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Chapter 1

Introduction

In this thesis we consider reaction-diffusion systems modeling “chemotaxis”. The

biological phenomenon “chemotaxis” is the directed movement of cells as response to

gradients of a chemical substance. It is pointed out that such chemotaxis processes

play an essential role in various biological contexts ([18]). In particular this thesis con-

centrates on the case that the chemotaxis process is dominated by the Weber–Fechner

law, which means we introduce signal-dependent sensitivity function (this function is

usually nonlinear).

In this thesis we deal with the following systems:

Parabolic-elliptic Keller–Segel system:⎧⎨⎩ut = Δu−∇ · (u∇χ(v)),
0 = Δv − v + u.

Parabolic-parabolic Keller–Segel system:⎧⎨⎩ut = Δu−∇ · (u∇χ(v)),
vt = Δv − v + u.

Chemotaxis system for tumor invasion:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇v),
vt = Δv + wz,

wt = −wz,
zt = Δz − z + u.
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PART I and PART II are organized to analyze the parabolic-elliptic and parabolic-

parabolic Keller–Segel systems, respectively.

In the other context, quite recently, mathematical analysis has been expected to

play an important role in medical sciences. The target of PART III is a mathematical

model for tumor invasion. We propose some chemotaxis model for tumor invasion and

apply mathematical analysis to the system.

1.1. The Keller–Segel system

1.1.1. Mathematical model

In this subsection we explain variants of the Keller–Segel system from historical

and mathematical view points.

In 1970 Keller and Segel proposed a mathematical model concerning about cell’s life

circle, especially an aggregation process. In this model “chemotaxis” plays an essential

role to induce the aggregation process of the cell. When cells are starving, cells move

towards increasing concentrations of the signal substance which is produced by cells

([54]). They start the discussion with the reaction-diffusion system consisting of four

equations, which describe cellular slime molds, chemical substance, enzymes and com-

plexes accounting for diffusion processes of them, a chemotaxis process between cells

and chemical substance, production processes of chemical substance and enzyme, and

a chemical reaction that chemical substance combines with enzyme and produces com-

plexes. By applying the Michaelis–Menten reduction law, they proposed the following

reaction-diffusion system:⎧⎨⎩ut = ∇ · (D1(u, v)∇u)−∇ · (D2(u)∇χ(v)),

vt = dvΔv − k1v
k2+v

+ f(v)u,

with nonnegative constants dv, k1 and k2, and some functions D1, D2, χ and f . Here

u(x, t) represents the population of cell and v(x, t) denotes the concentration of signal

substance at place x and time t. The cross-diffusion term −∇· (D2(u)∇χ(v)) describes
“chemotaxis”. Keller and Segel deduced some instability of constant solutions of the

system and asserted a validity of this system.

After that, Nanjundiah [73] focused on the simplified model:⎧⎨⎩ut = Δu−∇ · (u∇χ(v)),

vt = Δv − v + u,
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and gave the conjecture about blow-up phenomenon by the nonlinear stability analysis.

Nowadays in particular, the above system with χ(v) = v is usually called “classical

Keller–Segel system” or “minimal Keller–Segel system”.

Next Jäger and Luckhous [46] considered the case that the second component of

solutions is a steady state: ⎧⎨⎩ut = Δu−∇ · (u∇v),

0 = Δv − u+ 1.

This assumption is based on the experimental facts. This system is called “Jäger–

Luckhous system”.

Nagai [66] also proposed the simplified model in which the second equation is

elliptic: ⎧⎨⎩ut = Δu−∇ · (u∇χ(v)),

0 = Δv − v + u.

This system is called “Nagai model” or “parabolic-elliptic Keller–Segel system”.

In a different context, Mimura and Tsujikawa [63] introduced the following chemo-

taxis model with growth:⎧⎨⎩ut = duΔu−∇ · (u∇χ(v)) + f(u),

vt = Δv − βv + γu,

with positive constants du, dv, β and γ, and functions χ and f . From a view point of

pattern formation, they considered aggregating pattern-dynamics arising this system.

Different from Turing’s diffusion-induced instability ([101]), they pointed out the new

mechanism “chemotaxis-induced” instability. This system is usually called “Mimura–

Tsujikawa system”.

On the other hand, Biler and Naziej, and Wolansky [7, 109] proposed a mathe-

matical model describing gravitational interactions of particles:⎧⎨⎩ut = Δu−∇ · (u∇χ(v)),

0 = Δv + u.

This system looks as the simplified system of the Keller–Segel system. Furthermore a

similar system appears in modeling of burglary in residential areas ([79, 82]).
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Currently, the following generalized system is called as “Keller–Segel system” or

“chemotaxis system”:⎧⎨⎩ ut= ∇ · (A(u, v)∇u−B(u)∇C(v)) +D(u, v),

τvt= dvΔv + E(u, v),

with constants τ ≥ 0 and dv ≥ 0, and functions A, B, C, D and E. These above

systems are regarded as a variant of the Keller–Segel system. Especially in this thesis,

our interest is in the case of nonlinear signal-dependent sensitivity, which means the

function C in the above is a nonlinear function.

1.1.2. Background

Since the Keller–Segel systems were introduced, considerable attention has been

devoted to studying them mathematically, especially to analyzing behavior of solutions

([35, 37, 3]). In this subsection we recall important results on the minimal Keller–Segel

system: ⎧⎨⎩ ut = Δu−∇ · (u∇v),

τvt = Δv − v + u,
(1.1)

and give fundamental observations briefly. We remark that these facts will be compared

with the main results in this thesis.

At first Nanjundiah [73] pointed out that the cross-diffusion term −∇·(u∇v) brings
the possibility of finite-time blow-up in the sense that the first component u of solutions

blows up in finite time with respect to the norm in L∞(Ω). More precisely, Nanjundiah

considered the system ⎧⎨⎩ut = Δu−∇ · (u∇χ(v)),

vt = Δv − v + u,

and gave a conjecture that the first component u of solutions blows up in finite time

with forming δ-function singularity in both cases

χ(v) = χ0v and χ(v) = χ0 log v (χ0 : constant)

for arbitrary spacial dimension n ∈ N. After that, Childress and Percus [15] focused on

the minimal case (1.1) and claimed that the blow-up phenomenon may be dominated

by the spacial dimension n. They gave the following conjecture:
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1. If n = 1 then a solution of (1.1) exists globally.

2. If n = 2 then there exists some constant c > 0 satisfying that a solution exists

globally when
∫
Ω
u0 < 2πc; some solution of (1.1) blows up in finite time with

forming δ-function singularity when
∫
Ω
u0 > 2πc.

3. If n ≥ 3 then some solution blows up in finite time independently of the size of

the mass
∫
Ω
u0.

Here we remark that the mass
∫
Ω
u is preserved in the Neumann boundary value prob-

lem or Cauchy problem of (1.1). The study of the Keller–Segel system has developed

along the above conjecture.

As to the one dimensional setting, Osaki and Yagi [76] proved that a solution of

generalized system including (1.1) exists globally. As to the two dimensional setting,

a solution of (1.1) is global and bounded when
∫
Ω
u0 < 4π and Ω is bounded, or∫

Ω
u0 < 8π and Ω = R

2 or Ω is ball. Moreover the solution converges to the self-similar

solution (for the parabolic-elliptic case, see [46, 66, 6, 9, 68, 69]; for the parabolic-

parabolic case, see [72]). Whereas some blow-up solution with the large initial data

is constructed ([46, 7, 66]) and the profile of blow-up solutions is precisely analyzed

([34, 81, 90]). Nagai [67] showed that there are many nonradial blow-up solutions

when τ = 0. When the initial data has the critical mass, a solution exists globally and

approaches δ-function ([80, 8, 70]). As to the higher dimensional case, Winkler [108]

established existence of blow-up solutions with arbitrary mass
∫
Ω
u when n ≥ 3.

From a mathematical point of view, the analysis of (1.1) is based on the Lyapunov

functional. In the parabolic-elliptic case, setting

F(u, v) :=

∫
Ω

u log u−
∫
Ω

uv +
1

2

∫
Ω

|∇v|2 +
∫
Ω

v2,

by a simple calculation we see that

d

dt
F(u, v)(t) ≤ 0 for all t > 0.(1.2)

In the analysis of (1.1), the properties (1.2) and the mass conservation law play an

essential role (for the parabolic-elliptic case, this situation is same). Indeed, global

existence and boundedness of solutions are established by combining the above proper-

ties and the Trudinger–Moser inequality in [72]. Otherwise, based on the observation

of the Lyapunov functional, existence of bolwup solutions is established in [108].
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Finally we give some comments about the study of variants of the Keller–Segel

system. The following Keller–Segel system with nonlinear diffusion:⎧⎨⎩ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v),

vt = Δv − v + u,

with some given functions D and S, has been studied widely. The typical choice of the

functions D and S is

D(u) = um, S(u) = uq−1 with m ≥ 1, q ≥ 2.

From a view point of the competition between the spreading effect of the diffusion

term and the concentrating effect of the cross-diffusion term, a behavior of solutions

is classified by the parameters m and q ([86, 87, 89, 40, 41, 96, 39]). Moreover

since the diffusion term degenerates in the above case, it is known that uniqueness of

solutions is difficult. Recently Miura and Sugiyama [64] made a progress in this field.

1.1.3. Motivation

In this thesis we especially focus on a model of chemotaxis processes which the

movement towards higher signal concentrations is inhibited at points where these con-

centrations are high. Such saturation effects are usually accounted for by introducing

a signal-dependent sensitivity function χ(v),⎧⎨⎩ ut = Δu−∇ · (u∇χ(v)),

τvt = Δv − v + u.
(1.3)

The sensitivity function was proposed in an original work by Keller and Segel [54, 55].

The prototypical choice of χ(v) is

χ(v) = χ0 log v, χ0 > 0

based on the Weber–Fechner law of stimulus perception in the process of chemotactic

response. For an independent derivation thereof, and for several examples of systems

with related signal-dependent chemotactic sensitivity functions, we refer to [35, 77,

83].

Our motivation is that weakening the cross-diffusion term by sensitivity function

χ(v) enables us to expect that the system has a global and bounded solution inde-

pendently of the size of initial data. Here we remark that the logarithmic case is
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absolutely different from the classical case (χ(v) = v). Indeed, χ0 is invariant of the

scaling (u, v) �→ (λu, λv) (λ > 0) in the logarithmic case: Let (u, v) be a solution of

(1.3) and λ > 0. Setting U(x, t) := λu(x, t) and v(x, t) := λv(x, t), we multiply the

first equation of (1.3) by λ and deduce that

Ut = ΔU − χ0∇ · (U∇ log v).

Since

∇ log v = ∇(log v + log λ) = ∇ log V,

it follows that

Ut = ΔU − χ0∇ · (U∇ log V ).

The second equation is naturally derived as

τVt = ΔV − V + U.

Hence, as compared with the classical case, we will see below that the solution exists

globally, independently of the size of initial data. We recall some results in this context.

Here let n be the spacial dimension.

As to the parabolic-elliptic case (τ = 0), in the radially symmetric setting, we can

find a nice picture about the system with χ(v) = χ0 log v, χ0 > 0 as follows ([71]):

• If n = 2, or χ0 <
2

n−2
and n ≥ 3 then a radial solution is global and bounded.

• If χ0 >
2n
n−2

and n ≥ 3 then there exists some initial data u0 such that a radial

solution blows up in finite time.

In [71] Nagai and Senba also considered the case χ(v) = vp (p > 0). When n = 2 and

0 < p < 1 then a solution of (1.3) is global and bounded; if n ≥ 3 and p > 0 there

exists a finite time blow-up solution. Without requiring such a symmetry hypothesis,

Biler [5] showed that in the system with χ(v) = χ0 log v, χ0 > 0,

• If χ0 ≤ 1 and n = 2, or χ0 <
2
n
and n ≥ 3 then a solution is global.

Consequently, in the parabolic-elliptic system we can find the gap between radial case

and nonradial case when χ(v) = χ0 log v. Especially in the two dimensional setting, for

all χ0 > 0 a radial solution is global and bounded; on the other hand, the large time

behavior of nonradial solutions of the system with large χ0 > 0 has been posted as an

open problem. In [5, Remark 4] Biler and Velázquez gave the following conjecture:
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• The optimal range of the coefficient χ0 > 0 guaranteeing the global in time

existence is χ0 <
n+2
n−2

.

Here we give a remark about the stationary solution. The stationary problem of the

system (1.3) with χ(v) = χ0 log v is rewritten as the following elliptic equation,

0 = Δw − w + wχ0 .

It is known that the constant χ0 =
n+2
n−2

is critical in some sense ([74, 59]).

As to the parabolic-parabolic case (τ = 1), the picture seems to be more involved.

Winkler [107] proved that if χ0 <
√

2
n
, then (1.3) with χ(v) = χ0 log v possesses a

global classical solution. Boundedness of the above solution has been left as an open

problem and Winkler conjectured boundedness of solutions under the same conditions

on χ0 > 0. Also there were other approaches by considering certain weak solutions.

As to the problem (1.3) with χ(v) = χ0 log v, global existence of weak solutions was

established when χ0 <
√

n+2
3n−4

([107]). In the radially symmetric setting, Stinner and

Winkler [85] constructed certain weak solutions under the condition χ0 <
√

n
n−2

.

We summarize the above as follows:

• At least in the logarithmic case χ(v) = χ0 log v, it is expected that behavior

(global existence, boundedness and blow-up) of the corresponding solutions is

classified by the value of χ0 in both parabolic-elliptic and parabolic-parabolic

cases.

• The precise condition on χ0 in the above question has not been established until

now.

• There also remains the same question for other sensitivity functions.

1.1.4. Overview

We give an overview of PART I and PART II in this thesis. In PART I we con-

sider the following Neumann boundary value problem for parabolic-elliptic Keller–Segel

systems:

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇χ(v)) + f(u), x ∈ Ω, t > 0,

0 = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
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where Ω is a bounded domain in R
n (n ≥ 2) with smooth boundary ∂Ω, with suitably

regular and nonnegative initial data u0. At first we consider the problem (1.4) when

the sensitivity function χ satisfies

0 < χ′(v) ≤ χ0

vk

with k ≥ 1 and sufficiently small χ0 > 0, and f ≡ 0. Global existence and boundedness

of solutions to (1.4) will be established in Chapter 3 (which is based on Fujie–Winkler–

Yokota [29]). The cornerstone of this work is uniform-in-time lower bound for v, which

will be established in Section 2.2. In virtue of this estimate, we derive Lp-estimate for

u directly apart from using the Lyapunov functional. In Chapter 4 (which is originated

from Fujie–Yokota [30]) we apply the above method to the generalized system (1.4)

with growth term f(u) satisfying

λ1 − μ1u ≤ f(u) ≤ λ2 − μ2u

with positive constants λ1, λ2, μ1 and μ2. Moreover Chapter 5 (which is grounded on

Fujie–Winkler–Yokota [28]) is devoted to analyzing the system with logistic source. In

this chapter we focus on the case

χ(v) = χ0 log v and f(u) = ru− μu2

and by the dampening effect of the logistic source we establish global existence and

boundedness of solutions under some conditions on the parameters. The mathematical

challenge is on excluding mass loss.

Finally, we have another point of view in Chapter 6 (which is based on Fujie–Senba

[26]). We restrict our eyes to local-in-space estimates in the two dimensional setting. In

light of localizing, we succeed in establishing a local-in-space energy estimate instead

of the Lyapunov functional. Due to this estimate, global existence and boundedness

in (1.4) will be established when the sensitivity function is sufficiently smooth and

satisfies

χ′ > 0 and χ′(s) → 0 as s→ ∞.

Especially, this result gives an answer to the Biler–Velázquez conjecture in the two

dimensional setting. Moreover we note that in the radial setting the above decaying

condition is the essential condition for global existence. This strategy can be applied

to the fully parabolic case. In Fujie–Senba [27] global existence and boundedness in

the parabolic-parabolic Keller–Segel system are established under some conditions.
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PART II deals with the following Neumann boundary value problem of parabolic-

parabolic Keller–Segel system:

(1.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇χ(v)), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where Ω is a bounded domain in R
n (n ≥ 2) with smooth boundary ∂Ω, with suitably

regular and nonnegative initial data u0 and v0. In Chapter 7 (which is originated from

Fujie [21]) we consider the case χ(v) = χ0 log v. This chapter solves the open problem

of uniform-in-time boundedness of solutions for χ0 <
√

n
2
, which was conjectured by

Winkler [107]. The uniform-in-time lower bound for v (Section 2.3) is the key. Next,

we consider the strongly singular sensitivity case in Chapter 8 (which is grounded on

Fujie–Yokota [31]). Global existence and boundedness will be established when the

sensitivity function satisfies that

0 < χ′(s) ≤ χ0

vk

with χ0 > 0 and k > 1. Furthermore, in Chapter 9 (This work is based on Fujie–

Nishiyama–Yokota [25]) we consider a quasilinear parabolic-parabolic Keller–Segel sys-

tem, in which the first equation is

ut = ∇ · (D(u)∇u− S(u)∇ log v)

with given functions D and S. We will establish global existence and boundedness in

the above problem under some conditions on the functions D and S.

1.2. Mathematical model for tumor invasion

It is well known that solid tumor brings about various phenomena, for example,

angiogenesis, invasion and metastasis. Recently, it becomes much more important to

make the mechanisms of such life phenomena clear by utilizing the mathematical theory

because it gives us one method to control them from a mathematical viewpoint.

In the past two decades, a large variety of mathematical models describing tumor

invasion phenomena has been developed by focusing on different aspects. Besides

models purely based on reaction-diffusion equations ([32]), most of these models at
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their core assume taxis mechanisms which are of haptotaxis type, meaning that the

respective attractant is non-diffusible (see e.g. [13] and [2] or also the discussion in

[24]).

In [13] Chaplain and Anderson proposed the following mathematical model:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
nt = ∇ · (Dn(n, f)∇n)− λ∇ · (n∇f),

ft = −R(m, f),

mt = DmΔm+ P (n, f)−G(n, f,m),

(1.6)

where n, f andm describe the densities of tumor cells, the extracellular matrix, denoted

by ECM from now on, and the matrix degrading enzyme, denoted by MDE from now

on, respectively. We explain each term in the following:

(1) The coefficient Dn(n, f) of the random motility of tumor cells is given by the

function of n and f in general. As the typical example of Dn, we give

Dn(n, f) = D1 +
D2e

n

1 + en
+

D3e
−f

1 + e−f
> D1 (D1, D2, D3 > 0 : constants),

which is increasing with respect to n but decreasing with respect to f . Phe-

nomenologically, tumor cells cannot move freely when its density is small or the

density of ECM is large. Actually, we are able to consider f as the order param-

eter describing the state of ECM. When the value of f is large, the state of ECM

is complete, so, tumor cells cannot move freely. Conversely, the state of ECM

with small value of f means that ECM is resolved by MDE and as a result tumor

cells can move freely.

(2) λ > 0 is a sensibility coefficient of the haptotaxis of tumor cells.

(3) ECM is resolved by the following irreversible biochemical reaction with MDE:

(1.7) ECM+MDE −→ C1 + C2 + · · ·+ Ck +MDE,

where Cj, j = 1, 2, . . . , k, are some substances. Hence R(m, f) = αmf is given

as the typical example of R, where α > 0 is the biochemical reaction velocity in

(1.7).

(4) P (n, f) implies the production of MDE. Since MDE is secreted by tumor cells,

P (n, f) = βn is given as the typical example of P , where β > 0 is the production

rate of MDE per a tumor cell.
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(5) G(n, f,m) implies the decay of MDE. Since MDE is an enzyme, it does not

decrease by the biochemical reaction with ECM in view of (1.7). However it

has the natural decay property. Hence G(n, f,m) = γm is given as the typical

example of G, where γ > 0 is the natural decay rate of MDE.

1.2.1. Background and motivation

The model (1.6) gives us the idea of the control method of tumor invasion from a

mathematical viewpoint. Since ECM has an influence on the random motility and the

haptotaxis of tumor cells and is resolved by the biochemical reaction with MDE, we

can control the behavior of tumor cells by controlling its reaction. Roughly speaking, if

an inhibitor to the biochemical reaction between ECM and MDE is developed, we can

control the degradation of ECM by the reaction between the inhibitor and MDE from

a mathematical viewpoint. Actually, in [13] they introduced the density of inhibitor

denoted by u and proposed the other model, in which the following equation is added

to (1.6):

ut = DuΔu−H(m,u),

as well as the term −H(m,u) is added in the kinetic equation of m, where H(m,u) is

a nonnegative function coming from chemical reaction between m and u.

On the other hand, in [17, 43, 92] the authors proposed another control method

where the role of a heat shock protein, denoted by HSP from now on, is taken into

consideration. In [92] Szymańska et al. pointed out the fact that a certain HSP has

an influence on Dn(n, f) and λ. Then they denoted by I = I(t) the quantity of the

HSP at time t and proposed the kinetic equation of n, in which Dn(n, f) and λ are

replaced by DnI for some constant Dn > 0 and λI, respectively. Using their model,

we can control the behavior of tumor cells by controlling the quantity of such HSP.

As to a mathematical analysis for (1.6), C. Morales-Rodrigo [65] showed local

existence and uniqueness of solutions, while in [49, 50, 51, 52] the authors established

global existence in a more general setting, but they modified the equation by adding the

subdifferential of the indicator function and so they required the constraint condition

that n + f ≤ 1. Especially, in [51] Kano and Ito showed existence of global-in-time

solutions for the case that Dn(n, f) and λ∇ · (n∇f) are replaced with Dn(x, t, f) and

∇ · (λ(x, t)n∇f), respectively. However, they did not succeed in showing uniqueness

of solutions to (1.6).

Hence one of the main purpose in this thesis is to prove not only existence but also

uniqueness of solutions to (1.6) with another modification.
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Analytical results on the Chaplain–Anderson model (1.6), essentially containing

certain memory-type evolution problems as subsystems, are yet quite fragmentary, so

far mainly concentrating on issues such as global existence and boundedness ([62],

[65], [84], [91], [94], [102]); more detailed answers have been given only in certain

special cases ([20], [36], [48], [60]). After all, certain global existence results can be

achieved for such haptotaxis systems even when expanded to more realistic models

([14]) by including additional mechanisms ([93], [95], [97], [98], [99]). So one of the

main purpose in this thesis is also to establish asymptotic stability in some modified

Chaplain–Anderson model.

1.2.2. Overview

PART III is devoted to analyzing the chemotaxis model for tumor invasion model:

(1.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇v), x ∈ Ω, t > 0,

vt = Δv + wz, x ∈ Ω, t > 0,

wt = −wz, x ∈ Ω, t > 0,

zt = Δz − z + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

w(x, 0) = w0(x), z(x, 0) = z0(x), x ∈ Ω,

where Ω is a bounded domain in R
n (n ≤ 3) with smooth boundary ∂Ω, with suitably

regular and nonnegative initial data. In Chapter 10 (which is based on Fujie–Ito–

Yokota [24]), we propose the above chemotaxis model and establish existence and

uniqueness of local solutions to this model. In this chapter we prove existence of

solutions by applying the Banach fixed point theorem to the corresponding integral

equations.

In Chapter 11 (which is grounded on Fujie–Ito–Winkler–Yokota [23]) it is shown

that for any choice of nonnegative and suitably regular initial data, the problem (1.8)

possesses a global solution which is bounded. Moreover it is proved that these solutions

approach a certain spatially homogeneous equilibrium.
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Chapter 2

Tool box

2.1. Properties of the Neumann heat semigroup

In this section we collect some known facts concerning the Laplacian in Ω supple-

mented with homogeneous Neumann boundary condition.

The following lemma is proved in the same way as in [33, pp.32–40].

Lemma 2.1 (Neumann Laplacian). For q ∈ (1,∞) let Δ denote the realization of the

Laplacian in Lq(Ω) with domain

D(Δ) :=
{
w ∈ W 2,q(Ω)

∣∣∣ ∂w
∂ν

= 0 on ∂Ω
}
.

Then the operator −Δ+1 is sectorial and possesses closed fractional powers (−Δ+ 1)θ,

θ ∈ (0, 1), with dense domain D((−Δ+ 1)θ). Moreover, if m ∈ {0, 1}, p ∈ [1,∞] and

q ∈ (1,∞), then there exists a constant cm,p > 0 such that for all w ∈ D((−Δ+ 1)θ),

‖w‖Wm,p(Ω) ≤ cm,p‖(−Δ+ 1)θw‖Lq(Ω),(2.1)

provided that m < 2θ and m− n
p
< 2θ − n

q
.

Next we give important estimates for the Neumann heat semigroup. The estimates

(i) and (ii) are obtained by a general result for sectorial operators (see [33, Theorem

1.4.3]). The estimate (iii) is a special case of [104, Lemma 1.3 (iv)]. The estimate (v)

is also established in [38, Lemma 2.1]. We give a proof of (iv).

Lemma 2.2 (Lp-estimate for the Neumann heat semigroup (with divergence)). Let

p ∈ (1,∞). Denote by Δ the Laplacian in Lp(Ω) as in Lemma 2.1. Let θ ∈ (0, 1).

Then the following (i)-(v) hold :
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(i) There exists a constant C1 > 0 such that for all ϕ ∈ Lp(Ω),

‖(−Δ+ 1)θetΔϕ‖Lp(Ω) ≤ C1 t
−θ‖ϕ‖Lp(Ω) for all t > 0.

(ii) There exist C2 > 0 and ν1 > 0 such that for all ϕ ∈ Lp(Ω),

‖(−Δ+ 1)θet(Δ−1)ϕ‖Lp(Ω) ≤ C2 t
−θe−ν1t‖ϕ‖Lp(Ω) for all t > 0.

(iii) There exist constants C3 > 0 and ν2 > 0 such that for all ϕ ∈ (C∞
0 (Ω))n,

‖etΔ∇ · ϕ‖Lp(Ω) ≤ C3(1 + t−
1
2 )e−ν2t‖ϕ‖Lp(Ω) for all t > 0.

Accordingly, for all t > 0 the operator etΔ∇· admits a unique extension to all

of (Lp(Ω))n which, again denoted by etΔ∇·, satisfies the above estimate for all

ϕ ∈ (Lp(Ω))n. In particular, if 0 < t < 1, then for all ϕ ∈ (Lp(Ω))n,

‖etΔ∇ · ϕ‖Lp(Ω) ≤ C4t
− 1

2 e−ν2t‖ϕ‖Lp(Ω),

where C4 := 2C3.

(iv) Let r ∈ (1,∞]. Then there exists C5 > 0 such that for all ϕ ∈ (C1(Ω))
n
fulfilling

ϕ · ν = 0 on ∂Ω it holds that

‖etΔ∇ · ϕ‖L∞(Ω) ≤ C5t
− 1

2
− n

2r ‖ϕ‖Lr(Ω) for all t > 0.

(v) There exists ν3 > 0 such that for ε > 0 there exists cε > 0 such that for all

ϕ ∈ (C∞
0 (Ω))n,

‖(−Δ+ 1)θetΔ∇ · ϕ‖Lp(Ω) ≤ cεt
−θ− 1

2
−εe−ν3t‖ϕ‖Lp(Ω) for all t > 0.

Accordingly, for all t > 0 the operator (−Δ+ 1)θetΔ∇· admits a unique extension

to all of (Lp(Ω))n which, again denoted by (−Δ+ 1)θetΔ∇·, satisfies the above

estimate for all ϕ ∈ (Lp(Ω))n.

Proof. We give a proof to (iv). By known smoothing properties of (etΔ)t≥0, there exists

c1 > 0 such that for all ψ ∈ C∞
c (Ω),

‖∇etΔψ‖Lr′ (Ω) ≤ c1t
− 1

2
−n

2
(1− 1

r′ )‖ψ‖L1(Ω) for all t > 0,
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where r′ ∈ [1,∞) is such that 1
r
+ 1

r′ = 1. By the duality characterization of the norm in

L∞(Ω) � (L1(Ω))�, and by density of C∞
c (Ω) in L1(Ω), we thus obtain on integrating

by parts and using the self-adjointness of etΔ in L2(Ω) that

‖etΔ∇ · ϕ‖L∞(Ω) = sup

ψ∈C∞
c (Ω)

‖ψ‖L1(Ω)≤1

∣∣∣∣ ∫
Ω

(etΔ∇ · ϕ) · ψ
∣∣∣∣

= sup

ψ∈C∞
c (Ω)

‖ψ‖L1(Ω)≤1

∣∣∣∣ ∫
Ω

ϕ · ∇etΔψ
∣∣∣∣

≤ ‖ϕ‖Lr(Ω) · sup

ψ∈C∞
c (Ω)

‖ψ‖L1(Ω)≤1

‖∇etΔψ‖Lr′ (Ω)

≤ ‖ϕ‖Lr(Ω) · c1t− 1
2
−n

2
(1− 1

r′ ) for all t > 0.

Since 1− 1
r′ =

1
r
, this proves the estimate (iv).

2.2. Lower bound in an elliptic equation

In this section we will establish a pointwise lower bound in the Neumann problem

for the Helmholtz equation, and this estimate gives a lower bound for the second

component of solutions to the parabolic-elliptic Keller–Segel system. The following

lemma provides a quantitative estimate on positivity of solutions to the Neumann

problem for the Helmholtz equation with nonnegative inhomogeneity having given norm

in L1(Ω).

Lemma 2.3. Let Ω ⊂ R
n (n ∈ N) be a bounded domain. Let w ∈ C0(Ω) be a

nonnegative function such that w 
≡ 0. If z ∈ C2(Ω) is a solution of⎧⎪⎨⎪⎩
−Δz + z = w, x ∈ Ω,

∂z

∂ν
= 0, x ∈ ∂Ω,

then there exists some constant c > 0 such that

z ≥ c

∫
Ω

w > 0 in Ω.

Proof. Due to the positivity of the Green function to the Helmholtz equation (see [42,

Theorem 18.2]), the proof is completed.

17



We will apply the above lemma to the Keller–Segel system. Let (u, v) be a classical

solution in Ω× (0, T ) of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇χ(v)), x ∈ Ω, t > 0,

0 = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Then this system evidently preserves the norm of the first solution component u in

L1(Ω). By Lemma 2.3, we can thereby estimate v from below according to

inf
x∈Ω

v(x, t) ≥ c

∫
Ω

u(x, t) dx(2.2)

= c‖u0‖L1(Ω)

=: γ for all t ≥ 0.

This lower bound is a cornerstone of analyzing the Keller–Segel system with sensitivity

function χ(v), especially the case that the function χ′(v) has singularity at v = 0. The

constant γ > 0 above appears in the condition for global existence of solutions to the

Keller–Segel system (Chapter 3).

Moreover if we assume the convexity of the domain Ω, we can represent the constant

explicitly. As a preparation for Lemma 2.5, we establish a pointwise estimate for the

Neumann heat semigroup. We will generalize [36, Lemma 3.1] to multi-dimension.

The proof builds on [36, Lemma 3.1] but needs some modification. We give a rigorous

proof.

Lemma 2.4. Let (etΔ)t≥0 be the Neumann heat semigroup in a convex bounded domain

Ω ⊂ R
n (n ∈ N). Then the following inequality holds for all nonnegative z ∈ C0(Ω):

etΔz ≥ 1

(4πt)
n
2

e−
(diamΩ)2

4t

∫
Ω

z in Ω for all t > 0,(2.3)

where diamΩ := maxx,y∈Ω |x− y|.
Proof. We first prepare a set of functions approximating z ∈ C0(Ω). For λ > 0 we

define

Ω + λ := {x+ λy | x ∈ Ω, y ∈ R
n, |y| < 1},
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and we define the following outward nonincreasing radial symmetric function set,

S :=

{
ϕ ∈ C∞

c (Rn)

∣∣∣∣ϕ ≥ 0, suppϕ ⊂ Ω + λ, there exists x0 ∈ Ω such that

ϕ(x0 + y) = ϕ(x0 + |y|z) for all y ∈ R
n and z ∈ R

n, |z| = 1,

and
∂ϕ

∂x1
(x0 + μe1) ≤ 0 for all μ > 0

}
,

where e1 is a unit vector (1, 0, ..., 0) in R
n. Note that for all ϕ ∈ S there exists x0 ∈ Ω

satisfying
∂ϕ

∂xj
(x0 + μej) ≤ 0 for all μ > 0, j = 1, ..., n.

Since ϕ is an outward nonincreasing radial function and Ω is convex, the maximum

principle yields that

etΔϕ ≥ etΔCϕ in Ω for all t ≥ 0,(2.4)

where u = etΔCϕ is the solution of the following Cauchy problem:⎧⎨⎩ut = Δu x ∈ R
n, t > 0,

u(x, 0) = ϕ(x) x ∈ R
n.

(Step 1) In this step we prove that all ϕ ∈ S satisfies a modification of (2.3). Using

the explicit representation formula for etΔCϕ, we can estimate that

(etΔCϕ)(x) =
1

(4πt)
n
2

∫
Ω+λ

e−
(x−y)2

4t · ϕ(y) dy

≥ 1

(4πt)
n
2

e−
(diam (Ω+λ))2

4t

∫
Ω+λ

ϕ(y) dy for all x ∈ Ω

due to the fact suppϕ ⊂ Ω + λ. In virtue of (2.4) we see that for all ϕ ∈ S,

(etΔϕ)(x) ≥ 1

(4πt)
n
2

e−
(diam (Ω+λ))2

4t

∫
Ω+λ

ϕ(y) dy for all x ∈ Ω.(2.5)

(Step 2) We approximate arbitrary nontrivial and nonnegative z ∈ C0(Ω). For

N ∈ N (N ≥ 2) fixed, we can construct ϕx,δ ∈ S (x ∈ Ω, δ > 0) such as

ϕx,δ =

{
1 in Bδ− δ

N
(x),

0 in R
n \Bδ(x).
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Since z is a uniformly continuous function in Ω, for all ε > 0 we can choose sufficiently

small δ > 0 satisfying

if |x− y| < δ then |z(x)− z(y)| < ε for all x, y ∈ Ω.(2.6)

Firstly we fix some point x1 ∈ Ω and then we confirm Bδ(x1) ⊂ Ω + λ by assuming

δ > 0 is sufficiently small. Now we can pick up points xi ∈ Ω and δi = δ (i = 2, ...,m1)

satisfying the following property: For all i, j = 1, ...,m1,

Bδi(xi) ⊂ Ω + λ, Bδi(xi) ∩ Bδj(xj) = ∅ (i 
= j)(2.7)

and

Bδ(y) ∩
( m1⋃
i=1

Bδi(xi)

)

= ∅ for all y ∈ Ω \ {x1, ..., xm1}.

Next we pick up

xm1+1 ∈ Ω \K1 :=

m1⋃
i=1

(Bδi(xi) ∩ Ω) such that B δ
2
(xm1+1) ⊂ Ω + λ.

Proceeding similarly as above, we can choose points xi ∈ Ω \ K1 and δi = δ
2
(i =

m1 + 1, ...,m2) satisfying (2.7) and

B δ
2
(y) ∩

( m2⋃
i=1

Bδi(xi)

)

= ∅ for all y ∈ (Ω \K1) \ {xm1+1, ..., xm2}.

Here let us define

K2 :=

m2⋃
i=1

(Bδi(xi) ∩ Ω).

Inductively we can define the points {xi} and the sequence {K
}
∈N such as

K
 :=

m�⋃
i=1

(Bδi(xi) ∩ Ω), K1 ⊂ K2 ⊂ ... ⊂ K
 ⊂ K
+1 ⊂ ..., and

|Ω \K
| → 0 as �→ ∞.

Moreover we also define

L
,N :=

m�⋃
i=1

(B
δi− δi

N

(xi) ∩ Ω)

and we remark that for each � ∈ N it follows that

|K
 \ L
,N | → 0 as N → ∞.
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By (2.6) we have for all � ∈ N,

z + ε ≥
m�∑
i=1

z(xi)ϕxi,δi ≥ z − ε in L
,N .

Thus by linearity (2.5) yields that

etΔz ≥ etΔ
( m�∑

i=1

z(xi)ϕxi,δi − ε

)
(2.8)

=

m�∑
i=1

z(xi)e
tΔ(ϕxi,δi)− ε

≥
m�∑
i=1

z(xi)
1

(4πt)
n
2

e−
(diam (Ω+λ))2

4t

∫
Ω+λ

ϕxi,δi(y) dy − ε

≥ 1

(4πt)
n
2

e−
(diam (Ω+λ))2

4t

∫
Ω+λ

z − ε|Ω + λ| − ε in L
,N .

Here we fix t > 0 and x ∈ Ω. Since the function etΔz is uniformly continuous, then

for all θ > 0 there exists some κ > 0 such that

|etΔz(y)− etΔz(x)| < θ for all y ∈ Bκ(x0).

Moreover in view of the construction of L
,N , it follows that for all y ∈ Ω and η > 0

there exist some �0 ∈ N and N0 ∈ N such that

Bη(y) ∩ L
0,N0 
= ∅.

Indeed, if η > δ
2�0−1 then this situation contradicts the construction of L
,N . Therefore

for all θ > 0 there exist some � ∈ N, N ∈ N and x0 ∈ L
,N such that

|etΔz(x0)− etΔz(x)| < θ.

After that, combining (2.8) and the above implies that for all t > 0,

etΔz ≥ 1

(4πt)
n
2

e−
(diam (Ω+λ))2

4t

∫
Ω+λ

z − ε|Ω + λ| − ε in Ω.

