
学位論文

Quantum random access memory
utilizing discrete-time and continuous-time quantum walks

(離散時間及び連続時間量子ウォークを用いた量子ランダムアクセスメモリ)

2024年 3月

Ryo Asaka

（浅香　諒）

Quantum random access memory

utilizing discrete-time and continuous-time quantum walks

Ryo Asaka1

Department of Physics, Tokyo University of Science,
Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan

March 1, 2024

1E-mail: 1221702@ed.tus.ac.jp

Abstract

Utilizing discrete-time and continuous-time quantum walks, we propose a quantum random
access memory (qRAM) defined on a full binary tree. Our qRAM comprises 2n memory
units storing data, which are located at the leaves of the binary tree. This device retrieves
O(2n) data from these units in the form of quantum superposition through the binary tree.
First, we formulate a discrete-time quantum walk on the full binary tree to develop the data
retrieval algorithm. The walker, responsible for a register retrieving the data, moves along the
binary tree in discrete-time intervals through unitary transformations. These transformations
involve flipping the walker’s coin and then shifting its position based on the outcome of the
coinflip. Second, we introduce a continuous-time quantum walk with two-level internal states
to physically implement the above algorithm, which is applicable to either bosonic or fermionic
particles with internal states. The register is implemented by dual-rail encoding: the qubit
is represented by which of the two parallel rails the particle passes through. Coinflipping is
realized by applying a localized external field to the internal states of the particle. Meanwhile,
position shifting is achieved through scatterings of the particles, which depends on their
internal states.

Our qRAM can retrieve O(2n)m-qubit data in the form of a quantum superposition using
only n + m qubit resources, which are given by dual-rail encoded particles. Furthermore,
our architecture achieves the retrievement with a circuit depth of O(n log(n + m)). These
are more efficient than the conventional bucket-brigade qRAM, which requires O(2n + m)
qubit resources and O(2n + nm) time steps. A crucial aspect of utilizing discrete-time and
continuous-time quantum walks is eliminating the need for time-dependent controls; data
retrieval is completed simply by the particles passing through the architecture.

Contents

1 Introduction 2
1.1 Overview of the discrete-time and continuous-time quantum walks 3
1.2 Overview of the quantum random access memory 5
1.3 Overview of this thesis . 7

2 Bucket-brigade process: the conventional retrieval process 11

3 Data retrieval algorithm via discrete-time QW [1] 14
3.1 Discrete-time quantum walk on a binary tree 15
3.2 Exponential qubit savings . 15

4 Connection between discrete-time and continuous-time QWs [1–3] 21
4.1 Implementation of the bucket with data (address and data registers) 22

4.2 Implementation of the controlled coinflip X (l−1,w)
C,A 23

4.3 Implementation of the shift operator S
(l−1,w)
B,C 25

4.4 Implementation of the coinflip X (l,2w+1)
C . 26

4.5 Implementation of the query operator XDi . 27

5 Physical implementation by continuous-time QW [2, 3] 29
5.1 Continuous-time quantum walks with two-level internal states 30
5.2 Physical implementation of circuit components 34
5.3 Constructing a circuit with finite rails . 42
5.4 Universal quantum computer compatible with our qRAM 43

6 Summary and discussion 45

Acknowledgments 47

A Single- and two- particle scattering 48
A.1 Scattering matrix for a single particle on a subgraph 48
A.2 Phase shift through a two-particle head-on scattering along a rail 49

1

Chapter 1

Introduction

The purpose of this doctoral thesis is to theoretically demonstrate that both discrete-time
and continuous-time quantum walks can make significant contributions to quantum random
access memory (qRAM: quantum RAM), which combines the insights from three of the
author’s works [1–3]. In this introduction, we first present an overview of these two types of
quantum walks. Second, we provide the concept of the conventional qRAM, highlighting the
issues associated with its realization. Finally, we outline the contents of this thesis, briefly
explaining how the application of quantum walks can address and resolve the issues of qRAM.

2

1.1 Overview of the discrete-time and continuous-time quan-
tum walks

Quantum walks are foundational frameworks based on quantum mechanical principles, mak-
ing significant contributions to the field of quantum information. These contributions are
mainly to the proposal of quantum algorithms, but also to physical implementations of quan-
tum computing in recent years. Here, researchers broadly classify the quantum walks into
two types: the discrete-time quantum walk [4] and the continuous-time quantum walk [5].
Although close relationships between these two quantum walks have been revealed, e.g., the
discrete-time quantum walk can imitate the continuous-time one [6, 7], each quantum walk
originates from a completely different context.

The discrete-time quantum walk, a quantum counterpart to the classical random walk, is
an iteration of two unitary transformations: coinflipping and position shifting. A quantum
walker of this model has a coin state, which is initially either |0〉C or |1〉C ∈ C2. By the
coinflipping acting on the walker, the walker’s coin state changes to another coin state.
Subsequently, by the position shifting, the walker moves to the left (+1) or right (−1) in a
one-dimensional space, based on its coin state |0〉C or |1〉C, respectively. In contrast to the
classical random walk, the quantum walker can shift (take) both +1 and −1 as a quantum
superposition because its coin state can be a quantum superposition of both |0〉C and |1〉C.

The faster distribution property compared to the classical quantum walk, arising from the
quantum superposition of the walker’s coin states and the interference between these states at
the same position, results in quantum speed-up for some problems, such as search and element
distinctness problems for a desired value [8–12]. Additionally, the emergence of discrete-time
quantum walks, defined on various structures, suggests a wide range of applications for this
quantum walk: not only in one-dimensional space, but also in, for example, multi-dimensional
spaces [13], hypercubes [14, 15], graphs [16], and complex networks [17] (furthermore, in the
full binary tree proposed in this thesis).

In contrast, the continuous-time quantum walk is an evolution over a continuous-time
t described by e−iAt; the walker moves on a graph whose structure can be represented by
an adjacency matrix A of the graph. Originally, this quantum walk is designed to examine
whether a quantum speed-up is possible in a decision problem where decisions and their out-
comes are represented by, respectively, edges and vertices of a binary tree graph [5]. Whereas
the outcome is negative (as there exists a classical counterpart as fast as the continuous-time
quantum walk [5]), using this quantum walk offers an exponential speed-up in black box graph
traversal problems [18, 19], and a quadratic speed-up in spatial search problems [20–23].

One can also employ the continuous-time quantum walk as a model of a particle moving
and scattering on a graph-like structure with its evolution described by e−iAt, because the
adjacency matrix A representing this structure can be Hermitian. A previous study has
then proposed a physical implementation of universal quantum computation [24]. Here,
this proposal employs only one quantum walker (particle) and represents the n-qubit state,
|0...00〉, |0...01〉, ..., |1...11〉, by the position of the walker (Namely, the space complexity scales
O(2n) for the n-qubit circuit). For the computation, this particle then changes its qubit
state by the single-particle scatterings on a graph-based architecture. Inspired by this study,
discrete-time quantum walk approaches for universal quantum computation have also been
proposed [25–27].

Moreover, a physical implementation for universal quantum computation employing the

3

H HH

in out

in out|001

:

(a) (b) (a)

|0

: |0

: |1

Figure 1.1: A conceptual image of the universal quantum computation using multi-particle
continuous-time quantum walk, proposed by A. M. Childs et al. [28]. The computation is
completed by the particles passing and scattering through the graph-based architecture. (a)
Binary digits, e.g., |001〉, are represented by the three dual-rail encoded particles (1.1.1). (b)
The single-qubit gate, e.g., Hadamard gateH, is implemented by single-particle scattering on
a subgraph. (c) A two-qubit gate is implemented by utilizing two-particle head-on scattering
along a rail.

multi-particle continuous-time quantum walk has been proposed [28], which is one of the
main inspirations for this thesis. As shown in Fig. 1.1, this proposal utilizes single- and
two-particle scatterings on a graph-based architecture for the computation.

This quantum computation using a multi-particle continuous-time quantum walk results
in the following two benefits. The first benefit is the efficient utilization of architecture size;
the architecture required for n qubits scales only O(n) in size, whereas the above conventional
methods, employing a single continuous-time or discrete-time quantum walker, necessitate an
architecture size of O(2n) [24–27]. The second benefit is that this implementation requires no
time-dependent control. Namely, particles simply passing and scattering through the graph-
based architecture complete the computation automatically as well as the computation using
the single-particle continuous-time quantum walk. Note that, in this computation, each of n
particles serves as each of n qubits by the dual-rail encoding. Namely, a binary digit (qubit
value) either 0 or 1 is represented based on which rail a particle passes in two parallel rails:

|0〉 := , |1〉 := , (1.1.1)

(see Fig. 1.1 (a) for an example of three qubits).
Experimental realizations of the quantum walks using photons [29, 30], atoms [31–34],

trapped ions [35–37], and superconducting processors [23] suggest the feasibility of realizing
such a quantum computation. Note that the above implementation of the universal quantum
computation using the multi-particle continuous-time quantum walk can be applicable to
either bosonic or fermionic particles [28, 38].

4

1.2 Overview of the quantum random access memory

The purpose of this thesis is to theoretically demonstrate that both discrete-time and multi-
particle continuous-time quantum walks can make significant contributions to quantum ran-
dom access memory (qRAM: quantum RAM) [39, 40] as well, in terms of both developments
of an algorithm for qRAM and its physical implementation. Note that the contribution of
the quantum walks to the qRAM is detailed in the next part of this introduction.

The qRAM, not yet experimentally demonstrated, is an essential component to achieve
quantum speed-ups in various quantum algorithms, such as database search [41–43], ma-
chine learning [44, 45], Hamiltonian simulations [46–48], and fast Fourier Transform [49],
over their classical counterparts. Concretely, one employs the qRAM to prepare a quantum
superposition of O(2n) data which these algorithms require as a prerequisite input.

The qRAM comprises 2n memory units storing m-qubit data classically, which are located
at the leaf nodes of the binary tree (see fig. 1.2 for the conceptual image). Through the binary
tree, we can retrieve the desired O(2n) m-qubit data from the corresponding memory units
as a response to memory access in a superposition:

qRAM :
∑
a

|a〉A|0〉D 7→
∑
a

|a〉A|x(a)〉D, (1.2.1)

where 0 ≤ a ≤ 2n − 1 denotes the memory unit and x(a) is the data recorded in the ath
unit. The subscripts A and D denote the address and data register allocated n and m qubits,
respectively. The address and data are then represented as binary digits: a = an−1...a1a0
and x(a) = x

(a)
m−1 · · ·x

(a)
1 x

(a)
0 where aq, x

(a)
q ∈ {0, 1} for q ≥ 0.

By using the qRAM, we can retrieve the superposition of data within time steps of
O(n(n+m)) in general, and thus resolve the bottleneck for the quantum speed-up associated
with the preparation of the superposition of data in the aforementioned quantum algorithms.
Through the binary tree, the qRAM retrieves O(2n) data in parallel (the time steps originate
from the number of qubits, n+m, and the depth of the binary tree, n). As a counter-example
of the speed-up, if one constructs the superposition by retrieving O(2n) data from the memory
units not in parallel but one by one, which would require at least O(2n) time steps, these
quantum algorithms can not achieve a speed-up beyond O(2n) time steps in total.

The main issue for the realization of qRAM is that the implementation requires 2n−1 − 1
ancillary qubit resources and time-dependent controls to O(2n) of these resources for retriev-
ing O(2n) data. This is a trade-off for the exponential saving of the time steps compared to
the above counter-example by utilizing quantum parallelization. Here, in this thesis, the word
qubit resources signifies devices and matters that exhibit superposition and entanglement.

Concretely, conventional proposals for the ordinary qRAM require 2n−1 − 1 quantum
switches as ancillary qubit resources. Each of these switches has three energy levels denoted
as |wait〉, |left〉, and |right〉 ∈ C3 (or two energy levels: |left〉, and |right〉 ∈ C2).

As shown in Fig. 1.3, the quantum switches are installed on the nodes other than leaf
nodes of the binary tree, 2n−1 − 1 nodes in total. The switches create the routes that direct
the data register from the root node to the desired memory units in a superposition. Here, a
switch in a quantum superposition of the |left〉 and |right〉 passes the data register to both
the left and right adjacent nodes as the superposition, leading to the parallelization of the
memory access and data retrievement. Note that we will review in detail a common process,

5

root node

leaf nodes

x
(0)

x
(1)

x
(2)

x
(3)

x
(4)

x
(5)

x
(6)

x
(7)

Figure 1.2: Binary tree and memory units. Here, 2n leaf nodes are connected to the 2n

memory units, respectively. In the ath unit, data x(a) is recorded.

wait wait wait

|left

right

right

wait

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

(a)

wait wait

right

right

|left

|left + |right+|left |right

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

right

(b)

Figure 1.3: Conceptual image of qRAM employing the bucket-brigade process (see Sec 2 for a
detailed review of this process). Each node is equipped with the quantum switches that have
three energy levels: |wait〉, |left〉, and |right〉 ∈ C3. (a) A data qubit accesses the desired
unit by the switches directing the qubit to move sequentially, e.g., left node, right, and then
right again to the 3rd unit. (b) When certain switches are set to be in a superposition
|left〉+ |right〉, the data qubit accesses multiple units, e.g., the 3rd and 5th, simultaneously
as a spatial superposition.

which is known as the bucket-brigade process, for creating the routes and sending the data
register along these routes in Chap. 2.

One must maintain the superposition of O(2n) switches along the created routes to the
desired units throughout the retrieval process, because these switches become entangled with
the output, i.e., the superposition of O(2n) data. Additionally, for resolving the entangle-
ments, we need the post-processing to reset the states of all switches to |wait〉 after the
retrieval of the superposition.

Note that, in the bucket-brigade process, the address and data registers become entangled
with practically only a logarithmically small number of switches compared to the total number
of activated switches, thereby offering substantial resilience to noise affecting the switches.
Namely, the address and data registers are partially entangled with only O(n) switches for
the retrieving O(2n) data. Infidelity of the superposition of O(2n) single qubit data thus
scales only with O(n2), even with arbitrary error channels [50].

However, as reviewed and discussed in Chap. 2, we must dedicate effort to time-dependent
controls. Namely, to retrieve the O(2n) data, we need pre-processing to activate the O(2n)
switches from |wait〉 to |left〉 or |right〉. Additionally, post-processing is required to deacti-
vate the switches and resolve the entanglement between these switches and the output.

6

1.3 Overview of this thesis

In this thesis, we theoretically propose a qRAM utilizing both discrete-time and continuous-
time quantum walks. Characteristically our proposal eliminates the need for O(2n) qubit
resources, specifically all 2n−1 − 1 quantum switches, for retrieving a superposition of O(2n)
m-qubit data and then any time-dependent control. Pre- or post-processing is not required
before or after the retrieval.

Concretely, our qRAM requires only n + m qubit resources and simply passing these
qubits through an architecture is sufficient to automatically retrieve the superposition of
data. We employ the discrete-time quantum walk to develop an algorithm, an alternative
to the bucket-brigade process reviewed in the next chapter, for retrieving data stored in the
memory. We then use multi-particle continuous-time quantum walk to propose a physical
implementation of qRAM adopting our retrieval algorithm.

As shown in Table. 1.1, although our proposal requires larger space and more quantum
gates compared to the bucket-brigade process, we reduce the required qubit resources and
time steps to n+m and O(n log(n+m)), respectively. Moreover, the elimination of the need
for any time-dependent control is also a significant aspect of our proposal; simply passing the
registers through the architecture completes a retrieval process for the superposition of data,
automatically.

First, we formulate a discrete-time quantum walk on the full binary tree to propose a data
retrieval algorithm. This algorithm uses the walker as the set of address and data registers:

|0〉C|a〉A|x(a)〉D ≡ x

(a
)

a

, |1〉C|a〉A|x(a)〉D ≡ x

(a
)

a

. (1.3.1)

Here, we represent the walker as the bucket with data, where the walker’s coin states |0〉C
and |1〉C are represented by the colors red and blue, respectively.

In our formulation, the walker (bucket with data) shifts to either the left or right path at
the bifurcation point based on its coin states (colors):

x

(a
)

a

x

(a
)

a

,

x

(a
)

a

x

(a
)

a

. (1.3.2)

Although we represent the quantum walker as the bucket with data, our algorithm for the
qRAM is completely different from the bucket-brigade method where the registers are carried
by the quantum switches.

