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ABSTRACT 

Local and regional recurrence after surgical intervention is a significant problem in cancer 

management. The multistage theory of carcinogenesis precisely places the presence of 

histologically normal but mutated premalignant lesions surrounding the tumor - field cancerization, 

as a significant cause of cancer recurrence. The relationship between tissue dynamics, cancer 

initiation and cancer recurrence in multistage carcinogenesis is not well known. This study 

constructs a computational model for cancer initiation and recurrence by combining the Moran 

and Branching processes in which cells requires 3 or more mutations to become malignant. In 

addition, a spatial structure-setting is included in the model to account for positional relativity in 

cell turnover towards malignant transformation. The model consists of a population of normal cells 

with no mutation, several populations of premalignant cells with varying number of mutations and 

a population of malignant cells. The model sets a stage of cancer detection and surgery to eliminate 

malignant cells but spares premalignant cells and then estimates the time for malignant cells to re-

emerge. We report the cellular conditions that give rise to different patterns of cancer initiation 

and the conditions favoring a shorter cancer recurrence by analyzing premalignant cell types at the 

time of surgery. In addition, the model is fitted to disease-free clinical data of 8,957 patients in 27 

different cancer types; From this fitting, we estimate the turnover rate per month, relative fitness 

of premalignant cells, growth rate and death rate of cancer cells in each cancer type. We also 

estimated the mean proportion of non-malignant cells of each cancer type at the time of cancer 

detection and predict number of mutations required for carcinogenesis for unreported cancer types. 

Our study provides an insight into how to identify patients who are likely to have a shorter 

recurrence and where to target the therapeutic intervention. 
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LIST OF ABBREVIATIONS 

ACC - Adrenocortical Carcinoma 

BLCA - Bladder Urothelial Carcinoma 

BRCA - Breast Invasive Carcinoma 

CESC - Cervical Squamous Cell Carcinoma 

CHOL – Cholangiocarcinoma 

COAD - Colorectal Adenocarcinoma 

ESCA - Esophageal Adenocarcinoma 

HNSC - Head & Neck Squamous Cell Carcinoma 

KICH - Kidney Chromophobe 

KIRC - Kidney Renal Clear Cell Carcinoma 

KIRP - Kidney Renal Papillary Cell Carcinoma 

LIHC - Liver Hepatocellular Carcinoma 

LUAD - Lung Adenocarcinoma 

LUSC - Lung Squamous Cell Carcinoma 

MESO – Mesothelioma 

OV - Ovarian Serous Cystadenocarcinoma 

PAAD - Pancreatic Adenocarcinoma 

PRAD - Prostate Adenocarcinoma 

STAD - Stomach Adenocarcinoma 

SKCM - Skin Cutaneous Melanoma 

THCA - Thyroid Carcinoma 

UCEC - Uterine Corpus Endometrial Carcinoma 

UVM - Uveal Melanoma 

ACYC - Adenoid Cystic Carcinoma 
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MEL - Acral Melanoma 

UTUC - Upper Tract Urothelial Cancer 

OSCC - Oral Squamous Cell Carcinoma 

Log MSR – Mean of Squared Logarithmic Residuals 

TCGA – The Cancer Genome Atlas 

COADREAD – Colorectal cancer dataset from TCGA 

COAD – Colon Adenocarcinoma only (under COADREAD dataset) 

READ – Colon Adenocarcinoma only 

COAD_CIN – Colon adenocarcinoma with chromosomal instability 

COAD_MSI – Colon adenocarcinoma with microsatellite instability 

READ_CIN – Rectal adenocarcinoma with chromosomal instability 
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INTRODUCTION 

1.1 Carcinogenesis 

Cancer is the second leading cause of death (1) and a critical barrier to increasing life expectancy 

in every country as seen from the decline in cardiovascular related death - the leading cause of 

death (2). There are an estimated yearly 23.6 million new cases and 10 million deaths attributed to 

cancer worldwide (3). All countries will need to increase their efforts to reduce cancer burden 

given the ongoing delays and disruptions in cancer screenings, diagnosis and treatment worldwide 

due to the recent pandemic (4, 5). 

Cancers are dynamic cells whose features favor cellular proliferation, differentiation and 

movement while restricting cell death and tissue stability (6). Several theories – the somatic 

mutation theory (7), the tissue organization field theory (8) and the atavistic theory of cancer (9) 

have contributed to our knowledge of how cancers develop (carcinogenesis). Each has its own 

strengths and weaknesses. Unifying these theories, however, we see that the mutations in DNA 

and epigenetic alterations caused by a number of factors disrupts the balance between cell 

proliferation, cell death and immune response (10, 11) leading to proliferative malignant tumors 

which can arise in a stepwise manner from any nucleated cell or tissue.  

1.2 Treatment and Recurrence 

Cancers, especially at their early stage can be totally cured by surgery (12), a term known as  

complete remission. In some cases, the cancer re-emerges at the same site - local recurrence; close 

to the main site - regional recurrence; or at a distant site - metastasis (13). Despite available 

therapeutic methods for managing cancers, loco-regional recurrence has remained a clinically 
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significant problem in most cancer types (13-15). Local recurrence rates could be as high as about 

85% (16) for ovarian cancer, or 30% in non-small cell lung cancer (NSCLC) (17, 18) and as low 

as between 8% (19) to 16.5% (20) in breast cancer. Glioblastoma, one of the most aggressive 

cancers, have a recurrence rate of almost 100% (21). Advanced surgical techniques, chemotherapy, 

radiotherapy (13) as well as endocrine therapy (22) are being used to minimize locoregional 

recurrence but “minimal” improvements and treatment-related mortality has highlighted the need 

for a better understanding and strategy for local recurrence (23, 24). Synthetic lethality is receiving 

increased attention but its effectiveness is too early to judge due to insufficient genomic data (25). 

1.3 Field Cancerization 

Since its introduction in 1953 (26), field cancerization has been recognized as a major cause of 

local recurrence (27). Field cancerization is the presence of “histologically normal” cells 

surrounding cancer cells that have acquired some but not all the genetic and phenotypic traits 

required for malignancy in a tissue (28, 29). These cancerized cells may have a survival or growth 

advantage and does serve as a hotbed for recurrent tumors as only a small number of additional 

steps are needed for cancer initiation. Recent advances in molecular, genomic and bulk sequencing 

techniques have supported the role of field cancerization (30). In breast cancer, microsatellite 

markers, epigenetic aberrations, transcriptomic deregulations and hTERT overexpression have 

been detected in histologically normal mammary tissues (31, 32). In head and neck cancer, loss of 

heterozygosity of chromosome 9p and telomere dysregulation were commonly observed in benign 

squamous hyperplasia (33, 34). In colon cancer patients with Crohn’s ileocolitis, the same 

mutations of KRAS, CDKN2A, and TP53 were observed within neoplasia and non-tumor 

epithelium (35, 36). In Non-small cell lung cancer, miRNA dysfunction has been shown at the 

level of the tumor and cancerized field (37). Findings at sites of recurrence at regions of total 
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excision has shown that residual tumor is not a significant cause of recurrence (38). Some 

researchers have proposed that adrenergic-inflammatory pathways due to choice of anesthesia 

could predispose to recurrence (39) but a meta-analysis have shown that anesthetic technique have 

no effect whatsoever (40). In addition, circulating tumor cells - CTCs (41) have been shown to 

have minimal impact on cancer recurrence. Therefore, a proper understanding of the field 

cancerization formation process will contribute to the estimation of the risk of locoregional 

recurrence and the development of optimal treatment in each tissue. 

1.4 Theoretical Studies on Carcinogenesis 

Several theoretical studies have shed light on field cancerization impacts on cancer initiation (28). 

Jeon et al. examined the multistage clonal expansion model by employing the Poisson process to 

consider the effects of premalignant cells on cancer initiation (42). The model was applied 

clinically to explore the efficacy and sensitivity of current biopsy-based screening and ablative 

methods and suggest alternative screening techniques in Barrett’s esophagus (43). Foo et al. 

developed a spatial evolutionary framework to determine the size distribution of histologically 

undetectable premalignant fields during diagnosis (44). This model was applied to the head and 

neck cancer and revealed that the patient’s age was a critical predictor of the size and multiplicity 

of precancerous lesions (45). These findings are in agreement with bulk sequencing data that shows 

the accumulation of cancer-related mutations as we age (46). A 2-step tumor initiation model 

provides insights into the relationship between different tissue kinetic parameters and the incidence 

of recurrent cancers (47) by using public datasets from The Cancer Genome Atlas (TCGA), a 

valuable resource for genomic and clinical data analysis (48, 49) but fails to account for the varying 

number of mutational hits required for carcinogenesis (50-52). TCGA is a rich computational 
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resource for the genomic and mutational data for different cancer types (48, 49) and will be helpful 

in validating our understanding of field cancerization 

1.5 The ‘Moran’ and ‘Branching’ Processes 

In computational model of complex biological systems involving cell division and death, 

stochastic approaches are preferred to deterministic approaches (53). This is because they have 

higher sensitivity and stability than other approaches; the only disadvantage being the relatively 

longer run time (54). The Moran process (55) is a stochastic method that describes dynamics of a 

population of constant size where alleles can compete for dominance under the influence of fitness, 

mutation and accounts for genetic drift and natural selection (56). Using the Moran process, cell 

division is equal to cell death. This system outperforms other similar methods (57) like the Wright-

Fisher process and is robust enough to account for heterogeneity in cell type (58). In systems where 

the population size is not fixed, the Branching process (59) is employed to account for growing 

populations where cell division outgrows cell death. Here, individual cells reproduce and mutate 

independently of each other, without restriction on population size. This system has been 

successfully applied to explain the growth dynamics of cancer cell lines (60) and phenotypic 

plasticity in cancer dynamics of a complex system (61). Further refinement of the branching 

process is applied for cancer progression models with gene mutations (62) and multi-phenotypic 

population of cells (63) under states of phenotypic equilibrium (64). A stochastic approach is quite 

useful for modeling complex biological systems involving different cell types with varying 

phenotypes, fitness, mutation rates and growth characteristics. On one hand, the Moran process is 

capable of simulating tissue dynamics where there homeostasis is maintained and cell number is 

kept constant despite presence of “non-lethal” mutations. On the other hand, where this 
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equilibrium is disrupted and cell division is uncontrolled like in cancers, the Branching process is 

well equipped to simulate this scenario. 