Finally we can pick up sufficiently small λ and ε, and thus the desired inequality is

established.

We will give an improvement of Lemma 2.3 under the assumption of the convexity

of the domain Ω.
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Lemma 2.5. Let that Ω ⊂ R
n (n ∈ N) be a convex bounded domain. Let w ∈ C0(Ω)

be a nonnegative function such that w 
≡ 0. If z ∈ C2(Ω) is a solution of⎧⎪⎨⎪⎩
−Δz + z = w, x ∈ Ω,

∂z

∂ν
= 0, x ∈ ∂Ω,

then

z ≥
(∫ ∞

0

1

(4πt)
n
2

e−(t+
(diamΩ)2

4t
) dt

)
·
∫
Ω

w > 0 in Ω.

Proof. By the representation of resolvents via semigroups and Lemma 2.4, we have

(I −Δ)−1w =

∫ ∞

0

e−tetΔw dt

≥
(∫ ∞

0

1

(4πt)
n
2

e−(t+
(diamΩ)2

4t
) dt

)
·
∫
Ω

w.

This completes the proof.

Therefore under the convexity of Ω, we can choose the constant γ explicitly as

follows:

inf
x∈Ω

v(x, t) ≥ ‖u0‖L1(Ω)

∫ ∞

0

1

(4πt)
n
2

e−(t+
(diamΩ)2

4t
) dt(2.9)

=: γ for all t ≥ 0.

2.3. Lower bound in a parabolic equation

In this section we give a quantitative lower estimate for solutions to the fully

parabolic Keller–Segel system. As a preparation for this estimate, let us derive a

pointwise lower bound in the Neumann problem for some parabolic equation. The

mass conservation plays a key role in the proof.

Lemma 2.6. Let Ω ⊂ R
n (n ∈ N) be a bounded domain and let w ∈ C0(Ω× [0, T )) be

a nonnegative function such that
∫
Ω
w(·, t) = ∫

Ω
w(·, 0) (t ∈ [0, T )) and z0 ∈ C0(Ω) is

positive in Ω. If z ∈ C2,1(Ω× (0, T )) ∩ C0(Ω× [0, T )) is a classical solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
zt = Δz − z + w in Ω× (0, T ),

∂z

∂ν
= 0 on ∂Ω× (0, T ),

z(·, 0) = z0 in Ω,
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then there exists η > 0 such that

inf
x∈Ω

z(x, t) ≥ η > 0 for all t ∈ (0, T ),

where η depends only on z0, ‖w(0)‖L1(Ω) and Ω.

Proof. First by the maximum principle and the positivity of z0 > 0 in Ω we have

z(t) ≥ min
x∈Ω

z0(x) · e−t > 0 for all t ≥ 0.

Now fix τ > 0 such that 2τ ∈ [0, T ]. Then it follows that

z(t) ≥ min
x∈Ω

z0(x) · e−2τ =: η1 > 0 for all t ∈ [0, 2τ ].

Next, we denote the fundamental solution U(t, x; s, y) to the following boundary prob-

lem: ⎧⎪⎨⎪⎩
zt = Δz − z in Ω× (0, T ),

∂z

∂ν
= 0 on ∂Ω× (0, T ).

(2.10)

Due to the positivity of the fundamental solution (see [42, Theorem 10.1]), there exists

some constant c0 such that

U(s+ τ, x; s, y) = U(τ, x; 0, y) ≥ c0 > 0 for all x, y ∈ Ω, s > 0,

where we used the semigroup property (see [42, Theorem 8.1 and (8.6)]). Here we

remark that the constant c0 > 0 is independent of s > 0. Moreover, we recall that

the fundamental solution (t, x) → U(t, x; s, y) is a solution to the problem (2.10). By

regarding U(s+ τ, x; s, y) as an initial data, the maximal principle implies that

U(t, x; s, y) ≥
(
min
x∈Ω

U(s+ τ, x; s, y)

)
e−(t−(s+τ))(2.11)

≥ c0e
−(t−(s+τ)) for all x, y ∈ Ω, t > s+ τ.

By using the fundamental solution U(t, x; s, y), z is represented as follows (see [42,

Theorem 9.1]):

z(x, t) =

∫
Ω

U(t, x; 0, y)z0 dy +

∫ t

0

(∫
Ω

U(t, x; s, y)w(s, y) dy

)
ds.
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Due to the nonnegativity of U(t, x; s, y) (see [42, Theorem 8.3]), it follows that∫
Ω

U(t, x; 0, y)z0 dy ≥ 0 for all x, y ∈ Ω, t > 0.

We will calculate the integral term. Using (2.11), we have∫ t

0

(∫
Ω

U(t, x; s, y)w(s, y) dy

)
ds ≥

∫ t−τ

0

(∫
Ω

U(t, x; s, y)w(s, y) dy

)
ds

≥
∫ t−τ

0

(∫
Ω

c0e
−(t−(s+τ))w(s, y) dy

)
ds

= c0‖w0‖L1(Ω)

∫ t−τ

0

e−(t−(s+τ)) ds.

Changing variables with σ = t− s yields that∫ t

0

(∫
Ω

U(t, x; s, y)w(s, y) dy

)
ds ≥ c0‖w0‖L1(Ω)

∫ t

τ

eτ−σ dσ

≥ c0‖w0‖L1(Ω)(1− eτ−t)

≥ c0‖w0‖L1(Ω)(1− e−τ ) for all t > 2τ.

Hence we see that

z(t) ≥ c0‖w0‖L1(Ω)(1− e−τ ) =: η2 > 0 for all t > 2τ.

Therefore we have z(t) ≥ min{η1, η2} =: η for all t ≥ 0. This completes the proof.

Let (u, v) be a classical solution in Ω× (0, T ) to the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇χ(v)), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

Then by Lemma 2.6 there exists η > 0 such that

inf
x∈Ω

v(x, t) ≥ η > 0 for all t ≥ 0,(2.12)

where η depends only on v0, ‖u0‖L1(Ω) and Ω.
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We remark that if we assume convexity of the domain Ω then the latter half of the

proof of Lemma 2.6 will be simplified. Indeed, the representation formula of z, the

maximal principle, Lemma 2.4 and the assumption
∫
Ω
w(t) =

∫
Ω
w(0) imply that

z(t) = et(Δ−1)z0 +

∫ t

0

e(t−s)(Δ−1)w(s) ds

≥
∫ t

0

1

(4π(t− s))
n
2

e−
(
(t−s)+ (diamΩ)2

4(t−s)

)
·
(∫

Ω

w(x, s) dx

)
ds

= ‖w(0)‖L1(Ω) ·
∫ t

0

1

(4πr)
n
2

e−
(
r+

(diamΩ)2

4r

)
dr

≥ ‖w(0)‖L1(Ω) ·
∫ τ

0

1

(4πr)
n
2

e−
(
r+

(diamΩ)2

4r

)
dr =: η2 > 0 for all t ∈ [τ,∞).

2.4. Short course on parabolic equations

We give some definitions and recall several standard results of parabolic equations.

Throughout this section, we assume that the domain Ω ⊂ R
n (n ∈ N) is bounded and

has a smooth boundary ∂Ω. We use the following notation:

QT := Ω× (0, T ),

ΓT := {(x, t) | x ∈ ∂Ω, t ∈ [0, T ]} ∪ {(x, t) | x ∈ Ω, t = 0}.

2.4.1. The Schauder estimates in linear parabolic equations

In this subsection we recall the interior Schauder estimate and the global Schauder

estimate.

Throughout this subsection, we assume that there exists some ν > 0 such that

νξ2 ≤
n∑

i,j=1

aij(x, t, y)ξjξj ≤ νξ2

for all ξ = (ξ1, · · · , ξn) ∈ R
n.

Lemma 2.7 (c.f. [58, Theorem 4.9]). Suppose that � > 0 is a nonintegral number. Let

ai,j, ai, a, f ∈ C
, �
2 (Ω× [0, T ]). Let u ∈ C
, �

2 (Ω× [0, T ]) be a solution of the following

parabolic equation,

∂u

∂t
=

n∑
i,j=1

aij(x, t)uxixj +
n∑
i=1

ai(x, t)uxi + a(x, t)u+ f(x, t).
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Then for all Ω′ ⊂⊂ Ω and η > 0, the solution u belongs to C
+2, �
2
+1(Ω × [0, T ]) and

there exists some constant c > 0 such that

‖u‖
C�+2, �2+1(Ω′×[η,T ])

≤ c
(
‖f‖

C�, �2 (Ω′×[0,T ])
+ ‖u‖C(Ω′×[0,T ])

)
.

Next we proceed to the global Schauder estimate in the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
=

n∑
i,j=1

aij(x, t)uxixj +
n∑
i=1

ai(x, t)uxi

+a(x, t)u+ f(x, t), x ∈ Ω, t > 0,

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(2.13)

Lemma 2.8 ([57, Theorem IV.5.3]). Suppose that � > 0 is a nonintegral number. Let

ai,j, ai, a ∈ C
, �
2 (Ω × [0, T ]). Then for any f ∈ C
, �

2 (Ω × [0, T ]) and u0 ∈ C
+2(Ω)

satisfying the compatibility condition of order [ 
+1
2
]:

∂ku(x, t)

∂tk
|t=0 = 0 for all k = 1, 2, ...,

[
�+ 1

2

]
,

then the problem (2.13) has a unique solution belonging to the class C
+2, �
2
+1(Ω× [0, T ])

and there exists some constant c > 0 such that

‖u‖
C�+2, �2+1(Ω×[0,T ])

≤ c
(
‖f‖

C�, �2 (Ω×[0,T ])
+ ‖u0‖C�+2(Ω)

)
.

2.4.2. Regularity properties in quasi-linear parabolic equations

In this subsection we consider regularity of solutions to the following problem:⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
=

n∑
i,j=1

aij(x, t, u)uxixj − b(x, t, u, ux), x ∈ Ω, t > 0,

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0.

(2.14)

We obtain an estimate of ∇u, assuming that

max
QT

|u| ≤M

with some constant M > 0.
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Throughout this subsection, we will suppose that aij and b are sufficiently smooth

to satisfy the following conditions: for all (x, t) ∈ QT and |y| ≤ M there exist some

positive constants ν and μ such that

νξ2 ≤
n∑

i,j=1

aij(x, t, y)ξjξj ≤ νξ2,(2.15)

∣∣∣∣∂aij(x, t, y)∂y

∣∣∣∣ , ∣∣∣∣∂aij∂x

∣∣∣∣ ≤ μ,(2.16)

|b(x, t, y, p)| ≤ μ(1 + p2),(2.17)

|bp|(1 + |p|) + |by|+ |bt| ≤ μ(1 + p2),(2.18)

|aijt|, |aijyy|, |aijyt|, |aijyx|, |aijxt| ≤ μ.(2.19)

We have the following estimate.

Lemma 2.9 ([57, Theorem V.7.2]). Let u0 ∈ C2(Ω). Suppose that aij(x, t, u) and

b(x, t, u, p) satisfy (2.15)-(2.19). Let u ∈ C2,1(QT ) be a classical solution of (2.14) with

maxQT
|u| ≤M . Then u has the following estimate:

max
QT

|∇u| ≤M1,

where M1 > 0 depends only on ‖u(x, 0)‖C2(Ω), M , ν and μ from (2.15)-(2.19).

Finally we recall the regularity result. To state the result we add the following

condition:

−yb(x, t, y, p) ≤ c0p
2 + c1y

2 + c2, (x, t) ∈ QT \ ΓT(2.20)

with some positive constants c0, c1 and c2.

Lemma 2.10 (c.f. [57, Theorem V.7.4]). Let u ∈ C2,1(QT ) be a classical solution of

(2.14). Assume that u satisfies maxQT
|u| ≤ M with some M > 0. Suppose that the

following conditions (a) and (b) are fulfilled :

(a) aij and b satisfy (2.15)-(2.20).

(b) For all (x, t) ∈ QT , |y| ≤ M , and |p| ≤ M1 where M1 is from Theorem 2.9,

the functions aij are Hölder continuous with some exponent β > 0 in the vari-

able x and b is Hölder continuous with some exponent β > 0 in the variable x,

respectively.

Then u belongs to C2+β,1+β
2 (Ω× [0, T ]).
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PART I:

PARABOLIC-ELLIPTIC

KELLER–SEGEL SYSTEM

⎧⎨⎩ut = Δu−∇ · (u∇χ(v)),
0 = Δv − v + u.





Chapter 3

Global existence and boundedness

in a parabolic-elliptic Keller–Segel

system with signal-dependent

sensitivity

3.1. Problem and results

In this chapter we concern with the questions of global existence and boundedness

in the parabolic-elliptic Keller–Segel system

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇χ(v)), x ∈ Ω, t > 0,

0 = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bounded domain in R
n (n ≥ 2) with smooth boundary ∂Ω. We assume

that the initial data u0 satisfies

u0 ∈ C0(Ω), u0 ≥ 0 and u0 
≡ 0.(3.2)

As for the chemotactic sensitivity function, we assume that

(3.3) χ ∈ C2+ω
loc ((0,∞)) with some ω ∈ (0, 1), and χ′ > 0.

From a mathematical point of view, in this context the boundedness topic appears

to be quite challenging. We recall some known results related to this problem. In
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[103, 107], the corresponding Neumann problem for the fully parabolic Keller–Segel

system

(3.4)

⎧⎨⎩ut = Δu−∇ · (u∇χ(v)), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,

was studied. In [103], global existence and boundedness of classical solutions to (3.4)

with 0 < χ′(v) ≤ χ0

(1+αv)k
with some α > 0 and k > 1, were proved for any χ0 > 0. On

the other hand, in [107], global existence of classical solutions to (3.4) with χ(v) =

χ0 log v was proved when χ0 <
√

2
n
; moreover, if χ0 <

√
n+2
3n−4

, global existence of weak

solutions is established. Later, in [85] certain weak solutions of (3.4) in the radially

symmetric setting have been constructed with χ(v) = χ0 log v when χ0 <
√

n
n−2

,

in particular allowing for arbitrarily large χ0 when n = 2. Recently, Manásevich-

Phan-Souplet [61] studied global existence and boundedness in a related system with

additional dampening kinetic terms in the case n = 2 for any χ0 ∈ R, but only for initial

data for which the distribution of the attractant is sufficiently close to some explicit

homogeneous state. As for the parabolic-elliptic system (3.1) with this particular choice

of χ, that is, for

(3.5)

⎧⎨⎩ut = Δu−∇ ·
(
u∇(χ0 log v)

)
, x ∈ Ω, t > 0,

0 = Δv − v + u, x ∈ Ω, t > 0,

with homogeneous Neumann boundary conditions, Biler [5] proved global existence of

weak solutions under the condition n = 2 and χ0 ≤ 1, or n ≥ 3 and χ0 <
2
n
; their

boundedness, however, is left as an open problem. Moreover, as noted in [5, Proof

of Theorem 2], the proof given there “cannot be applied to other sublinear sensitivity

functions, it heavily depends on a particular structure of the system (3.5), e.g., on the

relation Δ(log v) = v−1Δv − v−2|∇v|2.” Independently, Nagai and Senba [71] studied

radially symmetric solutions of (3.5), and they showed that solutions are global and

remain bounded when either n ≥ 3 and χ0 <
n
n−2

, or n = 2 and χ0 > 0 is arbitrary,

whereas if n ≥ 3 and χ0 >
2n
n−2

and
∫
Ω
u0|x|2 dx is sufficiently small, the solution of (3.5)

will blow up in finite time. Concerning nonradial solutions, the boundedness question

even for the particular system (3.5) appears to be an open problem.

Correspondingly, it is the purpose of the present chapter to derive a rather general

condition on χ which ensures global existence and boundedness of solutions to (3.1).

Assuming that

(3.6) χ′(s) ≤ χ0

sk
, s ∈ [γ,∞),

32



we will obtain the following (cf. Theorem 3.7):

• If k = 1 and χ0 <
2
n
, then (3.1) possesses a unique global bounded classical

solution.

• If k > 1 and χ0 <
2
n
· kk

(k−1)k−1γ
k−1, then (3.1) possesses a unique global bounded

classical solution.

Here the constant γ > 0 is defined in (2.2); especially under the assumption of convexity

of the domain Ω, the constant γ > 0 is given in (2.9):

γ = ‖u0‖L1(Ω)

∫ ∞

0

1

(4πt)
n
2

e−(t+
(diamΩ)2

4t
) dt > 0,

where diamΩ := maxx,y∈Ω |x − y|. We firstly remark that our result for k = 1 goes

somewhat beyond that given in [5] in that it provides classical solutions, rather than

weak solutions, and moreover it asserts their boundedness, thus ruling out any blow-up

phenomenon in infinite time. Secondly, unlike in [5] our proof does not depend on any

particular structure of the system (3.1) with χ(v) = χ0 log v. Finally, if we assume the

convexity of the domain Ω we observe that γ depends on diamΩ in such a way that

γ → ∞ as diamΩ → 0 (see (2.9)); in particular, in the case k > 1 for each χ0 > 0

and any choice of the mass m > 0, our above condition will be satisfied for any Ω with

sufficiently small diameter and all nonnegative u0 ∈ C0(Ω) having mass
∫
Ω
u0 = m.

Before going into details, let us emphasize the main idea underlying our proof. First,

testing the first equation in (3.1) by up−1, p > 1, and applying Young’s inequality in a

standard manner, we obtain the basic inequality

d

dt

∫
Ω

up ≤ −p(p− 1)

2

∫
Ω

up−2|∇u|2 + p(p− 1)

2

∫
Ω

up(χ′(v))2|∇v|2.

In order to control the rightmost term here appropriately, we shall multiply the second

equation in (3.1) by up−1ϕ(v) for arbitrary ϕ ∈ C1((0,∞)) to see upon integration that∫
Ω

up
(
− ϕ′(v)− C1ϕ

2(v)
)
|∇v|2 ≤ C2

∫
Ω

up−2|∇u|2 + C3

∫
Ω

up

holds with certain positive constants C1, C2 and C3. Now if ϕ is such that the Riccati

inequality
p(p− 1)

2
(χ′(v))2 ≤ −ϕ′(v)− C1ϕ

2(v)

holds, then combining the above two inequalities will yield a uniform-in-time estimate

for
∫
Ω
up(x, t) dx for any finite p > 1. Applying this to sufficiently large p will finally

33



allow us to derive a corresponding estimate with respect to the norm in L∞(Ω) and

conclude.

This chapter is organized as follows. Local existence of solution will be asserted in

Section 3.2, whereas Section 3.3 is devoted to Lp-boundedness of solutions to (3.1) and

thereby forms the main part of this chapter. Finally, the statement and the proof of

the main result in Theorem 3.7 will be given in Section 3.4.

3.2. Local existence

In this section we prove local existence of classical solutions to (3.1). The arguments

used here are based on [103]. The key point of the proof is the lower bound for v (2.2).

We use the Banach fixed point theorem in a suitable space in which functions preserve

L1-norm.

Proposition 3.1. Let u0 and χ be as in (3.2) and (3.3), respectively. Then there exist

Tmax ≤ ∞ (depending only on ‖u0‖L∞(Ω)) and exactly one pair (u, v) of nonnegative

functions

u ∈ C2,1(Ω× (0, Tmax)) ∩ C0([0, Tmax);C
0(Ω)),

v ∈ C2,0(Ω× (0, Tmax)) ∩ C0((0, Tmax);C
0(Ω))

that solves (3.1) in the classical sense. Also, the solution (u, v) satisfies the mass

identities

(3.7)

∫
Ω

u(x, t) dx =

∫
Ω

u0 for all t ∈ (0, Tmax)

and

(3.8)

∫
Ω

v(x, t) dx =

∫
Ω

u0 for all t ∈ (0, Tmax).

Moreover, if Tmax <∞, then

(3.9) lim
t→Tmax

‖u(t)‖L∞(Ω) = ∞.

Proof. Existence. The existence proof follows a standard contraction argument. With

R := ‖u0‖L∞(Ω) + 1 and T ∈ (0, 1) to be fixed below, we let X be the Banach space

defined as

X := C0([0, T ];C0(Ω))
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with norm ‖u‖X := ‖u‖L∞(Ω×[0,T ]). We claim that if T is sufficiently small, then on the

closed set

S :=

{
u ∈ X

∣∣∣∣∣ ‖u‖X ≤ R and

∫
Ω

u(t) dx =

∫
Ω

u0 for all t ∈ [0, T ]

}
,

the mapping

(3.10) Ψ(u)(t) := etΔu0 −
∫ t

0

e(t−s)Δ∇ · (u(s)∇χ(v(s))) ds, t ∈ [0, T ],

where

v(s) := (I −Δ)−1u(s),

acts as a contraction from S into itself.

To see this, we let u ∈ S and v := (I −Δ)−1u, and first deduce that Ψ(u) ∈ S

for u ∈ S. Indeed, from elementary properties of the heat semigroup we have etΔu0 ∈
C0([0, T ];C0(Ω)), and by Lemmas 2.1 and 2.2 we obtain∫ t

0

e(t−s)Δ∇ · (u(s)∇χ(v(s))) ds ∈ C0([0, T ];C0(Ω)),

whence it follows that Ψ(u) ∈ X. Next, using the known property of the Neumann

heat semigroup ∫
Ω

eτΔz =

∫
Ω

z for all z ∈ C∞
0 (Ω),

upon a completion argument it is immediate from (3.10) that

(3.11)

∫
Ω

Ψ(u) dx =

∫
Ω

u0 for all t ∈ [0, T ].

In order to prove that Ψ(u) ∈ S if T is appropriately small, we let q > n and choose

θ ∈ ( n
2q
, 1
2
). Moreover, fix ε ∈ (0, 1

2
− θ). By virtue of (2.1) with m = 0 and p = ∞,

and Lemma 2.2 (v), we see that for all t ∈ [0, T ],

‖Ψ(u)(t)‖L∞(Ω)

≤ ‖etΔu0‖L∞(Ω) + c0,∞

∫ t

0

‖(−Δ+ 1)θe(t−s)Δ∇ · (u(s)χ′(v(s))∇v(s))‖Lq(Ω) ds

≤ ‖u0‖L∞(Ω) + c0,∞cε

∫ t

0

(t− s)−θ−
1
2
−εe−ν(t−s)‖(u(s)χ′(v(s))∇v(s))‖Lq(Ω) ds.
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By Lemma 2.3 (also see Lemma 2.5) and the fact that u ∈ S preserves the L1-norm,

we have

v(x, t) = (I −Δ)−1u(x, t)

≥ γ for all x ∈ Ω, t ∈ [0, T ].

On the other hand, the maximal principle implies v(x, t) ≤ R, so that

γ ≤ v(x, t) ≤ R.

By the assumption (3.3) we obtain χ′(v) ∈ L∞(Ω× (0, T )) and

‖χ′(v)‖X ≤ ‖χ′‖L∞((γ,R)).

Then standard elliptic regularity theory ([19]) implies that for all s ∈ [0, T ],

‖u(s)χ′(v(s))∇v(s)‖Lq(Ω) ≤ ‖u(s)‖L∞(Ω)‖χ′‖L∞((γ,R))‖∇v(s)‖Lq(Ω)

≤ c′‖u(s)‖L∞(Ω)‖χ′‖L∞((γ,R))‖u(s)‖L∞(Ω)

≤ c′‖χ′‖L∞((γ,R))R
2

for some positive constant c′ > 0. Hence, we have

‖Ψ(u)(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + c0,∞cεc′‖χ′‖L∞((γ,R))R
2

∫ t

0

(t− s)−θ−
1
2
−ε ds

≤ ‖u0‖L∞(Ω) + c0,∞cεc′‖χ′‖L∞((γ,R))R
2 · T 1

2
−θ−ε for all t ∈ [0, T ].

Therefore, according to our definition of R it follows that Ψ(S) ⊂ S if we choose

T ∈ (0, 1) such that

T ≤
[

1

c0,∞cεc′‖χ′‖L∞((γ,R))R
2

] 1
1
2−θ−ε

.

We proceed to check that on further diminishing T if necessary we obtain that Ψ

is a contraction mapping. To see this, we let u, u ∈ S and

v := (I −Δ)−1u, v := (I −Δ)−1u.

Then

‖Ψ(u)(t)−Ψ(u)(t)‖L∞(Ω)

≤ c0,∞

∫ t

0

‖(−Δ+ 1)θe(t−s)Δ∇ · (u(s)χ′(v(s))∇v(s)− u(s)χ′(v(s))∇v(s))‖
Lq(Ω)

ds

≤ c0,∞cε

∫ t

0

(t− s)−θ−
1
2
−ε‖u(s)χ′(v(s))∇v(s)− u(s)χ′(v(s))∇v(s)‖Lq(Ω) ds

36



for all t ∈ [0, T ]. Since u, u ∈ S, by elliptic regularity theory we have

‖u(s)χ′(v(s))∇v(s)− u(s)χ′(v(s))∇v(s)‖Lq(Ω)(3.12)

≤ ‖u(s)‖L∞(Ω)‖χ′‖L∞((γ,R))‖∇(v(s)− v(s))‖Lq(Ω)

+ ‖u(s)‖L∞(Ω)‖χ′(v(s))− χ′(v(s))‖L∞(Ω)‖∇v(s)‖Lq(Ω)

+ ‖u(s)− u(s)‖L∞(Ω)‖χ′‖L∞((γ,R))‖∇v(s)‖Lq(Ω)

≤ c′(‖χ′‖L∞((γ,R))R + ‖χ′′‖L∞((γ,R))R
2 + ‖χ′‖L∞((γ,R))R)‖u(s)− u(s)‖L∞(Ω)

= c′(2‖χ′‖L∞((γ,R))R + ‖χ′′‖L∞((γ,R))R
2)‖u− u‖X for all s ∈ [0, T ].

Therefore we obtain

‖Ψ(u)−Ψ(u)‖X ≤ c0,∞cεc′(2‖χ′‖L∞((γ,R))R + ‖χ′′‖L∞((γ,R))R
2)T

1
2
−θ−ε‖u− u‖X ,

so that Ψ is shown to be a contraction if T is sufficiently small satisfying

T <

[
1

c0,∞cεc′(2‖χ′‖L∞((γ,R))R + ‖χ′′‖L∞((γ,R))R
2)

] 1
1
2−θ−ε

.

From the Banach fixed point theorem we thus obtain the existence of u ∈ X satisfying

u = Ψ(u).

Since the above choice of T depends only on ‖u0‖L∞(Ω), it is clear by a standard

argument that u can be extended up to some Tmax ≤ ∞, where necessarily (3.9) holds

in case where Tmax <∞.

Regularity. Since u ∈ C0([0, Tmax);C
0(Ω)), the relation v(t) = (I −Δ)−1u(t) shows

that v ∈ C0((0, Tmax);C
0(Ω)). Then due to standard parabolic regularity arguments

(Lemma 2.8), using u = Ψ(u) and semigroup techniques, we can observe that u ∈
C2,1(Ω× (0, Tmax)), v ∈ C2,0(Ω× (0, Tmax)) and (u, v) solves (3.1) in the classical sense.

It is then clear upon applying Lemma 2.3 and then the maximum principle to the

first equation in (3.1) that both v and u are nonnegative.

The properties (3.7) and (3.8) then easily follow by integrating the equations in

(3.1) in space.

Uniqueness. To prove uniqueness of solutions in the indicated class, let us assume

that (u, v) and (u, v) are the solutions on some interval [0, T ]. Setting

w := u− u and z := v − v,
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by subtracting the respective equations in (3.1), multiplying by w and z, respectively,

and integrating in space we obtain

1

2

d

dt

∫
Ω

w2 +

∫
Ω

|∇w|2 =
∫
Ω

(
uχ′(v)∇v − uχ′(v)∇v) · ∇w(3.13)

≤ 1

2

∫
Ω

|uχ′(v)∇v − uχ′(v)∇v|2 + 1

2

∫
Ω

|∇w|2,∫
Ω

|∇z|2 = −
∫
Ω

z2 +

∫
Ω

wz(3.14)

≤ −
∫
Ω

z2 +
1

2

∫
Ω

w2 +
1

2

∫
Ω

z2

≤ 1

2

∫
Ω

w2 − 1

2

∫
Ω

z2

for all t ∈ (0, T ). Because (u, v) and (u, v) are classical solutions, it follows that

‖u(t)‖L∞(Ω), ‖v(t)‖L∞(Ω), ‖v(t)‖L∞(Ω), ‖∇v(t)‖L∞(Ω) and ‖∇v(t)‖L∞(Ω) are bounded on

(0, T ). Using a similar reasoning as in (3.12), we therefore obtain

|u(t)χ′(v(t))∇v(t)− u(t)χ′(v(t))∇v(t)|2

≤
(
‖u(t)‖L∞(Ω)‖χ′‖L∞((γ,R′))|∇(v(t)− v(t))|

+ ‖u(t)‖L∞(Ω)‖χ′′‖L∞((γ,R′))|v(t)− v(t)|‖∇v(t)‖L∞(Ω)

+ |u(t)− u(t)|‖χ′‖L∞((γ,R′))‖∇v(t)‖L∞(Ω)

)2

≤ C
(
|∇z(t)|2 + 1

2
|z(t)|2 + 1

2
|w(t)|2

)
for all t ∈ (0, T ),

where

R′ := max{‖v‖X , ‖v‖X}
and C is a positive constant. Therefore, by (3.13) we find that

d

dt

∫
Ω

w2 ≤ C
(∫

Ω

|∇z|2 + 1

2

∫
Ω

z2 +
1

2

∫
Ω

w2
)

for all t ∈ (0, T ).

Combining this with (3.14) yields

d

dt

∫
Ω

w2 ≤ C

∫
Ω

w2 for all t ∈ (0, T ),

which upon integration shows that w ≡ 0 and thereby completes the proof.
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3.3. Lp-boundedness

This section is the main part in this chapter.

Lemma 3.2. Let p > 1, and let (u, v) be a classical solution of (3.1) in Ω× (0, T ) for

some T > 0. Then for all t ∈ (0, T ) it follows that

d

dt

∫
Ω

up ≤ −p(p− 1)

2

∫
Ω

up−2|∇u|2 + p(p− 1)

2

∫
Ω

up(χ′(v))2|∇v|2.

Proof. By virtue of the first equation in (3.1), we have

d

dt

∫
Ω

up = −p(p− 1)

∫
Ω

up−2|∇u|2 + p(p− 1)

∫
Ω

up−1∇u · ∇χ(v).

Noting that by Young’s inequality,

|up−1∇u · ∇χ(v)| ≤ 1

2
up−2|∇u|2 + 1

2
up(χ′(v))2|∇v|2,

we obtain the desired inequality.

Lemma 3.3. Let p > 1, and suppose that (u, v) is a classical solution of (3.1) in

Ω × (0, T ) for some T > 0. Moreover, with γ > 0 as in (2.2) (see also (2.9)), let

ϕ ∈ C1([γ,∞)) be nonnegative and such that there exists a constant M > 0 satisfying

sϕ(s) ≤M for all s ∈ [γ,∞).

Then for all t ∈ (0, T ),∫
Ω

up
(
− ϕ′(v)− B2

2
ϕ2(v)

)
|∇v|2 ≤ A2

2

∫
Ω

up−2|∇u|2 +M

∫
Ω

up,

where A and B are positive constants such that AB = p.

Proof. Using the second equation in (3.1), we see that∫
Ω

upϕ(v)(Δv − v + u) = 0.

Here from the Neumann boundary condition it follows that

−p
∫
Ω

up−1ϕ(v)∇u · ∇v −
∫
Ω

upϕ′(v)|∇v|2 −
∫
Ω

upϕ(v)v +

∫
Ω

up+1ϕ(v) = 0.

Noting that u ≥ 0 and ϕ(v) ≥ 0 imply that
∫
Ω
up+1ϕ(v) ≥ 0, we thus find that

−
∫
Ω

upϕ′(v)|∇v|2 ≤ p

∫
Ω

up−1ϕ(v)∇u · ∇v +
∫
Ω

upϕ(v)v

≤ A2

2

∫
Ω

up−2|∇u|2 + B2

2

∫
Ω

upϕ2(v)|∇v|2 +M

∫
Ω

up,

where AB = p. This proves the desired inequality.

39



Proposition 3.4. Suppose that n ≥ 2, and that u0 and χ satisfy (3.2) and (3.3),

respectively. Moreover, let γ > 0 be as in (2.2) (see also (2.9)), and let (u, v) denote

the classical solution of (3.1) in Ω× (0, Tmax) as constructed in Proposition 3.1.

(i) Assume that with some χ0 > 0 we have

χ′(s) ≤ χ0

s
, s ∈ [γ,∞).

Then for all p ∈ [1, 1
χ0
) there exists Mp > 0 such that

‖u(·, t)‖Lp ≤Mp for all t ∈ [0, Tmax).

(ii) Suppose that there exist k > 1 and χ0 > 0 such that

χ′(s) ≤ χ0

sk
, s ∈ [γ,∞).

Then for any p ∈
[
1, 1

χ0
· kk

(k−1)k−1γ
k−1

)
we can find Mp > 0 fulfilling

‖u(·, t)‖Lp ≤Mp for all t ∈ [0, Tmax).

Proof. (i) Let p ∈ (1, 1
χ0
), so that χ0 <

1
p
. By continuity, we can then pick some ε > 0

such that

ε < p(p− 1) and χ0 ≤ 1

p
·
√
p(p− 1)− ε

p(p− 1)
.

Applying Lemma 3.3 to

ϕ(s) :=
1

B2s
, s > 0,

A :=
√
p(p− 1)− ε, and B :=

p√
p(p− 1)− ε

,

we obtain∫
Ω

up
(
− ϕ′(v)− B2

2
ϕ2(v)

)
|∇v|2 ≤ p(p− 1)− ε

2

∫
Ω

up−2|∇u|2 +M

∫
Ω

up.(3.15)

Moreover, computing

−ϕ′(s)− B2

2
ϕ2(s) =

1

2B2s2
, s > 0,
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we find that

p(p− 1)

2
(χ′(s))2 ≤ p(p− 1)

2
· χ0

2

s2
(3.16)

≤ p(p− 1)

2
· 1

p2
· p(p− 1)− ε

p(p− 1)
· 1

s2

=
1

2B2s2

= −ϕ′(s)− B2

2
ϕ2(s) for all s > 0.

By virtue of (3.16), we can now combine (3.15) with Lemma 3.2 to achieve the inequality

d

dt

∫
Ω

up ≤ −p(p− 1)

2

∫
Ω

up−2|∇u|2 + p(p− 1)

2

∫
Ω

up(χ′(v))2|∇v|2(3.17)

≤ −p(p− 1)

2

∫
Ω

up−2|∇u|2 +
∫
Ω

up
(
− ϕ′(v)− B2

2
ϕ2(v)

)
|∇v|2

≤ −p(p− 1)

2

∫
Ω

up−2|∇u|2 + p(p− 1)− ε

2

∫
Ω

up−2|∇u|2 +M

∫
Ω

up

= −ε
2

∫
Ω

up−2|∇u|2 +M

∫
Ω

up

for all t ∈ (0, Tmax). Now invoking the Gagliardo–Nirenberg inequality, we see that∫
Ω

up = ‖u p
2‖2L2(Ω) ≤ CGN

(
‖∇u p

2‖L2(Ω) + ‖u p
2‖

L
2
p (Ω)

)2a

‖u p
2‖2(1−a)

L
2
p (Ω)

,(3.18)

where CGN is a positive constant and

a :=
p
2
− 1

2
p
2
+ 1

n
− 1

2

∈ (0, 1).(3.19)

Since according to the mass conservation property (3.7) we have

‖u p
2 (·, t)‖

2
p

L
2
p (Ω)

=

∫
Ω

u(x, t) dx =

∫
Ω

u0(x) for all t ∈ (0, Tmax),(3.20)

from (3.18) and (3.18) we infer the existence of some K > 0 such that∫
Ω

up ≤ K
(
‖∇u p

2‖2L2(Ω) + 1
)a
,
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so that we have ∫
Ω

up−2|∇u|2 = 4

p2

∫
Ω

|∇u p
2 |2(3.21)

≥ 4

K
1
ap2

(∫
Ω

up
) 1

a − 4

p2
.

Inserting (3.21) into (3.17), we obtain

d

dt

∫
Ω

up ≤ − 2ε

K
1
ap2

(∫
Ω

up
) 1

a

+M

∫
Ω

up +
2ε

p2

for all t ∈ (0, Tmax). Consequently, y(t) :=
∫
Ω
up(x, t) dx satisfies

y′(t) ≤ −C1y
1
a (t) + C2y(t) + C3

with certain positive constants C1, C2 and C3. In view of (3.19), we have 1
a
> 1 and

thus a standard ODE comparison argument implies the boundedness of y on (0, Tmax).

Thus we conclude that ‖u(·, t)‖Lp(Ω) ≤ Mp < ∞ holds for all t ∈ (0, Tmax) and some

Mp > 0.

(ii) Taking any p ∈
[
1, 1

χ0
· kk

(k−1)k−1γ
k−1

)
, we have χ0 <

1
p
· kk

(k−1)k−1γ
k−1. We now take

ε > 0 and L > 0 such that

ε < p(p− 1), L < γ <
k

k − 1
L and χ0 ≤ 1

p
·
√
p(p− 1)− ε

p(p− 1)
· kk

(k − 1)k−1
Lk−1.