By utilizing the colors, we eliminate the need for the quantum switches for sending the
registers to the desired location on the binary tree. In our process, the bucket with data
serving as the registers iteratively changes its color at the bifurcation points of the binary
tree to select the left or right path, depending on this color, appropriately. The color change,

7

Method #qubits #time steps #quantum gates or spaces

quantum walks n+m O(n log(n+m)) O(2n(n2 + nm) log(n+m))
bucket-brigade O(2n) +m O(n(n+m)) O(n2n)

Table 1.1: Comparison of the number of qubit resources, time steps, quantum gates, and
architecture spaces between our proposal, which employs quantum walks, and the bucket-
brigade qRAM. Here, in this thesis, the word qubit resources signifies devices and matters
that exhibit superposition and entanglement.

i.e., coin flipping of the quantum walker, can be implemented by devices installed on each
bifurcation point, whereas the conventional process, the bucket-brigade, installs the quantum
switch on each bifurcation to guide the registers to the desired location. Note that each of
these devices itself does not exhibit quantum superposition and entanglement, and thus is
not a qubit resource.

We can implement our algorithm without any need for time-dependent control, partly
because our algorithm does not manage the ancillary qubit resources, such as the bucket-
brigade process which requires activating the corresponding quantum switches from |wait〉
to |left〉 or |right〉, and maintaining and deactivation these states during and after the data
retrieval. Intuitively, simply passing the registers through an architecture is sufficient to
complete the data retrieval.

Second, we formulate a multi-particle continuous-time quantum walk with two-level in-
ternal states to propose a physical implementation of qRAM, inspired by the aforementioned
universal quantum computation [28]. The motivation for introducing the internal states is
to implement the colored bucket and data (1.3.1) and the position shifting based on its
color (1.3.2). Here, because the internal states correspond to the colors red and blue of the
bucket with data, we represent these two states as red and blue. Furthermore, these states
are denoted by |0〉cq and |1〉cq ∈ C2 for the qth particle:

|0〉cq ≡ , |1〉cq ≡ . (1.3.3)

As with the above universal quantum computation, we combine single- and two-particle
scatterings to implement the data retrieval algorithm, thereby solidifying the algorithm’s
two main aspects. Namely, the retrieval algorithm is completed automatically as the parti-
cles simply pass and scatter through a graph-based architecture. The implementation still
eliminates the need for any ancillary qubits and time-dependent controls.

In our formulation, which is different from the previous continuous-time quantum walk, a
particle on a graph demonstrates the internal-state dependence of single-particle scatterings
on a subgraph, as shown in fig 1.4. Concretely, when the particle enters a subgraph, it scatters
according to either a scattering matrix or its transpose depending on its internal states. Note
that we only utilize a two-particle scattering as a head-on scattering along a rail, where both
particles have the same internal state.

The first key concept for utilizing the continuous-time quantum walk to implement our
retrieval algorithm is introducing the roundabout gate which is used for the position shifting of
the bucket with data. The roundabout gate is a subgraph demonstrating the aforementioned
internal-state dependence of a scattering. This graph connects three rails and scatters an
incident particle to another rail in either a counter-clockwise or clockwise direction, depending

8

on its internal state:

, . (1.3.4)

See Eq. (4.3.2) and (4.3.3) for concrete images of implementing the shift operator by the
roundabout gates.

The second key concept is the employment of dual-rail encoded particles (as proposed by
Childs et al. [28]). The dual-rail encoding represents the qubit value 0 or 1 based on which of
the two parallel rails a particle passes through as mentioned in Eq. (1.1.1). We thus use n+m
particles for the dual-rail encoded qubits to represent the bucket with data (see Eq. (4.1.2)
and (4.1.1) for concrete images), where both address and data consist of binary digits as

|a〉A = |an−1〉An−1 |an−2〉An−2 · · · |a0〉A0 ∈
(
C2
)⊗n

, (1.3.5)

|x(a)〉D = |x(a)m−1〉Dm−1 |x
(a)
m−2〉Dm−2 · · · |x

(a)
0 〉D0 ∈

(
C2
)⊗m

. (1.3.6)

Here, aq, x
(a)
q′ ∈ {0, 1}, and |aq〉Aq , |x

(a)
q 〉Dq ∈ C2 for q ≥ 0.

In summary, simply passing the n + m particles through an architecture automatically
completes retrieving the superposition of O(2n) m-qubit data from the memory units. Here,
these particles serve as the dual-rail encoded address and data qubits, and the architecture
is mostly constructed from a combination of graphs. In this retrieval process, these particles
move to the left rail, right rail, or both at a bifurcation point of the binary tree to access the
desired memory units as the spatial superposition. This movement can be implemented by
the roundabout gate designed by an appropriate graph. Each unit then passes the recorded
data to the incident particle as the dual-rail encoding.

The outline of this thesis is as follows. In Chap. 2, we review the conventional retrieval
algorithm, the bucket-brigade process. In Chap. 3, we introduce the discrete-time quantum
walk on the full binary tree and describe the retrieval algorithm using this model. In Chap. 4,
we summarize some key concepts for the implementation including the dual-rail encoding and
the roundabout gate. In Chap. 5, we then formulate the continuous-time quantum walk with
two-level internal states and the implementation of our retrieval algorithm. In Chap. 6,
we summarize and discuss our result, supplemented with the discussion of experimental
realization and the error bounds of our proposal. In the appendix, we provide technical
aspects of our continuous-time quantum walk.

9

· ·
·

Ĝ

Incoming

Incoming

(a)

Ĝ

Outgoing

· ·
·

(b)

Ĝ

Outgoing

· ·
·

(c)

Figure 1.4: Our model, the continuous-time quantum walk with two-level internal states,
demonstrates the internal state-dependence of scattering on a graph. Concretely, a single-
particle scattering on the graph follows a scattering matrix or its transpose depending on
the internal states. Using this dependence, we will derive the roundabout gate in Chap. 5.
This gate passes the incoming particles to another rail clockwise or its transpose, i.e., counter-
clockwise, depending on the internal states as shown in Eq. (1.3.4). (a) We consider a particle
that enters a graph (subgraph) through a rail. Here, the particle’s internal state is depicted
as either red or blue. (b) (resp. (c)) The single-particle scattering of the red (resp. blue) is
described by a scattering matrix (resp. its transpose). See Sec. 5.1 for a concrete discussion.

10

Chapter 2

Bucket-brigade process: the
conventional retrieval process

To highlight the uniqueness and novelty of our qRAM, let us review the so-called bucket-
brigade process for retrieving a superposition of data (1.2.1). This innovative process, which
can be considered a standard and mainstream method in research for qRAM, was proposed
by V. Giovannetti, S. Lloyd, and L. Maccone in 2008 [51]. The advantages of this method are
few time steps for data retrieval and high resilience to noise. Namely, the process can retrieve
a superposition of O(2n)m-qubit data within only O(2n+nm) time steps. Additionally, while
2n−1 − 1 quantum switches (qutrits) are generally required, the address and data registers
become practically entangled with only O(n) switches during the process.

11

An architecture for qRAM that supports the bucket-brigade process consists of 2n memory
units and a full binary tree with depth n, the leaf nodes of which are attached to the respective
memory units (see Fig. 1.3). Through the binary tree, the bucket-brigade process retrieves
O(2n) m-qubit data stored in the memory units in the form of quantum superposition in
response to the memory call:

qRAM :
∑
a

|a〉A|0〉D 7→
∑
a

|a〉A|x(a)〉D, (2.0.1)

where a is the assigned number to the ath unit and x(a) is the data stored in this unit.
Generally, the bucket-brigade process requires n+m and (2n−1−1) qubit resources, each

serving different purposes. The n+m resources are allocated to the registers as address and
data qubits:

|a〉A =|an−1〉An−1 |an−2〉An−2 · · · |a0〉A0 ∈
(
C2
)⊗n

, (2.0.2)

|x(a)〉D = |x(a)m−1〉Dm−1 |x
(a)
m−2〉Dm−2 · · · |x

(a)
0 〉D0 ∈

(
C2
)⊗m

, (2.0.3)

where aq, x
(a)
q ∈ {0, 1} for q ≥ 0. The remaining 2n−1 − 1 resources are allocated to the

quantum switches. As shown in Fig. 1.3, these quantum switches, each having three energy
levels: |wait〉, |left〉, and |right〉 ∈ C3, are installed in the nodes of the binary tree, excluding
the leaf nodes, with a total of 2n−1 − 1 nodes.

Here, for the experimental realization of this method, the initial proposals have involved
employing photons as qubits, where the value 0 or 1 is represented by the polarization, and
using atoms with a three-level system as quantum switches [40, 51]. Additionally, researchers
have also proposed various approaches utilizing phonons [52], photonic microchips [53], or
circuit-based implementations [54–57].

Using the quantum switches, the bucket-brigade process creates a route that allows the
data qubits {|0〉Di} to access the desired memory unit and retrieve data stored in this unit.
Note that this route corresponds to the binary digits of the address value. For example, to
access the 3rd of memory units, which corresponds to the binary digits a2a1a0 = 011 (= 3),
the register moves from the root node toward this unit: first left (corresponding to the 2nd
digit “0”), then right (the 1st digit “1”), and finally right again (the 0th digit “1”), as shown
in Fig. 1.3 (a).

Initially, all quantum switches are in the |wait〉 states, and we change the states of corre-
sponding switches by sequentially inputting the n address qubits of the address register (1.3.5)
into the binary tree through the root node, starting with the (n−1)th address qubit. Assume
here that a quantum switch interacts with an incoming qubit either absorbing it or moving
it to an adjacent node on the left or right. At a node, if a quantum switch is |wait〉 and the
incoming qubit is |0〉Aq (resp. |1〉Aq), the switch absorbs this qubit and activates its state to
|left〉 (resp. |right〉) through a unitary transformation U . In contrast, if a quantum switch is
|left〉 (resp. |right〉), the switch passes the incoming qubit to the left (resp. right) adjacent
node by the same unitary transformation U .

For instance, as shown in Fig. 1.3 (a), sequentially inputting address qubits in the state
|011〉A, starting from the final (2nd) qubit A2, carves the route to the 3rd memory unit. As
another example, which is shown in Fig. 1.3 (b), sequentially inputting address qubits with
a superposition of (|011〉 + |101〉)A carves a route to 3rd and 5th memory units. Note that

12

sending and absorbing each address qubit requires O(n) time steps due to the depth of the
binary tree being n, in total O(n2) time steps for n address qubits.

After establishing the routes, we query the desired memory units by sequentially inputting
the m data qubits. In this inputting scheme, by U , the quantum switches along a route pass
the data qubit to the left, right, or both adjacent switches depending on whether the activated
state is |left〉, |right〉, or a superposition of both, respectively. Each qubit, upon reaching
the desired memory unit, changes its state from |0〉Dq to |1〉Dq by the NOT (Pauli-X) gate
if the qth digit of data is 1, which is recorded within the unit. Subsequently, the data qubit
returns to the root node through the inverse transformation U † of U , and then we input the
next data qubit. In summary, the repeatedly inputting, querying, and returning results in
the superposition of data as Eq. (2.0.1). Here, O(nm) time steps for the m-qubit data are
required because a query per bit requires O(n) steps which also originates from the depth of
the tree.

Finally, we must execute post-processing to initialize the architecture. Namely, we recover
absorbed all address qubits from the quantum switches using U † to resolve the entanglement
between the quantum switches and the register. This process necessitates additional O(n2)
time steps.

Whereas the bucket-brigade process needs to activate O(2n) switches each from |wait〉 to
|right〉 or |left〉 to retrieve O(2n) data as a superposition, the registers become practically
entangled with only O(n) switches during the process. Indeed, some studies have stated and
proved the noise resilience of the bucket-brigade process [40, 50, 54, 58]. For example, the
previous study [50] has proved that one can achieve a query, i.e., retrieving O(2n) single
qubit data from the memory units as a quantum superposition after the carving routes, with
infidelity which is almost given by

n∑
l=1

(2−l)(εT2l) = εTn, (2.0.4)

within time steps T = O(n).
However, we must dedicate effort to time-dependent controls for the quantum switches.

The first is the pre-processing to activate the switches for carving the routes toward the
desired memories. The second is the post-processing to recover the absorbed qubits from the
switches to resolve the entanglement between the O(2n) activated switches and the output,
i.e., the superposition of O(2n) data.

13

Chapter 3

Data retrieval algorithm via
discrete-time QW [1]

In this chapter, we propose a novel retrieval algorithm via a discrete-time quantum walk.
First, we formulate the discrete-time quantum walk on a full binary tree. Second, we develop
the retrieval algorithm requiring only n+m qubit resources for the O(2n)m-qubit data, where
the quantum walker is employed as the address and data registers. This algorithm utilizes the
coin states of the walker to eliminate the need for 2n−1−1 qubit resources (quantum switches)
required in the conventional bucket-brigade process. We also show that the algorithm can
eliminate the need for any time-dependent control. Namely, simply passing the quantum
walker, i.e., the registers, through an architecture for our algorithm is sufficient to retrieve
the data as a superposition.

14

3.1 Discrete-time quantum walk on a binary tree

To derive the retrieval algorithm that requires no quantum switches, we formulate a discrete-
time quantum walk on a full binary tree. As explained in the next chapter, the walker serves
as a set of address and data registers, where the walker with a coin state |0〉C and |1〉C are
denoted by the red and blue buckets with data, respectively.

The walker moves on the binary tree toward the desired memory units by a unitary
transformation, referred to as shift operator. Here, this operator relies on the coin state
(color) to guide the set of registers, whereas the unitary transformation U in the bucket-
brigade process relies on the quantum switch to guide the registers in the desired direction,
This distinction leads to the elimination of the need for O(2n) qubit resources.

As a preface, let us refer to a path constructing the full binary tree as bus. As shown in
Fig. 3.1, the symbol r(l,w) indicates the wth bus from the left, located on the lth level of the
binary tree, for 0 ≤ l ≤ n − 1 and 0 ≤ w ≤ 21 − 1. Here, the term bus is used because it
resembles a data bus in computing, where data is transferred through it.

Let us denote the state of the walker with the coin |c〉C (c ∈ {0, 1}) located on the bus
r(l,w) on the binary tree as

|r(l,w)〉B|c〉C ∈ VB ⊗ VC, c ∈ {0, 1}. (3.1.1)

Here, VC, coin space, is the Hilbert space spanned by {|c〉C|c ∈ {0, 1}}, and VB, bus space, is
spanned by {|r(l,w)〉B|0 ≤ l ≤ n− 1, 0 ≤ w ≤ 2l − 1}.

Now we introduce the shift operator S(l−1,w)
B,C that depicts the scattering of the walker

incident into the bus, which is at the (l− 1)th level and wth from the left on the binary tree:

S(l−1,w)
B,C := S̃(l−1,w)

B ⊗ |0〉〈0|C + S̃(l−1,w)⊤
B ⊗ |1〉〈1|C ∈ End (VB ⊗ VC) , (3.1.2)

S̃(l−1,w)
B := |r(l,2w)〉〈r(l−1,w)|B + |r(l,2w+1)〉〈r(l,2w)|B + |r(l−1,w)〉〈r(l,2w+1)|B ∈ End (VB) .

(3.1.3)

By the operator S(l−1,w)
B,C , our walker scatters to the counter-clockwise adjacent bus if its coin

is |0〉C, following the operator S̃(l−1,w)
B . In contrast, the walker with |1〉C follows its transpose

S̃(l−1,w)⊤
B , scattering to the clockwise adjacent bus.
For example, if the coin state of the walker on the bus r(l−1,w) is the superposition of |0〉C

and |1〉C, this walker moves to both the left and right adjacent buses on lth level, creating a
spatial superposition:

S(l−1,w)
B,C : |r(l−1,w)〉B (|0〉C + |1〉C) → |r(l,2w)〉B|0〉C + |r(l,2w+1)〉B|1〉C. (3.1.4)

In our algorithm, the walker evolves in discrete time by iteratively flipping its coin state
and shifting its position based on the outcome of the coinflip. To achieve this, we introduce

a controlled coinflip operator denoted as X (l−1,w)
C,A , and coinflip operator denoted as X (l,2w+1)

C

in the following chapter.

