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Chapter 1

Graphical translators for the mean
curvature flow and isoparametric
functions

1.1 Introduction

This chapter is based on [7].
Let (N, g) be a n-dimensional Riemannian manifold and u : M → R be a smooth function

on a domain M ⊂ N . The graph embedding f for u is defined as the embedding of M into the
product Riemannian manifold N × R given by f(x) := (x, u(x)) (x ∈ M). For the simplicity,
denote by Γ the graph f(M) of u. If a C∞-family {ft}t∈I of C∞-immersions of M into N × R
(I is an open interval including 0) satisfies

(
∂ft
∂t

)⊥ft
= Ht

f0 = f,

(1.1.1)

the family {Mt}t∈I of the images Mt := ft(M) is called the mean curvature flow starting from
Γ, where Ht is the mean curvature vector field of ft and (•)⊥ft is the normal component of (•)
with respect to ft. According to Hungerbühler and Smoczyk [11], we define a soliton for the
mean curvature flow as follows. Let X be a Killing vector field on N × R and {φt}t∈R be the
one-parameter transformation group associated to X. If {ft}t∈I satisfies(

∂(φ−1
t ◦ ft)
∂t

)⊥
(ϕ−1
t ◦ft)

= 0, (1.1.2)

then Γ is called a soliton for the mean curvature flow with respect to X. In the sequel, we call
such a soliton a X-soliton simply. In particular, when X = (0, 1) ∈ T (N × R)(= TN ⊕ TR),
we call the X-soliton a translator.

The translator for N = Rn has been studied by several authors. When n = 2, Shahriyari
[23] proved non-existence of complete translating graphs over bounded connected domains of
R2 with smooth boundary. Also, she showed that if a complete translator which is a graph over
a domain in R2, then the domain is a strip, or a halfspace, or R2. Further, Hoffman, Ilmanen,
Mart́ın and White [10] showed that no complete translator is the graph of a function over a
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halfspace in R2. Minimal submanifolds is special case of translators. Therefore, translators can
be regarded as the generalization of minimal submanifolds. Hence, Bao and Shi [2] showed a
Bernstein-type theorem for complete translators in case of codimension one. Also, by Kunikawa
[15], a Bernstein-type theorem for complete translators with flat normal bundle in case of
higher codimension was shown. For the function u : Rn → R defined by u(x1, . . . , xn) =
− log cosxn, (x1, . . . , xn) ∈ Rn, the mean curvature flow starting from the graph of u is the
translator. When n = 1, the curve of u is called a grim reaper (Figure 1.1.1). When n ≥ 2,
the graph of u is called a grim hyperplane (Figure 1.1.2). Further, Martin, Savas-Halilaj, and
Smoczyk [17] gave the characterization of the grim hyperplane. Clutterbuck, Schnürer and
Schulze [4] showed the existence of the complete rotationally symmetric graphical translator
which is called bowl soliton (Altschuler and Wu [1] had already showed the existence in the
case n = 2) and a certain type of stability for the bowl soliton. Further, they showed that bowl
solitons have the following asymptotic expansion as r approaches infinity:

r2

2(n− 1)
− log r +O(r−1),

where r is the distance function in Rn because u is the composition of r and the solution of a
certain ordinary differential equation. Wang [26] showd that when n = 2, the bowl soliton is
the only convex translator which is an entire graph. Further, Spruck and Xiao [24] showed that
the bowl soliton with n = 2 is the only complete translator which is an entire graph.

O
x

Figure 1.1.1: The grim reaper
Figure 1.1.2: The grim hyperplane

In this chapter, we consider the case where N is the n-dimensional unit sphere Sn and u
is a composition of an isoparametric function on Sn and some function. The level sets of the
isoparametric functions give compact isoparametric hypersurfaces of Sn. Münzner [19] showed
that the number k of distinct principal curvatures of compact isoparametric hypersurfaces of
Sn is 1, 2, 3, 4 or 6 by a topological method. In cases k = 1, 2, 3, Cartan [3] classified the
isoparametric hypersurfaces. The hypersurfaces are Sn−1 ⊂ Sn in case k = 1, Sk × Sn−k−1 ⊂ Sn
in case k = 2 and the tubes over the Veronese surfaces RP 2 ⊂ S4, CP 2 ⊂ S7, QP 2 ⊂ S13,
OP 2 ⊂ S25 (i.e., the principal orbits of the isotropy representations of the rank two symmetric
spaces SU(3)/SO(3), (SU(3) × SU(3))/SU(3), SU(6)/Sp(3), E6/F4) in case k = 3. These
hypersurfaces are homogeneous. In case k = 6, the hypersurfaces are homogeneous by the
result of Dorfmeister and Neher [5] and Miyaoka [18]. The hypersurfaces are the principal
orbits of the isotropy representations of (G2 × G2)/G2, G2/SO(4). In case k = 4, Ozeki and
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Takeuchi [21, 22] found that non-homogeneous isoparametric hypersurfaces are constructed as
the regular level sets of the restrictions of the Cartan-Münzner polynomial functions to the
sphere. In this chapter, we obtain the following result.

Theorem 1.1.1. Let r be an isoparametric function on Sn (n ≥ 2) and V be a C∞-function
on an interval J ⊂ r(Sn). If the mean curvature flow starting from the graph of the function
u = (V ◦ r)|r−1(J) is a translator, the shape of the graph of V is like one of those defined in
Figures 1.1.3–1.1.9. The real number R ∈ (−1, 1) in Figures 1.1.3–1.1.9 is given by

R :=

0 (k = 1, 3, 6)

−1 +
km

n− 1
(k = 2, 4),

where k is the number of distinct principal curvatures of the compact isoparametric hypersurface
defined by the regular level set for r and m is the multiplicity of the smallest principal curvature
of the isoparametric hypersurface.

r
1−1

r = R
V

Figure 1.1.3: The graph of V (Type I)

r
1−1

r = R
V

Figure 1.1.4: The graph of V (Type II)

r
1−1

r = R
V

Figure 1.1.5: The graph of V (Type III)
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V

r
1−1

r = R

Figure 1.1.6: The graph of V (Type IV)

r
1−1

r = R

V

Figure 1.1.7: The graph of V (Type V)

r
1−1

r = R

V

Figure 1.1.8: The graph of V (Type VI)

r
1−1

r = R

V

Figure 1.1.9: The graph of V (Type VII)

The function u = (V ◦ r)|r−1(J) in Theorem 1.1.1 is constant on the level set of r and its
behavior on the normal direction for the level set of r is a little understood from the behavior
of V in Figures 1.1.3–1.1.9. In the last section, we investigate the domain of the function u in
Theorem 1.1.1.

1.2 Basic facts

Let g be a Riemannian metric of an n-dimensional Riemannian manifold N and u :M → R be
a function on a domain M ⊂ N . Define the immersion f of M into the product Riemannian
manifold N × R by f(x) = (x, u(x)), x ∈ M . Denote the graph of u by Γ and the mean
curvature vector field of f by H. Further, we assume that X is a Killing vector field on N ×R
and {φt}t∈R is the one-parameter transformation associated to X on N ×R. Then, we have the
following lemma about the soliton of the mean curvature flow.

Lemma 1.2.1. If the Γ is X-soliton, f satisfies

(X ◦ f)⊥f = H. (1.2.1)

Conversely, if f satisfies (1.2.1), the family of the images {Mt}t∈R defined by ft = φt ◦ f and
Mt = ft(M) is the mean curvature flow and Γ is the X-soliton.
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Proof. According to Hungerbühler and Smoczyk [11], we find the first half of the lemma. For
the second half of the lemma, since φt’s are isometries and f satisfies (1.2.1), we find that
ft = φt ◦ f satisfies (

∂ft
∂t

)⊥ft
−Ht = dφt((X ◦ f)⊥f −H)

= 0,

and {ft}t∈R satisfies (1.1.1). Therefore, {Mt}t∈R is the mean curvature flow. Further, by
φ−1
t ◦ ft = f , it turns out that ft satisfies (1.1.2). So, Γ is the X-soliton.

Let ∇ and div be the gradient and divergence with respect to g, respectively. For Lemma
1.2.1, considering the case where an X-soliton is a translator, the following lemma is derived.

Lemma 1.2.2. If the graph Γ of u is a translator, u satisfies√
1 + ∥∇u∥2 div

(
∇u√

1 + ∥∇u∥2

)
= 1. (1.2.2)

Conversely, if u satisfies (1.2.2), the family of the images {Mt}t∈R defined by ft(x) = (x, u(x)+
t), x ∈M and Mt = ft(M) is the mean curvature flow and Γ is a translator.

Proof. Let (x1, . . . , xn, s) be local coordinates of N ×R. Define the Killing vector X = (0, 1) ∈
T (N × R) = TN ⊕ TR. By f(x) = (x, u(x)), x ∈M and X = ∂

∂s , we find

(X ◦ f)⊥f =
∂

∂s
− 1

1 + ∥∇u∥2
df(∇u),

H =
√
1 + ∥∇u∥2 div

(
∇u√

1 + ∥∇u∥2

)(
∂

∂s
− 1

1 + ∥∇u∥2
df(∇u)

)
.

Therefore, we obtain that (1.2.1) and (1.2.2) are equivalent in this case.

Next, we consider the case where u is a composition of an isoparametric function and some
function. Let ∆ be the Laplacian with respect to g. A non-constant C∞-function r : N → R is
called an isoparametric function if there exist C∞-functions α, β such that{

∥∇r∥2 = α ◦ r
∆r = β ◦ r.

Further, the regular level set of r is called an isoparametric hypersurface.
In case where N is the n-dimensional unit sphere Sn, Münzner [19] showed the following

theorem for an isoparametric function on Sn.

Theorem 1.2.3. (Münzner [19]) (i) An isoparametric function r on Sn is a restriction to Sn
of a homogeneous polynomial h : Rn+1 → R which satisfies|(∇Rh)x|2 = k2|x|2k−2

(∆Rh)x =
m2 −m1

2
k2|x|k−2

(x ∈ Rn+1), (1.2.3)

where |•| is the Euclidean norm and ∇R and ∆R are the gradient and Laplacian for the Euclidean
space Rn. Here, we assume that the isoparametric hypersurface defined by the level set of r has
k distinct principal curvatures λ1 > · · · > λk with respective multiplicities m1, . . . ,mk.

(ii) The above natural number k is 1, 2, 3, 4 or 6.
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Remark 1.2.4. According to Münzner [19, 20], we find the following two facts.
(i) If k = 1, 3, 6 , then the mulitiplicities are equal. If k = 2, 4, then there are at most two

distinct multiplicities m1, m2.
(ii) By (1.2.3), we obtain∥∇r∥2 = k2(1− r2)

∆r =
m2 −m1

2
k2 − k(n+ k − 1)r.

(1.2.4)

From the first equation of (1.2.4), we find that r(Sn) = [−1, 1].

For Lemma 1.2.2, considering the case where u is the composition of the isoparametric
function and some function, the following lemma is derived.

Lemma 1.2.5. Let r : N → R be an isoparametric function on N . If the graph Γ of u is a
translator and if there exists a C∞-function V on r(M) such that u = (V ◦ r)|M , the function
V satisfies

2αV ′′ − α(α′ − 2β)(V ′)3 − 2α(V ′)2 + 2βV ′ − 2 = 0, (1.2.5)

where ′ denotes derivative on r(M) and α, β are C∞-functions which satisfy ∥∇r∥2 = α ◦
r, ∆r = β ◦ r. Conversely, if V satisfies (1.2.5), the family of the images {Mt}t∈R defined by
ft(x) = (x, (V ◦ r)(x) + t), x ∈ M and Mt = ft(M) is the mean curvature flow and Γ is the
translator.