Applying Lemma 3.3 to

ϕ(s) :=
1

B2(s− L)
, s ≥ γ,

A :=
√
p(p− 1)− ε and B :=

p√
p(p− 1)− ε

,

we infer that∫
Ω

up
(
− ϕ′(v)− B2

2
ϕ2(v)

)
|∇v|2 ≤ p(p− 1)− ε

2

∫
Ω

up−2|∇u|2 +M

∫
Ω

up.(3.22)

Moreover, we have (
− ϕ′(s)− B2

2
ϕ2(s)

)
· s2k = 1

2B2
· s2k

(s− L)2
.
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Since the minimum value of [γ,∞) � s �→ s2k

(s−L)2 is attained at s = k
k−1

L, we have

(
− ϕ′(s)− B2

2
ϕ2(s)

)
· s2k ≥ 1

2B2
· ( k

k−1
L)

2k

( k
k−1

L− L)
2

=
1

2B2

[
kk

(k − 1)k−1
Lk−1

]2
for all s ∈ [γ,∞). Hence it follows that

p(p− 1)

2
(χ′(s))2 ≤ p(p− 1)

2
· χ0

2

s2k
(3.23)

≤ p(p− 1)

2
· 1

p2
· p(p− 1)− ε

p(p− 1)
·
[

kk

(k − 1)k−1
Lk−1

]2
· 1

s2k

=
1

2B2

[
kk

(k − 1)k−1
Lk−1

]2
· 1

s2k

≤ −ϕ′(s)− B2

2
ϕ2(s)

for any such s. Now by (3.23), we can combine (3.22) with Lemma 3.2 to see that

d

dt

∫
Ω

up ≤ −p(p− 1)

2

∫
Ω

up−2|∇u|2 + p(p− 1)

2

∫
Ω

up(χ′(v))2|∇v|2

≤ −p(p− 1)

2

∫
Ω

up−2|∇u|2 +
∫
Ω

up
(
− ϕ′(v)− B2

2
ϕ2(v)

)
|∇v|2

≤ −p(p− 1)

2

∫
Ω

up−2|∇u|2 + p(p− 1)− ε

2

∫
Ω

up−2|∇u|2 +M

∫
Ω

up

= −ε
2

∫
Ω

up−2|∇u|2 +M

∫
Ω

up

for all t ∈ (0, Tmax), from which proceeding similarly as in the case (i) we conclude

that

‖u(·, t)‖Lp ≤Mp <∞
holds for all t ∈ (0, Tmax) and some Mp > 0.

3.4. L∞-boundedness

Let us first show that when p > n
2
, Lp-boundedness in time implies L∞-boundedness

in time. Combining this result with Proposition 3.4 will prove our main theorem.
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Lemma 3.5. Let p ∈ (1, n), and let (u, v) be a classical solution of (3.1) in Ω× (0, T )

for some T > 0. Then there exists C > 0 such that

‖∇v(·, t)‖
L

np
n−p (Ω)

≤ C‖u(·, t)‖Lp(Ω) for all t ∈ (0, T ).

Proof. This follows from standard elliptic regularity theory and the Sobolev embedding

theorem ([19]).

Proposition 3.6. Let n ≥ 2, and suppose that u0 and χ are as in (3.2) and (3.3),

respectively. Let (u, v) be the classical solution of (3.1) in Ω × (0, Tmax), and assume

further that with γ > 0 given by (2.2) (see also (2.9)), which leads χ′ ∈ L∞((γ,∞)).

Then if for some p > n
2
and Mp > 0,

(3.24) ‖u(·, t)‖Lp ≤Mp for all t ∈ (0, Tmax),

then (u, v) actually is global in time, that is, Tmax = ∞, and moreover there exists

M∞ > 0 such that

(3.25) ‖u(·, t)‖L∞ ≤M∞ for all t ∈ (0,∞).

Proof. We may assume that p < n. Since p > n
2
, there exists q > n such that

1− (n− p)q

np
> 0,

which enables us to pick λ ∈ (1,∞) fulfilling

1

λ
< 1− (n− p)q

np
.

Then by the Hölder inequality and the assumption

χ′ ∈ L∞((γ,∞))

we can estimate

‖u(·, t)∇χ(v(·, t))‖Lq(Ω) ≤ ‖χ′‖L∞((γ,∞))‖u(·, t)∇v(·, t)‖Lq(Ω)

≤ ‖χ′‖L∞((γ,∞))‖u(·, t)‖Lqλ(Ω)‖∇v(·, t)‖Lqλ′ (Ω)

for all t ∈ (0, Tmax), where

λ′ :=
λ

λ− 1
,
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and hence conclude using (3.24) and Lemma 3.5 that

‖u(·, t)∇χ(v(·, t))‖Lq(Ω) ≤ c1‖u(·, t)‖Lqλ(Ω) for all t ∈ (0, Tmax)

with some c1 > 0. Again by the Hölder inequality, we thus find that

‖u(·, t)∇χ(v(·, t))‖Lq(Ω) ≤ c1‖u(·, t)‖βL∞(Ω)‖u(·, t)‖1−βL1(Ω)(3.26)

≤ c2‖u(·, t)‖βL∞(Ω) for all t ∈ (0, Tmax)

with a certain c2 > 0 and some β ∈ (0, 1).

We now let θ ∈ ( n
2q
, 1
2
) and ε ∈ (0, 1

2
− θ) and fix any T ∈ (0, Tmax). In view of (2.1)

applied to m = 0 and p = ∞ and the representation formula

u(·, t) = etΔu0 −
∫ t

0

e(t−s)Δ∇ · (u(s)∇χ(v(s))) ds for t ∈ (0, Tmax),

Lemma 2.2 (v) yields that

‖u(·, t)‖L∞(Ω)(3.27)

≤ ‖u0‖L∞(Ω) + c0,∞

∫ t

0

‖(−Δ+ 1)θe(t−s)Δ∇ · (u(s)∇χ(v(s))) ‖Lq(Ω) ds

≤ ‖u0‖L∞(Ω) + c0,∞cε

∫ t

0

(t− s)−θ−
1
2
−εe−ν(t−s)‖u(s)∇χ(v(s))‖Lq(Ω) ds

for all t ∈ (0, T ). Combining (3.27) with (3.26), we have

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + c0,∞cεc2

∫ t

0

(t− s)−θ−
1
2
−εe−ν(t−s)‖u(·, s)‖βL∞(Ω) ds

≤ ‖u0‖L∞(Ω) +
c0,∞cεc2
ν

1
2
−θ−ε

(∫ ∞

0

r−θ−
1
2
−εe−r dr

)
· sup
t∈[0,T ]

‖u(·, t)‖βL∞(Ω)

for all t ∈ (0, T ), where constant K ′ := c0,∞cεc2

ν
1
2−θ−ε

∫∞
0
r−θ−

1
2
−εe−r dr > 0 is independent

of T . Therefore we obtain

sup
t∈[0,T ]

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) +K ′
(

sup
t∈[0,T ]

‖u(·, t)‖L∞(Ω)

)β

for all T ∈ (0, Tmax). Consequently, (u, v) is a global and bounded solution since

β ∈ (0, 1).
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Theorem 3.7. Let n ≥ 2, and suppose that u0 and χ satisfy (3.2) and (3.3), respec-

tively. Moreover, assume that χ satisfies

χ′(s) ≤ χ0

sk
for all s ∈ [γ,∞),

with some k ≥ 1 and some χ0 > 0 fulfilling

χ0 <

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

n
if k = 1,

2

n
· kk

(k − 1)k−1
γk−1 if k > 1.

Then (3.1) possesses a unique global classical solution which satisfies

‖u(·, t)‖L∞ ≤M∞ for all t ∈ [0,∞)

with some constant M∞ > 0.

Proof. According to the hypothesis on χ(v), by Proposition 3.4 we can find some p > n
2

and Mp > 0 such that

‖u(·, t)‖Lp ≤Mp for all t ∈ (0, Tmax);

moreover, we have

χ′(s) ≤ χ0

γk
.

In particular, this implies that χ′ ∈ L∞((γ,∞)), so that we can apply Proposition 3.6

to complete the proof.
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Chapter 4

Global existence and boundedness

in a parabolic-elliptic Keller–Segel

system with signal-dependent

sensitivity and linear growth source

4.1. Problem and results

In this chapter we consider global existence and boundedness in the parabolic-

elliptic chemotaxis-growth system

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇χ(v)) + f(u), x ∈ Ω, t > 0,

0 = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bounded domain in R
n (n ∈ N) with smooth boundary ∂Ω. We assume

that the initial data u0 satisfies

u0 ∈ C0(Ω), u0 ≥ 0 and u0 
≡ 0.(4.2)

As for the chemotactic sensitivity function, we assume that

χ ∈ C2+ω
loc ((0,∞)) with some ω ∈ (0, 1), and χ′ > 0.(4.3)
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Also we assume that f ∈ C1([0,∞)) and there exist constants λ1, λ2, μ1, μ2 > 0 such

that

λ1 − μ1s ≤ f(s) ≤ λ2 − μ2s for all s ∈ [0,∞).(4.4)

The present work is devoted to global existence and boundedness. We remark that

existence of classical solutions of (4.1) is shown by a similar way in Proposition 3.1.

Since f(0) ≥ λ1 > 0 by (4.4), the solution of (4.1) is nonnegative.

In order to formulate our main result, given a nonnegative 0 
≡ u0 ∈ C0(Ω), let us

define a constant γf > 0 as

γf := c ·min
{
‖u0‖L1(Ω),

λ1
μ1

|Ω|
}
<∞,(4.5)

where c > 0 is a constant in (2.2). If we assume the convexity of the domain Ω, the

constant γf > 0 is also given as follows

γf = min
{
‖u0‖L1(Ω),

λ1
μ1

|Ω|
}
·
∫ ∞

0

1

(4πt)
n
2

e−(t+
(diamΩ)2

4t
) dt <∞,(4.6)

where

diamΩ := max
x,y∈Ω

|x− y|.

The constant γf marks an a priori pointwise lower bound on the solution component

v, as we shall see below. In what follows, when k = 1 we regard the value of kk

(k−1)k−1

as 1.

Theorem 4.1. Let n ∈ N, and suppose that u0, χ and f satisfy (4.2), (4.3) and (4.4),

respectively. Moreover, assume that χ satisfies

χ′(s) ≤ χ0

sk
for all s ∈ [γf ,∞),

with some k ≥ 1 and some χ0 > 0 fulfilling

χ0 <
2

n
· kk

(k − 1)k−1
γf

k−1.

Then (4.1) possesses a unique global classical solution (u, v) which satisfies

‖u(·, t)‖L∞ ≤M∞ for all t ∈ [0,∞)

with some constant M∞ > 0.
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4.2. Preliminaries

We first give an a priori pointwise lower bound on the solution component v. The

first equation in (4.1) and the condition (4.4) imply

d

dt

∫
Ω

u =

∫
Ω

f(u)

≥ λ1|Ω| − μ1

∫
Ω

u.

Integrating this inequality, we have∫
Ω

u ≥ λ1
μ1

|Ω|+ e−μ1t
(
‖u0‖L1(Ω) −

λ1
μ1

|Ω|
)

for all t ∈ (0,∞),

and then ∫
Ω

u ≥ min
{
‖u0‖L1(Ω),

λ1
μ1

|Ω|
}
.

By virtue of Lemma 2.3 (see also Lemma 2.5) we can thereby estimate v from below

as follows:

v(x, t) ≥ γf(4.7)

for all x ∈ Ω and t ∈ (0, T ), whenever (u, v) solves (4.1) in Ω× (0, T ) for some T > 0.

Here γf > 0 is a constant defined as (4.5) (see also (4.6)).

4.3. Global existence and boundedness

We first deduce Lp-boundedness of solutions to (4.1). Next let us show that Lp-

boundedness with sufficiently large p implies L∞-boundedness. Combining these results

will prove Theorem 4.1.

Lemma 4.2. Let p > 1, and suppose that (u, v) is a classical solution of (4.1) in

Ω× (0, T ) for some T > 0. Then there exist C1, C2 > 0 such that

d

dt

∫
Ω

up ≤− p(p− 1)

2

∫
Ω

up−2|∇u|2 + p(p− 1)

2

∫
Ω

up(χ′(v))2|∇v|2

+ C1

∫
Ω

up + C2 for all t ∈ (0, T ).

Proof. By virtue of the first equation in (4.1) and Young’s inequality, we have

d

dt

∫
Ω

up ≤ −p(p− 1)

2

∫
Ω

up−2|∇u|2 + p(p− 1)

2

∫
Ω

up(χ′(v))2|∇v|2 +
∫
Ω

up−1f(u).
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The condition (4.4) yields∫
Ω

up−1f(u) ≤ λ2

∫
Ω

up−1 − μ2

∫
Ω

up

≤ C1

∫
Ω

up + C2

for some constants C1, C2 > 0, and hence we obtain the desired inequality.

The next lemma is obtained in Lemma 3.3. For convenience we give the sketch of

the proof.

Lemma 4.3. Let p > 1, and suppose that (u, v) is a classical solution of (4.1) in

Ω × (0, T ) for some T > 0. Moreover, for γf > 0 given by (4.5) (see also (4.6)), let

ϕ ∈ C1([γf ,∞)) such that ϕ ≥ 0 and there exists a constant M > 0 satisfying

sϕ(s) ≤M for all s ≥ γf .

Let A and B be positive constants such that AB = p. Then∫
Ω

up
(
− ϕ′(v)− B2

2
ϕ2(v)

)
|∇v|2 ≤ A2

2

∫
Ω

up−2|∇u|2 +M

∫
Ω

up for all t ∈ (0, T ).

Sketch of the proof. Multiplying the second equation in (4.1) by upϕ(v) and using in-

tegration by parts, we see that

−
∫
Ω

upϕ′(v)|∇v|2 = p

∫
Ω

up−1ϕ(v)∇u · ∇v +
∫
Ω

upϕ(v)v −
∫
Ω

up+1ϕ(v).

Applying Young’s inequality completes the proof.

Now we give Lp-boundedness of solutions to (4.1).

Proposition 4.4. Suppose that n ∈ N, and that u0, χ and f satisfy (4.2), (4.3) and

(4.4), respectively. Let (u, v) be a classical solution of (4.1) in Ω × (0, T ) for some

T > 0. Moreover, let γf > 0 be as in (4.5) (see also (4.6)). Suppose that there exist

k ≥ 1 and χ0 > 0 such that

χ′(s) ≤ χ0

sk
for all s ≥ γf .

Then for any p ∈
[
1, 1

χ0
· kk

(k−1)k−1γf
k−1

)
there exists a constant Mp > 0 fulfilling

‖u(·, t)‖Lp ≤Mp for all t ∈ [0, T ).
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Proof. Taking any p ∈
[
1, 1

χ0
· kk

(k−1)k−1γf
k−1

)
, we have

χ0 <
1

p
· kk

(k − 1)k−1
γf

k−1.

Now we take ε > 0 and L > 0 such that

ε < p(p− 1), L < γf <
k

k − 1
L and χ0 ≤ 1

p
·
√
p(p− 1)− ε

p(p− 1)
· kk

(k − 1)k−1
Lk−1.

Applying Lemma 4.3 to

ϕ(s) :=
1

B2(s− L)
, s > γf ,

A :=
√
p(p− 1)− ε and B :=

p√
p(p− 1)− ε

,

we infer that∫
Ω

up
(
− ϕ′(v)− B2

2
ϕ2(v)

)
|∇v|2 ≤ p(p− 1)− ε

2

∫
Ω

up−2|∇u|2 +M

∫
Ω

up(4.8)

and

p(p− 1)

2
(χ′(v))2 ≤ −ϕ′(s)− B2

2
ϕ2(s) for all s ≥ γf .(4.9)

Now by (4.9), we can combine (4.8) with Lemma 4.2 to see that

d

dt

∫
Ω

up ≤ −p(p− 1)

2

∫
Ω

up−2|∇u|2 + p(p− 1)− ε

2

∫
Ω

up−2|∇u|2(4.10)

+ (M + C1)

∫
Ω

up + C2

= −ε
2

∫
Ω

up−2|∇u|2 + (M + C1)

∫
Ω

up + C2

for all t ∈ (0, T ). Since the first equation in (4.1) and the condition (4.4) yield

d

dt

∫
Ω

u =

∫
Ω

f(u)

≤ λ2|Ω| − μ2

∫
Ω

u,
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we see that for all t ∈ (0,∞),∫
Ω

u ≤ λ2
μ2

|Ω|+ e−μ2t
(
‖u0‖L1(Ω) −

λ2
μ2

|Ω|
)

≤ max
{
‖u0‖L1(Ω),

λ2
μ2

|Ω|
}
.

By virtue of this estimate, proceeding similarly as in Proposition 3.4, we can complete

the proof from (4.10).

Next, assuming Lp-boundedness, we derive L∞-boundedness.

Proposition 4.5. Let n ∈ N, and assume that u0, χ and f satisfy (4.2), (4.3) and

(4.4), respectively. Let (u, v) be the classical solution of (4.1) in Ω× (0, T ), and assume

further that χ′ ∈ L∞((γf ,∞)) with γf > 0 given by (4.5) (see also (4.6)). Then if there

exist some p > n
2
and a constant Mp > 0 such that ‖u(·, t)‖Lp ≤ Mp for all t ∈ (0, T ),

then there exists a constant M∞ > 0 independent of T such that

‖u(·, t)‖L∞ ≤M∞ for all t ∈ (0, T ).

Proof. Let p > n
2
. We may assume that p < n. We see from (4.4) that f(s) + s ≤

C(1 + s) for some C > 0. We can take q > n so that q > p. Then we have

‖f(u) + u‖Lq(Ω) ≤ C‖1 + u‖
p
q

Lp(Ω)‖1 + u‖1−
p
q

L∞(Ω)(4.11)

≤ C ′
p‖1 + u‖1−

p
q

L∞(Ω)

≤ C ′′
p + C ′′

p‖u‖
1− p

q

L∞(Ω),

where C ′
p, C

′′
p are some positive constants. Recalling the choice of q, we see that 1− p

q
∈

(0, 1). Moreover, we choose q > n satisfying further that 1− (n−p)q
np

> 0, which enables

us to pick λ ∈ (1,∞) fulfilling 1
λ
< 1 − (n−p)q

np
. The elliptic regularity (‖∇v‖

L
np
n−p (Ω)

≤
kp‖u‖Lp(Ω)) and Hölder’s inequality yield

‖u∇χ(v)‖Lq(Ω) ≤ ‖χ′‖L∞((γ,∞))‖∇v‖Lqλ′ (Ω)‖u‖Lqλ(Ω)(4.12)

≤ ‖χ′‖L∞((γ,∞))|Ω|
1

qλ′−
n−p
np ‖∇v‖

L
np
n−p (Ω)

‖u‖Lqλ(Ω)

≤ ‖χ′‖L∞((γ,∞))|Ω|
1

qλ′−
n−p
np kpMp‖u‖1−βL1(Ω)‖u‖βL∞(Ω)

≤ Kp‖u‖βL∞(Ω),
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where λ′ := λ
λ−1

, for some β ∈ (0, 1) and Kp > 0. Now let t ∈ (0, T ). Then we have

u(·, t) = et(Δ−1)u0 −
∫ t

0

e(t−s)(Δ−1)
(
∇ · (u(s)∇χ(v(s))) + (f(u(s)) + u(s))

)
ds.

Let θ ∈ ( n
2q
, 1
2
) and ε ∈ (0, 1

2
− θ). Using Lemma 2.1 and Lemma 2.2, we see that

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + c0,∞ c

∫ t

0

(t− s)−θe−ν1(t−s)‖(f(u(s)) + u(s))‖Lq(Ω) ds

+ c0,∞cε

∫ t

0

(t− s)−θ−
1
2
−εe−ν2(t−s)‖u(s)∇χ(v(s))‖Lq(Ω) ds.

Combining (4.11) and (4.12) with the above inequality implies the uniform estimate:

‖u(·, t)‖L∞(Ω) ≤ K0 +K1

(
sup
t∈[0,T ]

‖u(·, t)‖L∞(Ω)

)β

+K2

(
sup
t∈[0,T ]

‖u(·, t)‖L∞(Ω)

)1− p
q

for some K0, K1, K2 > 0. Since β, 1− p
q
∈ (0, 1), we obtain the desired inequality.

We are now in a position to prove the main result.

Proof of Theorem 4.1. As stated in Section 4.1, by a similar way in Proposition 3.1

we can show that there exist Tmax ≤ ∞ (depending only on ‖u0‖L∞(Ω)) and exactly one

pair (u, v) of nonnegative functions u ∈ C2,1(Ω× (0, Tmax))∩C0([0, Tmax);C
0(Ω)), and

v ∈ C2,0(Ω × (0, Tmax)) ∩ C0((0, Tmax);C
0(Ω)) that solves (4.1) in the classical sense.

According to the condition for k and χ0, by Proposition 4.4 we can find some p > n
2

and Mp > 0 such that ‖u(·, t)‖Lp ≤ Mp for all t ∈ (0, Tmax). Therefore Proposition 4.5

completes the proof.

Remark 4.1. Local-in-time existence of classical solutions to (4.1) can be provided

under the only lower condition: λ1 − μ1s ≤ f(s). Moreover, if the growth term f

satisfies the relaxed condition: λ1−μ1s ≤ f(s) ≤ λ2+μ2s, then we have the upper mass

estimate depending on time t similarly, and so global existence of solutions without

uniform boundedness is proved.
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Chapter 5

Global existence and boundedness

in a parabolic-elliptic Keller–Segel

system with signal-dependent

sensitivity and logistic source

5.1. Background and motivation

In this chapter we consider couples of nonnegative solutions to the parabolic-elliptic

system

(5.1)

⎧⎨⎩ ut = Δu−∇ · (u∇χ(v)) + f(u), x ∈ Ω, t > 0,

τvt = Δv − v + u, x ∈ Ω, t > 0,

in a bounded domain Ω ⊂ R
n with smooth boundary, where our primary interest is in

the case when n = 2, τ = 0,

(5.2) χ(v) := χ0 log v for v > 0 and f(u) = ru− μu2 for u ≥ 0

with constants χ0 > 0, r ∈ R and μ > 0.

In the past few years, a growing literature is concerned with generalizations of the

Keller–Segel system which account for additional effects relevant in various applica-

tions. For instance, the particular choice of the sensitivity function χ made in (5.2)

was proposed already in an original work by Keller and Segel in order to incorporate

the so-called Weber–Fechner law of stimulus perception in the process of chemotactic

response ([54], cf. also [35] and the recent modeling approach in [110]). With regard

55



to the phenomenon of blow-up, this mechanism has a certain dampening effect: In the

boundary-value problem for (5.1) with n ≥ 2, f ≡ 0, τ = 1 and χ as in (5.2), global

classical solutions exist when χ0 <
√

2
n
, whereas certain global weak solutions can be

constructed when either χ0 <
√

n+2
3n−4

, or χ0 > 0 is arbitrary, Ω is a ball and the initial

data are radially symmetric ([107, 85]). The question whether or not blow-up may

occur seems open in this context.

In the corresponding parabolic-elliptic system obtained for τ = 0, a somewhat

more complete knowledge is available, at least in the radial case: Indeed, in this setting

classical solutions are known to exist globally and to be bounded if n ≥ 2 and χ0 <
n
n−2

,

while if n ≥ 3 and χ0 > 2n
n−2

, then some exploding solutions can be found ([71]).

Without requiring such a symmetry hypothesis, global bounded solutions exist when

n ≥ 2 and χ0 <
2
n
(Chapter 3); cf. also the precedent [5], where global weak solutions

were constructed under the same assumption).

In [61], global classical solutions near homogeneous steady states are constructed

for a parabolic system related to (5.1) with χ as in (5.2) but with different zero-order

sources in both equations.

In processes where cell migration occurs at time scales comparable to those of cell

kinetic mechanisms such as proliferation and death, nontrivial choices of f in (5.1)

seem appropriate, especially with f as given by (5.2). When considered along with the

linear sensitivity χ(v) = χ0v (χ0 > 0), such logistic sources also inhibit the tendency

toward explosions: For any choice of r ∈ R, the corresponding versions of (5.1) then

possess global bounded solutions when either n = 2 and μ > 0 is arbitrary, or when

n ≥ 3 and μ > 0 is suitably large (see [75, 105] for the case τ = 1 and [100] for the

case τ = 0). Again, it remains an open question whether blow-up solutions exist e.g. if

n = 3 and μ > 0 is suitably small.

The purpose of the present chapter is to take into account the latter two effects

simultaneously by choosing both χ and f as in (5.2), concentrating henceforth on the

two-dimensional situation. To underline the particular mathematical challenge going

along with this coupling, we note that in this case the sensitivity χ(v), the derivative χ′

decays as v → +∞ and becomes unbounded near v = 0, indicating a strong influence

of chemotaxis near small signal concentrations. Accordingly, known results on the

parabolic version of (5.1) for τ = 1 and n = 2, under assumptions generalizing (5.2),

only assert global existence of classical solutions, leaving open the question whether or

not they are bounded ([1]). Here we note that in [1] the conxexity of Ω is not assumed.

As compared to this, the parabolic-elliptic case τ = 0 even seems significantly more

delicate: Whereas in the case τ = 1 a simple parabolic comparison argument can be
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applied to assert a positive a priori bound for v, locally uniformly in Ω × [0,∞), a

similar reasoning is no longer available when τ = 0. In light of the second equation

in (5.1), deriving useful positivity properties of v in that case apparently amounts to

estimating the total mass
∫
Ω
u of cells from Lemma 2.3 (see also (2.2)). However, unlike

the situation when f ≡ 0, the system (5.1) now does no longer preserve the total mass∫
Ω
u. Albeit an upper estimate for this quantity can be gained in quite a trivial manner

(cf. Lemma 5.4), it is a priori not clear whether one can conversely also derive a lower

bound for the mass, and thereby rule out phenomena of mass loss, or of extinction.

For source terms of the form f(u) = a + ru, a > 0, r ∈ R, such a lower bound can be

achieved in quite a straightforward manner, thus leading to a global existence result

in that case (Chapter 4); as for logistic sources as in (5.2) with quadratic absorption,

however, nothing seems known in this direction so far.

The goal of this chapter is to derive global existence and boundedness results for

(5.1) in the parabolic-elliptic with n = 2 and χ and f given by (5.2). More specifically,

we shall consider the problem

(5.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu− χ0∇ · (u∇ log v) + ru− μu2, x ∈ Ω, t > 0,

0 = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

in a bounded domain Ω ⊂ R
2 with smooth boundary, where χ0 > 0, r ∈ R, μ > 0 and

(5.4) u0 ∈ C0(Ω) is nonnegative with u0 
≡ 0.

In this framework, we shall first assert global existence of classical solutions without

any further restriction on the parameters.

Theorem 5.1. Let χ0 > 0, r ∈ R and μ > 0, and suppose that (5.4) holds. Then the

problem (5.3) possesses a uniquely determined global classical solution (u, v) such that

u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) and

v ∈ C2,0(Ω× (0,∞)),

and such that both u and v are positive in Ω× (0,∞).

Secondly, we shall see that if the reproduction rate r is conveniently large, then the

above solutions are even bounded.
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Theorem 5.2. Let χ0 > 0 and μ > 0, and suppose that

(5.5) r >

⎧⎨⎩
χ0

2

4
if χ0 ≤ 2,

χ0 − 1 if χ0 > 2.

Then for any choice of u0 complying with (5.4), the solution (u, v) of (5.3) is bounded

in the sense that there exists C > 0 such that

(5.6) ‖u(·, t)‖L∞(Ω) ≤ C for all t > 0

and

(5.7) ‖v(·, t)‖W 1,∞(Ω) ≤ C for all t > 0.

The above statement goes significantly beyond the results obtained in [1] for τ = 1,

where only global existence was established. Theorem 5.2 may be viewed as a starting

point for a more detailed examination of the global dynamical properties of (5.3). Since

numerical evidence suggests that the interplay between logistic sources and chemotactic

cross-diffusion may lead to chaotic behavior already in the case χ(v) = χ0v (χ0 > 0)

([78]), we expect that even more colorful dynamics due to the possibility of wave-like

solution behavior facilitated by the special form of the sensitivity in (5.2) ([55, 47]).

After proving a basic result on local existence and extensibility of classical solutions

in Section 5.2, we shall, given T > 0, derive a T -dependent positive a priori lower bound

on the mass functional
∫
Ω
u(x, t)dx for t ∈ (0, T ) in Section 5.3. This will be achieved

on the basis of the identity

d

dt

∫
Ω

log u =

∫
Ω

|∇u|2
u2

− χ0

∫
Ω

∇u
u

· ∇v
v

+ r|Ω| − μ

∫
Ω

u,

in which the action of the death term can be controlled using a previously gained upper

bound for
∫
Ω
u (Lemma 5.6).

In Section 5.4 we shall essentially use the assumed spatial two-dimensionality in

showing that the assumption that v be uniformly bounded from below by a positive

constant can be turned into a bound for u with respect to the norm in L∞(Ω) in

a quantitative manner, independent of the length of the time interval in question.

Whereas in the first step toward this we make use of a well-established approach to

estimate u in L logL(Ω) (Lemma 5.8), the second step, to be accomplished in Lemma

5.12, seems to be original in this context in that it tracks the evolution of the functional∫
Ω
up(x, t)dx for t ≥ τ > 0 and some p > 1 sufficiently close to 1 which is not, as in
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related studies, determined by the system parameters only, but will moreover strongly

dependent on both τ and the assumed value of inf v.

The outcome of Section 5.4 will first be combined with that of Section 5.3 to estab-

lish the proof of Theorem 5.1 in Section 5.5, and then once more be applied in Section

5.6 to verify Theorem 5.2. To obtain, as a preparation therefor, a time-independent

positive lower bound for
∫
Ω
u(x, t), and hence of inf v, in Lemma 5.15 we shall as-

sert that the largeness assumption (5.5) on r is sufficient to guarantee that for some

λ > 0 depending on χ0, r and μ (but not necessarily small or large), the functional∫
Ω
u−λ(x, t)dx is uniformly bounded for t > 1.

5.2. Local existence

The derivation of the following local existence and uniqueness result can be achieved

by modifying the proof of Proposition 3.1. In particular, the a priori lower estimate

for v and the extensibility criterion are modified points.

Lemma 5.3. Let χ0 > 0, r ∈ R and μ > 0, and let (5.4) hold. Then there exist

Tmax ∈ (0,∞] and a uniquely determined pair (u, v) of functions

u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) and

v ∈ C2,0(Ω× (0, Tmax)),

such that both u > 0 and v > 0 in Ω × (0, Tmax), that (u, v) solves (5.3) classically in

Ω× (0, Tmax), and such that

if Tmax <∞ then(5.8)

either lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞ or lim inf
t↗Tmax

inf
x∈Ω

v(x, t) = 0.

Proof. We let R := ‖u0‖L∞(Ω) + 1, and we set ε := γ
2
> 0 taken from (2.2). For T > 0,

we then let

X := C0([0, T ];C0(Ω))

with norm ‖u‖X := ‖u‖L∞(Ω×[0,T ]), and we claim that if T is sufficiently small, then on

the closed set

S :=
{
u ∈ X

∣∣∣ ‖u‖X ≤ R and (I −Δ)−1u(·, t) ≥ ε for all t ∈ [0, T ]
}
,

for all t ∈ [0, T ], the mapping Ψ defined by

Ψ(u)(·, t) := etΔu0 −
∫ t

0

e(t−s)Δ
{
χ0∇ ·

(u(·, s)
v(·, s)∇v(s·, )

)
+ ru(·, s)− μu2(·, s)

}
ds,
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where v(·, s) := (I −Δ)−1u(·, s) for s ∈ [0, T ], acts as a contraction from S into itself.

To see this, we let u ∈ S, and invoke the lower estimate v ≥ ε to see that for all

t ∈ [0, T ],

‖Ψ(u)(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) +
c1χ0

ε
R2T α +

∫ t

0

‖ru(·, s)− μu2(·, s)‖L∞(Ω) ds

≤ ‖u0‖L∞(Ω) +
c1χ0

ε
R2T α +

r2

4μ
T,

where α and c1 are certain positive constants. Therefore, choosing T sufficiently small

ensures that ‖Ψ(u)‖X ≤ R.

Next, in order to show that (I −Δ)−1Ψ(u)(·, t) ≥ ε for all t ∈ [0, T ], we first observe∫
Ω

Ψ(u)(·, t) ≥
∫
Ω

etΔu0 +

∫
Ω

(∫ t

0

e(t−s)Δ(ru(·, s)− μu2(·, s)) ds
)

=

∫
Ω

u0 +

∫ t

0

(∫
Ω

(ru(·, s)− μu2(·, s))
)
ds

≥
∫
Ω

u0 − μR2|Ω|T.

Thus, if T is suitably small then we have
∫
Ω
Ψ(u)(·, t) ≥ 1

2

∫
Ω
u0 for all t ∈ [0, T ]. Since

moreover Ψ(u)(·, t) belongs to C1(Ω) for any such t by the regularizing properties of

the heat semigroup, Lemma 2.3 (see also (2.2)) yields the inequality

(I −Δ)−1Ψ(u)(·, t) ≥ γ

2
= ε for all t ∈ [0, T ].

To achieve the desired contractivity property of Ψ, we let u ∈ S and u ∈ S be arbitrary.

Then there exists c2 > 0 such that

‖Ψ(u)(·, t)−Ψ(u)(·, t)‖L∞(Ω)

≤ c2χ0

(1
ε
R +

1

ε2
R2

)
T α‖u− u‖X

+

∫ t

0

‖(ru(·, s)− μu2(·, s))− (ru(·, s)− μu2(·, s))‖L∞(Ω) ds

≤ c2χ0

(1
ε
R +

1

ε2
R2

)
T α‖u− u‖X + (r + 2μR)T‖u− u‖X

for all t ∈ [0, T ]. Hence, on further diminishing T if necessary, we obtain that Ψ

indeed becomes a contraction on S, whence the Banach fixed point theorem asserts the

existence of u ∈ S fulfilling u = Ψ(u).
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Moreover u can be extended up to some Tmax ∈ (0,∞] by standard argument. Since

the above choice of T depends on ‖u0‖L∞(Ω) and ε = γ
2
only, a standard extensibility

argument warrants that u can be extended up to some maximally chosen Tmax ∈ (0,∞].

Here if Tmax <∞ and there exist constants M > 0 and ε0 > 0 satisfying

lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) < M and lim inf
t↗Tmax

∫
Ω

u(·, t) > ε0,

then we can find T1 ∈ (0, Tmax) fulfilling

‖u(·, t)‖L∞(Ω) < M for all t ∈ [T1, Tmax)

and for sufficient small δ > 0 there exists tδ ∈ [Tmax − δ, Tmax) such that∫
Ω

u(·, tδ) > ε0.

Thus we can extend u beyond Tmax, which contradicts the definition of Tmax. Since in

light of Lemma 2.3 we know that

lim inf
t↗Tmax

inf
x∈Ω

v(x, t) = 0 is equivalent to lim inf
t↗Tmax

∫
Ω

u(·, t) = 0,

this proves that Tmax satisfies (5.8).

Invoking standard parabolic regularity theory (Lemma 2.8), we see that (u, v) solves

(5.3) in the classical sense. Using the parabolic and elliptic strong maximal principles,

we also see that both u > 0 and v > 0 in Ω× (0, Tmax). Finally, uniqueness of solutions

can be derived in a way quite similar to that presented in Chapter 3, so that we may

refrain from giving details here.

Although the total mass
∫
Ω
u of cells is not necessarily conserved due to the kinetic

term in (5.3), an upper bound for this quantity can be found quite immediately.

Lemma 5.4. Let χ0 > 0, r ∈ R and μ > 0, and assume (5.4). Then

(5.9)

∫
Ω

u(x, t)dx ≤ m := max

{∫
Ω

u0 ,
r+ · |Ω|
μ

}
for all t ∈ (0, Tmax),

where r+ = max{r, 0}.
Proof. We integrate the first equation in (5.3) and use the Cauchy–Schwarz inequality

to see that for all t ∈ (0, Tmax),

d

dt

∫
Ω

u = r

∫
Ω

u− μ

∫
Ω

u2 ≤ r

∫
Ω

u− μ

|Ω|
(∫

Ω

u
)2

≤ r+

∫
Ω

u− μ

|Ω|
(∫

Ω

u
)2

Therefore, (5.9) results by invoking a straightforward ODE comparison argument.
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5.3. Excluding mass loss in finite time for arbitrary r ∈ R

As a preparation for Lemma 5.6, let us derive from the second equation in (5.3) a

bound for a weighted H1 norm of v.

Lemma 5.5. For arbitrary χ0 > 0, r ∈ R and μ > 0 and each u0 satisfying (5.4), the

solution component v satisfies

(5.10)

∫
Ω

|∇v|2
v2

≤ |Ω| for all t ∈ (0, Tmax).

Proof. Since v is positive in Ω× (0, Tmax), we may test the second equation in (5.3) by
1
v
to gain the identity

0 =

∫
Ω

1

v
·
(
Δv − v + u

)
=

∫
Ω

|∇v|2
v2

− |Ω|+
∫
Ω

u

v
for all t ∈ (0, Tmax).

As moreover u is nonnegative, this directly entails (5.10).

With this estimate at hand, we can achieve the main step toward the mass persis-

tence statement in Corollary 5.7 below.

