces appear in various contexts of string theory
(matrix models, string field theories, etc.). Noncommutative spaces are spacetimes in which the
coordinates of the spacetime are considered to be operators rather than ordinary numbers.

Therefore, it is important to consider quantum field theory on noncommutative spaces. In
particular, we focus on scalar ¢* theories on noncommutative spaces. Because scalar ¢* theories
are theories with 3-point interaction for a scalar field ¢, and this is the easiest model of quantum
field theory with interaction. One problem with quantum field theories on noncommutative spaces



is that perturbative renormalization is non-trivial because of the mixing of ultraviolet and infrared
divergences (UV/IR mixing). The term ‘renormalization’ here means that the divergences that
appear in the perturbative expansions are pushed into the redefinition of each parameter that
appears in the theory. The process of removing the divergences is brought about by adding counter
terms to the Lagrangian. However, when the harmonic oscillator potential is added, the UV/IR
mixing is resolved and the theory becomes renormalizable. The harmonic oscillator potential is
the potential of a system of oscillating objects connected to a spring that causes motion. This
scalar ¢* theory on noncommutative spaces with a harmonic oscillator potential is called Grosse-
Steinacker-Wulkenhaar ®* model[13, 14, 15, 18, 19]. This thesis will deal with this model.

On the other hand, we have to mention the history of matrix models from the viewpoint of
2-dimensional quantum gravity. We especially see ®* matrix models. Matrix models related to 2-
dimensional quantum gravities were well studied in the 1980s and 1990s[8]. 2-dimensional quantum
gravities are non-critical string theories, i.e., string theories with (0+ 1) dimension of target spaces.
Each Feynman diagram in perturbative expansions of the matrix models represents a corresponding
simplicial decomposition of a two-dimensional surface. Each Feynman diagram is a graphical
representation of each term of the perturbative expansion in quantum field theory. In particular,
the 2-dimensional surface is represented by ®3 matrix model when considered as a discretized
graph by triangulation. The sum over two-dimensional surfaces corresponds to path integrals of
two-dimensional quantum gravity theories[2, 8]. A monumental achievement of mathematical fact
revealed using ®3 matrix model is the proof of the Witten conjecture by Kontsevich. Historically,
Fukuma, Kawai, and Nakayama proved that the Virasoro constraint is equivalent to the condition
that the solution of the KdV hierarchy satisfies the string equation[11, 55]. Dijkgraaf, Verlinde,
and Verlinde also derived similar results independently[9]. The KdV equation is a nonlinear partial
differential equation that is an example of an integrable system with soliton solutions. The KdV
equation includes a family of higher-order KdV equations, which are expressed as differential
equations. These equations are treated as a system of simultaneous equations, known as the
KdV hierarchy. Witten then showed that the Witten-Kontsevich-7 function satisfies the string
equation[53, 55]. Furthermore, Witten predicted that the Witten-Kontsevich-7 function is the
7 function of the KdV hierarchy[53, 55]. This is called Witten conjecture. Finally, Kontsevich
proved the Witten conjecture using the Kontsevich model[42, 55]. Kontsevich model coincidentally
coincides with Grosse-Steinacker-Wulkenhaar ®2 model. Therefore, Grosse-Steinacker-Wulkenhaar
®3 model is also called Kontsevich model.

Thus, Grosse-Steinacker-Wulkenhaar ®3 model has been further developed. In the following,
Grosse-Steinacker-Wulkenhaar ®3 model is referred to as ®* matrix model. For example, all
multipoint correlation functions of ®3 matrix model in large N,V limit were computed by Grosse,
Sako, and Wulkenhaar by solving exactly Schwinger-Dyson equations[18,; 19]. Here N is the size of
the matrix and V is the noncommutativity parameter. The multipoint correlation function in ®3
matrix model here is a physical quantity in quantum field theory that is the probability amplitude
of observing a particle at n points.

A matrix model as a renormalizable ®* theory on Moyal spaces similar to ®* matrix model is



Grosse-Wulkenhaar ®* model[30, 17]. In the following, Grosse-Wulkenhaar ®* model is called ®*
matrix model. This model corresponds to the quantum scalar field theories on noncommutative
spaces, which is renormalized by adding a harmonic oscillator potential to scalar ¢* theories on
Moyal spaces[16]. This is how ®* matrix model came to be considered. The 2-point function
of ®* matrix model whose Feynman diagrams in the perturbative expansion in large N,V limit
can be drawn in the planar diagrams was solved exactly by Grosse, Wulkenhaar, and Hock[20].
The multipoint correlation functions of ®* matrix model have been solved by Wulkenhaar and
Hock[33]. Multipoint correlation function for ®* matrix model with nonplanar Feynman diagrams
has been studied by Grosse, Wulkenhaar, Hock, and Branahl using a computational method called
“Blobbed Topological Recursion” in [5, 6, 7, 32]. The multitrace matrix model is approximated
using analytical methods, and the multitrace matrix model is also studied numerically by Monte
Carlo simulations in [46]. In August 2023, Grosse and Sako showed that the partition function
of ®* matrix model solves an integrable Schrodinger-type equation for a non-interacting N-body
Harmonic oscillator system[21]. In November 2023, Grosse, Sako, Wulkenhaar, and the author of
this thesis showed that the partition function of a real symmetric ®* matrix model corresponds
to a zero-energy solution of a Schrédinger-type equation with Calogero-Moser Hamiltonian[22].
A family of differential equations satisfied by the partition function was also obtained from the
Virasoro algebra (Witt algebra).

1.2. Purpose

The purpose of this thesis is to make progress in Grosse-Steinacker-Wulkenhaar type noncom-
mutative scalar field theories by using the technology of the random matrix theory.

Exact solutions of all multipoint correlation functions of Grosse-Steinacker-Wulkenhaar ®3
model were obtained by taking large N,V limit[18, 19]. Taking large N,V limit simplifies the
equation for the n-point function, which is given by an integral equation. Because numerous terms
in this equation disappear during the limit operation. Exact solutions of all multipoint correlation
functions of Grosse-Steinacker-Wulkenhaar ®2 model were not obtained for the ones with finite
matrix degrees of freedom. Therefore, one of the purposes of this thesis is to obtain exact solutions
for all multipoint correlation functions in Grosse-Steinacker-Wulkenhaar ®3 model with finite N,V
without any limit operations.

Grosse-Wulkenhaar ®* model is more challenging than Grosse-Steinacker-Wulkenhaar ®3 model.
Therefore, we developed an integrable ®3-®* hybrid matrix model that includes ®* interaction,
which has easier aspects than Grosse-Wulkenhaar ®* model. In this thesis, the goal is to develop
a perturbation theory for this model since it is a newly created model. The other purpose is also
to obtain exact solutions for some of the multipoint correlation functions, which are also required.
The following is more detailed descriptions.

In this thesis, we study ®* matrix model in noncommutative scalar fields of Grosse-Steinacker-
Wulkenhaar type. As mentioned above, all multipoint correlation functions of ®3 matrix model
in large N,V limit are computed by Grosse, Sako, and Wulkenhaar by solving exactly Schwinger-
Dyson equations [18, 19]. However, its exact solution was not obtained due to the complexity of



the matrix with finite degrees of freedom. Therefore, in this thesis, we study the exact solutions of
the multipoint correlation function in the finite Grosse-Steinacker-Wulkenhaar ®3 model without
any limit operation[40]. In calculating the partition function Z[J], where J = (J,) is an auxiliary
matrix, the integration of the off-diagonal elements of the Hermitian matrix is calculated using
Harish-Chandra-Itzykson-Zuber integral[36, 51, 24, 56]. On the other hand, the integral of the
diagonal elements of the Hermitian matrix is done by using the Airy functions. We use the result
to calculate the multipoint correlation function when the external field J is a diagonal matrix. The
exact solutions of the multipoint correlation function when the external field J is a diagonal matrix
can be obtained by calculating the n-th derivative 0"/0J,141 - - - OJyngn of log Z[J]. We apply the
formula from the previous study [23] to this formula. As a result, we succeed in finding the exact
solutions for the multipoint correlation function when the external field J is a diagonal matrix.
Since arbitrary multipoint correlation function can be expressed by using the multipoint correlation
function when the external field J is a diagonal matrix, we can obtain all the exact solutions of ®3
finite matrix model. We also give one-point function, two-point function that has one boundary,
two-point function that has two boundaries, and three-point function that has three boundaries
as concrete function examples. We also study ®3-®* hybrid matrix model in a noncommutative
scalar field of Grosse-Steinacker-Wulkenhaar type[41]. Grosse-Wulkenhaar ®* matrix model has
many unanswered questions compared to ®3 theory. For example, Grosse-Steinacker-Wulkenhaar
3 model can be transformed using Itzykson-Zuber integral[40]. But Grosse-Wulkenhaar ®* model
cannot. So the exact solutions of the multi-point correlation function of Grosse-Wulkenhaar ®*
matrix model for the case of finite matrix degrees of freedom have not been obtained. Also, Grosse-
Whulkenhaar ®* model has an unknown integrable form by the KdV hierarchy. It seems natural
to think that we should study a matrix model that is similar to Grosse-Wulkenhaar ®* model
but removed the difficulties of Grosse-Wulkenhaar ®* model. Therefore, we consider a matrix
model with mixed potentials, in particular a 1-matrix model with 3-point interaction and 4-point
interaction. However, the 3-point interaction of ®3 is multiplied by a diagonal matrix M (®3-
®* hybrid matrix model). This model is a generalized Kontsevich-type integrable matrix model
corresponding to the higher-order KdV hierarchy. In this study, we construct Feynman rules for
this model in terms of quantum field theories. The ®3 interaction is trM®3 and M is inserted so
that it is unconventional Feynman rules. We also compute the connected multipoint correlation
function of this model in perturbation theories and give their exact solutions. First, using the
Feynman rules of ®3-®* hybrid matrix model, perturbative expansions for one-point function that
has one boundary, two-point function that has one boundary, and two-point function that has two
boundaries are computed by drawing Feynman diagrams for matrix size N = 2 case as pedagogical
instructions to understand the way of calculations. Next, we perform perturbative calculations for
one-point function that has one boundary, two-point function that has one boundary, and two-
point function that has two boundaries in the case that the matrix size is any N. On the other
hand, the calculation of the partition function Z[J] in ®3-®* hybrid matrix model can be carried
out rigorously. For the computation of the partition function Z[J], the integral of the off-diagonal
elements of the Hermitian matrix is computed using Itzykson-Zuber integral[36, 51, 10, 56]. In
contrast, the integral of the diagonal elements of the Hermite matrix is obtained by using a function



P(z) that is similar to the Pearcey integral. We then use the exact calculated partition function
Z[J] to compute the exact solutions for one-point function that has one boundary, two-point
function that has one boundary, two-point function that has two boundaries, and n-point function
that has n boundaries for any N matrix size. We verify that the final results of the perturbative
expansions for N = 2 are in agreement with the saddle point approximation using the results of
the exact solutions in one-point function that has one boundary, two-point function that has one
boundary, and two-point function that has two boundaries by setting N = 2. Finally, we make
remarks about contributions from Feynman diagrams of ®3-®* hybrid matrix model corresponding
to nonplanar or higher genus surfaces.

1.3. Organization of the thesis

In Chapter 2, we review Grosse-Steinacker-Wulkenhaar ®* model[13, 14, 15, 18, 19, 30]. In the
previous study, all multipoint correlation functions of ®3 matrix model in large N,V limit were
computed by Grosse, Sako, and Wulkenhaar by solving exactly Schwinger-Dyson equations[18, 19].
In Chapter 3, we obtain the exact solutions of the multipoint correlation function of finite Grosse-
Steinacker-Wulkenhaar ®* model without any limit operations[40]. It is known that an arbitrary
multipoint correlation function can be computed using the multipoint correlation function when
the external field J is a diagonal matrix. Therefore, we compute exactly the multipoint correlation
function when the external field J is a diagonal matrix. In Chapter 4, we consider a matrix
model with mixed potentials, in particular a 1-matrix model with 3-point interaction and 4-point
interaction[41]. Note that the 3-point interaction of ®* is multiplied by a diagonal matrix M
(®3-®* hybrid matrix model). This M allows the model to be integrable. We construct Feynman
rules for this model in terms of quantum field theories. The ®3 interaction is trM®3 and M is
inserted so that it is unconventional Feynman rules. We also compute the connected multipoint
correlation function of this model in perturbation theories and give their exact nonperturbative
solutions. In Chapter 5, we summarize this thesis.

Chapter 3
— Multipoint Correlation
Function in @3 Finite
Chapter 1 Chapter 2 Matrix Model Chapter 5
Introduction Review of Grosse- Conclusion and Outlook
Steinacker-Wulkenhaar Chapter 4
Model Multipoint Correlation Function
in Finite ®3 - ®* Hybrid Matrix
Model

Figure 1.1: connections of the chapters



Chapter 2

Review of Grosse-Steinacker-Wulkenhaar Model

In this chapter, we summarize the definitions and theorems necessary to understand Chapters
3 and 4. We review Grosse-Steinacker-Wulkenhaar ®3 model and its research by Grosse, Hock,
Sako, Steinacker, and Wulkenhaar[13, 14, 15, 18, 19, 30, 31]. They investigated the model as a
renormalizable quantum field theory on Moyal spaces, which historically faced the UV /IR mixing
issue when examining quantum field theories on noncommutative spaces. To solve this issue,
Grosse and Steinacker modified the behavior of scalar ¢* theories by including a harmonic oscillator
potential[13, 14, 15]. This modification helped eliminate the UV /IR mixing issue and allowed for
the renormalization of the noncommutative ®3 matrix model. Thus, scalar ¢* theories on Moyal
spaces are given a harmonic oscillator potential to achieve renormalization.

2.1. QFT on Moyal Spaces and Grosse-Steinacker-Wulkenhaar Model

We review QFT on Moyal Spaces and Grosse-Steinacker-Wulkenhaar ®3 model in the two-
dimensional case for simplicity[13, 18, 30].

We define Schwartz spaces in the two-dimensional case

S(R?) = {g € C=(R?) | sup |z°0%g(x)] < 00 Vo, € NQ} : (2.1)
z€R2
851+52g
where a = (o, as), B = (b1, ), * 1= 28252, and 0%g = —5 3 Lhe Moyal product[12, 45]

Oxy 0zy°

is defined by

) wglo) = exp{ 5 (@104 - u00)} gl

, (2.2)

T =x

0
here 0 € R, Op = —, ) = —,
v S A
the product of functions is noncommutative. From this, the Moyal plane (S(R?),x) := R2 is a set

with a noncommutative algebraic structure[47].

and f,g € S(R?). The Moyal product shows that the order of



We consider the Moyal plane RZ. Then, [f(z), g(z)]s is calculated as follows:

[f(2), g(2)]x = f(x) * g(x) — g(x) * f(2)
=10 {01 f(2)D29(x) — 02 f (2)rg(w)} + O(6?). (2.3)

The coordinates z; (i = 1,2) on the Moyal plane R2 are noncommutative:

(21, 2], = @1 * Ty — Ty * 11
=30 (815(7182%2 — 82261613?2) +0
=10. (2.4)

We define z = x1 + 42y and Z = 1 — tx2. Then

[Z,E]* :[Z'l + ixg,xl — ’iLCQ]*

=20, (2.5)
where we use (2.4). Next we define an annihilation operator a := % and a creation operator
al = \/i_ These satisfy the following relationship: [a, a'], = 210[ Z)s =1, [a,a), = 2—19[z, 2], =0,
and [a',a'], = 219 [Z,Z], = 0. We can use 5 = —\/%_e[cﬂ,o]* and % = \/Lz_e[a, e],. For example,
0z = —L[aT,z]* =1 % = —L[aT,i]* = % = L[a,z]* =0, and @ = L[OL,E]* = 1.

9: Va0 NG SCERNGT] 0z 20

1 1
Let us introduce Fock basis |n) := ﬁgT xal x---xal x|0) = —=(a")" |0), where |0) is defined
n! ~

Vn!

a non-zero vector satisfying a|0) = 0. A number operator is A := a'a. The Eigenvalue n of
number operator N satisfy the following relationship: N'|n) = n|n), n = 0,1,2,---. (n| is a
dual Vector of |n), where they satisfy the following relationship: (n|m) = d,,,. The scalar field is

o= Z D, |m) (n|. Here @, € C satisfies ®,n = Pyr. The action for scalar ¢? field theories

n,m=0
on Moyal spaces with a harmonic oscillator is

2
S|o] :%/dxld:vg{mgb 4(;5*(86 88_>gb~|— ~pxpxp+ 0¢*¢+%¢*a*¢*aﬁ}7 (2.6)

where & is a renormalization constant (real), A is a coupling constant that is non-zero real, and p?



1
is a squared mass. Using 5 = ———|a', o], and —

V20

/ [ ]
(L7 *9

Sleo] =(2.6)

2
:%/d$1d{£2{/€¢+%QS*[(LT’[CL’M*]*-F%gb*gb*gb—{—%qb*qb—k %cb*a*gb*cﬂ}

:%/d:pld:@{ngﬁ—% (%gb*a**a*gb—%gb*a*@ﬁ*cﬁ—%¢*GT*¢*G+%¢*¢*G*GT)
2
+%¢*a*¢*oﬁ+§¢*¢*¢+%¢*¢}- (2.7)

Now, we use /dxldxg = (270)Tr, where Tr satisfy Tr|n) (m| = 6,m, and aa' = [a,a'], + a’a =
14+ N. Then (2.7) is rewritten as
f — A I
S|P = P + 5 Lo Prk P _O(I)nmq)mn
@] 1 Z (K + 3 kPhn + 5 )

n,m,k=0

R 4(1 1
T Z o (_(I)”m |n> <m| N(I)n’m’ |”/> <m/| + §(I>"m |n> <m| Dy |n,> <m/|>

0 411 / /
2oy - (§<I>nm\n> (] B [0 (0 IN>

0 — A 41 4
- (qu)nn + _q)nmq)mkq)kn MO (I)nmq)mn + - q)nmq)mn + = q)nmq)mnm) . (28>
) mzk_o 3 2 62 0

1
— + p2. Then, we get the action of the matrix model:

We define V' = % and p? = v

A uroom
=V Z {ﬁ@nn + 20, Pr + (? + V) cbnm@mn} . (2.9)

n,m,k=0

The size of the matrix is set from 0 to oo, but change it and make this the size N of a finite matrix.