1.6 Spatial Structure 

Next generation sequencing has shown the wide heterogeneity of cancer cells (65). It was shown 

that environmental selection forces such as cell-cell, tissue architecture and cell dispersal strongly 

influence the molecular heterogeneity of cancer cells (66, 67). A reason for this multiplicity of 

clones has to do with the relative position of cells within the tissue and is termed spatial structure. 

A mathematical model theorized that spatial structure delays tumor emergence and could be an 

evolutionary mechanism to prevent cancer (68). By altering tissue architecture and cell mixing, it 

was disclosed that the spatial structure of the normal tissue is crucially important to the 

evolutionary course of cancer (69). Additional data reveal a clear difference in neutral and driver 

mutational evolution between a non-spatial and different types of spatial structure in a tissue (70) 

Here, they showed a spatial structure based on boundary growth have neutral effect on both neutral 

and driver mutations and could be useful in tracking mutations where tissue structure is maintained . 

This spatial pattern was verified to influence cell proliferation in clear cell renal carcinoma using 

histological and radiological data (71). Furthermore, cell cycle and mitotic activities were found 

to be spatially distinctive in an animal model of breast cancer (72); and a 2D lattice-based model 

showed how the spatial structure influences intra-tumoral competition and drug sensitivity in 

prostate cancer patients (73). Taking all these together, we see that cancer growth and progression 

are spatial processes and governs molecular heterogeneity by virtue of cellular dynamics and tissue 

architecture. It is proposed that spatial patterns need to be emphasized in histological grading of 

cancer diagnosis as well as introducing newer technologies such as spatial genomics (74), spatial 

transcriptomics and spatial proteomics in the study of cancer (75). 



 12 

1.7 Thesis Objectives 

This study developed a novel computational model of multi-stage cancer initiation and recurrence 

with spatial structure. We employed a combined stochastic model of Moran and a Branching 

process to represent tissue and tumor dynamics, respectively, in order to observe cancer initiation 

and relapse after surgical resection of the first tumor in silico. Particularly, we focused on the 

relationship between the tissue compositions at the time of surgery and the time until the 

emergence of recurrent tumors. Moreover, based on the public clinical datasets for locoregional 

recurrence rates, we succeeded in identifying tissue-specific carcinogenic parameters for various 

cancer types. Our approach provided insights on how to predict the time of recurrence from the 

tissue dynamics at the time of surgery and how to intervene patients to prevent the recurrence. 
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MATERIALS AND METHODS 

2.1 Computational Model 

This model employs the multi-stage carcinogenesis concept. As tissues might require anywhere 

between 2 to 8 mutations (denoted by S) for malignant transformation (51), we first identify 

different cell types that can lead to a malignant transformation based on number of driver mutations. 

Let us visualize the dynamics of 5 types of cells in a tissue (Figure 1). “Type 0”, “Type 1”, “Type 

K”, “Type S-1” and “Type S” represent normal healthy cells with no mutation, premalignant cells 

with one cancer-related mutation, premalignant cells with K cancer-related mutation, premalignant 

cells with S-1 cancer-related mutations, and cancer cells with S cancer-related mutations, 

respectively. Emergence of cancer cells must be preceded by that of premalignant cells with 

mutations from Type 1 cell to Type S-1 cell. Type K cell may or may not be present depending on 

number of mutations required for carcinogenesis. We assume that a normal healthy tissue consists 

of Type 0, Type 1, Type K and Type S-1 cells undergoing cellular turnover with a small probability 

of a mutation. Moran process (Figure 2) is employed to consider the tissue turnover dynamics, 

where the total number of Type 0, Type 1, Type K and Type S-1 cells is kept constant as N (55). 

The turnover rate of a whole tissue is defined by d. Type S cells are considered as uncontrolled, 

highly proliferating cancer cells. The branching process (Figure 2) is employed to consider the 

process of Type S proliferation (59).  

Initially, N Type 0 cells occupy the tissue. There is a rare chance of a mutation every time a cell 

divides, and a daughter cell may change into a Type 1 cell with a mutation rate, 1. Mutation rate, 

, refers to the sum total of the genomic or epigenetic factors affecting change from one cell type 

to another (76). When a cell dies, a cell to be divided in a tissue is selected depending on the cell 
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fitness, r. The fitness of Type 0, Type 1, Type K, and Type S-1 are denoted by r0, r1, rK and rS-1, 

respectively. Cell fitness, r refers to the transcriptional and metabolic potential of a cell type to 

“out-compete” other cell types (77). A cell could divide to give rise to the same cell type or mutate 

to another cell type. When a Type 1 cell divides with a mutation, a daughter cell may change into 

a Type K cell with mutation rate K (if more mutations are needed) or a Type S-1 cell with a 

mutation rate, S-1 (if additional mutation steps are not needed). Intermediate cell type, Type K, 

becomes Type S-1 after sequential accumulation of mutations. Finally, a Type S-1 cell is capable 

of mutating to become a malignant cell – Type S cell based on the mutation rate from Type S-1 to 

Type S cell, S. Once a Type S cell appears, the cells proliferate indefinitely based on the growth 

rate of Type S cells, rS, disrupting tissue dynamics and homeostasis. Type S cancer cells are “super-

competitors” with outstanding metabolic prowess and assumed to increase exponentially with a 

net growth rate of rS - dS > 0, where dS is a death rate. 

We propose that the most important premalignant cells are the Type 1 cell that has acquired the 

first driver mutation and the Type S-1 cell that needs just one more driver mutation to become a 

cancer cell. These cells look phenotypically normal and are not regarded as important clinically 

but their genetic features are indispensable in cancer formation. As a result, the cell fitness of these 

2 cell types must be taken into account in all computational analysis. Instead, we can approximate 

intermediate mutational steps between Type 1 and Type S-1 to adjust the values of S-1 so that a 

low mutation rate, S-1, indicates the integration of several mutational steps. So, our computational 

analysis will be executed to account for the most important mutational events that affect cell fitness 

and all the mutation rates that can affect the number of steps required for carcinogenesis. In other 

words, we skip the state of Type K cell if S is less than or equals to 3 and a mutation rate stands in 

for the number steps when S is greater than or equal to 4. 
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The net growth of Type 0, Type 1, and Type S-1 cells is zero (equal frequency of cell division and 

death), while that of Type S cells is positive. Type 0, Type 1, and Type S-1 cells consist of a healthy 

tissue based on the Moran process, so r0, r1 and rS-1 are parameters to determine relative fitness 

status of dividing cell and which daughter cell are obtainable at the time of a cell division. 

Meanwhile, rS is the growth rate, which determines the average number of increases in Type S 

cells during a unit time. When the number of Type S cells reaches 109 at the first time, all the Type 

S cells are discarded to represent surgical resection, whereas the number of Type 0, Type 1 and 

Type S-1 cells in a tissue is preserved so that the time until the emergence of the recurrent tumor 

is influenced by the frequency of residual Type 0, Type 1 and especially, Type S-1 cells. Since the 

conversion from the number of cells to the tumor volume is frequently done using the following 

relationship as 109 cells in a 1 cm3 tumor, the time of surgery in this model is conducted when the 

size of the tumor becomes 1 cm3. We describe it as “time of cancer detection”. After the first 

treatment, the simulation continues until the next Type S cell appears from the tissue and the 

number reaches 109 again, representing the recurrence of the tumor after surgery. 