Lemma 5.6. Let χ0 > 0, r ∈ R and μ > 0, and assume (5.4). Then there exists C > 0

such that

(5.11)
d

dt

∫
Ω

log u(x, t)dx ≥ −C for all t ∈ (0, Tmax).

Proof. Recalling that u is positive, we may multiply the first equation in (5.3) by 1
u

and integrate by parts over Ω to see that

d

dt

∫
Ω

log u =

∫
Ω

1

u
·
{
Δu− χ0∇ ·

(u
v
∇v

)
+ ru− μu2

}
(5.12)

=

∫
Ω

|∇u|2
u2

− χ0

∫
Ω

∇u
u

· ∇v
v

+ r|Ω| − μ

∫
Ω

u

for all t ∈ (0, Tmax). Here by Young’s inequality,∣∣∣∣− χ0

∫
Ω

∇u
u

· ∇v
v

∣∣∣∣ ≤ ∫
Ω

|∇u|2
u2

+
χ0

2

4

∫
Ω

|∇v|2
v2

,

and Lemma 5.5 asserts that

χ0
2

4

∫
Ω

|∇v|2
v2

≤ χ0
2

4
· |Ω|
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for all t ∈ (0, Tmax). Since moreover∫
Ω

u ≤ m for all t ∈ (0, Tmax)

according to Lemma 5.4, (5.12) implies the inequality

d

dt

∫
Ω

log u ≥ −χ0
2

4
|Ω|+ r|Ω| − μm for all t ∈ (0, Tmax),

from which (5.11) immediately follows.

Along with a straightforward use of Jensen’s inequality, the above bound for
∫
Ω
log u

now ensures that for arbitrary r ∈ R and μ > 0, finite-time extinction cannot occur.

Corollary 5.7. Let χ0 > 0, r ∈ R and μ > 0, and suppose that (5.4) holds. Then for

all τ ∈ (0, Tmax) and each T > 0 there exists C = C(τ, T ) > 0 with the property that

(5.13)

∫
Ω

u(x, t)dx ≥ C(τ, T ) for all t ∈ (τ, T̂ ),

where T̂ := min{T, Tmax}.
Proof. Again by strict positivity of u in Ω× (0, Tmax), the number

c1(τ) :=

∫
Ω

log u(x, τ)dx

is finite. Thus, if according to Lemma 5.6 we take c2 > 0 large enough such that
d
dt

∫
Ω
log u ≥ −c2 for all t ∈ (0, Tmax), then upon integration thereof we obtain that∫

Ω

log u(x, t)dx ≥
∫
Ω

log u(x, τ)dx− c2 · (t− τ)

≥ c3(τ, T ) := c1(τ)− c2 · (T − τ) for all t ∈ (τ, T̂ ).

Since from Jensen’s inequality we know that for all t ∈ (0, Tmax),∫
Ω

log u(x, t)dx = |Ω| ·
∫
Ω

log u(x, t)
dx

|Ω| ≤ |Ω| · log
{∫

Ω

u(x, t)
dx

|Ω|
}
,

this implies that ∫
Ω

u(x, t)dx ≥ |Ω| · exp
{

1

|Ω| ·
∫
Ω

log u(x, t)dx

}
≥ |Ω| · e 1

|Ω| ·c3(τ,T ) for all t ∈ (τ, T̂ )

and thereby proves (5.13).
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5.4. Upper estimates for u in terms of lower bounds for v

The goal of this section is to establish a bound for u with respect to the norm in

L∞(Ω) in quantitative dependence on a supposedly known pointwise lower bound for

v. Our main outcome in this direction, to be provided by Lemma 5.13, will be essential

to the derivation both of the global existence result for arbitrary r ∈ R in Theorem

5.1, and of the boundedness statement in Theorem 5.2.

5.4.1. An estimate for u in L logL(Ω)

We start by proving a bound for the functional
∫
Ω
u log u, crucially making use of

the two-dimensionality in the spatial setting.

Lemma 5.8. Let χ0 > 0, r ∈ R and μ > 0, and suppose that u0 complies with (5.4).

Then for all δ > 0 and each τ ∈ (0, Tmax) one can find C(δ, τ) > 0 such that if for

some T ∈ (τ, Tmax] we have

(5.14) v(x, t) ≥ δ for all x ∈ Ω and t ∈ (τ, T ),

then

(5.15)

∫
Ω

u(x, t) log u(x, t)dx ≤ C(δ, τ) for all t ∈ (τ, T ).

Proof. Once again by positivity of u, we may multiply the first equation in (5.3) by

log u and integrate by parts to obtain

d

dt

{∫
Ω

u log u−
∫
Ω

u

}
(5.16)

=

∫
Ω

log u ·
{
Δu− χ0∇ ·

(u
v
∇v

)
+ ru− μu2

}
= −

∫
Ω

|∇u|2
u

+ χ0

∫
Ω

∇u · ∇v
v

+ r

∫
Ω

u log u− μ

∫
Ω

u2 log u

for all t ∈ (0, Tmax), where by Young’s inequality,

χ0

∫
Ω

∇u · ∇v
v

≤
∫
Ω

|∇u|2
u

+
χ0

2

4

∫
Ω

u
|∇v|2
v2

.

To estimate the latter integral, we make use of (5.14) and invoke the Cauchy–Schwarz

inequality to see that

χ0
2

4

∫
Ω

u
|∇v|2
v2

≤ χ0
2

4δ2

∫
Ω

u|∇v|2

≤ χ0
2

4δ2
‖u‖L2(Ω)‖∇v‖2L4(Ω) for all t ∈ (τ, T ).
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Now since in the present two-dimensional setting we know thatW 2, 4
3 (Ω) is continuously

embedded intoW 1,4(Ω), employing standard elliptic regularity theory ([19]) we can find

c1 > 0 and c2 > 0 such that

‖∇v‖2L4(Ω) ≤ c1‖v‖2
W 2, 43 (Ω)

≤ c2‖ −Δv + v‖2
L

4
3 (Ω)

= c2‖u‖2
L

4
3 (Ω)

for all t ∈ (0, Tmax).

Here, thanks to the Hölder inequality and (5.9) we can estimate

‖u‖2
L

4
3 (Ω)

≤ ‖u‖L2(Ω)‖u‖L1(Ω) ≤ m‖u‖L2(Ω) for all t ∈ (0, Tmax),

so that in summary we have

χ0
2

4

∫
Ω

u
|∇v|2
v2

≤ c3(δ)

∫
Ω

u2 for all t ∈ (τ, T )

with c3(δ) :=
c2χ0

2m
4δ2

. Accordingly, (5.16) entails the inequality

d

dt

{∫
Ω

u log u−
∫
Ω

u

}
+

{∫
Ω

u log u−
∫
Ω

u

}
(5.17)

≤ c3(δ)

∫
Ω

u2 + (r + 1)

∫
Ω

u log u−
∫
Ω

u− μ

∫
Ω

u2 log u

for all t ∈ (τ, T ). Since the function ψ : (0,∞) → R defined by

ψ(ξ) := c3(δ)ξ
2 + (r + 1)ξ log ξ − ξ − μξ2 log ξ, ξ > 0,

has the properties ψ(ξ) → 0 as ξ → 0 and ψ(ξ) → −∞ as ξ → ∞, it is evident that

with some c4(δ) > 0 we have ψ(ξ) ≤ c4(δ) for all ξ > 0. Consequently, (5.17) shows

that y(t) :=
∫
Ω
u(x, t) log u(x, t)dx− ∫

Ω
u(x, t)dx, t ∈ (0, Tmax), satisfies

y′(t) + y(t) ≤ c4(δ)|Ω| for all t ∈ (τ, T ).

By comparison, this implies that for all t ∈ (τ, T ),

y(t) ≤ c5(δ, τ) := max

{∫
Ω

u(x, τ) log u(x, τ)dx−
∫
Ω

u(x, τ)dx , c4(δ)|Ω|
}

and hence by Lemma 5.4 we conclude that (5.15) holds with C := c5(δ, τ) +m.
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5.4.2. An estimate for u in Lp(Ω) for some p > 1

Now the essential step toward Lemma 5.13 appears to consist of finding an estimate

for u with respect to the norm in Lp(Ω) for some p > 1. In Lemma 5.12, this will be

achieved, still under the standing assumption that v ≥ δ > 0, for some p > 1 depending

on δ. In the derivation thereof, we shall need three auxiliary lemmas. The first contains

a statement which is implied by the conclusion of Lemma 5.8 in combination with a

known result on elliptic H1 regularity in the present two-dimensional case.

Lemma 5.9. Given χ0 > 0, r ∈ R and μ > 0, for any u0 satisfying (5.4), each δ > 0

and all τ ∈ (0, Tmax) we can find C(δ, τ) > 0 such that if

v(x, t) ≥ δ for all x ∈ Ω and t ∈ (τ, T )

for some T ∈ (τ, Tmax], then we have the inequality

(5.18)

∫
Ω

|∇v(x, t)|2dx ≤ C(δ, τ) for all t ∈ (τ, T ).

Proof. According to a known estimate for solutions of the Neumann boundary value

problem for the Helmholtz equation with inhomogeneities in L logL(Ω), for each L > 0

there exists c1(L) > 0 such that whenever f ∈ L2(Ω) is nonnegative with∫
Ω

f log f ≤ L,

the solution ϕ of −Δϕ+ϕ = f in Ω with ∂ϕ
∂ν

= 0 on ∂Ω satisfies
∫
Ω
|∇ϕ|2 ≤ c1(L) (see

[99]). Applying this to ϕ := v(·, t) and using Lemma 5.8 precisely yields (5.18).

Next, an application of the Riesz–Thorin theorem asserts a certain independence

of some elliptic regularity constant on the integrability parameter. As the proof will

show, the argument can easily be generalized to smoothly bounded domains in any

space dimension and summation powers varying over arbitrary compact subintervals

of (1,∞).

Lemma 5.10. There exists C > 0 such that for each q ∈ (2, 3) we have

(5.19) ‖ϕ‖W 2,q(Ω) ≤ C‖ −Δϕ+ ϕ‖Lq(Ω)

for all ϕ ∈ C2(Ω) satisfying ∂ϕ
∂ν

= 0 on ∂Ω.

Proof. For fixed i, j ∈ {1, 2}, we let Tij : L
2(Ω) + L3(Ω) → L2(Ω) + L3(Ω) be defined

by (Tijf)(x) := ( ∂2ϕ
∂xi∂xj

)(x) for f ∈ L2(Ω) + L3(Ω) and x ∈ Ω, where −Δϕ + ϕ = f in
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Ω and ∂ϕ
∂ν

= 0 on ∂Ω. Then according to standard elliptic regularity theory ([19]), Tij
is a well-defined linear operator on both L2(Ω) and L3(Ω), and there exist c2 > 0 and

c3 > 0 such that

‖Tijf‖L2(Ω) ≤ c2‖f‖L2(Ω) for all f ∈ L2(Ω) and

‖Tijf‖L3(Ω) ≤ c3‖f‖L3(Ω) for all f ∈ L3(Ω).

By the Riesz–Thorin interpolation theorem ([4]), for each q ∈ (2, 3) we thus have

‖Tijf‖Lq(Ω) ≤ cκ2c
1−κ
3 ‖f‖Lq(Ω) for all f ∈ Lq(Ω)

with κ := 6−2q
q

∈ (0, 1). Summation over i and j therefore yields (5.19).

As a final preparation for Lemma 5.12, let us make sure that also the constant

appearing in the Gagliardo–Nirenberg inequality is conveniently independent of the

involved integrability powers.

Lemma 5.11. There exists C > 0 with the property that for each q ∈ (2, 3) we have

(5.20) ‖ψ‖L2q(Ω) ≤ C‖ψ‖
1
2

W 1,q(Ω)‖ψ‖
1
2

L2(Ω) for all ψ ∈ C1(Ω).

Proof. Due to the Gagliardo–Nirenberg inequality, there exists c1 > 0 such that

(5.21) ‖z‖4L4(Ω) ≤ c1‖z‖2W 1,2(Ω)‖z‖2L2(Ω) = c1‖∇z‖2L2(Ω)‖z‖2L2(Ω) + c1‖z‖4L2(Ω)

for all z ∈ W 1,2(Ω). Given ψ ∈ C1(Ω), since q > 2 we know that z := |ψ| q2 belongs to

W 1,2(Ω) with |∇z| = q
2
|ϕ| q−2

2 |∇ψ|, so that (5.21) becomes

(5.22)

∫
Ω

|ψ|2q ≤ c1 · q
2

4

(∫
Ω

|ψ|q−2|∇ψ|2
)
·
(∫

Ω

|ψ|q
)
+ c1

(∫
Ω

|ψ|q
)2

.

Here we employ the Hölder inequality to estimate∫
Ω

|ψ|q−2|∇ψ|2 ≤
(∫

Ω

|∇ψ|q
) 2

q ·
(∫

Ω

|ψ|q
) q−2

q

and decompose the last term in (5.22) so as to obtain, using that q2

4
> 1,

(5.23)

∫
Ω

|ψ|2q ≤ c1 · q
2

4
·
{(∫

Ω

|∇ψ|q
) 2

q
+
(∫

Ω

|ψ|q
) 2

q

}
·
(∫

Ω

|ψ|q
) 2q−2

q
.

Now one more application of the Hölder inequality yields(∫
Ω

|ψ|q
) 2q−2

q ≤
(∫

Ω

|ψ|2q
) q−2

q ·
∫
Ω

|ψ|2,
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whereupon (5.23) implies that(∫
Ω

|ψ|2q
) 2

q
=
(∫

Ω

|ψ|2q
)1− q−2

q ≤ c1 · q
2

4
·
{(∫

Ω

|∇ψ|q
) 2

q
+
(∫

Ω

|ψ|q
) 2

q

}
·
∫
Ω

|ψ|2

≤ c1 · q
2

2
·
{∫

Ω

|∇ψ|q +
∫
Ω

|ψ|q
} 2

q

·
∫
Ω

|ψ|2,

because clearly a
2
q + b

2
q ≤ 2 · (a + b)

2
q for all a ≥ 0 and b ≥ 0. By recalling q < 3

and taking the 4th root here, we infer that (5.20) holds if we let C := (9c1
2
)
1
4 , for

instance.

We are now ready to derive a bound for u with respect to the norm in Lp(Ω) with

some p > 1, assuming that v is bounded from below.

Lemma 5.12. Let χ0 > 0, r ∈ R and μ > 0, and assume (5.4). Then for all δ > 0 and

any τ ∈ (0, Tmax) there exist p(δ, τ) > 1 and C(δ, τ) > 0 with the property that if

(5.24) v(x, t) ≥ δ for all x ∈ Ω and t ∈ (τ, T )

for some T ∈ (τ, Tmax], then

(5.25)

∫
Ω

up(δ,τ)(x, t) dx ≤ C(δ, τ) for all t ∈ (τ, T ).

Proof. We first invoke Lemma 5.9 to obtain c1 = c1(δ, τ) > 0 such that

(5.26) ‖∇v(·, t)‖L2(Ω) ≤ c1 for all t ∈ (τ, T ).

Moreover, an application of Lemma 5.11 and of Lemma 5.10 provides c2 > 0 and c3 > 0

such that for any choice of p ∈ (1, 2) we have

‖∇ϕ‖L2p+2(Ω) ≤ c2‖ϕ‖
1
2

W 2,p+1(Ω)‖∇ϕ‖
1
2

L2(Ω) for all ϕ ∈ C2(Ω)

and

‖ϕ‖W 2,p+1(Ω) ≤ c3‖ −Δϕ+ ϕ‖Lp+1(Ω) for all ϕ ∈ C2(Ω) satisfying ∂ϕ
∂ν

= 0 on ∂Ω,

whence

(5.27) ‖∇ϕ‖L2p+2(Ω) ≤ c4‖ −Δϕ+ ϕ‖
1
2

Lp+1(Ω)‖∇ϕ‖
1
2

L2(Ω)

for all ϕ ∈ C2(Ω) satisfying ∂ϕ
∂ν

= 0 on ∂Ω with c4 := c2
√
c3. We finally fix p = p(δ, τ) ∈

(1, 2) sufficiently close to 1 such that

(5.28)
(p− 1)χ0

2c1c
2
4

4δ2
<
μ

2
,
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and test the first equation in (5.3) against up−1 to obtain

1

p

d

dt

∫
Ω

up + (p− 1)

∫
Ω

up−2|∇u|2(5.29)

= (p− 1)χ0

∫
Ω

up−1

v
∇u · ∇v + r

∫
Ω

up − μ

∫
Ω

up+1

for all t ∈ (0, Tmax), where by Young’s inequality and (5.24),

(p− 1)χ0

∫
Ω

up−1

v
∇u · ∇v(5.30)

≤ (p− 1)

∫
Ω

up−2|∇u|2 + (p− 1)χ0
2

4

∫
Ω

up
|∇v|2
v2

≤ (p− 1)

∫
Ω

up−2|∇u|2 + (p− 1)χ0
2

4δ2

∫
Ω

up|∇v|2

for all t ∈ (τ, T ). We estimate the rightmost integral by means of the Hölder inequality

according to ∫
Ω

up|∇v|2 ≤ ‖u‖pLp+1(Ω)‖∇v‖2L2p+2(Ω),

and apply (5.27) and then (5.26) to find, recalling the second equation in (5.3), that

herein

‖∇v‖2L2p+2(Ω) ≤ c24‖ −Δv + v‖Lp+1(Ω)‖∇v‖L2(Ω)

= c24‖u‖Lp+1(Ω)‖∇v‖L2(Ω)

≤ c24c1‖u‖Lp+1(Ω)

for all t ∈ (τ, T ). In light of (5.28), (5.30) thus implies that

(p− 1)χ0

∫
Ω

up−1

v
∇u · ∇v ≤ (p− 1)

∫
Ω

up−2|∇u|2 + (p− 1)χ0
2

4δ2
· c24c1

∫
Ω

up+1

≤ (p− 1)

∫
Ω

up−2|∇u|2 + μ

2

∫
Ω

up+1 for all t ∈ (τ, T ),

so that (5.29) entails the inequality

1

p

d

dt

∫
Ω

up ≤ r

∫
Ω

up − μ

2

∫
Ω

up+1 ≤ r+

∫
Ω

up − μ

2

∫
Ω

up+1 for all t ∈ (τ, T ).

Since once more by the Hölder inequality we know that∫
Ω

up ≤ |Ω| 1
p+1

(∫
Ω

up+1
) p

p+1
,
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we therefore see that y(t) :=
∫
Ω
up(x, t)dx, t ∈ (0, Tmax), satisfies

1

p
y′(t) ≤ r+y(t)− μ

2|Ω| 1p
y

p+1
p (t) for all t ∈ (τ, T ),

and conclude by a comparison argument that

y(t) ≤ max

{∫
Ω

up(x, τ)dx ,
(2r+
μ

)p
|Ω|

}
for all t ∈ (τ, T ).

This proves (5.25).

5.4.3. An estimate for u in L∞(Ω)

By suitably adapting a well-established regularity argument to the present setting,

we can show that the above integrability property actually ensures boundedness of u

with respect to the norm in L∞(Ω).

Lemma 5.13. Let χ0 > 0, r ∈ R and μ > 0, and suppose that (5.4) is valid. Then

given δ > 0 and τ ∈ (0, Tmax), we can find C(δ, τ) > 0 such that whenever we know

that

(5.31) v(x, t) ≥ δ for all x ∈ Ω and t ∈ (τ, T )

with some T ∈ (τ, Tmax], then

‖u(·, t)‖L∞(Ω) ≤ C(δ, T ) for all t ∈ (τ, T ).

Proof. We first apply Lemma 5.12 to find p = p(δ, τ) > 1 and c1 = c1(δ, τ) > 0 such

that

(5.32) ‖u(·, t)‖Lp(Ω) ≤ c1 for all t ∈ (τ, T ).

Here we clearly may assume that p < 2, so that it is possible to fix q > 2 such that

(5.33) q ≤ 2p

2− p
,

and thereafter choose θ > 2 such that θ < q. Then thanks to (5.33) we know that

W 2,p(Ω) is continuously embedded into W 1,q(Ω), whence there exists c2 > 0 fulfilling

(5.34) ‖∇ϕ‖Lq(Ω) ≤ c2‖ϕ‖W 2,p(Ω) for all ϕ ∈ C2(Ω).
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Moreover, according to standard elliptic Lp estimates we can find c3 > 0 satisfying

‖ϕ‖W 2,p(Ω) ≤ c3‖ −Δϕ+ ϕ‖Lp(Ω)(5.35)

for all ϕ ∈ C2(Ω) satisfying ∂ϕ
∂ν

= 0 on ∂Ω, whereas Lemma 2.2 (iv) provides c4 > 0

and λ1 > 0 such that

‖etΔ∇ · ϕ‖L∞(Ω) ≤ c4
(
1 + t−

1
2
− 1

θ

)
e−λ1t‖ϕ‖Lθ(Ω)(5.36)

for all t > 0 and each ϕ ∈ C1(Ω;R2) satisfying ϕ · ν = 0 on ∂Ω,

where (etΔ)t≥0 denotes the Neumann heat semigroup on Ω. Now given T ′ ∈ (τ, T ), in

order to find an appropriate upper bound for the evidently finite number

M(T ′) := sup
t∈(τ,T ′)

‖u(·, t)‖L∞(Ω),

we define U(x, t) := u(x, t) − r+
μ

for x ∈ Ω and t ∈ [0, Tmax) and observe that then in

both cases r > 0 and r ≤ 0, U satisfies the parabolic inequality

Ut = Δu− χ0∇ ·
(u
v
∇v

)
+ ru− μu2

≤ ΔU − χ0∇ ·
(u
v
∇v

)
− r+U − μU2 for all x ∈ Ω and t ∈ (0, Tmax).

Therefore, U can be estimated from above by means of a corresponding variation-of-

constants representation according to

U(·, t) = e−r+(t−τ)e(t−τ)Δ
(
u(·, τ)− r+

μ

)
(5.37)

−χ0

∫ t

τ

e−r+(t−s)e(t−s)Δ∇ ·
(u(·, s)
v(·, s)∇v(·, s)

)
ds

−μ
∫ t

τ

e−r+(t−s)e(t−s)ΔU2(·, s)ds
=: U1(·, t) + U2(·, t) + U3(·, t) for all t ∈ (τ, Tmax),

where from the order preserving property of (etΔ)t≥0 we know that

(5.38) U3(·, t) ≤ 0 for all t ∈ (τ, Tmax),

and that

U1(·, t) ≤ e−r+(t−τ)e(t−τ)Δu(·, τ)(5.39)

≤ e−r+(t−τ)‖u(·, τ)‖L∞(Ω)

≤ ‖u(·, τ)‖L∞(Ω) for all t ∈ (τ, Tmax).
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We next use (5.36) to estimate

‖U2(·, t)‖L∞(Ω)(5.40)

≤ c4χ0

∫ t

τ

e−r+(t−s) ·
(
1 + (t− s)−

1
2
− 1

θ

)
e−λ1(t−s)

∥∥∥u(·, s)
v(·, s)∇v(·, s)

∥∥∥
Lθ(Ω)

ds

for all t ∈ (τ, Tmax), where by (5.31) and the Hölder inequality we see that∥∥∥u(·, s)
v(·, s)∇v(·, s)

∥∥∥
Lθ(Ω)

≤ 1

δ
· ‖u(·, s)‖

L
qθ
q−θ (Ω)

‖∇v(·, s)‖Lq(Ω)

≤ 1

δ
· ‖u(·, s)‖κL∞(Ω)‖u(·, s)‖1−κLp(Ω)‖∇v(·, s)‖Lq(Ω)

for all s ∈ (τ, T ) with κ := 1− p(q−θ)
qθ

∈ (0, 1), because

qθ

q − θ
=

1
1
θ
− 1

q

>
1

1
2
− 2−p

2p

=
p

p− 1
> p

thanks to (5.33) and the fact that θ > 2. Using (5.34), (5.35) and (5.32) and recalling

the definition of M(T ′) we thus infer that∥∥∥u(·, s)
v(·, s)∇v(·, s)

∥∥∥
Lθ(Ω)

≤ c2c3
δ

·Mκ(T ′) · c2−κ1 for all t ∈ (τ, T ′).

Hence, (5.37)-(5.40) show that

sup
x∈Ω

U(x, t) ≤ c5 + c6M
κ(T ′) for all t ∈ (τ, T ′)

with c5 ≡ c5(τ) := ‖u(·, τ)‖L∞(Ω) and

c6 ≡ c6(δ, τ) :=
c2−κ1 c2c3c4χ0

δ
·
∫ ∞

0

(
1 + σ− 1

2
− 1

θ

)
e−(r++λ1)σdσ

being finite due to the fact that θ > 2. As u is nonnegative, this implies that

M(T ′) ≤ r+
μ

+ sup
t∈(τ,T ′)

sup
x∈Ω

U(x, t)

≤ r+
μ

+ c5 + c6M
κ(T ′),

so that since κ < 1 we can estimate

M(T ′) ≤ max

{( r+
μ
+ c5

c6

) 1
κ
,
(
2c6

) 1
1−κ

}
for all T ′ ∈ (τ, T )

and conclude upon taking T ′ ↗ T .
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5.5. Global existence for arbitrary r > 0. Proof of Theorem 5.1

We can now proceed to a first application of the above in order to assert the

announced global existence result.

Proof of Theorem 5.1. We only need to make sure that for the existence time Tmax

of the maximally extended local solution (u, v) from Lemma 5.3 we have Tmax = ∞.

Indeed, assuming on the contrary that Tmax be finite, we could apply Corollary 5.7 and

then Lemma 2.3 (see also (2.2)) to τ := 1
2
Tmax and T := Tmax to find δ > 0 such that

(5.41) v(x, t) ≥ δ for all x ∈ Ω and each t ∈
(1
2
Tmax, Tmax

)
.

Therefore, Lemma 5.13 would yield c1 > 0 satisfying

(5.42) ‖u(·, t)‖L∞(Ω) ≤ c1 for all x ∈ Ω and each t ∈
(1
2
Tmax, Tmax

)
.

Combining (5.41) and (5.42), however, we see that this would contradict the extensi-

bility criterion (5.8) in Lemma 5.3.

5.6. Boundedness for large r. Proof of Theorem 5.2

Beyond Lemma 5.13, the proof of Theorem 5.2 will require an additional prepara-

tion, yielding a lower bound for the mass functional
∫
Ω
u which unlike the one provided

by Corollary 5.7 will be uniform with respect to t > 1. This will be gained in Lemma

5.15 and Corollary 5.16, which rely on the following weighted estimate.

Lemma 5.14. Let χ0 > 0, r ∈ R and μ > 0. Then for each λ > 0 and any initial data

fulfilling (5.4), the solution of (5.3) satisfies

(5.43)

∫
Ω

u−λ
|∇v|2
v2

≤ λ2
∫
Ω

u−λ−2|∇u|2 + 2

∫
Ω

u−λ for all t ∈ (0, Tmax).

Proof. We integrate by parts and use the second equation in (5.3) to find that∫
Ω

u−λ
|∇v|2
v2

= −
∫
Ω

u−λ∇v · ∇1

v

= −λ
∫
Ω

u−λ−1

v
∇u · ∇v +

∫
Ω

u−λ

v
Δv

= −λ
∫
Ω

u−λ−1

v
∇u · ∇v +

∫
Ω

u−λ −
∫
Ω

u1−λ

v

≤ −λ
∫
Ω

u−λ−1

v
∇u · ∇v +

∫
Ω

u−λ for all t ∈ (0, Tmax).
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Now by Young’s inequality we have

−λ
∫
Ω

u−λ−1

v
∇u · ∇v ≤ 1

2

∫
Ω

u−λ
|∇v|2
v2

+
λ2

2

∫
Ω

u−λ−2|∇u|2,

whence upon a straightforward rearrangement we obtain (5.43).

By tracking the evolution of the functional
∫
Ω
u−λ for some appropriately chosen λ >

0, we can now derive a time-independent quantitative information ensuring persistence

of u in a convenient sense.

Lemma 5.15. Let χ0 > 0 and μ > 0, and suppose that r satisfies (5.5). Then there

exists λ > 0 such that for any choice of u0 satisfying (5.4), one can find C > 0 such

that

(5.44)

∫
Ω

u−λ(x, t)dx ≤ C for all t > 1.

Proof. We first claim that thanks to the hypothesis (5.5) we can find a > 0 such that

(5.45) a < χ0

as well as

(5.46) r − a >
(χ0 − a)2

4
.

Indeed, if χ0 > 2 we may take a := χ0 − 2, so that (5.45) becomes evident and (5.46)

results from the observation that then by (5.5),

r − a = r + 2− χ0 > 1 =
(χ0 − a)2

4
.

In the case χ0 ≤ 2, we note that (5.5) implies that r > χ0
2

4
≥ χ0 − 1, whence in

particular the numbers a+ and a− given by

a± := χ0 − 2± 2
√
r + 1− χ0

are real with a− < a+, and this definition ensures that (5.46) holds for any a ∈ (a−, a+),
because for any such a we have

(χ0 − a)2 − 4(r − a) = a2 − 2(χ0 − 2)a+ χ0
2 − 4r = (a− a+)(a− a−) < 0.

Since moreover (5.5) entails that(
2
√
r + 1− χ0

)2

= 4r + 4− 4χ0 > χ0
2 + 4− 4χ0 = (χ0 − 2)2 ≥ 0
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and that hence a+ is positive, observing that a− < χ0 − 2 ≤ 0 we may fix any a > 0

fulfilling a < min{χ0, a+} to achieve that (5.45) and (5.46) are fulfilled simultaneously.

We now let

(5.47) λ :=
4a

(χ0 − a)2

and multiply the first equation in (5.3) by u−λ−1 to see that

1

λ

d

dt

∫
Ω

u−λ + (λ+ 1)

∫
Ω

u−λ−2|∇u|2(5.48)

= (λ+ 1)χ0

∫
Ω

u−λ−1

v
∇u · ∇v − r

∫
Ω

u−λ + μ

∫
Ω

u1−λ for all t > 0,

where we use the number a as a parameter in the decomposition for all t > 0,

(λ+ 1)χ0

∫
Ω

u−λ−1

v
∇u · ∇v(5.49)

= (λ+ 1)a

∫
Ω

u−λ−1

v
∇u · ∇v + (λ+ 1)(χ0 − a)

∫
Ω

u−λ−1

v
∇u · ∇v.

In the latter summand, we employ Young’s inequality to estimate

(λ+ 1)(χ0 − a)

∫
Ω

u−λ−1

v
∇u · ∇v(5.50)

≤ (λ+ 1)

∫
Ω

u−λ−2|∇u|2 + (λ+ 1)(χ0 − a)2

4

∫
Ω

u−λ
|∇v|2
v2

for all t > 0, whereas in the first expression on the right of (5.49) we apply the proof

of Lemma 5.14 to obtain, noting that a is nonnegative,

(λ+ 1)a

∫
Ω

u−λ−1

v
∇u · ∇v(5.51)

≤ −(λ+ 1)a

λ

∫
Ω

u−λ
|∇v|2
v2

+
(λ+ 1)a

λ

∫
Ω

u−λ for all t > 0.

In conclusion, (5.48)-(5.51) yield the inequality

1

λ

d

dt

∫
Ω

u−λ ≤
{
(λ+ 1)(χ0 − a)2

4
− (λ+ 1)a

λ

}
·
∫
Ω

u−λ
|∇v|2
v2

−
{
r − (λ+ 1)a

λ

}
·
∫
Ω

u−λ + μ

∫
Ω

u1−λ for all t > 0,
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where
(λ+ 1)(χ0 − a)2

4
− (λ+ 1)a

λ
= 0

due to the definition (5.47) of λ. Observing that (5.47) in conjunction with (5.46) also

warrants that

c1 := r − (λ+ 1)a

λ
= r − a− a

λ
= r − a− (χ0 − a)2

4

is positive, we thus obtain that

1

λ

d

dt

∫
Ω

u−λ + c1

∫
Ω

u−λ ≤ μ

∫
Ω

u1−λ for all t > 0.

Now if λ ≤ 1, we may use the Hölder inequality along with (5.9) to find that

μ

∫
Ω

u1−λ ≤ μ|Ω|λ ·
(∫

Ω

u
)1−λ

≤ c2 := μ|Ω|λm1−λ for all t > 0,

whereas if λ > 1 then an application of Young’s inequality yields c3 > 0 such that

μ

∫
Ω

u1−λ ≤ c1
2

∫
Ω

u−λ + c3 for all t > 0.

Writing c4 := max{c2, c3}, in both of these cases we infer that y(t) :=
∫
Ω
u−λ(x, t)dx,

satisfies

1

λ
y′(t) +

c1
2
y(t) ≤ c4 for all t > 0,

and conclude that

y(t) ≤ max

{∫
Ω

u−λ(x, 1)dx ,
2c4
c1

}
for all t > 1.

This proves (5.44).

As a consequence thereof, we obtain the following.

Corollary 5.16. Let χ0 > 0 and μ > 0, and assume that r satisfies (5.5). Then

whenever (5.4) holds, the solution of (5.3) satisfies

(5.52) inf
t>1

∫
Ω

u(x, t)dx > 0

and

(5.53) inf
(x,t)∈Ω×(1,∞)

v(x, t) > 0.
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Proof. To verify (5.52), we only need to apply Lemma 5.15 along with the Hölder

inequality, which says that for each λ > 0 we have∫
Ω

u ≥ |Ω|λ+1
λ

(∫
Ω

u−λ
)− 1

λ
for all t > 0.

Thereupon, (5.53) can be derived by using Lemma 2.3 and once more recalling the

second equation in (5.3).

Now the claimed boundedness result can be deduced from this and Lemma 5.13 in

a straightforward manner.

Proof of Theorem 5.2. Since u is continuous in Ω× [0,∞), it is clear that for some

c1 > 0 we have

(5.54) ‖u(·, t)‖L∞(Ω) ≤ c1 for all t ∈ [0, 1].

Moreover, from Corollary 5.16 we know that since (5.5) holds, we can find δ > 0

fulfilling

v(x, t) ≥ δ for all x ∈ Ω and t > 1.

As a consequence, Lemma 5.13 provides c2 > 0 satisfying

‖u(·, t)‖L∞(Ω) ≤ c2 for all t > 1.

In conjunction with (5.54) this proves (5.6), whereafter (5.7) results upon an application

of known elliptic estimates to the solution v of second equation in (5.3).
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Chapter 6

Global existence and boundedness

in a two-dimensional

parabolic-elliptic Keller–Segel

system with general

signal-dependent sensitivity

6.1. Problem and result

In this chapter we consider the Neumann initial-boundary value problem for a

parabolic-elliptic Keller–Segel system with general signal-dependent sensitivity χ(v),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇χ(v)), x ∈ Ω, t > 0,

0 = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(6.1)

in a bounded domain Ω ⊂ R
2 with smooth boundary ∂Ω, where

u0 ∈ C0(Ω), u0 ≥ 0 in Ω, u0 
≡ 0(6.2)

and

χ ∈ C2+ω
loc ((0,∞)) with some ω ∈ (0, 1), χ′ > 0, χ′(s) → 0 as s→ ∞.(6.3)
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As to the classical case (χ(v) ≡ χ0v, χ0 > 0), roughly speaking, the size of initial

data determines whether the solution is global and bounded or not. More precisely

the solution of (6.1) is global and bounded when
∫
Ω
u0 < 4π/χ0 (see [46, 66]; for

parabolic-parabolic case, see [72]). Whereas, with the large initial data, some blow-up

solution is constructed when Ω is a disk by Herrero and Velázquez [34], and Nagai

[67] showed that there are many nonradial blow-up solutions. By using an argument

similar to that in [66], it is easy to see that there are many radial blow-up solutions,

when Ω is a bounded disk and χ satisfies infs>0 χ
′(s) > 0.

On the other hand, we have other point of view in this thesis. We especially focus

on a signal-dependent sensitivity function χ(v). We recall some results in this context.

Here let n be spacial dimension. In the radially symmetric setting, we can find a nice

picture about the system (6.1) with χ(v) = χ0 log v, χ0 > 0 as follows [71]:

• If n = 2, or χ0 <
2

n−2
and n ≥ 3 then the radial solution is global and bounded.

• If χ0 >
2n
n−2

and n ≥ 3 then there exists some initial data u0 such that the radial

solution blows up in finite time.

Moreover in the case χ(v) = χ0v
k(χ0 >, k > 0) the solution is global and bounded

when χ0 > 0, 0 < k < 1 and n = 2; we construct blow-up solution when χ0 > 0, k > 0

and n ≥ 3. Without requiring such a symmetry hypothesis, Biler [5] showed that in

the system (6.1) with χ(v) = χ0 log v, χ0 > 0,

• If χ0 ≤ 1 and n = 2, or χ0 <
2
n
and n ≥ 3 then the solution is global.

In Chapter 3 it was established that the above global solution is bounded when χ0 <
2
n

and this method is generalized to the case χ(v) = −χ0v
−k, k > 0 with sufficiently small

χ0 > 0. Consequently, in the system (6.1) we can find the gap between radial case and

nonradial case when χ(v) = χ0 log v. Indeed, especially in the two dimensional setting,

for all χ0 > 0 the radial solution is global and bounded; on the other hand, the large

time behavior of nonradial solution of (6.1) with large χ0 > 0 has been posted as an

open problem. In [5, Remark 4] Biler and Velázquez gave the following conjecture:

• The optimal range of the coefficient χ0 guaranteeing the global in time existence

is χ0 <
n+2
n−2

.