3.2 Exponential qubit savings

Applying the discrete-time quantum walk on the binary tree, we propose a novel retrieval
algorithm that saves qubit resources exponentially compared to the bucket-brigade process.

15

r

(0,0)

r

(1,0)
r

(1,1)

r

(2,0)
r

(2,1)
r

(2,2)
r

(2,3)

r

(3,0)
r

(3,1)
r

(3,2)
r

(3,3)
r

(3,4)
r

(3,5)
r

(3,6)
r

(3,7)

, ,

, ,

,

r

(0,0)

r

(1 0)
r

(1 1)

r

(2 0)
r

(2 1)
r

(2,2)
r

(2,3)

r

(3,0)
r

(3,1)
r

(3,2)
r

(3,3)
r

(3,4)
r

(3,5)
r

(3 6)
r

(3,7)

x
(0)

x
(1)

x
(2)

x
(3)

x
(4)

x
(5)

x
(6)

x
(7)

, ,

, ,

Figure 3.1: Buses {r(l,w)}. The symbol r(l,w) represents the bus on the lth level and is the
wth from the left on this level. We use the term bus in reference to the “memory bus”.

r

(0,0)

r

(1,0)
r

(1,1)

|r
(0,0)

B|0 C

r

(0,0)

r

(1,0)
r

(1,1)

|r
(1,0)

B|0 C

r

(0,0)

r

(1,0)
r

(1,1)

|r
(0,0)

B|1 C

r

(0,0)

r

(1,0)
r

(1,1)

|r
(1,1)

B|1 C

Figure 3.2: Shift operation. Our walker scatters to another bus either in the counter-
clockwise or clockwise direction, based on its coin (color) state, by the shift operator (3.1.2).

We only require n+m qubit resources allocated to the walker (bucket with data) which serves
as the set of address and data registers. While the primary motivation for the algorithm is
saving qubit resources exponentially, removing the need for any time-dependent control is
also a significant aspect. Namely, by the walker, i.e., the set of registers, simply passing
through an architecture, the data retrieval process is completed.

Unlike the conventional approach, our algorithm uses an architecture with two binary
trees symmetrically connected on both sides of the memory, as shown in Fig. 3.3. A discrete-
time quantum walker traverses one side of the trees to access the desired memory units as
spatial superposition, which we refer to as routing. After reaching the units, the walker
queries the data within the units, querying. Subsequently, the walker traverses the other side
of the trees, and, finally, we obtain the superposition of data from the root bus r(0,0) of this
tree, outputting.

Specifically, our algorithm consists of three steps: routing R, querying Q, and outputting
R† as ∑

a

|r(0,0)〉B|0〉C|a〉A|0〉D
R−→
∑
a

|r(n,a)〉B|0〉C|a〉A|0〉D (3.2.1)

Q−→
∑
a

|r(n,a)〉B|0〉C|a〉A|x(a)〉D
R†
−−→

∑
a

|r(0,0)〉B|0〉C|a〉A|x(a)〉D, (3.2.2)

where the walker, serving as the bucket with data, is defined on the tensor product of the
four spaces (the bus, coin, address, and data spaces) VB ⊗ VC ⊗ VA ⊗ VD. Here, the address

16

and data space are the Hilbert spaces spanned by the n and m-qubit states, as shown in
Eq. (1.3.5) and (1.3.6), i.e., VA = (C2)⊗n and VD = (C2)⊗m, respectively. The VC and VB are
the coin and bus spaces, respectively, as described below in Eq. (3.1.1).

First, the routing operation R is defined as

R :=

n∏
l=1

2l−1−1∑
w=0

X (l,2w+1)
C S(l−1,w)

B,C X (l−1,w)
C,A

 ∈ End(VB ⊗ VC ⊗ VA), (3.2.3)

X (l−1,w)
C,A := |r(l−1,w)〉〈r(l−1,w)|B ⊗XC ⊗ |1〉〈1|A(n−1)−l

∈ End(VB ⊗ VC ⊗ VA), (3.2.4)

X (l,2w+1)
C := |r(l,2w+1)〉〈r(l,2w+1)|B ⊗XC ∈ End(VB ⊗ VC), (3.2.5)

where XC is the Pauli-X acting on the coin, i.e., XC := |0〉〈1|C+ |1〉〈0|C ∈ End(VC). We refer

to the two operators X (l,2w+1)
C and X (l−1,w)

C,A as the coinflip and controlled coinflip, respectively.
Let us detail the shifting of the walker on wth bus on level l−1 to the adjacent two bus on

l, which is described by X (l,2w+1)
C S(l−1,w)

C,B X (l−1,w)
C,A as in Eq. (3.2.3). By the controlled coinflip

X (l−1,w)
C,A the walker flips its coin to |1〉C only if the [(n− 1)− l]th address is |1〉A(n−1)−l

:

X (l−1,w)
C,A : |r(l−1,w)〉B|0〉C|a〉A|0〉D 7→ |r(l−1,w)〉B|a(n−1)−l〉C|a〉A|0〉D. (3.2.6)

By the shift operator S(l−1,w)
C,B , the walker moves from the bus r(l−1,w) to r(l,2w+a(n−1)−l):

S(l−1,w)
C,B : |r(l−1,w)〉B|a(n−1)−l〉C|a〉A|0〉D 7→ |r(l,2w+a(n−1)−l)〉B|a(n−1)−l〉C|a〉A|0〉D. (3.2.7)

By the coinflip X (l,2w+1)
C , the coin state is initialized to |0〉C regardless of whether the walker

moves to the left or right adjacent bus:

X (l,2w+1)
C : |r(l,2w+a(n−1)−l)〉B|a(n−1)−l〉C|a〉A|0〉D 7→ |r(l,2w+a(n−1)−l)〉B|0〉C|a〉A|0〉D. (3.2.8)

The summand in Eq. (3.2.3) thus represents shifting the walker, which exists on buses at
level l − 1 as a spatial superposition, to desired buses on the level l:

2l−1−1∑
w=0

X (l,2w+1)
C S(l−1,w)

B,C X (l−1,w)
C,A :

∑
a

|r(l,
∑l−1

j=0 2
(l−1)−ja(n−1)−j)〉B|0〉C|a〉A|0〉D (3.2.9)

7→
∑
a

|r(l+1,
∑l

j=0 2
l−ja(n−1)−j)〉B|0〉C|a〉A|0〉D. (3.2.10)

Note that in the routing process R, the walker with an address 0 ≤ a ≤ 2n−1 passes through

the buses r(0,0), r(1,an−1), r(2, 2an−1+an−2), r(3,
∑2

i=0 2
2−ia(n−1)−i), ..., r(n,

∑n−i
j=0 2(n−1)−ja(n−1)−j) =

r(n,a) in order. Namely, the route, through which the walker moves toward the desired units,
corresponds to the binary digits of the address value in the same as the bucket-brigade
process. For example, the walker with address 3(= 011) on the bus r(0,0) moves first to the
left bus r(1,0), then to the right r(2,1), and finally to r(3,3).

Second, the querying operation Q is defined as

Q :=

2n−1∑
a=0

|r(n,a)〉〈r(n,a)|B ⊗

m−1⊗
q=0

(
XDq

)x(a)
q

 ∈ End(VB ⊗ VD), (3.2.11)

17

where XDi is the Pauli-X acting on qth data qubit, i.e., XDi := |0〉〈1|Di+|1〉〈0|Di ∈ End(VDi).
The summand represents the querying of a memory unit. Namely, the walker on the bus r(n,a)

changes its data from |0〉D to |x(a)〉D as

|r(n,a)〉〈r(n,a)|B ⊗

m−1⊗
q=0

(
XDq

)x(a)
q

 : |r(n,a)〉B|0〉C|a〉A|0〉D

7→ |r(n,a)〉B|0〉C|a〉A|x(a)〉D(
= |r(n,a)〉B|0〉C|a〉A

[
|x(a)m−1〉Dm−1 · · · |x

(a)
1 〉D1 |x

(a)
0 〉D0

]
= |r(n,a)〉B|0〉C|a〉A

[(
XDm−1

)x(a)
m−1 |0〉Dm−1 · · · (XD1)

x
(a)
1 |0〉D1 (XD0)

x
(a)
0 |0〉D0

])
(3.2.12)

After the query, the walker moves to the bus r(0,0) on the opposite binary tree, which is
described by the conjugate transpose R† of R as shown in Eq. (3.2.2).

Whereas the bucket-brigade process inputs n+m qubits sequentially, our process inputs
them in parallel. The required steps are then only O(n) in total, as shown in Eq. (3.2.3).

Additionally, no post-processing is required, such as dissolving entanglements between the
registers and nodes of the binary tree in the bucket-brigade process. The nodes and walker
(address and data registers) are never entangled because each node is equipped only with de-
vices implementing the shift (3.1.2), coinflip (3.2.5), and controlled-coinflip operators (3.2.4)
to pass the walker on the left or right bus appropriately. Here, each of these devices itself
does not exhibit quantum superposition and entanglement.

In fact, the implementation of the controlled coinflip X (l,w)
A,C requires O(log(n+m)) circuit

depth, as described in the next chapter (see Eq. (4.2.7)). The total circuit depth for the
physical implementation of this algorithm thus becomes O(n log(n+m)).

18

x
(0)

x
(1)

x
(2)

x
(3)

x
(4)

x
(5)

x
(6)

x
(7)

76543210

76543210

x

(7
)

7
x

(6
)

6
x

(5
)

5
x

(4
)

4
x

(3
)

3
x

(2
)

2
x

(1
)

1
x

(0
)

0

a

|a A|r(0,0) B|0 C|0 D

a

|a A|r(n,a) B|0 C|0 D

a

|a A|r(n,a) B|0 C|x
(a)

D

a

|a A|r(0,0) B|0 C|x
(a)

D

x

(7
)

7
x

(6
)

6
x

(5
)

5
x

(4
)

4
x

(3
)

3
x

(2
)

2
x

(1
)

1
x

(0
)

0

Q

R†

R

r

(0,0)

r

(1,0)
r

(1,1)

r

(2,0)
r

(2,1)
r

(2,2)
r

(2,3)

r

(3,0)
r

(3,1)
r

(3,2)
r

(3,3)
r

(3,4)
r

(3,5)
r

(3,6)
r

(3,7)

r

(0,0)

r

(1,0)
r

(1,1)

r

(2,0)
r

(2,1)
r

(2,2)
r

(2,3)

r

(3,0)
r

(3,1)
r

(3,2) r(3,3)
r

(3,4)
r

(3,5)
r

(3,6)
r

(3,7)

r

(0,0)

r

(1,0)
r

(1,1)

r

(2,0)
r

(2,1)
r

(2,2)
r

(2,3)

r

(3,0)
r

(3,1)
r

(3,2)
r

(3,3)
r

(3,4)
r

(3,5)
r

(3,6)
r

(3,7)

r

(0,0)

r

(1,0)
r

(1,1)

r

(2,0)
r

(2,1)
r

(2,2)
r

(2,3)

r

(3,0)
r

(3,1)
r

(3,2)
r

(3,3)
r

(3,4)
r

(3,5)
r

(3,6)
r

(3,7)

Figure 3.3: Conceptual image of our algorithm. The bucket with data represents the discrete-
time quantum walker that serves as the address and data registers. First, the quantum
walker accesses the memory units as spatial superposition by the routing operation R (3.2.3).
Subsequently, the walker queries data from the units by the querying operation Q (3.2.11).
Finally, we obtain a superposition of the data from the root bus r(0,0) by the output operation
R†.

19

OutputOutput

Input

··
·

|1

|0 D1

Input

··
·

|1

| D

··
·

··
·

A n−1−

|0 D0
| D

|1 D1
| D

|1 D0
| D

|1|1
A n−1−

Figure 3.4: Overview of our qRAM. Because we construct each bus from 2(n + m) rails
for the n +m dual-rail encoded qubits, the architecture features stacked binary trees with
a total of 2(n + m) trees. At each bifurcation point of the 2(n + m) rails, the dual-
rail encoded qubits (Eq. (4.1.1) or Eq. (4.1.2)) undergo operations, the controlled coinflip

X (l−1,w)
C,A (Eq. (4.2.3) or Eq. (4.2.4)), shift operator S(l−1,w)

B,C (Eq. (4.3.2) or Eq. (4.3.3)), and

coinflip X (l,2w+1)
C (Eq. (4.4.1) or Eq. (4.4.2)).

20

Chapter 4

Connection between discrete-time
and continuous-time QWs [1–3]

This chapter summarizes the key concepts for implementing our retrieval algorithm using only
n +m qubit resources, specifically using n +m particles with two-level internal states. We
will highlight that the implementation necessitates three gates: the roundabout, NOT, and
controlled NOT gates. Note that the implementation utilizing the continuous-time quantum
walk is detailed in the next chapter.

21

4.1 Implementation of the bucket with data (address and data
registers)

To implement the set of address and data registers (bucket with data), we employ n + m
particles as dual-rail encoded qubits. Assume here that each particle has two-level internal
states, which are represented by |0〉cq and |1〉cq for the qth of n+m particles (let us represent
these internal states as respectively red and blue because they correspond to the red and
blue buckets with data). For example, we implement sets of the registers, whose states are
|0〉C|r(l−1,w)〉B|3〉A|0〉D and |0〉C|r(l−1,w)〉B|1〉A|0〉D, using four particles:

3
0

≡

: |0 c3b3

| B|0 C|3 A|x
(a)

D

:

:

:

r
(l−1,w)

|r
(l−1,w)
7

|0 c2b2
|r

(l−1,w)
5

|0 c1b1
|r

(l−1,w)
2

|0 c0b0
|r

(l−1,w)
0

A1
r
(l−1,w)
7

r
(l−1,w)
6

A0
r
(l−1,w)
5

r
(l−1,w)
4

D1
r
(l−1,w)
3

r
(l−1,w)
2

D0
r
(l−1,w)
1

r
(l−1,w)
0

(4.1.1)

1
0

≡

: |0 c3b3

| B|0 C|1 A|x
(a)

D

:

:

:

r
(l−1,w)

|r
(l−1,w)
6

|0 c2b2
|r

(l−1,w)
5

|0 c1b1
|r

(l−1,w)
2

|0 c0b0
|r

(l−1,w)
0

A1
r
(l−1,w)
7

r
(l−1,w)
6

A0
r
(l−1,w)
5

r
(l−1,w)
4

D1
r
(l−1,w)
3

r
(l−1,w)
2

D0
r
(l−1,w)
1

r
(l−1,w)
0

(4.1.2)

where we represent the color |0〉C by aligning all colors of the particles to red (namely, if the
color of the bucket with data is blue, we align all colors of the particles to blue). As described
in the introduction (see Eq. (1.1.1)), the dual-rail encoding represents the binary value 0 or 1
based on which of the two parallel rails a particle passes through. We then construct the bus

r(l−1,w) using 2(n+m) rails labeled as r
(l−1,w)
0 , r

(l−1,w)
1 , r

(l−1,w)
2 , . . . , r

(l−1,w)
2(n+m)−1 for the n+m

qubits. Here, a set of two rails, r
(l−1,w)
2q and r

(l−1,w)
2q+1 , corresponds to the qth data qubit for

0 ≤ q ≤ m− 1 or (q −m)th address qubit for m ≤ q ≤ n+m− 1.