2.2 Simulation Framework 

To integrate the Moran process and branching process, we adopted stochastic simulations based 

on Gillespie’s algorithm (78) as follows: We firstly considered three events: (i) cell turnover in a 

healthy tissue as per Moran process, (ii) birth of a Type S cell as per Branching process, and (iii) 

death of a Type S cell. The rates of each event at time t is given by (i) dN (ii) rSXS(t), and (iii) 

dSXS(t), respectively. Here rS, dS, and XS(t) are a proliferation rate, a death rate, and the number of 

Type S cells at time t, respectively. The probability of each of the events happening are  
1

𝑑𝑁
 , 

1

𝑟𝑠𝑋𝑠(𝑡)
  

and  
1

𝑑𝑠𝑋𝑠(𝑡)
  respectively. Gillepsie’s Algorithm involves a random selection of an event of known 
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rate stated above at any given time. Therefore, the average time until any one of the three events 

happens, ∆𝑇, is given by  

∆𝑇 =  
1

𝑑𝑁 + 𝑟𝑆𝑋𝑆(𝑡) + 𝑑𝑆𝑋𝑆(𝑡)
.                               (1) 

Let us first consider the case where a cell turnover happens. The probability that a cell turnover 

happens in ∆𝑇 is given by 𝑑𝑁 ∙ ∆𝑇. In our model, a cell turnover in a healthy tissue is governed 

triggered by a cell death. When one of N cells is randomly selected as a cell to die, and another 

cell is chosen to divide within the same time step to complete cell turnover. In a healthy tissue, 

there are three types of cells, corresponding to the number of acquired mutations, Type 0, Type 1, 

and Type S-1.The number of each cell type is denoted by X0, X1 and XS-1, respectively. In brief, 

there are several possibilities of tissue composition transitions in the tissue dynamics and we 

consider the six events that affect the cell type composition of a tissue: (i) a type 0 cell increases 

by one while a type 1 cell decreases by one (ii) a type 0 cell increases by one while a type S-1 cell 

decreases by one (iii) a type 1 cell increases by one while a type 0 cell decrease by one (iv) a type 

1 cell increases by one while a type S-1 cell decreases by one (v) a type S-1 cell increases by one 

while a type 0 cell decreases by one; or (vi) a type S-1 cell increases by one while a type 1 cell 

decreases by one.  

In such a condition, a Type 0 cell can increase by one if either a Type 1 or Type S-1 cell dies and 

a Type 0 cell divides without a mutation. Then the probability for these events leading to an 

increase in Type 0 cells are given by (i) 
𝑋1

𝑁
∙

𝑟0𝑋0(1−𝜇1)

𝐹
, and (ii) 

𝑋𝑆−1

𝑁
∙

𝑟0𝑋0(1−𝜇1)

𝐹
. Here, 𝐹 = 𝑟0 𝑋0 +

𝑟1𝑋1 + 𝑟𝑆−1𝑋𝑆−1 is a scaling factor for selecting a particular type (here, Type 0) of a cell among 

dividing cells. The probability of a Type 1 or Type S-1 cell death is given by 
𝑋1

𝑁
 and 

𝑋𝑆−1

𝑁
, 
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respectively. Taken together, the transition probability that the number of Type 0 cell increases by 

one and that of Type 1 decreases by one is given by 

Pr[𝑋0  →  𝑋0 + 1 and 𝑋1  →  𝑋1 − 1 ] =
𝑋1

𝑁
∙

𝑟0𝑋0(1 − 𝜇1)

𝐹
,                   (2) 

and the probability that the number of Type 0 cell increases by one and that of Type S-1 decreases 

by one is given by 

Pr[𝑋0  →  𝑋0 + 1 and 𝑋𝑆−1  →  𝑋𝑆−1 − 1 ] =
𝑋𝑆−1

𝑁
∙

𝑟0𝑋0(1 − 𝜇1)

𝐹
.      (3) 

A Type 1 cell can increase by one if either a Type 0 or Type S-1 cell dies, and either a Type 1 cell 

divides without mutation or a Type 0 cell divides with mutation to become a Type 1 cell. Then the 

probabilities for these events leading to an increase in Type 1 cells are given by (iii) 
𝑋0

𝑁
∙

𝑟1𝑋1(1−𝜇𝑆−1)+𝑟0𝑋0𝜇1

𝐹
, and (iv) 

𝑋𝑆−1

𝑁
∙

𝑟1𝑋1(1−𝜇𝑆−1)+𝑟0𝑋0𝜇1

𝐹
. Taken together, the transition probability 

that the number of Type 1 cell increases by one and that of Type 0 decreases by one is given by 

Pr[𝑋1  →  𝑋1 + 1 and 𝑋0  →  𝑋0 − 1 ] =
𝑋0

𝑁
∙

𝑟1𝑋1(1 − 𝜇𝑆−1) + 𝑟0𝑋0𝜇1

𝐹
,     (4) 

and the probability that the number of Type 1 cell increases by one and that of Type S-1 decreases 

by one is given by 

Pr[𝑋1  →  𝑋1 + 1 and 𝑋𝑆−1  →  𝑋𝑆−1 − 1 ] =
𝑋𝑆−1

𝑁
∙

𝑟1𝑋1(1 − 𝜇𝑆−1) + 𝑟0𝑋0𝜇1

𝐹
.   (5) 

Similarly, a Type S-1 cell can increase by one if either a Type 0 or Type 1 cell dies, and either a 

Type S-1 cell divides without mutation or a Type 1 cell divides with mutation. The probabilities 
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for the events leading to an increase in Type S-1 cells are given by (v) 
𝑋0

𝑁
∙

𝑟𝑆−1𝑋𝑆−1(1−𝜇𝑆)+𝑟1𝑋1𝜇𝑆−1

𝐹
 , 

and (vi) 
𝑋1

𝑁
∙

𝑟𝑆−1𝑋𝑆−1(1−𝜇𝑆)+𝑟1𝑋1𝜇𝑆−1

𝐹
. Taken together, the transition probability that the number of 

Type S-1 cell increases by one and that of Type 0 decreases by one is given by 

Pr[𝑋𝑆−1  →  𝑋𝑆−1 + 1 and 𝑋0  →  𝑋0 − 1 ] =
𝑋0

𝑁
∙

𝑟𝑆−1𝑋𝑆−1(1 − 𝜇𝑆) + 𝑟1𝑋1𝜇𝑆−1

𝐹
,   (6) 

and the probability that the number of Type S-1 cell increases by one and that of Type 1 decreases 

by one is given by 

Pr[𝑋𝑆−1  →  𝑋𝑆−1 + 1 and 𝑋1  →  𝑋1 − 1 ] =
𝑋1

𝑁
∙

𝑟𝑆−1𝑋𝑆−1(1 − 𝜇𝑆) + 𝑟1𝑋1𝜇𝑆−1

𝐹
.  (7) 

In addition, a Type S cell can increase by one if a Type S-1 cell divides with mutation. The 

probability is given by 
𝑟𝑆−1𝑋𝑆−1𝜇𝑆

𝐹
. Since a Type S cell is not a component of a tissue, once a Type 

S appears by mutation, another round of selection for a dividing cell is performed according to the 

transition probabilities described above. This is because malignant Type S cell disrupts 2D lattice 

structure and the Moran process is no longer applicable to it 

Next, let us consider the case where Type S cell divides or dies. The probabilities of Type S cell 

division or death is given by 𝑟𝑆𝑋𝑆(𝑡) ∙ ∆𝑇 or 𝑑𝑆𝑋𝑆(𝑡) ∙ ∆𝑇, respectively. 

In summary, the time of one step in our simulation is calculated using Eq. (1) and in one time step, 

one of the following three processes occurs: (i) a cell turnover in a tissue, (ii) the birth of a Type S 

cell, or (iii) the death of a Type S cell. Initially, all the cells are Type 0. Once the number of Type 

S cells reaches 109, computational surgical resection sets the number of Type S cells to be 0, 

keeping the cell type composition in a tissue remained and computational carcinogenic process 
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restarts again. After that, the time until the number of Type S cells reaches 109 is measured as 

recurrence time. 

2.3 Spatial Structure  

Two-dimensional lattice structure (𝐼 × 𝐽)  is introduced to the tissue dynamics in our 

computational model. The transition probabilities are basically the same with or without spatial 

structure. The difference is the choice of a dividing cell. If a cell at position < 𝑖, 𝑗 > dies, 4 adjacent 

cells – < 𝑖, 𝑗 − 1 > , < 𝑖, 𝑗 + 1 > , < 𝑖 − 1, 𝑗 >  and < 𝑖 + 1, 𝑗 >  can divide to replace it. The 

transition probabilities are calculated according to the cell type at those positions. We assume wall 

boundary condition to represent an asymmetric tissue structure.  

2.4 Deterministic Approximation of Type S Cell Growth 

As for the calculation of the Type S growth, we assume that when the number of cells is small, the 

stochastic effect was considered based on the Branching Process. When the number of Type S cells 

exceed twice as large as the size of the normal tissue, 2N, growth was regarded as a deterministic 

process. Then, the time duration from when the number of Type S cells is 2N to 109, ts, is given 

by 

∆𝑡𝑠 =
1

(𝑟𝑆−𝑑𝑆)
ln  (

109

2𝑁
) .                    (8) 

2.5 Clinical Data 

The data used in our analysis were from TCGA Pan-Cancer Clinical Data Resource (48, 49) and 

are available in the cBio Cancer Genomics Portal (79, 80). We adopt the clinical data of 

locoregional recurrence from 8,957 patients with 27 different non-sarcoma, non-hematological 
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cancer types. From these datasets, the inclusion criterium for our study was “disease free” survival 

– patients with no detectable malignant disease after surgery or total remission. We excluded data 

of “progression-free” survival in order to eliminate patients who survived with detectable disease 

possibly as a result of treatment-resistant clones; and also excluded data containing metastatic 

progression. We also included data from other independent publications for extra validation. 