Proof. For the left side of (1.2.2), we have√
1 + ∥∇u∥2 div

(
∇u√

1 + ∥∇u∥2

)
= ∆u− 1

2(1 + ∥∇u∥2)
∇u(∥∇u∥2).

By u = V ◦ r, we find

∥∇u∥2 =
(
α(V ′)2

)
◦ r,

∇u(∥∇u∥2) =
(
α(V ′)2

(
2αV ′′ + α′V ′)) ◦ r,

∆u =
(
αV ′′ + βV ′) ◦ r.

Therefore, (1.2.2) is reduced to the following equation

αV ′′

1 + α(V ′)2
+ βV ′ − αα′(V ′)3

2 (1 + α(V ′)2)
= 1.

By this equation, we obtain (1.2.5).

1.3 Proof of Theorem 1.1.1

In this section, we assume that N is the n-dimensional unit sphere Sn (n ≥ 2) and u =
(V ◦ r)|r−1(J) with an isoparametric function r on Sn and a C∞-function V on an interval J ⊂
r(Sn) = [−1, 1]. By (1.2.4), substituting α(r) = k2(1− r2) and β(r) = m2−m1

2 k2− k(n+ k− 1)r
for (1.2.5), we obtain

V ′′(r) =k((n− 1)r − m2 −m1

2
k)V ′(r)3 + V ′(r)2

+
(n+ k − 1)r − m2−m1

2 k

k(1− r2)
V ′(r) +

1

k2(1− r2)
, r ∈ (−1, 1). (1.3.1)
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The local existence of the solution V of (1.3.1) is clear. By Remark 1.2.4 (i), we find

m2 −m1 =

{
0 (k = 1, 3, 6)

2(m2 − n−1
k ) (k = 2, 4).

Therefore, (1.3.1) is reduced to

V ′′(r) =k((n− 1)(r −R))V ′(r)3 + V ′(r)2

+
(n+ k − 1)r − (n− 1)R

k(1− r2)
V ′(r) +

1

k2(1− r2)
, r ∈ (−1, 1). (1.3.2)

Here, R ∈ (−1, 1) is the constant defined by

R :=

0 (k = 1, 3, 6)

−1 +
km2

n− 1
(k = 2, 4),

and when k = 2, 4, m2 is equal to the multiplicity of the smallest principal curvature of the
isoparametric hypersurface defined by the level set of r. To prove Theorem 1.1.1, we consider
the graph of the solution V of (1.3.2). Define ψ(r) = k

√
1− r2V ′(r). The equation (1.3.2) is

reduced to

ψ′(r) =
1

k(1− r2)

(
ψ(r)2 + 1

) (
(n− 1)(r −R)ψ(r) +

√
1− r2

)
. (1.3.3)

Therefore, we consider the behavior of the solution ψ of (1.3.3). Define η(r) = −
√
1−r2

(n−1)(r−R) .
Then, the following lemma holds clearly.

Lemma 1.3.1.

(i) When r ∈ (R, 1):

(a) if ψ(r) > η(r), then ψ′(r) > 0,

(b) if ψ(r) = η(r), then ψ′(r) = 0,

(c) if ψ(r) < η(r), then ψ′(r) < 0.

(ii) When r ∈ (−1, R):

(a) if ψ(r) < η(r), then ψ′(r) > 0,

(b) if ψ(r) = η(r), then ψ′(r) = 0,

(c) if ψ(r) > η(r), then ψ′(r) < 0.

(iii) When r = R or ψ(r) = 0: ψ′(r) > 0.
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r1−1

η

r = R

Figure 1.3.1: The graph of η

For the shape of ψ in the case where ψ > 0, we obtain the following lemmas.

Lemma 1.3.2. If there exists r0 ∈ (R, 1) with ψ(r0) > 0, there exists r1 ∈ (r0, 1) such that

lim
r↑r1

ψ(r) = +∞.

Proof. For all r ∈ (r0, 1), we find ψ′(r) > 0 and ψ(r) > 0. Also, we have

ψ′(r) =
1

k(1− r2)

(
ψ(r)2 + 1

)(
(n− 1)(r −R)ψ(r) +

√
1− r2

)
>

(n− 1)(r −R)

k(1− r2)
ψ(r)3.

Therefore, we find
ψ′(r)

ψ(r)3
>

(n− 1)(r −R)

k(1− r2)
.

By integrating both sides of this inequality from r0 to r, we have

1

ψ(r)2
<

(n− 1)

k
log (1− r2) +

(n− 1)R

k
log

1 + r

1− r

− (n− 1)

k
log (1− r20)−

(n− 1)R

k
log

1 + r0
1− r0

+
1

ψ(r0)2
=: h1(r).

Here, h1 is decreasing on (r0, 1) and

h1(r0) =
1

ψ(r0)2
> 0, lim

r↑1
h1(r) = −∞.

Therefore, there exists r1 ∈ (r0, 1) with h1(r1) = 0 and

ψ(r) >
1√
h1(r)

→ +∞ ( r ↑ r1 ).

The proof is completed.
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ψ

r1−1
r0

ψ(r0)

r1

r = R

Figure 1.3.2: The behavior of the graph of ψ in Lemma 1.3.2.

Lemma 1.3.3. If there exists r0 ∈ (−1, R) with 0 < ψ(r0) < η(r0), there exists C ∈ (ψ(r0),+∞)
such that

lim
r↑R

ψ(r) = C.

Proof. First, we consider the case k = 1. For all r ∈ (r0, 0), we find ψ′(r) > 0 and 0 < ψ(r) <
η(r). Also, we have

ψ′(r) =
1

1− r2

(
ψ(r)2 + 1

)(
(n− 1)rψ(r) +

√
1− r2

)
<

1√
1− r2

(
ψ(r)2 + 1

)
.

Therefore, we find
ψ′(r)

ψ(r)2 + 1
<

1√
1− r2

.

By integrating both sides of this inequality from r0 to r, we have

arctanψ(r) < arcsin r − arcsin r0 + arctanψ(r0) =: h2(r).

Here, h2 is increasing on (r0, 0) and

h2(r0) = arctanψ(r0), h2(0) = arctanψ(r0)− arcsin r0.

Since we find

ψ(r0) < η(r0) = −
√

1− r20
(n− 1)r0

≤ −
√

1− r20
r0

= tan
(
arcsin r0 +

π

2

)
,

we have
h2(0) = arctanψ(r0)− arcsin r0 <

π

2
.

Therefore, tan (h2(r)) is defined on (r0, 0] and

ψ(r) < tan (h2(r)).

The proof is completed for k = 1.
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Next, we consider the case k = 2, 3, 4 or 6. For all r ∈ (r0, R), we find ψ(r) > 0 and
0 < ψ(r) < η(r). Also, we have

ψ′(r) =
1

k(1− r2)

(
ψ(r)2 + 1

)(
(n− 1)(r −R)ψ(r) +

√
1− r2

)
<

1

2
√
1− r2

(
ψ(r)2 + 1

)
.

Therefore, we find
ψ′(r)

ψ(r)2 + 1
<

1

2
√
1− r2

.

By integrating both sides of this inequality from r0 to r, we have

arctanψ(r) <
1

2
arcsin r − 1

2
arcsin r0 + arctanψ(r0) =: ĥ2(r).

Here, ĥ2 is increasing on (r0, R) and

ĥ2(r0) = arctanψ(r0), ĥ2(R) = arctanψ(r0) +
1

2
arcsinR− 1

2
arcsin r0.

Since we find

ψ(r0) < η(r0) = −
√
1− r20

(n− 1)(r0 −R)

< −
√
1− r20 +

√
1−R2

r0 −R

= tan

(
1

2
arcsin r0 −

1

2
arcsinR+

π

2

)
,

we have
ĥ2(R) = arctanψ(r0)− arcsin r0 <

π

2
.

Therefore, tan
(
ĥ2(r)

)
is defined on (r0, R] and

ψ(r) < tan
(
ĥ2(r)

)
.

The proof is completed.
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ψ

r1−1
r0

ψ(r0)

r = R

C

Figure 1.3.3: The behavior of the graph of ψ in Lemma 1.3.3

Lemma 1.3.4. If there exists r0 ∈ (−1, R) with ψ(r0) > η(r0), there exists r1 ∈ (−1, r0) such
that

lim
r↓r1

ψ(r) = +∞.

Proof. For all r ∈ (−1, r0), we find ψ′(r) < 0 and ψ(r) > η(r). Also, we have

ψ′(r) =
1

k(1− r2)

(
ψ(r)2 + 1

) (
(n− 1)(r −R)ψ(r) +

√
1− r2

)
<

1

k(1− r2)

(
(n− 1)ψ(r0)(r −R) +

√
1− r2

)
ψ(r)2.

Therefore, we find
ψ′(r)

ψ(r)2
<

(n− 1)

k
ψ(r0)

r −R

1− r2
+

1

k
√
1− r2

.

By integrating both sides of this inequality from r0 to r, we have

1

ψ(r)
<

(n− 1)ψ(r0)

2k
log (1− r2)− 1

k
arcsin r

+
(n− 1)Rψ(r0)

2k
log

1 + r

1− r
− (n− 1)ψ(r0)

2k
log (1− r20)

+
1

k
arcsin r0 −

(n− 1)Rψ(r0)

2k
log

1 + r0
1− r0

+
1

ψ(r0)
=: h3(r).

Here, h3 is increasing on (−1, r0) and

h3(r0) =
1

ψ(r0)
> 0, lim

r↓−1
h3(r) = −∞.

Therefore, there exists r1 ∈ (−1, r0) with h3(r1) = 0 and

ψ(r) >
1

h3(r)
→ +∞ ( r ↓ r1 ).

The proof is completed.
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r

ψ

1−1
r0

ψ(r0)

r1

r = R

Figure 1.3.4: The behavior of the graph of ψ in Lemma 1.3.4

Since the existence of the solution ψ of (1.3.3) which is defined to r = −1 could not be
excluded, we consider that case.

Lemma 1.3.5. If ψ is defined to r = −1, ψ(−1) = 0 and V ′(−1) = 1
k(k+(n−1)(1+R))

Proof. It is clear that ψ(−1) = 0. By V ′(r) = 1

k
√

(1−r2)
ψ(r), we find

ψ′(r)

(k
√
1− r2 )′

= − 1

k2r

(
k2(1− r2)V ′(r)2 + 1

) (
k(n− 1)(r −R)V ′(r) + 1

)
→ − 1

k2
(
k(n− 1)(1 +R)V ′(−1)− 1

)
( r ↓ − 1 ).

By l’Hôpital’s rule, we find V ′(−1) = 1
k(k+(n−1)(1+R)) .

r

ψ

1−1

r = R

Figure 1.3.5: The behavior of the graph of ψ in Lemma 1.3.5
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Also, in the case where ψ < 0, by proofs similar to Lemmas 1.3.2–1.3.5, we obtain the
following lemmas.

Lemma 1.3.6. If there exists r0 ∈ (−1, R) with ψ(r0) < 0, there exists r1 ∈ (−1, r0) such that

lim
r↓r1

ψ(r) = −∞.

ψ

r1−1 r0

ψ(r0)

r1

r = R

Figure 1.3.6: The behavior of the graph of ψ in Lemma 1.3.6

Lemma 1.3.7. If there exists r0 ∈ (R, 1) with 0 > ψ(r0) > η(r0), there exists C ∈ (−∞, ψ(r0))
such that

lim
r↓R

ψ(r) = C.