22

Explicitly, the dual-rail encoded state, which represents the bucket with data colored red
or blue, is written as follows:

|r(l−1,w)〉B|c〉C|a〉A|x〉D = |r(l−1,w)〉B|c〉C

(
n−1⊗
q=0

|aq〉Aq

)(
m−1⊗
q=0

|xq〉Dq

)
(4.1.3)

≡

{
n+m−1⊗
q=m

(
δ0,aq−m |r

(l−1,w)
2q 〉bq + δ1,q−m|r(l−1,w)

2q+1 〉bq
)
|c〉cq

}

⊗

{
m−1⊗
q=0

(
δ0,xq |r

(l−1,w)
2q 〉bq + δ1,xq |r

(l−1,w)
2q+1 〉bq

)
|cq〉cq

}
∈

n+m−1⊗
q=0

Vbq ⊗ Vcq ,

(4.1.4)

where c ∈ {0, 1}. Here, the color space Vcq is the Hilbert space spanned by {|c〉cq |c ∈ {0, 1}},
which represents the internal state of the qth particle. Subsequently, the bus space Vbq is

the Hilbert space spanned by {|r(l−1,w)
2q 〉bq , |r

(l−1,w)
2q+1 〉bq |0 ≤ l ≤ n − 1, 0 ≤ w ≤ 2l − 1},

representing rails on which the qth dual-rail encoded particle exists. Note that these particles
are indistinguishable; we assign the label q explicitly to the particle corresponding to the qth

dual-rail encoded qubit, i.e., passing through the rail r
(l−1,w)
2q or r

(l−1,w)
2q+1 .

Because each bus consists of 2(n+m) rails, the architecture’s structure features 2(n+m)
binary trees stacked as shown in Fig. 3.4.

4.2 Implementation of the controlled coinflip X (l−1,w)
C,A

To implement the controlled coinflip X (l−1,w)
C,A (3.2.4) we introduce the NOT gate and con-

trolled NOT gates acting on the internal states (colors). Here, the NOT gate reverses the
color of a single particle. The controlled NOT gate acts between two particles, e.g., particles
q and q′, so that the color of qth particle is reversed only if the color of q′th particle is |1〉cq′ .

Let us denote the NOT gate installed in any rail r, and the controlled NOT gate in any
two rails rctrl and rtgt as

NOTc(r) := c
r = |r〉〈r|bq ⊗

(
|1〉〈0|cq + |0〉〈1|cq

)
, (4.2.1)

CNOTc,c′(rctrl, rtgt) :=
×

c

rctrl

rtgt

= |rctrl〉〈rctrl|bq′ ⊗ |1〉〈1|cq′ ⊗NOTc(rtgt), (4.2.2)

where NOTc(r) ∈ End(Vbq ⊗ Vcq) and CNOTc,c′(rctrl, rtgt) ∈ End(Vbq ⊗ Vcq ⊗ Vbq′ ⊗ Vcq′).
Actual implementations of the NOT and controlled NOT gates are detailed in Sec 5.2.

Recall that the controlled coinflip, represented by the operator X (l−1,w)
C,A , flips the coin

(color) of the bucket with data only if its [(n − 1) − l]th address qubit is |1〉A(n−1)−l
. For

implementing this operator, we combine NOT and controlled NOT gates to construct a cor-
responding circuit. First, we use the NOT gate to reverse the particle’s color passing through

the rail r
(l−1,w)
2((n+m−1)−l)+1, which corresponds to the address qubit |1〉A(n−1)−l

. Subsequently, we

23

use the controlled NOT gates to align the internal states of all particles. Namely, the colors
of the remaining particles match the particle’s color changed in the first step.

For example, a four-qubit circuit for the operator X (l−1,w)
C,A changes (resp. does not change)

the color of the four-qubit state (4.1.1) (resp. (4.1.2)) as follows:

X
(l−1,w)
C,AX
(l−1,w)
C,A

A1

A0

D1

D0

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

NOTc(j
(0,0)
7) ˜CNOT

(0,0,0)
c,c

˜CNOT
(0,0,1)
c,c

3
0

| B|0 C|3 Ar
(l−1,w)

3
0

| B|1 C|3 Ar
(l−1,w)|0 D |0 D

A1
r
(l−1,w)
7

r
(l−1,w)
6

A0
r
(l−1,w)
5

r
(l−1,w)
4

r
(l−1,w)
3

r
(l−1,w)
2

r
(l−1,w)
1

r
(l−1,w)
0 (4.2.3)

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

×

c

NOTc(j
(0,0)
7) ˜CNOT

(0,0,0)
c,c

˜CNOT
(0,0,1)
c,c

1
0

| B|0 C|1 Ar
(l−1,w) |0 D

3
0

| B|0 C|3 Ar
(l−1,w) |0 D

X
(l−1,w)
C,AX
(l−1,w)
C,A

A1
r
(l−1,w)
7

r
(l−1,w)
6

A0
r
(l−1,w)
5

r
(l−1,w)
4

D1
r
(l−1,w)
3

r
(l−1,w)
2

r
(l−1,w)
1

r
(l−1,w)
0

D0
(4.2.4)

Here, the operator ˜CNOT
(l−1,w,t)
c,c′ is defined as

˜CNOT
(l−1,w,t)
c,c′ :=

2t−1⊗
k=0

∏
s,s′∈{0,1}

CNOTc,c′

(
r
(l−1,w)
2ql−1,t,k+s, r

(l−1,w)
2ql−1,t,k+1/2+s′

)
(4.2.5)

∈ End

2t−1⊗
k=0

(Vcql,t,k ⊗ Vbql,t,k)⊗ (Vcql,t,k+1/2
⊗ Vbql,t,k+1/2

)

 . (4.2.6)

Here, the two rails r
(l−1,w)
2ql−1,t,k

and r
(l−1,w)
2ql−1,t,k+1 correspond to the ql−1,t,kth of n+m qubits, where

ql−1,t,k := ((n+m− l − 1)− (N/2t)k) mod (n+m).
Explicitly, the circuit which implements the controlled coinflips is written as

X (l−1,w)
C,A ≡

log(n+m)−1∏
t=0

˜CNOT
(l−1,w,t)
c,c′

NOTc

(
r
(l−1,w)
2ql−1,0,0+1

)
∈ End

n+m−1⊗
q=0

Vcq ⊗ Vbq

 .

(4.2.7)

The depth of the circuit implementing the controlled coinflip is then O(log(n+m)).

24

4.3 Implementation of the shift operator S
(l−1,w)
B,C

To implement the shift coin operator S
(l−1,w)
B,C (3.1.2), we branch the 2(n+m) rails of the bus

r(l−1,w) into left and right rails using 2(n+m) roundabout gates. Here, as mentioned in the
introduction (see Eq. (1.3.4)), the roundabout gate scatters an incident particle to another
rail either counter-clockwise or clockwise depending on its internal states:

, . (4.3.1)

We will derive a subgraph demonstrating the functionality of the roundabout gate in Sec. 5.2.
As an example of the implementation of the shift operator, let us consider the four-qubit

dual-rail encoded particles. These particles, whose colors are changed to red or blue by the
controlled coinflip, scatter to respectively the left or right rails depending on these colors by
the roundabout gates:

S
(l−1,w)
B,C A1

A0

D1

D0

A1

A0

D1

D0

S
(l−1,w)
B,C

3
0

| B|1 C|3 Ar
(l−1,w) |0 D

|r(l,2w+1)
B|1 C|3 A

3
0

|0 D

A1
r
(l−1,w)
7

r
(l−1,w)
6

A0
r
(l−1,w)
5

r
(l−1,w)
4

D1
r
(l−1,w)
3

r
(l−1,w)
2

D0
r
(l−1,w)
1

r
(l−1,w)
0

r7

r6

r5

r4

r3

r2

r1

r0

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(4.3.2)

|r(l,2w)
B|0 C|1 A

1
0

|0 D

1
0

| B|0 C|1 Ar
(l−1,w) |0 D

A1
r
(l−1,w)
7

r
(l−1,w)
6

A0
r
(l−1,w)
5

r
(l−1,w)
4

D1
r
(l−1,w)
3

r
(l−1,w)
2

D0
r
(l−1,w)
1

r
(l−1,w)
0

A1

A0

D1

D0

A1

A0

D1

D0

r7

r6

r5

r4

r3

r2

r1

r0

(l, 2w)

(l, 2w)

(l, 2w)

(l, 2w)

(l, 2w)

(l, 2w)

(l, 2w)

(l, 2w)

S
(l−1,w)
B,CS
(l−1,w)
B,C

(4.3.3)

Here, each of the roundabout gates connects three rails: r
(l−1,w)
i , r

(l,2w)
i , and r

(l,2w+1)
i .

25

Explicitly, the implementation of the shift operator is written as

S(l−1,w)
B,C ≡

n+m−1∑
q=0

∑
s∈{0,1}

R
(
r
(l−1,w)
2q+s , r

(l,2w)
2q+s , r

(l,2w+1)
2q+s

)
∈ End

n+m−1⊗
q=0

Vbq ⊗ Vcq

 . (4.3.4)

We denote here the functionality of the roundabout gate as

R
(
r, r′, r′′

)
:= R̃

(
r, r′, r′′

)
⊗ |0〉〈0|cq + R̃⊤ (r, r′, r′′)⊗ |1〉〈1|cq ∈ End(Vbq ⊗ Vcq), (4.3.5)

R̃
(
r, r′, r′′

)
:= |r′〉〈r|bq + |r′′〉〈r′|bq + |r〉〈r′′|bq ∈ End(Vbq), (4.3.6)

where the r, r′ and r′′ are any rails connected to the roundabout gate. Recall that we assign
the label q to the particle corresponding to the qth dual-rail encoded qubit.

4.4 Implementation of the coinflip X (l,2w+1)
C

To implement the operator X (l,2w+1)
C (3.2.5), we installed the NOT gates exclusively on the

right-side rails {r(l,2w+1)
q }, components of the bus r(l,2w,+1). Here, this operator resets the

color of the bucket with data to red after the shift. Namely, as following examples, all colors
of the four particles become red regardless of whether these particles scatter left or right:

c

c

c

c

c

c

c

c

|r(l,2w+1)
B|0 C|3 A|0 D

A1

A0

D1

D0

|r(l,2w+1)
B|1 C|3 A|0 D

3
0

3
0

X
(l,2w+1)
CX
(l,2w+1)
C

r7

r6

r5

r4

r3

r2

r1

r0

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(l, 2w+1)

(4.4.1)

|r(l,2w)
B|0 C|1 A|0 D|r(l,2w)

B|0 C|1 A|0 D

X
(l,2w+1)
CX
(l,2w+1)
C

1
0

1
0

A1

A0

D1

D0

r7

r6

r5

r4

r3

r2

r1

r0

(l, 2w)

(l, 2w)

(l, 2w)

(l, 2w)

(l, 2w)

(l, 2w)

(l, 2w)

(l, 2w)

(4.4.2)

26

Explicitly, the implementation of this operator is written as

X (l,2w+1)
C ≡

n+m−1∑
q=0

(
NOTc

(
r
(l,2w+1)
2q

)
+NOTc

(
r
(l,2w+1)
2q+1

))
∈ End

n+m−1⊗
q=0

Vcq ⊗ Vbq

 .

(4.4.3)

4.5 Implementation of the query operator XDi

Finally, we implement the query operator XDi in (3.2.11) by crossing the two rails if the
corresponding digit of the data is 1 (See Fig. 4.1 (a) for example of n = 2 and m = 2):

XDq ≡
r
(n,a)

r
(n,a)

r
(n,a)

r
(n,a)

2q+ 1

2q

2q+ 1

2q

. ∈ End(Vbq) (4.5.1)

In another way, we can implement the query operator using an encoder and decoder. First,

the decoder changes the particle’s state from |0〉cq |r
(a,w)
2q 〉bq to |0〉cq |r′〉bq . Subsequently, we

selectively write binary data 0 or 1 into the internal state by either applying or not applying
the NOT gate on a rail r′. Finally, the binary data is dual-rail encoded by the encoder. The
implementation is explicitly written as

(XDi)
x
(a)
q ≡ Encoder ·

(
NOTc(r

′)
)x(a)

q ·Decoder (4.5.2)

=

r
(n,a)
2q

r
(n,a)
2q+1

r
(n,a)
2q

r
(n,a)
2q+1

rr

c c

Decoder Encoder

if x
(a)
q = 0

r
(n,a)
2q

r
(n,a)
2q+1

r
(n,a)
2q

r
(n,a)
2q+1

c
rr

c c

Decoder Encoder

if x
(a)
q = 1

(4.5.3)

Here, the decoder, which is a combination of the roundabout and NOT gates, converts the
dual-rail encoded qubit value into the internal states of the particle as

(
α|r(a,w)

2q 〉bq + β|r(a,w)
2q+1 〉bq

)
|0〉cq :

dncorddecord

c
r

r
(n,w)
2q

r
(n,w)
2q+1

: |r′〉bq
(
α|0〉cq + β|1〉cq

)
,

(4.5.4)

where Encode := NOTc(r
(a,w)
2q+1)R(r

′, r
(a,w)
2q , r

(a,w)
2q+1) ∈ End(Vcq ⊗ Vbq) (in the implementation

of the qRAM, the decoder is used for only converting the qubit value 0 into the internal

27

A1
r
(n,a)
7

r6

A0
r5

r4

D1
r3

r2

D0
r1

r0

(n,a)

(n,a)

(n,a)

(n,a)

(n,a)

(n,a)

(n,a)

3
0

|r(n,a) B|0 C|3 A|0 D

3
2

|r(n,a) B|0 C|3 A|2 D

(a)

c c

c c
c

3
0

|r(n,a) B|0 C|3 A|0 D

3
2

|r(n,a) B|0 C|3 A|2 D

A1
r
(n,a)
7

r6

A0
r5

r4

D1
r3

r2

D0
r1

r0

(n,a)

(n,a)

(n,a)

(n,a)

(n,a)

(n,a)

(n,a)

(b)

Figure 4.1: Circuits from querying from the 3rd memory unit, in which the data x(n) (= 2)
is recorded. Both of these circuits have equivalent functionality. (a) The query operator
XDq is implemented by crossing the two parallel rails if the qth binary digit is 1. (b) The
query operator can also be implemented by combining the decoder, encoder, and NOT gates.
Depending on whether the binary digit 0 or 1, a NOT gate is either placed or not on a rail
between the decoder and encoder.

states referred to as red). Additionally, the encoder is defined as the inverse operation of the
decoder as

|r′〉bq
(
α|0〉cq + β|1〉cq

)
:

encord

c

r

r
(n,w)
2q+1

encord

r
(n,w)
2q

:
(
α|r(a,w)

2q 〉bq + β|r(a,w)
2q+1 〉bq

)
|0〉cq

(4.5.5)

(See Fig. 4.1 (b) for example of n = 2 and m = 2).

28

Chapter 5

Physical implementation by
continuous-time QW [2, 3]

In this chapter, we discuss a physical implementation of qRAM that adopts our retrieval
algorithm, which solidifies the algorithm’s two advantages; the implementation requires nei-
ther ancillary qubit resources nor any time-dependent control. First, we formulate a two-level
multi-particle continuous-time quantum walk applicable to either bosonic or fermionic par-
ticles with two-level internal states. Second, we propose implementations of the three key
gates introduced in Chap. 4, i.e., roundabout, NOT, and CNOT gates. Third, we discuss the
circuit construction and estimate an error caused by a finite-size effect. Finally, we propose
a universal quantum computer compatible with our qRAM.

29

5.1 Continuous-time quantum walks with two-level internal
states

To detail the implementation in the next chapter, we formulate either a bosonic or fermionic
multi-particle continuous-time quantum walk with two-level internal states. In this model,
the particles evolve on a graph G in continuous time according to the following Hamiltonian:

HG = KG + UG, (5.1.1)

where KG is a kinetic term and UG is an interaction term defined in the following. Note
that, in the next chapter, we construct an architecture adopting our retrieval algorithm as
the graph G, where the particles traverse as the dual-rail encoded qubits.

Notably, our formulation, the kinetic term more specifically, exhibits internal-state de-
pendence of the single-particle scattering on the subgraph, which leads to the roundabout
gate in the following chapter. Here, consider that this subgraph, denoted as Ĝ, connects m
semi-infinite rails {rj |0 ≤ j ≤ n− 1} as shown in Fig. 5.1. As described below, the incoming
particle into the subgraph through a rail scatters according to a scattering matrix (S-matrix)
or its transpose, depending on its internal states. Note that, in the next chapter, we de-
rive a subgraph connecting three rails, which demonstrates the internal-state dependence of
single-particle scattering, analogous to the roundabout gate (4.3.5).