Sarcomas and hematological cancers were excluded primarily due to their non-conformity to a 2-

dimensional lattice structure. 

2.6 Survival Time Analysis 

Survival time analysis of clinical data is calculated using the Kaplan–Meier method from disease-

free intervals mentioned in Clinical Data section. In this study, disease-free interval is defined as 

the survival time without cancer recurrence for each patient, which corresponds to the time to 

recurrence in each simulation trial. 

2.7 Colorectal Cancer Analysis 

The TCGA colorectal cancer dataset, COADREAD available at the cBioPortal for Cancer 

Genomics (https://www.cbioportal.org/study/summary?id=coadread_tcga_pan_can_atlas_2018) 

was further categorized based on race, disease stage at diagnosis, disease subtype and tumor type. 

We only analyzed categories representing at least 15% of the parent classification to minimize 

proportional bias. For classification based on race, we analyzed Blacks and Whites (Asians 

accounts for only 2%); For disease stage – T3 and T4; For tumor type – colon adenocarcinoma 

(COAD) and rectal adenocarcinoma (READ); For tumor subtype – colon adenocarcinoma with 

chromosomal instability (COAD_CIN), colon adenocarcinoma with microsatellite instability 

(COAD_MSI) and rectal adenocarcinoma with chromosomal instability (READ_CIN).  
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2.8 Statistical Analysis 

The whole process of our model is conducted on C++. The survival time analysis and other 

statistical analysis is conducted on GraphPad Prism (version 9.4.1). Mantel-Cox (log-rank) test is 

used to compare difference between survival curves. A p value less than 0.05 is considered to be 

statistically significant. 
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RESULTS 

3.1 Cancer Initiation Patterns 

Firstly, we conducted stochastic triplicate simulations for the cancer initiation up to the time of 

cancer detection. We were curious to know what effect the presence or absence of the spatial 

structure would have on the model. We traced the time course of 4 cell populations – Type 0, Type 

1, Type S-1 and Type S cells using a combination of various parameter sets. Lower mutation rate 

from Type 1 to Type S-1, S-1, was additionally examined to account for additional premalignant 

cell types between Type 1 and Type S-1. In the model without spatial structure, we observed 3 

patterns of cancer initiation based on frequency of non-malignant cell population at cancer 

detection (Figure 3A). Interestingly, all the patterns show a progressive decline of Type 0 cells 

until the entire tissue is dominated by Type 1, Type S-1 or both Type 1 and Type S-1 cells. By 

combining various parameter sets in our simulation, we extrapolated the varying distribution of 

the cancer initiation patterns (Figure 3B, Figure 4). Lower fitness of Type 1 cells, r1 generally 

favored Type S-1 cells dominance when fitness of Type S-1, rS-1, is high (Figure 4 Panel B). Higher 

r1 values favored Type 1 dominance (Figure 4 Panel D and E) while equal fitness of Type 1  and 

Type S-1 cells yielded Type 1 dominance or Type 1/S-1 co-dominance (Figure 4 Panel C). 

Mutation rates generally affected time to cancer detection and appearance of dominance. We also 

extended the mutation rates from Type 1 to Type S-1 cell type to denote other additional mutation 

steps and found a consistent increase in cancer detection times but patterns generally remained the 

same. In some cases where low fitness of both Type 1 and Type S-1 were coupled with lower 

mutation rates, Type S malignant cells failed to appear at extended times and simulations were 
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terminated (Figure 4 Panels A - D). Most curiously, mutation rate from Type 0 to Type 1, 1, did 

not affect the pattern of cancer initiation or time to cancer detection (Figure 4, all panels) 

3.2 Parameter Dependence of Recurrence Time 

Next, we examined the time to recurrence after surgical resection and the proportion of Type S-1 

cells at the time of surgery in varying parameter sets. We reasoned that since Type S-1 cells needs 

only one more step for malignant transformation; therefore, its proportion was thought to be critical 

for cancer recurrence. To do this, we ran 1,000 simulations for each parameter set and calculated 

the mean recurrence time (Figure 5 A, C, E, G, I, K). We also ran similar simulations at higher cell 

number in a tissue, N, between 100 to 1,000 times to assess the effect of tissue size on the parameter 

dependency (Figure 5 B, D, F, H, J, L). We found that higher fitness of Type 1 cells, r1 increased 

the mean recurrence time (Figure 5 A,B), while mutation rate from Type 0 to Type 1, 1, had no 

effect on mean recurrence time (Figure 5 G,H). Other parameters however, showed a negative 

correlation to the mean recurrence time – higher parameter values resulted in shorter mean 

recurrence time. Higher tissue cell number yielded an overall shortening of mean recurrence time 

but parameter dependency remained the same. We also observed a reduction in the proportion of 

Type S-1 cells at the time of surgery when r1, rS and S increases (Figure 5 A,B,E,F,K,L), while 

rS-1 and S increases in the proportion of Type S-1 cells (Figure 5 C,D,I,J). Mutation rate from 

Type 0 to Type 1, 1, had little effect on the proportion of Type S-1 cells (Figure 5 G,H). 

3.3 Effect of Spatial Structure on Cancer Initiation Patterns 

We then incorporated the spatial structure framework into the model to investigate the effect of 

tissue positional influence in cancer initiation patterns and time of cancer detection. After triplicate 
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simulations using various parameters, we identified seven distinct patterns of cancer initiation 

(Figure 6A) based on the composition of non-malignant cells population at cancer detection. 

Figure 6B and Figure 7 showed the distribution of the patterns in a wide parameter region. Low r1 

values showed Type 0 dominance at low rS-1 levels with failure to detect cancer cells at very low 

S-1 levels (Figure 7 Panel A). With higher r1 values, Type 1 cell types begin to dominate. When 

combined with high S-1, we saw Type 1/S-1 co-dominance (green pattern type in Figure 6B). 

When r1 and rS-1 are equal to fitness of Type 0 (r0), we saw Type 0/1 co-dominance or Type 0/1/S-

1 co-dominance depending on S-1 values (Figure 7 Panel C). We noticed a peculiar pattern of 

Type 0/S-1 co-dominance (black region in Figure 6B) when rS-1, S-1, and S were high with 

relatively lower r1 value (Figure 7 Panel B). Type S-1 dominance (red pattern type in Figure 6B) 

was regarded as the most undesirable scenario due to the abundance of Type S-1 cells, indicating 

shorter recurrence time. We saw this pattern when rS-1, 1 and S-1 were high, r1 was equal to 1.0 

and S was relatively small (Figure 7 Panel C). Some parameter sets with low fitness failed to yield 

Type S cells at extended time points during the simulations. Here, the incorporation of the spatial 

structure to our simulation framework had remarkable alterations to the cancer initiation patterns 

and cancer detection time. The differences accounted for by integrating the spatial structure is 

summarized in Table 3. 

3.4 Effect of Spatial Structure on Recurrence Time 

Subsequently, we examined the mean recurrence time after surgical resection and the proportion 

of Type S-1 lesions at the time of surgery in a vast parameter range with the influence of the spatial 

structure setting (Figure 8). Similarly, we ran 100 to 500 simulations to obtain mean recurrence 

time (Figure 8 A,C,E,G,I,K) and to check the effect of larger cell numbers (Figure 8 B,D,F,H,J,L). 
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Generally, we saw that the integration of the spatial structure to our simulation framework had 

noteworthy changes to the parameter dependency to recurrence time. When the size of the normal 

tissue was small, the effect of fitness advantage on the proportion of Type S-1 cells in a tissue 

became larger. Our simulation results showed that an increase in the cell fitness shortened the 

mean time to recurrence (Figure 8 C to F). However, an increase in r1 was found to reduce the 

recurrence time but begin to increase slightly at much higher levels regardless of the tissue size. 

We also found a consistent reduction in the mean recurrence time as mutation rates 1, S-1 and S 

increased (Figure 8 G - L). We also observed a reduction in the proportion of Type S-1 cells at the 

time of surgery with a spatial structure. Especially, when either rS or S was small, and any of rS-

1, 1, or S-1 was large, the proportion of Type S-1 increased (Figure 8). The major difference is 

shown on Table 3. 

3.5 Fitting of Recurrence Time to Clinical Data  

By using our computational model with spatial structure, multiple runs of stochastic simulations 

were performed with multiple parameter sets and in silico Kaplan–Meier curves were made. The 

data points about the time when 0% to 100% of patients experienced recurrence with an interval 

of 4% (time when 0%, 4%, 8%, …, 100% of patients experienced recurrence) were employed to 

compare between the in silico and published clinical data (79, 80) of 27 cancer types. For the 

clinical data, the time unit was in months while our simulation did not specify any units. Fitting 

with clinical data would resolve this conundrum. In this analysis, we adopted random sampling for 

parameters to obtain in silico recurrence data and determined the best parameter set for each cancer 

type that minimized the mean of squared logarithmic residuals (log-MSR) between outputs in 
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silico and in public. The accepted parameter set (Table 1) was used to extrapolate recurrence time 

which were then fitted to clinical data and disease-free survival curves were depicted (Figure 9).  