ψ

r1−1 r0

ψ(r0)

r = R

C

Figure 1.3.7: The behavior of the graph of ψ in Lemma 1.3.7
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Lemma 1.3.8. If there exists r0 ∈ (R, 1) with ψ(r0) < η(r0), there exists r1 ∈ (r0, 1) such that

lim
r↑r1

ψ(r) = −∞.

r

ψ

1−1 r0

ψ(r0)

r1

r = R

Figure 1.3.8: The behavior of the graph of ψ in Lemma 1.3.8

Lemma 1.3.9. If ψ is defined to r = 1, ψ(1) = 0 and V ′(1) = − 1
k(k+(n−1)(1−R))

r

ψ

1−1

r = R

Figure 1.3.9: The behavior of the graph of ψ in Lemma 1.3.9
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By Lemmas 1.3.1–1.3.9, we obtain the following proposition for the behavior of the graph
of ψ.

Proposition 1.3.10. For the solution ψ of the equation (1.3.3), the behavior of the graph of ψ
is like one of Figures 1.3.10–1.3.16.

ψ

r1−1

r = R

Figure 1.3.10: The graph of ψ (Type I)

ψ

r1−1

r = R

Figure 1.3.11: The graph of ψ (Type II)

ψ

r1−1

r = R

Figure 1.3.12: The graph of ψ (Type III)
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r

ψ

1−1

r = R

Figure 1.3.13: The graph of ψ (Type IV)

r

ψ

1−1

r = R

Figure 1.3.14: The graph of ψ (Type V)

r

ψ

1−1

r = R

Figure 1.3.15: The graph of ψ (Type VI)

r

ψ

1−1

r = R

Figure 1.3.16: The graph of ψ (Type VII)

For the graph of ψ in Proposition 1.3.10, we have not yet shown whether ψ in the case of
Figures 1.3.15 and 1.3.16 exists or not. By the following lemma, we obtain the existence.

Lemma 1.3.11. The solutions ψ of the equation (1.3.3) in Figures 1.3.15 and 1.3.16 exist.

Proof. For the set S of all solutions of the equation (1.3.3), we define sets S1, S2, S3 ⊂ S by

S1 := {ψ ∈ S|∃r0 ∈ (−1, 1) : ψ(r0) = 0},
S2 := {ψ ∈ S|∃r0 ∈ (−1, 1) : ψ(r0) = η(r0)},
S3 := {ψ ∈ S|ψ(1) = 0 or ψ(−1) = 0}.

Then, we have

(−1, 1)× R =
⋃

ψ∈S1∪S2∪S3

Graph(ψ),

where Graph(ψ) is the graph of ψ. Since
⋃
ψ∈S1

Graph(ψ) and
⋃
ψ∈S2

Graph(ψ) are open sets
and (−1, 1)× R is connected, we find S3 is not empty set. The proof is completed.

Define ζ(r) = − 1
k(n−1)(r−R) . By V ′(r) = 1

k
√
1−r2ψ(r) and Proposition 1.3.10, we have the

following proposition for the behavior of the graph of V ′. Besides, by Proposition 1.3.12, we
obtain Theorem 1.1.1.
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Proposition 1.3.12. For the solution V of the equation (1.3.2), the behavior of the graph of
V ′ is like one of Figures 1.3.17–1.3.23. Here, the dotted curve in Figures 1.3.17–1.3.23 is the
graph of ζ.

V ′

r1−1

r = R

Figure 1.3.17: The graph of V ′ (Type I)

r

V ′

1−1

r = R

Figure 1.3.18: The graph of V ′ (Type II)

r

V ′

1−1

r = R

Figure 1.3.19: The graph of V ′ (Type III)
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r

V ′

1−1

r = R

Figure 1.3.20: The graph of V ′ (Type IV)

r

V ′

1−1

r = R

Figure 1.3.21: The graph of V ′ (Type V)

V ′

r1−1

r = R

Figure 1.3.22: The graph of V ′ (Type VI)

V ′

r1−1

r = R

Figure 1.3.23: The graph of V ′ (Type VII)

1.4 The domain of the function u in Theorem 1.1.1

In this section, we investigate the domain of the function u = V ◦r overM ⊂ Sn in Theorem 1.1.1
in the case where the number k of distinct principal curvatures of the isoparametric hypersurface
for r is 1, 2 or 3. From the result of Theorem 1.1.1, we find that M does not contain some
tubular neighborhoods of the focal submanifolds r−1(1) and r−1(−1) in case that the type of V
in Theorem 1.1.1 is I–V. Also, we find that M contains r−1(−1) and does not contain a tubular
neighborhood of the focal submanifold r−1(1) in case that the type of V is VI and M contains
r−1(1) and does not contain a tubular neighborhood of the focal submanifold r−1(−1) in case
that the type of V is VII.

When k = 1, the isoparametric function r is defined by

r(x1, . . . , xn+1) = xn+1 (x1, . . . , xn+1) ∈ Sn.

Therefore, from the result of Theorem 1.1.1, the domainM of u is an open set of Sn including the
set {(x1, . . . , xn, 0) ∈ Rn+1| x21+ · · ·+x2n = 1} ⊂ Sn. Also, as p = (0, . . . , 0, 1), q = (0, . . . , 0,−1),
we find that p, q /∈M in case that the type of V in Theorem 1.1.1 is I–V, p /∈M , q ∈M in case
that the type of V is VI and p ∈M , q /∈M in case that the type of V is VII.
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When k = 2, the isoparametric function r is defined by

r(x1, . . . , xn+1) =

l∑
i=1

x2i −
n+1∑
i=l+1

x2i (x1, . . . , xn+1) ∈ Sn.

Here, l ∈ {1, . . . , n}. Since r−1(t) = {(x, y) ∈ Rl×Rn−l+1| |x|2 = 1+t
2 , |y|2 = 1−t

2 } for t ∈ (−1, 1),
as Sθ := {((cos θ, 0, . . . , 0)A, (sin θ, 0, . . . , 0)B) ∈ Rl ×Rn−l+1 | A ∈ SO(l− 1),B ∈ SO(n− l)},
we obtain that r−1(t) = Sθt for θt ∈ (0, π2 ) with cos θt =

√
1+t
2 and sin θt =

√
1−t
2 . Therefore,

from the result of Theorem 1.1.1, we find that the domain M is the open set of Sn including
SθR . Also, we find that M =

⋃
θ∈I Sθ for an interval I ⊂ (0, π2 ) in case that the type of V in

Theorem 1.1.1 is I–V, M =
⋃
θ∈(a,π

2
] Sθ for some a ∈ (0, π2 ) in case that the type of V is VI and

M =
⋃
θ∈[0,a) Sθ for a ∈ (0, π2 ) in case that the type of V is VII.

When k = 3, an isoparametric hypersurface is a principal orbit of the isotropy representation
of the rank two symmetric space G/K = SU(3)/SO(3), (SU(3)×SU(3))/SU(3), SU(6)/Sp(3)
or E6/F4. Since the principal orbit of the isotropy representation intersects with the Weyl
domain C at only one point, we find that there exists an open subset U ⊂ C ∩ Sn such that
K · U is equal to M . Here, Te(G/K) for e ∈ G/K is identified with Rn+1. Also, we find that
M ⊂ K · C in case that the type of V in Theorem 1.1.1 is I–V and M ∩ (C \ C) ̸= ∅ in case
that the type of V is VI or VII.

In the rest of this section, we shall give explicit descriptions of Weyl domains for the sym-
metric space G/K = SU(3)/SO(3), (SU(3) × SU(3))/SU(3) or SU(6)/Sp(3). Let g and k
be the Lie algebras of G and K, respectively. Let g = k ⊕ p be the canonical decomposition.
Denote by a the maximal abelian subspace of p. When G/K = SU(3)/SO(3), we have that
p = {A : 3 × 3 symmetric space purely imaginary matrix such that the trace of A = 0} and
the diagonal matrices in p form a. So, we obtain

a =


√

−1a 0 0
0

√
−1b 0

0 0 −
√
−1(a+ b)

∣∣∣∣∣∣ a, b ∈ R

 .

Define ei (1 ≤ i ≤ 3) as ei(A) is the diagonal element of A. Then, we find that for the basis
{e1, e2} the positive restricted root system △+ = {

√
−1(e1 − e2),

√
−1(e1 − e3),

√
−1(e2 − e3)}.

Since the Killing form B is defined by B(X,Y) = 6Tr(XY), as

A1 =

√
−1 0 0
0 −

√
−1 0

0 0 0

 , A2 =

√
−1 0 0
0 0 0
0 0 −

√
−1

 , A3 =

0 0 0
0

√
−1 0

0 0 −
√
−1

 ,

we obtain the Weyl domain C in Figure 1.4.1. Here, for the angle θij with respect to Ai and
Aj, we find θ12 = θ23 =

π
3 and θ13 =

2π
3 .
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C

A1

A2A3

a

Figure 1.4.1: The Weyl domain C

When G/K = (SU(3)× SU(3))/SU(3), we have that

p =

{(
A O
O −A

)∣∣∣∣A : 3× 3 skew Hermitian matrix, the trace of A = 0

}
and the diagonal matrices in p form a.

Also, When G/K = SU(6)/Sp(3), we have that

p =

{(
A B

B −A

)∣∣∣∣A : 3× 3 skew Hermitian matrix, the trace of A = 0,
B : 3× 3 skew symmetric matrix

}
and the diagonal matrices in p form a.

In a similar way we obtain in the case that G/K = SU(3)/SO(3), that the Weyl domains
C for (SU(3)× SU(3))/SU(3) and SU(6)/Sp(3) are as in Figure 1.4.1.
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Chapter 2

Graphical translators for the inverse
mean curvature flow and
isoparametric functions

2.1 Introduction

In Chapter 1, we classified the shape of the translator for the mean curvature flow given as a
graph of a function on a domain in the unit sphere which is a composition of an isoparametric
function and some function. In this chapter, we consider the case of the inverse mean curvature
flow by the similar way. This chapter is based on [8].

Let N be an n-dimensional Riemannian manifold. Define an immersion f of a domain
M ⊂ N into the product Riemannian manifold N × R by f(x) = (x, u(x)), x ∈ M with a
smooth function u : M → R on M . Also, denote the graph of u (i.e, f(M)) by Γ. For a
C∞-family of C∞-immersions {ft}t∈I of M into N ×R (I is an open interval including 0) with
f0 = f , as Mt = ft(M), {Mt}t∈I is called the inverse mean curvature flow starting from Γ if ft
satisfies (

∂ft
∂t

)⊥ft
= − 1

∥Ht∥2
Ht, (2.1.1)

where Ht is the mean curvature vector field of ft and (•)⊥ft is the normal component of (•)
with respect to ft.

Furthermore, according to the definition of a soliton of the mean curvature flow by Hungerbühler
and Smoczyk [11], we define a soliton of the inverse mean curvature flow. Let X be a Killing
vector field on N × R and {φt}t∈R be the one-parameter transformation associated to X on
N × R. Then, Γ is called a soliton for the inverse mean curvature flow with respect to X if
{ft}t∈I satisfies (

∂(φ−1
t ◦ ft)
∂t

)⊥
(ϕ−1
t ◦ft)

= 0. (2.1.2)

In the sequel, we call such soliton an X-soliton simply. In particular, when X = (0, 1) ∈
T (N × R) = TN ⊕ TR, we call the X-soliton a translator.