To detail the single-particle scattering on the subgraph, let us consider the following
scattering plane wave of the incoming particle through a semi-infinite rail rjin (0 ≤ jin ≤ m−1)
with momentum k ∈ R as

|scrjin (k)〉 :=
∑
x

m−1∑
j=0

(
δrj ,rjine

−ikx + S0,rj ,rjin (k)e
ikx
)
|vrjx 〉vq |0〉cq

+
m−1∑
j=0

(
δrj ,rjine

−ikx + S1,rj ,rjin (k)e
ikx
)
|vrjx 〉vq |1〉cq

 ∈ End
(
Vvq ⊗ Vcq

)
,

(5.1.2)

where S1,rj ,rjin (k) = S0,rjin ,rj (k) for 0 ≤ j, jin ≤ m− 1. (5.1.3)

Here, |vrjx 〉vq denotes the particle being at the xth vertex along the rail rj counted from the
subgraph, i.e., v

rj
x=0 is the leading vertex attached to the subgraph. The space Vvq is spanned

by {|v〉vq |v ∈ V(G)} (as described in Eq. (5.2.1), this space includes the bus space Vbi). We
denote the scattering matrix for the particle with |c〉ci for c ∈ {0, 1} as Sc(k) ∈ Cm×m, where
Sc,rj ,rjin (k) ∈ C is the element at the jth row and jinth column of this matrix. We prove the
transposition (5.1.3) in the paragraph whose conclusion is (5.1.16).

Note that in the next chapter, we will construct the architecture of the qRAM as the graph
G, a combination of subgraphs and rails. Additionally, we will introduce a wave packet as
the dual-rail encoded qubit, which is constructed by a superposition of the plane waves and
whose scatterings are dominated by a plane wave with specific momentum.

Now, let us explicitly define the kinetic and interaction terms in order. Specifically, we
will first discuss the single-particle scattering on the subgraph using the kinetic, and then
address a two-particle scattering using the interaction term (the implementation is achieved

30

by combining the single- and two-particle scatterings). Note that we assume all rails, which
are components of the entire graph G, have semi-infinite length to discuss each scattering
independently.

Kinetic term The kinetic term of the n particles on a graph G, which demonstrates the
internal-state dependence, is defined as follows (note that focusing solely on the single particle,
we can alter the kinetic term to (5.1.7)):

KG :=
∑
c=0,1

∑
(v,v′)∈E(G)

(
ei(−1)cθv,v′a†v,cav′,c +e

−i(−1)cθ∗
v,v′a†v′,cav,c

)
, (5.1.4)

where KG ∈ End(
⊗

q Vvq ⊗ Vcq). The graph G consists of a set of edges E(G) and vertices
V(G). Thus, (v, v′) represents an edge between two vertices v and v′. Note that we do
not distinguish (v, v′) and (v′, v) so that the sum is taken over either (v, v′) or (v′, v). The
two terms inside the summation of KG represent the walks, i.e., switching the positions of a
particle, between two vertices v and v′ connected by the edge (v, v′). Namely, a†v,c (resp. av,c)
is the creation (resp. annihilation) operator of a particle on the vertices v with the internal
state c ∈ {0, 1}, and θv,v′ ∈ R is a factor of a weight (coefficient) associated with the walk

from v to v′. Here, the creation operators {a†v,c|v ∈ V(G), c ∈ {0, 1}} are generators of the
Hilbert space

⊗
q(Vvq ⊗ Vcq) so that these operators correspond to the bases spanning this

space as
n−1⊗
q=0

(
|vq〉vq |cq〉cq

)
=

n−1∏
q=0

a†vq ,cq |0〉 | vq ∈ V(G), cq ∈ {0, 1}

 (5.1.5)

where |0〉 is the no-particle (vacuum) state defined by avq ,cq |0〉 = 0. Finally, to ensure the
symmetry of bosonic particles (resp. the anti-symmetry and the Pauli exclusion principle for
fermionic particles), we require the following commutation relations (resp. anti-commutation
relations):

[avq ,cq , a
†
vq′ ,cq′

]± = δvq ,vq′ δcq ,cq′ , [avq ,cq , avq′ ,cq′]± = [a†vq ,cq , a
†
vq′ ,cq′

]± = 0, (5.1.6)

where [·, ·]− denotes the commutator ([·, ·]+ denotes the anti-commutator).
To show the transposition between the S-matrices of the red and blue particles (5.1.3), we

introduce the kinetic term for the single-particle incident into the subgraph Ĝ as K
(1)
G . Here,

as mentioned above, we assume each rail attached to the subgraph has semi-infinite length
allowing us to treat the single-particle scattering on the subgraph independently. Focusing
only on a single particle on the subgraph Ĝ attached m semi-infinite rails, we obtain the
following kinetic term for the single-particle from (5.1.4) and (5.1.5):

K
(1)
G := AG ⊗ |0〉〈0|cq +A∗

G ⊗ |1〉〈1|cq ∈ End(Vvq ⊗ Vcq), (5.1.7)

A(G) := A(Ĝ) +
m−1∑
j=0

A(rj) ∈ End(Vvq). (5.1.8)

Here, A(Ĝ) and A(rj) are adjacency matrices of the subgraph Ĝ and the semi-infinite rail
rj , which contain walks the particle can take, e.g., |vx〉〈vx′ | for vx, vx′ ∈ V(Ĝ), and weights

31

(coefficients) each associated with the walk, e.g., eiθvx,vx′ and e−iθvx,vx′ , as

A(rj) :=
∑
x

(
|vrjx 〉〈vrjx+1|vq + |vrjx+1〉〈v

rj
x |vq

)
for 0 ≤ j ≤ m− 1, x ≥ 0. (5.1.9)

A(Ĝ) :=
∑

(vx,vx′)∈E(Ĝ)

(
eiθvx,vx′ |vx〉〈vx′ |vq + e−iθvx,vx′ |vx′〉〈vx|vq

)
for 0 ≤ x, x′ ≤M − 1

(5.1.10)

where E(Ĝ) and V(Ĝ) represent sets of edges and vertices of the subgraph. Here, we assume
that the subgraph Ĝ has M vertices, and the first m vertices are identical to the leading
vertices of the m rails, respectively:

v0 = vr00 , v1 = vr10 , v2 = vr20 , · · · , vm−1 = v
rm−1

x=0 . (5.1.11)

Note that, as shown in Eq. (5.1.9), the rails consist of undirected edges whose weights are 1.
However, as shown in Eq. (5.1.10), the subgraph can consist of directed edges whose weights
depend on the direction of the walk (the experimental realization of the directed edge is
discussed in Chap. 6).

Now let us show the transposition between the S-matrices of the red and blue parti-
cles (5.1.3). Here, the S-matrices are determined by the following Schrödinger equation:

K
(1)
G (|scjin(k)〉+ |bdjin(k)〉) = Ek (|scjin(k)〉+ |bdjin(k)〉) (5.1.12)

where Ek = 2 cos k ∵ 〈vjrx≥1|Ajr |scjin(k)〉 = 2 cos k〈vjrx≥1|scjin(k)〉. (5.1.13)

where |bdjin(k)〉 ∈ CM−m is a bound state localized in the subgraph (see Eq. (A.1.7)). As
described in Appendix A.1, using the Schrödinger equation and the conservation laws of
momentum k and energy Ek, we derive the following equation to determine the S-matrix
from the adjacency matrix of the subgraph:

S0(k) = −e2ikQ−1(k)Q(−k), S1(k) = −e2ik(Q∗(−k))−1Q∗(k) (5.1.14)

Q(k) :=

{
1− eik

(
BĜ + C†

Ĝ

1

2 cos k −DĜ

CĜ

)}
. (5.1.15)

Here, BĜ ∈ Cm×m andDĜ ∈ C(M−m)×(M−m) are adjacency matrices, submatrices of AĜ more
specifically, consisting of vertices {vx|0 ≤ x ≤ m− 1} and {vx|m ≤ x ≤M − 1}, respectively
(see Fig. 5.2 for concrete image). Additionally, CĜ ∈ Cm×(M−m) is also a submatrix of AĜ,
which represents the connections between the m and M − m vertices. In conclusion, we
obtain the transposition (5.1.3) as

S1(k) = (S0(−k))∗ =
(
S†
0(k)

)∗
= S0(k)

T . (5.1.16)

Here, we use Sc(k) = Sc(−k)† obtained from (5.1.14) for c ∈ {0, 1}.
In the implementation, we treat a wave packet as the particle’s state, which serves as

the dual-rail encoded qubit. The single particle scattering is characterized by the S-matrix
Sc(k = −π/2) for c ∈ {0, 1}; we construct the wave packet by a superposition of plane waves,
whose Fourier coefficient has a sharp peak at k = −π/2 as described in (5.2.2) and (5.2.3).

32

· ·
·

v
r0

0

r0

r1

r2

r3

v
r0

1

v
r0

2

v
r0

3

v
r1

0
v
r1

1

v
r1

2
v
r1

3

v
r2

0 v
r2

1 v
r2

2 v
r2

3
v
r3

0

v
r3

1
v
r3

2

v
r3

3

Ĝ

(a)

r0

r1

r2

r3

Ĝ

e
−ikx S , (k)eikxr0,r00

S , (k)eikxr1,r00

S , (k)eikxr2,r00

S , (k)eikxr3,r00

(b)

v
r0

0

v
r0

1

v
r0

2

v
r0

3

v
r1

0
v
r1

1

v
r1

2
v
r1

3

v
r2

0 v
r2

1 v
r2

2 v
r2

3
v
r3

0

v
r3

1
v
r3

2

v
r3

3

v

v

r0

r1

r2

r3

Ĝ

e
−ikx S , (k)eikxr0,r01

S , (k)eikxr1,r01

S , (k)eikxr2,r01

S , (k)eikxr3,r01

(c)

Figure 5.1: (a) A subgraph connecting rails. (b) Conceptual images of the scattering plane
waves. The scattering coefficients for the red and blue particles are described by two S-
matrices, which are transposed of each other, as shown in Fig. (5.1.3).

Interaction term We introduce the interaction term of the particles to consider the two-
particle scattering, which is utilized for the implementation. Concretely, we consider the
on-site (resp. nearest-neighbor) interactions for bosonic (resp. fermionic) particles:

UG =

{
u
2

∑
v∈V(G) nv(nv − 1) for the bosonic particles,

u
∑

(v,v′)∈E(G) nvnv′ for the fermionic particles,
(5.1.17)

where nv :=
∑1

c=0 a
†
v,cav,c is the number operator, and u ∈ R is the interaction strength.

This interaction term describes that two particles, whose states are written as the wave
packets characterized by the plane waves with k0 ∈ (−π, 0) and k1 ∈ (0, π), acquire the

33

following phase factor after the head-on scattering:

P+(kq, kq′) :=
2(sin kq − sin kq′) + iu

2(sin kq − sin kq′)− iu
for the bosonic, (5.1.18)

P−(kq, kq′) :=
1 + ei(kq+kq′) − eikq′u

1 + ei(kq+kq′) − eikqu
for the fermionic. (5.1.19)

See Appendix 2 for the details. The derivation of the phase shift is not pivotal to the discourse
in the following chapter, unlike the discussion on the kinetic term used for the roundabout
gate.

We assume that all rails have a semi-infinite length to discuss each scattering indepen-
dently of other scatterings. However, in Sec. 5.3, we discuss the architecture construction
using finite rails with an estimation of the error caused by finite-size effects. Note that
this error estimation includes the position deviation of the wave packets due to single- and
two-particle scatterings.

5.2 Physical implementation of circuit components

Now, we illustrate how continuous-time quantum walk with two-level internal states imple-
ments our data retrieval algorithm. Specifically, under this model, we detail the four key
concepts introduced in Sec. 5.2 for the implementation: the dual-rail encoded qubit, NOT
gate, controlled NOT gate, and roundabout gate. The above three gates require no ancillary
qubit resource and time-dependent control, which indicates that the dual-rail encoded qubits
(particles) simply passing the gates are sufficient to automatically complete the retrieval
algorithm.

Dual-rail encoded qubit Because the architecture is based on a graph, specifically a com-
bination of subgraphs and rails, the particles that serve as the dual-rail encoded qubits (4.1.4)
must evolve over continuous time t according to the Hamiltonian HG(5.1.1), or more specifi-
cally e−iHGt. As described in the following, we then represent the particles’ states using the
wave packets each constructed by a superposition of the plane waves, the eigenstate of this
Hamiltonian.

For convenience, we consider the following wave packet (sinc pulse) as the particle’s state,
which will serve as the dual-rail encoded qubit in Eq. (4.1.4), traveling along any semi-infinite
rail r:

|r〉bq |c〉cq ≡ 1√
L

x0+L−1∑
x=x0

e−iπ
2
x|vrx〉vq |c〉cq =

r

L

vr
x0

vr
x0+L−1

vg(−π/2)−

(c = 0)

r

L

vr
x0

vr
x0+L−1

vg(−π/2)−

(c = 1)

(5.2.1)

34

where x0, L ∈ Z and c ∈ {0, 1} (L denotes the wavelength). Here, this wave packet can be
decomposed into the following superposition of the plane waves:

1√
L

x0+L−1∑
x=x0

e−iπ
2
x|vrx〉vq |c〉ci =

∑
x

1√
2π

(∫
dkf(k)e−ik(x−x0)

)
|vrx〉vq |c〉cq (5.2.2)

where Fourier coefficient is defined as

f(k) =

√
2

Lπ

sin
[
L
2

(
k + π

2

)]
k + π

2

. (5.2.3)

Let us show that this wave packet travels the rail with a group velocity defined as

vg

(
−π
2

)
: = E′

(
−π
2

)
= 2. (5.2.4)

where E(k) = 2 cos k from Eq. (5.1.13). The reason for this group velocity is that the wave
packet (5.2.2) evolves over a time interval T = O(L) as

e−iA(r)T

(
1√
L

x0+L−1∑
x=x0

e−iπ
2
x|vrx〉vq |c〉cq

)
(5.2.5)

=
∑
x

(
1√
2π

∫
dkf(k)e−ikx−iE(k)T

)
|vrx〉vq |c〉cq (5.2.6)

=
∑
x

(
1√
2π

∫
dkf(k)e−ikx−ivg(−π

2
)(k+π

2
)T+O(L− 1

2)

)
|vrx〉vq |c〉cq (5.2.7)

= e−ivg(−π
2
)π
2
T

 1√
L

x0+L−1−vg(−π
2
)T∑

x=x0−vg(−π
2
)T

e−iπ
2
x|vrx〉vq |c〉cq

+O(L− 1
2) (5.2.8)

Here, we apply Taylor expansion to the second line as

E(k) = E
(
−π
2

)
+ E′

(
−π
2

)(
k +

π

2

)
+
E′′ (−π

2

)
2!

(
k +

π

2

)2
+
E′′′ (−π

2

)
3!

(
k +

π

2

)3
+ · · ·
(5.2.9)

= vg

(
−π
2

)(
k +

π

2

)
+O

(
L− 3

2

)
(5.2.10)

with approximation the momentum spread as O(1/
√
L) based on the Fourier coefficient f(k).

Note that we can ignore the global phase factor in (5.2.8) because we construct the circuit
to synchronize the propagations of the n+m wave packets as described in Chap. 5.3.

The Fourier coefficient (5.2.3) has a sharp peak at −π/2. As mentioned above, the
roundabout gate supports such a wave packet as describe the next part; the scattering of the

wave packet impinging on the subgraph is dominated by the S-matrix
[
Srj ,rjin ,c(k = −π/2)

]
.

35

=

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 −i i

0 1 0 i 0 −i

0 0 1 −i i 0

B

00

00

C

00

1

00

C

00

1

00

†00
0

D

ii

0

A

v0

v1
v2

v4 v5

v3

ĜGGGGGGGGGGGGGGGvv44

(1)(1)
00

vv3

RRRRRRRRR
vv5

Figure 5.2: Adjacency matrix of ĜR0 in Eq. (5.2.11). As described below Eq. (5.1.14), the
adjacency matrix comprises four submatrices: B, C, C†, and D.