Mantel-Cox test was used to compare between the curves of simulated and clinical data revealing 

minimal statistical nonconformity. According to the estimated parameters (Table 1), we firstly 

deduced a tissue-specific turnover per month from dS. Kidney chromophobe had the fewest cellular 

turnover cycles per month while bladder urothelial carcinoma and colorectal adenocarcinoma had 

the highest turnover cycles. Moreover, colorectal adenocarcinoma, kidney chromophobe, renal 

clear cell carcinoma, thyroid carcinoma, adenoid cystic carcinoma and acral melanoma showed 

higher fitness of all their premalignant cells than normal cells (r1 and rS-1 values in Table 1). Of 

note, the proliferation rate of the Type S malignant cells, rS, was estimated to be high in 

cholangiocarcinoma, liver hepatocellular carcinoma, mesothelioma and upper tract urothelial 

cancer while being relatively low in breast invasive carcinoma, kidney chromophobe and skin 

cutaneous melanoma. Kidney chromophobe had the lowest mutation rate from the final 

premalignant cell stage to malignant cells while cervical squamous cell carcinoma and prostate 

adenocarcinoma had the highest mutation rate. Figure 10 showed the negative correlation between 

mutational steps required for carcinogenesis (51) and overall mutation rates (I) obtained from our 

studies by multiplying the mutation rates for all steps.  

Finally, from the parameter sets obtained from clinical fitting (Table 1), we ran 100 simulations of 

each parameter set corresponding to a particular cancer type to assess the relative proportion of 

premalignant cells at the time of cancer detection. Figure 11 shows the mean proportion of each 

of the cell types when the malignant cells reach approximately 109 cells (1cm3) in the tissue. we 

see a dominance of normal Type 0 cells in some cancers like breast invasive carcinoma, cervical 

squamous cell carcinoma, lung cancers, stomach adenocarcinoma and uterine corpus endometrial 
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carcinoma. Bladder urothelial cancer, colorectal adenocarcinoma and thyroid carcinoma are 

dominated by Type 1 lesions while co-dominance is seen in adrenocortical carcinoma, esophageal 

squamous cell carcinoma and ovarian serous cystadenocarcinoma. 

3.6 Colorectal Cancer Analysis 

We proceeded to do a deeper analysis of the colorectal cancer dataset, COADREAD to better 

understand cancer progression in different categories of people with the disease. We chose data 

points of 1% interval rather than 4% and increased the number of simulations to 100,000 to 

improve the sensitivity of the fitting. We compared the profiles of each category to the COAD 

dataset to assess how these differneces affects cancer progression and recurrence. We analyzed the 

distribution of parameters for each category compared to the parent dataset – COADREAD (Figure 

13). From our observations, patients with a Black racial background and those with colon 

adenocarcinoma with microsatellite instability (COAD_MSI) had profiles which differed in every 

parameter. Others had variation with just one or two parameters, but the tissue turnover rate 

remained consistent even with categories that have different survival curves (Figure 14). The 

parameter combinations for the survival curves and their p values are shown in Table 4. We also 

analyzed proportion bias and genetic alteration frequency and realized that genetic alteration 

frequency accounts for differences seen in COAD_MSI but not Black patients (Figure 15). 
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DISCUSSION 

In this study, we constructed computational models with and without spatial structure that 

described cell population dynamics in both normal and cancer tissues. Using our models, we 

clearly observed different patterns of cancer initiation and the residual premalignant cells present 

at the time of cancer detection or surgical intervention. Integrating the spatial structure setting to 

the model revealed additional patterns of cancer initiation as against just three in the model without 

spatial structure. Especially, the preservation of intact normal cells was observed in the model with 

spatial structure (Figures 6 and 7). According to the comprehensive analysis of parameter 

dependence, we found that field cancerization at the detection time depended on a combination of 

fitness of premalignant cell types and mutation rates from one cell type to the other.  

We also revealed the relationship between the proportion of premalignant cells and recurrence 

time (Figures 5 and 8). The model without spatial structure overemphasized the power of Type 1 

fitness and its ability to limit Type S-1 and Type S appearance which led to longer mean recurrence 

times as r1 increases (Figure 5A, B). The same effect was seen in the mutation rate from Type 0 to 

Type 1 which rendered 1 impotent in affecting mean recurrence time (Figure 5G, H). All other 

fitness and mutation parameters led to shorter recurrence time as their effects became larger. 

Generally, with the spatial structure setting, we found that recurrence time became shorter when 

mutation rates or fitness of cancer cells were large, while the time became longer when the fitness 

of premalignant cells or growth rate of cancer cells were low (Figure 8). An exception would be 

the mean recurrence time with r1 (Figure 8A, B) which was seen to shorten as r1 increased but to 

get slightly extended as r1 became much larger. This could be due to a renewed cell competition 

between Type 0 and Type 1 cells which subsequently delayed the emergence of Type S cells and 

hence, a more favorable recurrence time.  
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Moreover, we successfully estimated the characteristic parameter sets of the computational model 

that best reproduced the clinical data of disease-free survival in each cancer type. All the non-

sarcoma, non-hematological cancer types were successfully fitted with no statistical deviation 

(Table 1). Even though some datasets like ESCA contains 2 different cancer types – esophageal 

adenocarcinoma and esophageal squamous cell carcinoma, we obtained p values that indicates no 

statistical difference. At the same time, we obtained valuable information about cellular turnover 

per month (dS), relative fitness of premalignant cells (r1, rS-1), a growth rate of cancer cells (rS) and 

mutation rates from one cell type to another (1, S-1, S) for each carcinogenesis. We have 

specified the growth rate for each cancer using the rS values from our clinical fitting. Interestingly, 

we observed high growth rates of malignant cells (rS) in some common cancer types like lung and 

colorectal cancers, whereas low growth rate was estimated in breast invasive carcinoma which was 

also a common cancer type but was relatively asymptomatic in agreement with several studies (81, 

82). From the high S-1 values, we elucidated that uveal melanoma, breast invasive carcinoma, 

stomach adenocarcinoma and lung squamous cell carcinoma had the shortest time to reach late 

premalignant cell stage from the earliest premalignant cell stage possibly indicating fewer 

mutational steps. On the other hand, thyroid carcinoma and head and neck carcinoma had small 

S-1 values, indicating the multiple steps in the carcinogenesis. Our data was in alignment with 

data that estimated the number of hits required for carcinogenesis (51), where liver, kidney and 

thyroid cancers had the lowest overall mutational rates indicating more mutational requirements 

while uterine, ovarian and lung cancers had higher overall mutational rates indicating fewer 

mutational requirements for carcinogenesis. 

Additionally, our findings successfully revealed average cellular turnover rates per month by 

inferring our model with published clinical data whose measurements were in months. Kidney 
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chromophobe and pancreatic cancer showed relatively “low” turnover rates per month (about 1.5 

times), possibly indicating low incidence rate. On the other hand, bladder urothelial carcinoma, 

liver hepatocellular carcinoma, colorectal adenocarcinoma and upper tract urothelial carcinoma 

had the “highest” turnover rates (almost 4 times per month) which perhaps explained why they 

were the most common cancers in men and women combined (83). This also corresponded with 

data that suggested that number of cell division was a significant risk factor for cancer (84). 

Furthermore, we examined the proportion of premalignant cells of each cancer type at the time of 

cancer detection for each cancer type by using parameter sets obtained from clinical fitting. Several 

patterns were observed chiefly, the dominance of Type 0 cells in common cancers – breast, cervix, 

lung and stomach cancers. This indicated that these cancers might have a longer time to recurrence 

since we see a relative low number of mutated cells. Prostate cancer has Type 0 dominance but 

have an observable number of Type 1 cells while liver hepatocellular carcinoma and mesothelioma 

has Type 0 dominance with an observable Type S-1 cell population indicating a more likelihood 

of recurrence than the previously mentioned cancers. We saw a dominance of Type 1 cells for 

some cancer types – bladder urothelial, colorectal, adenoid cystic and thyroid cancers. These 

cancers are known to have common benign lesions which probably contain cancer related 

mutations. The major presence of Type 1 cells suggested a relatively shorter time to recurrence 

and should be carefully monitored. Even more alarming was kidney chromophobe and kidney 

renal cell carcinoma with observable Type S-1 cells indicating poorer prognosis. Furthermore, we 

saw another group of cancers with co-dominance of Type 0 and Type 1 cells – adrenocortical, 

esophageal, head and neck, ovarian cancer and upper tract urothelial cancers. They may pose a 

higher risk due to varying proportion of these cell types. Finally, all melanomas investigated had 
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a pattern of Type 0/Type 1 co-dominance with an observable population of Type S-1 cells. These 

could explain why there are several benign melanocytic lesions in the skin, eye and other tissues. 

In the colorectal cancer dataset, we checked the cancer progression in different categories to see 

how certain factors contribute to cancer progression and recurrence. Our clinical fitting was 

partially based on Bayesian principles and an analysis of the distribution of parameter 

combinations disclosed interesting results (Figure 13). The values for rS, dS and int showed a 

narrower peak than r1 and rS-1 possibly indicating a higher sensitivity. As stated earlier, the 

parameters initially mentioned parameters could be validated by epidemiological and clinical data 

but the later mentioned parameters lack actionable data for validation. Of note, Blacks and 

COAD_MSI had a discordant profile reflecting all parameters especially dS. Human organoid 

cultures estimate tissue turnover rate to be about 12 days (85) which was in line with our estimation. 