2
We define E,, = % - % Let E = (Epndmn) be a diagonal matrix for m,n = 0,..., N. Then the

action for scalar ¢? field theories on Moyal spaces with a harmonic oscillator potential is obtained
by the following matrix model:

S[®] = Vitr (E<I>2 + kP + gqﬁ) : (2.10)

This is called Grosse-Steinacker-Wulkenhaar ®2 Model.



2.2. Setup of Grosse-Steinacker-Wulkenhaar Model

In this section, we review ®* matrix model based on the previous studies[18, 19, 30, 31], and
we determine the notation.

Let & = (®;;) be a Hermitian matrix for ¢,j = 1,2,..., N and E,, be a discretization of a
monotonously increasing differentiable function e with e(0) = 0,

B =412 (% te (M%)) : (2.11)

where 2 is a squared mass and V is a real constant. Let F = (Emdmn) be a diagonal matrix for
m,n =1,...,N. Let us consider the following action:

S[®] = Vir (E<I>2 + k® + %@3) : (2.12)

where k is a renormalization constant (real), A is a coupling constant that is non-zero real. By the
diagonal matrix £ that is not proportional to the unit matrix in general, there is no symmetry for
the unitary transformation in & — U®U*. Here U is a unitary matrix, and U* is its Hermitian
conjugate.

Let J = (Jmn) be a Hermitian matrix for m,n =1,..., N as an external field. Let D® be the
integral measure,

N
Do :=[[d®; [] dRe®;dImd, (2.13)
i=1 1<i<j<N

where each variable is divided into real and imaginary parts ®;; = Re®;; + {Im®;; with Re®;; =
Re®;; and Im®;; = —Im®j;. Let us consider the following partition function:

:/D(I) exp (—S[®] + Vir(J D))

A
:/Di) exp (—Vtr (E@2 + kD + §<I>3)) exp (Vtr (J®)). (2.14)
ZU] ey
Using log ER the Z N;-point function Gla%---a}vll---\a?---aﬁBl is defined as
i=1
Z[J] - - al Glot..ply - lpP.pB | 1 pr---va
log =y > P el ] | ) (2.15)
Z[O] B=11<Ni<-<Nppl,.pk =1 ( 1N B) B=1 Ns

where NN, is the identical valence number for : = 1,..., B, Tpi . pi H With N;+1=1,
N;

(N1,...,Np) = (N1, ..., N{,... . NG, .. Np), and Siwy, gy = Hl/g!. The ZNi-point function

TV VvV .
" Ve B=1 i=1




denoted by Gq1.

Riemann surfaces with B-boundaries, and each |af - - - aly,| corresponds to the Feynman diagrams
having N;-external ribbons from the i-th boundary. (See Figure 2.1.)

aly, |-JaP B | is given by the sum over all Feynman diagrams (ribbon graphs) on

Figure 2.1: The relationship between external ribbons of Feynman diagrams and boundaries as

expressed in G g1, B

..a}\,l \...|a{3...aNB\

We give the reason why the Figure 2.1 picture for the Feynman diagram is obtained, in the
B

following. We define a Z N;-point cumulant which represent contributions of connected Feynman
i=1
diagrams as

<q)a1a1 <. (I)al alq)a%? s (ba2 a2t q)aBaB <. (I)aB aB>C
192 Ny 91 a193 Ny 91 1A N1
1 0 0
= e log Z|J 2.16
VNt +Ng 8Ja1a1 8JaBaB 05 [ ] ( )
27 1"Np J=0

B

Let us focus on a Feynman diagram with 4" := Z N;-external ribbons. Let ¥ be the number
i=1

of loops contained in the Feynman diagram. Let k3 be the number of Vtr®3 interactions in

kg+ AN
the Feynman diagram. The contribution from such Feynman diagram has Yk =255 dince the
3k3+ A
2

1
contribution from vertexes is V** and the contribution from propagators is % . Also, the

Euler number of a surface with genus “¢g” and boundaries “B” is y = 2—2¢g— B. For this Feynman
diagram, the corresponding Euler number is given by x = (ks + A7) — (w + )+ (AN + ).
Here k3 + .4 is the number of vertexes, (W + /') is the number of the edges, and (A + X)
is the number of the faces in the Feynman diagrams. Note that we count one ribbon as one edge,
here. Let us see the reason why the last +.4" of (W + ) appears in the number of edge,
and .4 also represents the number of faces. For example, we see the i-th boundary. There are N;
faces touching one boundary, since there is N; external ribbons in the Feynman diagram from the

N;
term H Jpipi,, With Ny +1=1. (See Figure 2.2.)
j=1

10



Figure 2.2: The relationship between external ribbons of Feynman diagrams and Boundary 1 as
expressed in Gg1_q1 |
1

B
Therefore the number of all surfaces touching the boundary is A" = Z N; in this case, and A4
i=1
edges appear as not ribbons but segments on boundaries. The contribution from the Feynman

BN yx= A -8 _ 2-20-B- AN -3

diagram has Vs~ So, we introduce G|, B _qn | for

1...a,Jl\,l\...|a,1 AN
pairwise different a; (t=1,---,B, j=1,---,N;) as in the following equation.

@a%a%“'@a}vla}@a%ag”'@ SUCRREY

AN, 91

P B B>c =y2r=Bg . B B |. (2.17)
an, |a1..AaN1|...\zz1 AN

B, B
ay ag

Let us check its consistency with (2.15). Note that

1 il pr pN
VA OTr-- 8J 5 B Z Z Z H Ipl---p}vl\---IplB'---pﬁjg,l
azay ay aN B'=11<.. <NB/ 7p1v /715 1 J=0
1
= V_/G|a%“.a}vl\...|a113...a]%B| X S(Ny,...Np)- (2.18)
Then the .4#'-th derivative of the right-hand side of (2.15) with respect to Jatals s JaBag is given
1*Np
by
! " R.H.Sof (2.15)) =V*"~Bq 2.19
VA 8Ja1a1 . ‘aJaBaB ( AL Of( : )) - |a%...a}vl|‘..\af.l.aﬁB ’ ( . )
201 19%p
and the corresponding one from the left-hand side of (2.15) is given as
! 0" L.H.S of (2.15)) =(® RT SO ® P
VT Dt Oapar (L.H.Sof (2.15)) =(Pajay =+ Pay, a1 Pazaz  Paz a2 Papap *+ Pap_ab)e
271 B

(2.20)

Therefore, we found that (2.17) is consistent with (2.15) when all a} are pairwise different.

11



If there is no condition that any two indexes do not much, then (2.17) is not necessarily correct.
(P Py 1 P22 Ppz2 g2+ Pupyn -+ ®un ,8). might include contributions from several types
192 Ny @1 74143 Ny 1 192 N1
of surfaces classified by their boundaries. For example, let us consider (®,,®,,).. From (2.15),
1 1
(Do Pug)e = VGW‘ + WG‘alal' This means that (®,,P.,). includes contributions from two types

of surfaces which are surfaces with one boundary and ones with two boundaries.

From these observations, it is concluded that we should prepare a connected oriented surface
with B boundaries for drawing each Feynman diagram to calculate G\a%...a}\, . |aB b |- We draw
a Feynman diagram with external ribbons with (ajasy),- - - , (aly,a}) subscripted to each boundary
1. For any connected segments in a Feynman diagram, both ends are on the same boundary.
G\a%-~~a}v1|~--|a?~~a53| is given by the sum over all such Feynman diagrams.

In addition, since it is V%3~ = Vx V2 = Y2 2-B=4/-2 we can consider “genus
expansion” of Gg1 g1 | (45,5 | like [31] as
10Ny ey oy

3kt AN
2
oo
_ —2g (9) 291
Ga%-..a}vl|..-|a?...a53|—EOZV Clat.aly |, JoP o | (2.21)
g:

2.3. Ward-Takahashi Identity and Schwinger-Dyson Equation

We review the derivation of the Schwinger-Dyson equation and Ward-Takahashi identity for ®3
matrix model based on previous studies [18, 30]. First, we calculate the partition function Z[.J] of
®3 matrix model.

Z[J] = /DCD exp (—S[®] + Vir(JP))

PR 0
— [ Ddexp (-
/ P Ta m;ﬂ Ry YAy

\% 1 1
—— (o ) ) (B + B (@ )
op 3 =3 (ot 6 S g ) (B ) o (50— ) )
N
%4 1
X exp Z 5 (/ﬁ(smn — Jmn) m (/idmn — Jnm)
m,n=1

n

A\ N 83
_ _ Z ree
Ve m;‘l e R

9

—Ce5m(v37) 24, o[ J], (2.22)

N
1 A 3
where C' is a constant, Sj,; (Vﬁ%) = 372 nE 3 a7 8§nk 97 and the partition function

12



of the free field Zy,..[.]] is as follows:

V al Jmn - K'émn Jnm - K'(Snm
Zree[J] = exp (5 > ( 5 ZL(E )) : (2.23)
m,n=1 n m

Here, we introduce the Ward-Takahashi identity. We calculated ' = U®U™ = (1+4iu)®(1 -
iu) +O0(u?) = @ +iud — iPu+ O(u?) = ® +ifu, | + O(u?), where U = ™ and u is the Hermitian
matrix. At order u', S[®'] — S[®] = S is calculated as

38 =Vir (iE[u, ®]® + i EP[u, P))

N N

m,k=1 =1

d(Vitr[J®]) was calculated as follows:

S(Vir[J®)) =Vir (J& — J®)

_ i T v {i (T P, — Jkn<1>nm)} : (2.25)

m,k=1 n=1

In addition, since D® = DP’, we obtain the following.

:/Dq)le—S[q)']-i-Vtr[J(I)'] _ /DQQ—S[q)}-l-VtT[J(I)]
_ / D& (<58 + 5 (Vir[Jd])) e-S@H+veriial (2.26)

We applied (2.24) and (2.25) to (2.26). Additionally, we obtain the Ward-Takahashi identity
of ®* matrix model.

= / D (=S + 6 (Vir[Jd])) e SEHVirlJel

m,k=1 =1
N N )

+ Y umkv{z (Jnmv Y Jkn<1>mn)} Z[J]. (2:27)
m,k=1 n=1 n

Thus, the Ward-Takahashi identity of ®* matrix model is given as follows:

13



N

Z 8Jlfajle[J] :(Em—‘iEk){Z (szaik — Jkl@?ml) }Z[J]. (2.28)

=1

Next, we review the derivation of the Schwinger-Dyson equation of one-point function G|,
One-point function G|, can be calculated as follows:

1 0log Z[J]
Glal
Vo 0Jwa |-
1 1 _S [i i} 8
— int .Z ree J s 229
Fa (e zd )| (2.29)
where and e~ 5[V 57) are commutative. Next ——Zfree|J] is calculated as follows:
0 V&
_zZ — _ H-1 _
aJaa free[J] 9 nmzl{( 5ma5na) mn (Kémn Jmn)
+ ("idmn - Jmn) H;L:L (_5ma6na) }Zfree[J]
=— 4 (k — Jaa) Zfreel ] (2.30)
- Haa aa free ) .
where we define H,,,, = F,, + E,. Applying (2.30) to (2.29) gives
1 1 s [Li] V
— int _ _ Z
G| V2] {Ce Vo7 ( i (k — Jaa) free|d] L
N
1 1 A 0 0
= — —K — — Z\J 2.31
m= J=0
N
1 0 0
lcul Z
We calculate mz_l 27107, 97 [J] -
Y10 o N, /0log Z[J] dlog Z[J] 9
Z[J] = < + — log Z[J]
mZ=1 Z[J] 0Jma O am o mZ:1 0Jma OJam  |j—o  9Jma OJam J—0
N
:V2G|2a‘ +V Z G|am| + G‘aw. (2.32)

m=1

14



We apply (2.32) to (2.31), then the Schwinger-Dyson equation for 1-point function of ®* matrix
model are given:

3 N
1 A2
G’|a\ :Haa {—/ﬁ 72 <V2G|2a| +V Z G‘am| + Gaa|> }

m=1

(2.33)

Next, we derive the Schwinger-Dyson equation of the two-point function G|q. When a # b,
two-point function G|, can be calculated as follows:

1 9%log Z]J]

Glop) =— ——22141
VYA

J=0

1 0 C 0 _S. (Li)
— = int\ Vg Z
V 0., { Z[7] 9 (e sreclJ ]> }

<

. (2.34)
J=0
We derive the following equation for the transformation of the right-hand side of (2.34).
&?m e Snt(v57) 7,4, o[ J] :Izbesmt(éﬁz)(]abzﬂee[(]L (2.35)
where (2.35) is computed as
0 10 10 N %
S e—smt(vw)zfreem _ oS+ ) mzn:l{ (—5 (6mOna) Hok (KOpp — Jnm))
4 -1
+ _5 ('%5mn - Jmn) Hmn (5nb5ma) Zfree[J]
—e SV IV HL T Z freel ). (2.36)
We apply (2.36) to (2.34), then
¢ 0 1 1o
Glay = S0t (F5) Sy Z free J)
|ab] HabaJab <Z[J]€ b f [ ] o
C 1 0ZJ] _g, (£2)
= - AV D Ja Z ree J
Hab< Z[JP Oar v e gl J=0
C 1 0 _S. (Li)
— m\VDT) Jp Z free|d 2.37
gz (I )| (2:37)
Next, we calculate
N
—SinelL 2] i 9 9 —Sintl3 2]
o™ vorl Jul| == 15 mz::l ST g v, (2.38)



where

1 AL 1 a9 9 9
— — . 2.
wlvar) =3Y X warmanan 29)

n7m7 =

The calculation of (2.38) can be performed as follows:

[G—Smt’ JbaHJ 0 Z

k=

A k N k
3 S 10 0 9N
V3 0Jmm O OJ

n,m,l=1

J=0
10
Z 8J an e Sinelv 37, (2.40)
We apply (2.38) and (2.28) to CGJ e~ Sint(v37) ] vZ free[J]| to compute the following
ab
0 ~Sint (%) 0 —Sint( ) 0
AV OT) Jop L pree = AV BT 7Ja Zfreeld 5 (JaZ|J
CaJab<6 " ay [JDJO CaJabqe ), | 2 H>+6Jab( 2|
9 Aem 00
~ 9Ju ( V2 2~ 9, 0y ZM) 20
-1 ma m J=0

A0 1 < 0 9
v 8Jab{ E, - E, mz::l (‘]m”ajm ~em 8me> g [‘J]}
+Z[0]. (2.41)

We apply (2.41) to (2.37) to get the following:

G|ab|:1 L1 3{ 1 (aZ[J] az[J)

J=0 o

Hy ' HpZ[0]V ) E,— Ey \ 0Jug

) ) } (2.42)

We obtain the Schwinger-Dyson equation for the two-point function of ®* matrix model.

Glap) =

Hla,, {1 i {E i 7, (Gl = Gin) H : (2.43)

According to (2.15) we can express the connected (N>2)-point functions for pairwise different
indices as follows:

) ) l ) 5 P o Z[J
laraz..an| = 3/ 0Jayay 0Jazas 9J

(2.44)



Similar to the previous way,

11 0 8 0 0
= — . z
Claraz..a V Z[0] 0Jugas 0Jugay  0Janan— OJaran [J]‘J:O
C 1 0 0 0 0 _g (22)
_¢ z . 2.4
VEZ0] 0Juey Dayary s Dlenan (&Jm f’"“m) b @
We use (2.36), then
C 1 0 0 0 S (E2)
_ z . (24
G|a1a2..,aN| Z[O] Ea1 "‘ Ea2 ajagaz &Lmazvfl aJmaN <€ v Ja1a2 free[J]> ‘J:O ( 6>
From (2.40), Ce 5 (¥57) Jy Z ree[J] = AN 00 Z[J] + JuwZ2[J], then
’ V2 2= 0.J,0 0 Jom ’
1 1 ) B ) Aem 9 0
Glaurasan| = — 5> e El
10281 Z10] By + B 0Jugas 0 Jaay 8JMN< v2mzzlajmal T 2 ]> »
1 1 0 0 5,
. waz 2 2.4
. (Jara Z[J]) . (2.47)

+ .
Z[O] Eal —"_ Ea2 a(]6’43652 a(](ZNC"Nfl

Note that the second term is zero because we consider all indices are pairwise different. Using

Ward-Takahashi identity (2.28),
1 1 1 0 0 1 0
Gaag...aN = A I Z\J
| ' | Eal —"_ Ea2 {Z[O] V a{]044043 8t‘]aflaf]\f <Ea1 - Ea2 aJaBal [ ]> }
1 1 1 0 0 1 0
_ - . ZIJ
R\ BV T (e E 2
G\ala aan| T G\ag...aN\
=\ 3E3 o . (2.48)

Proposition 2.1 (Grosse-Sako-Wulkenhaar[18]). Let G4 q,..ay| be connected (N>2)-point func-

tions for pairwise different indices given by (2.15). Then Gq,a,,..ay| 5 given as

/\N72 N N
G\alag,...aN| = 2 Z VV\G,M H Pak(lﬂ (249>
k=1 1=1,l#k

=2 2F, Py =—=—.
where Wg AGq| + 2E,, and Py, BB
Proof. We confirm Proposition 2.1 using a mathematical induction. When N = 2,

Glayas) =(2.43)
1 Wia — W,
= o] = Plasf (2.50)

2 L
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From this, it holds true when N = 2. Next, we assume that Proposition 2.1 holds true for the
fixed N. When N + 1,

G|a1---aN+1\ - )‘Paltm(G\aws any1| T G|az---aN+1\)
)\N N+1 N+1 N+1 N+1
= a1a2 ( Z mak| H Pakal Z ‘/I/Iak‘ H Pakal,) (251)
k=1,k#2 I=1,1¢{2,k} 1=2,l#k

where we use (2.48) and the assumption for N. When we substitute k£ = 1 for (2.51), we calculate
as follows:
N+1

W|a1| H Foyay- (2.52)

When we substitute & = 2 for (2.51), we calculate as follows:

)\N 1 N+1
Wiay| H Pasa,- (2.53)
1=1,1#2
When (2.51) is from k£ = 3 to N + 1, we calculate as follows:
1 N+1 N+1 N+1
Z mak\PalaQ < apail H Pakal - PakCLQ H Pakal> (254)
1=3,1%k 1=3,1#k