Compared with the mean curvature flow, the translator for the inverse mean curvature flow
is less studied. For a translator for the inverse mean curvature flow, Drugan, Lee, and Wheeler
[6] gave a translator in R2 which is the cycloid generated by a circle with radius 1

4 and gave a
tilted cycloid product as a translator in R3. Kim and Pyo [12, 13] showed the existence and
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classification of rotationally symmetric translators in Rn+1 and showed that there is no complete
translator for inverse mean curvature flow in Rn+1.

In the main theorem of this chapter, we consider the case where N is the n-dimensional unit
sphere Sn and u is a composition of an isoparametric function r on Sn and some function V .
Then, we obtain the following theorem for the shape of the graph of V .

Theorem 2.1.1. Let r be an isoparametric function on Sn (n ≥ 2) and V be a C∞-function
on an interval J ⊂ r(Sn). If the inverse mean curvature flow starting from the graph of the
function u = (V ◦ r)|r−1(J) is a translator, the shape of the graph of V is like one of those
illustrated by Figures 2.1.1−2.1.5.

r
1−1

V

Figure 2.1.1: The graph of V (Type I)

r
1−1

V

Figure 2.1.2: The graph of V (Type II)

r
1−1

V

Figure 2.1.3: The graph of V (Type III)
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r
1−1

V

Figure 2.1.4: The graph of V (Type IV)

r
1−1

V

Figure 2.1.5: The graph of V (Type V)

Remark 2.1.2. For the C∞-function V in Theorem 2.1.1, define a C∞-function ψ by ψ(r) =
k
√
1− r2V ′(r) and define ψmin, ψmax by ψmin := minr∈Dom(ψ)ψ(r), ψmax := maxr∈Dom(ψ)ψ(r),

where Dom(ψ) means a domain of ψ. Also, define a constant R and functions η1, η2 on
(−1, a] ∪ [b, 1) by

R :=

0 (k = 1, 3, 6)

−1 +
km

n− 1
(k = 2, 4),

η1(r) :=
(n− 1)(r −R)−

√
((n− 1)2 + 4)r2 − 2R(n− 1)2r +R2(n− 1)2 − 4

2
√
1− r2

,

η2(r) :=
(n− 1)(r −R) +

√
((n− 1)2 + 4)r2 − 2R(n− 1)2r +R2(n− 1)2 − 4

2
√
1− r2

.

Here, m is the multiplicity of the smallest principal curvature of the isoparametric hypersurface
defined by the level set of the isoparametric function r in Theorem 2.1.1 and a, b are defined by

a :=
(n− 1)2R− 2

√
(n− 1)2(1−R2) + 4

(n− 1)2 + 4
,

b :=
(n− 1)2R+ 2

√
(n− 1)2(1−R2) + 4

(n− 1)2 + 4
.

If the graph of V is like one illustrated by Figure 2.1.2, then we will see that there exists r0 ∈ (b, 1)
with ψmin = η1(r0) or ψmin = η2(r0). If the graph of V is like one illustrated by Figure 2.1.3,
then we will see that there exists r0 ∈ (−1, a) with ψmax = η1(r0) or ψmax = η2(r0). Let the
open interval (x, y) be the domain of ψ. Then, it is shown that, for each type of the graph of V ,
the behavior of the graph of ψ is as in Table 1.
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Table 2.1: The behavior of the graph of ψ

the graph of V Im(ψ) ψ′ r ↓ x r ↑ y
Type I (−∞,∞) < 0 ∞ −∞
Type II [ηi(r0),∞) − ∞ ∞
Type III (−∞, ηi(r0)] − −∞ −∞
Type IV [0,∞) < 0 ∞ 0
Type V (−∞, 0] < 0 0 −∞

2.2 Proof of Theorem 2.1.1

Let (N, g) be an n-dimensional Riemannian manifold and u :M → R be a function on a domain
M ⊂ N . Denote the graph of u by Γ. Also, denote the gradient and Laplacian with respect to
g by ∇ and ∆ respectively. Then, we have the following lemma about the soliton of the inverse
mean curvature flow.

Lemma 2.2.1. If Γ is a translator, u satisfies

∆u+ ∥∇u∥2 + 1− ∇u(∥∇u∥2)
2(1 + ∥∇u∥2)

= 0. (2.2.1)

Conversely, if u satisfies (2.2.1), the family of the images {Mt}t∈R definded by ft(x) = (x, u(x)+
t), x ∈M and Mt = ft(M) is the inverse mean curvature flow and Γ is a translator.

Proof. Define the immersion f of M into the product Riemannian manifold N × R by f(x) =
(x, u(x)), x ∈M and define the Killing vector X = (0, 1) ∈ T (N ×R) = TN ⊕ TR. Denote the
mean curvature vector field of f by H. According to Hungerbühler and Smoczyk [11] in the
case of a soliton for the mean curvature flow, if Γ is translator, we find that

(X ◦ f)⊥f = − 1

∥H∥2
H. (2.2.2)

Let (x1, · · ·xn, s) be local coordinates of N × R. By X = ∂
∂s and f(x) = (x, u(x)), x ∈ M , we

find

(X ◦ f)⊥f =
∂

∂s
− 1

1 + ∥∇u∥2
df(∇u),

1

∥H∥2
H =

1 + ∥∇u∥2

∆u− ∇u(∥∇u∥2)
2(1+∥∇u∥2)

(
∂

∂s
− 1

1 + ∥∇u∥2
df(∇u)

)
.

Therefore, we obtain that (2.2.2) is equivalent to (2.2.1).
Conversely, if u satisfies (2.2.1), we find that f satisfies (2.2.2). Then, for the one-parameter

transformation {φt}t∈R associated to X on N × R, since φt’s are isometries and f satisfies
(2.2.2), we find that ft = φt ◦ f satisfies(

∂ft
∂t

)⊥ft
+

1

∥Ht∥2
Ht = dφt

(
(X ◦ f)⊥f + 1

∥H∥2
H

)
= 0,
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and {ft}t∈R satisfies (2.1.1). So, {Mt}t∈R is the inverse mean curvature flow. Furthermore, we
find that ft satisfies (2.1.2) from φ−1

t ◦ft = f . Therefore, {Mt}t∈R is the inverse mean curvature
flow and Γ is a translator. Then, we have ft(x) = (x, u(x) + t), x ∈M .

We consider the case where u is a composition of an isoparametric function r : N → R and
some function V . Then, we obtain the following proposition.

Proposition 2.2.2. Let r : N → R be an isoparametric function on N . If Γ is a translator
and if there exists a C∞-function V on an interval J ⊂ r(N) such that u = (V ◦ r)|r−1(J), the
function V satisfies

2αV ′′ + 2α2V ′4 + α(2β − α′)V ′3 + 4αV ′2 + 2βV ′ + 2 = 0, (2.2.3)

where ′ denotes derivative on J and α, β are C∞-functions which satisfy ∥∇r∥2 = α ◦ r, ∆r =
β ◦ r. Conversely, if V satisfies (2.2.3), the family of the images {Mt}t∈R defined by ft(x) =
(x, (V ◦ r)(x) + t), x ∈ M and Mt = ft(M) is the inverse mean curvature flow and Γ is the
translator.

Proof. From (2.2.1), we have

2(1 + ∥∇u∥2)(∆u+ ∥∇u∥2 + 1)−∇u(∥∇u∥2) = 0.

By u = V ◦ r, we find

∥∇u∥2 =
(
αV ′2) ◦ r,

∇u(∥∇u∥2) =
(
αV ′2 (2αV ′′ + α′V ′)) ◦ r,

∆u =
(
αV ′′ + βV ′) ◦ r.

Therefore, (2.2.1) is reduced to the following equation

2(1 + αV ′2)(αV ′′ + βV ′ + αV ′2 + 1)− αV ′2(α′V ′ + 2αV ′′) = 0.

From this equation, we obtain (2.2.3).

In the sequel, we assume that N is the n-dimensional unit sphere Sn (n ≥ 2) and u =
(V ◦ r)|r−1(J) with an isoparametric function r : Sn → R and a C∞-function V on interval
J ⊂ r(Sn) = [−1, 1]. By Remark 1.2.4 (i), we find

m2 −m1 =

{
0 (k = 1, 3, 6)

2(m2 − n−1
k ) (k = 2, 4).

Therefore, substituting α and β in Remark 1.2.4 (1.2.4) for the equation (2.2.3), we obtain

V ′′(r) =− k2(1− r2)V ′(r)4 + k((n− 1)(r −R))V ′(r)3 − 2V ′(r)2

+
(n+ k − 1)r − (n− 1)R

k(1− r2)
V ′(r)− 1

k2(1− r2)
, r ∈ (−1, 1), (2.2.4)

where R ∈ (−1, 1) is the constant defined by

R :=

0 (k = 1, 3, 6)

−1 +
km2

n− 1
(k = 2, 4).
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Here, we note that m2 is equal to the multiplicity of the smallest principal curvature of the
isoparametric hypersurface defined by the level set of r in the case k = 2, 4. The local existence
of the solution V of (2.2.4) is clear. To prove Theorem 2.1.1, we consider the graph of the
solution V of (2.2.4). Define ψ(r) = k

√
1− r2V ′(r). Then, the equation (2.2.4) is reduced to

ψ′(r) = − 1

k(1− r2)

(
ψ(r)2 + 1

)(√
1− r2ψ(r)2 − (n− 1)(r −R)ψ(r) +

√
1− r2

)
. (2.2.5)

Therefore, to obtain the behavior of the graph of V , first we consider the behavior of the solution
ψ of (2.2.5). Define the functions η1 and η2 on (−1, a] ∪ [b, 1)by

η1(r) :=
(n− 1)(r −R)−

√
((n− 1)2 + 4)r2 − 2R(n− 1)2r +R2(n− 1)2 − 4

2
√
1− r2

,

η2(r) :=
(n− 1)(r −R) +

√
((n− 1)2 + 4)r2 − 2R(n− 1)2r +R2(n− 1)2 − 4

2
√
1− r2

.

Also, define a, b ∈ (−1, 1) (a < b) by

a :=
(n− 1)2R− 2

√
(n− 1)2(1−R2) + 4

(n− 1)2 + 4
,

b :=
(n− 1)2R+ 2

√
(n− 1)2(1−R2) + 4

(n− 1)2 + 4
.

Then, we find a < R < b and obtain the following lemma.

Lemma 2.2.3.

(i) When r ∈ (−1, a] ∪ [b, 1),

(a) if η1(r) < ψ(r) < η2(r), then ψ
′(r) > 0,

(b) if ψ(r) = η1(r) or ψ(r) = η2(r), then ψ
′(r) = 0,

(c) if ψ(r) < η1(r) or ψ(r) > η2(r), then ψ
′(r) < 0.

(ii) When r ∈ (a, b), ψ′(r) < 0.

Proof. Define A(x, r) and B(r) by

A(x, r) :=
√
1− r2x2 − (n− 1)(r −R)x+

√
1− r2, (x, r) ∈ R× (−1, 1),

B(r) := ((n− 1)2 + 4)r2 − 2(n− 1)2Rr + (n− 1)2R2 − 4, r ∈ (−1, 1).

Then, we have

A(x, r) =
√

1− r2
(
x− (n− 1)(r −R)

2
√
1− r2

)2

− 1

4
√
1− r2

B(r),

B(r) =
(
(n− 1)2 + 4

)(
r − (n− 1)2R

(n− 1)2 + 4

)2

− 1

(n− 1)2 + 4

(
4(n− 1)2(1−R2) + 16

)
.