Even categories that show a visually different survival curve had a tissue turnover rate within these 

limits (Figure 14) except those 2. To further investigate, this discrepancy, we analyzed proportion 

bias to see if a particular category is proportionately higher in Blacks or COAD_MSI (Figure 15a) 

but the relative proportions were not statistically significant. We then checked whether ageing 

influence (86), tumor mutation burden /immune influence (87, 88) or aneuploidy (89) differed 

between categories but we found no statistically significant difference between groups (Figure 

15b). Upon analyzing tumor alteration frequency, we found significant differences in altered genes 

between COAD_MSI and other categories (Figure 15c) which could explain the discordant profile. 

However, no difference was seen in Black patients (Figure 15d). We theorize that perhaps, some 

unaccounted factor(s) might play a role between cancer diagnosis and cancer recurrence in Black 

patients. Lifestyle changes (90) and co-morbidities (91) are potential factors that might play a role 

in affecting recurrence time thereby altering the profile. Another key immunological factor might 
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be MHC class I and II expression differences between Blacks and Whites (92) which could affect 

any of the parameters. 

We propose from our findings that certain cell populations, specifically Type S-1 could be targeted 

to address the threat of locoregional recurrence. With currently available tools and advancements 

in personalized medicine, it is possible to prevent recurrence by targeting a particular cell type or 

lesion. An example in case in the outstanding success achieved using PD-1 Blockade in mismatch 

repair–deficient, locally advanced rectal cancer which recorded a 100% success (93). CRISPR-

based mutation can also aid in cell competition studies to identify cell fitness levels among the 

known and unknown driver mutations to further provide actionable data for more studies. 

In this study, we estimated cell fitness as a single numerical value with 1.0 indicating normal cells 

and other cells with ranges from normal cells. In reality, this is an “oversimplification” as cell 

fitness is a complex and dynamic concept which can be related to both genetic (94) and non-genetic 

(95) alterations. Unfortunately, studies on cell fitness with regards to known or even unknown 

cancer-related mutations are lacking. Also, the order of mutations in premalignant cells and a 

comprehensive study of cell-based or animal model mutational requirements for certain cancers 

are unavailable for additional validation. These limit the tools with which we can perform 

additional validation of our model. Mutation rates were chosen to include processes involved with 

DNA repair, epigenetics, infection and role of external agents. Each of these could independently 

affect the model but we chose to combine them. In the current analysis, hematologic or liquid 

cancers were not included partly because of their dynamic nature and lack of 2D lattice 

arrangement but mainly the difficulty in assessing exact cell numbers. Even though certain tumor 

markers for certain malignancies may be used to quantify cell number, the threshold for detection 

and overall utility is not fully assured. The model without spatial structure might be applicable in 
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this scenario as well as for sarcomas. Moreover, we did not stratify or independently differentiate 

demographic information such as age, sex or race for each cancer type. Possible extension of the 

analysis may be to perform age or other parameter dependent analysis. Furthermore, we only 

considered a specific order of mutation for malignant transformation in our model which gave us 

good fitting with clinical data; other mutational orders are disregarded. Other mutational orders 

could be important especially those leading to histologically ‘abnormal’ benign lesions. Barrett’s 

Esophagus (BE) is a notable example where whole genome sequencing found similar mutational 

events between esophageal adenocarcinoma and only non-dysplastic BE and not dysplastic BE 

(96) thereby suggesting different mutational order (97). Reports that prior diagnosis of BE affords 

a better prognosis (98) with only about 5% of BE patients developing esophageal adenocarcinoma 

(99) further strengthens the different order of mutation concept. Above all, the source of clinical 

data focuses on malignant tissue and have no information on benign lesions. In this study, only 4 

cell types were utilized; so, we used lower mutation rates to denote additional cell types and hereby 

skipped Type K cells. It is likely that this decision might underestimate the fitness of the different 

cell types not included even though total mutation rate should theoretically not be affected.  

One challenge for cancer management is late diagnosis. Our model computes a cancer detection 

stage of 1cm3 – 109 cells. To evaluate the effect of late diagnosis, we changed the cancer detection 

time to 1010 and assess parameter dependence on recurrence time. We observed a reduction in time 

to recurrence indicating that late diagnosis might contribute to shorter recurrence time (Figure 12). 

Another challenge to the usage of this model is the variability of proportion of locoregional 

recurrence out of total recurrence rate among various cancer types. It is common knowledge that 

recurrence can occur at a distant area from the original issue – metastasis; our model, however, 

does not take this into account. As a result, the utility of this model is high for certain cancer types 
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but unfortunately, subdued for other cancer types. Consequently, malignancies where locoregional 

recurrence accounts for a high proportion of total recurrence such as thyroid cancer with 94% 

(100), oral squamous cell carcinoma with 90% (101), cholangiocarcinoma with 85% (102), 

prostate cancer with 81% (103), liver cancer with 78% (104), mesothelioma with 74% (105),  head 

& neck squamous cell carcinoma with 69% (106), and ovarian cancer with 68% (107) could reap 

great benefit from this model. On the other hand, cancers where distant metastasis accounts for a 

major proportion of total recurrence such as kidney cancers with 73% (108), skin cutaneous 

melanoma with 71% (109) and bladder urothelial cancer with 66% (110) might feel the need to 

complement our model with additional tools to increase its precision. Interestingly, we can gain 

some insight from recurrence pattern of breast cancer. In patients undergoing conservative breast 

surgery only, locoregional recurrence accounts for 62% of all cancer recurrence (111). However, 

in a study with data for different surgical intervention types, locoregional recurrence rates were 

42.9% and 19% of total recurrence in breast conservative surgery and total mastectomy 

respectively (112). This could perhaps be due to the elimination of the cancerized field by total 

mastectomy which conservative surgery is unable to achieve. 

In conclusion, this model reveals parameter combinations that fit clinical data and contributes to 

the ever-growing knowledge about cancer initiation and recurrence. The model elucidates cancers 

which have premalignant cells with high fitness are likely to have a short recurrence time (113). 

The model also appears sensitive enough to distinguish categories with clear genetic differences 

and even recognize unaccounted factors. This approach can be a valuable tool in the management 

of cancer especially in the field of personalized molecular medicine to target patients who are at 

highest risk of recurrence.
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Table 1 – Tumor-specific carcinogenic profiles and p values of survival curves (µ values are in log10 while SQ are log-MSR values) 

Code Cancer Type (Data Source) 
SQ r1 rS-1 rS dS µ1 µS-1 µS µI p value 

ACC Adrenocortical Carcinoma (TCGA, PanCancer Atlas)  0.616 1.003 0.958 5.578 3.436 -3.212 -3.979 -3.006 -10.197 0.9120 

BLCA Bladder Urothelial Carcinoma (TCGA, PanCancer Atlas)  0.922 1.097 0.981 5.614 3.939 -2.876 -3.616 -3.223 -9.715 0.8857 

BRCA Breast Invasive Carcinoma (TCGA, PanCancer Atlas)  0.983 0.945 0.948 2.967 1.887 -3.770 -2.228 -2.661 -8.658 0.1707 

CESC Cervical Squamous Cell Carcinoma (TCGA, PanCancer Atlas)  0.897 0.929 0.951 6.684 3.506 -3.842 -3.233 -2.098 -9.172 0.1213 

CHOL Cholangiocarcinoma (TCGA, PanCancer Atlas)  0.847 0.988 1.011 7.170 3.765 -3.504 -2.759 -2.349 -8.612 0.7716 

COAD Colorectal Adenocarcinoma (TCGA, PanCancer Atlas)  0.943 1.086 1.027 5.912 3.859 -3.176 -3.052 -4.347 -10.575 0.2783 

ESCA Esophageal Adenocarcinoma (TCGA, PanCancer Atlas)  0.936 1.048 0.919 6.767 3.655 -4.114 -3.870 -2.411 -10.394 0.8862 

HNSC Head & Neck Squamous Cell Carcinoma (TCGA, PanCancer Atlas)  0.802 0.980 0.988 5.148 3.586 -2.735 -4.886 -2.656 -10.277 0.5908 

KICH Kidney Chromophobe (TCGA, PanCancer Atlas)  0.401 1.070 1.024 2.308 1.558 -3.971 -2.542 -4.658 -11.170 0.9360 

KIRC Kidney Renal Clear Cell Carcinoma (TCGA, PanCancer Atlas)  0.786 1.081 1.064 3.655 2.713 -4.569 -3.445 -4.252 -12.265 0.1519 

KIRP Kidney Renal Papillary Cell Carcinoma (TCGA, PanCancer Atlas)  0.559 0.965 0.958 5.470 3.004 -3.182 -2.748 -3.374 -9.304 0.9880 

LIHC Liver Hepatocellular Carcinoma (TCGA, PanCancer Atlas)  0.846 0.977 1.009 7.675 3.899 -4.620 -3.690 -4.252 -12.562 0.6744 