Using the results above, we rewrite (2.51) as

G\a1...aN+1| :(251)

\N-1 N+1 N+1
= 9 {VV|0,1| H Palal + I/V\ag| H Pagal
1=1,1£2
N+1 N+1 N+1
+ Z VV\tlk|Pa1a2< aka1 H avar — Pagas H kal>} (2.55)
1=3,1%k 1=3,1#k

where Pya, (Papas — Pagas) = Pagay Pagas- Using this formula for the last line of (2.55), (2.55) is
simplified as

)\N 1 N+1 N+1

Glay.an1| = ZWW H axar- (2.56)
k= I=1,1£k
It holds true when N — N + 1. From this, we can derivative (2.49). O
Proposition 2.2 (Grosse-Sako-Wulkenhaar[18]). We define the notation
aJiNaN — oo --3§:\;1aN3JaNa1 . For Ny > 1 and pairwise different indices,
Glatal. al, |a2..a2, | laP..aB | — Glalad..ak |a2..a2 |..|aP..aB
Gla..al, |.lab..aB | = A - : Egl ) - : = (2.57)
al al
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Proof. For pairwise different indices G|,

Lo, |laP..af | COI be expressed as

oM ONB Z[J
G\a ~ak, |..laB. .aB VBi2 log [ ]‘
N ! NB 60]](11...0,1 a‘]]aB...aB Z[O] J=0
19Ny 1-%Np
C N1 N> oNs ) Lo
= VB2 » StV 37) Z e[ J 2.58
Z[0] 0,001 0Jp 1002 2 Olp up <8Ja1a1€ sreel] (2.58)
293 N1 19Ny 1 N 1 J=0
We use (2.36), and then
G\a%...a}\,l|...|a{3...aﬁ3| = (258)
C 1 8N1‘1 8N2 8NB 10
_ 1/B-1 *Smt(*af)J z J)
v Z[0] By + By 00+ 0Ju1 1 0002 02 00,5 o0 (6 77 Jojat Zgreel ]
1 2 243 N1 %1 1INy Np J=0
(2.59)
(v4) \y
F 2.40), Ce mt\var) J, Ze o [J] = —— Z[J] + JwZ[J], th
om @0, €754 B uZpld) =~ 32 5 2+ uZ ), e
G
laj.. C"N| Jaf .. “NB‘
1 1 oM oN: N a
= VBt . Z Z[J)
Z[O] Eg+E10Ju,--0J0 10 00,2 .2 A — ma @Jalm
1 2 293 N1 % 19Ny 1- = J=0
1 1 oMi—1 N> aNB
b1 Z 2.60
v ZI0] By + By 0Jy1g1 - 0Jyr 01 03z 2 0yn o0 (J“%“i [J]) (2.60)
1 2 293 N1 19Ny 1 N J=0

The second term is zero because we consider all indices are pairwise different. Using Ward-
Takahashi identity (2.28),

G 1 1 B B
|a1...aN1|...\a1 ...aNB|
_ VP (=N oM N N i (s 0z oz )
T Z[0] B% —E2% 0dp, .. 0dp 1 00 02 O0,p om T DT
aj a; 293 N1 10, 10N m= J=0
_ Ni—1 Ni—1 Na Ng
I ) ( 0 S ) 0" 9 ez
E? — Ot a1 Aatat..at, 7 02, a2 Ol 48
aj ay 20Ny Ny 10Ny 1 ONg J=0
G|a%a§ aNl\al aN2| JaB.. aNB| _G|a2a3 aNl\al a§v2| |alB..Aaf,B|
» - | (2.61)
From this, we can derivative (2.57).
[
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Proposition 2.3 (Grosse-Sako-Wulkenhaar[18]). For pairwise different indices the (N1+---+Np)-
point function is

Ny Ng B Ng
P— L_B DY
Glapaytapa, =N D 3 Gy o [T I o= (262)
ki1=1 kp=1 B=1 lg=1 akB alﬁ
lg#kg

where L = Ny + ---+ Np.

Proof. Here, we follow the discussion given in Hock[30] for the proof of this proposition. We confirm
Proposition 2.3 using a mathematical induction. When Ny =2 and Ng = 1for all 5 € {2,---, B},

B Ng
G latafa(a?)--|aP| AZGwa veopt [T 1 =5
k=1 B=1 Iz=1 ak g
_, Glatladl-dap| = Gladjad)..la) (2.63)
E21 _Ezl
1 2

From this, it holds true when N; = 2 and Nz = 1 for all 5 € {2,..., B}. Next, we assume that
Proposition 2.3 holds true when N;. When Nj + 1,

G\a%---a}vl+1\---\af---a3 |

NB

>\L+1BZ ZE2_ 3

ko=1 kp=1 al

B Ng
2ﬁ2lﬁ1 a

k l
le7#ks ’ ?
Ni+1 Ni+1 Ni+1 Ni1+1 1
x| 2 Gl 11 - Gua s [ =— | (264
byl 1af, ) L] e ok, la2,|--[aF, | 7 g | (264
k1=2 11=2 akl all k1=1 l1=1 Ay ar,
I £k k142 £kt l1#2

where we use (2.61) and the assumption for N;. When we substitute k; = 1 for (2.64), we calculate
as follows:

Ng B Ng Ni+1

I 3 | 1 e D | e
ko=1 kp=1 =2 ZB 1 ak,@ CLl 11=2 0‘1 al1
ls#ks

When we substitute k; = 2 for (2.64), we calculate as follows:

Ng B Ng Ni+1

1
- BZ D = | Gy 1l =g |- (266)

ko=1 kp=1 =2 lﬁ 1 ak, l1=1 a’2 all
la#kg A ﬁ 11#2
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When (2.64) is from k; = 3 to ky = Ny + 1, we calculate as follows:

Np B Nﬂ

eyt D2 =5

ke=1  kp=1p=2 lg=1 ak

l
ls#ksp ’ s
Nitl Ni+1 Ni+1
A3 0ty I
|‘1k1‘ak2| |akB‘E2 < EQ _E2 E2 _ 21
k1=3 lh=2 akl al1 h= ay
li#k1 1175/@1,[1752
Using the results above, we rewrite (2.64) as
G|ai"'a}v1+1|“‘|a?“'aﬁ | = (2.64)
Ng B Ng
O DM Il &z—&
ko=1  kp=1p=2 lz=1 akﬂ lﬁ
lp#kg
Ni+1 Ni+1
{—Gmﬂ% ot 11 oo E2 = Glaaz,-af1 11 R
L=2 aj (111 li=1 “a} al1
1172
E T e a—— S - -
halo, 10 B2 — B2 E?, - E? E% —E% )
k1=3 11=2 akl all =1 ak1 all
l1#k1 1175]61,[17&2

(2.67)

(2.68)

1 1 1 1 _
where ECQLI — Ezl (Eazl — Esl — E§1 — E31> = _Ezl N E21 for any k; > 2. Using
1 2 k 2 k 1 k

this formula for the last line of (2.683, G

boad |-|afaB | 18 simplified as

GM...@}V +1|~--\a13~~~aB | = (2.68)

Ni+1 B Ng

Ni+1
ST D SN It 1
|ak1\a [ |a \ E2 _E2
ki=1  kp=1 B=2 lg=1 ak af L=1 " aj, aj,

lg;ﬁk‘ﬁ B B ll7ék1

(2.69)

It holds true when Ny — N; +1. And N3 — Ng + 1 can be calculated in the same way. From

this, we can derivative (2.62).
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Chapter 3

Multipoint Correlation Function in ®° Finite
Matrix Model

In this chapter we find the exact solutions of the ®* finite matrix model (Grosse-Steinacker-
Wulkenhaar model)[40]. In the ®3 finite matrix model, multipoint correlation functions are ex-

B
s . The ZNi—pOint function denoted by Glai-

..a}vl\...\alB...aNB
1=1

by the sum over all Feynman diagrams (ribbon graphs) on Riemann surfaces with B-boundaries,

and each |af - - - aly | corresponds to the Feynman diagrams having Nj-external lines from the i-th

boundary. It is known that any Gla%- o5 | can be expressed using G|q1)...|q»| type n-point
B

pressed as G|q1. .l |.JaP...aB | 18 given

~ak, |..]af ..
functions. Thus we focus on rigorous célculations of Gjq1)..jan)- The formula for Gq1|. |qn| is ob-
tained, and it is achieved by using the partition function Z[J] calculated by the Harish-Chandra-
Itzykson-Zuber integral. We give G|, Gap|, Glap|, and G|qpp|c| as the specific simple examples. All
of them are described by using the Airy functions.

3.1. Setup of ®* Matrix Model

In this section, we review the ®3 matrix model based on the previous studies[18, 19, 30], and
we determine the notation in this chapter.

Let ® = (®;;) be a Hermitian matrix for ¢,j = 1,2,..., N and E,,_; be a discretization of a
monotonously increasing differentiable function e with e(0) = 0,

By =122 (% te (”;;Vl)) | (3.1)

where 2 is a squared mass and V' is a real constant. Let £ = (E,,_10,,,) be a diagonal matrix for
m,n=1,...,N. Let us consider the following action:

S[®] = iVitr <E<I>2 + k® + §©3> , (3.2)

where k is a renormalization constant (real), A is a coupling constant that is non-zero real, and
i = v/—1. Compared to the paper[18], the difference is that V is replaced with V. By the
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diagonal matrix £ that is not proportional to the unit matrix in general, there is no symmetry for
the unitary transformation in & — U®U*. Here U is a unitary matrix, and U* is its Hermitian
conjugate.

Let J = (Jmn) be a Hermitian matrix for m,n = 1,..., N as an external field. Let D® be the
integral measure,

N
Do :=[[do; [ dRed;dmd,, (3.3)

i=1 1<i<j<N

where each variable is divided into real and imaginary parts ®;; = Re®;; + {Im®;; with Re®;; =
Re®;; and Im®;; = —Im®j;. Let us consider the following partition function:

:/m exp (—S[®] + iVir(J®))

— / DP exp (—@Vtr (Ecb2 + kD + gqf”)) exp (iVtr (J®)). (3.4)

B
ZJ
Using log [ ], the Z Ni-point function G|, | is defined as
i=1

Z[O] 1"'“}V1|“"“18"'CLNB

> > N Gp1 PN Pl- PN p1 pN
logi[[g]] =3 Y Y vyl H )

B=11SNi<-<Np pl,..p8 =0 S, B=1

N;

where N; is the identical valence number for i = 1,..., B, [, ,, = H Jpipi With Ny +1 =1,
j=1

S
(N1,...,Ng) = (N{,...,Nj,....N.,...,NY), and S(n,,..vpy = [ [ s
%,_/ %,_/ B2
1% Vs

3.2. Calculation of Partition Function Z[J]

In this section, we perform the integration of the partition function Z[J] by dividing the
Hermitian matrix into its diagonal and off-diagonal elements. The off-diagonal elements of the
Hermitian matrix in the partition function Z[.J] are integrated using the Harish-Chandra-Izykson-
Zuber integral [36, 51, 24, 56], and the integration of the diagonal elements of the Hermitian matrix
in the partition function Z[J] is performed by using Airy functions. The calculations are essentially
in line with the calculations of Kontsevich [42]. We write without omitting details because the
results are different due to the presence of external fields J and the renormalization term &.

~ ~ 1 B, _
We introduce a Hermitian matrix E = (E,,0p,) = ~E = (Tlémn) form,n=1,...,N and

; = %. Note that the indices are shifted i.e. F = diag (EI, e ,EN) and E = diag (Eo, -+, En_1).
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Then Z[J] is written as

Z[J) = / DP exp (—mvu (E;DZ + %(D + %@3» exp (iVtr (J®)). (3.6)

We introduce a new variable X by & = X — E. Here X = (Xmn) is a Hermitian matrix, too. We
do a change of variables of the integral measure D® as

N
d(I)Z‘j =

m,n=1

0D,
DX

AX n = dX;. (3.7)

E®® RO 1
By the variable transformation tr ( 5 + % + §<I>3> is

2 6

E®2 70 1 X)3 —3(E)2X +2(E)? + 35X — 35E
(B L) o (St )

then Z[J] is given as

Z[J] :/DX exp <—2i)\Vtr ((X>3 — 3(E)2X + 2(E)® + 38X — 37{@“))

6
X exp (z’Vtr (JX _ JE))
=exp (—i)\Vtr (g(E)?’ —RE + %JE’))

1 1 ~
X /DX exp <+i/\Vtr (—T{X + XJX - §X3 + (E)QX))

=exp (—i)\VtT (g(ﬁ)?’ —RE + %JE))

AV -
X /DX exp (—i?tr(X?’)) exp (iINVEtr{(M — I + K)X}). (3.9)
E)?  E?
Here M = ( ~) = K= i, and [ is the unit matrix. Note that
K K K

DX = (ﬂ d@») ( I @- xk)2> du, (3.10)

1<k<I<N

where x; is the eigenvalues of X for ¢ = 1,--- | N, dU is the Haar probability measure of the
unitary group U(N), and U is the unitary matrix which diagonalize X [44, 10]. Then (3.9) can be
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rewritten as the following:

Z[J] = exp (—i)\Vtr (2(5)3 —RE + %JE))

/ (i{dmiexp (—z%m?’)) ( 11 (xl—xk)2>

1<k<I<N

/dU exp <i)\V7{tr{(M — I+ K)U)N(U*}) : (3.11)

where X is the diagonal matrix X = U*XU. We use the following formula.
Fact. The Harish-Chandra-Itzykson-Zuber integral [36, 51, 24, 56] for the unitary group U(n) is
det (exp (tAi(A)N;(B)))

1<i,j<n

/ exp (ttr (AUBU™)) dU =c,, (3.12)
U(n)

(n2—n)

T AMA)ANB)

Here A = (A;j), and B = (B;j) are some Hermitian matrices whose eigenvalues denoted by
Xi(A) and N(B) (i = 1,--+ ,n), respectively. t is the non-zero complex parameter, A(N(A)) =

n—1
H (Aj(A) — Ni(A)) is the Vandermonde determinant, and ¢, = <H it x 7" s the
1<i<j<n i=1

constant. (exp (tA;(A)N;(B))) is the n x n matriz with the i-th row and the j-th column being
exp (tAi(A)N;(B)).

Applying Harish-Chandra-Itzykson-Zuber integral (3.12) to
/dU exp (MVT{tr{(M — I+ K)U)?U*}) in (3.11), the result is

c 1<(3?£N exp (iIAVKz;s;)

N‘H%—%H SZ)7

1<J 1<J

/ dU exp (z’/\VEtr{(M 1+ K)UXU"} ) (3.13)

N
where s; is the eigenvalues of the matrix M — I + K fort = 1,--- /N and C = (Hp!) X

p=1
N(N-1)

( , )\7;/~> © . (exp (iA\VEx;s;)) denotes the N x N matrix with the i-th row and the j-th column
iINVE
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being exp (1AVKx;s;). Then the partition function Z[.J] is described as

Z[J] :%exp (—Mvw (g(ﬁ)3_gﬁ+%Jﬁ)) T 1

(5u — 5¢)

1<t<u<N

/ (Hdwzexp (—zA—V:c?’)) ( I1 (:Ul—xk)) Ldet | exp (IAVFz,s,)

1<k<I<N

(E)3—RE+§JE)) 1l tsu_st)

1<t<u<N

/ (Hd@exp( z&x)exp(i)\V%xisi)) IT (- (3.14)

1<k<I<N

=C'exp <—2’)\Vt7“ (

[GVIN )

Here we use the following result at the second equality in (3.14):

al AV
/ (H dx; exp (—z?xf)> ( H () — xk)> légicSN exp (INVEZ,sy)

<% [ (Moo (750 (I o) (T
—U;SN / (ﬁ dz; exp (_Zﬂx3)> (Klgw(m_xk)) (—=1)7(=1)° (ﬁ eWEW)
_ NI / (Hdmiexp (—@%x?’) exp (i/\VEx,-si)) T (oo— ) (3.15)

In the transformation of the above equation from the second line to the third line, we changed
variables as x5 — ; (i =1,--- | N).

Usi — = det (=1 lculate th ining integral in the right-hand
smg 1<IE<N(ZL“Z xk) lgk,elgN (xk ), we Calculate e remamlng 1n egra mn (§] I"lg an

side in (3.14) as

N

o0 AV . 1~ k—1
/_OO (H dz; exp (—z?xi) exp (MVK;S;U,-)) deZt<N (ml )

i=1

= Z sgnJH¢U

ocESN

= det (Qbi(sj)) : (3.16)

1<4,j<N
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where ¢(z) is defined by

or(2) :/ dx zF 'exp (—i/\?vmg + iVIiZL‘Z) : (3.17)

o0

and (¢;(s;)) is the N x N matrix with the i-th row and the j-th column being ¢;(s;). Summarizing
the results (3.14) and (3.16), we obtain the following:

Proposition 3.1 (Kontsevich[42], N.K-Sako[40]). Let Z[J] be the partition function of ®3 matriz
model given by (3.4). Then, Z[J] is given as

det (¢i(s;))

1<i,j<N

I Gu—s0)

1<t<u<N

Z[J] =Cexp (—i/\Vtr @@)3 —RE + %JE)) (3.18)

Note that ¢ (z) is expressed as

k-1 k=1 oo
or(z) = (%) (%) /_ dx exp (—z%xs + iVHl‘Z) : (3.19)

We use Airy function:

Ai(vL) :% /00 exp [Z (Lx + 31‘_;) ]dm. (3.20)

—0o0

Here v € R\{0} and L € R. Substituting (3.20) for (3.19), ¢(z) is calculated as follows:

) o —27 d\*? )
¢k(2):<(>\\/)§> ((AV)é) (d_y> Aily

N.K-Sako[40] differs from Kontsevich[42] in that k = J =01is k = J # 0.