One of the purpose of this chapter is to establish global existence and boundedness

of nonradial solutions when χ(v) = χ0 log v for all χ0 > 0 in the two dimensional setting.

The other one is to study the case that sensitivity functions are more general, moreover

to establish the essential condition on χ for guaranteeing the global solvability. The

main result in this chapter reads as follows.
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Theorem 6.1. Suppose that u0 and χ satisfy (6.2) and (6.3), respectively. Then

(6.1) has a unique global classical positive solution. Moreover the solution is uniformly

bounded in time in the sense that

sup
t∈[0,∞)

‖u(t)‖L∞(Ω) <∞.

Remark 6.1. We firstly remark that since χ(v) = χ0 log v (χ0 > 0) fulfils the condition

(6.3), the above statement gives an answer to the Biler–Velázquez conjecture in the two

dimensional setting. Secondly, unlike the previous results [71, 5, 29, 103, 107, 21, 31]

including Chapters 3, 4 and 5, the method in this chapter does not depend on any

particular structure of χ(v). There are radial blow-up solutions, when Ω is a bounded

disk and χ satisfies

inf
s>0

χ′(s) > 0.

Then, (6.3) is the essential condition for all solutions to exist globally in time.

Before going into details, let us emphasize the main idea underlying the proof of

Theorem 6.1. In this chapter we turn our eyes to ε-regularity, which is essentially

established in [81] and formulated by Sugiyama [88]. By testing a cut-off function

we focus on concentration of mass around each point of Ω locally. ε-regularity is the

property that if the concentration is sufficiently small then the point is not blow-up

point. On the other hand, with sufficiently large concentration we invoke the property

of Green’s function to prove the value of v is sufficiently large. By decaying condition

(6.3) the concentrating effect of the cross-diffusive term can be prevented. Finally it is

proved that each point of Ω is not blow-up point.

Remark 6.2. The method in this chapter can be applied to the fully parabolic Keller–

Segel system under some conditions (see [27]).

This chapter is organized as follows. Section 6.2 is devoted to preliminaries, in-

cluding local existence of solutions. After discussing some basic estimates which play

a key role to ensure ε-regularity argument in Section 6.3, we shall establish Theorem

6.1 in Section 6.4. Firstly, we shall deduce uniform in time boundedness of the integral

of u log u over some neighborhood of points of Ω (Proposition 6.7). This will entail

some regularity of v (Proposition 6.8, Lemma 6.9) and establish boundedness of u with

respect to the norm in Lp(Ω), p > 1 (Proposition 6.10), and finally complete the proof

of Theorem 6.1. In Section 6.5 we will give some comments about the application to

the fully parabolic cases.
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6.2. Preliminaries

We first recall the local existence result established in Proposition 3.1.

Lemma 6.2. Let u0 and χ be as in (6.2) and (6.3), respectively. Then there exist

Tmax ≤ ∞ (depending only on ‖u0‖L∞(Ω)) and exactly one pair (u, v) of positive func-

tions

u ∈ C2,1(Ω× (0, Tmax)) ∩ C0([0, Tmax);C
0(Ω)),

v ∈ C2,0(Ω× (0, Tmax)) ∩ C0((0, Tmax);C
0(Ω))

that solves (6.1) in the classical sense. Also, the solution (u, v) satisfies the mass

identities ∫
Ω

u(x, t) dx =

∫
Ω

u0(x) dx for all t ∈ (0, Tmax)

and ∫
Ω

v(x, t) dx =

∫
Ω

u0(x) dx for all t ∈ (0, Tmax).

Moreover, if Tmax <∞, then

lim
t↗Tmax

‖u(t)‖L∞(Ω) = ∞.

In virtue of the conservation of the total mass ‖u0‖L1(Ω), the next lemma is estab-

lished in [11].

Lemma 6.3. There exists some constant M =M(‖u0‖L1(Ω), p1, p2) > 0 such that

sup
t∈[0,Tmax)

‖∇v‖Lp1 (Ω) + sup
t∈[0,Tmax)

‖v‖Lp2 (Ω) ≤M,

where p1 ∈ [1, 2), p2 ∈ [1,∞).

6.3. Basic estimates

Recalling the Sobolev embedding inequality in the two space dimensions:

‖f‖2L2(Ω) ≤ K
(
‖∇f‖2L1(Ω) + ‖f‖2L1(Ω)

)
for all f ∈ W 1,1(Ω),(6.4)

where K > 0 is a constant determined by Ω, we shall show some inequalities in this

section.

We firstly introduce a cut-off function ψ. Proceeding similarly as in [81, p.26], we

can establish the following lemma.
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Lemma 6.4. Let n ∈ N, q ∈ Ω, Bδ(q) = Bδ := {x ∈ R
2 | |x−q| < δ}. Then there exists

a function ψ = ψq,δ,n ∈ C∞
0 (R2) satisfying

ψ(x) =

{
1 (x ∈ B δ

2
(q)),

0 (x ∈ R
2 \Bδ(q)),

0 ≤ ψ ≤ 1 in R
2,

∂ψ

∂ν
= 0 on ∂Ω,

|∇ψ| ≤ Aψ1− 1
n , |Δψ| ≤ Bψ1− 2

n in R
2,

where A,B > 0 are constants determined by δ and n. Moreover for all α > 0 it holds

that

|∇ψα| ≤ αAψα−
1
n ,

|Δψα| ≤ αBψα−
2
n + α(α− 1)A2ψα−

2
n = α((α− 1)A2 +B)ψα−

2
n .

We shall prepare some useful estimates.

Lemma 6.5. Let ψ = ψq,δ,n be as in Lemma 6.4. Suppose that n is sufficiently large.

Then the following inequalities hold :

(i) The first component u of the solution satisfies that for all t ∈ [0, Tmax),∫
Ω

u2ψ ≤ 2K2

∫
Bδ∩Ω

u

∫
Ω

u−1|∇u|2ψ +K2

(
A2

2
+ 1

)
‖u0‖2L1(Ω).

(ii) Let p ∈ (1, 2). There exists some C1 = C1(p,A, |Ω|) > 0 such that for all s > 1

and for all t ∈ [0, Tmax),∫
Ω

up+1ψ ≤ 2K(p+ 1)2

log s

∫
Bδ∩Ω

(
u log u+ e−1

) ∫
Ω

up−2|∇u|2ψ

+ 6sp+1|Ω|+ C1‖u0‖p+1
L1(Ω).

Proof. (i) is proved in [81, Lemma 4]. We prove (ii). Putting

w := (u
p+1
2 − s

p+1
2 )+ψ

1
2
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with a+ := max{a, 0}, we have

‖w‖2L2(Ω) =

∫
{u>s}

(
u

p+1
2 − s

p+1
2

)2

+
ψ

≥
∫
{u>s}

(
1

2
up+1 − sp+1

)
ψ

≥ 1

2

∫
Ω

up+1ψ − 3

2
sp+1|Ω|,

thus ∫
Ω

up+1ψ ≤ 2‖w‖2L2(Ω) + 3sp+1|Ω|.(6.5)

On the other hand, we can estimate(∫
Ω

|∇w|
)2

≤ 2

(∫
{u>s}

|∇u p+1
2 |ψ 1

2

)2

+ 2

(∫
{u>s}

(u
p+1
2 − s

p+1
2 )+|∇ψ 1

2 |
)2

(6.6)

≤ (p+ 1)2

2

(∫
{u>s}

u
p−1
2 |∇u|ψ 1

2

)2

+ 2

(∫
{u>s}

u
p+1
2 |∇ψ 1

2 |
)2

.

Since s log s ≥ −e−1 for any s > 1 we see that(∫
{u>s}

u
p−1
2 |∇u|ψ 1

2

)2

≤
∫
Bδ∩{u>s}

u ·
∫
Ω

up−2|∇u|2ψ(6.7)

≤ 1

log s

∫
Bδ∩Ω

(
u log u+ e−1

) · ∫
Ω

up−2|∇u|2ψ.

Due to p ∈ (1, 2), Hölder’s inequality and Young’s inequality imply that for all ε > 0,(∫
{u>s}

u
p+1
2 |∇ψ 1

2 |
)2

≤ A2

4

(∫
{u>s}

u
p+1
2 ψ

1
2
− 1

n

)2

(6.8)

≤ A2

4

(∫
{u>s}

up+1ψ

) 1
2

‖u‖
p+1
2

L1(Ω)|Ω|
2−p
2

≤ ε

2

∫
{u>s}

up+1ψ +
A4

32ε
‖u‖p+1

L1(Ω)|Ω|2−p

due to

u
p+1
2 ψ

1
2
− 1

n = u
p+1
4 ψ

1
4 · u p+1

4 ψ
1
4
− 1

n · 1
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with sufficiently large n > 4. Accordingly, (6.6), (6.7) and (6.8) entail that(∫
Ω

|∇w|
)2

≤ (p+ 1)2

2 log s

∫
Bδ∩Ω

(
u log u+ e−1

) · ∫
Ω

up−2|∇u|2ψ(6.9)

+ ε

∫
Ω

up+1ψ +
A4

16ε
‖u‖p+1

L1(Ω)|Ω|2−p.

Proceeding the same way as the above estimate (6.8) we also have(∫
Ω

w

)2

=

(∫
{u>s}

(
u

p+1
2 − s

p+1
2

)
+
ψ

1
2

)2

(6.10)

≤
(∫

{u>s}
u

p+1
2 ψ

1
2

)2

≤ ε

∫
Ω

up+1ψ +
1

4ε
‖u‖p+1

L1(Ω)|Ω|2−p.

By (6.4), we can combine the estimates (6.5), (6.9) and (6.10) to see∫
Ω

up+1ψ ≤ 2‖w‖2L2(Ω) + 3sp+1|Ω|

≤ 2K
(
‖∇w‖2L1(Ω) + ‖w‖2L1(Ω)

)
+ 3sp+1|Ω|

≤ K(p+ 1)2

log s

∫
Bδ∩Ω

(
u log u+ e−1

) · ∫
Ω

up−2|∇u|2ψ

+ 4Kε

∫
Ω

up+1ψ +
K(A4 + 4)

8ε
‖u‖p+1

L1(Ω)|Ω|2−p + 3sp+1|Ω|.

Taking ε > 0 as 4Kε = 1
2
, we can complete the proof of (ii).

Let us finally provide the next auxiliary lemma which plays a key role in the proof

of Lemma 6.9.

Lemma 6.6. Let ψ = ψq,δ,n be as in Lemma 6.4 with sufficiently large n. Then for all

r ∈ (2, 3) there exist some constants C2 = C2(r) > 0 and C3 = C3(r, A) > 0 fulfilling(∫
Ω

w2rψ

) 1
r

≤ C2

(∫
Ω

|∇w|rψ
) 1

r
(∫

suppψ∩Ω
w2

) 1
2

+ C3

∫
suppψ∩Ω

w2

for all w ∈ C1(Ω).
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Proof. We fix h ∈ C1(Ω). Putting f = h2ψ
1
2 we calculate

‖∇f‖2L1(Ω) =

(∫
Ω

|∇(h2ψ
1
2 )|
)2

(6.11)

=

(∫
Ω

|2hψ 1
2∇h+ h2∇ψ 1

2 |
)2

≤ 8

(∫
Ω

|hψ 1
2∇h|

)2

+ 2

(∫
Ω

h2|∇ψ 1
2 |
)2

≤ 8

(∫
Ω

|∇h|2ψθ
)(∫

Ω

h2ψ(1−θ)
)
+ C4

(∫
Ω

h2ψ
1
2
− 1

n

)2

with some constant C4 =
A2

2
> 0 and where θ is defined as

θ :=
r

2(r − 1)
∈
(
1

2
, 1

)
.

We can find a sufficiently large n > 1 satisfying

1

2
− 1

n
> 1− θ =

r − 2

2(r − 1)
,

and thus obtain ∫
Ω

h2ψ
1
2
− 1

n ≤
∫
Ω

h2ψ1−θ.(6.12)

Here, thanks to the Sobolev embedding inequality (6.4), (6.11) and (6.12) show that∫
Ω

h4ψ(6.13)

≤ K

{
8

(∫
Ω

|∇h|2ψθ
)(∫

Ω

h2ψ1−θ
)
+ C4

(∫
Ω

h2ψ1−θ
)2

+

(∫
Ω

h2ψ
1
2

)2}

≤ 8K

(∫
Ω

|∇h|2ψθ
)(∫

Ω

h2ψ1−θ
)
+K(C4 + 1)

(∫
Ω

h2ψ1−θ
)2

due to the fact

ψ
1
2 ≤ ψ1−θ

by 1
2
> 1− θ.
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Next we fix w ∈ C1(Ω). Using the substitution h = w
r
2 , Hölder’s inequality yields

that ∫
Ω

h2ψ1−θ =
∫
Ω

wrψ1−θ ≤
(∫

Ω

w2rψ

) r−2
2(r−1)

(∫
suppψ∩Ω

w2

) r
2(r−1)

(6.14)

due to the relation

wrψ1−θ = w
2r
λ ψ1−θ · w 2(λ−1)

λ

with

λ =
2(r − 1)

r − 2
=

1

1− θ
.

Combining (6.13) and (6.14) we infer that∫
Ω

w2rψ ≤ 8K

(∫
Ω

|∇w r
2 |2ψθ

)(∫
Ω

wrψ1−θ
)

(6.15)

+ C5

(∫
Ω

w2rψ

) r−2
r−1

(∫
suppψ∩Ω

w2

) r
r−1

,

where C5 := K(C4 + 1). In the term
∫
Ω
|∇w r

2 |2ψθ, we may invoke Hölder’s inequality

to obtain ∫
Ω

|∇w r
2 |2ψθ =

(
r

2

)2 ∫
Ω

wr−2|∇w|2ψθ(6.16)

≤
(
r

2

)2(∫
Ω

|∇w|rψ
) 2

r
(∫

Ω

wrψ(1−θ)
) r−2

r

.

Collecting (6.15) and (6.16) we have∫
Ω

w2rψ ≤ 8K

(
r

2

)2(∫
Ω

|∇w|rψ
) 2

r
(∫

Ω

wrψ1−θ
) r−2

r
(∫

Ω

wrψ1−θ
)

+ C5

(∫
Ω

w2rψ

) r−2
r−1

(∫
suppψ∩Ω

w2

) r
r−1

= 8K

(
r

2

)2(∫
Ω

|∇w|rψ
) 2

r
(∫

Ω

wrψ1−θ
) 2(r−1)

r

+ C5

(∫
Ω

w2rψ

) r−2
r−1

(∫
suppψ∩Ω

w2

) r
r−1

.
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Invoking (6.14) again, we can estimate that∫
Ω

w2rψ(6.17)

≤ 8K

(
r

2

)2(∫
Ω

|∇w|rψ
) 2

r
(∫

Ω

w2rψ

) r−2
2(r−1)

· 2(r−1)
r

(∫
suppψ∩Ω

w2

) r
2(r−1)

· 2(r−1)
r

+ C5

(∫
Ω

w2rψ

) r−2
r−1

(∫
suppψ∩Ω

w2

) r
r−1

= 8K

(
r

2

)2(∫
Ω

|∇w|rψ
) 2

r
(∫

Ω

w2rψ

) r−2
r
(∫

suppψ∩Ω
w2

)

+ C5

(∫
Ω

w2rψ

) r−2
r−1

(∫
suppψ∩Ω

w2

) r
r−1

.

Finally, multiplying (6.17) by
( ∫

Ω
w2rψ

)− r−2
r and using Young’s inequality, we see that(∫

Ω

w2rψ

) 2
r

≤ 8K

(
r

2

)2(∫
Ω

|∇w|rψ
) 2

r
(∫

suppψ∩Ω
w2

)

+ C5

(∫
Ω

w2rψ

) r−2
r−1

+ 2−r
r
(∫

suppψ∩Ω
w2

) r
r−1

≤ 8K

(
r

2

)2(∫
Ω

|∇w|rψ
) 2

r
(∫

suppψ∩Ω
w2

)

+
1

2

(∫
Ω

w2rψ

) 2
r

+ C6

(∫
suppψ∩Ω

w2

)2

with some constant C6 = C6(r, A) > 0.

Therefore we can deduce(∫
Ω

w2rψ

) 2
r

≤ 16K

(
r

2

)2(∫
Ω

|∇w|rψ
) 2

r
(∫

suppψ∩Ω
w2

)
+ 2C6

(∫
suppψ∩Ω

w2

)2

.

The above inequality completes the proof.
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6.4. Proof of Theorem 6.1

Henceforth we set q ∈ Ω and ψ = ψq,δ,n as in Lemma 6.4. Suppose that n is

sufficiently large.

We start by proving boundedness of the functional
∫
Ω
u log u · ψ. In the proof

of the following estimate, we can see the boundedness mechanism. Indeed, decaying

property of sensitivity function χ(v) enforces boundedness of the solution locally when

the solution is likely to blow up.

Proposition 6.7. If |suppψ| ≤ |Bδ(q)| = πδ2 is sufficiently small, then there exists

some constant C7 > 0 satisfying∫
Ω

u(x, t) log u(x, t) · ψ(x) dx ≤ C7 for all t ∈ [0, Tmax),

where C7 depends on δ, A,B, |Ω|, ‖u0‖L1(Ω) and maxs∈[γ,∞) χ
′(s) (γ is defined in (2.2)).

Proof. Recalling that u is positive, we may multiply the first equation in (6.1) by

log u · ψ and integrate by parts over Ω to see

d

dt

∫
Ω

u log u · ψ dx−
∫
Ω

utψ dx(6.18)

=

∫
Ω

ut log u · ψ

=

∫
Ω

∇ · (∇u− u∇χ(v)) log u · ψ

= −
∫
Ω

∇u · ∇(log u · ψ) +
∫
Ω

u∇χ(v) · ∇(log u · ψ)

= −
∫
Ω

u|∇ log u|2ψ −
∫
Ω

∇u · log u∇ψ

+

∫
Ω

u∇χ(v) · ∇(log u)ψ +

∫
Ω

u∇χ(v) · log u∇ψ
= −I1 − I2 + I3 + I4,

where

I1 :=

∫
Ω

u|∇ log u|2ψ, I2 :=

∫
Ω

∇u · log u∇ψ,

I3 :=

∫
Ω

u∇χ(v) · ∇(log u)ψ, I4 :=

∫
Ω

u∇χ(v) · log u∇ψ.

89



The integral term I2 can be rewritten as

I2 = −
∫
Ω

u · 1
u
∇u · ∇ψ −

∫
Ω

u log u ·Δψ

= −
∫
Ω

∇u · ∇ψ −
∫
Ω

u log u ·Δψ

=

∫
Ω

uΔψ −
∫
Ω

u log u ·Δψ

=

∫
Ω

uΔψ −
∫
Ω

(u log u+ e−1)Δψ

due to the equality
∫
Ω
e−1Δψ =

∫
∂Bδ

e−1 ∂ψ
∂ν

= 0. Since 0 ≤ u log u+ e−1 we see that

|I2| ≤
∫
Ω

u|Δψ|+
∫
Ω

(u log u+ e−1)|Δψ|(6.19)

≤ B

∫
Ω

uψ1− 2
n +B

∫
Ω

(u log u+ e−1)ψ1− 2
n .

As to the terms I3 and I4, in virtue of Young’s inequality we can deduce that

|I3| ≤ 1

2

∫
Ω

u|∇ log u|2ψ +
1

2

∫
Ω

u|∇χ(v)|2ψ(6.20)

and

|I4| ≤
∫
Ω

u|∇χ(v)|2ψ +
A2

4

∫
Ω

u(log u)2ψ1− 2
n .(6.21)

Combining (6.18), (6.19), (6.20) and (6.21) yields that∫
Ω

ut log u · ψ + I1 ≤ |I2|+ |I3|+ |I4|

≤ 1

2

∫
Ω

u|∇ log u|2ψ +
3

2

∫
Ω

u|∇χ(v)|2ψ +B

∫
Ω

uψ1− 2
n

+B

∫
Ω

(u log u+ e−1)ψ1− 2
n +

A2

4

∫
Ω

u(log u)2ψ1− 2
n ,

so that (6.18) entails the inequality

d

dt

∫
Ω

u log u · ψ − d

dt

∫
Ω

uψ +
1

2

∫
Ω

u|∇ log u|2ψ(6.22)

≤ 3

2

∫
Ω

u|∇χ(v)|2ψ +B

∫
Ω

uψ1− 2
n

+B

∫
Ω

(u log u+ e−1)ψ1− 2
n +

A2

4

∫
Ω

u(log u)2ψ1− 2
n .
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Here, we can find some constants C8 = C8(A) > 0 and C9 = C9(B) > 0 satisfying

A2

4
u(log u)2 ≤ u1+

1
n + C8, Bu log u ≤ u1+

1
n + C9,

and thus (6.22) implies that

d

dt

∫
Ω

u log u · ψ − d

dt

∫
Ω

uψ +
1

2

∫
Ω

u|∇ log u|2ψ(6.23)

≤ 3

2

∫
Ω

u|∇χ(v)|2ψ + 2

∫
Ω

u1+
1
nψ1− 2

n

+B

∫
Ω

uψ1− 2
n +

∫
Ω

(Be−1 + C8 + C9)ψ
1− 2

n .

Since ψ1− 2
n ≤ 1 there exists some constant C10 = C10(A,B, |Ω|, ‖u0‖L1(Ω)) > 0 such

that

B

∫
Ω

uψ1− 2
n +

∫
Ω

(Be−1 + C8 + C9)ψ
1− 2

n ≤ C10,(6.24)

whereas we may invoke Hölder’s inequality to see∫
Ω

u1+
1
nψ1− 2

n =

∫
Bδ

u1+
1
nψ1− 2

n

≤
(∫

Ω

u2ψ(1− 2
n
)· 2n

n+1

)n+1
2n

· |Bδ|
n−1
2n .

Noting that there exists some n0 ∈ N such that(
1− 2

n

)
· 2n

n+ 1
=
n− 2

n
· 2n

n+ 1

=
2(n− 2)

n+ 1
≥ 1 for all n ≥ n0

and ψα ≤ ψ for all α ≥ 1, we have for sufficiently large n ≥ n0,∫
Ω

u1+
1
nψ1− 2

n ≤ |Bδ|
n−1
2n

(∫
Ω

u2ψ

)n+1
2n

(6.25)

≤ |Bδ|
n−1
2n

(∫
Ω

u2ψ + 1

)
due to the inequality n+1

2n
< 1. Therefore (6.23), (6.24) and (6.25) yield that

d

dt

∫
Ω

u log u · ψ − d

dt

∫
Ω

uψ +
1

2

∫
Ω

u|∇ log u|2ψ(6.26)

≤ 3

2

∫
Ω

u|∇χ(v)|2ψ + 2|Bδ|
n−1
2n

(∫
Ω

u2ψ + 1

)
+ C10.
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Now we focus on the term
∫
Ω
u|∇χ(v)|2ψ. A time-independent pointwise lower

bound for v was established in Lemma 2.3 (see also (2.2)). Thus there exists γ > 0

such that

inf
x∈Ω

v(x, t) ≥ γ > 0 for all t ∈ [0, Tmax),

where γ depends only on ‖u0‖L1(Ω) and Ω. Since the function χ′(s) attains the maxi-

mum value maxs∈[γ,∞) χ
′(s) due to the condition (6.3), the above estimate enables us

to see

max
s∈[γ,∞)

χ′(s) ≥ χ′(v(x, t)) for all t ∈ (0, Tmax), x ∈ Ω.

Setting

H = H(t, ψ) := min
x∈suppψ

v(x, t) ≥ γ > 0,

by Hölder’s inequality we infer that∫
Ω

u|∇χ(v)|2ψ ≤
(

max
s∈[H,∞)

χ′(s)
)2 ∫

Ω

u|∇v|2ψ(6.27)

≤
(

max
s∈[H,∞)

χ′(s)
)2(∫

Ω

u2ψ

) 1
2
(∫

Ω

|∇v|4ψ
) 1

2

.

Here, we see (∫
Ω

|∇v|4ψ
) 1

2

=

(∫
Ω

|∇v · ψ 1
4 |4

) 1
2

(6.28)

=

(∫
Ω

|∇(vψ
1
4 )− v∇ψ 1

4 |4
) 1

2

≤ 2‖∇(vψ
1
4 )‖2L4(Ω) + 2

(∫
Ω

v4|∇ψ 1
4 |4

) 1
2

≤ 2‖∇(vψ
1
4 )‖2L4(Ω) + C11

(∫
Ω

v4
) 1

2

with some constant C11 = C11(A) > 0. Using the Sobolev embedding theorem and

elliptic regularity theory we have

‖∇(vψ
1
4 )‖L4(Ω) ≤ K1‖vψ 1

4‖
W 2, 43 (Ω)

≤ K1K2‖ −Δ(vψ
1
4 ) + (vψ

1
4 )‖

L
4
3 (Ω)
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with some constants K1, K2 > 0 and thus Lemma 6.3 yields that

‖∇(vψ
1
4 )‖L4(Ω)(6.29)

≤ K1K2‖ −Δ(vψ
1
4 ) + (vψ

1
4 )‖

L
4
3 (Ω)

= K1K2‖ψ 1
4 (−Δv + v)− 2∇v · ∇(ψ

1
4 )− vΔψ

1
4‖

L
4
3 (Ω)

≤ K1K2‖uψ 1
4‖

L
4
3 (Ω)

+ 2K1K2‖∇v · ∇(ψ
1
4 )‖

L
4
3 (Ω)

+K1K2‖vΔψ 1
4‖

L
4
3 (Ω)

≤ K1K2

(∫
Ω

u
2
3ψ

1
3 · u 2

3

) 3
4

+ C12‖∇v‖L 4
3 (Ω)

+ C13‖v‖L 4
3 (Ω)

≤ K1K2

(∫
Ω

u2ψ

) 1
4
(∫

Ω

u

) 1
2

+ C14

where C12 = C12(A), C13 = C13(A,B) and C14 = C14(A,B, ‖u0‖L1(Ω)) are some positive

constants. Thus (6.28) and (6.29) imply

(∫
Ω

|∇v|4ψ
) 1

2

≤ 2

{
K1K2

(∫
Ω

u2ψ

) 1
4
(∫

Ω

u

) 1
2

+ C14

}2

+ C11

(∫
Ω

v4
) 1

2

(6.30)

≤ 4K2
1K

2
2‖u0‖L1(Ω)

(∫
Ω

u2ψ

) 1
2

+ C15

with some constant C15 = C15(A,B, ‖u0‖L1(Ω)) > 0. Therefore collecting (6.26),(6.27)

and (6.30), we obtain that

d

dt

∫
Ω

u log u · ψ − d

dt

∫
Ω

uψ +
1

2

∫
Ω

u|∇ log u|2ψ

≤ 3

2

(
max

s∈[H,∞)
χ′(s)

)2(∫
Ω

u2ψ

) 1
2
{
4K2

1K
2
2‖u0‖L1(Ω)

(∫
Ω

u2ψ

) 1
2

+ C15

}
+ 2|Bδ|

n−1
2n

(∫
Ω

u2ψ + 1

)
+ C10

≤
{
12K2

1K
2
2‖u0‖L1(Ω)

(
max

s∈[H,∞)
χ′(s)

)2

+ 2|Bδ|
n−1
2n

}∫
Ω

u2ψ + C16

where

C16 :=
3C15

2

32K2
1K

2
2‖u0‖L1(Ω)

(
max
s∈[γ,∞)

χ′(s)
)2

+ 2|Ω|n−1
2n + C10 > 0.
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In light of Lemma 6.5 (i) we see that

d

dt

∫
Ω

u log u · ψ − d

dt

∫
Ω

uψ + J(t, δ)

∫
Ω

u|∇ log u|2ψ(6.31)

≤ − 1

8K2‖u0‖L1(Ω)

∫
Ω

u2ψ + C17,

where

J(t, δ) :=
1

2
−
{
12K2

1K
2
2‖u0‖L1(Ω)

(
max

s∈[H,∞)
χ′(s)

)2

+ 2|Bδ|
n−1
2n +

1

8K2‖u0‖L1(Ω)

}
· 2K2

∫
Bδ∩Ω

u,

C17 := C16 +

{
12K2

1K
2
2‖u0‖L1(Ω)

(
max
s∈[γ,∞)

χ′(s)
)2

+ 2|Bδ|
n−1
2n +

1

8K2‖u0‖L1(Ω)

}
·K2

(
A2

2
+ 1

)
‖u0‖2L1(Ω).

Now we let

ε0 :=
1
2

2K2

{
12K2

1K
2
2‖u0‖L1(Ω)

(
maxs∈[γ,∞) χ′(s)

)2

+ 2 +
1

8K2‖u0‖L1(Ω)

}
and

H∗ :=
(

1

4π
log

1

2δ

)
ε0,

where we underline that ε0 is independent of δ > 0. Since the condition (6.3) implies

max
s∈[H∗,∞)

χ′(s) → 0 as δ → 0,

so we can choose sufficiently small δ ∈ (0, 1√
π
) satisfying that

24K2K2
1K

2
2‖u0‖2L1(Ω)

(
max

s∈[H∗,∞)
χ′(s)

)2

≤ 1

8
and(6.32)

4K2|Bδ|
n−1
2n ‖u0‖L1(Ω) ≤ 1

8
.
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Moreover we recall Green’s function G of −Δ+1 under homogeneous Neumann bound-

ary conditions in Ω:

v(x, t) =

∫
Ω

G(x, y)u(y, t) dy.

In the case q ∈ Ω we obtain

G(x, y) =
1

2π
log

1

|x− y| +K(x, y)

with K ∈ C1,θ
loc (Ω×Ω), θ ∈ (0, 1), whereas the case q ∈ ∂Ω we obtain similar argument

(see [81, Lemma 6]). Hence by picking up smaller δ > 0 if necessary, we can see that

G(x, y) ≥ 1

4π
log

1

2δ
, x, y ∈ Bδ(q) ∩ Ω,(6.33)

where we remark that δ > 0 is independent of the choice of the point q.

In the rest of this proof we will claim that for fixed δ > 0 as above, the function

J(t, δ) is uniformly nonnegative in time. For each t ∈ (0, Tmax), one of the following

two cases holds:

(Case 1):

∫
Bδ∩Ω

u(x, t) dx < ε0, (Case 2):

∫
Bδ∩Ω

u(x, t) dx ≥ ε0.

In both cases, we shall show J(t, δ) ≥ 0.

(Case 1) We assume that ∫
Bδ∩Ω

u(x, t) dx < ε0

at the time t ∈ (0, Tmax).

At the time, since the assumption yields J(t, δ) ≥ 0, then (6.31) implies that

d

dt

∫
Ω

u log u · ψ − d

dt

∫
Ω

uψ ≤ − 1

8K2‖u0‖L1(Ω)

∫
Ω

u2ψ + C17,(6.34)

and thus

d

dt

{∫
Ω

(u log u+ e−1)ψ −
∫
Ω

uψ

}
+

1

8K2‖u0‖L1(Ω)

∫
Ω

u2ψ − 1

4K2‖u0‖L1(Ω)

∫
Ω

uψ ≤ C17.
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Since u log u+ e−1 ≤ 1
4
u2 + C18 with some constant C18 > 0, we infer that at the time

t,

d

dt

{∫
Ω

(u log u+ e−1)ψ −
∫
Ω

uψ

}
(6.35)

+
1

4K2‖u0‖L1(Ω)

{∫
Ω

(u log u+ e−1)ψ −
∫
Ω

uψ

}
+

1

16K2‖u0‖L1(Ω)

∫
Ω

u2ψ ≤ C19,

where

C19 := C17 +
C18|Ω|

4K2‖u0‖L1(Ω)

.

(Case 2) We assume that ∫
Bδ∩Ω

u(x, t) dx ≥ ε0

at the time t ∈ (0, Tmax).

By using Green’s function G of −Δ+ 1, (6.33) yields that for x ∈ Bδ(q) ∩ Ω,

v(x, t) =

∫
Ω

G(x, y)u(y, t) dy ≥
∫
Bδ∩Ω

G(x, y)u(y, t) dy ≥
(

1

4π
log

1

2δ

)
ε0,(6.36)

thus

H(t) ≥ H∗.

Then we may invoke (6.32) to obtain

J(t2, δ) ≥ 1

2
−
{
12K2

1K
2
2‖u0‖L1(Ω)

(
max

s∈[H∗,∞)
χ′(s)

)2

+ 2|Bδ|
n−1
2n +

1

8K2‖u0‖L1(Ω)

}
· 2K2

∫
Bδ∩Ω

u

≥ 1

2
− 1

8
− 1

8
− 1

4
= 0.

Proceeding similarly as in (Case 1), we get (6.34) and then ensure that (6.35) is valid

at the time t.
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Consequently, combining (Case 1) and (Case 2) we can confirm (6.35) is valid

for all t ∈ (0, Tmax) and conclude that there exists some positive constant C20 =

C20(δ, A,B, |Ω|, ‖u0‖L1(Ω),maxs∈[γ,∞) χ
′(s)) such that∫

Ω

(
u(x, t) log u(x, t) + e−1

)
ψ(x) dx−

∫
Ω

u(x, t)ψ(x) dx ≤ C20

for all t ∈ (0, Tmax).

Thanks to mass conservation, we complete the proof.

Next, we proceed to derive a bound for ∇v with respect to the norm in L2(Ω).

Proposition 6.8. If δ > 0 is sufficiently small as in Proposition 6.7, then there exists

a positive constant C21 such that∫
B δ

2
∩Ω

|∇v(x, t)|2 dx ≤ C21 for all t ∈ (0, Tmax),

where C21 depends on δ, A, B, |Ω|, ‖u0‖L1(Ω) and maxs∈[γ,∞) χ
′(s).

Proof. Multiplying the second equation of (6.1) by vψ2 we have∫
Ω

uvψ2 −
∫
Ω

v2ψ2 = −
∫
Ω

Δv · vψ2

=

∫
Ω

|∇v|2ψ2 +

∫
Ω

∇v · v∇ψ2

=

∫
Ω

|∇v|2ψ2 − 1

2

∫
Ω

v2Δψ2,

and Lemma 6.3 implies∫
Ω

|∇v|2ψ2 =

∫
Ω

uvψ2 −
∫
Ω

v2ψ2 +
1

2

∫
Ω

v2Δψ2(6.37)

≤
∫
Ω

uvψ2 + C22

∫
Ω

v2ψ2− 2
n

≤
∫
Ω

uvψ2 + C23

with positive constants C22 = C22(A,B) and C23 = C23(A,B, ‖u0‖L1(Ω)). We define

m :=

∫
Ω

uψ.
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From Jensen’s inequality we know that for any δ > 0,

− log

(
1

m

∫
Ω

eδvψ dx

)
= − log

(∫
Ω

eδvψ

uψ
· uψ
m

dx

)
≤
∫
Ω

− log

(
eδvψ

uψ

)
· uψ
m

dx

=
1

m

∫
Ω

uψ log(uψ)− δ

m

∫
Ω

uvψ2.

Hence ∫
Ω

uvψ2 ≤ 1

δ

∫
Ω

uψ log u+
1

δ

∫
Ω

uψ logψ +
m

δ
log

(∫
Ω

eδvψ
)
− m

δ
logm(6.38)

≤ 1

δ

∫
Ω

(u log u+ e−1)ψ +
m

δ
log

(∫
Ω

eδvψ
)
+
e−1

δ

due to

x log x ≤ 0 for x ∈ [0, 1] and − x log x ≤ e−1 for x ≥ 0.

Now the Trudinger-Moser inequality [12] leads to

log

(∫
Ω

eδvψ
)

≤ CTMδ
2

∫
Ω

|∇(vψ)|2 + C ′
TMδ‖v‖L1(Ω)(6.39)

≤ 2CTMδ
2

(∫
Ω

|∇v|2ψ2 +

∫
Ω

v2|∇ψ|2
)
+ C ′

TMδ‖v‖L1(Ω)

≤ 2CTMδ
2

∫
Ω

|∇v|2ψ2 + C24

with positive constants CTM, C
′
TM and C24 = C24(δ, A, ‖u0‖L1(Ω)) due to Lemma 6.3.

Consequently (6.37), (6.38) and (6.39) assert∫
Ω

|∇v|2ψ2

≤ 1

δ

∫
Ω

(u log u+ e−1)ψ +
e−1

δ
+ 2mδCTM

∫
Ω

|∇v|2ψ2 +
m

δ
C24 + C23.

If 0 < δ < 1 is sufficiently small, we see that∫
Ω

|∇v|2ψ2 ≤ C25

∫
Ω

(u log u+ e−1)ψ + C26

with positive constants C25 and C26 and hence by Proposition 6.7 we conclude that the

desired inequality holds with C21 := C25(C7 + e−1|Ω|) + C26.
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Using Proposition 6.8 we can establish the following regularity argument.

Lemma 6.9. Let r ∈ (2, 3) and δ > 0 be as in Proposition 6.7. Suppose that ψ1 = ψq, δ
2
,n

be as in Lemma 6.4. Then there exist positive constants C27 and C28 such that∫
Ω

|∇v|2rψ1 ≤ C27

∫
Ω

urψ1 + C28,

where C27 and C28 depend on r, δ, A, B, |Ω|, ‖u0‖L1(Ω) and maxs∈[γ,∞) χ
′(s).