LUAD Lung Adenocarcinoma (TCGA, PanCancer Atlas)  0.600 0.922 0.977 6.383 3.327 -3.068 -3.471 -2.821 -9.360 0.4484 

LUSC Lung Squamous Cell Carcinoma (TCGA, PanCancer Atlas)  0.524 0.997 0.952 5.220 3.568 -4.174 -2.276 -3.258 -9.708 0.9767 

MESO Mesothelioma (TCGA, PanCancer Atlas)  0.572 0.918 1.030 7.134 3.581 -3.287 -4.222 -3.561 -11.070 0.8411 

OV Ovarian Serous Cystadenocarcinoma (TCGA, PanCancer Atlas)  0.772 1.052 0.939 4.145 2.655 -3.483 -2.415 -3.502 -9.400 0.9710 

PAAD Pancreatic Adenocarcinoma (TCGA, PanCancer Atlas)  0.736 0.988 0.996 3.145 1.654 -3.218 -2.875 -2.416 -8.509 0.8931 

PRAD Prostate Adenocarcinoma (TCGA, PanCancer Atlas) 0.886 0.915 0.918 4.826 3.584 -2.286 -3.987 -2.189 -8.462 0.7336 

STAD Stomach Adenocarcinoma (TCGA, PanCancer Atlas)  0.400 0.936 0.949 5.738 3.177 -3.377 -2.268 -3.389 -9.034 0.9442 

SKCM Skin Cutaneous Melanoma (TCGA, Firehose Legacy)  0.805 1.016 0.980 2.848 1.818 -4.481 -3.607 -2.512 -10.601 0.5770 

THCA Thyroid Carcinoma (TCGA, PanCancer Atlas)  0.764 1.020 0.980 6.541 3.525 -2.824 -4.268 -4.131 -11.222 0.7340 

UCEC Uterine Corpus Endometrial Carcinoma (TCGA, PanCancer Atlas)  0.892 0.948 0.984 3.965 2.083 -4.276 -3.824 -2.908 -11.007 0.1153 

UVM Uveal Melanoma (TCGA, Firehose Legacy)  0.564 1.022 0.947 6.612 3.535 -3.397 -2.166 -4.000 -9.563 0.2663 

ACYC Adenoid Cystic Carcinoma (MSK, Nat Genet 2013)  0.521 1.082 1.065 4.523 2.492 -2.754 -3.342 -4.046 -10.142 0.6316 

MEL Acral Melanoma (TGEN, Genome Res 2017)  0.524 1.031 1.008 5.199 3.104 -2.572 -3.866 -2.487 -8.925 0.3385 

OSCC Oral Squamous Cell Carcinoma (MD Anderson, Canc. Disc 2013)  1.033 0.901 0.990 8.090  3.700 -2.721 -2.602 -3.640 -8.964 0.9997 

UTUC Upper Tract Urothelial Cancer (MSK, Eur Urol 2015)  0.628 0.938 1.009 7.470 3.800 -2.130 -3.672 -2.815 -8.617 0.5480 

https://www.cbioportal.org/study?id=acc_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=blca_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=brca_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=cesc_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=chol_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=coadread_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=esca_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=hnsc_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=kich_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=kirc_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=kirp_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=lihc_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=luad_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=lusc_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=meso_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=ov_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=paad_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=prad_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=stad_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=skcm_tcga
https://www.cbioportal.org/study?id=thca_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=ucec_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study?id=uvm_tcga
https://www.cbioportal.org/study?id=acyc_mskcc_2013
https://www.cbioportal.org/study?id=acyc_mskcc_2013
https://www.cbioportal.org/study?id=acyc_mskcc_2013
https://www.cbioportal.org/study?id=mel_tsam_liang_2017
https://www.cbioportal.org/study?id=hnsc_mdanderson_2013
https://www.cbioportal.org/study?id=utuc_mskcc_2015
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Table 2 – List of Notations used in the study and their meaning 

Notation Meaning 

N Total cell number in a tissue. It remains unchanged during tissue dynamics 

r Growth rate of a particular cell. It indicates cell fitness 

d Death rate of a cell at a particular time point. Death of a cell triggers cell division 

 Mutation rate (from one cell type to another) 

T Time unit for each event 

X Number of a specific cell type at a particular time 

 Average of a number of events 

Pr [] The probability of an event happening 

 

 

 

 

 

 

 

 

 



 37 

Table 3 – Differences between the non-spatial structure and spatial structure model 

 Non-Spatial Structure Spatial Structure 

Cancer Initiation Pattern Only 3 possible patterns 

observed 

7 cancer initiation patterns 

observed (4 additional) 

Type 0 cells Population declines no matter 

the parameter combination 

Population of Type 0 depends 

on parameter combination 

Effect of fitness of Type 1 

cell, r1 on cancer recurrence 

Higher fitness of Type 1 cells 

delays cancer recurrence time 

Higher fitness of Type 1 cells 

shortens cancer recurrence 

time 

Effect of mutation rate from 

Type 0 to Type 1, 1 on 

cancer recurrence 

1 have no effect on cancer 

recurrence time 

Higher 1 shortens cancer 

recurrence time 

Proportion of Type S-1 cells 

at cancer detection 

Very high particularly at low 

r1 and low S 

Relatively very low at low r1 

and low S 
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Table 4 – Carcinogenic Profiles of colorectal cancer categories and p values of survival curves (µ values are in log10) 

 

r1 rS-1 rS d3 µ1 µS-1 µS µint p value 

COADREAD 1.0787 1.0611 6.8331 3.5176 -4.3010 -4.3665 -3.8761 -12.5436 0.8837 

Race 

Black 0.9259 0.9951 2.4288 1.7592 -2.2142 -2.4909 -3.9586 -8.6635 0.9563 

White 1.0723 0.9904 6.0739 3.5306 -3.7721 -4.0969 -3.3883 -11.2573 0.8512 

Stage 

T3 1.0622 1.0270 7.6332 3.8752 -3.3872 -3.5072 -4.3098 -11.2041 0.9734 

T4 0.9702 0.9836 7.3659 3.9276 -3.7055 -2.5178 -3.7645 -9.9872 0.9470 

Tumor 

COAD 1.0644 1.0238 6.5429 3.6314 -3.3645 -4.3768 -3.5702 -11.3116 0.7144 

READ 0.9990 0.9638 4.9616 3.4045 -2.8239 -3.8761 -3.2048 -9.9066 0.9879 

Subtype 

COAD_CIN 1.0634 1.0536 6.7611 3.3874 -3.7122 -4.4318 -4.0862 -12.2299 0.6871 

COAD_MSI 0.9922 1.0211 2.8384 2.5118 -3.3279 -3.3830 -3.4868 -10.1979 0.7654 

READ_CIN 0.9854 0.9977 4.1588 3.0714 -3.7932 -3.3536 -3.4353 -10.5817 0.9867 
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FIGURES 

Figure 1 

 

Figure 1 – The illustrative representation of our models 

(A) The different cell types in our models with its own mutation rate (µ) and fitness (r). Type K 

cells may not be applicable if only 3 mutations or less are needed for carcinogenesis. 

(B) In a normal tissue composed of Type 0, Type 1, Type K, and Type S-1 cells, cell turnover is 

conducted according to the Moran process, and the number of cells is kept constant. If a Type S 

cell emerges, it proliferates without limit and can be detected and primed for surgery when the 

cancer cell number reaches 109. 

(C) At surgical intervention, all the Type S cells are resected while the number of Type 0, Type 1, 

Type K (if present) and Type S-1 cells remaining in a tissue are preserved. The time until the next 

Type S population reaches 109 is measured as time to recurrence. 

(D) The spatial structure integration in the model accounts for the positional relation between a 

cell poised to die and the possible cells that can divide to replace the dead cells. 
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Figure 2 

 

Figure 2 – Schematic description of the Moran and Branching Process. 

In the Moran process, tissue turnover is in a state of equilibrium where cell division = cell death 

and cell number remain unchanged. In Branching process, cell division outnumbers cell death and 

cell number increases over time. 
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Figure 3 

 

Figure 3 - Patterns of tissue composition at cancer initiation 

(A) Simulation studies without spatial structure show three patterns of cancer initiation. For each 

pattern, black, blue, green and red curves indicate Type 0, Type 1, Type S-1 and Type S cells, 

respectively. Each parameter set was simulated in triplicate (Joined, dashed, and long-dashed lines). 

(B) Panel showing several patterns of tissue composition and time to detection using combination 

of various parameter sets. Cell type “Dominance” indicates >90% of a particular cell type at cancer 

detection. “Co-dominance” refers to 2 cell populations with >40% or 3 cell populations with >30% 

at cancer detection. t denotes cancer detection time and are grouped based on relative length. 

Parameter values used are: N = 1,000;  d = ds = 1.0;  r0 = 1.0;  r1 = 0.75, 1.00 and 1.25; rS-1= 0.75, 

1.00 and 1.25; rS = 1.5; 1 = 0.001 and 0.01; S-1 = 0.000001, 0.00001, 0.0001, 0.001 and 0.01; S 

= 0.001 and 0.01. 

Note: Mutation rate, 1, does not impact the results and is not shown.  