(3.21)

Vkz

1
(V)3

Proposition 3.2 (Kontsevich[42]). Let (AiY=Y(y;)) be the N x N matriz with the i-th row and

j—1
the j-th column being AV~ (y;) = (dd ) Ai(y;). We then obtain the following:
Yi

aer (0 =TI (0 =04) ) i) o),

The proof is omitted in [42], so it is appended for the reader’s convenience.
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Proof. Here, we follow the proof given by N.K-Sako in [40]. We calculate det (4i%(y;)) according
to the definition of the determinant.

det (Ai(j_l)( i) = Z sgno H Ak yg(kﬂ

cESN

= Z sgno H " (k+1) (Yo (kt1)), (3.22)

oESN
N-1

where Sy is the N-th order symmetry group. For H using similar calculation to the

Yo (k+1)

Vandermonde determinant, det (Az =1 (yz)) is as follows.

det (Az =Dy Z sgno (H . k+1)> Ai(yy) - -+ Ai(yn)

ogESN

- ( T .- 8yj)> Ai(yr) -+ Ai(yw)- (3.23)

1<i<j<N

We introduce

An(yr, -+ yn) = < II @, —%)) Ai(yr) -+~ Ai(ywn), (3.24)

1<i<j<N
Vks; , ‘ '
where y; = — - for j =1,...,N. From this, det (¢;(s;)) is calculated as follows:
()\‘/)§ 1<i,j<N
N(N—1)
(1)) = (—2m)V
et (9i(si) = ( ) An (Y- un)- (3.25)

Summarizing the above results, we obtain the following:

Theorem 3.3 (Kontsevich[42], N.K-Sako[40]). Let Z[J] be the partition function of the ®3 matriz
model given by (3.4). Then, Z[J] is given as

:/DCI) exp (—inr (E<I>2 + KD + %@3)) exp (iVtr (JP))

—iV
/6Ttr(JE)AN(yl7 ) yN)

=C . (3.26)
H (Su - 5t>
1<t<u<N
. N N(N+1)
iV, (2 (=27 ==z . .
Here C" = exp (—Ftr (gE3 - )\FLE)) (gﬂ) TG0 NEN-D NG sy s the eigenval-
E? J VKs,;
ues of the matrix — — I+ — fort=1,--- N, and y; = — HSJI forj=1,--- N.
MK K (A\V)s
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3.3. Calculation of 1-Point Function G|, and 2-Point Function G|y,

In the calculation of the 1-point function G|, the external field .JJ can be treated as the diagonal

E.)2
matrix J = diag (J11,- -+, Jyn). Then the eigenvalues s; in (3.26) is given s; = w — 1.
K
Then, the 1-point function G|, is calculated as follows:
_ 1 dlog Z|J]
R Y S
(i) 9 ( VIR Ay (g1, y) )
iV ) 0Jua H MNEW? = ME)? 4+ (Juu — Ji) J—o
1<t<u<N R
= S : (3.27)
AN(yb T ,?JN)
s 2 : 2
I (CtE?-Ep
1<p<g<N

VE? g
where y; = — ]:1 + VKI — ijl for j =1,..., N. Note that
AV)sA - (AV)s (AV)3

0 , =
Ww{e_thr(JE)AN(yh . 7yN)}

R VE A —iVtr(JE —iVtr(JE V
= —iVEue V"I Ay (g1, yn) e VIR ——— ) (9,AN(y1, - L yw)), (3.28)
(AV)3
where 0, An(y1, - ,yn) = 5 An(y1,- -+ ,yn). Next, we use the following formula. Let v, =
] Ya
on(Zn) = 1<de£N(xj)l’1 be the Vandermonde determinant for Z,, = (z,---,x,) € R™. For any
Y2V
1<k<n

On _ En: Un () (3.29)

or, Tr — T;
k i=1,i#k k ¢

(See for example [43].) Using this formula, we get

NV i-1
0 DY 7 det (aE)L T
0Jua | \ K |G (E5)"+ Ty

~ i—1
(N-1) )2 iy
NORE> oty (VBN + 75)

e AE)? + Jaa) — (ME)? + i)

(3.30)
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Substituting (3.28) and (3.30) into (3.27), finally G|, is expressed as

N
Eoy A 1 1 1
Gl = — - =Y ———+(3) |- | Oalog An(21,-- -, 2n), 3.31
a NV E2_1_E§1+(z>< ()\V)3> oAl osow) (331)

i=l/i#a @

VE?
where z; = ——— L ¢ Vﬁlforjzl,...,N,andc?a: 0‘
AV)sA  (AV)3 0zq

Next, let us consider 2-point functions Gju (@ # b, a,b € {1,2,--- ,N}). For the calculation,
we put J as the matrix all components without J, Jy, are zero. Note that trJE = trJ E =0 for
this J.

At first, we estimate eigenvalues s; fort = 1,..., N of the matrix M — I+ K. The eigenequation
is

0 =det(s] — (M — I + K))

N
E2 E2, E?
= S | 2 _Tbel Tasl 4 g
(H (s M+)>{s+< T T2

i=1,i%a,i#b
Eg—lEg—l . El?—l . E3—1 + 1— Jabea
22 K AK k2
(3.32)
E2
Eigenvalues of the matrix M — I + K are labeled as s; = ;_1 —1fort+#a,b,
K
B, | B, EX, B\ JabJp
a— — _ 2 a— _ — 4 a a
)\/i+)\l<é * ()\KJ )\Ii>+xl‘£2
Sa = , (3.33)
2
E? |
aljmo =—— —1 3.34
Sulymo == (3.34)
and
Eg—l + Eb2—1 —9_ Eg—l . El?—l ? 4 Jabea
AK AK AK AK K2
Sp = , (3.35)
2
Ep
g = — 1. 3.36
Sb|J_0 e ( )



Let us calculate G, by using these s;.

o 1 0%log 2[J]
TV 0Jw0 e |,
o IT (su—=s0)li=o
_ 9Ju0Jba Ax(yn - yn) o 1st<usN
iV H (Su—St) AN(yla'" >yN)‘J:0
1<t<u<N J—o

82
An(yr, - ,yN)m{l<tg<N(Su - St)} H ($u = st)|u=0

1<t<u<N

_ X . 3.37
2 An(y1, -+, yn)li=o (3:37)
iV H (Su — St)
1<t<u<N J=0
8AN(y1 e yN) 0 1<%?£N(Sl)k_l
Here we use S = — = = (), since s, and s, are functions of
0Ja J—o 0
A e
(JabJba) as we see in (3.33) and (3.35), then 0 N(y(;j] 2 Yw) and
ab
a1<(/%PZEN(SZ)k_1
= 5Jb are of the form Jy, x (---).
V ks ) Oy
Recall that y, = —( )1 . Using the fact that =0
3 ab | j=0
and Pyo _ VA L _ % we obtain
0Jpa0Jay  (AV)3 B2, —EZ,  0Jw0Js’
82
WAN(:UM L UN)
a a J=0
VA 1
= A . — 0,A e , :
()\V)% Egil — Eg_l (ab N (2:17 7ZN> 8 N (Zl ZN)) (3 38)
VE?
where z; = — ()\ngl)\ + (/\‘(/F;l for y =1,..., N. Similarly, we get
3 3
o { 1
(Su — st)
0Ja0ba | | oyen J—o
2 al 1 al 1 .
“EL R, ( By DD E) ST B3
i=1,i#a =1,i#b
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where we use the formula (3.29), again. Substituting (3.38) and (3.39) into (3.37), G|a (b < a,
and E, < E,) is finally obtained as
N

G Al L
abl — 7
! WV i=1,i#a (E271 - E?—l)(Ec%fl - El?—l)
2 & 1
+ =
WV i=1,i#£b (Eb2—1 - Ez?—l)(Eg—l - Eg_l)
A 1
- D, log A (21, . .,
IOV B, B, " ACTRRRELY
A 1

+ Oy log An(z1,. .., 2n). 3.40
O B~ By A2 .

We now refer to Schwinger-Dyson equation

1 (Glaj — Gpyy)
R N L L A1
o Ey 1+ Ep ( + AE(H —E, . (3.41)

in reference[18]. Substituting (3.40) for the left side of (3.41) and (3.31) for the right side of (3.41)
shows that Schwinger-Dyson equation (3.41) is indeed satisfied.

3.4. Calculation of n-Point Function G|,1j42|... a7

The goal of this section is to obtain the explicit formula of n-point function G|41|a2...[qn|. Here
a® is the pairwise different indices for 8 = 1,...,n. From the definition in (3.5), n-point function
G‘al‘a2|,,,‘an| is given by

e o Z[J]
La2l...]lan| — n=2 1 42
G|a laZ|-]a™| (iV) Tt - 0Ty 0g Z[0] o (3.42)

We use the formula in [23]:
o olBly

————fw)=>_M"w]] , (3.43)

R S 1

jeB

where f(y) is the differentiable function of the variable y = y(x1, s, ..., z,), Z means the

sum over all partitions 7 of the set {1,...,n}, H is the product over all of the parts B of the

Bem
partition 7, and |S| denotes the cardinality of any set S. Applying (3.43) to (3.42) n-point functions

Ga1(a2|.-|an| 18 expressed as follows:
}H OB Z [
z=Z|0]

||
Glatja?|-fan| = (@)™ ’ Z{ ( ) (log 2) H o.J
Ber alal

jEB

(3.44)

J=0
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OB Z]J]

1070

JjEB

After the calculation of

, we get the following result.
J=0

Lemma 3.4 (N.K-Sako[40]).

N(N+1)

, N
2 P
We introduce C = exp (—Z)\—Ztr <§E3 — )\HE)) (I Ip!) (—2)N N(;val) Ny - Lhen
V=73 )\ &

p=1

G‘B‘Z[J] B _i E
HaJajaj J_o_cé<<g( v A ))
Vv
(e -
0 1
R TN )) .
VEngl \%

K

— + —forj=1,...N, Oy =
onix T awE I T b e =g
S runs through the set of all subsets of B, S is the complement of S in B, M runs through the set
of all subsets of S, and M = S\M.

E_ 2
(keM),tl:( l;) forl=1,...N,

where z; = —

Proof. For the calculation of G4142|...|an|, We can choose J as a diagonal matrix
)\(Et)2 + Jtt

diag(Ji1,- -+, JJyy). Then, s, =
K

— 1. To calculate

OBl z[ ] o!B —iVir(JE) A .
IS T P ) -
Jaiqi 17=0 Jajai N\ det ()\ E)?2 + J..> J=0
b o L SGSeN (E5) Ji
we use the formula in [23]:
o olSly, o(n=151y,
—(w) = . , (3.47)
Oz -+ Oz, S [Lies Oz Tljgs07;
where u, and v are differentiable functions of the variable © = (x1, x9, ..., ,), and S runs through

the set of all subsets of {1,...,n}.
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Using the formula (3.47) twice for (3.46), we obtain the following :

a|B|Z[J] 8|S|67inT(JE) 6|M|AN(y1, e 7yN)
R =C - - §
H aJajaj J=0 SCB HaJaia" JZOMc? H 8Jakak

JjeEB ieS keM

J=0

(3.48)

J=0

oMl ( 1 )
H aJa‘laq detN <)\(El)2 + Jll)]_l

- 1<1,5<
qu —_ ’.7_

V E? J
For the diagonal J, y. = (— " ) ( M1+ ﬁ), then the above is rewritten as
K

(AV)3 MK
(3.48) :CS;B ( <1€_£ (—iVE“;1>>
>

(({n () )

0 1
() ) =

q€M 1<l,j<N

VE? 1% E;_1)?

j11+ Klforjzl,...N,tl:( 1)
(AV)sA  (AV)3 3
set of all subsets of B, S is the complement of S in B, M runs through the set of all subsets of S,
and M = S\ M.

where z; = — for { =1,...N, S runs through the

]

Note the cases that each set is an empty set,

Vv
1, {H (— ()\V)é) aak} AN(Zh . ,ZN) = AN(Zla e 7ZN>7

kel

/|\
<
e
> %
N
[

i€

0 1 1
d — = —.
" g Otas [ det (#7')  det (47

1<Lj<N 1<lj<N
Summarizing (3.44) and the result in Lemma 3.4, we obtain the following:

Theorem 3.5 (N.K-Sako[40]). We suppose the partition function Z[J| of the ®3 matriz model is
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defined by (3.4) and G\a1)q2|...;an| s defined by (3.42). In this case,
Glatja?|-fan|

e (@) el ()

V
= <<{,Hw <_ <Av>é> a“k} B ’ZN)>

qeM Ot H (t; —t)

1<I<j<N

(3.50)

where Z means the sum over all partitions m of the set {1,...,n}, H is over all of the parts B

T Bem
of the partition 7, |S| denotes the cardinality of any set S, Z means the sum over all subsets of
SCB
< _ _ (B)?
B, Z means the sum over all subsets of S = B\S, and t; = —
McS

Now we refer to the formula in Section 5 in [18].

Theorem 3.6 (Grosse-Sako-Wulkenhaar[18]). We suppose G41|02|...|an| 5 defined by (3.42). In this
case,

Glat...ay, | laP...aZ |

N1 NB Nl NB
_\Ni+-+Np—B
=)\ B Z . Z G|a11§1|“"akBB| ( H Pallclazl1> cee ( H PakBBalB;g> y (351)
ki=1  kp=1 =111k Ip=1lp#kp
1
Bl — By
Substituting (3.50) into (3.51), all the exact solutions of the ®3 finite matrix model is obtained.

where 2 < B, N; > 1 fori=1,...,B, X\ is the coupling constant(real), and P,, =

For the later convenience, we introduce a function F(S, M, M). Let B be a subset of {1,--- ,n}.
For S C B, S denotes the complement B\S.

_ By, 1%
F(S,M, M) := (1; (—zV : )) <{k1;[4 <—m> aak} An(z, .. .,zN)>

0 1
. 3.52
11 Otqa det (tj _1) 7 ( )
qeEM

1<lj<N V!
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where B=SUS, S=MUM, and 0,0 =
as

e Using this F(S, M, M), Gla1|a2|--|an| 18 expressed
Zak

||
G\a1|a2|~~-|a”| :(ZV)TL72C Z{ (%) (log 33)

3.5. Calculation of 2-Point Function G\,

The formula (3.53) is used to obtain G4 concretely. We use a = a' and b = a® below.
At first, we estimate the case of 7 = {{1,2}}. In this case |r| = 1, and it is enough to calculate
F(S,M, M) for B = {1,2}. In the context of Theorem 3.5, it corresponds to the part:

(i) wen| T2

Z[0] Be™ H aJaJaJ
JEB

Calculating all cases for sets S, M, and M, we obtain the following results. In the case of

F({1,2},0,0),

F({1,2},0,0) :( : EAl) (_WEbAl> AN(zl,...,zN)det;(t{_l). (3.55)

1<lj<N

» }HZZ (S, M, M). (3.53)

Ber SCB M S

_ 1zl

= _— 3.54
J=0 Z[ ]aJaanbb J=0 ( )

In the case of F({1},{2},0),

a1 V 1

F({2},{1},0) can be calculated in the same way (3.56). The letters a and b in (3.56) are
interchanged. In the case of F(0,{1,2},0),

v\ 1
F(@, {1, 2}, @) = (— (AV);,) 8a8bAN(zl, ce ,ZN)W. (357)
In the case of F({1},0,{2}),
F{1},0, {2}):( _I)AN(zl,.,_,zN) det_l(tjl) > it (3.58)
. L) =1

1<Lj<N

F({2},0,{1}) can be calculated in the same way (3.58). The letters a and b in (3.58) are
interchanged. In the case of F(0,{1},{2}),

F(®,{1},{2})=<—(A‘;);>8QAN(Z“”’ZN) det (tﬂ Y Z

1<lj<N \

(3.59)

’L
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F(0,{2},{1}) can be calculated in the same way (3.59). The letters a and b in (3.59) are
interchanged. In the case of FI((),0,{1,2}),

F(0,0,{1,2})
N N
1 1 1 1
=An(21,- . 2N) ——————¢ ( Z Z - 2) . (3.60)
9ty (07) it ta — 550 00—t (= t)
From this, (3.54) can be calculated as follows:
0? 0*zZ[J]
Z 0] 0Jaa0Jb | ;_o
1<Clle£N t] 1
— {F({l,Q},@,@)+F(@>{1,2},@)+F(@,@,{1,2})
AN Zl, ey
2
+ ) ( {1} {n}, 0) + F{1},0,{n}) + F (O, {1}, {n})>} (3.61)
I,n=1,l#n
Next step, let us consider the case m = {{1},{2}}, |7| = 2, B = {1}, or{2}.
|| |B|Z
The corresponding term (di) (log x) H 0 in Theorem 3.5 is as follows:
v x=Z[0] Bew HaJaJaJ J=0
jEB
d )”' B Z[J 1 9Z[J]|  0Z[J]
— ] (logz) — (3.62)
(dx v=Z[0] g H aJaaaa J=0 2Z[0] 0Jaa |y—o 0w |50
jEB
Calculating all cases for sets S, M, and M of B = {1}, we obtain the following results.
< Fa 1
F({1},0,0) = —iV——An(21,. .., 2N) ————. 3.63
({1),0.9) v (3:63)
1<1,j<N
FO0,0) = [ —— ) 0w (o o) (3.64)
) ) \ )% a‘iN\#~1y -y <N det (t{il) .
1<lj<N
-1 Yo
F0.0.{1}) =Ax(z1.... . on)————— : (3.65)
det (tl ) L ta - tz
1<l,j<N i=1,i#a
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These results can be summarized as follows:

1 0Z[J]

Z[0] 0J

1<j<N

det (7
(AN(Z _ ){F({lmv@)+F(@7{1},®)+F(®,®,{1})}. (3.66)

J=0 ..,ZN)

The same calculation is performed for B = {2} as for B = {1} :

1 9Z[J]
Z[0] 8y

det (#7!
— (/;;l(szN ) {F({2},(Z),®)+F((Z),{2},®)+F((Z),®,{2})}. (3.67)

..,ZN)

J=0

Note that (3.66) and (3.67) coincide with 7V multiples of the one-point function G, and Gy,
in Section 3. Substituting (3.66) and (3.67) into (3.62) gives the result :

1 az]J] 0Z[J]
Z012 0as |,y O |,
o\
— | == F({l F,{1 F0,0,{1}) ]. 3.68
T H( ({13.0.0) + F(©.{1},0) + F0.0.{ }>> (3.68)
Finally, adding (3.61) and (3.68) the result of the two point functions G\, is obtained by
o 1 2*Z[J] 1 az]J] 0Z[J]
W Z[0] 000l | —g Z102 0aa |y O |yeg
det (1)
S NE F({1,2},0,0) + F(0,{1,2}.0) + F(0.0.{1,2))
AN(Zl, e ,ZN)