Therefore, we find that if r ∈ (−1, a] ∪ [b, 1), then B(r) > 0, if r ∈ (a, b), then B(r) < 0,
and if r ∈ {a, b}, then B(r) = 0. Furthermore, we find that when r ∈ (−1, a] ∪ [b, 1), if
x ∈ (η1(r), η2(r)), then A(x, r) < 0, if x ∈ (−∞, η1(r)) ∪ (η2(r),∞), then A(x, r) > 0, and if
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x ∈ {η1(r), η2(r)}, then A(x, r) = 0. Also, when r ∈ (a, b), we find that A(x, r) > 0. Since the
equation (2.2.5) is reduced to

ψ′(r) = − 1

k(1− r2)

(
ψ(r)2 + 1

)
A(ψ(r), r),

we obtain the statement of this lemma.

r1−1

η2

η1

a
b

Figure 2.2.1: The graph of η1 and η2

For the behavior of the graph of the solution ψ of (2.2.5), we obtain following lemmas.

Lemma 2.2.4. If there exists r0 ∈ (−1, a] with ψ(r0) < η1(r0), or if there exists r0 ∈ (a, 1)
with ψ(r0) < 0, then there exists r1 ∈ (r0, 1) such that

lim
r↑r1

ψ(r) = −∞.

Proof. When r > r0, we find ψ′(r) < 0 and ψ(r) < ψ(r0). Define η3(r) by

η3(r) :=
(n− 1)(r −R)

2
√
1− r2

.

Then, we find η3(r) =
1
2(η1(r) + η2(r)) on (−1, a] ∪ [b, 1). In the case where ψ(r0) ≤ η3(r0), we

have

ψ′(r) = − 1

k(1− r2)

(
ψ(r)2 + 1

) (√
1− r2ψ(r)2 − (n− 1)(r −R)ψ(r) +

√
1− r2

)
< − 1

k(1− r2)

(
ψ(r)2 + 1

) (
(1 + ψ(r0)

2)
√
1− r2 − ψ(r0)(n− 1)(r −R)

)
.

Therefore, we find

ψ′(r)

1 + ψ(r)2
< −1 + ψ(r0)

2

k
√
1− r2

+
ψ(r0)(n− 1)r

k(1− r2)
− ψ(r0)(n− 1)R

k(1− r2)
.

Integrating from r0 to r, we have

arctanψ(r) <− 1 + ψ(r0)
2

k
arcsin r − ψ(r0)(n− 1)

2k
log (1− r2)− ψ(r0)(n− 1)R

2k
log

1 + r

1− r

+
1 + ψ(r0)

2

k
arcsin r0 +

ψ(r0)(n− 1)

2k
log (1− r20) +

ψ(r0)(n− 1)R

2k
log

1 + r0
1− r0

+ arctanψ(r0) =: h4(r).
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Then, h4 is decreasing on (r0, 1) and h4(r0) = arctanψ(r0), limr↑1 h4(r) = −∞. Therefore,
there exists r1 ∈ (r0, 1) with h4(r1) = −π

2 and

ψ(r) < tanh4(r) → −∞ ( r ↑ r1 ).

Also, in the case where ψ(r0) > η3(r0), there exists r̄0 ∈ (r0, R) with ψ(r̄0) < η3(r̄0). By
replacing r0 by r̄0, the proof is reduced in the case where ψ(r0) ≤ η3(r0).

r1−1

ψ

r0 r1

Figure 2.2.2: The behavior of the graph of ψ in Lemma 2.2.4

Lemma 2.2.5. If there exists r0 ∈ (b, 1) with η1(r0) < ψ(r0) < η2(r0), then

lim
r↑1

ψ(r) = ∞.

Proof. Assume that there exists a constant C > 0 such that ψ(r) < C for all r ∈ (r0, 1). Then,
there exists r0 ∈ (r0, 1) such that ψ(r0) < ψ(r) < η3(r) for all r ∈ (r0, 1). Therefore, we have

ψ′(r) = − 1

k(1− r2)

(
ψ(r)2 + 1

) (√
1− r2ψ(r)2 − (n− 1)(r −R)ψ(r) +

√
1− r2

)
> − 1

k(1− r2)

(
ψ(r)2 + 1

) (
(1 + ψ(r0)

2)
√
1− r2 − ψ(r0)(n− 1)(r −R)

)
.

Then, we find

ψ′(r)

1 + ψ(r)2
> −1 + ψ(r0)

2

k
√
1− r2

+
ψ(r0)(n− 1)r

k(1− r2)
− ψ(r0)(n− 1)R

k(1− r2)
.

Integrating from r0 to r, we have

arctanψ(r) >− 1 + ψ(r0)
2

k
arcsin r − ψ(r0)(n− 1)

2k
log (1− r2)− ψ(r0)(n− 1)R

2k
log

1 + r

1− r

+
1 + ψ(r0)

2

k
arcsin r0 +

ψ(r0)(n− 1)

2k
log (1− r20) +

ψ(r0)(n− 1)R

2k
log

1 + r0
1− r0

+ arctanψ(r0) =: h5(r).

Then, h5 is increasing on (r0, 1) and h5(r0) = arctanψ(r0), limr↑1 h5(r) = ∞. Therefore, there
exists r1 ∈ (r0, 1) with h5(r1) =

π
2 and

ψ(r) > tanh5(r) → ∞ ( r ↑ r1 ).

This contradicts the assumption that ψ(r) < C for all r ∈ (r0, 1).
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r1−1

ψ

r0

Figure 2.2.3: The behavior of the graph of ψ in Lemma 2.2.5

By proofs similar to Lemma 2.2.4 and Lemma 2.2.5, we obtain the following lemmas.

Lemma 2.2.6. If there exists r0 ∈ (−1, b] with ψ(r0) > 0 or if there exists r0 ∈ (b, 1) with
ψ(r) > η2(r), then there exists r1 ∈ (−1, r0) such that

lim
r↓r1

ψ(r) = ∞.

r1−1

ψ

r0r1

Figure 2.2.4: The behavior of the graph of ψ in Lemma 2.2.6

Lemma 2.2.7. If there exists r0 ∈ (−1, a) with η1(r0) < ψ(r0) < η2(r0), then

lim
r↓−1

ψ(r) = −∞.
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r1−1

ψ

r0

Figure 2.2.5: The behavior of the graph of ψ in Lemma 2.2.7

By lemmas 2.2.3-2.2.7, we obtain the following proposition for the behavior of the graph of
the solution ψ of (2.2.5).

Proposition 2.2.8. For the solution ψ of the equation (2.2.5), the behavior of the graph of ψ
is like one of those illustrated by Figures 2.2.6-2.2.10.

r1−1

ψ

Figure 2.2.6: The graph of ψ (Type I)

r1−1

ψ

Figure 2.2.7: The graph of ψ (Type II)

r1−1

ψ

Figure 2.2.8: The graph of ψ (Type III)
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r1−1

ψ

Figure 2.2.9: The graph of ψ (Type IV)

r1−1

ψ

Figure 2.2.10: The graph of ψ (Type V)

For the graph of ψ in Proposition 2.2.8, we have not yet shown whether ψ in the case of
Figures 2.2.9 and 2.2.10 exists or not. From the following lemma, we obtain the existence.

Lemma 2.2.9. The solution ψ of the equation (2.2.5) in Figures 2.2.9 and Figure 2.2.10 exists.

Proof. For the set S of all solutions of the equation (2.2.5), we define sets S1, S2, S3 ⊂ S by

S1 := {ψ ∈ S|∃r0 ∈ (−1, 1) : ψ(r0) = 0},
S2 := {ψ ∈ S|∃r0 ∈ (−1, 1) : ψ(r0) = η1(r0) or ψ(r0) = η2(r0)},
S3 := {ψ ∈ S|ψ(1) = 0 or ψ(−1) = 0}.

Then, we have

(−1, 1)× R =
⋃

ψ∈S1∪S2∪S3

Graph(ψ).

Since
⋃
ψ∈S1

Graph(ψ) and
⋃
ψ∈S2

Graph(ψ) are open sets and (−1, 1)×R is connected, we find
S3 is not an empty set and we obtain the statement of this lemma.

Define ζ1 and ζ2 by ζi(r) = ηi(r)/(k
√
1− r2), (i = 1, 2). By Proposition 2.2.8, we obtain

the following proposition.

Proposition 2.2.10. For the solution V of the equation (2.2.4), the behavior of the graph of
V ′ is like one of those illustrated by Figures 2.2.11-2.2.19. Here, the dotted curves in Figures
2.2.11-2.2.19 are the graphs of ζ1 and ζ2.

r1−1

V ′

Figure 2.2.11: The graph of V ′ (Type I)
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r1−1

V ′

Figure 2.2.12: The graph of V ′ (Type II)

r1−1

V ′

Figure 2.2.13: The graph of V ′ (Type II′)

r1−1

V ′

Figure 2.2.14: The graph of V ′ (Type II′′)

r1−1

V ′

Figure 2.2.15: The graph of V ′ (Type III)

r1−1

V ′

Figure 2.2.16: The graph of V ′ (Type III′)

r1−1

V ′

Figure 2.2.17: The graph of V ′ (Type III′′)
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r1−1

V ′

Figure 2.2.18: The graph of V ′ (Type IV)

r1−1

V ′

Figure 2.2.19: The graph of V ′ (Type V)

Proof. For the solution V of the equation (2.2.4), we have V ′(r) = ψ(r)/(k
√
1− r2) and ψ

is the solution of the equation (2.2.5). Therefore, when the graph of ψ is like one of those
illustrated by Figure 2.2.6, 2.2.9 and 2.2.10, it is clear that the graph of V ′ is like one illustrated
by Figure 2.2.11, 2.2.18 and 2.2.19 respectively. In the case where the graph of ψ is like one
of those illustrated by Figure 2.2.7 and 2.2.8, there exists r0 ∈ (−1, a] ∪ [b, 1) with ψ(r0) =
η1(r0) or ψ(r0) = η2(r0) and we find ψ′(r0) = 0 by Lemma 2.2.3. Then, we obtain V ′′(r0) =

r0ψ(r0)/(k(1 − r20)
3
2 ) + ψ′(r0)/(k

√
1− r20) = r0ψ(r0)/(k(1 − r20)

3
2 ). Therefore, when the graph

of ψ is like one illustrated by Figure 2.2.7, if r0 > 0, then V ′′(r0) > 0 and the graph of V ′ is
like one illustrated by Figure 2.2.12, if r0 = 0, then V ′′(r0) = 0 and the graph of V ′ is like one
illustrated by Figure 2.2.13, and if r0 < 0, then V ′′(r0) < 0 and the graph of V ′ is like one
illustrated by Figure 2.2.14. Also, when the graph of ψ is like one illustrated by Figure 2.2.8, if
r0 < 0, then V ′′(r0) > 0 and the graph of V ′ is like one illustrated by Figure 2.2.15, if r0 = 0,
then V ′′(r0) = 0 and the graph of V ′ is like one illustrated by Figure 2.2.16, and if r0 > 0, then
V ′′(r0) < 0 and the graph of V ′ is like one illustrated by Figure 2.2.17. In the case k = 1, 3, 6,
we find a < R = 0 < b. Therefore, when the graph of ψ is like one of those illustrated by Figure
2.2.7 and Figure 2.2.8, the graph of V ′ is like one illustrated by Figure 2.2.12 and Figure 2.2.15
respectively if k = 1, 3, 6.