Proof. Invoking Lemma 6.6 with w = |∇v| and ψ = ψ1 we have(∫
Ω

|∇v|2rψ1

) 1
r

(6.40)

≤ C2

(∫
Ω

|∇|∇v||rψ1

) 1
r
(∫

B δ
2
∩Ω

|∇v|2
) 1

2

+ C3

∫
B δ

2
∩Ω

|∇v|2.

The term
( ∫

Ω
|∇|∇v||rψ1

) 1
r can be estimated as

|∇|∇v||rψ1 ≤
∣∣∣∣ 2∑
i,j=1

∂2v

∂xi∂xj

∣∣∣∣
r

ψ1

=

∣∣∣∣ 2∑
i,j=1

∂2v

∂xi∂xj
· ψ

1
r
1

∣∣∣∣
r

=

∣∣∣∣ 2∑
i,j=1

∂2(vψ
1
r
1 )

∂xi∂xj
− 2

2∑
i,j=1

∂v

∂xi
· ∂ψ

1
r
1

∂xj
− v

2∑
i,j=1

∂2ψ
1
r
1

∂xi∂xj

∣∣∣∣
r

and Lemma 6.3 yields that(∫
Ω

|∇|∇v||rψ1

) 1
r

(6.41)

≤
(∫

Ω

∣∣∣∣ 2∑
i,j=1

∂2(vψ
1
r
1 )

∂xi∂xj

∣∣∣∣
r) 1

r

+ C29

(∫
Ω

|∇v|rψ1− r
n

1

) 1
r

+ C30

(∫
Ω

vrψ
1− 2r

n
1

) 1
r

≤
(∫

Ω

∣∣∣∣ 2∑
i,j=1

∂2(vψ
1
r
1 )

∂xi∂xj

∣∣∣∣
r) 1

r

+ C29

(∫
Ω

|∇v|rψ1− r
n

1

) 1
r

+ C31,
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where C29 = C29(r, A), C30 = C30(r, A,B) and C31 = C31(r, A,B, ‖u0‖L1(Ω)) are some

positive constants. Using elliptic regularity theory and recalling the second equation

in (6.1) we infer(∫
Ω

∣∣∣∣ 2∑
i,j=1

∂2(vψ
1
r
1 )

∂xi∂xj

∣∣∣∣
r) 1

r

(6.42)

≤ ‖vψ
1
r
1 ‖W 2,r(Ω)

≤ K2‖ −Δ(vψ
1
r
1 ) + (vψ

1
r
1 )‖Lr(Ω)

= K2‖ −Δv · ψ
1
r
1 − 2∇v · ∇ψ

1
r
1 − vΔψ

1
r
1 + (vψ

1
r
1 )‖Lr(Ω)

≤ K2‖uψ
1
r
1 ‖Lr(Ω) + C32

(∫
Ω

|∇v|rψ1− r
n

1

) 1
r

+ C33

(∫
Ω

vrψ
1− 2r

n
1

) 1
r

≤ K2‖uψ
1
r
1 ‖Lr(Ω) + C32

(∫
Ω

|∇v|rψ1− r
n

1

) 1
r

+ C34,

where C32 = C32(r, A), C33 = C33(r, A,B) and C34 = C34(r, A,B, ‖u0‖L1(Ω)) are some

positive constants.

Now combining (6.41) and (6.42) implies that(∫
Ω

|∇|∇v||rψ1

) 1
r

(6.43)

≤ K2‖uψ
1
r
1 ‖Lr(Ω) + (C29 + C32)

(∫
Ω

|∇v|rψ1− r
n

1

) 1
r

+ (C31 + C34).

Hence (6.40), (6.43) and Proposition 6.8 yield that(∫
Ω

|∇v|2rψ1

) 1
r

≤ C2C
1
2
21K2‖uψ

1
r
1 ‖Lr(Ω) + C2C

1
2
21(C29 + C32)

(∫
Ω

|∇v|rψ1− r
n

1

) 1
r

+ C2C
1
2
21(C31 + C34) + C3C21.

Finally, Hölder’s inequality and Young’s inequality deduce that there exist some con-

stants C35 > 0 and C36 > 0 such that(∫
Ω

|∇v|2rψ1

) 1
r

≤ C35‖uψ
1
r
1 ‖Lr(Ω) +

1

2

(∫
Ω

|∇v|2rψ1

) 1
r

+ C36,

and complete the proof.
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We can now derive Lp-estimate of u around each point of Ω locally.

Proposition 6.10. Let δ > 0 be as in Proposition 6.7. Then there exist some p > 1

and C37 > 0 such that∫
B δ

4
∩Ω
up(x, t) dx ≤ C37 for all t ∈ [0, Tmax),

where the constant C37 depends on p, δ, A,B, |Ω|, ‖u0‖L1(Ω) and maxs∈[γ,∞) χ
′(s).

Proof. Let ψ1 = ψq, δ
2
,n be as in Lemma 6.4. Testing up−1ψ1 to the first equation in

(6.1) we see that

1

p

d

dt

∫
Ω

upψ1 =

∫
Ω

up−1ψ1ut

=

∫
Ω

up−1ψ1∇ · (∇u− u∇χ(v))

= −
∫
Ω

∇(up−1ψ1) · ∇u+
∫
Ω

u∇(up−1ψ1) · ∇χ(v)

= −(p− 1)

∫
Ω

up−2|∇u|2ψ1 −
∫
Ω

up−1∇ψ1 · ∇u

+ (p− 1)

∫
Ω

up−1ψ1∇u · ∇χ(v) +
∫
Ω

up∇ψ1 · ∇χ(v).

Hence

1

p

d

dt

∫
Ω

upψ1 + (p− 1)

∫
Ω

up−2|∇u|2ψ1 = IA + IB + IC(6.44)

where

IA := −
∫
Ω

up−1∇ψ1 · ∇u, IB := (p− 1)

∫
Ω

up−1ψ1∇u · ∇χ(v),

IC :=

∫
Ω

up∇ψ1 · ∇χ(v).

Since the term IA can be reduced to

IA = −1

p

∫
Ω

∇up · ∇ψ1 =
1

p

∫
Ω

upΔψ1,

we infer that

|IA| ≤ B

p

∫
Ω

up+1ψ1 + C38(6.45)
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with some constant C38 = C38(p,B, |Ω|) > 0 due to Young’s inequality

upψ
1− 2

n
1 ≤

(
upψ

p
p+1

1

) p+1
p

+ Cψ
(1− 2

n
− p

p+1
)·(p+1)

1

with some constant C > 0. In virtue of the Cauchy–Schwarz inequality we have

|IB| ≤ (p− 1)

2

∫
Ω

up−2|∇u|2ψ1 +
(p− 1)

2

(
max
s∈[γ,∞)

χ′(s)
)2 ∫

Ω

up|∇v|2ψ1.(6.46)

As to the term IC Hölder’s inequality and Young’s inequality yield that

|IC| ≤ A max
s∈[γ,∞)

χ′(s)
∫
Ω

upψ
1− 1

n
1 |∇v|

≤ A max
s∈[γ,∞)

χ′(s)
(∫

Ω

up+1ψ1

) p
p+1

(∫
Ω

|∇v|p+1ψ
(1− 1

n
− p

p+1
)·(p+1)

1

) 1
p+1

≤
∫
Ω

up+1ψ1 + C39

∫
Ω

|∇v|p+1ψ
(1− 1

n
− p

p+1
)·(p+1)

1

with a positive constant C39 = C39(p,A,maxs∈[γ,∞) χ
′(s)). Moreover the Cauchy–

Schwarz inequality deduces∫
Ω

|∇v|p+1ψ
(1− 1

n
− p

p+1
)·(p+1)

1 ≤
(∫

Ω

|∇v|2(p+1)ψ1

) 1
2
(∫

Ω

ψ
1− 2(p+1)

n
1

) 1
2

≤ 1

2

∫
Ω

|∇v|2(p+1)ψ1 +
1

2
|Ω|

with sufficiently large n and then

|IC| ≤
∫
Ω

up+1ψ1 +
C39

2

∫
Ω

|∇v|2(p+1)ψ1 +
C39|Ω|

2
.(6.47)

Consequently, (6.44), (6.45),(6.46) and (6.47) imply that

1

p

d

dt

∫
Ω

upψ1 +
(p− 1)

2

∫
Ω

up−2|∇u|2ψ1(6.48)

≤ C40

∫
Ω

up|∇v|2ψ1 + C41

∫
Ω

up+1ψ1 + C42

∫
Ω

|∇v|2(p+1)ψ1 + C43,

where

C40 :=
(p− 1)

2

(
max
s∈[γ,∞)

χ′(s)
)2

, C41 :=
B

p
+ 1,

C42 :=
C39

2
, C43 := C38 +

C39|Ω|
2

.
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We focus on the term
∫
Ω
up|∇v|2ψ1. Using Hölder’s inequality and Young’s inequality

we see that ∫
Ω

up|∇v|2ψ1 ≤
(∫

Ω

up+1ψ1

) p
p+1

(∫
Ω

|∇v|2(p+1)ψ1

) 1
p+1

≤ p

p+ 1

∫
Ω

up+1ψ1 +
1

p+ 1

∫
Ω

|∇v|2(p+1)ψ1.

By (6.48) and recalling Proposition 6.9 with r = p+ 1, we see that

1

p

d

dt

∫
Ω

upψ1 +
p− 1

2

∫
Ω

up−2ψ1|∇u|2 ≤ C44

∫
Ω

up+1ψ1 + C45(6.49)

where

C44 :=
pC40

p+ 1
+ C41 + C27

(
C40

p+ 1
+ C42

)
> 0,

C45 := C28

(
C40

p+ 1
+ C42

)
+ C43 > 0.

In light of Lemma 6.5 (ii) we ensure that

1

p

d

dt

∫
Ω

upψ1 + C44

∫
Ω

up+1ψ1

+

{
p− 1

2
− 4C44K(p+ 1)2

log s

∫
B δ

2
∩Ω

(u log u+ e−1)

}∫
Ω

up−2|∇u|2ψ1

≤ 2C44

(
6sp+1|Ω|+ C1‖u0‖p+1

L1(Ω)

)
+ C45.

Due to Proposition 6.7 we can pick up sufficiently large s satisfying that there exists

some constant C46 > 0 such that

1

p

d

dt

∫
Ω

upψ1 + C44

∫
Ω

up+1ψ1 ≤ C46.

Here Hölder’s inequality implies∫
Ω

upψ1 =

∫
Ω

upψ1

p
p+1 · ψ1

1
p+1

≤
(∫

Ω

up+1ψ1

) p
p+1

(∫
Ω

ψ1

) 1
p+1

≤ |Ω| 1
p+1

(∫
Ω

up+1ψ1

) p
p+1

,
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and so

|Ω|− 1
p

(∫
Ω

upψ1

) p+1
p

≤
∫
Ω

up+1ψ1.

Therefore we have

1

p

d

dt

∫
Ω

upψ1 + C44|Ω|−
1
p

(∫
Ω

upψ1

) p+1
p

≤ C46

and complete the proof.

We are now in a position to prove Theorem 6.1.

Proof of Theorem 6.1. Since the domain Ω is bounded, we can find the family of

balls {Bδ(qi)}i (qi ∈ Ω, i = 1, ..., �) satisfying

Ω ⊂

⋃
i=1

B δ
4
(qi)

where δ > 0 is defined in Proposition 6.7. For each B δ
4
(qi) we apply Proposition 6.10

and have

‖u(t)‖Lp(Ω) ≤

∑
i=1

‖u(t)‖Lp(B δ
4
(qi)) ≤ �C

1
p

37.

Now proceeding similarly as in Proposition 3.6 we complete the proof.

6.5. Further application to the parabolic-parabolic case

The purpose of this section is to introduce an overview of Fujie–Senba [27], in

which the method in this chapter is applied to the fully parabolic Keller–Segel system.

We note that due to an essential difference between the parabolic-elliptic system and

the parabolic-parabolic system, we need new ideas which will be explained below. In

this section we consider global existence and boundedness of solutions to the Neumann

initial-boundary value problem for the parabolic-parabolic Keller–Segel system with

signal-dependent sensitivity,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇χ(v)) in Ω× (0,∞),

τvt = Δv − v + u in Ω× (0,∞),

∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0,∞),

u(·, 0) = u0, v(·, 0) = v0 in Ω,

(6.50)

104



in a ball Ω = BR(0) := {x ∈ R
2 | |x| < R} ⊂ R

2 (R > 0) with parameter τ ∈ (0, 1],

where (u0, v0) ∈ C0(Ω)× C2(Ω) satisfies⎧⎨⎩u0 ≥ 0 in Ω, u0 
≡ 0 and radially symmetric,

v0 > 0 in Ω,
∂v0
∂ν

= 0 on ∂Ω and radially symmetric,
(6.51)

and the sensitivity function χ is assumed to satisfy

χ ∈ C2+θ
loc ((0,∞)) with some θ ∈ (0, 1), χ′ > 0, χ′(s) → 0 as s→ ∞.(6.52)

Main result. Our main result reads as follows.

Theorem 6.11 ([27]). Suppose that (u0, v0) and χ satisfy (6.51) and (6.52), respec-

tively. Then there exists τ0 > 0 such that for all τ ∈ (0, τ0), the problem (6.50) has a

unique global classical positive radially symmetric solution (u, v) such that

u ∈ C2,1(Ω× (0,∞)) ∩ C0([0,∞);C0(Ω)),

v ∈ C2,1(Ω× (0,∞)) ∩ C0([0,∞);C0(Ω)) ∩ L∞
loc([0,∞);W 1,∞(Ω)).

Moreover the solution is uniformly bounded in time in the sense that

sup
t∈[0,∞)

(
‖u(t)‖L∞(Ω) + ‖v(t)‖W 1,∞(Ω)

)
<∞.

Remark 6.3. This theorem establishes global existence and boundedness of (6.50)

with χ(v) = χ0 log v for all χ0 > 0 in the two dimensional setting. Unfortunately,

removing the smallness condition on τ > 0 and the assumption of radial symmetry

have been left as an open problem.

Strategy and main difficulty. We first recall the method in the parabolic-elliptic

system in this chapter. The cornerstone is the local-in-space lower bound for v (6.36):

for each t > 0 and ε0 > 0,

if

∫
Bδ(q)∩Ω

u(x, t) dx,≥ ε0 then inf
x∈Bδ(q)∩Ω

v(x, t) ≥ ε0
4π

log
1

2δ
,

where Bδ(q) = {x ∈ R
2 | |x − q| < δ} (δ > 0, q ∈ Ω). Here we consider the fully

parabolic system (6.50). The essential difference lies on local-in-space lower bound for

v. Actually, in the fully parabolic system it follows (Lemma 6.12): for T > 0 and

ε1 > 0,

if min
t∈[T−τ,T ]

(∫
Bδ(0)∩Ω

u(x, t) dx

)
≥ ε1 then inf

x∈Bδ(0)∩Ω
v(x, T ) ≥ ε1e

−2

4π
log

1

δ2
.
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As compared with the parabolic-elliptic system, we should control the local-in-space

mass
∫
Bδ(0)

u(t) on some interval [T − τ, T ]. To overcome this difficulty, we will estab-

lish Hölder continuity of a local-in-space mass with respect to time (Proposition 6.13,

Lemma 6.14):

t �→
∫
Bδ(0)∩Ω

u(t).

We remark that such a continuity was established by the symmetry of Green’s function

in the parabolic-elliptic case ([81]). However, this technique cannnot be applied to the

parabolic-parabolic case.

Sketch of proof. In the rest of this section sketch of the proof of Theorem 6.11 will

be presented. Henceforth, we assume (6.51) and (6.52), moreover denote by (u, v) the

solution of (6.50) in Ω × (0, Tmax). The cornerstone of the poof is the local-in-space

lower bound for v as stated above. By calculating a fundamental solution the following

lemma can be established.

Lemma 6.12 ([27]). Let τ > 0, T ∈ (τ, Tmax) and 0 < δ < min{1, R}. If there exists

some ε1 > 0 such that∫
Bδ(0)

u(x, t) dx ≥ ε1 for all t ∈ [T − τ, T ],

then

inf
x∈Bδ(0)

v(x, T ) ≥ ε1e
−2

4π
log

1

δ2
.

Next we will deduce a continuity of a local-in-space mass with respect to time. Using

the assumption of radial symmetry, we can derive some stability on the neighbourhood

of the origin. We point out that the radial symmetry assumption is required in the

proof of the next lemma.

Proposition 6.13 ([27]). Let 0 < t1 < t2 < Tmax and ψ = ψ0,δ,n be as in Lemma 6.4.

Assume that δ > 0 is sufficiently small. Then there exists a positive constant C which

is independent of t1, t2 and τ ∈ (0, 1] satisfying∣∣∣∣et2 ∫
Ω

u(x, t2)ψ(x) dx− et1
∫
Ω

u(x, t1)ψ(x) dx

∣∣∣∣ ≤ Cet2
(
|t2 − t1|+ |t2 − t1| 14

)
.

Thus, invoking the continuity of a local-in-space mass with respect to time, we can

guarantee a lower bound for v on some interval.
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Lemma 6.14 ([27]). Let ε1 > 0 and ψ = ψ0,δ,n be as in Lemma 6.4 with sufficiently

large n. Assume that δ > 0 is sufficiently small. Then there exists some τ0 ∈ (0, 1]

satisfying that if there exists some t0 ∈ (0, Tmax) such that∫
Ω

u(x, t0)ψ(x) dx ≥ ε1

then for all τ ∈ (0, τ0),∫
Ω

u(x, t)ψ(x) dx ≥ ε1
2

(max{0, t0 − τ} ≤ t ≤ t0).

In light of Lemma 6.14, we can establish a local-in-space energy estimate based on

the same spirit in Proposition 6.7. Indeed, introducing the following modified Lyapunov

functional

W (t) :=M

∫
Ω

u log uψ −
∫
Ω

uvψ +
1

2

∫
Ω

|∇v|2ψ +
1

2

∫
Ω

v2ψ,

with a sufficiently large M > 0, we can establish uniform-in-time boundedness of W (t)

as follows.

Proposition 6.15 ([27]). Let ψ = ψ0,δ,n be as in Lemma 6.4 with sufficiently large n.

Assume that τ > 0 is sufficiently small. If M > 0 is sufficiently large and δ > 0 is

sufficiently small then there exists a positive constant C satisfying

W (t) ≤ C for all t ∈ [0, Tmax).

In view of the above lemma, we can prove Theorem 6.11.
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PART II:

PARABOLIC-PARABOLIC

KELLER–SEGEL SYSTEM

⎧⎨⎩ut = Δu−∇ · (u∇χ(v)),
vt = Δv − v + u.





Chapter 7

Global existence and boundedness

in a parabolic-parabolic

Keller–Segel system with singular

sensitivity

7.1. Problem and result

In this chapter we consider the Neumann initial-boundary value problem for a fully

parabolic chemotaxis system with singular sensitivity χ(v) = χ0 log v, that is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu− χ0∇ · (u
v
∇v), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(7.1)

in a bounded domain Ω ⊂ R
n, n ≥ 2 with smooth boundary, where χ0 > 0 and{

u0 ∈ C0(Ω), u0 ≥ 0 in Ω, u0 
≡ 0,

v0 ∈ W 1,∞(Ω), v0 > 0 in Ω.
(7.2)

Winkler [107] proved that if χ0 <
√

2
n
, then (7.1) possesses a global classical solution.

As pointed out in [107], the result did not rule out the possibility that the solution

may become unbounded as t → ∞. The question of boundedness of the solution to
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(7.1) has been posted as an open problem. Global existence of weak solutions was

also established when χ0 <
√

n+2
3n−4

([107]). In the radially symmetric setting, Stinner

and Winkler [85] constructed certain weak solutions under the condition χ0 <
√

n
n−2

.

Moreover, in virtue of additional dampening kinetic terms, Manásevich, Phan and

Souplet [61] proved global existence and boundedness in a related system for all χ0 > 0.

In this chapter we improve the approach in [107] and establish uniform-in-time

boundedness of solutions to (7.1). The main result reads as follows.

Theorem 7.1. Let n ≥ 2. Assume that χ0 satisfies

0 < χ0 <

√
2

n
,

and suppose that u0 and v0 satisfy (7.2). Then the global solution of (7.1) is bounded

in the sense that there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0.

The above theorem states uniform-in-time boundedness of solutions under the same

condition on χ0 > 0 as in [107]. There are two difficulties in deriving boundedness.

The first difficulty stems from the singularity of 1
v
. By establishing a time-independent

pointwise lower bound for v (Lemma 2.6), we overcome this difficulty. Note that the

strong maximum principle easily implies

v(·, t) ≥ η(t) := min
x∈Ω

v0(x) · e−t for all t > 0.

However, this is useless in proving uniform-in-time boundedness of solutions, since

η(t) → 0 as t → ∞. The second difficulty lies in deducing time-independent Lp-

boundedness of solutions. Although the Lp-estimate in [107] depends on time, we

shall reconstruct the method in [107] and remove the dependence. Invoking the above

two time-independent estimates, we establish boundedness.

This chapter is organized as follows. Section 7.2 will be concerned with prelimi-

naries. In Section 7.3 we deduce time-independent Lp-boundedness of solutions and

complete the proof of Theorem 7.1.

7.2. Preliminaries

We first recall the global existence result established in [107].
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Lemma 7.2. Assume that

0 < χ0 <

√
2

n
.

If the initial data (u0, v0) satisfies (7.2), then (7.1) has a global classical positive solution

u ∈ C2,1(Ω× (0,∞)) ∩ C0([0,∞);C0(Ω)),

v ∈ C2,1(Ω× (0,∞)) ∩ C0([0,∞);C0(Ω)).

Moreover, the first component of the solution satisfies the mass identity∫
Ω

u(x, t) dx =

∫
Ω

u0(x) dx for all t > 0.(7.3)

To achieve boundedness of the norm of u(·, t) in Lp(Ω) we shall use the following

lemmas.

Lemma 7.3. Let p ∈ R and q ∈ R. Then the following identity holds for all t > 0 :

d

dt

∫
Ω

upvq + q

∫
Ω

upvq − q

∫
Ω

up+1vq−1

=− p(p− 1)

∫
Ω

up−2vq|∇u|2 +
∫
Ω

upvq−2 · [− q(q − 1) + pqχ0

] · |∇v|2
+

∫
Ω

up−1vq−1 · [− 2pq + p(p− 1)χ0

]∇u · ∇v.
Proof. Proceeding analogously to [107, Lemma 2.3], we can prove the desired identity.

Lemma 7.4. Let 1 ≤ θ, μ ≤ ∞.

(i) If n
2
(1
θ
− 1

μ
) < 1, then there exists C > 0 such that

‖v(·, t)‖Lμ(Ω) ≤ C
(
1 + sup

s∈(0,∞)

‖u(·, s)‖Lθ(Ω)

)
for all t > 0.

(ii) If 1
2
+ n

2
(1
θ
− 1

μ
) < 1, then there exists C > 0 such that

‖∇v(·, t)‖Lμ(Ω) ≤ C
(
1 + sup

s∈(0,∞)

‖u(·, s)‖Lθ(Ω)

)
for all t > 0.

Proof. We can argue similarly as in [107, Lemma 2.4] due to the estimate for et(Δ−1):

‖et(Δ−1)ϕ‖Lμ(Ω) ≤ c t−
n
2
( 1
θ
− 1

μ
)e−δt‖ϕ‖Lθ(Ω) for all t > 0, ϕ ∈ Lθ(Ω),

with some constants c, δ > 0.
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7.3. Proof of Theorem 7.1

We follow the same way as in [107]. The difference is that our estimates are

independent of time.

Lemma 7.5. Let n ≥ 2 and 0 < χ0 <
√

2
n
. Assume that p ∈ (1, 1

χ0
2 ) and r ∈

(r−(p), r+(p)), where

r±(p) :=
p− 1

2
(1±

√
1− pχ0

2).

If there exists a constant c > 0 such that

‖v(·, t)‖Lp−r(Ω) ≤ c for all t > 0,(7.4)

then there exists C > 0 such that∫
Ω

up(x, t)v−r(x, t) dx ≤ C for all t > 0.

Proof. Choosing q := −r in Lemma 7.3, we obtain

I :=
d

dt

∫
Ω

upv−r − r

∫
Ω

upv−r + r

∫
Ω

up+1v−r−1(7.5)

=− p(p− 1)

∫
Ω

up−2v−r|∇u|2 −
∫
Ω

upv−r−2
[
r(r + 1) + prχ0

] · |∇v|2
+

∫
Ω

up−1v−r−1
[
2pr + p(p− 1)χ0

]∇u · ∇v
for t > 0. Applying Young’s inequality to the last term, we have∣∣∣ ∫

Ω

up−1v−r−1
[
2pr + p(p− 1)χ0

]∇u · ∇v∣∣∣
≤ p(p− 1)

∫
Ω

up−2v−r|∇u|2 + 1

4p(p− 1)

∫
Ω

upv−r−2
[
2pr + p(p− 1)χ0

]2 · |∇v|2.
Therefore (7.5) yields

I ≤ −
∫
Ω

upv−r−2h(p, r, χ0)|∇v|2,(7.6)

where

h(p, r, χ0) :=r(r + 1) + prχ0 −
[
2pr + p(p− 1)χ0

]2
4p(p− 1)

.(7.7)
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As p ∈ (1, 1
χ0

2 ) and r ∈ (r−(p), r+(p)), we thus obtain

4(p− 1)h(p, r, χ0) = −4r2 + 4(p− 1)r − p(p− 1)2χ0
2

= 4(r+(p)− r)(r − r−(p)) > 0.

In view of the positivity h > 0, (7.5) and (7.6) imply

d

dt

∫
Ω

upv−r + r

∫
Ω

up+1v−r−1 ≤ r

∫
Ω

upv−r for all t > 0.(7.8)

Now unlike the proof of [107, Lemma 4.2] we pay attention to the term r
∫
Ω
up+1v−r−1.

Hölder’s inequality implies that∫
Ω

upv−r =
∫
Ω

(up+1v−r−1)
p

p+1 · v−r− p(−r−1)
p+1

≤
(∫

Ω

up+1v−r−1
) p

p+1
(∫

Ω

vp−r
) 1

p+1
.

In virtue of the assumption (7.4), we see that∫
Ω

upv−r ≤ c
p−r
p+1

(∫
Ω

up+1v−r−1
) p

p+1

.

Hence we have that

c−
p−r
p

(∫
Ω

upv−r
) p+1

p ≤
∫
Ω

up+1v−r−1.(7.9)

Combining (7.9) with (7.8), we establish the following inequality:

d

dt

∫
Ω

upv−r ≤ −rc− p−r
p

(∫
Ω

upv−r
) p+1

p

+ r

∫
Ω

upv−r.

Since we find p+1
p
> 1, thus the standard ODE technique completes the proof.

We are now in a position to prove Theorem 7.1.

Proof of Theorem 7.1. The proof is divided into two steps.

(Step 1) In this step we shall gain Lp-boundedness of solutions. We will prove that

there exist some p > n
2
and Cp > 0 such that

‖u(·, t)‖Lp(Ω) ≤ Cp for all t > 0.(7.10)
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We consider an iterative argument. First we pick a pair (p0, r0) such that⎧⎪⎨⎪⎩
p0 ∈

(
1, min

{ 1

χ0
2
, n+ 1,

n+ 2

n− 2

})
,

r0 :=
p0 − 1

2
.

(7.11)

Then we can confirm that

p0 > r0, r0 <
n

2
, r0 ∈ (r−(p0), r+(p0)) and p0 − r0 =

p0 + 1

2
<

n

n− 2
.

Since n
2
(1 − 1

p0−r0 ) < 1 due to the inequality p0 − r0 <
n
n−2

, Lemma 7.4 (i) together

with the mass identity (7.3) allows us to find a constant c0 > 0 fulfilling

‖v(·, t)‖Lp0−r0(Ω) ≤ C
(
1 + sup

s∈(0,∞)

‖u(·, s)‖L1(Ω)

)
≤ c0 for all t > 0.

Therefore Lemma 7.5 yields that there exists a constant c′0 > 0 such that∫
Ω

up0v−r0 ≤ c′0 for all t > 0.

Now we claim that for all q0 ∈ (1,min{p0, n(p0−r0)n−2r0
}) there exists a constant c′′0 > 0 such

that ∫
Ω

uq0 ≤ c′′0 for all t > 0.(7.12)

Indeed, applying Hölder’s inequality, we obtain∫
Ω

uq0 =

∫
Ω

(up0v−r0)
q0
p0 · v

r0q0
p0(7.13)

≤ ( ∫
Ω

up0v−r0
) q0

p0 ·
(∫

Ω

v
q0r0

p0−q0

) p0−q0
p0

≤ c′0
q0
p0 ·

(∫
Ω

v
q0r0

p0−q0

) p0−q0
p0

.

Since n
2
( 1
q0
− p0−q0

q0r0
) < 1 due to q0 <

n(p0−r0)
n−2r0

, it follows from Lemma 7.4 (i) that

sup
t>0

‖v(·, t)‖
L

q0r0
p0−q0 (Ω)

≤ K0

(
1 + sup

t>0
‖u(·, t)‖Lq0 (Ω)

)
with K0 > 0. Applying this estimate to (7.13), we have

sup
t>0

‖u(·, t)‖Lq0 (Ω) ≤ K ′
0

(
1 + (sup

t>0
‖u(·, t)‖Lq0 (Ω))

r0
p0

)
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with K ′
0 > 0. Since r0

p0
< 1, we can verify (7.12).

In the above argument, if p0 >
n
2
, then we can pick q0 >

n
2
and we establish (7.10).

On the other hand, if p0 ≤ n
2
, then we consequently deduce that for all q0 ∈ (1, n(p0+1)

2(n−p0+1)
)

there exists c′′0 > 0 satisfying ∫
Ω

uq0 ≤ c′′0 for all t > 0(7.14)

due to p0 ≥ n(p0−r0)
n−2r0

= n(p0+1)
2(n−p0+1)

when p0 ≤ n
2
.

We proceed the second iteration. We fix a pair (p1, r1) such that⎧⎪⎨⎪⎩
p1 ∈

(
p0, min

{ 1

χ0
2
, n+ 1,

p0(n+ 2)

n− 2p0

})
,

r1 :=
p1 − 1

2
.

(7.15)

Then we see that

p1 > r1, r1 <
n

2
and r1 ∈ (r−(p1), r+(p1)).

Moreover, we can calculate that

p1 − r1 =
p1 + 1

2
<

p0(n+2)
n−2p0

+ 1

2

=
n(p0 + 1)

2(n− 2p0)
=

n(p0 + 1)

2{(n− p0 + 1)− (p0 + 1)} =
n · n(p0+1)

2(n−p0+1)

n− 2 · n(p0+1)
2(n−p0+1)

.

Hence, we can find some q0 ∈ (1, n(p0+1)
2(n−p0+1)

) satisfying

p1 − r1 <
nq0

n− 2q0
.

Noting that n
2
( 1
q0

− 1
p1−r1 ) < 1, we deduce from Lemma 7.4 (i) and (7.14) that there

exists a constant c1 > 0 such that

‖v(·, t)‖Lp1−r1 (Ω) ≤ C
(
1 + sup

s∈(0,∞)

‖u(·, s)‖Lq0 (Ω)

)
≤ c1 for all t > 0

and Lemma 7.5 yields that there exists a constant c′1 > 0 fulfilling∫
Ω

up1v−r1 ≤ c′1 for all t > 0.

117



Using a similar estimate as the first iteration, we have for all q1 ∈ (1,min{p1, n(p1−r1)n−2r1
})

there exists a constant c′′1 > 0 such that∫
Ω

uq1 ≤ c′′1 for all t > 0.

If we can choose p1 >
n
2
, then we can pick q1 >

n
2
and establish (7.10). Moreover if

p1 ≤ n
2
, then we have that for all q1 ∈ (1, n(p1+1)

2(n−p1+1)
) there exists a constant c′′1 > 0

satisfying ∫
Ω

uq1 ≤ c′′1 for all t > 0.

Consequently, we can define a pair (pk, rk) (k ∈ N):⎧⎪⎨⎪⎩
pk ∈

(
pk−1, min

{ 1

χ0
2
, n+ 1,

pk−1(n+ 2)

n− 2pk−1

})
,

rk :=
pk − 1

2
,

(7.16)

and if pk ≤ n
2
, then we deduce that for all qk ∈ (1, n(pk+1)

2(n−pk+1)
)∫

Ω

uqk ≤ c′′k for all t > 0

with constant c′′k > 0. Because 2
n
< min{ 1

χ0
2 , n+1} due to the condition χ0 <

√
2
n
and

the increasing function

f(x) :=
x(n+ 2)

n− 2x

satisfies f(x) > 1 (x > 1) and

f(x) → ∞ as x→ n

2
,

we can obtain some k0 large enough such that pk0 >
n
2
and hence qk0 >

n
2
. Therefore

we prove (7.10).

(Step 2) By Lp-boundedness of solutions (Step 1), we show L∞-boundedness in this

step. Building on Lemma 7.4 (ii), we invoke the standard semigroup technique (e.g.

[107, Lemma 3.4]) to imply that there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0.

Thus we can complete the proof.
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Remark 7.1. The method in this chapter can be applied to the general case:⎧⎨⎩ ut = Δu− χ0∇ · ( u
vk
∇v), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,
(7.17)

with k > 1. Indeed, instead of h(p, r, χ0) in (7.7), set

h(p, r, χ0, v) : = r(r + 1) + prχ0 · 1

vk−1
−
[
2pr + p(p− 1)χ0 · 1

vk−1

]2
4p(p− 1)

≥ r(r + 1) + prχ0 · 1

ηk−1
−
[
2pr + p(p− 1)χ0 · 1

ηk−1

]2
4p(p− 1)

.

Replacing χ0 with χ0 := χ0

ηk−1 , we can argue similarly as our proofs. Hence, if χ0 <√
2
n
· ηk−1 we can establish boundedness of solutions to (7.17) with k > 1.
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Chapter 8

Global existence and boundedness

in a parabolic-parabolic

Keller–Segel system with strongly

singular sensitivity

8.1. Problem and result

In this chapter we consider the following Neumann initial-boundary value problem

for the fully parabolic chemotaxis system with the strongly singular sensitivity χ(v),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇χ(v)), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(8.1)

where we assume that Ω ⊂ R
n (n ≥ 2) is a bounded domain with smooth boundary,

and χ satisfies

χ ∈ C2+ω
loc ((0,∞)) with some ω ∈ (0, 1)(8.2)

and

0 < χ′(v) ≤ χ0

vk
for some χ0 > 0 and k > 1;(8.3)

121



moreover, the initial data (u0, v0) fulfils⎧⎨⎩ u0 ∈ C0(Ω), u0 ≥ 0 in Ω, u0 
≡ 0,

v0 ∈ W 1,∞(Ω), v0 > 0 in Ω.
(8.4)

From a mathematical point of view, in this context, the questions of global existence

and boundedness appear to be quite challenging. As to the regular case that

0 < χ′(v) ≤ χ0

(1 + αv)k
(α > 0, χ0 > 0, k > 1),

it was established that (8.1) possesses a unique globally bounded classical solution

([103]). On the other hand, our interest is in the singular case. When χ′(v) = χ0

v
, global

existence of classical (resp. weak) solutions of (8.1) was proved under the condition

χ0 <

√
2

n

(
resp. χ0 <

√
n+ 2

3n− 4

)
by Winkler [107]. Boundedness is also established in Chapter 7.

In this chapter we consider global existence and uniform-in-time boundedness of

solutions in the “strongly” singular case such as χ′(v) = χ0

vk
with “k > 1”. We cannot

directly apply Winkler’s method as in [103] to this case due to the singularity of χ(v).

In this chapter we turn our eyes to a uniform-in-time lower estimate for v (Lemma 2.6)

and this estimate enables us to develop Winkler’s strategy to the singular case easily.

Note that the strong maximum principle easily implies v(·, t) ≥ η(t) := min v0 · e−t for
fixed t > 0; however, this is useless in proving uniform-in-time boundedness of solutions

because η(t) → 0 as t→ ∞. Our main result reads as follows.

Theorem 8.1. Suppose that χ satisfy (8.2) and (8.3), and assume that (u0, v0) fulfils

(8.4). Then the problem (8.1) has a global classical solution (u, v) and moreover the

solution is bounded in the sense that there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0.

Remark 8.1. In Remark 7.1, it has been shown that (8.1) with χ′(v) = χ0

vk
(k ≥ 1) has

a globally bounded solution, provided that “χ0 > 0 is sufficiently small”. By virtue

of Theorem 8.1 we can remove this smallness condition on χ0 in the strongly singular

case k > 1.
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8.2. Proof of Theorem 8.1

We consider the following regularization of (8.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

uεt = Δuε −∇ · (uε∇χε(vε)), x ∈ Ω, t > 0,

vεt = Δvε − vε + uε, x ∈ Ω, t > 0,

∂uε
∂ν

=
∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

(8.5)

where ε ∈ (0, 1) and χε ∈ C2+ω
loc ([0,∞)) with some ω > 0 satisfies

χε(s) := χ(s+ ε), s ≥ 0.

Then we have

0 < χ′
ε(s) = χ′(s+ ε)

≤ χ0

(s+ ε)k
=

ε−kχ0

(1 + 1
ε
s)
k
.