+ Y (F({l}, {n},0) + F({1},0,{n}) + F(.{1}, {n})> }

I,n=1,l#n

o, () )
- (z‘i;l(le ) H(F({l}aQ),@HF(@, {l},®)+F(®,®,{l})). (3.69)

..,ZN) -1

For a more complex example, we carry out the calculation for G,1)42/43) in Section 3.6.
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3.6. Calculation of 3-Point Function G|,1.2|a3|

We calculate the three point functions Gq1jq2|e3; using the formula (3.50) or (3.53). 4,1,k €
{1,2,3} and i # [ # k # i below.

i). We consider the case m = {{1,2,3}},|r| =1, and B = {1, 2,3}, then

() o] TIZEL

e=2[0] BEm H aJaJuJ

| P2[J]

3.70
J=0 [O] 0J 1510424200 3343 ( )

J=0

JjEB
1 3Z
The calculations required to calculate Z[0]9 Jalalaa Jaz[i]a Two |1 are written below :
. Ea1—1 . Ea2—1 . Eas_l 1
F({1,2,3 =(—iV —iV —iV A _
({ 5 &y }7®7®) ( t A ) ( ? A ) ( ¢ A > N(Zh aZN) det (tg_1)7
1<p,g<N
(3.71)

F({i, 1}, {k},0) = (—Z’an;—l) (_@vEci—l) (_(;;)é) D An (21, . .. ,zN)W,

1<p,g<N * P

(3.72)
E Vv ’ 1

F({Z}, {l, k?}, @) = <—2V C;1> (— ()\V)é) 8alaakAN(Zl, ceey ZN)det—(tq_l)’ (373)

1<p,g<N P
v\ |

F(0,{1,2,3},0) = (— 1) 00100203 AN (21, . .y 2N) ————F——, (3.74)

(W) det ()

F({a} {1}, {k})
B V -1 1
:(—'LV © )(-(W)é)aalAN(zl,...,zN)W :Z o (7

F({i,1),0, {k}) = (-W%) <—¢an;—1) AN<z1,...,zN)det‘—1<ﬁl) :Z %
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2 N
V -1 1
FO, 46,00,V = [ ———— | 050,AN (21, 28)—————— . (3.77
0,40, 1}, (k) ( <Av>3) Vo) 2 e B

. L ELi
F({i},0,{Lk}) = ( . ) P
N N
1 1 1 1
e I o S e I
1§(3,?1th (tg ) r=1,r#al tal t,,« w=1,w#ak tak tw <tal tak)
FO,{i},{L,k}) = - v Dy An (2 ZN)
) » LY - ()\V)% at AN\ ~1; y N
N N
1 1 1 1
- — 3.79
det (t271) 2 to — tr 2 tar =t (bt — tan)? | (3.79)
1<p,q<N r=1,r#al w=1,w#ak
F(0,0,{1,2,3)) = !
) » < - d t (tg 1)
1<p,q<N
N
1 1 1
X Z AN(Zla"'7ZN)

rwf 17‘7éa3w7éa2 f;é 1 ta3 —t'rta2 —twtal —tf

al 1
An(z, ...
det (tq Z Q—tas%l—t vz 2w)
1<p,g<N P/ r=1r#al
N

1 1 1
" ) w%};ag (ot — b — £ 002
1 al 1 1
(3.80)
If we sum up all the cases for sets S, M, and M that we have calculated so far and multiply
by ﬁ, we get the result of (3.70):
1 PZ[J]

Z[0] 0T 4101042020 J s

J=0

(t27)
1<p,g<N ‘P

AN(Zl, e ,ZN)

{F({l, 2,34,0,0) + F(0,{1,2,3},0) + F(0,0,{1,2,3})
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3

) (F({i}y {3 {k}) +

il k=1,iAlAkA

PO,y (kY | F{i}0.4L kD | FO.{i} {1, ’f}>> } (3.81)
92 2

F( 1,16, 0) | FAG{LR0) | F>G D0, {k))
2 2 2

2

ii). We consider the case m = {{i},{l,k}}, || = 2, and B = {i}, {l, k}, then

(%) ; (log x)

OBl Z[J
Z[0] ;;[ﬁ H a‘]a]‘“

jeB J=0

1 0Z[J] 0?Z[J]
_(_ e B ) .82
(=) (aJM ) (rworeal @5
. . 1 0Z|J] 0?Z[J] .
The calculations required to calculate (— ) < > <— are writ-
Z[0)? 0Jgiai | 7o 0J1qtO0J kg | ;_,
ten below :
) N 1
F({Z},@,(Z)) =—3iV b\ AN(ZIV”’ZN)chG—(tZ*l). (383)
1<p,g<N
F(0. {i}.0) ( ’ )M( ) (350
g = | — 1 at AN R, -« -y ZN g1 .
(V) et (t577)
N
, -1 1
F(0,0,{i}) =An (21, . .. 7ZN)W > P (3.85)
1<pg<N VP r=lrgal T

F({l,k},0,0) = (—iVEa;\l) (—iVE“;1> An(z1, ..., zN)W, (3.86)

1<p,g<N P

B, v 1
F({l},{k},@):(—zv - )(- r)aakAN(zl,...,zN)—tq_l), (3.87)

()‘V)% 15%2th ( P
2
PO = -V ) dutudnor o) (3.88)
s Ll vy - (/\V)% alVak AN\<1; - - -y N 1<(332N (tgfl)’ )



Ea,l—l

>AN(Z1,...,ZN) o (tql Z . (3.89)

1<p,q<N r=1 r;ﬁak

F({1}.0, (k) = (—z’v

F(@,{l},{k}):<—#> Out A2, o o)~y (q > T (390)

1<pg<N “ P/ r=lr#ak ©

F(0,0,{l,k})

— Ay 1 i : i el (e (391)
=An(21,...,2N det (tq_l) ta—t, tak:_tj (tal—tak)2 . .

1<p,g<N * P r=lr#al * j=1,j#a*

If we sum up all the cases for sets S, M, and M that we have calculated so far and multiply

1
by —W, we get the result of (3.82):
JO)

1 0Z[J] 2Z[J]
<_Z[O]2) (aJaiai JO) (aJaza,aJakak
det (tg’l) 2 3
—_ (flljvp(:N —~ ZN)) Z {F({z’}, 0,0)+ F(0,{i},0) + F(0,0, {z’})}

i1 k=1,i£l£kA

{F({lh {k},0)+ F({1},0,{k}) + FO,{l}, {F})

F,0,{l,k}) F{l,k},0,0) F@©,{l,k},0)
5 + 5 + 5 }] (3.92)

iii). We consider the case 7 = {{1}, {2}, {3}}, |7| = 3, and B = {1}, {2}, {3}, then

(%) " og2)

oPIZ[J
z=Z[0] gr H &JaW

jEB

J=0
2 0Z[J] 0Z[J] 0Z[J] (3.93)
Z[0]2 \ 0J10 J—o 0Ja2a2 | 5 0Jg303 | 7o ) '
) ) 2 0Z|J] 0Z1J] 0Z|[J]

Th lculat dt lculat

e calculations required to calculate Z0p <8Ja1a1 o <8Ja2a2 . s |1 are
written below :
Ei_ 1

F({i},0,0) = —iV=""Axn(z, ..., 2x) (3.94)

(tn™")
1<p,g<N ‘P
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Vv 1
F(@, {Z}7®> = <_ 1) Ogi A (Z ) ) 2 ) _ (395>
(V)i ) det (177)
1 al 1
F(0,0,{i}) =An(z1, ..., 2)————— . (3.96)
o ) 13322]\, (t57") r%ai fa =t

If we sum up all the cases for sets S, M, and M that we have calculated so far and multiply

by 2 we get the result of (3.93):
2 (8Z[J] > (8Z[J] )
J=0 9 Jasas | 5o

Z[op’
) (azm
Z[0P \ 0Jarar | ;o) \ 0u2e2

1<(lie'£N (t{_l) 3
= ( Ajvé},. ) H{FHZ'},@,@) +F(0,{i}.0) +F(@,@,{z‘}>}. (3.97)

..,ZN> i1

From i), ii), and iii), all results up to now are combined to obtain the calculation result of
the three-point functions G|a1|q2}q3|-

G|al|a2|a3‘

v PZ[J] iV 0Z[J] 0?Z[J]
N Z[0] 04101042420 343 J—0 B Z[0)? <8Ja1a1 JO) (aJazazaJa3a3 JO)
1V 0Z[J] 0?Z[J] 1V 0Z[J] 0?Z[J]
- Z[0]? (aJa2a2 J:O) <6Ja1a18Ja3aa J:O) - Z[0] (aJa3a3 J:O) <8JalalaJaQa2 J:O)
2V [ OZ[J] 9Z1J] DZ[J]
2o (o) (57 ) (20,

q—1
—(iV) 1§(3,3th #")
AN(Zl, e ,ZN)

{F({l, 2,3},0,0) + F(0,{1,2,3},0) + F(0,0,{1,2,3})
DY (F({z}, GRS ERASEL S LU O (L SUSIRISUL AL
il k=1,iAlFkHi

§ PG00 | PU0() | FO40)AL k}>> }

et (BN
- (V) (AN{zl,...,zN)) Z

i1 k=1,i£l£ki

{F({z’}, 0,0)+ F(0,{i},0) + F(0,0, {z’})}
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{F({l}, {k},0)+ F({1},0,{k}) + F(0,{i}, {K})

N F((Z),@,Q{l, A z;}, 0.0) , F(0, {52, k), @)}

det tg_l 5
+ (2iV) e ) [14 (i}, 0,0) + F@,{i}.0) + F(0,0,{i}) p | . (3.98)
AN(Zl ) 5
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Chapter 4

Multipoint Correlation Function in
Finite ®3-®* Hybrid Matrix Model

In this chapter, there is a matrix model corresponding to a scalar field theory on noncommutative
spaces called Grosse-Wulkenhaar model (®* matrix model), which is renormalizable by adding
a harmonic oscillator potential to scalar ¢* theory on Moyal spaces. There are more unknowns
in ®! matrix model than in ®3 matrix model. We then construct a one-matrix model (®3-®*
hybrid matrix model) with multiple potentials, which is a combination of a 3-point interaction and
a 4-point interaction, where the 3-point interaction of ®3 is multiplied by some positive definite
diagonal matrix M[41]. This model is solvable due to the effect of this M. In particular, the
B

connected Z Ni-point function G\,
1

i=1
B

detail. This Z N;-point function can be interpreted geometrically and corresponds to the sum over
all Feynman Zdilagrams (ribbon graphs) drawn on Riemann surfaces with B boundaries (punctures).
Each |a}---a}y,| represents N; external lines coming from the i-th boundary (puncture) in each
Feynman diagram. First, we construct Feynman rules for ®3-®* hybrid matrix model and calculate
perturbative expansions of some multipoint functions in ordinary methods. Second, we calculate
the path integral of the partition function Z[.J] and use the result to compute exact solutions for 1-
point function G|, with 1-boundary, 2-point function G4 with 1-boundary, 2-point function G|q,
with 2-boundaries, and n-point function G|41|42...»| With n-boundaries. They include contributions
from Feynman diagrams corresponding to nonplanar Feynman diagrams or higher genus surfaces.

waly [jaBoqp | Of ®3-®% hybrid matrix model is studied in
1 B

4.1. Setup of ®3-d* Hybrid Matrix Model

In this section, we define ®3-®* hybrid matrix model, and we determine our notations in this
chapter.
Let & = (®;;) be a Hermitian matrix for 7,5 = 1,2,..., N and E,,_; be a discretization of a
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monotonously increasing differentiable function e with e(0) = 0,

Jo - (% te (”;2_‘/1)) , (4.1)

where p? is a squared mass, and V is a real constant. Let E = (E,,_10,,,) be a diagonal matrix
for myn=1,...,N and M = (\/Ex_10;) be a diagonal matrix for k l =1,...,N,ie. E= M2
Let us consider the following action:

1
S[@] = Vir <E(I>2 + K+ S MOME + VAMP + 2@4) , (4.2)

where k is a constant (real), and )\ is a coupling constant that is non-zero real. To avoid confusion
later, A and V' are assumed to be positive. When we consider the perturbation theory in Section
4.2, we put kK = 0. Let J = (J,nn) be a Hermitian matrix for m,n = 1,..., N as an external field.
Let D® be the integral measure,

N
Do :=[[do; [ dRed;dmd,, (4.3)
i=1 1<i<j<N

where each variable is divided into real and imaginary parts ®;; = Re®;; + :Im®;; with Re®;; =
Re®;; and Im®;; = —Im®Pj;. Let us consider the following partition function:

_ / D exp (= S[B] + Vir(J®))
— / D® exp (—Vtr (E<I>2 + kP + %MCI)MQ) +VAMD® + 2@4)) exp (Vir (J®)). (4.4)

4.2. Perturbation Theory of ®3-®* Hybrid Matrix Model

The aim of this section is to understand ®3-®* hybrid matrix model by usual perturbative
methods in field theories. For this purpose, we make its Feynman rules and calculate one-point
functions and two types of two-point functions perturbatively. It is made in the same way as
Feynman rules for well-known matrix models[10, 30]. However, it differs slightly from the usual
one due to the presence of M found in (4.4). We then construct the perturbative theories a little
more carefully for readers who are not familiar with perturbative theories of these matrix models.

4.2.1. Feynman Rules of ®*-®* Hybrid Matrix Model (k = 0)

1
We consider the theory of S = Vitr E®? + §M dM (ID), that is no interaction theory, to
consider the perturbation theory of ®3-®* Hybrid-Matrix-Model at first. We calculate Z freeJ];

Ziree|J] = / D exp <—Vtr <E<I>2 + %MCI)MQ))) exp (Vir(J®))
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N
V 1
=C' — Imn Jom | - 4.5
P < 2 Z Enfl + Emfl + \Y Enfl V Emfl ) ( )

n,m=1

N
2m T
Here €' = Zyree[0] = . We intro-
freel0] <1£[1 SVEn—1> < H V(E,-1+ Emo1+ \/En_lEm_1)>

1<n<m<N
duce the free n-point functions:

- 1 1
i = = 117 iodo © 7" i ] eXp - tr + - . .
D, DO D Dy - Dy Vir (| E®? MOMP 4.6
k=1 fTee ZfTee [0] nJjn 2

In particular, the propagator is given as

1 6ad6bc
Do Pic) free =— . 4.7
(PraPac) s VEi 1+ FE 1+ VE_1vVE« (4.7)
The Feynman graph of the propagator (ribbon) is then defined as follows:
1 6ad5bc
g__)_(g = <(I)baq)dc>free = <48>

VE, 1 +FEq,+ VEc1vVEi 1

In this paper, we do not distinguish Feynman graphs from the functions (or operations) corre-
sponding to the Feynman graphs, for simplicity. Next, we consider the case of (4.4) with the
condition k = 0. (4.4) can be written as follows:

219 = / DD exp (= Sint[D]) exP (=S pree[®]) exp (£V tr.]D) (4.9)

A
Here S; = Vitr (ZCI)4 +VAM CI>3>. Using (4.9), as in ordinary field theory, if we consider the

n-point function,

& 1
<H q)ikjk> = 20 / DD Py, Piyjy - -+ Pirjn €XP (—Sint [P]) €xp (—Spree[P]) (4.10)
k=1

then

= 1 o 0 ) 10
o, ) =——— [ Db . — S | =L
<]];[1 Zk]k> Z[O] / a‘]jlh a‘]jziz annin P ( Smt |:V aJ:|)

X eXp (—Sfree[P]) exp (+VtrJ D)

1 o6 9 0 19
T Z2[0]0J5, 005, 0Ty ¥ (_Smt [——D ZpreelJ]- (4.11)

nin
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From this, we also obtain the Feynman rule for interactions, which is as follows. First, we consider
the three-point interactions.

N
From —VtrVAM®® = —VV/\ Z  Ei_ 191 P @i, the vertex weight of the three-point inter-

k,l,m=1

:E}—+—- VAE, 1. (4.12)

action is determined:

The black dot v corresponds to y/E,_ 1. Note that this Feynman rule corresponding interaction
does not consider statistical factors. In other words, for all Wick contractions with trv/ AM®3, we
shall add up all graphs with this weight. In this paper, we use the following notation:

Z iv\lﬁﬁi = \Qﬁk

velforaant} K V2 wﬂukﬂ

l

m + %3_. (4.13)
i/ ]”21

where {{v1, v, v3}} means multi set. For example, Z v =a+ a+n. So even if the cases

ve{{a,a,n}}
i = j and so on, the definition (4.13) is not changed.

A
Next, we consider the four-point interactions. From —VtrZ®4, the vertex weight of the four-

point interaction is obtained:

_ A (4.14)

Note that this Feynman rule corresponding to this interaction does not consider statistical factors,

too. For all Wick contractions with trZ(I)4, we have to sum all terms with this weight.
N N
For each loop, we add Z to sum over all elements. Note that summation Z should be carried

a=1 a=1

out after multiplying \/E,_; in (4.12) for each black dot in any loop. See the following examples:
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@ __VWE f: ! (4.15)
a V3Ea—1 n—1 Ea—l + En—l + V Ea—lEn—l’ '

Vi VE. 1
a = Z ! ’ (416>
a V3Ea 1 a 1 + En—l + Ea—lEn—l

n=1

a a

— A

N
b b = > ! o (417)
AV Eo1+ Ep1 + VE 1By 1)? 7= Byt + Bt + VE 1 By

4.2.2. Cumulant of ®3-d* Hybrid Matrix Model (x = 0)

B

ZJ

Using log Z[[O]]’ the Z N;-point function G\a}...a}vl|...|af...aﬁB| is defined as
i=1

Z[J] = > ‘1 N1 |1~ NB BJP[I; pN
logm:zz 3 Z y2-p Pl vy -t o H ‘*, (4.18)

------

where NN, is the identical valence number for i = 1, ..

B, I, Py, H WithNi-f-lEl,

(Ny,...,Ng) = (N/,...,N/,...,N!,...,N!), and S
—_—— —_——

V1 Vs p=1

ay,|laP.aZ | is given by the sum over all Feynman diagrams (ribbon graphs) on

Ni,..,Np) = H vgl. The ZNi—point function

i=1
denoted by G|.1 .