Roundabout gate We show that each of the following subgraphs demonstrates the func-
tionality of the roundabout gate (see fig. 5.4 for concrete image):

ĜR0 :=

v0

v1
v2

v4 v5

v3
, ĜR1 :=

v0

v1
v2

v4
v5

v3

v6
, ĜR2 :=

v0

v1
v2

v4
v5

v3

v6
. (5.2.11)

Here, consider that each of the three vertices v0, v1, and v2, which are marked white circles, is
connected to a rail through which the wave packet impinges on the subgraph. The incoming
wave packet scatters to another rail, either counter-clockwise or clockwise depending on its
internal states, as described in the following paragraph. Additionally, two types of edges,
components of these subgraphs, represent directed and undirected edges, whose weights as-
sociated with the walk are respectively 1 and i (or −i). For example, adjacency matrices of
a graph consisting of two vertices vj and vj′ and one of the two edges are as follows:

A
vj vj

= |vx′〉〈vx|+ |vx〉〈vx′ |, (5.2.12)

A
vj vj

=
∗

A
vj vj

= i|vx′〉〈vx| − i|vx〉〈vx′ |. (5.2.13)

Now, we determine the S-matrices for the single-particle scattering on the subgraphs
in (5.2.11) to describe that each subgraph functions as the roundabout gate for the wave
packet (5.2.1). We obtain these S-matrices by substituting the adjacency matrices A(ĜR0),
A(ĜR1), or A(ĜR2) into Eq. (5.1.14). Here, the adjacency matrix of ĜR0 for example can be
represented as shown in Fig. 5.2.

Specifically, elements of the S-matrices, i.e., scattering coefficients in Eq.(5.1.2), for the
particle with |0〉ci on the subgraph ĜR0 are given as follows:

S0,r0,r0(k) = S0,r1,r1(k) = S0,r2,r2(k) =
−e4ik

i+ 2i tan k
, (5.2.14)

S0,r1,r0(k) = S0,r2,r1(k) = S0,r0,r2(k) =
−e3ik(eik − i)

2− i cot[k]
, (5.2.15)

S0,r0,r1(k) = S0,r1,r2(k) = S0,r2,r0(k) =
−e3ik(eik + i)

2− i cot[k]
, (5.2.16)

36

|S00(k)|
2

|S10(k)|
2

|S20(k)|
2

k

−π −
π

4
−
π

2
−
3π

4

0

1

4

1

2

3

4

1

Figure 5.3: Graphical representation for the momentum dependence of the S-matrix of ĜR0 .

where, r0, r1, and r2 denote rails attached to the vertices respectively v0, v1, and v3 of
the subgraph ĜR0 . We depict the momentum dependence of these scattering coefficients in
Fig. 5.3. Note that the S-matrix for the particle |1〉ci is given by its transposition as proved
in Eq. (5.1.16). Similarly, we obtain elements of the S-matrices for the subgraphs ĜR1 and
ĜR2 as follows:

S0,r0,r0(k) = S0,r1,r1(k) =
−e4ik

i+ 2i tan k
, Sr2,r2,0(k) = e2ikSr0,r0,0(k) (5.2.17)

S0,r1,r0(k) =
−e3ik(eik − i)

2− i cot[k]
, S0,r2,r1(k) = S0,r0,r2(k) = ieikS0,r1,r0(k), (5.2.18)

S0,r0,r1(k) =
−e3ik(eik + i)

2− i cot[k]
, S0,r1,r2(k) = S0,r2,r0(k) = −ieikS0,r0,r1(k). (5.2.19)

The S-matrices indicate that the subgraphs can pass the wave packet to another rail in
a counter-clockwise or clockwise direction with some accuracy, depending on the internal
states. Specifically, an incoming wave packet, located at the distance L on a semi-infinite
rail r0 from the roundabout gate, exits to either r1 or r2 depending on the internal states
respectively |0〉cq or |1〉cq after a time interval T = O(L):

1√
L

2L−1∑
x=L

e−iπ
2
x|vr0x 〉vq |c〉cq

e
−iK

(1)
G

T

−−−−−−→

1√
L

L−1+vg(−π
2
)T∑

x=vg(−π
2
)T

ei
π
2
x|vr1x 〉vq |0〉cq +O(L−1/4) if c = 0

1√
L

L−1+vg(−π
2
)T∑

x=vg(−π
2
)T

|vr2x 〉vq |1〉cq +O(L−1/4) if c = 1

.

(5.2.20)

Here, as in Eq. (5.1.7), the kinetic term K
(1)
G for the particle is defined as

K
(1)
G := AG ⊗ |0〉〈0|cq +A∗

G ⊗ |1〉〈1|cq , AG := A (GRτ) +
2∑

j=0

A(rj). (5.2.21)

37

L

L

≡

vg(−π/2)vg(−π/2)

vg(−π/2)vg(−π/2)

L

L

r0

r1 r2

e−iK
(1)

G
Le−iK

(1)

G
L

Figure 5.4: Equivalence between the subgraph GR0 and the roundabout gate. The S-matrix
of GR0 indicates that the counter-clockwise or clockwise scattering, analogous of the round-
about gate.

c
r

|1 c
i

|0 c
i

≡
z

x

y

h = (hx, 0, 0)hhh = (((hhhxx, 000, 000)))

l = 2hx
vg(−π/2)vg(−π/2)

|0 c
q

in
|1 c

q

out

Figure 5.5: Conceptual image of the implementation for the NOT gate. After passing through
the tunnel, the particle’s internal states change according to (5.2.23).

for τ ∈ {0, 1, 2}. Note that the time evolution of this wave packet, which is constructed from
the superposition of the scattering plane waves (5.1.2), over a continuous time interval t is
obtained by

e−iK
(1)
G t

(
1√
L

2L−1∑
x=L

e−iπ
2
x|vr0x 〉vq |c〉cq

)
= e−iK

(1)
G t

(∫
dkeikLf(k)|scr0(k)〉

)
. (5.2.22)

Additionally, the second term O(L−1/4) in Eq. (5.2.20) is an error caused by the fact that
the incoming wave packet is given by the superposition of the scattering plane waves with
momenta closest to k = −π/2 (see Appendix in [28] for the estimation of this error bound).

NOT gate The NOT gate acting on the internal states may be realized by, for example, a
model resembling a tunnel that generates an external localized field. This tunnel, as depicted
in Fig. 5.5, is set on any rail r and is parametrized by its length l and an external field
h = (hx, hy, hz) ∈ R3.

We can estimate that the evolution of the internal states after passing through the tunnel

is described by e−i(σ·h) l
2 with an error of O(L−1), because the wave packet propagates along

the rail with a velocity of 2 + O(L−1) (see (5.2.7) and (5.2.9)). Here, σ := (σx, σy, σz) is the
Pauli matrices, with each acting on the internal states. Note that the above error will be

38

absorbed in the second term in Eq. (5.2.8), the evolution by e−iA(r)T within a time interval
T = O(L).

For example, let us consider the implementation of the NOT gate by selecting parameters
to satisfy (σ · h)l/2 = σx(4n+ 1)π/2 ∈ End(Vcq):

NOTc(r) ≡ |r〉〈r|bq ⊗ e−iσx
4n+1

2
π = |r〉〈r|bq ⊗ (−i)

(
|1〉〈1|cq + |0〉〈0|cq

)
(5.2.23)

where NOTc(r) ∈ End
(
vbq ⊗ vcq

)
. Here, due to the characteristic of the retrieval algorithm,

we can ignore the phase factor −i. Namely, whereas the n + m particles (wave packets)
serving as the bucket with data acquire a phase factor that depends on the address, i.e.,

(−i)
∑n−1

q=0 aq , after the routing process R, this phase factor is eliminated in the subsequent
output process R†.

Controlled NOT gate To implement the CNOT gate (4.2.2), we utilize the head-on scat-
tering along a rail. Here, we choose the interaction strength of the interaction term (5.1.17)
as U = ±4 for bosonic particles (reps. U = ±2 for fermionic) so that the two particles acquire
a phase factor P+(−π

2 ,
π
2) = ±i (5.1.18) (resp. P−(−π

2 ,
π
2) = ±i (5.1.19)) after the scattering,

as detailed in Sec. 5.1.
To execute the CNOTc,c′(rctrl, rtgt) (4.2.2) between the ith and i′th particles, we use two

tunnels and head-on scatterings as

(|rctrl〉bq′ |c
′〉cq′)⊗ (|rtgt〉bq |c〉cq) (5.2.24)

Hc(rtgt)−−−−−→ (|rctrl〉bq′ |c
′〉cq′)⊗

−i√
2

{
|rtgt〉bq

(
|0〉cq + (−1)c|1〉cq

)}
+O(L−1) (5.2.25)

Scat.−−−−−→ (|rctrl〉bq′ |c
′〉cq′)⊗

−i√
2

{
|rtgt〉bq

(
|0〉cq + (−1)c⊕c′ |1〉cq

)}
+O(L−1/4) (5.2.26)

H†
c (rtgt)−−−−−→ (|rctrl〉bq′ |c

′〉cq′)⊗ (|rtgt〉bq |c⊕ c′〉cq) +O(L−1/4) (5.2.27)

where c, c′ ∈ {0, 1} and ⊕ denotes exclusive disjunction, i.e., c⊕ c′ ∈ {0, 1}. Here, we define
the Hadamard operation Hc(rtgt) as

Hc(rtgt) := |rtgt〉〈rtgt|bq ⊗
−i√
2

[(
|0〉+ |1〉

)
〈0|cq +

(
|0〉 − |1〉

)
〈1|cq

]
∈ End

(
Vbq ⊗ Vcq

)
(5.2.28)

which may be implemented by the tunnel whose parameters are adjusted to satisfy (σ·h)l/2 =
π(4n + 1)(σx + σy)/2

√
2. The second term of Eq. (5.2.25) represents the error arising from

higher-order contributions to the group velocity as described in the previous part which
discusses the implementation of the NOT gate. Additionally, the term Scat. in Eq. (5.2.26)
denotes head-on scatterings that occur twice, but only when the particles share identical
internal states, specifically |1〉cq and |1〉cq′ . This interaction gives a −1 phase shift. To
achieve these selective scatterings depending on internal states, we utilize the roundabout
gates, as illustrated in Fig. 5.6.

For the convenience of the discussion in the next chapter, let us explicitly describe the time
evolution of the head-on scattering between two wave packets, which occur on a semi-infinite

39

rail r of the CNOT gate(−1∑
x=−L

e−iπ
2
x|vrx〉vq′ |1〉cq′

)(
L−1∑
x=0

ei
π
2
x|vrx〉vq |1〉cq

)
(5.2.29)

e−iH
(2)
r T/2

−−−−−−−→ ±i

−(2L+1)∑
x=−L

ei
π
2
x|vrx〉vq′ |1〉cq′

(2L+1∑
x=L

e−iπ
2
x|vrx〉vq |1〉cq

)
+O(L−1/4) (5.2.30)

where H
(2)
r , defined in Eq. (A.2.4), is the Hamiltonian for the two particles on the semi-

infinite rail. Here, the time evolution of the two wave packets, which are constructed from
the superposition of the scattering plane waves (A.2.1), over a continuous time interval t is
obtained by

e−iH
(2)
G t

{(−1∑
x=−L

e−iπ
2
x|vrx〉vq′ |1〉cq′

)(
L−1∑
x=0

ei
π
2
x|vrx〉vq |1〉cq

)}
(5.2.31)

= e−iH
(2)
G t

(∫ ∫
dkqdkq′e

−ikqLf(kq)f(kq′)|sc(2)(kq, kq′)〉
)
, (5.2.32)

where kq (resp. kq′) and f(kq) (resp. f(kq′)) are the momentum and the Fourier coeffi-
cient (5.2.3) for the qth (resp. q′ th) particle. The second term in Eq. (5.2.30) represents
an error from the scattering (see Appendix in [28] for the estimation of this error bound).

40

outin
|1 cq|0 c

q
|1 cq|0 c

q

(a)

vg(−π/2)vg(π/2)

LL

vg(−π/2)vg(−π/2)

LL

LL

LL

(c)

vg(−π/2)vg(−π/2)

LL

LL

vg(−π/2)vg(π/2)LL

LL

e−iH
(2)

G
L/2

outin
|1 cq|1 c

q
|1 cq|1 c

q

(b)

Figure 5.6: Implementation of the selective scatterings Scat. (5.2.26). Roundabout gates
direct blue particles to the vertical rails. As a result, head-on scattering occurs twice only
when both particles have blue internal states.

outin
4L4L

4L3L 4L3L

4L3L 4L3L

4L3L

4L3L

4L3L

4L3L
14L14L

14L14L

20L20L

20L20L

...

...

D0

A
i −m

rtgt

rctrl

...

Di

An

rtgt

rctrl

(RHS)(LHS)

Hc Hc

Figure 5.7: Implementation of the CNOTc,c′(jctrl, jtgt) (4.2.2). Two wave packets incident
from the left through the rail rctrl and rtgt undergo operations according to Eq. (5.2.25)-
(5.2.27). As described in Sec. 5.3, we adjust the lengths of rails to synchronize the propaga-
tions of all the wave packets, where L is the length of the wave packet.

41

5.3 Constructing a circuit with finite rails

In the previous section, we discussed the implementation of the qRAM assuming semi-infinite
rails to consider each scattering independently. However, in this section, we discuss a circuit
construction using finite rails to synchronize the propagation of the n + m wave packets.
The main motivation for the synchronization is to ensure the normal operation of the CNOT
gates, which requires the following two contexts. Note that we give an estimation of the error
due to finite-size effects at the end of this section.

In the first context, the right-hand side of the Hadamard gate (marked with (RHS) in
Fig. 5.7) functions normally only if the wave packet corresponding to the target qubit enters
this Hadamard gate at a specific time, regardless of its color. Namely, if the wave packet,
which is in a superposition of red and blue, enters the Hadamard gate at a specific time
regardless of its color, this wave packet settles into a single state by this Hadamard gate
because its preceding state is written as:∑

x

e−iπ
2
x|vrtgtx 〉vq

(|0〉cq + |1〉cq√
2

)
. (5.3.1)

Here, this wave packet has propagated along different routes as a spatial superposition, de-
pending on its color One state passes through only horizontal rails, while the other state
passes through both horizontal and vertical rails.

As shown in Fig. 5.7, we can satisfy the first context by adjusting the lengths of rails.
Concretely, we set the length of the horizontal rail, through which the red wave packet passes,
as 14L. Here, we assume that the length of the horizontal rails and vertical rails, through
which the blue wave packet passes, as 3L and 4L, respectively. These two lengths assumed
here originate from the single-particle scattering Eq. (5.2.20) (see Fig. 5.4) and two-particle
scattering Eq. (5.2.30) (see Fig. 5.6) (c), respectively (let us discuss the effect of truncating
the infinite rails to such finite rails at the end of this section). Note that the lengths of
the rails, through which the wave packet corresponding to the target qubit passes, are also
adjusted to the same to satisfy the following second context.

In the second context, two wave packets normally obtain the phase factor −1, undergoing
the two-particle head-on scattering on each of the two vertical rails, only if they enter the
vertical rails of the CNOT gate nearly simultaneously. We can satisfy this context by setting
the length of some rails to synchronize the propagation of the n+m wave packets per depth
(step). Concretely, as shown in Fig. 5.7, we set the length of rails corresponding to the qubits
not acted upon by the CNOT gate as 20L. Because the n+m wave packets proceed to the
next depth in the circuit simultaneously, pairs of two wave packets definitely enter the CNOT
gates simultaneously.

Finally, let us estimate an error due to finite-size effects, i.e., the effect of truncating the
infinite rails to the finite, by using the truncation lemma proved by Childs et al. [28]. This
lemma gives the following difference between the two cases of evolution, namely, the time
evolution under the assumption of finite rails and that under semi-infinite rails, within a time
interval T = O(L):

‖
(
e−iHtotT − e−iH̃T

)
|ψ〉‖ = O((n+m)2L−1/4). (5.3.2)

Here, Htot is a total Hamiltonian for the n + m particles on the circuit constructed using
finite rails. Additionally, H̃ is a Hamiltonian under the assumption of the semi-infinite rails.