Therefore we can invoke the method in [103] to obtain global classical solutions of

(8.5). Moreover, we can easily find that uε fulfils the mass conservation property∫
Ω
uε(x, t) dx ≡ ∫

Ω
u0.

We apply Winkler’s method [103] to the approximate problem (8.5) and accomplish

the passage to the limit of approximate solutions due to uniform-in-time lower bound

for v (Lemma 2.6).

Proof of Theorem 8.1. The proof is divided into three steps.

(Step 1) In this step we prove an independent-in-ε bound on the Lp norm for the

approximate solutions uε. Based the similar spirit as in [103, Lemma 3.1], we will see

that there exists a constant C1 > 0 such that

sup
t>0

‖uε(t)‖Lp(Ω) ≤ C1 for all ε ∈ (0, 1), p > 1,(8.6)

where the constant C1 is independent of ε. Indeed, from Lemma 2.6 (see (2.12)) we

confirm the following upper estimate for χ′
ε on [η,∞):

χ′
ε(s) ≤

χ0

(s+ ε)k

≤ χ0

sk
=

2kχ0

(s+ s)k
≤ 2kχ0

(η + s)k
for all s ≥ η.
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Here we will give a rigorous proof of (8.6). In this proof we denote (u, v) and χ

instead of (uε, vε) and χε, respectively. Given p > 1, we choose κ > 0 sufficiently small

such as

κ ≤ p− 1

16p
and κ+ 2 < 2k(8.7)

and also set β > 0 sufficiently small satisfying

22k+1p(p− 1)χ0
2

κ(κ+ 1)β2
· (1 + βη)κ+2

(2η)2k
≤ 1 and (κ+ 2)βη − k ≤ 0.(8.8)

We define the suitable test function

ϕ(s) := e(1+βs)
−κ

(≥ 0) for s ≥ 0.

This test function ϕ(s) has the following properties:

ϕ′(s) = −κβ(1 + βs)−κ−1ϕ(s) ≤ 0 for s ≥ 0,

ϕ′′(s) = κ(κ+ 1)β2(1 + βs)−κ−2ϕ(s) + κ2β2(1 + βs)−2κ−2ϕ(s) for s ≥ 0,

moreover there exists some C > 0 such that

− sϕ′(s) = κβs(1 + βs)−κ−1ϕ(s) ≤ Cϕ(s) for s ≥ 0.(8.9)

Using both PDEs in (8.5), we have that

1

p

d

dt

∫
Ω

upϕ(v) =

∫
Ω

up−1ϕ(v)ut +
1

p

∫
Ω

upϕ′(v)vt

=

∫
Ω

up−1ϕ(v)Δu−
∫
Ω

up−1ϕ(v)∇ · (u∇χ(v))

+
1

p

∫
Ω

upϕ′(v)Δv − 1

p

∫
Ω

upvϕ′(v) +
1

p

∫
Ω

up+1ϕ′(v)

= −(p− 1)

∫
Ω

up−2ϕ(v)|∇u|2 −
∫
Ω

up−1ϕ′(v)∇v · ∇u

+ (p− 1)

∫
Ω

up−1ϕ(v)∇u · ∇χ(v) +
∫
Ω

upϕ′(v)χ′(v)|∇v|2

−
∫
Ω

up−1ϕ′(v)∇u · ∇v − 1

p

∫
Ω

upϕ′′(v)|∇v|2

− 1

p

∫
Ω

upvϕ′(v) +
1

p

∫
Ω

up+1ϕ′(v).
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Since χ′(v) > 0 and ϕ′(v) ≤ 0, we have that

1

p

d

dt

∫
Ω

upϕ(v) + (p− 1)

∫
Ω

up−2ϕ(v)|∇u|2(8.10)

≤ −2

∫
Ω

up−1ϕ′(v)∇u · ∇v + (p− 1)

∫
Ω

up−1ϕ(v)χ′(v)∇u · ∇v

− 1

p

∫
Ω

upϕ′′(v)|∇v|2 − 1

p

∫
Ω

upvϕ′(v).

First the property (8.9) implies

−1

p

∫
Ω

upvϕ′(v) ≤ C

p

∫
Ω

upϕ(v).(8.11)

Moreover Young’s inequality yields that

− 2

∫
Ω

up−1ϕ′(v)∇u · ∇v(8.12)

≤ p− 1

8

∫
Ω

up−2ϕ(v)|∇u|2 + 8

p− 1

∫
Ω

up
(ϕ′)2(v)
ϕ(v)

|∇v|2,

and

(p− 1)

∫
Ω

up−1ϕ(v)χ′(v)∇u · ∇v(8.13)

≤ p− 1

8

∫
Ω

up−2ϕ(v)|∇u|2 + 2(p− 1)

∫
Ω

upϕ(v)(χ′)2(v)|∇v|2.

Therefore plugging (8.11), (8.12) and (8.13) into (8.10) implies that

1

p

d

dt

∫
Ω

upϕ(v) +
p− 1

2

∫
Ω

up−2ϕ(v)|∇u|2(8.14)

≤
∫
Ω

H(v)up|∇v|2 + C

p

∫
Ω

upϕ(v),

where

H(v) :=
8

p− 1

(ϕ′)2(v)
ϕ(v)

+ 2(p− 1)ϕ(v)(χ′)2(v)− 1

p
ϕ′′(v).

We will prove H(v) ≤ 0. To this purpose, we compute that

I1 :=
8

p− 1

(ϕ′)2(v)
ϕ(v)

=
8

p− 1
β2κ2(1 + βs)−2κ−2ϕ(v),

I2 := 2(p− 1)ϕ(v)(χ′)2(v) ≤ 2(p− 1)ϕ(v)
22kχ0

2

(η + v)2k
,

I3 :=
1

p
ϕ′′(v) ≥ 1

p
κ(κ+ 1)β2(1 + βv)−κ−2ϕ(v)
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and then by (8.7) we have

I1
1
2
I3

≤ 16pκ

(p− 1)(κ+ 1)
· 1

(1 + βs)κ

≤ 16pκ

p− 1

≤ 1.

On the other hand, we also deduce that

I2
1
2
I3

≤ 22k+1p(p− 1)χ0
2

κ(κ+ 1)β2
· (1 + βv)κ+2

(η + v)2k
.

Defining the function ψ(s) for s > 0 by

ψ(s) :=
(1 + βs)κ+2

(η + s)2k
,

then by (8.7) and (8.8) we confirm that the function ψ satisfies

ψ′(s) = (η + s)−k−1(1 + βs)κ+1 · {(κ+ 2− 2k)βs+ (κ+ 2)βη − k}
≤ 0

so that ψ(s) ≤ ψ(η) for all s ≥ η. In light of v(t) ≥ η, we obtain that

I2
1
2
I3

≤ 22k+1p(p− 1)χ0
2

κ(κ+ 1)β2
· (1 + βη)κ+2

(2η)2k

≤ 1

due to the condition (8.8). Consequently, we deduce that

H(v) = I1 + I2 − I3 ≤ 0,

and then have

1

p

d

dt

∫
Ω

upϕ(v) +
p− 1

2

∫
Ω

up−2ϕ(v)|∇u|2 ≤ C

∫
Ω

upϕ(v).(8.15)

By invoking the Gagliardo–Nirenberg inequality it follows that∫
Ω

upϕ(v) ≤ e

∫
Ω

up

= e‖u p
2‖2L2(Ω)

≤ e · CGN

(
‖∇(u

p
2 )‖L2(Ω) + ‖u p

2‖
L

2
p (Ω)

)2a

· ‖u p
2‖2(1−a)

L
2
p (Ω)
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with some constant CGN > 0 and a = p−1
p

∈ (0, 1). Since we see that

‖u p
2 ‖

L
2
p (Ω)

=

∫
Ω

u = ‖u0‖L1(Ω),

there exists some constant C ′ > 0 such that∫
Ω

upϕ(v) ≤ C ′
(∫

Ω

|∇u p
2 |2 + 1

)a

.

Hence it follows that

p− 1

2

∫
Ω

up−2ϕ(v)|∇u|2 ≥ p− 1

2

∫
Ω

up−2|∇u|2(8.16)

=
2(p− 1)

p2

∫
Ω

|∇u p
2 |2

≥ 2(p− 1)

(C ′)
1
ap2

(∫
Ω

upϕ(v)

) 1
a

− 2(p− 1)

p2
.

Collecting (8.15) and (8.16), we have

1

p

d

dt

∫
Ω

upϕ(v) ≤ −2(p− 1)

(C ′)
1
ap2

(∫
Ω

upϕ(v)

) 1
a

+ C

∫
Ω

upϕ(v)ψ +
2(p− 1)

p2
.

By standard ODE technique implies the boundedness (8.6).

We remark that the constants C and C ′ are independent of ε, so that the constant

C1 is independent of ε.

(Step 2) Using Lemma 2.6, we can proceed as in the proof of [103, Theorem 3.2]

to deduce an independent-in-ε bound on the L∞ norm for uε: there exists a constant

C2 > 0 such that

sup
t>0

‖uε(t)‖L∞(Ω) ≤ C2 for all ε ∈ (0, 1).

(Step 3) Finally we construct a solution of (8.1) as the limit of a net of solutions

to (8.5). This method is due to the proof of [107, Theorem 3.5]. For convenience we

recall the proof. Since (uε)ε∈(0,1) is bounded in L∞(Ω × [0,∞)), parabolic Schauder

estimate (Lemma 2.7) entails that both nets (uε)ε∈(0,1) and (vε)ε∈(0,1) are bounded in

C
2+θ,1+ θ

2
loc (Ω × (0,∞)) for some θ > 0. We apply the Arzelà-Ascoli theorem and then

infer that there exist a suitable sequence of numbers εk ↘ 0 and a pair (u, v) such

that uεk → u and vεk → v in C2,1
loc (Ω × (0,∞)). This pair (u, v) solves the PDEs and
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the Neumann conditions in (8.1). The initial condition is also checked by parabolic

regularity theory and semigroup techniques. Consequently, we have a global classical

solution (u, v) of (8.1) such that u belongs to L∞(Ω× [0,∞)) in light of boundedness

of (uε)ε∈(0,1) in L∞(Ω × [0,∞)); note that this boundedness property is uniform with

respect to ε.
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Chapter 9

Global existence and boundedness

in a quasilinear parabolic-parabolic

Keller–Segel system with

sensitivities S(u) and log v

9.1. Problem and result

In this chapter we consider the following quasilinear fully parabolic Keller–Segel

system with sensitivities S(u) and χ(v) = log v, that is,

(9.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= ∇ · (D(u)∇u)−∇ ·

(
S(u)

v
∇v

)
, x ∈ Ω, t > 0,

∂v

∂t
= Δv − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where Ω is a bounded domain in R
n with smooth boundary, n ∈ N and ∂

∂ν
denotes

differentiation with respect to the outward normal of ∂Ω. The initial data (u0, v0) is

assumed to be a pair of functions fulfilling⎧⎨⎩ u0 ∈ C2(Ω), u0 ≥ 0 in Ω, u0 
≡ 0,

v0 ∈ C1(Ω), v0 > 0 in Ω.
(9.2)
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Moreover we suppose that D and S satisfy the following conditions:

D,S ∈ C2([0,∞)) with S(0) = 0 and S ≥ 0,(9.3)

D(u) ≥ K0(u+ 1)m−1 with m ∈ R and K0 > 0 for all u ≥ 0,(9.4)

D(u) ≤ K1(u+ 1)M−1 with M ∈ R and K1 > 0 for all u ≥ 0,(9.5)

S(u)

D(u)
≤ K(u+ 1)α with α <

2

n
and K > 0 for all u ≥ 0.(9.6)

From a mathematical point of view it is important to study whether solutions

remain bounded or blow up. As to the problem without 1
v
, i.e., in the case that the

chemotaxis term in the first equation in (9.1) is replaced with −∇· (S(u)∇v), Tao and

Winkler [96] proved boundedness of solutions, provided that D and S satisfy (9.3),

(9.4), (9.5) and (9.6) and Ω is convex. Recently this convexity condition of Ω was

removed in [39]. As to blow-up of solutions to the problem (9.1) without 1
v
, Winkler

[108, 106] and Ciéslak and Stinner [16] established that the solutions blow up in finite

time under the conditions that

S(u)

D(u)
≥ Ku

2
n
+η for u > 1 with K > 0, η > 0

and that

S(u) ≥ cu for some c > 0.

Therefore the optimal exponent is known as 2
n
.

In the last decade, a growing literature has been concerned with signal-dependent

sensitivity. However, to the best of our knowledge, no results are available for the

system with both nonlinear diffusion and signal-dependent sensitivity. As opposed to

the case without 1
v
, we find that all solutions of (9.1) are global and bounded in the

case D(u) ≡ 1 and S(u) ≡ χ0u with sufficiently small χ0 > 0 in [107] and Chapter 7.

This means that the case α = 1 and sufficiently small K > 0 admits global existence

and boundedness. As 1 > 2
n
for n ≥ 3, this fact indicates that the constant 2

n
is not

optimal in the condition (9.6). The question of optimality of (9.6) remains an open

problem.

The purpose of this chapter is to establish global existence and boundedness of

solutions of the Keller–Segel system with not only the nonlinear diffusion ∇·(D(u)∇u)
but also the singular sensitivity function S(u)

v
. The main result in this chapter reads as

follows.
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Theorem 9.1. Assume that (u0, v0) fulfils (9.2). Let D and S satisfy (9.3), (9.4), (9.5)

and (9.6) with some m ∈ R, M ∈ R, α < 2
n
, K0 > 0, K1 > 0 and K > 0. Then there

exists a couple (u, v) of nonnegative functions such that

u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞))

which solves (9.1) classically and moreover there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0.

The difficulty in the proof of Theorem 9.1 lies in the singularity of 1
v
. A uniform-

in-time lower bound for v (Lemma 2.6) builds a “bridge” between the regular case

([96, 39]) and the singular case. We will consider approximate problems in Section

9.2 and prepare some estimates. Section 9.3 is devoted to discussing convergence of

approximate solutions and completing the proof of Theorem 9.1.

9.2. Approximate problem

We consider the following regularization of (9.1):

(9.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uε
∂t

= ∇ · (D(uε)∇uε)−∇ ·
(
S(uε)

vε + ε
∇vε

)
, x ∈ Ω, t > 0,

∂vε
∂t

= Δvε − vε + uε, x ∈ Ω, t > 0,

∂uε
∂ν

=
∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

where ε > 0. For all (u0, v0) satisfying (9.2) we may invoke [96, Lemmas 1.1 and 1.2]

to establish local existence of solutions to (9.7) as the following lemma.

Lemma 9.2. Let ε > 0. Suppose that (u0, v0) fulfils (9.2). Assume that D and S

satisfy (9.3), (9.4) and (9.5). Then there exist Tmax ∈ (0,∞] and a pair (uε, vε) of

nonnegative functions from C0(Ω×[0, Tmax))∩C2,1(Ω×(0, Tmax)) solving (9.7) classically

in Ω× (0, Tmax). Moreover,

either Tmax = ∞ or lim sup
t↗Tmax

(‖uε(t)‖L∞(Ω) + ‖vε(t)‖L∞(Ω)) = ∞;

furthermore, uε has the following mass conservation:

‖uε(t)‖L1(Ω) = ‖u0‖L1(Ω) for all t ∈ (0, Tmax).

131



The following lemma is a cornerstone of this work, which was essentially established

in Lemma 2.6. Mass conservation property plays a key role in the proof of the lemma.

In view of the lemma we can ensure a uniform-in-time estimate for vε.

Lemma 9.3. Let ε > 0 and T > 0. Suppose that (u0, v0) fulfils (9.2). Assume that D

and S satisfy (9.3), (9.4) and (9.5). Let (uε, vε) be a solution of (9.7) on [0, T ). Then

there exists δ > 0 such that

inf
x∈Ω

vε(x, t) ≥ δ > 0 for all t ∈ (0, T ), ε > 0,

where δ does not depend on ε and T .

As a preparation for the passage to the limit, we present three lemmas.

Lemma 9.4. Let ε > 0 and T > 0. Suppose that (u0, v0) fulfils (9.2). Assume that D

and S satisfy (9.3), (9.4), (9.5) and (9.6). Let (uε, vε) be a solution of (9.7) on [0, T ).

Then for all p ∈ [1,∞) and each q ∈ [1,∞) there exist Cp > 0 and C ′
2q > 0 such that

‖uε(t)‖Lp(Ω) ≤ Cp for all t ∈ (0, T ),

‖∇vε(t)‖L2q(Ω) ≤ C ′
2q for all t ∈ (0, T ),

where Cp and C ′
2q do not depend on ε and T .

Proof. Proceeding similarly as in [96, Lemma 3.3] and [39, Proposition 3.2], we define

φ as

φ(r) :=

∫ r

0

∫ ρ

0

(σ + 1)m+p−3

D(σ)
dσdρ.

Thus we can calculate

d

dt

∫
Ω

φ(uε) =

∫
Ω

φ′(uε)∇ · (D(uε)∇uε)−
∫
Ω

φ′(uε)∇ ·
(
S(uε)

vε + ε
∇vε

)
= −

∫
Ω

φ′′(uε)D(uε)|∇uε|2 +
∫
Ω

φ′′(uε)
S(uε)

vε + ε
∇uε · ∇vε

= −
∫
Ω

(uε + 1)m+p−3|∇uε|2

+

∫
Ω

(uε + 1)m+p−3 S(uε)

D(uε)

1

vε + ε
∇uε · ∇vε.

Now in virtue of Lemma 9.3 we have the following independent-in-ε bound:

1

vε + ε
≤ 1

δ
,(9.8)

and we are in the same position as [96, (3.10)]. The rest of this proof is the same

procedure as in the proofs of [96, Lemma 3.3] and [39, Proposition 3.2].
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Lemma 9.5. Let ε > 0 and T > 0. Suppose that (u0, v0) fulfils (9.2). Assume that D

and S satisfy (9.3), (9.4), (9.5) and (9.6). Let (uε, vε) be a solution of (9.7) on [0, T ).

Then there exist C∞ > 0 and C ′
∞ > 0 such that

‖uε(t)‖L∞(Ω) ≤ C∞ for all t ∈ (0, T ),(9.9)

‖∇vε(t)‖L∞(Ω) ≤ C ′
∞ for all t ∈ (0, T ),(9.10)

where C∞ and C ′
∞ do not depend on ε and T .

Proof. In light of (9.8), we can proceed as in [96, Lemma A.1] and so Lemma 9.4 implies

(9.9). As to (9.10), using the representation formula for vε and standard smoothing

estimates, we see that

‖∇vε(t)‖L∞(Ω) ≤ ‖∇et(Δ−1)v0‖L∞(Ω) +

∫ t

0

‖∇e(t−s)(Δ−1)uε(s)‖L∞(Ω) ds

≤ c

(
‖v0‖L∞(Ω) +

∫ t

0

(t− s)−
1
2
−n

2
· 1
θ e−η(t−s)‖uε(s)‖Lθ(Ω) ds

)
with constants c > 0, η > 0 and θ > 1. Now we can choose θ > 1 large enough

satisfying
1

2
+
n

2
· 1
θ
< 1

and (9.9) ensures boundedness of the right-hand side of the above inequality which

leads to the conclusion.

Lemma 9.6. Let ε > 0 and T > 0. Suppose that (u0, v0) fulfils (9.2). Assume that D

and S satisfy (9.3), (9.4), (9.5) and (9.6). Let (uε, vε) be a solution of (9.7) on [0, T ).

Then there exists C ′′
∞ > 0 such that

(9.11) ‖∇uε(t)‖L∞(Ω) ≤ C ′′
∞ for all t ∈ (0, T ),

where C ′′
∞ does not depend on ε and T .

Proof. We can calculate the first equation in (9.7) as

∂uε
∂t

= ∇ · (D(uε)∇uε)−∇
(
S(uε)

vε + ε

)
· ∇vε − S(uε)

vε + ε
Δvε

= ∇ · (D(uε)∇uε) + S(uε)

(vε + ε)2
|∇vε|2 − S ′(uε)

vε + ε
∇uε · ∇vε − S(uε)

vε + ε
Δvε.
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From (9.8) we have the following upper estimates:∣∣∣∣ S(uε)

(vε + ε)2
|∇vε|2

∣∣∣∣ ≤ S(uε)

δ2
|∇vε|2,

∣∣∣∣S ′(uε)
vε + ε

∇uε · ∇vε
∣∣∣∣ ≤ |S ′(uε)|

δ
|∇uε||∇vε|

and ∣∣∣∣S(uε)vε + ε
Δvε

∣∣∣∣ ≤ S(uε)

δ
|Δvε|.

By noting that u0 ∈ C2(Ω), these estimates allow us to apply standard parabolic theory

(Lemma 2.9) and to complete the proof.

9.3. Proof of Theorem 9.1

We start by showing that {uε} and {vε} satisfy the Cauchy condition.

Lemma 9.7. Let ε > 0 and T > 0. Suppose that (u0, v0) fulfils (9.2). Assume that D

and S satisfy (9.3), (9.4), (9.5) and (9.6). Let (uε, vε) be a solution of (9.7) on [0, T ).

Then there exist c1 > 0, c2 > 0, c3 > 0, c4 > 0 and c5 > 0 such that for all μ > 0,

ν > 0 and t ∈ [0, T ],

‖uμ(t)− uν(t)‖2L2(Ω) + c1‖vμ(t)− vν(t)‖2L2(Ω)(9.12)

+ c2

∫ t

0

‖∇(uμ(s)− uν(s))‖2L2(Ω) ds+ c3

∫ t

0

‖∇(vμ(s)− vν(s))‖2L2(Ω) ds

≤ c4|μ− ν|2ec5T .
Proof. Let μ > 0 and ν > 0. Multiplying the difference of the first equations in (9.7)

by (uμ − uν), we see that

1

2

d

dt
‖uμ − uν‖2L2(Ω) =

∫
Ω

∇ · (D(uμ)∇uμ −D(uν)∇uν)(uμ − uν)(9.13)

−
∫
Ω

∇ ·
(
S(uμ)

vμ + μ
∇vμ − S(uν)

vν + ν
∇vν

)
(uμ − uν)

= −
∫
Ω

(D(uμ)∇uμ −D(uν)∇uν) · ∇(uμ − uν)

+

∫
Ω

(
S(uμ)

vμ + μ
∇vμ − S(uν)

vν + ν
∇vν

)
· ∇(uμ − uν)

=: I1 + I2.

134



As to the first term I1, it follows from (9.3), (9.4), (9.9) and (9.11) that

I1 = −
∫
Ω

(D(uμ)∇uμ −D(uν)∇uν) · ∇(uμ − uν)

= −
∫
Ω

D(uμ)|∇(uμ − uν)|2 −
∫
Ω

(D(uμ)−D(uν))∇uν · ∇(uμ − uν)

≤ −K̃0

∫
Ω

|∇(uμ − uν)|2 + Cmax

∫
Ω

|∇uν ||uμ − uν ||∇(uμ − uν)|

≤ −K̃0‖∇(uμ − uν)‖2L2(Ω) + CmaxC
′′
∞

∫
Ω

|uμ − uν ||∇(uμ − uν)|,

where K̃0 := K0min{1, (C∞ + 1)m−1} and Cmax := maxσ∈[0,C∞]D
′(σ). In light of

Young’s inequality we deduce that

I1 ≤ −K̃0‖∇(uμ − uν)‖2L2(Ω)(9.14)

+
5C2

maxC
′′2
∞

2K̃0

‖uμ − uν‖2L2(Ω) +
K̃0

10
‖∇(uμ − uν)‖2L2(Ω).

As to the second term I2 in (9.13), we write it as follows:

I2 =

∫
Ω

(
S(uμ)

vμ + μ
∇vμ − S(uν)

vν + ν
∇vν

)
· ∇(uμ − uν)

=

∫
Ω

S(uμ)− S(uν)

vμ + μ
∇vμ · ∇(uμ − uν)

+

∫
Ω

S(uν)

(
1

vμ + μ
∇vμ − 1

vν + ν
∇vν

)
· ∇(uμ − uν).

Then (9.3) and (9.9) entail that

I2 ≤ C̃max

∫
Ω

|uμ − uν | 1

vμ + μ
|∇vμ||∇(uμ − uν)|

+ Ĉmax

∫
Ω

|H(vμ, vν , μ, ν)||∇(uμ − uν)|,

where C̃max := maxσ∈[0,C∞] S
′(σ), Ĉmax := maxσ∈[0,C∞] S(σ) and

H(vμ, vν , μ, ν) :=

(
1

vμ + μ
− 1

vν + ν

)
∇vμ + 1

vν + ν
∇(vμ − vν).

From Lemma 9.3 we find that

|H(vμ, vν , μ, ν)| ≤ 1

(vμ + μ)(vν + ν)
|vν − vμ||∇vμ|

+
1

(vμ + μ)(vν + ν)
|ν − μ||∇vμ|+ 1

vν + ν
|∇(vμ − vν)|

≤ 1

δ2
|vν − vμ||∇vμ|+ 1

δ2
|ν − μ||∇vμ|+ 1

δ
|∇(vμ − vν)|.
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Thus applying (9.10) and Lemma 9.3, we infer

I2 ≤ C̃maxC
′
∞

δ

∫
Ω

|uμ − uν ||∇(uμ − uν)|

+
ĈmaxC

′
∞

δ2

∫
Ω

|vν − vμ||∇(uν − uμ)|

+
ĈmaxC

′
∞

δ2

∫
Ω

|ν − μ||∇(uν − uμ)|

+
Ĉmax

δ

∫
Ω

|∇(vμ − vν)||∇(uμ − uν)|.

Hence Young’s inequality says that

I2 ≤ 5C̃2
maxC

′2
∞

2δ2K̃0

‖uμ − uν‖2L2(Ω) +
K̃0

10
‖∇(uμ − uν)‖2L2(Ω)(9.15)

+
5Ĉ2

maxC
′2
∞

2δ4K̃0

‖vμ − vν‖2L2(Ω) +
K̃0

10
‖∇(uμ − uν)‖2L2(Ω)

+ |Ω|5Ĉ
2
maxC

′2
∞

2δ4K̃0

|ν − μ|2 + K̃0

10
‖∇(uμ − uν)‖2L2(Ω)

+
5Ĉ2

max

2δ2K̃0

‖∇(vμ − vν)‖2L2(Ω) +
K̃0

10
‖∇(uμ − uν)‖2L2(Ω).

Consequently, combining (9.13) with (9.14) and (9.15), we see that

1

2

d

dt
‖uμ − uν‖2L2(Ω)+

K̃0

2
‖∇(uμ − uν)‖2L2(Ω)(9.16)

≤ C1‖uμ − uν‖2L2(Ω) + C2‖vν − vμ‖2L2(Ω)

+ C3|ν − μ|2 + C4‖∇(vμ − vν)‖2L2(Ω),

where C1, C2, C3 and C4 are given by

C1 :=
5C2

maxC
′′2
∞

2K̃0

+
5C̃2

maxC
′2
∞

2δ2K̃0

, C2 :=
5Ĉ2

maxC
′2
∞

2δ4K̃0

,

C3 := |Ω|5Ĉ
2
maxC

′2
∞

2δ4K̃0

, C4 :=
5Ĉ2

max

2δ2K̃0

.

Similarly, Young’s inequality yields

1

2

d

dt
‖vμ − vν‖2L2(Ω) ≤ −‖∇(vμ − vν)‖2L2(Ω) +

1

4
‖uμ − uν‖2L2(Ω).(9.17)
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Multiplying (9.17) by 2C4 and adding (9.16), we have

1

2

d

dt
(‖uμ − uν‖2L2(Ω) + 2C4‖vμ − vν‖2L2(Ω))

+
K̃0

2
‖∇(uμ − uν)‖2L2(Ω) + C4‖∇(vμ − vν)‖2L2(Ω)

≤
(
C1 +

C4

2

)
‖uμ − uν‖2L2(Ω) + C2‖vμ − vν‖2L2(Ω) + C3|μ− ν|2

≤ C5(‖uμ − uν‖2L2(Ω) + 2C4‖vμ − vν‖2L2(Ω)) + C3|μ− ν|2,

where C5 := max{C1 +
C4

2
, C

′2∞
2δ2

}, and thus Gronwall’s lemma yields

‖uμ(t)− uν(t)‖2L2(Ω) + 2C4‖vμ(t)− vν(t)‖2L2(Ω)

+

∫ t

0

e2C5(t−s)
(
K̃0‖∇(uμ(s)− uν(s))‖2L2(Ω) + 2C4‖∇(vμ(s)− vν(s))‖2L2(Ω)

)
ds

≤ C3

C5

|μ− ν|2e2C5T

for all t ∈ [0, T ]. Since e2C5(t−s) ≥ 1 (s ∈ [0, t]), we obtain the desired inequality.

We are now in a position to prove Theorem 9.1.

Proof of Theorem 9.1. We have Tmax = ∞ from Lemma 9.5. For all T > 0, in view

of Lemma 9.7 we find u and v from L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) such that

uε → u in L∞(0, T ;L2(Ω)) as ε→ 0,

vε → v in L∞(0, T ;L2(Ω)) as ε→ 0,

∇uε → ∇u in L2(0, T ;L2(Ω)) as ε→ 0,(9.18)

∇vε → ∇v in L2(0, T ;L2(Ω)) as ε→ 0.(9.19)

We will prove that (u, v) is a classical solution of (9.1) and bounded. The proof is

divided into two steps.

(Step 1) In this step we prove that (u, v) is a weak solution of (9.1). Let ϕ ∈ C∞
c (Ω×

[0,∞)). We can fix T > 0 such that suppϕ ⊂ Ω× [0, T ). Multiplying the first equation

in (9.7) by ϕ and integrating it over Ω× (0, T ), we can see

−
∫ T

0

∫
Ω

uε
dϕ

dt
=−

∫ T

0

∫
Ω

D(uε)∇uε · ∇ϕ(9.20)

+

∫ T

0

∫
Ω

S(uε)

vε + ε
∇vε · ∇ϕ+

∫
Ω

u0ϕ(·, 0).
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To accomplish the passage to the limit of approximate solutions we will confirm conver-

gence of each term. Firstly from the convergence uε → u in L2(0, T ;L2(Ω)) as ε → 0

due to (9.12), we easily check

−
∫ T

0

∫
Ω

uε
dϕ

dt
→ −

∫ T

0

∫
Ω

u
dϕ

dt
as ε→ 0.

Next we consider convergence of the first term on the right-hand side of (9.20). We

observe that

|D(uε)∇ϕ| ≤ max
σ∈[0,C∞]

D(σ) · |∇ϕ| ∈ L2(0, T ;L2(Ω))

due to (9.3) and D(uε) → D(u) pointwisely as ε→ 0. Thus it follows that

D(uε)∇ϕ→ D(u)∇ϕ in L2(0, T ;L2(Ω)) as ε→ 0.(9.21)

Therefore invoking (9.18) and (9.21), we can show the following convergence:

−
∫ T

0

∫
Ω

D(uε)∇uε · ∇ϕ→ −
∫ T

0

∫
Ω

D(u)∇u · ∇ϕ as ε→ 0.

As to the second term, (9.3) and Lemma 9.3 yield∣∣∣∣S(uε)vε + ε
∇ϕ

∣∣∣∣ ≤ Ĉmax

δ
|∇ϕ| ∈ L2(0, T ;L2(Ω))

and S(uε)
vε+ε

→ S(u)
v

pointwisely as ε→ 0, and hence we can establish

S(uε)

vε + ε
∇ϕ→ S(u)

v
∇ϕ in L2(0, T ;L2(Ω)) as ε→ 0.

In the same fashion as before (9.19) implies∫ T

0

∫
Ω

S(uε)

vε + ε
∇vε · ∇ϕ→

∫ T

0

∫
Ω

S(u)

v
∇v · ∇ϕ as ε→ 0.

Therefore we can accomplish the passage of the limit and hence

−
∫ T

0

∫
Ω

u
dϕ

dt
= −

∫ T

0

∫
Ω

D(u)∇u · ∇ϕ+

∫ T

0

∫
Ω

S(u)

v
∇v · ∇ϕ+

∫
Ω

u0ϕ(·, 0).

As to the second equation in (9.1), we can similarly deduce the following identity:

−
∫ T

0

∫
Ω

v
dϕ

dt
= −

∫ T

0

∫
Ω

∇v · ∇ϕ−
∫ T

0

∫
Ω

vϕ+

∫
Ω

uϕ+

∫
Ω

v0ϕ(·, 0).
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Thus we conclude that (u, v) is a weak solution of (9.1).

(Step 2) Invoking standard semigroup techniques and parabolic Schauder estimates

(Lemmas 2.8 and 2.10), we deduce from straightforward regularity arguments that

(u, v) is a global classical solution of (9.1). Consequently, we have a globally bounded

classical solution (u, v) of (9.1) such that u belongs to L∞(Ω × [0,∞)) in light of

boundedness of {uε}ε>0 in L∞(Ω× [0,∞)) (Lemma 9.5).
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PART III:

CHEMOTAXIS SYSTEM

FOR TUMOR INVASION

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇v),
vt = Δv + wz,

wt = −wz,
zt = Δz − z + u.





Chapter 10

Local existence and uniqueness in a

chemotaxis model for tumor

invasion

10.1. Purposes

The main purposes of this chapter are to propose a new modified tumor invasion

model of Chaplain–Anderson type in [13] and to establish a new result on existence

and uniqueness of local-in-time classical solutions to the simplified model. In partic-

ular, we propose a tumor invasion model in which the role of an active extracellular

matrix is taken into consideration. Actually, in the new tumor invasion model the

active extracellular matrices are produced by the biochemical reaction between the ex-

tracellular matrices and the matrix degrading enzymes and play a role as an attractant

of tumor cells. Moreover, as pointed out in [43] and [92] we also take the effects of

some functional proteins on the motility and haptotaxis of tumor cells into considera-

tion. Mathematical results on existence of solutions to some related models have been

obtained by [49, 50, 51, 52], where the equation is modified by adding the subdiffer-

ential of the indicator function, that is, a constraint condition is added. However, they

did not succeed in showing uniqueness of solutions, which was left as an open problem.

The main result of this chapter says that existence and uniqueness of solutions hold

true when we add one equation modeling the effect of an active extracellular matrix.

The plan of this chapter is as follows. In Section 10.2 we give a mathematical

control method of tumor invasion phenomenon and propose a modified tumor invasion

model. Section 10.3 is devoted to showing existence and uniqueness of local classical

solutions to a simplified model.
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10.2. Mathematical control method

In this section we give one of ideas to control the tumor invasion phenomenon from

a mathematical point of view. In Subsections 10.2.1 and 10.2.2, we give one of the ideas

to control HSPs by using the temperature. Subsections 10.2.3 and 10.2.4 are devoted

to proposing a new model of the tumor invasion phenomenon. Subsection 10.2.5 is the

goal of this section.

10.2.1. Temperature as the control parameter

As pointed out in [92], a certain HSP (heat shock protein) has an influence on the

random motility and the haptotaxis of tumor cells. Such HSPs are synthesized a lot in

order to overcome the stress brought about the changes of the external environment,

for example, temperature, pressure, ultraviolet rays and metal ions, as soon as possible.

Hence we can consider the temperature as one of the control parameters which have

an influence on the behaviors of HSPs. As the typical example which describes the

kinetics of the temperature θ, we give the following system (θ):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θt = DθΔθ + h1 a.e. in QT = Ω× (0, T ),

∂θ

∂ν
+ n0θ = h2 a.e. on ΣT = ∂Ω× (0, T ),

θ(0) = θ0 a.e. in Ω,

(θ)

where Ω is a bounded domain in R
3 containing tumor with a smooth boundary Γ; h1

and h2 are the prescribed internal and boundary heat sources, respectively; Dθ > 0

and n0 > 0 are constants. In this model we can control the temperature θ by the heat

sources h1 and h2.

10.2.2. Kinetics of HSPs under heat stress

Since the temperature is one of the external environment surrounding tumor, the

heat stress has an influence on the behaviors of HSPs. Here the heat stress means the

sudden change of the temperature.

For example, in [44] Ito et al. considered a signal cascade, shown in Figure 1 (see

the next page), which describes the HSP synthesis process. This synthesis process

starts as soon as the heat stress is given.
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Figure 10.1: Signal cascade of the HSP synthesis process under heat shock

Using the approach of systems biology, they proposed the following mathematical

model (HSP):={(10.1)-(10.20)}:

a′1 = (k2a15 + k16b + k18a19)a9 + 2(k11a5 + k14a3)a11 − 3k4a
3
1 − k16a1a11,(10.1)

a′2 = k15a8 − k5a2a17,(10.2)

a′3 = k5a2a17 + k7ba4 − (k7a12 + k14a11)a3,(10.3)

a′4 = k7a3a12 − (k7b + k8)a4,(10.4)

a′5 = k8a4 − k11a5a11,(10.5)

a′6 = k11a5a11 + k12ba7 − k12a6a13,(10.6)

a′7 = k12a6a13 − (k12b + k13)a7,(10.7)

a′8 = k13a7 + k14a3a11 − k15a8,(10.8)

a′9 = k15a8 + k16a1a11 − (k2a15 + k16b + k18a19)a9,(10.9)
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a′10 = k9a5 − kmRNA
kmRNA + a12

a10,(10.10)

a′11 = k3a16 + k10a10 + k16ba9 + k20a20(10.11)

− (k11a5 + k14a3 + k16a1 + k17a15 + k19a19 + kHSP )a11,

a′12 =
k6MAXa18
k6 + a18

+ (k7b + k8)a4 − k6bMAXa12
k6b + a12

− k7a3a12,(10.12)

a′13 = (k12b + k13)a7 − k12a6a13,(10.13)

a′14 = k3a16 + k20a20 − k1(θ)a14,(10.14)

a′15 = k1(θ)a14 − (k2a9 + k17a11)a15,(10.15)

a′16 = (k2a9 + k17a11)a15 − (k3 + k21)a16,(10.16)

a′17 = k4a
3
1 − k5a2a17,(10.17)

a′18 =
k6bMAXa12
k6b + a12

− k6MAXa18
k6 + a18

,(10.18)

a′19 = k21a16 − (k18a9 + k19a11)a19,(10.19)

a′20 = (k18a9 + k19a11)a19 − k20a20.(10.20)

As you see from (10.14) and (10.15) in (HSP), HSPs are synthesized a lot in order

to refold denatured proteins and overcome the damage given by the heat stress as soon

as possible. As a result, from (θ) and (HSP), the quantities of HSPs must be controlled

by the heat stress.