Riemann surfaces with B-boundaries, and each |a - - - aly,| corresponds to the Feynman diagrams
having N;-external ribbons from the i-th boundary. (See Figure 4.1.)
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Figure 4.1: The relationship between external ribbons of Feynman diagrams and boundaries as

expressed in G,1, B

1 B
~an, [...la7 ...aNB\

We give the reason why the Figure 4.1 picture for the Feynman diagram is obtained, in the
B

following. We define a Z N;-point cumulant which represent contributions of connected Feynman
i=1
diagrams as

<(I)a%a% e (I)a}vla%q)a%ag T (I)a?\ba% e (I)a?ag e (DaﬁBalB>C

1 0 0

- VNt 4N aJa%a} 8Ja{sa5

log Z[J] (4.19)

B J=0

B
Let us focus on a Feynman diagram with 4" := Z Nj-external ribbons. Let X be the number
i=1

of loops contained in the Feynman diagram. Let k3 and k4 be the number of Vitr <\/XM <I>3>

A
interactions and the number of Vtr (Z(I)4) interactions in the Feynman diagram, respectively.

. . . _3katdkgt N, . .
The contribution from such Feynman diagram has V#s+ks 2 since the contribution from
3kg+dky+ N
2

vertexes is V7% and the contribution from propagators is v . Also, the Euler number

of a surface with genus “g” and boundaries “B” is y = 2 —2g — B. For this Feynman diagram, the
corresponding Euler number is given by x = (ks + k4 + A) — (W + A )+ (A + ). Here
ks+ky+ .4 is the number of vertexes, (2at44tL 4 47} is the number of the edges, and (A + X)
is the number of the faces in the Feynman diagrams. Note that we count one ribbon as one edge,
here. Let us see the reason why the last +.4" of (W + N ) appears in the number of edge,
and .4 also represents the number of faces. For example, we see the i-th boundary. There are N;
faces touching one boundary, since there is N; external ribbons in the Feynman diagram from the

N;
term H Jpipi,, With N; +1=1. (See Figure 4.2.)
j=1
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Boundary 1

Figure 4.2: The relationship between external ribbons of Feynman diagrams and Boundary 1 as

expressed in Gg1_q1 |
1

B
Therefore the number of all surfaces touching the boundary is A" = Z N; in this case, and A4

i=1

edges appear as not ribbons but segments on boundaries. The contribution from the Feynman
3k3+4ky+ N

diagram has V*sthe— R Y-8 2 y2-2-B-4 -8 G0 e introduce Gl

Loak |..laP..af |
) 1 B
for pairwise different o (i = 1,---, B, j=1,---,N;) as in the following equation.
_y/2-A4-B
<(I)a%a% (I)a}vla% q)afag q)a?VQa% (I)aFaZB q)aﬁBaf”>C =V G|a%...a}vl|...\a13...aﬁB|‘ (420>

Let us check its consistency with (4.18). Note that

1 5 dy pNﬁ
VA OTrn--- Z Z Z H G|p1~~-p}vl\~~~|p13'.--p§;3,\
asa; CL C’«N B'=11<-. <NB’ . png _15 1 J=0
1
:WG\a%...a}vl|...|a{3...af,B\ X S(N1,‘..,NB)- (421)
Then the .#"-th derivative of the right-hand side of (4.18) with respect to Jy1a1,- - -, Jabqr 1S given
B
by
1 0" 2-4—B
(RHS Of (418)) =V G|a1...a1 |..]aB..aB |5 (422)
10Ny 1ONg

VA Ot -0 pes
201 19Ng

and the corresponding one from the left-hand side of (4.18) is given as

vy 8Ja%a% ce 8Ja13a5

(LHS Of (4.18)) :<q)a%a% te (I)a]lvla%q)a%a% te (I)a?ha% te q)afa‘; (I)aﬁB‘h > .

(4.23)

Therefore, we found that (4.20) is consistent with (4.18) when all a’ are pairwise different.
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If there is no condition that any two indexes do not much, then (4.20) is not necessarily correct.
(P Py 1 P22 Ppz2 g2+ Pupyn -+ ®un ,8). might include contributions from several types
192 Ny @1 74143 Ny 1 192 N1
of surfaces classified by their boundaries. For example, let us consider (®,,®,,).. From (4.18),
1 1
(Do Pug)e = VGW‘ + WG‘alal' This means that (®,,P.,). includes contributions from two types

of surfaces which are surfaces with one boundary and ones with two boundaries.

From these observations, it is concluded that we should prepare a connected oriented surface
with B boundaries for drawing each Feynman diagram to calculate G‘a%‘_.a}vl|m|a113_“a1%3‘. We draw
a Feynman diagram with external ribbons with (a{aj),-- - , (aly, a}) subscripted to each boundary
1. For any connected segments in a Feynman diagram, both ends are on the same boundary.

Glal...al, |..|aP..aB_| 1S given by the sum over all such Feynman diagrams.
1 B

.- . . . _ 3kgtdkg+ A iy —9%9—B— A — .
In addition, since it is V*3+k P = VX=X = V2-29-B-/=Y we can consider “genus

expansion” of Gig1_a1 | o802 | like [31] as
1 B

292(9)
G\a%...a}vl|...|a1 aNB ZV gG|a1 L |JaB . aB | (424)

.a @
Ny Np

We will discuss contributions from nontrivial topology surfaces in Section 4.6.

4.2.3. Perturbative Expansion of 1-Point Function G| (N = 1)

For N =1, we calculate the 1-point function ;) using perturbative expansion.

1 o L (=VAF © (—V)! z o 3
_%/_mdm<; T ) (; (VA (VE)' )exp (—V§E0x>

:ﬁ /OO < V‘/Jm) #exp (—V%Eoﬁ) dz

2 VE
+Vz\é_ 0/ xexp( V3E0x>dx

+ Zl[O] /OO = V\/;\/FO) exp (—V;E0x2) dz + ONVN). (4.25)
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(4.25) is calculated directly as follows:
Gy =(4.25)

_ {_\/E_o\/X CVEAA 5\/F0Aﬁ} L 3VEMWA  BVEAA s

3VEZ  36V2EL | 54VZED 108V2E3 FAV2E}

A 7A\/X7 +O(N2VN). (4.26)
3VE0 VE 27v2EO§

This result is verified from the exact solution of G|; for N =1 that is given in Subsection 4.5.1.

4.2.4. Perturbative Expansion of 1-Point Function G|;|, 2-Point Function
G‘Ql‘, 2-Point Function G|2|1‘ (N =2)

In order to familiarize readers with the perturbation calculations for Gy, o |, several
B

..a}vl|...\a{3..,
specific example calculations are performed in this Subsection. For simple exercises, N = 2 case
is calculated in Subsection 4.2.4.

The results obtained in Subsection 4.2.4 will be used in Section 4.5 as a check that the exact

solutions are obtained correctly.

We calculate the 1-point function G| using perturbative expansion, at first. We compute each
term of this expansion by drawing Feynman diagrams on surfaces with one boundary.

Gu=Y_ > ‘@ + O, (4.27)
n=1 veYy,

where ¥, = {{1,1,n}}. The circle around the Feynman diagram is the boundary. Feynman
diagrams and each term of perturbative expansions have a one-to-one correspondence as follows:

2 Ay VE

n=1ve’, n=1ve{{1,1,n}}

From this, G;) becomes as follows:

VIVE, B Q\/EO 2 B Q\/E1 1
V 3E2 V 3Ey Ey+ E1+VEWE, V 3E, Ey+ Fy +VEoWE;
+ O, (4.29)
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Next, we calculate the 2-point function G|9; on surfaces with one boundary. We compute each
term from the expansion of the 2-point function G;| by drawing Feynman diagrams.

AN
wy s (T
n=1 (4,5)€{(1,2),(2,1)}

DS

(1,)€{(1,2),(2,1)} n=1 we{{i,jn}} ve{{ijn}}

Gm‘ =V

’ ‘Ib

ngzzz

(6,)€{(1,2),(2,1)} n=1 we{{i,i,n}} ve{{ji;i}}

+ (4.30)

The first diagram in (4.30) is given as follows:

A 1
% _ . 431
ﬁ Bt B vivi "

The second term in (4.30) is written as follows:

2 1

2
4\ 1
. (4.32

The third term in (4.30) is expressed as follows:

o4



2
1% .,
2 2 &
(i) €{(12),(2,)} n=1 we{{ijn}} ve{{ign}}

A : |
-+ > Z > ) (Ei_1+Ej_1+\/m\/m>

(4,5)e{(1,2),(2,1)} n=1 we{{i,jn}} ve{{ijn}}

1 1
VEvE( BT B +¢—¢—>< B+ By +¢—¢—> (4.33)

The fourth term in (4.30) is given as follows:

2
A 2 < 1 ) ( 1 )
== > > > 55 4 . ———
Vo iietaan@ny nt wefinnpyvelgaipy NSt/ \ et + Bjor + VEi-1V/ B
1
VE 1 Fu 434
( z 1 + En 1 + \/ i—1 \/ n— 1) ( )

From (4.31)-(4.34), G|21) is given as follows:

1 A
G :Eo + By + VEWE, i 3V Ey(Ey + E1 + VEWEL)?
N A N 8V EoWEL
3VE|(Ey+ EL +VEwWE))? 3VE\(Ey+ Ey + VEyWE))?
N 8vVEoW/EL) N VEoW/Ei\
3VEo(Eo + Er + VEWE)?  3VE}(Ey + Er + VEWE:)?
VEoWE\ 20\E,
3VE2(E0 + B + VEWE)? 3VE1(E0 + By + VEWE,)3
INE, 10X

R B T Bt VBB (BTt vByER T CN ) 4

Next, let us calculate the 2-point function G|y that has two boundaries using perturbative
expansion. We compute each term of this expansion by drawing Feynman diagrams on surfaces
with two boundaries.
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There is a one-to-one correspondence between the Feynman diagram and each term in the pertur-
bation expansion. The first diagram in (4.36) is given as follows:

A
_ 4.37
9EyEL(Ey + Ey + VEoWEY) ( )
DS
we{{1,1,2}} ve{{2,2,1}}
B 5vVEoVENA . 2)
9EoE1(Ey + By + VEWEL)? | 9Ey(Ey + By + VEoVEL)?
2\
+ 4.38
9E, (Ey + E1 + vV EoWE)? (4.38)
From (4.37)-(4.38), G|o1| becomes as follows:
S 4V EoVEA . b
P 9By EL(Ey + E1 + VEWELD?2 | 9Eo(Eo + Ey + VEoVE:)?
A
+ + O(\?). 4.39
9E, (Eo + E1 + VEoV EY)? (*) (4.39)

4.2.5. Perturbative Expansion of 1-Point Function G),|, 2-Point Function
G|ap|» 2-Point Function G\,

In Subsection 4.2.4, we carried out the calculation for G|, G|21], G|21) perturbatively in the N = 2
case. In this section, we summarize the similar results for arbitrary N case.
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At first, we calculate the connected 1-point function G|, using perturbative expansion.

ni,ne,ng,ni=

0
k
! SN P
:Z[O] /DCI) CI)aa (Z k'4k ( Z ®”1"2q)"2n3q)n3n4q>n4m

X (VYA Y o l
X Z%( Z m1 I(I)m1m3 m3ma m4m1)

mi,m3,mg=1

X exp ( Vir [ E®? + M@MCI)))

— V\/_Zfrfg][()] Z m<@aa¢m1m3®m3m4¢m4m1>fT€6 + O<A\/X) <44O>

We compute each term of this expansion by drawing perturbative expansions of the 1-point function

G|, in Feynman diagrams. The corresponding Feynman diagrams are drawn on oriented surfaces
with one boundary with one connected ribbon graph inserted with an index “a”.

G|a‘ :ZZ 0 +O()\\/X)

pR— VE. 1
SN s L Lopvh. (A
3Ea IV n=1ve{{a,a,n}} En—l + Ea—l + Ea—lEn—l

mi1,m3,mg=1

Here ¥ = {{v1,v2,v3}} = {{a,a,n}}. The circle around the Feynman diagram in (4.41) represents
the boundary. So the external lines (Ribbon) grow out of the circle.

Next, we calculate the 2-point function G|.)(a # b) using perturbative expansion.

1 9%log Z[J]

Gy = ———2 =]
b 0T 00

J=0

k
v = (— VA al
= 3 0 /DCD Py P Z RUT, < Z D11, Prigrs Pragrns Prosy

k=0 nl,ng,ng,n4:1

l
< (V) N
% ( Z Em11¢m1m3q)m3m4q)m4ml>

=0 mi,m3,ma=1
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A
X exp (—Vtr (E<1>2 + §M<I>M<I>))

V Z4ree0] v &
= % { <q)abq)ba>free + W Z <(I)abq)baq)n1n2 (I)ngng (Dn3n4 q)n4n1 >f7'ee
ni,nz,n3,na=1
N
(=VVA)?
+T Z \/Em1—1\/En1—1

mi,m3,mq,ni,n3,ng=1

X <(Dabq)baq)m1m3 (I)mgm4 (I)m4m1 (I)n1n3 <I)n3n4 q)n4n1 >f7"ee } +O()\2) . (442>

We compute each term of (4.42) by drawing Feynman diagrams. The corresponding Feynman

diagram should be a connected graph with two ribbon graphs with indices a and b inserted at two
points from a single boundary:

G|ab|—
(id) e{ ),(ba)} n= 1

(i,4)€{(ab),(b,a)} m

+2><; Z ZZZ Q +0(\?) (4.43)

" (i,5)€{(a,b),(b,a)} n=1 weW vV

Note that “4” in the 2nd term and “2” in the 4th term are the statistical factors.

1
Eo 1+ By +Eo 1\/Eb 1
A

2
1
v (u)e{(azb ),(b,a)} ; ( B+ Ejfl + \/Ei“/Ej1>

Glap) =

1
X
(Ei—l + B+ VE v En—l)
A N 1 ’
e S S S S T =)
V. ietambayy nmt weltgnyy vettgny \Fimt F Eimt + VE1y/ Ejy

o8
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1
X A/ Ey_1v/ Ey_
' ' (Ei—l +En 1+ VEi 1y En—l)

1
% (Ej1+En1+ \/ﬁ\/K)
A 1
Y Y Y Y (55-)

(i.5)€{(a,b),(b,a)} n=1 we{{iin}} ve{{ii.j}}

2
1
X \V Evfl
(Ei—l +FE 1+ \/Ei—l\/Ej—1>

XME”1(E4+£%4j¢EI¢E:J+%XV) (4.44)

Remark. We give reasons why a nonplanar Feynman diagram does not appear in (4.43). You
might think that the Wick expansion of
N

Z (DupPpa Py, Prions Prigny Prosny ) would yield a term like

ni,n2,n3,ng=1
N

Z (Pup Py ) (PoaPrigng ) (Prons Prsny ) - In the corresponding Feynman diagram, it is like
ni,n2,n3,na=1
(4.45), but since b and a are connected by a line, dy 1s generated and 0 is obtained from a # b.

= (4.45)

As the third example, we calculate the 2-point function G)qj(a # b) using perturbative expan-
sion. In this case, corresponding Feynman diagrams are drawn on surfaces with two boundaries

like a cylinder. The external lines a a and p p are grown out from different bound-
a a b b

aries, respectively, and the two boundaries are not connected by any line in any non-zero Feynman
diagram.

o 0?log Z[J]
0000 |y
1 0Z[J)|  0Z[J) 1 9?Z[J]
CZ[02 0Jaa |jmy 09w |—g Z[0] 0JaaOdu |,

k
—V? — (=VV)* -
= — D(ID (I)aa (I)nln (I)n n, (I)n 7L4(I)n4n1
2[0]2 / kz_o kl4k Z 2 Fn2n3 = ng

ni,n2,ng,na=1

29



l
N R A2 A —
X Z (l—') ( Z Emll(bmlmgq)m3m4q)m4m1>

=0 mi,m3,ma=1

A
X exp (—Vtr (E<I>2 + §M<I>M<I>))

k
$ VY ZN
X Dd q)bb T4k q)nlnzq)nznsq)TLSTMq)nz;nl

ni,nz,n3,na=1

l
(VN s
X Z (l—') ( Z Emllcbmlmgq)m3m4q)m4m1>

=0 mi,m3,mg=1

A
X exp (—Vtr (E<I>2 + §M<I>M<I>>)

k
vz XL (—V A N
+Z[O] /DCI) D@0 P Z AV Z D Py Prigrny Prany

k=0 ni,n2,n3,nga=1

l
(VN s
X Z (l—') ( Z Emll(pmlmgq)m3m4q)m4ml>

=0 mi,m3,ma=1

X exp (—Vtr (E<I>2 + %MQ)MCI))) . (4.46)

So, we estimate the following.

V22 rec[0) S R
G\a|b| = — W X (_V )\) Z Em1—1<<I>aaq)m1m3q)m3m4q)m4m1>free

mi,m3,mq=1

N
X <<_V\/X)1 Z \Y Em11<(I)bb<bm1m3q)m3m4q)m4ml>f7"€€>

mi,m3,ma=1

V2Z e 0]
———= (D, P
+ 7 [0] < aa bb> free

(V!

N
1141 Z <(I)aaq)bbq)n1m (I)mns (I)nsm (I)n4m>f7"ee

ni,n2,n3,ng=1

(~VVN)? i

2!

\/Em1—1 \/Enl—l

m1,m3,mq,n1,n3,n4=1
X <q)aaq)bb(1)m17n3q)msm4q)m4m1 (I)nmsq)nsmq)mm>free}+0<)‘2)- (4-47>
We compute each term of this expansion by drawing Feynman diagrams.
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VYD Ky O
weW veYV UZW]_ W3
b|lb

A
9Ea—1Eb—1 (Ea—l + Eb—l + vV Ea—l\/Eb—l)
Z Z V Ev—l V Ew—l/\
wEW veY 9Eq—1Ep— (Ea—l + By + vV Eo 1y Eb_1)2
+O(V), (4.48)

where ¥ = {{a,a,b}} and # = {{b,b,a}}. More explicitly, this is rewritten as

A
9Ew1Ey—1(Ee-1+ Ev—1 + VE._1VEp1)
SvVEq 1V Ep_ 1A

Glap) = —

_l’_
9E. 1 Ey1(Ea1+ Ep1 + VEw—1VEp—1)?
2\
+
9E;1(Eee1+ Epo1 + VE1VEp—1)?
2

+ O(\?). (4.49)

+
9Ep1(Ea1 + Ep1 + VEo 1V Ep-1)?
4.3. Exact Calculation of Partition Function Z[J]

In this section, the calculation of the partition function' is carried out rigorously for any N.
The flow of computations is similar to that of [40].