By Proposition 2.2.10, we obtain Theorem 2.1.1. For the solution V of the equation (2.2.4),
when the graph of V ′ is like one of those illustrated by Figure 2.2.11, 2.2.18 and 2.2.19, it is
clear that the graph of V is like one illustrated by Figure 2.1.1, 2.1.4 and 2.1.5 respectively.
When the graph of V ′ is like one of those illustrated by Figure 2.2.12, 2.2.13 and 2.2.14, the
graph of V is like one illustrated by Figure 2.1.2. Also, when the graph of V ′ is like one of those
illustrated by Figure 2.2.15, 2.2.16 and 2.2.17, the graph of V is like one illustrated by Figure
2.1.3.
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Chapter 3

Translators invariant under
hyperpolar actions

3.1 Introduction

This chapter is based on [9].
In this chapter, we consider the case where N is a symmetric space G/K of compact type,

where we give G/K the G-invariant metric induced from the (−1)-multiple of the Killing form
of the Lie algebra g. When the rank of G/K is equal to one (i.e., G/K = SO(n + 1)/SO(n),
SU(n+1)/S(U(1)×U(n)), Sp(n+1)/(Sp(1)×Sp(n)) or F4/Spin(9)), we can take the function
r : G/K → R with ∥∇r∥ = 1 whose level sets are the orbits of the isotropy group action
K ↷ G/K. Then, a function u on a K-invariant domain M of G/K which is constant along
each orbit of the isotropy group action is given by u := V ◦ r for some function V on r(M). It is
clear that the shape of the graph of u is dominated by that of V . Hence we suffice to classify the
shape of the graph of V to classify that of u. Lawn and Ortega [16] studied the translator given
by a function invariant under a cohomegeneity one action on a pseudo-Riemannian manifold.
They showed that the graph of the function gives a translator if and only if the function is a
solution of some ODE. From the ODE, we obtain the following classification theorem for the
shape of the graph of V .

Theorem 3.1.1. The graph of V is given by one of the curves obtained by parallel translating
curves as in Figures 3.1.1-3.1.5 in the vertical direction. The value α in Figures 3.1.1-3.1.5 is
the constant given by

α =



√
n− 1

2
π (when G/K = SO(n+ 1)/SO(n))

√
n+ 1π (when G/K = SU(n+ 1)/S(U(1)× U(n)))√
2(n+ 2)π (when G/K = Sp(n+ 1)/(Sp(1)× Sp(n))

aπ

4
(when G/K = F4/Spin(9)),

where a is the positive constant such that a2 is equal to the 1
4 -multiple of the maximal sectional

curvature of F4/Spin(9).
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s
αO

V

Figure 3.1.1: The graph of V (Type I)

s
O

V

α

Figure 3.1.2: The graph of V (Type II)

s
αO

V

Figure 3.1.3: The graph of V (Type III)

s
αO

V

Figure 3.1.4: The graph of V (Type IV)

s
αO

V

Figure 3.1.5: The graph of V (Type V)

Next we consider the case where G/K is a higher rank irreducible symmetric space of
compact type and a translator (for the mean curvature flow) given by a graph of a function
on G/K which is invariant under a Hermann action H ↷ G/K of cohomegeneity two, where
Hermann action means that H is a symmetric subgroup of G. Assume that H ↷ G/K is
commutative, that is, θK ◦ θH = θH ◦ θK holds for the involutions θK and θH of G satisfying
(Fix θK)0 ⊂ K ⊂ Fix θK and (Fix θH)0 ⊂ H ⊂ Fix θH , where Fix(·) is the fixed point group of
(·) and (·)0 is the identity component of (·). Here we note that Hermann actions are hyperpolar
actions, where a hyperpolar action means an isometric action of a compact Lie group on G/K
which admits a complete flat totally geodesic submanifold in G/K meeting all orbits of the
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action orthogonally. The complete flat totally geodesic submanifold is called a flat section of
this action.

Let r = (r1, r2) : G/K → R2 be a map on G/K with g(∇ri,∇rj) = δij (i, j ∈ {1, 2})
whose level sets are the orbits of the action H ↷ G/K. Then, a function u on a H-invariant
domain M of G/K is invariant under the action H ↷ G/K if and only if u is described as
u = V ◦ r for some function V on r(M). Let Σ be the flat section of the H-action through
o := eK, were we note that Σ is diffeomorphic to a torus T 2(= S1 × S1). Let g = k ⊕ p be
the canonical decomposition associated to the symmetric pair (G,K). The space p is identified
with the tangent space To(G/K) through the restriction π∗e|p of the differential π∗e of the
natural projection π : G → G/K. There exists the maximal abelian subspace a of p satisfying
expo(a) = Σ, where expo is the exponential map of G/K at o. Let C(⊂ a) be a Weyl domain and
W be the Weyl group. Denote by X the tangent vector field on expo(C) defined by assigning
the mean curvature vector of the orbit H ·w at w to each w ∈ expo(C). By identifying expo(C)
with C, we regard X as a tangent vector field on C.

Theorem 3.1.2. The graph Γ of u = V ◦ r is a translator if and only if V satisfies

2∑
i,j=1

∂2V

∂xi∂xj

∂V

∂xi

∂V

∂xj
−
(
1 + |∇V |2

)( 2∑
i=1

Xi
∂V

∂xi
+∆V − 1

)
= 0, (3.1.1)

where (x1, x2) is the Euclidean coordinate of a, V is regarded as a function on a through (x1, x2) :
a → R2 and Xi (i = 1, 2) are the components of the tangent vector field X on C with respect to

the Euclidean coordinate (x1, x2) of a (i.e., X =
2∑
i=1

Xi
∂
∂xi

).

For all commutative Hermann actions of cohomogeneity two on an irreducible symmetric
space of compact type, the explicit descriptions of the component (X1, X2) of the above tangent
vector field X on C are given in [14]. By using the explicit description, we can describe the
PDE (3.1.1) of order two explicitly. Clearly we can choose the above function r as r|expo(C) =
(x1, x2) ◦ (expo |C)−1 holds. According to [14], X is described as X = ∇ρ for some convex
function ρ on C. Next we consider the case where V is constant along each level set of ρ. In
this case, ∇V is described as ∇V = FX for some function F on C. It is clear that the shape
of the graph of u is dominated by F . Hence we suffice to investigate F to classify the shape of
the graph of u. In this case, we obtain the following fact.

Theorem 3.1.3. Assume that V is constant along each level set of ρ and let F be the function
on C satisfying ∇V = FX. Then the graph Γ of u = V ◦ r is a translator if and only if F
satisfies

X(F ) =
1

2
X(|X|2)F 3 − (1 + |X|2F 2)((|X|2 + divX)F − 1). (3.1.2)

By using the explicit descriptions of X in [14], we can describe the PDE (3.1.2) of order
one explicitly. As one cexample we investigate the shape of the graph of V in the case where
the Hermann action H ↷ G/K is the dual action of the Hermann type action SO0(1, 2) ↷
SL(3,R)/SO(3).

In Section 2, we investigate translators which are invariant under the isotropy group action
of rank one symmetric spaces of compact type and prove Theorem 3.1.1. In Section 3, we
investigate translators which are invariant under Hermann action of cohomogeneity two on
higher rank symmetric spaces of compact type and prove Theorems 3.1.2 and 3.1.3.

38



3.2 The case of cohomogenity one

Let (N, g) be an n-dimensional Riemannian manifold and u :M → R be a (C∞)-function on a
domain M of N . Let f be the graph embedding of u, that is, the embedding f : M ↪→ (N, g)
defined by f(x) = (x, u(x)) (x ∈ M). Denote by Γ the graph of u and H the mean curvature
vector field of f . Also, denote by ∇(·) and div(·) be the gradient vector field and the divergence
of (·) with respect to g, respectively. For the translatority of Γ, the following fact holds (see [4],
[7] and [16]).

Lemma 3.2.1. If Γ is a translator, u satisfies√
1 + ∥∇u∥2 div

(
∇u√

1 + ∥∇u∥2

)
= 1. (3.2.1)

Conversely, if u satisfies (3.2.1), Γ is a translator.

We consider the case where (N, g) is a rank one symmetric space G/K of compact type and
u is a function on a K-invariant domain M of G/K which is invariant under the isotropy group
action K ↷ G/K, where we give G/K the G-invariant metric induced from the (−1)-multiple
of the Killing form of g. Let r : G/K → R be the function on G/K with ∥∇r∥ = 1 whose
level sets are the orbits of K ↷ G/K. Then, since u is invariant under the action K ↷ G/K,
u is described as u = V ◦ r for some function V on r(M). According to the result by Lawn
and Ortega (Theorem 3.5 of [16]) for the graph of a function on a pseudo-Riemaniann manifold
which is invariant under a cohomogeneity one proper isometric action of a Lie group, we obtain
the following fact.

Proposition 3.2.2. The graph Γ of V ◦ r is a translator if and only if V satisfies

V ′′(s) =
(
1 + V ′(s)2

) (
1− h(s)V ′(s)

)
(3.2.2)

where (·)′ denotes the derivative of (·) and h(s) is the constant mean curvature of the orbit
r−1(s) of K ↷ G/K.

Let p be as in Introduction. a be a maximal abelian subspace of p and △+ be the positive
root system with respect to a. Then we have

△+ =



{
1√

2(n− 1)
⟨e, ·⟩

}
(when G/K = SO(n+ 1)/SO(n)){

1

4
√
n+ 1

⟨e, ·⟩, 1

2
√
n+ 1

⟨e, ·⟩
}

(when G/K = SU(n+ 1)/S(U(1)× U(n))){
1

4
√

2(n+ 2)
⟨e, ·⟩, 1

2
√
2(n+ 2)

⟨e, ·⟩

}
(when G/K = Sp(n+ 1)/(Sp(1)× Sp(n)))

{a ⟨e, ·⟩, 2a ⟨e, ·⟩} (when G/K = F4/Spin(9)),
(3.2.3)

where e is a unit normal vector of a, ⟨ , ⟩ is the restriction of the (−1)-multiple of of the
Killing form to a and a is the positive constant stated in Theorem 3.1.1. Thus, in the case of
G/K = SU(n+ 1)/S(U(1)×U(n)), Sp(n+ 1)/(Sp(1)× Sp(n)) or F4/Spin(9), we write △+ as
△+ = {λ, 2λ}. The multiplicity m2λ of 2λ is given by

m2λ =


1 (when G/K = SU(n+ 1)/S(U(1)× U(n)))
3 (when G/K = Sp(n+ 1)/(Sp(1)× Sp(n)))
7 (when G/K = F4/Spin(9))

(3.2.4)
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Verhóczki [25] described explicitly the eigenvalues (i.e., the principal curvatures) of the shape
operators of the orbits of the isotropy group actions K ↷ G/K by using the positive restricted
roots (i.e., the elements of △+ (see Theorem 1 of [25]). By using the explicit descriptions
of principal curvatures, (3.2.3) and (3.2.4), we can explicitly described the above constant
mean curvature h(s) in the case of G/K = SO(n + 1)/SO(n), SU(n + 1)/S(U(1) × U(n)),
Sp(n+ 1)/(Sp(1)× Sp(n)) or F4/Spin(9) as follows.