42

Namely, H̃ can be K
(1)

Ĝ
(5.2.21) or H

(2)
r (A.2.4). Depending on the Hamiltonian, the initial

state |ψ〉 should be replaced with the initial state denoted in Eq.(5.2.20) or Eq.(5.2.29).
As a consequence, our implementation of the qRAM can control the error bound ar-

bitrarily by choosing lengths of the wave packet and rails according to the circuit depth
(n log(n + m)) and number of qubits (n + m). Namely, using Eq.(5.3.2) gives us an er-
ror bound of the circuit implementing the retrieval algorithm (as discussed in Chap. 6, this
estimation is almost certainly not optimal):

‖|ψfinal〉 −
∑
a

|r(0,0)〉B|0〉C|a〉A|x(a)〉D〉‖ = O((n+m)3n log(n+m)L−1/4) (5.3.3)

where |Ψfinal〉 is the final state of the n + m wave packets obtained from the end of the
architecture. Here, based on Eq.(5.3.2), we replace the output of the CNOT gate (5.2.27) as

(|rctrl〉bq′ |c
′〉cq′)⊗ (|rtgt〉bq |c⊕ c′〉cq) +O((n+m)2L−1/4). (5.3.4)

Recall that these n + m qubits pass through O(n log(n + m)) CNOT gates, which are

installed for operators of the controlled coinflippings {X (l−1,w)
C,A } (4.2.7) (the above error

bound in (5.3.3) includes the one caused by the roundabout gates in the shift operators

{S(l−1,w)
B,C } (4.3.4), and NOT gates in the coinflips {X (l,2w+1)

C } (4.4.3), which can also be
estimated by (5.3.2)).

5.4 Universal quantum computer compatible with our qRAM

Let us describe the physical implementation of the universal quantum computation, which
employs the two-level continuous-time quantum walk, making this computation compatible
with our qRAM. Here, we denote the two parallel rails as r2q and r2q+1 through which the
qth of dual-rail encoded qubit (particle) passes.

We implement the computation by combining two types of blocks: a block type 1 and
type 2 (see fig. 5.8). The type 1 is a circuit implementing single-qubit gates and the type 2 is
a circuit implementing controlled phase (CP) gates, each acting on qubits dual-rail encoded
into the wave packets. Here, the CP-gate is defined as

CPd,d′(r2q+1, r2q′+1) = −|r2q+1〉〈r2q+1|bq ⊗ |r2q′+1〉〈r2q′+1|bq′ ∈ End(Vbq ⊗ Vbq′). (5.4.1)

Namely, the CP-gate gives a phase factor −1 between the q and q′th particles only if both
qubit values are 1, not 0. Note that we adjust the length of the rails incorporated into these
blocks to synchronize propagations of wave packets serving as the dual-rail encoded qubits.

As in Eq. (4.5.3), each of the single-qubit gates in the type 1 is a combination of the
encoder and decoder, where any unitary transformation acting on the internal states is also
included if this gate is not an identity. The implementation of this gate is explicitly written
as (

XDq

)x(a)
q ≡ Encoder · Ucq ·Decoder (5.4.2)

=
r2qr2q

rr

c c

Decoder Encoder

Ucq

r2q+1r2q+1

(5.4.3)

43

≈
≈

≈
≈

≈

...

...

...

...
...

......

...

type 1 type 2

L

out/in out/in

≈

≈ ≈

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

out/in

c

c

Uc1

Uc1

Ucq

Ucq

r2q+1

r2(q+1)+1

r2q+1

r2q

r2(q−1)+1

r2(q−1)

r2q

3L3L 3L3L3L3L 8L8L

4L4L

Uci−1
Ucq

−1

UcUc

c

c

c

c

c

c

LL

q+1q+1

r2(q+1)

Figure 5.8: Circuit for universal quantum computation compatible with our qRAM.

where the unitary transformation Ucq ∈ End(Vcq) may be realized by a tunnel whose length l
and the field h are parametrized properly. First, the decoder converts the dual-rail encoded
qubit into the color state as shown in Eq. (4.5.4). The unitary gate Ucq ∈ End(Vcq) then
changes the color state into another color state, and finally this color state is converted to
the dual-rail encoding qubit by the encoder:

|r′〉bq
(
α′|0〉cq + β′|1〉cq

)
:

encord

c

r

r2q+1

encord

r2q

:
(
α′|r2q〉bq + β′|r2q+1〉bq

)
|0〉cq

(5.4.4)

where we denote the color states changed by Uc as α′|0〉cq + β′|1〉cq (α′, β′ ∈ C) from
α′|0〉cq + β′|1〉cq in Eq. (4.5.4).

As shown in Fig. 5.8, the CP-gate in the type 2 block, e.g., acting on the q- and q′th dual-
rail encoded qubit, is implemented by attaching two vertical rails between the rails 2q+1 and
2q′ + 1 for 0 ≤ q, q′ ≤ m− 1 using four roundabout gates. In this context, the wave packets
whose qubit states are both 1 scatter on the two vertical rails respectively, acquiring the −1
phase shift. Here, to synchronize all wave packets, we adjust the length of the vertical rails,
horizontal rails where these vertical rails are attached, and remaining horizontal rails in the
blocks to 4L, L, and 10L, respectively.

We can also control the error bound arbitrary by choosing length of the wave packet and
rail according to the circuit depth and number of the qubits. Namely, applying Eq. (5.3.2),
we obtain the error bound of the quantum computation by finite size effect as

‖|ψfinal〉 − |ψideal〉‖ = O((n+m)3gL−1/4) (5.4.5)

where g is the circuit depth (or number of blocks), |Ψfinal〉 is the final state obtained from
the right-hand side on the circuit, i.e., combination of the blocks, and |ψideal〉 is the desired
output following the implemented quantum computation (algorithm).

44

Chapter 6

Summary and discussion

In this thesis, we have shown an implementation of qRAM along with introducing two kinds of
quantum walks: the discrete-time quantum walk on the full binary tree, and the continuous-
time multi-particle quantum walk with two-level internal states, applicable to either bosonic
or fermionic particles.

Our discrete-time quantum walker, which is utilized for the data retrieval algorithm, moves
to another path (bus) in a counter-clockwise or clockwise direction based on its coin states
(colors) when the walker enters a bus of the tree. The algorithm retrieves a superposition
of O(2n) m-qubit data, requiring only n +m qubit resources allocated to the discrete-time
quantum walker, which serves as a set of address and data registers. By guiding the registers
to the desired memory units via the walker’s coin states, we have eliminated the need for
2n−1 − 1 quantum switches and then any time-dependent control in contrast to the bucket-
brigade process. Namely, our algorithm requires no pre- or post-processing before or after
the retrieval.

Our continuous-time quantum walker, which is utilized for the physical implementation,
has two-level internal states and illustrates the internal state dependence of the scattering
on a subgraph. Using this model, we have derived subgraphs that pass the incident quantum
walker to adjacent rails in the counter-clockwise or clockwise direction, depending on this
walker’s internal states. We have then shown that utilizing these subgraphs, referred to
as the roundabout gates, can implement a qRAM adopting our retrieval algorithm, with
combining operations acting on the internal states of the continuous-time quantum walkers.

Notably, simply passing the n+m wave packets as the continuous-time quantum walkers
through a graph-like architecture automatically completes our retrieval algorithm and outputs
the superposition of O(2n) m-qubit data. Note that the outputs are not entangled with the
architecture. Recall that these n+m wave packets serve as dual-rail encoded qubits, with n
qubits forming the address register and m qubits forming the data register. Additionally, the
architecture is a combination of the rails, subgraphs each demonstrating the functionality of
the roundabout gate, and external localized fields acting on the internal states.

Moreover, we have estimated an error caused by finite-size effects as Eq. (5.3.3) and
stated that our implementation can control such errors with arbitrary precision, potentially
up to O(1), in exchange for the space complexity of the architecture and time complexity
for the data retrieval. Here, this estimation has been based on the discussion presented by
A. M. Childs et al. in the context of universal quantum computation using multi-particle
continuous-time quantum walk [28]. As they stated in the paper, their discussion and thus

45

our estimation are almost certainly not as optimal. Namely, we can expect that the trade-off
of both space and time complexities for the error precision would be mitigated compared to
the present estimation. Note that as mentioned in the paragraph for the implementation of
the NOT gate in Sec. 5.2, our estimation includes an error caused by an operation acting on
the internal states.

Additionally, it should be noted that the particles enter a quantum superposition of two
internal states, referred to as the colors red and blue in this thesis, and entangle each other
only in each interval between before and after passing the n + m wave packets to another
rail through the roundabout gate. Namely, after the passing, these internal states are reset
to a specific state corresponding to red. For example, we can see such a process of passing
through the roundabout gates with changing color in Eq.(4.2.3), Eq.(4.3.2), and Eq.(4.4.1),
in order. A similar statement can be made for the universal quantum computation in Sec. 5.4;
the internal state of a particle changes to blue or a superposition of both red and blue only
in each interval between before and after passing the particle through the single-qubit gate,
a combination of the encoder, decoder, and operators acting on the internal states.

The main challenge for the experimental realization of our proposal is the establishment
of directed edges; the subgraphs, which are analogous to the roundabout gate, consist of the
directed edges (5.2.13) in addition to the undirected edges (5.2.12). Recall that the internal-
state dependence of scattering on such subgraphs arises because a particle with the internal
state |0〉cq evolves in continuous time t according to e−iA(G)t (5.1.7), whereas a particle with

|1〉cq evolves according to e−iA∗(G)t (A(G) is the adjacency matrix of the whole graph G). In
this context, a particle must obtain a coefficient (weight) of i or −i associated with a walk
on the directed edge, depending on its internal states and direction of the walk, whereas the
particle obtains no weight on the undirected edge. This challenge may be overcome by the
Aharonov-Casher effect [59, 60].

46

Acknowledgments

First, I would like to express my gratitude to my supervisor, Professor Kazumitsu Sakai. I
appreciate his research instructions and friendly consultations since my laboratory assignment
in Apr. 2018 until my Doctoral degree attainment in Mar. 2024. I would also like to express
my gratitude to my assistant supervisor, Ryoko Yahagi. I appreciate her research instructions
and kind support since the assignment in Apr. 2018 until her transfer effective as of Apr. 2023.
Additionally, I would like to express my gratitude to all the colleagues in Professor Kazumitsu
Sakai’s laboratory who became my peers at any time between Apr. 2018 and Mar. 2024. I
thank their cooperation, discussions, and enjoyable moments shared together.

Financial supports are also gratefully acknowledged. I would like to express my gratitude
to my parents and grandparents, Yoshio Asaka, Takako Asaka, Mitsuji Asaka, and Fumi
Asaka. I am grateful for their financial support from my first year of undergraduate studies
in Apr. 2015 until the second year of my Master’s program in Mar. 2021. I would also
like to express my gratitude to Japan Student Services Organization. I appreciate their
scholarship from my second year of undergraduate studies in Apr. 2017 until the second year
of my Doctoral program in Mar. 2023. Subsequently, I would like to express my gratitude
to Pascalia, Inc. I value their employment of me as a full-time worker from Apr. 2021
until Jul. 2022, despite being enrolled in the Doctoral program. Additionally, I would like
to express my gratitude to the former Vice Chancellor of the Tokyo University of Science,
Kazuyuki Watanabe. I am grateful for his scholarship, Watanabe Kazuyuki Shogakukin, in
Sep. 2022. Further, I would like to express my gratitude to Hello Work. I am grateful
for their unemployment insurance from Sep. 2022 until Mar. 2023. Finally, I would like
to express my gratitude to Japan Society for the Promotion of Science (JSPS). I appreciate
their fellowship, Research Fellowship for Young Scientists (DC2), and their grant for scientific
research, Grant-in-Aid for JSPS Fellows No. 23KJ1962, from Apr. 2023 until Mar. 2024.

In addition, my appreciation goes to the committee members, Tetsuro Nikuni, Akifumi
Sako, Jaw-Shen Tsai, Fumiki Yoshihara, and again, Kazumitsu Sakai. The doctoral exam-
inations, marked by their candid opinions and frank questions, have remained a precious
experience.

Finally, I extend my deepest thanks to the Tokyo University of Science, particularly to
the Faculty of Science Division II, for providing an excellent academic environment, essential
experience, and the opportunity to engage in the field of physics.

47

Appendix A

Single- and two- particle scattering

We discuss the single-particle scattering on a subgraph and two-particle head-on scattering
along a semi-infinite rail.

A.1 Scattering matrix for a single particle on a subgraph

In this appendix, we derive the following matrix-form equation; solving this equation gives
the relationship (5.1.14) (see [61, 62] for the detailed calculation):(

B(Ĝ) C†(Ĝ)

C(Ĝ) D(Ĝ)

)(
Sm + Im
ΨM−m

)
+

(
eikSm + e−ikIm

0M−m

)
= 2 cos kq

(
Sm + Im
ΨM−m

)
, (A.1.1)

where the subgraph Ĝ has M vertices and the first m vertices are attached to m rails, as
shown in Fig. 5.1. Here, 0M−m is (M −m)× (M −m) zero matrix and Im, Sm, and ΨM−m

are matrices defined using the M vectors

|v0〉vq(= |vr00 〉vq), |v1〉vq(= |vr10 〉vq), · · · , |vm−1〉vq(= |vrm−1

0 〉vq), (A.1.2)

|vm〉vq , |vm+1〉vq , · · · , |vM−1〉vq (A.1.3)

as

Im :=

m−1∑
jin=0

|vjin〉〈vjin |vq ∈ Cm×m, (A.1.4)

Sm := S0(k) =

m−1∑
jin=0

m−1∑
j=0

S0,rj ,rjin (k)|vj〉〈vjin |vq ∈ Cm×m, (A.1.5)

ΨM−m := Ψ0(k) =
m−1∑
jin=0

M−1∑
j=m

Ψ0,rj ,rjin
(k)|vj〉〈vjin |vq ∈ C(M−m)×m, (A.1.6)

where Ψ0(k) ∈ C(M−m)×m contains amplitudes of the bound state in Eq. (5.1.12), which can
be written as

|bdrjin (k)〉 :=
M−1∑
j=m

(
Ψ0,vj ,rjin

|vj〉vq |0〉cq +Ψ1,vj ,rjin
|vj〉vq |1〉cq

)
∈ CM−m. (A.1.7)

48

Additionally, the elements B(Ĝ), C(Ĝ), and D(Ĝ) are submatrices of the adjacency matrix
A(Ĝ), which can be written as

B(Ĝ) :=
m−1∑
jin=0

m−1∑
j=0

(
e
iθvj,vjin |vj〉〈vjin |vq + e

−iθvj,vjin |vrjin 〉〈vj |vq
)

∈ End(Cm×m), (A.1.8)

C(Ĝ) :=
m−1∑
jin=0

M−1∑
j=m

(
e
iθvj,vjin |vj〉〈vjin |vq

)
∈ End(C(M−m)×m), (A.1.9)

D(Ĝ) :=

M−1∑
i=m

M−1∑
i′=m

(
eiθvi′ ,vi |vi′〉〈vi|vq + e−iθvi′ ,vi |vi〉〈vi′ |vq

)
∈ End(C(M−m)×(M−m)).

(A.1.10)

Now, let us derive the matrix-form equation (A.1.1). From (5.1.12), (5.1.2) and (5.1.7),
we obtainA(Ĝ) +

m−1∑
j=0

∑
x≥0

(
|vrjx+1〉〈v

rj
x |vq + |vrjx 〉〈vrjx+1|vq

)
m−1∑
j=0

∑
x≥0

δrj ,rjine−ikx +
m−1∑
jin=0

S0,rj ,rjin (k)e
ikx

 |vrjx 〉vq +
M−1∑
i=m

Ψ0,rj ,rjin
(k)|vi〉vq

= 2 cos kq

m−1∑
j=0

∑
x≥0

δrj ,rjine−ikx +
m−1∑
jin=0

S0,rj ,rjin (k)e
ikx

 |vrjx 〉vq +
M−1∑
j=m

Ψ0,rj ,rjin
(k)|vj〉vq

(A.1.11)

where |0〉cq is omitted. Focusing on the states in Eq. (A.1.2) and Eq. (A.1.2) we obtain

A(Ĝ)

m−1∑
j=0

(
δrj ,rjin + S0,rj ,rjin (k)

)
|vj〉vq +

M−1∑
j=m

Ψ0,vj ,rjin
(k)|vj〉vq

+

m−1∑
j=0

(
δrj ,rjine

−ik + S0,rj ,rjin (k)e
ik
)
|vj〉vq

= 2 cos kq

m−1∑
j=0

(
δrj ,rjin + S0,rj ,rjin (k)

)
|vj〉vq +

M−1∑
j=m

Ψ0,vj ,rjin
(k)|vj〉vq

 . (A.1.12)

In conclusion, multiplying 〈vjin |vq from right and taking the sum over the range 0 ≤ jin ≤ m−1
gives Eq. (A.1.1).