1
We introduce a new variable X by ® = X — —M. Here X = (X,,,) is a Hermitian matrix,

VA

too. We do a change of variables of the integral measure D® as d®;; =

N 0D,

0X mn

m,n=1

Then Z[J] is given as
1
= / D exp (—Vtr <E®2 + Kk® + 2@4 +VAM®® + 5M<1>Mc1>)) exp (Vir (J®))

= exp (—Vtr (43)\M3 — 71‘ + —= \/_ ) )

1For the case with J = 0 and x = 0, the partition function of this model derives a higher KdV hierarchy. See
for example[1, 35, 42, 54].
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/ DX exp (-%Vtr(x‘*)) exp <Vtr { (%M?’ I+ J> X}) | (4.50)

Here I is the unit matrix. Note that

= (H d:CZ) ( H (Z’l — xk)2> dU,

where x; is the eigenvalues of X for ¢ = 1,--- | N, dU is the Haar probability measure of the
unitary group U(N), and U is the unitary matrix which diagonalize X [10]. Then (4.50) can be
rewritten as the following:

Z[J] =exp <—Vtr (43)\M3 - 71 + —= \/_ ) M)

/(Hd:ﬂzexp <—&x )) ( 11 (xl—xk)2>

1<k<I<N

[y e (vird (e 0 )use}), (451)

where X is the diagonal matrix X = U*XU. We use the following formula.

The Harish-Chandra-Itzykson-Zuber integral [36, 51, 56] for the unitary group U(n) is

det (exp (tA;(A)N;(B)))

/ exp (ttr (AUBU*)) dU =c, 2" . (4.52)
U(n) 7 ANMA)ANB))
Here A = (A;j), and B = (B,;) are some Hermitian matrices whose eigenvalues denoted by

Ai(A) and A\;(B) (i = 1,---,n), respectively. t is the non-zero complex parameter, A(A(A)) =
1

H (Aj(A) — A;(A)) is the Vandermonde determinant, and ¢, := (H i) x "% is the

1<i<j<n ,

constant. (exp (tA;(A)\;(B))) is the n x n matrix with the i-th row and the j-th column being
Applying the Harish-Chandra-Itzykson-Zuber integral (4.52) to

1 _
/dU exp (Vtr { (—M3 —rxl + J) UXU*}) in (4.51), the result is
VA
det exp (V;s; )

1 ~ C  1<ij<n
dU exp (Vtr { <—M3 — kI + J) UXU*}) = , (4.53)
/U(N) \/X N‘H Tj— Xy H(Sj —5@'>

1<j 1<j
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1
where s, is the eigenvalues of the matrix —M?> — kI + J fort =1,--- ,N and C = I x
it ci L (1)
N(N—1)
7\ YE-D

= s exp (Vx;s;)) denotes the N x N matrix with the i-th row and the j-th column being
V J

exp (Vx;s;). Then the partition function Z[J] is described as

C 3 K 1 1
Z[J] =—exp [ =Vt M3——I+—J>M)
] N! Xp( r(4)\ Vi VA H (Su — St)
1<t<u<N
N
AV o,

/ (H dx; exp <_T$Z)> ( H () — xk)) » ge;Lt<NeXp (Vamsn) . (4.54)

i=1 1<k<I<N

Let us transform the part of the z; integrations in (4.54). By definition of the determinant,

/ (Hdm,exp (_&gf‘))( 11 (xl—xk)> et _exp (Vaisy)

1<k<ISN
AV o
= Z / (H dz; exp <——x )) ( H (21 — xk)) (—1)7 (H evxa(j)8j> .
s€Sy 1<k<I<N j=1

(4.55)
Here Sy is a symmetric group. Next we changed variables as z4(;) — 2; (1 = 1,--- , N). Note that

the Vandermonde determinant det ( J (5) = (—1)?det 277", The above is written as

N
>/ (H i, cxp (—ﬂx )) ( I (- m) (~1)(-1)° (H V)
ocESN 1<k<I<N J=1
:N!/ (H dx; exp (—&xfl) exp (Vms-)) H () — xp). (4.56)
| 7 4 917
i=1 1<k<ISN
From this, the partition function Z[.J] becomes as follows:
3 K 1 1
Z[J] =Cexp (—Vtr (—M3 - —=1+ —J) M)
4 Vi VA H (Su — st)
1<t<u<N
A AV
/ (H dx; exp (—Txf) exp (insi)> H (2 — ). (4.57)
i=1 1<k<I<N
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| AV N k—1
| | dx; exp ( 1 xz) exp (szsz)> IS%%tSN (xl )

Using H (2 —xp) =  det (xi,_l), we calculate the remaining integral in the right-hand
i=1

1<k, <N
1<k<I<N
/OO
—0oQ
N

side in (4.54) as
= Z sgno H bo(i)(S:)

ceSN =1
= det (5(s,)), (4.59)

where ¢(z) is defined by

> AV
or(2) :/ dr =" lexp (—Tx4 + sz) , (4.59)

and (¢;(s;)) is the N x N matrix with the i-th row and the j-th column being ¢;(s;). Summarizing
the results (4.54) and (4.58), we obtain the following:

Proposition 4.1 (N.K-Sako[41]). Let Z[J] be the partition function of ®*-®* hybrid matriz model
given by (4.4). Then, Z[J] is given as

det (oi(s;))
— _ 3.3 K 1 1<ij<N

Z[J] =C'exp ( Vitr (—4)\M _\/XI + _\/XJ) M> o St)'
1<t<u<N

Note that ¢x(2) is expressed as

bu(2) = (%)kl (diz)kl / Z dar exp (—%Vx‘* + sz> | (4.60)

P(2) = / " dwexp <—%x4 + sz) | (4.61)

—00

We use

If V is a pure imaginary number, this P(z) is a special case of the following:

P(z,y) := /_OO dtexp (i (t* +zt*> +yt)) . (4.62)

o0

This is called Pearcey integral[37], where 0 < argx < 7w and y € R. Substituting (4.61) for
(4.60), ¢x(z) is calculated as follows:

oi(2) = (%)H (d%)k_l P(z). (4.63)
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Proposition 4.2 (N.K-Sako[41]). Let (PY=Y(s;)) be the N x N matriz with the i-th row and the
j—-1
j-th column being PUY(s;) = (di) P(s;). We then obtain the following:
S;
det (P(j_l)(si)) = ( H (s, — 8sj)> P(s1)--- P(sn).
1<i<j<N

This proposition is identical to Proposition 4.2 in [40] and its proof is also given in [40]. We
introduce

PN(Slv"' 75N) :< H (asi_asj)> P(Sl)"'P(SN)

1<i<j<N
P<51> R P(5N>
PW (s oo pMg
= det (&) (o) (4.64)
P(N_l)(81> oo P(N_l)(5N>

From this, IS(},% N(gbi(sj)) is calculated as follows:

1
det (¢i(5j)) ZWPN(&, ot SN). (4.65)

1<i,j<N v

Summarizing the above results, we obtain the following:

Theorem 4.3 (N.K-Sako[41]). Let Z[J] be the partition function of ®3-®* hybrid matriz model
given by (4.4). Then, Z[J] is given as

Z[J] :/DCD exp <—Vtr <E<I>2 + kD + %@4 1+ VAM®? + %M@M@)) exp (Vitr (J))

-V
—=tr(JM)
/eﬁ PN(Sla”'sz)

—C . (4.66)

H (5u — 5¢)

1<t<u<N

N N(N-1)

3 K T 2

Here C' = exp (—Vtr (—M3 — —]) M) (Hp!) —————, and s; is the eigenvalues of the
4\ VA o VN(N-1)

1
matric —=M?> — kI +J fort=1,--- ,N.

VA

4.4. Exact Calculations of 1-Point Function G|, 2-Point Function G 4,
2-Point Function G|,, and Ga1/a2)...[n| (3 < 1)
In this section, G)q|, Glap|, Glajp, and G|ayjay|-|a,| are calculated exactly, by using Theorem 4.3.
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4.4.1. 1-Point Function G|,

In the calculation of the 1-point function G)4, the external field J can be treated as the diagonal

Ei vV Ei

matrix J = diag (Ji1,--- , Jyy). Then the eigenvalues s; in (4.66) are given s; = T +

Jy — k. From Theorem 4.3, the 1-point function G|, is calculated as follows:

1 0 (6\/;“(JM)PN(517"'73N)>

V aJaa H (Su — St) J=0
G 1 dlog Z[J] 1<t<u<N (4.67)
VT 0 |, ‘
PN(817”' aSN)
/=0
H (Sq = sp)
1<p<g<N J=0
Note that
0 Vi
= {e\/‘{t (JM)PN(Sl, . >5N)}
V —tr —tr
=-= Bate APy (s e sy) 4+ en T (8, Py(st, -, sw) s (4.68)
0
where 0,Pn(s1,-++ ,sn) = 5 Pn(s1,-++,sn). Next, we use the following formula. Let A =
Sa
A(T,) = 1<d.e.t< ((z;)"") be the Vandermonde determinant for Z,, = (z1,--- ,z,) € R". For any
<ij<n
1<k<n
OM, “~ M,(Z,)
= —. 4.69
Oxy, le#k Tp — T (4.69)
Using this formula, we get
i—1
9 ) E,_ \\/E,_
H (sj —s4) = det il e Jij— kK
0Jaa | = 0J,, | 1<ij<N VA
I<ij<N J=0 J=0
i1
E, \/E;_
VA det (M — /<;>
N L<ij<N VA
_ 470
i:lzz;éa Ea—l V Ea—l - Ei—l V Ei—l ( )
Substituting (4.70) into (4.67), finally G| is expressed as
N
VE S 1 ) 1
Gla| = — - Z VA + Vﬁa log Pn(z1, -+, 2n), (4.71)

\/X V i=1,i%a Ea—l V Ea—l - Ez’—l V Ez'—l
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where z; =

E; 1\ Ej B . 0
VA

/iforjzl,...,N,and('?a:a—.
Za

4.4.2. 2-Point Function G|y,

Let us consider 2-point function Ga (a # b, a,b € {1,2,--- ,N}). For the calculation, we put J
as all components without .J, Jy, are zero. Note that trJM = 0 for this J.

1
At first, we estimate eigenvalues s, for t = 1,..., N of the matrix —=M?> — kI + J. The

VA

eigenequation is

1
0=det | sl — —M3—HI+J>)
(- (5
N 1
= H S — _Eifl Eifl + H))
<i1,i7éa,i7éb ( 2
1 1
X 82 -+ (——Ebl\/ Eb*l — —Eafl\/ Eafl —+ 2/’%’) S
VA
Ea 1V Eo—1k — _Eb W Ey1k + ~ Ea 1Ep—1v/ Ea1/ Ep—1

+ /€2 — Jabea}-

(4.72)
1
We label the eigenvalues as s; = ﬁEt_m/Et_l — K for t # a,b,
L E, \WVE, 1+ ! E E 2
o ~a— a— b= -1 — <R
o 7 1 1 o b—1 b—1
¢ 2
1 1 2
\/(ﬁEa—l VEq1— ﬁEb_l Eb—l) + 4T Jpa
+ : (4.73)
2
and
! E, \\E, 1+ ! E, E 2
o ~Ha— a— b= K
L Vo 1 1 Vo b—1 b—1 —
b 2
2
\/( Ea 1 \/ a—1 — _Eb 1V Ebl) + 4Jabea
— 2 ) (4.74)
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Let us calculate G|, by using these s;. From Theorem 3.3,

_ 10%log 2]J]
b 0T 0 e

J=0

1 o
:Vm{logPN(sb”'asN)_lOg H (SU—St)}

1<t<u<N

J=0
i

0’ { )
o? S — H (8u — st)}
mPN(Sh L SN) 0J a0 Jpa

1 1<t<u<N
— e . (4.75)
V PN(£17"'7SN) H (Su_st)

J=0 1<t<u<N

9 det ((s)*")

1<k,I<N . .
= = = 0, since s, and s; are functions of
J=0 9Jay

aPN(Sla te ’SN)
OJw

Here we use

J=0
P .
(JapJba) as we see in (4.73) and (4.74), then OPw(s1,-- , sw) and

8Jab
o det ((s)F)

1<k,I<N
8Jab
Using the fact that
0%s,

0Jpa0Jap

are of the form Jy, x (---).

88k

8Jab

=0 and
J=0
_ \/X _ 8285
J=0 ‘Eaflx/ E, 1 —Ey1v/E,_1 aJabana

82
aJabana N(Sla >SN)

, we obtain
J=0

VA
Eo i Ee1— Ey 1\ Ey o

X (OaPy (21, 28) = OPn (21, .., 2N)) (4.76)

J=0

E._(\/FE;_
e At P j=1,...,N. Similarly, we get
VA

82
aJabana { H (SU - St)}

1<t<u<N

where z; =

) WA
J—o ‘Ea—l VEa-1— Ep-1V/ Ep

((s)™)

de
1<k,I<N

N N
1 1
X — , 4.77
<i_§éa Eo1vVEa1— EiavVEi Z Ey1vEy1 — Ei1v E¢—1> (.77)

i=1,i£b

where we use the formula (4.69), again. Substituting (4.76) and (4.77) into (4.75), G|w (b < a,
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i.e.Fy, < E,) is finally obtained as

\/X 8aPN(Zl,“',ZN)_abPN(Zl,"',ZN))

V(Eafl\/E Ebl\/Ebl){( PN(ZI;"' 7ZN) PN(Zly"' 7ZN)

Glap =

a—1 =
N N
1 1
VAN - . (478
ilz#a Eo1vEe1— Ei1vVEi ilzi#b Ey \Ey_1— E;i_1\WE;,_1 ( )

4.4.3. 2-Point Function G|,

In the calculation of the 2-point functions G|, the external field .J can be treated as the diagonal

Ei W Eiy

matrix J = diag (Ji1,--- , Jyy). Then the eigenvalues s; in (4.66) are given s; = T +

Jy — K fort=1,--- N. Then, the 2-point function G, is calculated as follows:
9?log Z[J]
Glapl = 5757
aJaanbb J=0
82
= 5700 log Py (s1,--+ ,sn) — log H (Su — St)
1<t<u<N J—0
_ 0o Py (51, ,SN) Op Py (51, ,SN) aaabPN(Sla"' ,5N)
PN(817”'7SN) J=0 PN(Sla”'asN) J=0 PN(Sla”'sz) J=0
A
_ . 4.79
(Eafl V Eafl - Ebfl V Ewal)2 ( )
Finally G|, is expressed as
G — OuPn(21,--+ ,2n) OpPn(21, -+, 2n) | 0aO0yPn(21,- -, 2N)
alb] — —
k¥ PN(ZI;"' ,ZN) PN(Zh'" ;ZN) PN(ZI;"' 7ZN)
A
_ , 4.80
(Ea—l V Ea—l - Eb—l V Eb—l)2 ( )
E:. 1\/E;_ 0 0
wherezj:M—mforjzl,...,]\fﬁa:—, and 0, = —.
\/X 8Za 82’1)
4.4.4. n-point function G ,1a2...|en (3 < 1)
Let us calculate G|41)42)...|qn| for 3 < n. Here a? is the pairwise different indices for 3 =1,...,n. To
calculate G41)42|...|an|, it is enough to take J as a diagonal matrix J = diag(Ji1,-- -, JJny). Then

Ei1vEi
VA

definition in (2.15), the n-point function G|s1j42|...|qn| is given by

the eigenvalues s; in (4.66) are given s; = +Jy —k fort =1,2,---,N. From the
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_ " Z[J]
Glatig2)fan| =V "2 log
lat[a?]-|a™| OJyig1 -+ OJyngn Z[0]],_,
Vir
:Vn72 o IOg 6\/Xt (JM)PN<51, e ;SN> (481)
aJalal oo aJa”a” H (Su _ St>
1§t<U§N J=0

. BB ik ( .

Since §; = —— ——+Jy—k, Z log(sy — s¢) = 0. In addition
\/X aJalal aJaQaQaJa%ﬁ 1<t<u<N J—o

P e [~ wa) - VS B0 s

DDl o P\ VA T g0 N YT '

Then, the n-point function G|g1|a2...jan| (3 < 1) is obtained as follows:
n—2 an

G|a1|a2\-~-|a"\ =V m lOg PN(Zl, s ,ZN), (483)

Eifl V Eifl — K
VA

4.5. Approximations from Exact Solutions by Saddle Point Method

where z; =

To ensure that perturbative calculations in Section 2 and exact results in Section 4 are con-
sistent, we shall reproduce the contents of Section 2 by approximating the results of Section 4.