Lemma 3.2.3. The mean curvatyre h(s) of the principle orbit r−1(s) is given by

h(s) =



√
n− 1

2
· 1

tan s√
2(n−1)

(G/K = SO(n+ 1)/SO(n))

2n− 1− tan2 s
2
√
n+1

2
√
n+ 1 · tan s

2
√
n+1

(G/K = SU(n+ 1)/S(U(1)× U(n)))

4n− 1− 3 tan2 s

2
√

2(n+2)

2
√
2(n+ 2) · tan s

2
√

2(n+2)

(G/K = Sp(n+ 1)/(Sp(1)× Sp(n)))

(16− 7 tan2 as)a

tan as
(G/K = F4/Spin(9))

(3.2.5)

From Proposition 3.2.2 and Lemma 3.2.3, we prove Theorem 3.1.1.

Proof of Theorem 3.1.1. We consider the case of G/K = SU(n+ 1)/S(U(1)×U(n)). Define a
function ψ by

ψ(x) := V ′(2
√
n+ 1arctanx) (x ∈ r(M)).

From (3.2.2) and (3.2.5), it is shown that ψ satisfies the following ODE:

ψ′(x) =
2
√
n+ 1

1 + x2
(
1 + ψ(x)2

)(
1− 2n− 1− x2

2
√
n+ 1x

ψ(x)

)
(x > 0) (3.2.6)

We shall analyze the shape of the solution ψ of (3.2.6) to recognize the shape of V . Define

a function η : [0,∞) \ {
√
2n− 1} → R by η(x) := 2

√
n+1x

2n−1−x2 . From (3.2.6), we can show the
following facts directly:

(i) When x ∈ (0,
√
2n− 1),

(i-a) if ψ(x) > η(x), then ψ′(x) < 0

(i-b) if ψ(x) < η(x), then ψ′(x) > 0

(i-c) if ψ(x) = η(x), then ψ′(x) = 0;

(ii) When x ∈ (
√
2n− 1,∞),

(ii-a) if ψ(x) > η(x), then ψ′(x) > 0

(ii-b) if ψ(x) < η(x), then ψ′(x) < 0

(ii-c) if ψ(x) = η(x), then ψ′(x) = 0

(iii) When x =
√
2n− 1, ψ′(x) > 0.
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O
x√

2n− 1

η

Figure 3.2.1: The graph of η

Next we shall show that the following fact for ψ holds.

(∗1) If there exists x0 ∈ (0,
√
2n− 1) with ψ(x0) > η(x0), lim

x↓x1
ψ(x) = ∞ holds for some

x1 ∈ (0, x0) (see Figure 3.2.2).

Take any x ∈ (0, x0). Then, by using (i-a), we can show

ψ′(x) =
2
√
n+ 1

1 + x2
(
1 + ψ(x)2

)(
1− ψ(x)

η(x)

)
<

2
√
n+ 1

1 + x2
(
1 + ψ(x)2

)(
1− ψ(x0)

η(x)

)
.

Therefore, we have

ψ′(x)

1 + ψ(x)2
<

2
√
n+ 1

1 + x2
− (2n− 1)ψ(x0)

x(1 + x2)
+
ψ(x0)x

1 + x2
.

By integrating both-hand sides of this inequality from x to x0, we obtain

arctanψ(x0)− arctanψ(x) <− 2
√
n+ 1arctanx+ (2n− 1)ψ(x0) log

x√
1 + x2

− ψ(x0)

2
log (1 + x2) + 2

√
n+ 1arctanx0

− (2n− 1)ψ(x0) log
x0√

1 + x02
+
ψ(x0)

2
log (1 + x0

2) =: h6(x).

and hence
ψ(x) > tan (−h6(x) + arctanψ(x0)).

On the other hand, h6 is increasing on (0, x0) and the following relations hold:

h6(x0) = 0 and lim
x↓0

h6(x) = −∞.

Therefore, there exists x̄1 ∈ (0, x0) such that

ψ(x) > tan (−h6(x) + arctanψ(x0)) → ∞ (x→ x̄1).

Thus the fact (∗1) is shown.
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O
x√

2n− 1x0x1

ψ

Figure 3.2.2: The behavior I of the graph of ψ

Similarly, by using (i-b), we can show the following facts for ψ;

(∗2) If there exists x0 ∈ (0,
√
2n− 1) with ψ(x0) < 0, lim

x↓x1
ψ(x) = −∞ holds for some

x1 ∈ (0, x0) (see Figure 3.2.3);

Also, by using (ii-a), we can show the following facts for ψ;

(∗3) If there exists x0 ∈ (
√
2n− 1,∞) with ψ(x0) > 0, lim

x↑x1
ψ(x) = ∞ holds for some

x1 ∈ (x0,∞) (see Figure 3.2.4);

Also, by using (ii-b), we can show the following facts for ψ;

(∗4) If there exists x0 ∈ (
√
2n− 1,∞) with ψ(x0) < η(x0), lim

x↑x1
ψ(x) = −∞ holds for some

x1 ∈ (x0,∞) (see Figure 3.2.5).

O
x√

2n− 1x0x1

ψ

Figure 3.2.3: The behavior II of the graph of ψ
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O
x√

2n− 1

x0 x1

ψ

Figure 3.2.4: The behavior III of the graph of ψ

O
x√

2n− 1

ψ

x0 x1

Figure 3.2.5: The behavior IV of the graph of ψ

From the facts (∗1) − (∗4), the shape of the graph of the solution ψ is one of the curves as in
Figures 3.2.6-3.2.10 in the case of G/K = SU/S(U(1)× U(n)).

O
x√

2n− 1

ψ

Figure 3.2.6: The graph of ψ (Type I)
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O
x√

2n− 1

ψ

Figure 3.2.7: The graph of ψ (Type II)

O
x√

2n− 1

ψ

Figure 3.2.8: The graph of ψ (Type III)

O
x√

2n− 1

ψ

Figure 3.2.9: The graph of ψ (Type IV)

O
x√

2n− 1

ψ

Figure 3.2.10: The graph of ψ (Type V)

From (3.2.5), we see that the domain V is included by (0,
√
n+ 1π), that is, the value α in the

statement of Theorem 3.1.1 is equal to
√
n+ 1π. Hence, from the above classification of the

shape of ψ, we can classify the shape of V as in Theorem 3.1.1.
Similarly, in the case where G/K = SO(n + 1)/SO(n), Sp(n + 1)/(Sp(1) × Sp(n)) and

F4/Spin(9), we can classify the shape of the graph of V . In these cases, by (3.2.5), the value α
in the statement of Theorem 3.1.1 is given by

α =


√
n− 1

2
π (when G/K = SO(n+ 1)/SO(n))√

2(n+ 2)π (when G/K = Sp(n+ 1)/(Sp(1)× Sp(n)))
π

4a
(when G/K = F4/Spin(9)).

3.3 The case of cohomogenity two

In this section, we consider the case where G/K is a higher rank irreducible symmetric space of
compact type and a translator given by a graph of a function u on a H-invariant domian M of
G/K which is invariant under a Hermann action H ↷ G/K of cohomegeneity two. Assume that
H ↷ G/K is commutative, that is, θK ◦ θH = θH ◦ θK holds for the involutions θK and θH of
G satisfying (FixθK)0 ⊂ K ⊂ FixθK and (FixθH)0 ⊂ H ⊂ FixθH . Let r = (r1, r2) : G/K → R2

be a map on G/K with g(∇ri,∇rj) = δij (i, j ∈ {1, 2}) whose level sets give the orbits of the
action H ↷ G/K. Then, a function u is described as u = V ◦ r for some function V on r(M).
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By using Theorem 3.1.1, we prove Theorem 3.1.2.

Proof of Theorem 3.1.2. The function V is regarded as a function on a through the Euclidean
coordinate (x1, x2) : a → R2 of a. As stated in Introduction, we may assume that

r|expo(C) = −(x1, x2) ◦ (expo |C)−1. (3.3.1)

From u = V ◦ r, we find

∇u =
2∑
i=1

∂V

∂xi
∇ri, ∥∇u∥2 = |∇V |2,

div

(
∇u√

1 + ∥∇u∥2

)
=

2∑
1=1

∆ri
∂V

∂xi
+∆V − 1

1 + |∇V |2
2∑

i,j=1

∂V

∂xi

∂V

∂xj

∂2V

∂xi∂xj
.

From these relations, we can show that the PDE (3.2.1) is reduced to

2∑
i,j=1

∂V

∂xi

∂V

∂xj

∂2V

∂xi∂xj
−
(
1 + |∇V |2

)( 2∑
i=1

∆ri
∂V

∂xi
+∆V − 1

)
= 0. (3.3.2)

Since the tangent vector X on expo(C) is defined by assigning the mean curvature vector of the
orbit H · w at w to each w ∈ expo(C), we have

⟨X,∇ri⟩ = −∆ri.

From this relation and (3.3.1), we find

X =
2∑
i=1

∆ri (−∇ri) .

Therefore, from (3.3.1), we obtain Xi = ∆ri.
By using Theorem 3.1.2, we prove Theorem 3.1.3.

Proof of Theorem 3.1.3. Assume that V is constant along each level set of ρ, where ρ is the
convex function with ∇ρ = X. Then, ∇V is described as ∇V = FX for some function F on
C. Clearly we have

∂V

∂xi
= FXi,

∂2V

∂xi∂xj
=
∂F

∂xi
Xj + F

∂Xj

∂xi
(i, j ∈ {1, 2}).

Also, we can derive

|∇V |2 = |X|2F 2, ∆V = X(F ) + (divX)F,

2∑
i=1

Xi
∂V

∂xi
= |X|2F,

2∑
i,j=1

∂2V

∂xi∂xj

∂V

∂xi

∂V

∂xj
= |X|2F 2X(F ) +

1

2
X(|X|2)F 3.
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Hence we obtain

2∑
i,j=1

∂2V

∂xi∂xj

∂V

∂xi

∂V

∂xj
−
(
1 + |∇V |2

)( 2∑
i=1

Xi
∂V

∂xi
+∆V − 1

)

=|X|2F 2X(F ) +
1

2
X(|X|2)F 3 −

(
1 + |X|2F 2

) (
|X|2F +X(F ) + (divX)F − 1

)
=−X(F ) +

1

2
X(|X|2)F 3 −

(
1 + |X|2F 2

) ((
|X|2 + (divX)

)
F − 1

)
.

Therefore, from Theorem 3.1.2, we can derive Theorem 3.1.3.

Denote by (a1, a2) be the minimum point of ρ. Let F be a solution of the partial differential
equation (3.1.2) and c : (−∞, t0) → a be an integral curve of X, where we note that lim

t→−∞
c(t) =

(a1, a2) holds. Set F̂c := F ◦ c. Then F̂c satisfies

F̂ ′
c(t) = ⟨c′′(t), c′(t)⟩F̂c(t)3 − (1 + |c′(t)|2F̂c(t)2)((|c′(t)|2 + (divX)c(t))F̂c(t)− 1). (3.3.3)

From ∇V = FX, we have
(V ◦ c)′(t) = F̂c(t)|Xc(t)|2

and hence

(V ◦ c)(t) :=
∫ t

t∗

F̂c(τ)|Xc(τ)|2dτ + (V ◦ c)(t∗)), (3.3.4)

where t∗ is any element of (−∞, t0). Thus we can calculate the function V from the data of F .
We shall consider the case where the Hermann action H ↷ G/K is the dual action of the

Hermann type action SO0(1, 2) ↷ SL(3,R)/SO(3). This action corresponds to ρ1(SO(3)) ↷
SU(3)/SO(3) in Table 3.1 of [14]. In this case, there exists an integral curve c : (−∞, t0) → a of
X satisfying x2 ◦c = 0. The component Xi of X and the domain C are given as in the following
table.