(113) 
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Figure 4 

 

 

Figure 4 Panel A – Extended cancer initiation pattern for low r1/ rS-1 and low r1/normal rS-1 

at different mutation rates 
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Figure 4 Panel B – Extended cancer initiation pattern for low r1/high rS-1 and normal r1/low 

rS-1 at different mutation rates 
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Figure 4 Panel C – Extended cancer initiation pattern for normal r1/ rS-1 and normal r1/high 

rS-1 at different mutation rates 
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Figure 4 Panel D – Extended cancer initiation pattern for high r1/low rS-1 and high r1/normal 

rS-1 at different mutation rates 
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Figure 4 Panel E – Extended cancer initiation pattern for high r1/high rS-1 at different 

mutation rates 
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Figure 5 

 

Figure 5 Panel A – Dependence of cellular fitness on recurrence time. 

Simulation studies without spatial structure are shown. Mean values obtained from 100 to 1,000 

simulations are shown by dots, and standard deviations are indicated by bars. Pie charts in the 

panels indicate the proportion of Type S-1 cells in a normal tissue at the time of first treatment. 

Blue, orange and grey represent small (XS-1 ≤ 0.1N), intermediate (0.1N < XS-1 ≤ 0.9N), and large 

(XS-1 > 0.9N) proportion of Type S-1 cells, respectively. 

Standard parameter values used in (A–F)  are d = ds = 1.0, r0 = 1.0, r1 = 1.0, rS-1 = 1.2, rS = 1.0, 1 

= 0.001 , S-1 = 0.001, S = 0.001; and N = 1,000 in (A, C and E); and N = 10,000 in (B, D and F).  

(113) 
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Figure 5 Panel B – Dependence of mutation rates on recurrence time. 

Simulation studies without spatial structure are shown. Mean values obtained from 100 to 1,000 

simulations are shown by dots, and standard deviations are indicated by bars. Pie charts in the 

panels indicate the proportion of Type S-1 cells in a normal tissue at the time of first treatment. 

Blue, orange and grey represent small (XS-1 ≤ 0.1N), intermediate (0.1N < XS-1 ≤ 0.9N), and large 

(XS-1 > 0.9N) proportion of Type S-1 cells, respectively. 

Standard parameter values used in (G–L)  are d = ds = 1.0, r0 = 1.0, r1 = 1.0, rS-1 = 1.2, rS = 1.0, 1 

= 0.001 , S-1 = 0.001, S = 0.001; and N = 1,000 in (G, I and K); and N = 10,000 in (H, J and L).  

(113) 
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Figure 6 

 

Figure 6 - Patterns of tissue composition at cancer initiation with spatial structure 

(A) Simulation studies with spatial structure show 7 patterns of cancer initiation. For each pattern, 

black, blue, green and red curves indicate Type 0, Type 1, Type S-1 and Type S cells, respectively. 

Each parameter set was simulated in triplicate (Joined, dashed, and long-dashed lines). 

(B) Panel showing patterns of tissue composition and time to detection using combination of 

various parameter sets. The definitions of “t”, “Dominance” and “Co-dominance” are the same as 

those explained in Figure 3. 

Parameter values used are: N = 2,500;  d = ds =1.0;  r0 = 1.0;  r1 = 0.75, 1.00 and 1.25; rS-1= 0.75, 

1.00 and 1.25; rS = 1.5; 1 = 0.001 and 0.01; S-1 =  0.000001, 0.00001, 0.0001, 0.001 and 0.01; S 

= 0.001 and 0.01. (113) 
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Figure 7 

 

 

Figure 7 Panel A – Extended cancer initiation pattern with spatial structure for low r1/ rS-1 

and low r1/normal rS-1 at different mutation rates 
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Figure 7 Panel B – Extended cancer initiation pattern with spatial structure for low r1/high 

rS-1 and normal r1/low rS-1 at different mutation rates 
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Figure 7 Panel C – Extended cancer initiation pattern with spatial structure for normal r1/ 

rS-1 and normal r1/high rS-1 at different mutation rates 
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Figure 7 Panel D – Extended cancer initiation pattern with spatial structure for high r1/low 

rS-1 and high r1/normal rS-1 at different mutation rates 
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Figure 7 Panel A – Extended cancer initiation pattern with spatial structure for high r1/ rS-1 

at different mutation rates 
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Figure 8 

 

 

Figure 8 Panel A – Dependence of cellular fitness on recurrence time with spatial structure. 

Simulation results with spatial structure are shown. Mean values obtained from 100 to 1,000 

simulations are shown by dots, and standard deviations are indicated by bars. Pie charts in the 

panels indicate the proportion of Type S-1 cells in a normal tissue at the time of first treatment. 

Blue, orange and grey represent small (XS-1 ≤ 0.1N), intermediate (0.1N < XS-1 ≤ 0.9N), and large 

(XS-1 > 0.9N) proportion of Type S-1 cells, respectively. 

Standard parameter values used in (A–F)  are d = ds =1.0, r0 = 1.0, r1 = 1.0, rS-1 = 1.2, rS = 1.0, 1 

= 0.001 , S-1 =  0.001, S = 0.001; and N = 2,500 in (A, C and E); and N = 10,000 in (B, D and F). 

(113) 
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Figure 8 Panel B – Dependence of mutation rate on recurrence time with spatial structure. 

Simulation results with spatial structure are shown. Mean values obtained from 100 to 1,000 

simulations are shown by dots, and standard deviations are indicated by bars. Pie charts in the 

panels indicate the proportion of Type S-1 cells in a normal tissue at the time of first treatment. 

Blue, orange and grey represent small (XS-1 ≤ 0.1N), intermediate (0.1N < XS-1 ≤ 0.9N), and large 

(XS-1 > 0.9N) proportion of Type S-1 cells, respectively. 

Standard parameter values used in (G–L)  are d = ds =1.0, r0 = 1.0, r1 = 1.0, rS-1 = 1.2, rS = 1.0, 1 

= 0.001 , S-1 =  0.001, S = 0.001; and N = 2,500 in (G, I and K); and N = 10,000 in (H, J and L). 

(113) 
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Figure 9 

 

Figure 9 – Fitting of model-derived in silico data to published clinical data for 27 cancer 

types. 

Thousands of stochastic runs were used to obtain parameter sets that best fit survival curves of 27 

non-sarcoma cancer types. Blue curves indicate clinical data while red curves indicate simulation 

data survival curves. p values between curves are found in Table 1. 

(113) 
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Figure 10 

 

Figure 10 – Relationship between integrated mutation rate and number of mutation hits 

required for cancer initiation 

(a) Published data for number of mutational hits required for carcinogenesis (37) in some cancer 

types was plotted against corresponding integrated mutation rate (𝜇1 ∙ 𝜇𝑆−1 ∙ 𝜇𝑆) . The linear 

regression was performed, and the regression line and the p value are shown. 

(b) Using data from (a), number of mutational hits was predicted for cancer types that were not 

previously reported 

(113) 
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Figure 11 

 

Figure 11 – Proportion of pre-malignant cells for each cancer type 

60 simulations were run for each parameter set fitted from clinical data (Table 1) for each cancer 

type. The mean cell numbers for each cell type when malignant cells (Type S) reach 109 are shown 

using bars while SD are displayed as error bars. Dark-grey bars, blue bars and green bars indicate 

Type 0, Type 1 and Type S-1 cells respectively.  
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Figure 12 

(a) 

 

(a) Effect of late diagnosis on cancer recurrence time. Using the model with spatial structure, 

fitness parameter dependency was assessed for a scenario with late diagnosis where cancer 

detection was done at 1010 cells (right panel) rather than 109 cells (left panel) 

 

 



 61 

(b) 

 

(b) Effect of late diagnosis on cancer recurrence time. Using the model with spatial structure, 

mutation rate parameter dependency was assessed for a scenario with late diagnosis where 

cancer detection was done at 1010 cells (right panel) rather than 109 cells (left panel) 
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Figure 13 

 

Figure 9 – Parameter distribution of colorectal cancer dataset (COADREAD) categories 

Boxplots of several categories of colorectal cancer patients compared to the parent COADREAD 

dataset. Mutation rate,  are in log10 values while d3 values are in months. Dotted lines are purely 

for comparison / alignment purposes. 

r1 & rS-1 scale = 0.9 to 1.0; rS scale = 1.0 to 8.0; dS scale = 1.0 to 4.5;  int scale = -14 to -8  
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Figure 14 

 

Figure 14 – Survival Curves of colorectal cancer dataset (COADREAD) categories 

Survival curves (Kaplan-Meier curves) of each COADREAD category overlaid with curves 

obtained from computational simulations. Blue curves are for the clinical data while red curves are 

the simulation curves. Simulation curves are plotted based on parameter combinations in Table 4. 
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Figure 15 

 

Figure 15 – Analysis of proportion bias and genetic alterations in colorectal cancer dataset 

categories 

a. Evaluation of proportion bias in colorectal cancer datasets between blacks and whites. Blacks 

and Whites have vastly different profiles but have similar proportion of other categories. 

b. Analysis of the differences in age, total mutation burden (TMB) and aneuploidy between 

different categories. 

c, d. Genetic alteration frequency in top 10 mutated genes in colorectal cancer between categories 

with a discordant carcinogenic profile – COAD_MSI and Blacks 
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