Thereafter, the calculations are performed with £ = 0.
[e.e]

1 A
By the change of variable 2 = ——k, P(z) = / dx exp (—VZSLA + sz) is transformed
R _

o0

4

into

ZAT 1 / >

P . = - dkexp (—k* + zk) . 4.84

(vﬁv@> ( A)4 —oo ( ) 5

vZ
4

The function under integration has three saddle points. We choose an integral path through one

3

of them, k = % To estimate the integral around the neighborhood of k = ;—2 we put k = ;—z +¢&.
3 3 3
Then (4.84) can be evaluated as
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PN

1 1 4 1
ZA\4 1 e 23 z3
déexp | — | =~ -

P(V \/_> (VA> /_Oo § exp <2§+5> +z<23+£>

4
7 385
—c(: e ro(%). as
>\ Vi 9 x 26V iAizs 648 x 26 1Vizs
3
25 5 23 ViE?
Here C(z) l?exp —Z—: + Z—; . To evaluate n-point functions, z = \/_ 43 L cases are
V323 25 25 \i
3
VIE?
used. For the case z; V2 43 =1
A1
Ei 1VE_ 2 Al 3851
g <—) =C'(Ey) lfl — + 4 +OMNT),  (4.86)
VA AiVi o 18V2E2 Vi 1296v2EL Vi
A2 3VE?
here C'(E;) = | ——— =1,
where C'(E;) VIEL exp( 75 )
Next, we estimate OP(z), similarly. After changing variable as © = ——k,

> A
OP(z) = V/ dx x exp (—VZlA + sz) is transformed into

ZA1 1% o
oP . = / dk kexp (—k* + zk) . 4.87
( )<V4\/§> L D ( ) (4.87)

The saddle point on the integral path is k = 2—3 In the neighborhood of the saddle point k = ;—;
we put k£ = ;—§ + &, then (4.87) can be evaluated as
1 1 1 4 1
(OP) (;jjﬁ) _ ‘; . /_Oodg ( +§> exp | — <;—§+§) +2z (;—§+§>
(%)

t‘.a\»d
w\»a

5 455 1
=VC(z )(f\/— 18V M/Vz 648 x 23 \/_\/_z§> O( “)' (4.88)
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E;i1WEi 2VE i 45507
(OP) (%) =VC'(E:) \/_g 1 - - ° 35 > T
A ATV 18V2E2 Vi 1296v2E2 Vi
+O(AT) (4.89)
> A
Next, we consider 02P(z). 9*P(z) = V? / dx 2% exp (—sz‘l + Va:z) is transformed similarly
into -
A1 % >
(0°P) (Vzii/i> = ~ / dk k* exp (—k* + zk) . (4.90)
(3)
25
In the neighborhood of k = e (4.90) can be evaluated as
3
2 4
\i & > 23 23 PE
o2p) [ = / e | =5 + —(Zre) 2|5
( ) (V2ﬂ> V/\ % C 5 2% 6 exp 2% 5 z 2% f
(v3)
2523 2% 7
=V?C — — ————— + - ‘
) (wz VT I 2TV
35v/2 1705 1
— 5\/_3 + T3 +0|(—w |- (4.91)
2TANIV 122 64821V 122 23
3
2V B}
For the case z; = #,
Y
(6°P) (EH\/E“) _vee sy [ V2 5 L 2
VA T\NIVE I8VRME, VI 1296v2E3 Vi
+ O(\T). (4.92)

We use these approximate quantities in the following subsections.
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4.5.1. Approximation of 1-Point Function G|;; by Saddle Point Method
(N =1)

We consider the 1-point function G|y in the case of (4.71) in N = 1.

VEy 131131(2’1)

G =~ AV B (4.93)
3 3 3
where 2, = \/EV;EQ, and 2o = \/§V§4 By Using (4.86) and (4.89), we approximate 1-Point
Function Gy (N)\i 1) as A
Gy =~ YEo VB VA VA VA 3V
VA VA 12VEWE, 3VEWE, 18VEWE; 54 94« Eo%vz
B/AVA 350/ O 3BWA N 11 x 35AV/A
xR EIVE VEx2x18x Ef  VEx54x Ef  V2x22x EF x2x 3t
. VE, { A BN 352 L3N 11 x 35N }
VA LI2E2V  18E2V V2 x 216 x 4EL '~ T2V2E}  VZ x 8 x 3'E}
A { A BA } B2 { A BA }
12V EwE, | 12E3V  18E3V | 3VE.WE, | 12E3V  18E2V
5vVA A 5\ VE, A2 252 102
18V Ey/Ey { 1262V 18VE3} LVsY {144E§V2 TIRE? T 2% 18E§V2}
+ ONWV)

A ”‘/X? +ONVN). (4.94)
3VEO\/ E() 27V2E05

This is consistent with the calculation of 1-point function Gy (N = 1) using perturbative expan-

sion i.e. (4.26) = (4.94).

4.5.2. Approximation of 1-Point Function G|;; by Saddle Point Method
(N =2)

We consider the 1-point function G|y| in the case of (4.71) in N = 2.

1 VA
V Eov/ Ey — EI\/El’

VE,

Gp=— 5y

1
+ Val 10g PQ(Zl, 2’2) —

(4.95)

73



3 3
V2V Ep V2ViE:?
3

3
where z; = , and 2y = —: Using (4.86), (4.89) and (4.92), we approximate
1

4
1-Point Function G| (N = 2) as

Vv Ey 161P2(21,22) 1 \/X

G :_W—i_ V Py(z1,2) V EoWE, — E\E,
_ VAVE, VAVE 2 VAVES 1
© V 3EZ  V 3By B+ Ei+VEWE, V 3By Ey+ B+ VEWE:
+OAN). (4.96)

This is consistent with the calculation of the 1-point function G| (N = 2) using perturbative
expansion as (4.29) = (4.96).

4.5.3. Approximation of 2-Point Function Gy by Saddle Point Method
(N =2)

We consider the 2-point function G|y in the case of (4.78) in N = 2.

Gt — — 1 VA 01 P (21, 22) —i—l VA 02 P (21, 22)
- V E\WE, — EgWEy P21, 22) V E\WE, — EpWEy P21, 22)
2 A
_2 , 1.97
V (E1vVE, — EgvEp)? ( )
3 3
2ViE] 2ViE;
where 2z = \/_Vg 0 and 2z, = % Using (4.86), (4.89) and (4.92), we approximate
4 4
2-Point Function Gg1 (N = 2) as
o 1 . VEIN
T B+ B+ VEWE: | 3V(VEL — VEo) En/Eo(Erv/Er — Eoy/Ey)
N VvV EoA 2 A
3V(\/ E1 — EO)-EIV EI(EIV E1 — Eo\/ Eo) Vv (El\/ E1 — E()\/ E0)2
+0(N)
B 1 ) A
Ey+ E1+VEWE, 3VEyEy+ B+ VEoWVE)?
. A . 8vV Eov/ Er A
3VE(Ey + Er + VEWEL)? | 3VEL(Eo + Er + VEWEL)?
8vV Eov/ Er A vV EowWELA

+ +
3VEy(Eo+ E1 + VEWE:)?  3VEXEy + Ey + vVEWE:)?
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. VEWELN . 2\E,
3VE2(Ey+ By + VEWEL)?  3VE(Ey+ Ey + VEWEL)?

+ 225, + 104 +0O()\?) (4.98)
3V Eo(Eo + By + VEWEL)? | 3V(Ey + By + VEVEL)? ' '

This is consistent with the result of the 2-point function Go1) (N = 2) using perturbative expansion
i.e. (4.35) = (4.98).

4.5.4. Approximation of 2-Point Function Gy;| by Saddle Point Method
(N =2)

We consider the 2-point function Gy in the case of (4.39) in N = 2.

51P2(2’1, 22) 62P2(2’1, 22) 8132P2(2’1; 2’2)

G = —

Py(21,22) P21, 22) Py(21, 22)
A
_ , 1.99
B3 + B} — 2E0/EyEvVE, (4.99)
3 3
2ViEg VIE?
where 2z = \/_—:0, and zy = % Using (4.86), (4.89) and (4.92), we approximate
i i

A1
2-Point Function Ggy (N = 2) as

A/ Fo/EL N . A
9EGE (Ey + By + VEWEL)?  9Eo(Ey + By + VEov/Er)?

>\ 2
OF, (B0 + B+ VBB W) (4.100)

Then, we verified the consistency between the exact solution and the perturbative calculation for

Gpp =

_|_

4.6. Contributions from Non-trivial Topology Surfaces

In this section, we make remarks about contributions from Feynman diagrams corresponding
to nonplanar or higher genus surfaces. As we saw in Section 2, perturbative expansions of ®3-*
hybrid matrix model are given by the sum over not only planar but also non-planar Feynman
diagrams. Nonplanar graphs are diagrams that cannot be drawn on a plane. For example, a
nonplanar graph in Figure 4.3 appeared when the 2-point function G|,y was calculated.
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A
36V2E, 1By 1(Ea1 + By + VEe 1V Ep—1)

Figure 4.3: The surface of 2-point function G|, with two boundaries

Calculations in this paper are carried out for finite NV, so nonplanar Feynman diagrams are
taken into account.

Next, let us consider contributions from higher genus surfaces. Specifically, we consider “genus
expansion” in one-point function G),. First, we consider the contribution to the one-point function
G|q) from a surface of one genus. (See Figure 4.4.)

AW
ﬁ = T3 2. VEo

—1 vel{a,aal}

Figure 4.4: A surface for 1-point function G|, with one boundary and one genus

This diagram is constructed by using > = 0, ks = 1, ky, = 1, and A4~ = 1, where we use the
notation in Subsection 2.2. The contribution from the Feynman diagram has Y hatky = SR
as we saw in Subsection 2.2. From this formula, Vhotha— SRR g S e AL
Vhotha =PI - VoS y2-2-B-A -2 Fop this, V2729717170 = V=2 Tt is consistent
with Figure 4.4 that the genus of the surface is ¢ = 1. Second, we consider the contribution for
G|q/ from a two genus surface. (See Figure 4.5.)
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= AB\/X Z \/Ev—l \/Ew—l \/Em—l

16 x 39E V4
a—1 vw,z€{{a,a,a}}

Figure 4.5: The surface for 1-point function G|, with one boundary and two genus

From this diagram, we find that ¥ = 0, k3 = 3, k4 = 2, and A4 = 1. From them,
Vk3+k4fw _ V3+27% — V_4. Also Vk3+k4fw — Vx—,/V—E — V2—2g—B—JV—Z_
On the other hand, Figure 4.5 implies V2~29-171=0 — /=4 [t is consistent with Figure 4.5 that
the genus of the surface is ¢ = 2. These observations show that our calculations in Section 4.4
took into account any contributions from higher genus surfaces.

In other words, if we expand (4.71),(4.78),(4.80),(4.83), and so on as (4.24), then each

Gfgf ol | jaP . aP | is obtained as the contribution from the fixed genus g.
Loal | Jaf af
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Chapter 5

Conclusion and Outlook

We provide a summary of this thesis in this chapter. In this thesis, the matrix models corresponding
to Grosse-Steinacker-Wulkenhaar type noncommutative scalar field theories (Grosse-Steinacker-
Wulkenhaar @3 matrix model and ®3-®* hybrid matrix model) are studied in the case where both
the matrix size N and the noncommutative parameter V' are finite, then various progresses are
made. If the partition function Z[J] as the generating function of multipoint correlation functions
with an external field J can be obtained in a concrete form, all the desired information as quantum
field theories can be obtained. In this thesis, we sought a method to obtain the partition function
Z[J] directly using Itzykson-Zuber integral. Even if Itzykson-Zuber integral can be applied, there is
a problem that the partition function Z[.J] can not be determined specifically for a general external
field J unless all eigenvalues of a certain matrix can be obtained. There are cases where this problem
can be avoided, such as when the external field J is a diagonal matrix, or when the external field J
is not a diagonal matrix but is limited to a simple one, in which case the eigenvalue problem can be
solved. Using this method, we have succeeded in obtaining exact multipoint correlation functions
for these cases. These results, especially in the case of Grosse-Steinacker-Wulkenhaar ®3* model,
together with the results of previous studies, lead to the arbitrary multi-point correlation functions.
®3-®* hybrid matrix model, inspired by the experience of obtaining the direct partition function
Z[J] using Itzykson-Zuber integral in ®3 model, opens up new areas including the new model
construction, perturbation theories, and other broad topics. This model is expected to develop
further. In the following, we summarize the contents in more detail according to the structure of
this thesis.

In Chapter 1, we explained the background of this thesis and the motives for the study. Next,
we explained the organization of this thesis.

In Chapter 2, we summarized the definitions and theorems necessary to understand Chapters
3 and 4. We reviewed Grosse-Steinacker-Wulkenhaar ®3 model and its research by Grosse, Hock,
Sako, Steinacker, and Wulkenhaar[13, 14, 15, 18, 19, 30, 31].

In Chapter 3, we found the exact solutions of correlation functions of ®3 finite matrix model
(Grosse-Steinacker-Wulkenhaar model)[40]. In ®? finite matrix model, multipoint correlation func-
tions were expressed as G\a}...a}vl|...\a{5...a53| defined in Chapter 2. In terms of Feynman diagram, it

corresponds with sum of connected Feynman diagrams on Riemann surfaces with B-boundaries.
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The indices of G|,
B-boundaries, and i-th boundary has N;-external lines. It is known that any G‘a%_

1 5 .5 | mean that corresponding connected Feynman diagrams have
..aNl|...|a1 ...aNB|

ay, |-laf e |
can be expressed using G|a1)..|o» type n-point functions as (3.51). Thus we focused oln rigorogs
calculations of G\41._|gn|-

In Section 3.2, the integration of the off-diagonal elements of the Hermitian matrix was cal-
culated using Harish-Chandra-Ttzykson-Zuber integral[36, 51] in calculating the partition function
Z|[J]. Next, the integral of the diagonal elements of the Hermitian matrix was calculated using the
Airy functions as similar to [42]. In Section 3.3, 3.4, and 3.5, we used the obtained partition func-
tion Z[J] to calculate Gq1|._jon| type n-point functions and G|.. The exact solutions of G| jan|
type n-point functions were obtained by calculating the n-th derivative 0"/0J,141 -+ OJgngn of
log Z[J] with the external field J as a diagonal matrix. The result of the calculations for Gla1)...|an|
was described in Theorem 3.5. In the formula for G4 |o» in Theorem 3.5, no integral remains.
More concletely, the n-point function was determined by a function F(S, M, M) whose variables
are S C B, M, and M (B\S = MU M) as formula (3.53), where B is an element of a partition of
{1,--- ,n}. Since the algorithm for finding the exact solutions of G41.je»| type n-point functions
is explicitly determined in the formula of Theorem 3.5, the exact solutions can be obtained auto-
matically. Indeed, the calculations for G|, and G4 Were carried out in Section 3.5 and Section
3.6, respectively. Since a general (N7 + - -+ + Np)-point function G|a%---a}v1\---|a?---aﬁB\ is expressed
by using G|,1..|48| type B-point functions, we can obtain all the exact solutions of the ®3 finite
matrix model.

In Chapter 4, we made ®3-®* hybrid matrix model and studied its basic properties. We con-
structed Feynman rules, and calculated several multipoint correlation functions perturbatively.
We also solved the partition function Z[J] rigorously to obtain the exact solutions of several mul-
tipoint correlation functions. In Subsection 4.2.1, we constructed Feynman rules of ®3-®* hybrid
matrix model in a well-known way in terms of quantum field theories[41]. The ®3 interaction

caused unconventional Feynman rules because of the insertion of M as trM ®3. Therefore, we dis-
B

cussed it carefully without omission. Particular attention was paid to the connected Z N;-point

i=1
- Its details were defined and discussed in Subsection 4.2.2, but this

function can be interpreted geometrically and corresponds to the sum over all Feynman diagrams
(ribbon graphs) drawn in certain rules on Riemann surfaces with B-boundaries (punctures). Each
|af - - - aly | corresponds to N; external lines coming from the i-th boundary (puncture) in the Feyn-
man diagrams (ribbon graphs). First, using the Feynman rules of ®3-®? hybrid matrix model,
perturbative expansions for one-point function G|}, two-point function G|, and two-point func-
tion G'jg1| were computed by drawing Feynman diagrams for matrix size NV = 2 case as pedagogical
instructions to understand the way of calculations. Next, we performed perturbative calculations
for G|4),Gap|, and G4 in the case that the matrix size is any N.

On the other hand, the calculation of the partition function Z[J] in ®3-®* hybrid matrix model
was carried out rigorously. For the computation of the partition function Z[J], the integral of the
off-diagonal elements of the Hermitian matrix was computed using Itzykson-Zuber integral[36, 51].

function G\a}vl"'a}v1|"‘\a{3“'a§
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In contrast, the integral of the diagonal elements of the Hermite matrix was obtained by using a
function P(z) that is similar to the Pearcey integral. We then used the exact calculated partition
function Z[J] to compute the exact solutions for G|4|, G|as|, G|app|, and n-point function Gatja2|-|an|
for any N matrix size. We verified that the final results of the perturbative expansions for N = 2
are in agreement with the saddle point approximation using the results of the exact solutions
in Gi|, G21), and G)gy) by setting N = 2. Finally, we made remarks about contributions from
Feynman diagrams of ®3-®* hybrid matrix model corresponding to nonplanar or higher genus
surfaces.

Finally, we discuss the prospects for future research. As discussed in Chapter 2, there is a kind
of noncommutative space called Moyal spaces, in which the fields are discretized and the matrix
appears. Therefore, the scalar ¢ theories on Moyal spaces are replaced by the matrix model.
The matrix model takes the matrix size N to infinity and the noncommutative parameter V is
usually finite. One of a goal is to find exact solutions of multipoint correlation functions in the
scalar ¢3 theories on Moyal spaces. In this thesis, the exact solutions of the multipoint correlation
functions in Grosse-Steinacker-Wulkenhaar ®3 model were obtained when the matrix size N is
finite and the noncommutative parameter V' is also finite. The exact solutions of the multi-point
correlation functions in Grosse-Steinacker-Wulkenhaar ®3 model by taking the limit of matrix size
N to infinity but keeping finite V' corresponds to the exact solutions of the multi-point correlation
functions in the scalar ¢ theories on Moyal spaces. We need to compute the exact solutions in
this case, but so far it seems to be difficult. It is not naively expected from the results of this
thesis. In the future, we plan to develop new methods to obtain such large N limit.

It is also necessary to study the renormalizability in large N limit of ®3-®* hybrid matrix
model. The term ‘renormalization’ here means that the divergences that appear in the perturbative
expansions are pushed into the redefinition of each parameter that appears in the theory. The
process of removing the divergences is brought about by adding counter terms to the Lagrangian.
First, we check if the Feynman diagrams of the one-loop that appears in the perturbative expansion
of ®3-®* hybrid matrix model can be renormalized. We investigate whether one-loop calculations
can produce counter terms without divergence. Next, we compute in the case of the Feynman
diagrams of the higher loop and check if it can be renormalized. The possibility of eliminating
infinities arising from perturbing multipoint correlation functions of ®3-®* hybrid matrix model
should be investigated. By introducing finite numbers of counter terms, we aim to ascertain the
potential for renormalizability in ®3-®* hybrid matrix model.

As described above, many issues remain in the analysis of scalar fields on noncommutative
spaces, and further progress is desirable.
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