A.2 Phase shift through a two-particle head-on scattering along
a rail

In this appendix, we describe that two wave packets characterized by plane waves with
momentum kq ∈ (−π, 0) and kq′ ∈ (0, π) acquire a phase factor by the head-on scattering

49

with the same internal state along a semi-infinite rail. The bosonic or fermionic pairs acquire
the phase factor in (5.1.18) or (5.1.19). Concretely, we show that the scattering coefficients

S
(2)
± (kq, kq′) of the following plane wave are equal to these phase factors:

|sc(2)(kq, kq′)〉 :=
∑
xq ,xq′

ψ
(2)
± (xq, xq′ ; kq, kq′)|vxq〉vq |vxq′ 〉vq′ , (A.2.1)

ψ
(2)
± (xq, xq′ ; kq, kq′) :=

eikqxq+ikq′xq′ ± S

(2)
± (kq, kq′)e

ikq′xq+ikqxq′ (xq < xq′)
1
2(1± 1)

(
eikqx+ikq′x + S

(2)
+ (kq, kq′)e

ikq′x+ikqx
)

(xq = xq′ = x)

S
(2)
± (kq, kq′)e

ikq′xq+ikqxq′ ± eikqxq+ikq′xq′ (xq > xq′)

.

(A.2.2)

Here, the + (resp. −) sign corresponds to the bosonic (resp. fermionic) pairs, which are
symmetric (resp. antisymmetric) under the particle exchange. Note that the above plane
wave satisfies the following two facts. The first is the conservation total of momentum kq+kq′

and energy 2(cos kq + cos kq′). The second is the limitation of the interactions to the on-site
(resp. nearest-neighbor) for the bosonic (resp. fermionic).

Concretely, we can determine the scattering coefficient S
(2)
± (kq, kq′) by solving the follow-

ing Schrödinger equation:

〈vxq |vq〈vxq′ |vq′HG|sc(2)(kq, kq′)〉 = 2(cos kq + cos kq′)〈vxq |vq〈vxq′ |vq′ |sc
(2)(kq, kq′)〉. (A.2.3)

Focusing only on the two particles along the semi-infinite rail, we can alter the Hamiltonian
HG as

H(2)
r =

∑
x

(
|vx+1〉〈vx|vq + |vx〉〈vx+1|vq

)
⊗ Ivq′

+ Ivq ⊗
∑
x

(
|vx+1〉〈vx|vq′ + |vx〉〈vx+1|vq′

)
+ UG (A.2.4)

where Ivq and Ivq′ are the identities. From (A.2.2) and (A.2.4), we obtain the following
equations

ψ
(2)
+ (x, x+ 1; kq, kq′) + ψ

(2)
+ (x− 1, x; kq, kq′)

+ ψ
(2)
+ (x, x+ 1; kq, kq′) + ψ

(2)
+ (x, x− 1; kq, kq′) + uψ

(2)
+ (x, x; kq, kq′)

= 2(cos kq + cos kq′)ψ
(2)
+ (x, x; kq, kq′) (A.2.5)

for the bosonic pairs and

ψ
(2)
± (x− 1, x+ 1; kq, kq′) + ψ

(2)
± (x, x+ 2; kq, kq′) + uψ

(2)
± (x, x+ 1; kq, kq′)

= 2(cos kq + cos kq′)ψ
(2)
+ (x, x+ 1; kq, kq′) (A.2.6)

for the fermionic pairs.

50

Bibliography

[1] Ryo Asaka, Kazumitsu Sakai, and Ryoko Yahagi. Quantum random access memory via
quantum walk. Quantum Science and Technology, 6(3):035004, 2021.

[2] Ryo Asaka, Kazumitsu Sakai, and Ryoko Yahagi. Two-level quantum walkers on directed
graphs. i. universal quantum computing. Physical Review A, 107(2):022415, 2023.

[3] Ryo Asaka, Kazumitsu Sakai, and Ryoko Yahagi. Two-level quantum walkers on directed
graphs. ii. application to quantum random access memory. Physical Review A, 107(2):
022416, 2023.

[4] Yakir Aharonov, Luiz Davidovich, and Nicim Zagury. Quantum random walks. Physical
Review A, 48(2):1687, 1993.

[5] Edward Farhi and Sam Gutmann. Quantum computation and decision trees. Physical
Review A, 58(2):915, 1998.

[6] Andrew M Childs. On the relationship between continuous-and discrete-time quantum
walk. Communications in Mathematical Physics, 294:581–603, 2010.

[7] Domenico D ’Alessandro. Connection between continuous and discrete time quantum
walks. from d-dimensional lattices to general graphs. Reports on Mathematical Physics,
66(1):85–102, 2010.

[8] Neil Shenvi, Julia Kempe, and K Birgitta Whaley. Quantum random-walk search algo-
rithm. Physical Review A, 67(5):052307, 2003.

[9] Andris Ambainis, Julia Kempe, and Alexander Rivosh. Coins make quantum walks
faster. arXiv preprint quant-ph/0402107, 2004.

[10] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on
Computing, 37(1):210–239, 2007.

[11] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element
distinctness problems. Journal of the ACM (JACM), 51(4):595–605, 2004.

[12] Miklos Santha. Quantum walk based search algorithms. In International Conference on
Theory and Applications of Models of Computation, pages 31–46. Springer, 2008.

[13] Manami Yamagishi, Naomichi Hatano, Ken-Ichiro Imura, and Hideaki Obuse. Proposal
of multidimensional quantum walks to explore dirac and schrödinger systems. Physical
Review A, 107(4):042206, 2023.

51

[14] Cristopher Moore and Alexander Russell. Quantum walks on the hypercube. In In-
ternational Workshop on Randomization and Approximation Techniques in Computer
Science, pages 164–178. Springer, 2002.

[15] Julia Kempe. Discrete quantum walks hit exponentially faster. Probability theory and
related fields, 133(2):215–235, 2005.

[16] Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani. Quantum walks
on graphs. In Proceedings of the thirty-third annual ACM symposium on Theory of
computing, pages 50–59, 2001.

[17] Kanae Mukai and Naomichi Hatano. Discrete-time quantum walk on complex networks
for community detection. Physical Review Research, 2(2):023378, 2020.

[18] Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and
Daniel A Spielman. Exponential algorithmic speedup by a quantum walk. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 59–68, 2003.

[19] Shankar Balasubramanian, Tongyang Li, and Aram Harrow. Exponential speedups for
quantum walks in random hierarchical graphs. arXiv preprint arXiv:2307.15062, 2023.

[20] Andrew M Childs and Jeffrey Goldstone. Spatial search by quantum walk. Physical
Review A, 70(2):022314, 2004.

[21] Shantanav Chakraborty, Leonardo Novo, and Jérémie Roland. Finding a marked node
on any graph via continuous-time quantum walks. Physical Review A, 102(2):022227,
2020.

[22] Simon Apers, Shantanav Chakraborty, Leonardo Novo, and Jérémie Roland. Quadratic
speedup for spatial search by continuous-time quantum walk. Physical review letters,
129(16):160502, 2022.

[23] Zhiguang Yan, Yu-Ran Zhang, Ming Gong, Yulin Wu, Yarui Zheng, Shaowei Li, Can
Wang, Futian Liang, Jin Lin, Yu Xu, et al. Strongly correlated quantum walks with a
12-qubit superconducting processor. Science, 364(6442):753–756, 2019.

[24] Andrew M Childs. Universal computation by quantum walk. Physical review letters, 102
(18):180501, 2009.

[25] Neil B Lovett, Sally Cooper, Matthew Everitt, Matthew Trevers, and Viv Kendon.
Universal quantum computation using the discrete-time quantum walk. Physical Review
A, 81(4):042330, 2010.

[26] Michael S Underwood and David L Feder. Universal quantum computation by discon-
tinuous quantum walk. Physical Review A, 82(4):042304, 2010.

[27] Shivani Singh, Prateek Chawla, Anupam Sarkar, and CM Chandrashekar. Universal
quantum computing using single-particle discrete-time quantum walk. Scientific Reports,
11(1):11551, 2021.

52

[28] Andrew M Childs, David Gosset, and Zak Webb. Universal computation by multiparticle
quantum walk. Science, 339(6121):791–794, 2013.

[29] Alberto Peruzzo, Mirko Lobino, Jonathan CF Matthews, Nobuyuki Matsuda, Alberto
Politi, Konstantinos Poulios, Xiao-Qi Zhou, Yoav Lahini, Nur Ismail, Kerstin Wörhoff,
et al. Quantum walks of correlated photons. Science, 329(5998):1500–1503, 2010.

[30] Kunkun Wang, Yuhao Shi, Lei Xiao, Jingbo Wang, Yogesh N Joglekar, and Peng Xue.
Experimental realization of continuous-time quantum walks on directed graphs and their
application in pagerank. Optica, 7(11):1524–1530, 2020.

[31] Michal Karski, Leonid Förster, Jai-Min Choi, Andreas Steffen, Wolfgang Alt, Dieter
Meschede, and Artur Widera. Quantum walk in position space with single optically
trapped atoms. Science, 325(5937):174–177, 2009.

[32] Maximilian Genske, Wolfgang Alt, Andreas Steffen, Albert H Werner, Reinhard F
Werner, Dieter Meschede, and Andrea Alberti. Electric quantum walks with individual
atoms. Physical review letters, 110(19):190601, 2013.

[33] Philipp M Preiss, Ruichao Ma, M Eric Tai, Alexander Lukin, Matthew Rispoli, Philip
Zupancic, Yoav Lahini, Rajibul Islam, and Markus Greiner. Strongly correlated quantum
walks in optical lattices. Science, 347(6227):1229–1233, 2015.

[34] Christof Weitenberg, Manuel Endres, Jacob F Sherson, Marc Cheneau, Peter Schauß,
Takeshi Fukuhara, Immanuel Bloch, and Stefan Kuhr. Single-spin addressing in an
atomic mott insulator. Nature, 471(7338):319–324, 2011.

[35] Hector Schmitz, Robert Matjeschk, Ch Schneider, Jan Glueckert, Martin Enderlein,
Thomas Huber, and Tobias Schaetz. Quantum walk of a trapped ion in phase space.
Physical review letters, 103(9):090504, 2009.

[36] Franziska Zähringer, Gerhard Kirchmair, Rene Gerritsma, Eenrique Solano, Rainer
Blatt, and Christian F Roos. Realization of a quantum walk with one and two trapped
ions. Physical review letters, 104(10):100503, 2010.

[37] Masaya Tamura, Takashi Mukaiyama, and Kenji Toyoda. Quantum walks of a phonon
in trapped ions. Physical Review Letters, 124(20):200501, 2020.

[38] Ning Bao, Patrick Hayden, Grant Salton, and Nathaniel Thomas. Universal quantum
computation by scattering in the fermi–hubbard model. New Journal of Physics, 17(9):
093028, 2015.

[39] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information.
Cambridge university press, 2010.

[40] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access mem-
ory. Physical review letters, 100(16):160501, 2008.

[41] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219,
1996.

53

[42] Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum. arXiv
preprint quant-ph/9607014, 1996.

[43] Anton S Albino, Lucas Q Galvão, Ethan Hansen, Mauro Q Nooblath Neto, and Clebson
Cruz. Quantum algorithm for finding minimum values in a quantum random access
memory. arXiv preprint arXiv:2301.05122, 2023.

[44] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and
Seth Lloyd. Quantum machine learning. Nature, 549(7671):195–202, 2017.

[45] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction to quantum
machine learning. Contemporary Physics, 56(2):172–185, 2015.

[46] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical review letters, 103(15):150502, 2009.

[47] Dominic W Berry and Andrew M Childs. Black-box hamiltonian simulation and unitary
implementation. arXiv preprint arXiv:0910.4157, 2009.

[48] Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D
Somma. Simulating hamiltonian dynamics with a truncated taylor series. Physical
review letters, 114(9):090502, 2015.

[49] Ryo Asaka, Kazumitsu Sakai, and Ryoko Yahagi. Quantum circuit for the fast fourier
transform. Quantum Information Processing, 19:1–20, 2020.

[50] Connor T Hann, Gideon Lee, SM Girvin, and Liang Jiang. Resilience of quantum random
access memory to generic noise. Prx Quantum, 2(2):020311, 2021.

[51] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Architectures for a quantum
random access memory. Physical Review A, 78(5):052310, 2008.

[52] Connor T Hann, Chang-Ling Zou, Yaxing Zhang, Yiwen Chu, Robert J Schoelkopf,
Steven M Girvin, and Liang Jiang. Hardware-efficient quantum random access memory
with hybrid quantum acoustic systems. Physical Review Letters, 123(25):250501, 2019.

[53] Kevin C Chen, Wenhan Dai, Carlos Errando-Herranz, Seth Lloyd, and Dirk Englund.
Scalable and high-fidelity quantum random access memory in spin-photon networks.
PRX Quantum, 2(3):030319, 2021.

[54] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-O ’Connor, Michele Mosca,
and Priyaa Varshinee Srinivasan. On the robustness of bucket brigade quantum ram.
New Journal of Physics, 17(12):123010, 2015.

[55] Alexandru Paler, Oumarou Oumarou, and Robert Basmadjian. Parallelizing the queries
in a bucket-brigade quantum random access memory. Physical Review A, 102(3):032608,
2020.

[56] Daniel K Park, Francesco Petruccione, and June-Koo Kevin Rhee. Circuit-based quan-
tum random access memory for classical data. Scientific reports, 9(1):3949, 2019.

54

[57] Mohammed Zidan, Abdel-Haleem Abdel-Aty, Ashraf Khalil, Mahmoud Abdel-Aty, and
Hichem Eleuch. A novel efficient quantum random access memory. IEEE Access, 9:
151775–151780, 2021.

[58] Zhao-Yun Chen, Cheng Xue, Tai-Ping Sun, Huan-Yu Liu, Xi-Ning Zhuang, Meng-Han
Dou, Tian-Rui Zou, Yuan Fang, Yu-Chun Wu, and Guo-Ping Guo. An efficient and
error-resilient protocol for quantum random access memory with generalized data size.
arXiv preprint arXiv:2303.05207, 2023.

[59] Yakir Aharonov and Aharon Casher. Topological quantum effects for neutral particles.
Physical Review Letters, 53(4):319, 1984.

[60] AA Zvyagin and IV Krive. Aharonov-casher effect in the hubbard model with repulsion.
Soviet physics, JETP, 75(4):745–747, 1992.

[61] Andrew M Childs and David Gosset. Levinson’s theorem for graphs ii. Journal of
Mathematical Physics, 53(10), 2012.

[62] Andrew M Childs and DJ Strouse. Levinson’s theorem for graphs. Journal of mathe-
matical physics, 52(8), 2011.

55

	Introduction
	Overview of the discrete-time and continuous-time quantum walks
	Overview of the quantum random access memory
	Overview of this thesis

	Bucket-brigade process: the conventional retrieval process
	Data retrieval algorithm via discrete-time QW asaka2021quantum
	Discrete-time quantum walk on a binary tree
	Exponential qubit savings

	Connection between discrete-time and continuous-time QWs asaka2021quantum,asaka2023two1,asaka2023two2
	Implementation of the bucket with data (address and data registers)
	Implementation of the controlled coinflip XC,A(l-1,w)
	Implementation of the shift operator S(l-1,w)B,C
	Implementation of the coinflip XC(l,2w+1)
	Implementation of the query operator XDi

	Physical implementation by continuous-time QW asaka2023two1,asaka2023two2
	Continuous-time quantum walks with two-level internal states
	Physical implementation of circuit components
	Constructing a circuit with finite rails
	Universal quantum computer compatible with our qRAM

	Summary and discussion
	Acknowledgments
	Single- and two- particle scattering
	Scattering matrix for a single particle on a subgraph
	Phase shift through a two-particle head-on scattering along a rail