H ↷ G/K ρ1(SO(3)) ↷ SU(3)/SO(3)

X1 tan(x1 +
√
3x2)− 2cot(2x1) + tan(x1 −

√
3x2)

X2
√
3tan(x1 +

√
3x2)−

√
3tan(x1 −

√
3x2)

C {(x1, x2) | x1 > 0, x2 >
1√
3
x1 − π

2
√
3
, x2 < − 1√

3
x1 + π

2
√
3
}

Table 3.1: The datas of X1, X2 and C in ρ1(SO(3)) ↷ SU(3)/SO(3)-case

In this case, (a1, a2) is equal to (π6 , 0) and there exists an integral curve c : (−∞, t0) → a
satisfying lim

t→−∞
c(t) = (π6 , 0), lim

t→t0
c(t) = (π2 , 0) and x2 ◦ c = 0. For the simplicity, set c1 :=

x1 ◦ c. Also, set F̃ := |c′|F̂c. Take t∗ ∈ (−∞, t0). Since Xc(t) = c′(t) = (c′1(t), 0) and hence
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∥Xc(t)∥ = c′1(t), we have

V (x1, 0) = V (c1(t), 0) = (V ◦ c)(t)

=

∫ t

t∗

F̂c(τ)∥Xc(τ)∥2dτ + V (c1(t∗), 0)

=

∫ t

t∗

F̂c(τ)c
′
1(τ)

2dτ + V (c1(t∗), 0)

=

∫ t

t∗

F̃ (τ)c′1(τ) dτ + V (c1(t∗), 0)

=

∫ x1

c1(t∗)
(F̃ ◦ c−1

1 )(x) dx+ V (c1(t∗), 0)
(π
6
≤ x1 ≤

π

2

)
The shape of the graph of the restriction V |[π

6
,π
2
]×{0} of V to c((−∞, t0)) =

[
π
6 ,

π
2

]
× {0} is

dominated by F̃ ◦ c−1
1 . So, we shall investigate the shape of the graph of F̃ ◦ c−1

1 . According to

(3.3.3), F̃ satisfies

F̃ ′(t) =
(
F̃ (t)2 + 1

)((⟨c′(t), c′′(t)⟩
|c′(t)|2

−
(
|c′(t)|2 + (divX)c(t)

))
F̃ (t) + |c′(t)|

)
, (3.3.5)

On the othe hand, we have

|c′(t)|2 = 9tan2(c1(t)) + cot2(c1(t))− 6, (3.3.6)

⟨c′(t), c′′(t)⟩ = 27tan2(c1(t))

cos2(c1(t))
+

cot2(c1(t))

sin2(c1(t))
− 9

cos2(c1(t))
− 3

sin2(c1(t))
(3.3.7)

and

(divX)c(t) =
9

cos2(c1(t))
+

1

sin2(c1(t))
. (3.3.8)

Define η̃(t) by

η̃(t) := − |c′(t)|3

⟨c′(t), c′′(t)⟩ − |c′(t)|2
(
|c′(t)|2 + (divX)c(t)

) .
From (3.3.6), (3.3.7) and (3.3.8), we have

η̃(t) =
3tan(c1(t))− 1

tan(c1(t))

15tan2(c1(t)) +
1

tan2(c1(t))

Set z(t) := tan(c1(t)) and define σ(z) by

σ(z) :=
3z − 1

z

15z2 + 1
z2

.

From η̃ = σ(z), we find

η̃′(t) =
(
1 + z(t)2

)(
3z(t)− 1

z(t)

)
σ′(z(t)). (3.3.9)
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Since σ satisfies

σ′(z) =
−45z6 + 45z4 + 9z2 − 1

z4
(
15z2 + 1

z2

)2 ,

there exists z0 ∈ ( 1√
3
,∞) with σ′(z0) = 0 satisfying σ′(z) > 0 for all z ∈ ( 1√

3
, z0) and σ

′(z) < 0

for all z ∈ (z0,∞). Define t1 ∈ (−∞, t0) by tan(c1(t1)) = z0. Then, from (3.3.9), we find
η̃′(t1) = 0, η̃′(t) > 0 for all t ∈ (−∞, t1) and η̃

′(t) < 0 for all t ∈ (t1, t0). Therefore, the graph
of η̃ ◦ c−1

1 is as in Figure 3.3.1.

x1π
6

π
2

η̃ ◦ c1−1

c1(t1)

Figure 3.3.1: The graph of η̃ ◦ c−1
1

Here, from η(t) > 0, we find ⟨c′(t),c′′(t)⟩
|c′(t)|2 −

(
|c′(t)|2 + (divX)c(t)

)
< 0. According to (3.3.5),

F̃ ′(t) = 0 if and only if F̃ (t) = η̃(t). Also, F̃ ′(t) > 0 if and only if F̃ (t) < η̃(t), and F̃ ′(t) < 0 if
and only if F̃ (t) > η̃(t).

Next we show the behavior of the function F̃ ◦c−1
1 on the both sides of the domain of F̃ ◦c−1

1 .

From (3.3.5), F̃ ◦ c−1
1 satisfies

(F̃ ◦ c−1
1 )′(x) =

(
(F̃ ◦ c−1

1 )(x)2 + 1
)(

1−
(
5 tanx− 1

tanx
+

8 tanx

3tan2x− 1

)
(F̃ ◦ c−1

1 )(x)

)
.

(3.3.10)
Then we shall show that the following fact for the behavior of F̃ ◦ c−1

1 near x1 =
π
2 holds.

(∗5) If there exists x0 ∈ (c1(t1),
π
2 ) such that (F̃ ◦ c−1

1 )(x0) > η̃(x0), lim
x↑π

2

(F̃ ◦ c−1
1 )(x) = 0

holds.

Assume that there exists a positive constant M > 0 with (F̃ ◦ c−1
1 )(x) > M for all x ∈ (x0,

π
2 ).

Take any x ∈ (x0,
π
2 ). Then, from (F̃ ◦ c−1

1 )(x) < 0, we can show

(F̃ ◦ c−1
1 )′(x)

(F̃ ◦ c−1
1 )(x)2 + 1

= 1−
(
5 tanx− 1

tanx
+

8 tanx

3tan2x− 1

)
(F̃ ◦ c−1

1 )(x)

< 1−
(
5 tanx− 1

tanx
+

8 tanx

3tan2x− 1

)
M.

By integrating both-hand sides of this inequality from x0 to x, we obtain

arctan (F̃ ◦ c−1
1 )(x)− arctan (F̃ ◦ c−1

1 )(x0)

< x+M(5 log(cosx) + log (sin x)− log (1− 2 cos (2x)))

− x0 −M(5 log(cosx0) + log (sin x0)− log (1− 2 cos (2x0))) =: h7(x).

and hence
(F̃ ◦ c−1

1 )(x) < tan (h7(x) + arctan (F̃ ◦ c−1
1 )(x0)).
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On the other hand, h7 is decreasing on (x0,
π
2 ) and the following relations hold:

h7(x0) = 0 and lim
x↑π

2

h7(x) = −∞.

Therefore, there exists x̄1 ∈ (x0,
π
2 ) such that

(F̃ ◦ c−1
1 )(x) < tan (h7(x) + arctan (F̃ ◦ c−1

1 )(x0)) → −∞ (x→ x̄1).

Then (F̃ ◦ c−1
1 )(x) = 0 < M for some x ∈ (x0, x̄1). This is a contradiction. Thus the fact (∗5)

is shown.
Also, we shall show the following fact for the behavior of F̃ ◦ c−1

1 near some point x1 = x0 ∈
(π6 , c1(t1)).

(∗6) If there exists x0 ∈ (π6 , c1(t1)) such that (F̃ ◦ c−1
1 )(x0) > η̃(x0), lim

x↓x̄0
(F̃ ◦ c−1

1 )(x) = ∞

holds for some x̄0 ∈ (π6 , x0).

Take any x ∈ (π6 , x0). Then, from (F̃ ◦ c−1
1 )(x) < 0, we can show

(F̃ ◦ c−1
1 )′(x)

(F̃ ◦ c−1
1 )(x)2 + 1

= 1−
(
5 tanx− 1

tanx
+

8 tanx

3tan2x− 1

)
(F̃ ◦ c−1

1 )(x)

< 1−
(
5 tanx− 1

tanx
+

8 tanx

3tan2x− 1

)
(F̃ ◦ c−1

1 )(x0).

By integrating both-hand sides of this inequality from x to x0, we obtain

arctan (F̃ ◦ c−1
1 )(x)− arctan (F̃ ◦ c−1

1 )(x0)

> x+ ((F̃ ◦ c−1
1 )(x0))(5 log(cos x) + log (sin x)− log (1− 2 cos (2x)))

− x0 − ((F̃ ◦ c−1
1 )(x0))(5 log(cos x0) + log (sin x0)− log (1− 2 cos (2x0))) =: h8(x).

and hence
(F̃ ◦ c−1

1 )(x) > tan (h8(x) + arctan (F̃ ◦ c−1
1 )(x0)).

On the other hand, h8 is decreasing on (π6 , x0) and the following relations hold:

h8(x0) = 0 and lim
x↓π

6

h8(x) = ∞.

Therefore, there exists x̄1 ∈ (π6 , x0) such that

(F̃ ◦ c−1
1 )(x) > tan (h8(x) + arctan (F̃ ◦ c−1

1 )(x0)) → ∞ (x→ x̄1).

Thus the fact (∗6) is shown.
Similarly, we can show the following fact for the behavior of F̃ ◦ c−1

1 near some point x1 =

x0 ∈ (π6 , c1(t1)). Here, note the fact that (F̃ ◦ c−1
1 )(x) > 0 when (F̃ ◦ c−1

1 )(x) < (η̃ ◦ c−1
1 )(x) for

all x ∈ (π6 ,
π
2 )

(∗7) If there exists x0 ∈ (π6 , c1(t1)) such that (F̃ ◦ c−1
1 )(x0) < 0, lim

x↓x̄0
(F̃ ◦ c−1

1 )(x) = −∞

holds for some x̄0 ∈ (π6 , x0).

From the facts (∗5)− (∗7), the graph of F̃ ◦ c−1
1 is as in one of Figures 3.3.2-3.3.6.
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x1π
6

π
2

F̃ ◦ c1−1

c1(t1)

Figure 3.3.2: The graph of F̃ ◦ c−1
1 (Type I)

x1π
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Figure 3.3.3: The graph of F̃ ◦ c−1
1 (Type II)
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Figure 3.3.4: The graph of F̃ ◦ c−1
1 (Type III)
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Figure 3.3.5: The graph of F̃ ◦ c−1
1 (Type IV)
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π
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Figure 3.3.6: The graph of F̃ ◦ c−1
1 (Type V)

Hence, from the above classification of the graph of F̃ ◦ c−1
1 and V (x1, 0) =

∫ x1
c1(t∗)

(F̃ ◦
c−1
1 )(x) dx + V (c1(t∗), 0), we find the shape of the graph of V (·, 0)|[π

6
,π
2
] is as in one of Figures

3.3.7-3.3.11.
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Figure 3.3.7: The graph of V (·, 0)|[π
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2
](Type I)

x1π
6

π
2

V (·, 0)|[π
6
,π
2
]

Figure 3.3.8: The graph of V (·, 0)|[π
6
,π
2
](Type II)
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Figure 3.3.9: The graph of V (·, 0)|[π
6
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2
](Type III)
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Figure 3.3.10: The graph of V (·, 0)|[π
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2
](Type IV)
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Figure 3.3.11: The graph of V (·, 0)|[π
6
,π
2
](Type V)
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