Recently, in [56] Komatsu et al. showed existence and uniqueness of nonnegative

global-in-time solutions to the initial value problem for (HSP) whenever all initial

values ai(0), 1 ≤ i ≤ 20, are nonnegative.

10.2.3. Biochemical reactions between ECM and MDE

In this subsection we explain the biochemical reaction between ECM (extracellular

matrix) and MDE (matrix degrading enzyme) in detail by using the following reactions:

(10.21) ECM+MDE � ECM:MDE ⇀ C1 + C2 + · · ·+ Ck +MDE.

In (10.21) we assume that the following properties are satisfied:

(H1) ECM combines with MDE and the enzyme-substrate complex ECM:MDE is

formed.

(H2) ECM:MDE generates the substances Cj, j = 1, 2, . . . , k, and releases MDE. Oth-

erwise, it is resolved into ECM and MDE again.
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Now we denote by c and cj the densities of ECM:MDE and Cj, respectively. By

employing the approach of systems biology, we derive the following system (EM):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ft = −v+1 mf + v−1 c,

ct = v+1 mf − v−1 c− v+2 c,

(cj)t = v+2 c, j = 1, 2, . . . , k,

mt = −v+1 mf + v−1 c+ v+2 c,

(EM)

where v±1 and v+2 are velocities of the following biochemical reactions:

v+1 : ECM+MDE ⇀ ECM:MDE,

v−1 : ECM+MDE ↼ ECM:MDE,

v+2 : ECM:MDE ⇀ C1 + C2 + · · ·+ Ck +MDE.

By using the Michaelis–Menten kinetics, i.e., the density of complex ECM:MDE always

stays at the dynamic equilibrium state, we have ct(t) = 0 for all t > 0. Then we can

rewrite (EM) as the following system {(10.22), (10.23)}, which is denoted by the same

notation (EM):

ft = −αmf,(10.22)

(cj)t = αmf, j = 1, 2, . . . , k,(10.23)

where α > 0 is a constant given by

α =
v+1

v−1 + v+2
.

Moreover we assume that all substances Cj, j = 1, 2, . . . , k, are so small that they can

diffuse uniformly in the space. Then we can derive the kinetic equations below instead

of (10.23):

(cj)t = DjΔcj + αmf, j = 1, 2, . . . , k,

where each Dj > 0 is a diffusion constant of the substance Cj.

At last we derive the following new system again denoted by (EM), which comes

from the biochemical reaction between ECM and MDE with (1.6):⎧⎪⎪⎪⎨⎪⎪⎪⎩
ft = −αmf,
(cj)t = DjΔcj + αmf, j = 1, 2, . . . , k,

mt = DmΔm+ P (n,m)−G(n, f,m).

(EM)
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It has to be noted that we can derive another system, which may be more complicated,

when the Michaelis–Menten kinetics is not used.

10.2.4. Kinetics of tumor cells

In this subsection we propose the modified kinetic equation of tumor cells. For this

purpose we assume that the following hypotheses are satisfied:

(H3) ECM does not have any influences on the haptotaxis of tumor cells.

(H4) One substance among Cj, j = 1, 2, . . . , k, has an influence on the haptotaxis of

tumor cells, which is denoted by ECM∗ and whose density is f ∗ throughout this

chapter. We call ECM∗ an active ECM. Roughly speaking, the active ECM is an

attractant for tumor cells.

(H5) A certain family of HSPs has an influence on the coefficients of the random

motility and haptotaxis of tumor cells. We denote the densities of such HSPs by

a vector p = (p1, p2, . . . , p
) for some �.

Under the above hypotheses we derive the following kinetic equation for tumor cells:

nt = ∇ · (Dn(n, f,p)∇n)−∇ · (λ(p)n∇f ∗),

which is the modified first equation of (1.6) taking (H3)–(H5) into account.

On the other hand, in [45] Ito et al. obtained the experimental data of the prolif-

eration curves of HepG2, which is one of the human hepatocellular carcinoma. Their

experimental data imply that the heat stress as well as the temperature have a huge

influence on the proliferation and apoptosis of HepG2. Moreover, they proposed the

following modified Verhulst model and estimated the nonlinear functions α, nmax and

β by using the extended Kalman filter:

n′ = α(θ)n

(
n− n

nmax(θ)

)
− β(θ)n.

So we assume that the following hypothesis is satisfied as well as (H3)–(H5):

(H6) The proliferation and apoptosis of tumor cells depend on the temperature. We

denote by Fp and Fa the proliferation and the apoptosis rates, respectively, which

are nonnegative functions.
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Finally, we derive the following kinetic equation for tumor cells:

nt = ∇ · (Dn(n, f,p)∇n)−∇ · (λ(p)n∇f ∗) + Fp(θ, n, f)− Fa(θ, n, f).

In this model we can dominate the behavior of tumor cells by controlling the quanti-

ties of HSPs in order to make Dn(n, f,p) and λ(p) smaller and smaller, respectively.

Furthermore the quantities of HSPs are also controlled by the temperature stated in

Subsection 10.2.2.

10.2.5. New model

We assume that the temperature θ is a prescribed function on Ω×[0, T ], for example,

which is decided by the system (θ) in Subsection 10.2.1. Then by using the system

(HSP), we can derive the vector field p of HSPs on Ω × [0, T ]. Thus we propose the

following tumor invasion model (TIM):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

nt = ∇ · (Dn(n, f,p)∇n)−∇ · (λ(p)n∇f ∗) + Fp(θ, n, f)− Fa(θ, n, f),

ft = −αmf,

f ∗
t = D∗Δf ∗ + αmf,

mt = DmΔm+ P (n, f)−G(n, f,m).

(TIM)

This model gives one mathematical scenario to control the behavior of tumor cells by

using the temperature effect. Moreover it is also one idea to control the haptotaxis of

tumor cells by introducing an inhibitor of ECM∗.

10.3. Mathematical result and proof

In this section we will establish existence and uniqueness of solutions to the new

model proposed in Section 10.2.5.

Let Ω be a bounded domain in R
N (N ∈ N) with smooth boundary ∂Ω. We assume

that the coefficients Dn, λ are constants for simplicity, moreover we do not consider

the proliferation term Fp, and the apoptosis term Fa. We choose the production term

P and the decay term G as typical functions n and m, respectively. We treat the
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constant parameters α, D∗, Dm as 1. Namely, we consider the case where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dn(n, f,p) ≡ 1,

λ(p) ≡ 1,

Fp(θ, n, f) ≡ 0,

Fa(θ, n, f) ≡ 0,

P (n, f) = n,

G(n, f,m) = m,

α = D∗ = Dm = 1

in (TIM) proposed in Section 10.2.5.

Consequently, we deal with the problem (P):={(10.24)-(10.29)}:

nt = Δn−∇ · (n∇f ∗) in Ω× (0, T ),(10.24)

ft = −mf in Ω× (0, T ),(10.25)

f ∗
t = Δf ∗ +mf in Ω× (0, T ),(10.26)

mt = Δm+ n−m in Ω× (0, T ),(10.27)

∂n

∂ν
=
∂f ∗

∂ν
=
∂m

∂ν
= 0 on ∂Ω× (0, T ),(10.28)

n(·, 0) = n0, f(·, 0) = f0, f
∗(·, 0) = f ∗

0 , m(·, 0) = m0 in Ω.(10.29)

We assume that the initial data n0, f0, f
∗
0 and m0 satisfy the following conditions:

n0 ∈ C0(Ω), n0 ≥ 0,(A1)

f0 ∈ C1(Ω), f0 ≥ 0,(A2)

f ∗
0 ∈ W 1,∞(Ω), f ∗

0 ≥ 0,(A3)

m0 ∈ C0(Ω), m0 ≥ 0.(A4)

Now we are in a position to give the main theorem in this chapter.
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Theorem 10.1. Let Ω be a bounded domain in R
N (N ∈ N) with smooth boundary ∂Ω.

Assume that (A1)-(A4) are satisfied. Then there exists Tmax ∈ (0,∞] (depending only

on ‖n0‖L∞(Ω), ‖f ∗
0‖W 1,∞(Ω) and ‖m0‖L∞(Ω)) such that (P) possesses a unique classical

solution (n, f, f ∗,m) with the following properties :

n ∈ C2,1(Ω× (0, Tmax)) ∩ C0([0, Tmax);C
0(Ω)), n ≥ 0,(P1)

f(t) = f0 exp

(
−
∫ t

0

m(s) ds

)
, f ≥ 0,(P2)

f ∗ ∈ C2,1(Ω× (0, Tmax)) ∩ C0([0, Tmax);C
0(Ω)) ∩ L∞

loc([0, Tmax);W
1,∞(Ω)),(P3)

f ∗ ≥ 0,

m ∈ C2,1(Ω× (0, Tmax)) ∩ C0([0, Tmax);C
0(Ω)), m ≥ 0.(P4)

Moreover, if Tmax <∞, then

lim
t↗Tmax

(
‖n(t)‖L∞(Ω) + ‖f ∗(t)‖W 1,∞(Ω) + ‖m(t)‖L∞(Ω)

)
= ∞.

Remark 10.1. Using the method in the proof of Theorem 10.1 with minor changes,

we can obtain the assertion also for (1.6) if Dn(n, f) is constant. Thus there is not a

big difference between (1.6) and (TIM) in the local solvability.

We prove Theorem 10.1. In the first half we give a proof of existence of classical

solutions by the Banach fixed point theorem, while in the second half uniqueness of

solutions is proved. The argument used here are based on [38].

Proof of existence. The existence proof follows a standard contraction argument.

Assume that n0, f0, f
∗
0 and m0 satisfy (A1)-(A4).

(Step 1) Suitable mapping and space.

With R > 0 and T ∈ (0, 1) to be fixed below, let X be the Banach space defined as

X := C0([0, T ];C0(Ω))× L∞(0, T ;W 1,∞(Ω))× C0([0, T ];C0(Ω))

with norm

‖(n, f ∗,m)‖X := ‖n‖C0([0,T ];C0(Ω)) + ‖f ∗‖L∞(0,T ;W 1,∞(Ω)) + ‖m‖C0([0,T ];C0(Ω)).

We claim that if T is sufficiently small, then on the closed set

S :=
{
(n, f ∗,m) ∈ X

∣∣∣ ‖(n, f ∗,m)‖X ≤ R
}
,
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the mapping

Ψ((n, f ∗,m))(t) :=

⎛⎜⎜⎜⎝
Ψ1((n, f

∗,m))(t)

Ψ2((n, f
∗,m))(t)

Ψ3((n, f
∗,m))(t)

⎞⎟⎟⎟⎠(10.30)

:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

etΔn0 −
∫ t

0

e(t−s)Δ∇ · (n(s)∇f ∗(s)) ds

etΔf ∗
0 +

∫ t

0

e(t−s)Δm(s)f(s) ds

et(Δ−1)m0 +

∫ t

0

e(t−s)(Δ−1)n(s) ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

f(s) := f0 exp

(
−
∫ s

0

m(r) dr

)
,(10.31)

acts as a contraction from S into itself.

(Step 2) Ψ(S) ⊂ S.

We let (n, f ∗,m) ∈ S and let f(s) be given by (10.31). First, from elementary

properties of the heat semigroup we have Ψ((n, f ∗,m)) ∈ X.

Next, to prove that Ψ((n, f ∗,m)) ∈ S, it remains to show that ‖Ψ(n, f ∗,m)‖X ≤ R

if T is appropriately small. We fix q1 > N and choose θ such that θ ∈ ( N
2q1
, 1
2
).

Applying (2.1) with (m, p) = (0,∞) and using Lemma 2.2 (i) and (iii), we see that

for all t ∈ [0, T ],

‖Ψ1((n, f
∗,m))(t)‖L∞(Ω)

≤ ‖etΔn0‖L∞(Ω) + c0,∞

∫ t

0

‖(−Δ+ 1)θe(t−s)Δ∇ · (n(s)∇f ∗(s))‖Lq1 (Ω) ds

≤ ‖n0‖L∞(Ω) + c0,∞C1

∫ t

0

(
t− s

2

)−θ
‖e t−s

2
Δ∇ · (n(s)∇f ∗(s))‖Lq1 (Ω) ds

≤ ‖n0‖L∞(Ω) + c0,∞C1C4

∫ t

0

(
t− s

2

)−θ− 1
2

e−
ν2(t−s)

2 ‖n(s)∇f ∗(s)‖Lq1 (Ω) ds,

where T < 1 is used. Using the fact (n, f ∗,m) ∈ S, we note that for a.a. s ∈ [0, T ],

‖n(s)∇f ∗(s)‖Lq1 (Ω) ≤ |Ω| 1
q1 ‖n(s)‖L∞(Ω)‖∇f ∗(s)‖L∞(Ω) ≤ |Ω| 1

q1R2.
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Therefore it follows that

‖Ψ1((n, f
∗,m))(t)‖L∞(Ω) ≤ ‖n0‖L∞(Ω) + c0,∞C1C4|Ω|

1
q1R2

∫ t

0

(
t− s

2

)−θ− 1
2

ds

≤ ‖n0‖L∞(Ω) + Γ1R
2T

1
2
−θ for all t ∈ [0, T ],

where Γ1 := 2θ+
1
2

1
2
−θ c0,∞C1C4|Ω|

1
q1 > 0. Picking q2 ∈ (1,∞) and γ ∈ (1

2
, 1) satisfying

1 < 2γ − N
q2
, applying (2.1) with (m, p) = (1,∞) and using Lemma 2.2 (i), we have

‖Ψ2((n, f
∗,m))(t)‖W 1,∞(Ω)

≤ ‖etΔf ∗
0‖W 1,∞(Ω) + c1,∞

∫ t

0

‖(−Δ+ 1)γe(t−s)Δm(s)f(s)‖Lq2(Ω) ds

≤ K‖f ∗
0‖W 1,∞(Ω) + c1,∞C1

∫ t

0

(t− s)−γ‖m(s)f(s)‖Lq2 (Ω) ds

for some constant K > 1. Since ‖m‖C0([0,T ];C0(Ω)) ≤ R, we have that for all s ∈ [0, T ],

‖m(s)f(s)‖Lq2 (Ω) ≤ ‖m(s)‖L∞(Ω)

(∫
Ω

(
f0 exp

(
−
∫ s

0

m(r) dr

))q2

dx

) 1
q2

≤ R‖f0‖L∞(Ω)e
RT |Ω| 1

q2 .

Therefore we see that for all t ∈ [0, T ],

‖Ψ2((n, f
∗,m))(t)‖W 1,∞(Ω) ≤ K‖f ∗

0‖W 1,∞(Ω) + Γ2Re
RTT 1−γ,

where Γ2 :=
1

1−γ c1,∞C1‖f0‖L∞(Ω)|Ω|
1
q2 ≥ 0. Taking q3 > N , we can choose β such that

β ∈ ( N
2q3
, 1). Applying (2.1) with (m, p) = (0,∞) and using Lemma 2.2 (ii), we obtain

‖Ψ3((n, f
∗,m))(t)‖L∞(Ω)

≤ ‖et(Δ−1)m0‖L∞(Ω) + c0,∞

∫ t

0

‖(−Δ+ 1)βe(t−s)(Δ−1)n(s)‖Lq3 (Ω) ds

≤ ‖m0‖L∞(Ω) + c0,∞C2

∫ t

0

(t− s)−β‖n(s)‖Lq3 (Ω) ds

≤ ‖m0‖L∞(Ω) + Γ3RT
1−β for all t ∈ [0, T ],
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where Γ3 :=
1

1−β c0,∞C2|Ω|
1
q3 > 0. Therefore it follows that

‖(n, f ∗,m)‖X ≤ ‖n0‖L∞(Ω) +K‖f ∗
0‖W 1,∞(Ω) + ‖m0‖L∞(Ω)

+ Γ1R
2T

1
2
−θ + Γ2Re

RTT 1−γ + Γ3RT
1−β.

If we fix

R := ‖n0‖L∞(Ω) +K‖f ∗
0‖W 1,∞(Ω) + ‖m0‖L∞(Ω) + 1,

then we can choose T as

Γ1R
2T

1
2
−θ + Γ2Re

RTT 1−γ + Γ3RT
1−β < 1.

This yields that ‖Ψ(n, f ∗,m)‖X ≤ R and hence Ψ(S) ⊂ S.

(Step 3) Contractivity of Ψ.

We proceed to check that on further diminishing T if necessary we obtain that Ψ

is a contraction mapping. Let (n, f ∗,m), (n, f ∗,m) ∈ S and let f be given by (10.31)

and f be defined by

f(s) := f0 exp

(
−
∫ s

0

m(r) dr

)
.

As in the proof of (Step 2), it follows that for all t ∈ [0, T ],

‖Ψ1((n, f
∗,m))(t)−Ψ1((n, f ∗,m))(t)‖L∞(Ω)

≤ c0,∞C1C4

∫ t

0

(
t− s

2

)−θ− 1
2

‖n(s)∇f ∗(s)− n(s)∇f ∗(s)‖Lq1(Ω) ds.

Since (n, f ∗,m), (n, f ∗,m) ∈ S, we have that for a.a. s ∈ [0, T ],

‖n(s)∇f ∗(s)− n(s)∇f ∗(s)‖Lq1 (Ω)(10.32)

≤ ‖n(s)‖L∞(Ω)‖∇(f ∗(s)− f ∗(s))‖Lq1 (Ω)

+ ‖n(s)− n(s)‖L∞(Ω)‖∇f ∗(s)‖Lq1 (Ω)

≤ 2|Ω| 1
q1R‖(n, f ∗,m)− (n, f ∗,m)‖X .

Therefore we obtain

‖Ψ1((n, f
∗,m))−Ψ1((n, f ∗,m))‖X ≤ 2Γ1RT

1
2
−θ‖(n, f ∗,m)− (n, f ∗,m)‖X .
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Next we consider the estimate for Ψ2. We see that for all t ∈ [0, T ],

‖Ψ2((n, f
∗,m))(t)−Ψ2((n, f ∗,m))(t)‖W 1,∞(Ω)

≤ c1,∞C1

∫ t

0

(t− s)−γ‖m(s)f(s)−m(s)f(s)‖Lq2 (Ω) ds

≤ c1,∞C1

∫ t

0

(t− s)−γ‖m(s)(f(s)− f(s))‖Lq2 (Ω) ds

+ c1,∞C1

∫ t

0

(t− s)−γ‖(m(s)−m(s))f(s)‖Lq2 (Ω) ds

=: I1 + I2.

First, we estimate the term I1. Noting that for all s ∈ [0, T ],

|f(s)− f(s)| =
∣∣∣∣f0 exp(−

∫ s

0

m(r) dr

)
− f0 exp

(
−
∫ s

0

m(r) dr

)∣∣∣∣
≤ ‖f0‖L∞(Ω)e

RT

∣∣∣∣− ∫ s

0

m(r) dr +

∫ s

0

m(r) dr

∣∣∣∣
≤ ‖f0‖L∞(Ω)e

RT‖m−m‖C0([0,T ];C0(Ω))T,

we obtain that

I1 ≤ c1,∞C1R|Ω|
1
q2

∫ t

0

(t− s)−γ‖f(s)− f(s)‖L∞(Ω) ds

≤ c1,∞C1R|Ω|
1
q2 ‖f0‖L∞(Ω)e

RT‖m−m‖C0([0,T ];C0(Ω))T

∫ t

0

(t− s)−γ ds

≤ Γ2e
RTT 1−γRT‖(n, f ∗,m)− (n, f ∗,m)‖X .

On the other hand, it turns out that

I2 ≤ c1,∞C1‖f0‖L∞(Ω)e
RT |Ω| 1

q2 ‖m(s)−m(s)‖C0([0,T ];C0(Ω))

∫ t

0

(t− s)−γ ds

≤ Γ2e
RTT 1−γ‖(n, f ∗,m)− (n, f ∗,m)‖X .

Consequently, it follows that

‖Ψ2((n, f
∗,m))−Ψ2((n, f ∗,m))‖X ≤ Γ2e

RTT 1−γ(RT + 1)‖(n, f ∗,m)− (n, f ∗,m)‖X .
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Proceeding similarly as in Step 2, we have

‖Ψ3((n, f
∗,m))−Ψ3((n, f ∗,m))‖X ≤ Γ3T

1−β‖(n, f ∗,m)− (n, f ∗,m)‖X
and conclude that Ψ is a contraction mapping if T is sufficiently small. From the

Banach fixed point theorem we thus obtain existence of (n, f ∗,m) ∈ X such that

(n, f ∗,m) = Ψ((n, f ∗,m)).

(Step 4) Regularity and nonnegativity of solutions.

By standard parabolic regularity argument (Lemma 2.8) and semigroup techniques,

we can observe that (n, f, f ∗,m) solves (P) in the classical sense. It is clear by definition

that f is nonnegative. To show that n is nonnegative, we multiply (10.24) by n− :=

−min{n, 0} and integrate it over Ω. Then we have

1

2

d

dt

∫
Ω

n2
− = −

∫
Ω

|∇n−|2 +
∫
Ω

n−∇f ∗ · ∇n−

≤ 1

4
‖∇f ∗‖2L∞(Ω×(0,T ))

∫
Ω

n2
−.

Integrating this inequality yields∫
Ω

n−(t)2 ≤ e
1
2
t‖∇f∗‖2

L∞(Ω×(0,T ))

∫
Ω

n−(0)2 = 0.

This implies that n is nonnegative. Moreover, using the positivity preserving properties

of {etΔ}t≥0 and {et(Δ−1)}t≥0 (or using the maximal principle) implies that f ∗ and m

are nonnegative.

Therefore 4 steps yield existence of solutions to (P) with (P1)-(P4).

Finally we prove uniqueness of solutions to (P).

Proof of uniqueness. To prove uniqueness of solutions in the indicated class, let us

assume that (n, f, f ∗,m) and (n, f, f ∗,m) are the solutions on some interval [0, T ]. Put

N := n− n,

F := f − f,

F ∗ := f ∗ − f ∗,

M := m−m.

By subtracting the equations (10.24), (10.25), (10.26) and (10.27), multiplying by

N, F , F ∗ and M , respectively, and integrating them in space, we deduce the energy
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inequalities which play a key role to prove uniqueness of solutions. First, we see that

for all t ∈ (0, T ),

1

2

d

dt

∫
Ω

N
2
= −

∫
Ω

|∇N |2 +
∫
Ω

(
n∇f ∗ − n∇f ∗

)
· ∇N

≤ 1

4

∫
Ω

|n∇f ∗ − n∇f ∗|2.

Noting that

n∇f ∗ − n∇f ∗ = N∇f ∗ + n∇F ∗,

we have the following energy inequality for all t ∈ (0, T ),

1

2

d

dt

∫
Ω

N
2 ≤ 1

4

∫
Ω

|N∇f ∗ + n∇F ∗|2(10.33)

≤ 1

2

∫
Ω

|N∇f ∗|2 + 1

2

∫
Ω

|n∇F ∗|2

≤ 1

2
sup
t∈[0,T ]

‖∇f ∗(t)‖2L∞(Ω)

∫
Ω

N
2
+

1

2
sup
t∈[0,T ]

‖∇n(t)‖2L∞(Ω)

∫
Ω

|∇F ∗|2.

Moreover proceeding as in the above, we obtain that for all t ∈ (0, T ),

1

2

d

dt

∫
Ω

F
2
= −

∫
Ω

mF
2 −

∫
Ω

f M F(10.34)

≤ sup
t∈[0,T ]

‖m(t)‖L∞(Ω)

∫
Ω

F
2

+ sup
t∈[0,T ]

‖f(t)‖L∞(Ω)

(
1

2

∫
Ω

M
2
+

1

2

∫
Ω

F
2
)
,

1

2

d

dt

∫
Ω

(F ∗)
2
= −

∫
Ω

|∇F ∗|2 +
∫
Ω

(mf −mf)(f ∗ − f ∗)(10.35)

≤ −
∫
Ω

|∇F ∗|2 + 1

2

∫
Ω

(F ∗)
2
+

1

2

∫
Ω

(Mf +mF )
2

≤ −
∫
Ω

|∇F ∗|2 + 1

2

∫
Ω

(F ∗)
2
+ sup

t∈[0,T ]
‖f(t)‖2L∞(Ω)

∫
Ω

M
2

+ sup
t∈[0,T ]

‖m(t)‖2L∞(Ω)

∫
Ω

F
2
,

1

2

d

dt

∫
Ω

M
2
= −

∫
Ω

|∇M |2 +
∫
Ω

M N −
∫
Ω

M
2 ≤ 1

4

∫
Ω

N
2
.(10.36)
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Finally (10.33)-(10.36) imply

d

dt

(∫
Ω

N
2
+

∫
Ω

F
2
+ C

∫
Ω

(F ∗)
2
+

∫
Ω

M
2
)

≤ C ′
(∫

Ω

N
2
+

∫
Ω

F
2
+ C

∫
Ω

(F ∗)
2
+

∫
Ω

M
2
)
,

where C,C ′ > 0 are some constants. Applying the Gronwall lemma, we have∫
Ω

N
2
(t) +

∫
Ω

F
2
(t) + C

∫
Ω

(F ∗)
2
(t) +

∫
Ω

M
2
(t)

≤ eC
′t
(∫

Ω

N
2
(0) +

∫
Ω

F
2
(0) + C

∫
Ω

(F ∗)
2
(0) +

∫
Ω

M
2
(0)

)
.

This completes the proof.
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Chapter 11

Stabilization in a chemotaxis model

for tumor invasion

11.1. Problem and results

This chapter is concerned with the chemotaxis system

(11.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇v),

vt = Δv + wz,

wt = −wz,

zt = Δz − z + u,

which has been proposed in Chapter 10 as a modification of the tumor invasion model

originally introduced by Chaplain and Anderson in [13]. A particular focus of the

model (11.1) consists in accounting for a chemotactic attraction induced by a so-called

active extracellular matrix, ECM∗, which is produced by a biological reaction between

the extracellular matrix, ECM, and a matrix-degrading enzyme, MDE. Accordingly,

besides the densities u, w and z of tumor cells, ECM and MDE, a fourth relevant

quantity becomes the concentration of ECM∗, which is represented by the function v

in (11.1).

As compared to previous works studying tumor invasion phenomena, cross-diffusion

in (11.1) is of chemotaxis type in that it is directed toward the diffusible ECM∗, the
latter being produced by the static ECM in conjunction with the chemical MDE.

From a mathematical point of view, one might expect this additional influence of

diffusion to entail certain improved regularity properties of solutions. On the other
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hand, the literature shows that also such chemotactic cross-diffusion may have a strong

destabilizing effect: For instance, in the Keller–Segel system

(11.2)

⎧⎨⎩ut = Δu−∇ · (u∇z),

zt = Δz − z + u,

widely considered as a prototypical model for chemoattractive processes, it is known

that solutions are global and remain bounded if either n = 1 ([76]), or n ≥ 2 and the

initial data are suitably small ([72], [104]), but that some large-data solutions become

unbounded even within finite time in the cases n = 2 ([34]) and n ≥ 3 ([108]), where

n denotes the space dimension.

As opposed to (11.1), in the Keller–Segel system (11.2) the substance secreted by

the cells is immediately directing chemoattraction, whereas in (11.1) this chemical only

has an indirect taxis effect by stimulating the signal production. It is the purpose of

this chapter to clarify how far this indirect chemotactic feedback may enhance the

regularity and boundedness properties of solutions. Indeed, we shall see that any type

of blow-up is thereby entirely suppressed in the physically relevant case n ≤ 3, and

that furthermore basically all solutions approach a spatially homogeneous equilibrium

in the large time limit.

In order to precisely formulate the results in this direction, let us specify the full

problem setting by considering the initial-boundary value problem

(11.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu−∇ · (u∇v), x ∈ Ω, t > 0,

vt = Δv + wz, x ∈ Ω, t > 0,

wt = −wz, x ∈ Ω, t > 0,

zt = Δz − z + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

w(x, 0) = w0(x), z(x, 0) = z0(x), x ∈ Ω,

in a bounded domain Ω ⊂ R
n with smooth boundary, where throughout this chapter
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we shall assume that

(11.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 ∈ C0(Ω) u0 ≥ 0,

v0 ∈ W 1,∞(Ω) v0 ≥ 0,

w0 ∈ C1(Ω) w0 ≥ 0 and

z0 ∈ C0(Ω) z0 ≥ 0.

The first of the main results asserts that under this condition, (11.3) admits for

global existence of a bounded classical solution when n ≤ 3. We underline that the

following statement on this does not require any smallness condition on the initial data,

such as necessary for global boundedness in the Keller–Segel system.

Theorem 11.1. Let n ≤ 3, and suppose that (11.4) holds. Then there exists a uniquely

determined quadruple (u, v, w, z) of nonnegative functions

u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) ∩ L∞
loc([0,∞);W 1,∞(Ω)),

w ∈ C0(Ω× [0,∞)) ∩ C0,1(Ω× (0,∞)) and

z ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

which solve (11.3) classically in Ω× (0,∞). Moreover the solution (u, v, w, z) of (11.3)

is bounded in the sense that there exists C > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖w(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω) ≤ C

for all t > 0.

Moreover, whenever u0 is nontrivial, the above solution approaches a certain spa-

tially homogeneous steady state:

Theorem 11.2. Let n ≤ 3. Assume that u0, v0, w0 and z0 comply with (11.4), and that

u0 
≡ 0. Then the solution (u, v, w, z) of (11.3) satisfies

‖u(·, t)− u0‖L∞(Ω) → 0,

‖v(·, t)− (v0 + w0)‖L∞(Ω) → 0,

‖w(·, t)‖L∞(Ω) → 0 and

‖z(·, t)− u0‖L∞(Ω) → 0

as t→ ∞, where the constants u0, v0 and w0 are given by

u0 :=
1

|Ω|
∫
Ω

u0, v0 :=
1

|Ω|
∫
Ω

v0, and w0 :=
1

|Ω|
∫
Ω

w0.(11.5)
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In consequence, the indirect mechanism of signal production in (11.3) is apparently

insufficient to generate any significant instability of homogeneous distributions: In fact,

the results from Theorems 11.1 and 11.2 indicate that at least when n ≤ 3, the cross-

diffusive term in the first equation in (11.3) is substantially overbalanced by diffusion,

and that hence the overall behavior of the model, with respect to both global solvability

and asymptotic behavior, is essentially the same as that of the correspondingly modified

system obtained on fully disregarding this taxis mechanism.

This chapter is organized as follows. After collecting some preliminary facts in-

cluding local existence in Section 11.2, we shall establish Theorem 11.1 in Section 11.3

by deriving suitable a priori estimates through a two-step bootstrap argument which

eventually yields a bound for the crucial component u with respect to the norm in

L∞(Ω) (Lemma 11.10). The large time behavior will be addressed in Section 11.4, as

a starting point using the integrability property∫ ∞

0

∫
Ω

w(x, t)z(x, t)dxdt <∞

(Lemma 11.12). Thanks to global regularity estimates implied by the boundedness of

solutions (Lemma 11.11), this will entail convergence of v to some nonnegative constant

L in W 1,∞(Ω) (Lemma 11.14). This in turn warrants stabilization of u (Lemma 11.15)

and then of z (Lemma 11.16) in the sense claimed by Theorem 11.2, where the latter

property along with the assumption u0 > 0 enforces decay of w (Lemma 11.17) and

thereupon allows for determining L (Lemma 11.18), thus completing the proof of The-

orem 11.2. Finally further results on the cases of nonlinear diffusion will be presented

in Section 11.5.

11.2. Local existence and basic estimates

The following statement on local existence and uniqueness is contained in Chapter

10.

Lemma 11.3. Let n ≥ 1, and assume that u0, v0, w0 and z0 satisfy (11.4). Then there

exist Tmax ∈ (0,∞] and a unique classical solution (u, v, w, z) of (11.3) in Ω× (0, Tmax)

which is such that

0 ≤ u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

0 ≤ v ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ∩ L∞
loc([0, Tmax);W

1,∞(Ω)),

0 ≤ w ∈ C0(Ω× [0, Tmax)) ∩ C0,1(Ω× (0, Tmax)) and

0 ≤ z ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),
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and such that

if Tmax <∞(11.6)

then lim
t↗Tmax

(
‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖z(·, t)‖L∞(Ω)

)
= ∞.

Throughout the sequel, we suppose that (u0, v0, w0, z0) is given such that (11.4)

holds, and let (u, v, w, z) and Tmax ∈ (0,∞] denote the corresponding solution of (11.3)

and its maximal existence time as specified in Lemma 11.3.

The following statement on conservation of the total mass
∫
Ω
u of cells is obvious

but essential to the analysis in this chapter.

Lemma 11.4. The first solution component u satisfies∫
Ω

u(x, t)dx =

∫
Ω

u0(x)dx for all t ∈ (0, Tmax).(11.7)

Proof. This can immediately be seen upon integrating the first equation in (11.3) over

Ω× (0, t) for t ∈ (0, Tmax).

Likewise, it is evident from (11.3) that w is nonincreasing with time. We shall

frequently use the following implication thereof.

Lemma 11.5. The third solution component w fulfills

‖w(·, t)‖L∞(Ω) ≤ ‖w0‖L∞(Ω) for all t ∈ (0, Tmax).

Proof. Since both w and z are nonnegative, this estimate is obvious from the third

equation in (11.3).

The particular structure of the nonlinearities in the second and third equations in

(11.3) moreover enables us to derive boundedness of v with respect to the norm in

L1(Ω).

Lemma 11.6. The second solution component has the property that∫
Ω

v(x, t)dx ≤
∫
Ω

v0(x)dx+

∫
Ω

w0(x)dx for all t ∈ (0, Tmax).(11.8)

Proof. We add the third to the second equation in (11.3) and integrate with respect

to x ∈ Ω to obtain

d

dt

∫
Ω

(v + w) =

∫
Ω

Δv = 0 for all t ∈ (0, Tmax),

because ∂v
∂ν

= 0 on ∂Ω. Thus,∫
Ω

v(x, t)dx+

∫
Ω

w(x, t)dx =

∫
Ω

v0(x)dx+

∫
Ω

w0(x)dx(11.9)

for all t ∈ (0, Tmax), from which (11.8) follows by nonnegativity of w.
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11.3. Boundedness. Proof of Theorem 11.1

Throughout the subsequent analysis in this chapter, we shall frequently make use

of well-known smoothing properties of the Neumann heat semigroup (etΔ)t≥0 in Ω.

Let us first use these regularization properties to derive the following estimate for

the solution component z under an appropriate boundedness assumption on u.

Lemma 11.7. Let p ≥ 1 and

(11.10)

{
q ∈ [1, np

n−2p
) if p ≤ n

2
,

q ∈ [1,∞] if p > n
2
.

Then for all M > 0 there exists Cz(p, q,M) > 0 such that if for some T ∈ (0, Tmax) we

have

(11.11) ‖u(·, t)‖Lp(Ω) ≤M for all t ∈ (0, T ),

then

(11.12) ‖z(·, t)‖Lq(Ω) ≤ Cz(p, q,M) for all t ∈ (0, T ).

Proof. In view of the Hölder inequality, we may clearly assume that q > p. Then

according to standard Lp-Lq estimates for (etΔ)t≥0, we can find c1 > 0 such that

‖eτΔϕ‖Lq(Ω) ≤ c1

(
1 + τ−

n
2
( 1
p
− 1

q
)
)
· ‖ϕ‖Lp(Ω) for all τ > 0 and any ϕ ∈ Lp(Ω),

and using the maximum principle for the heat equation, we easily obtain c2 > 0 fulfilling

‖eτΔϕ‖Lq(Ω) ≤ c2‖ϕ‖L∞(Ω) for all τ > 0 and arbitrary ϕ ∈ L∞(Ω).

Therefore, from the variation-of-constants representation of z,

z(·, t) = et(Δ−1)z0 +

∫ t

0

e(t−s)(Δ−1)u(·, s)ds for all t ∈ (0, T ),

we infer that the assumption (11.11) entails the inequality

‖z(·, t)‖Lq(Ω) ≤ e−t‖etΔz0‖Lq(Ω) +

∫ t

0

e−(t−s)‖e(t−s)Δu(·, s)‖Lq(Ω)ds

≤ c2e
−t · ‖z0‖L∞(Ω) + c1M

∫ t

0

e−(t−s) ·
(
1 + (t− s)−

n
2
( 1
p
− 1

q
)
)
ds

for all t ∈ (0, T ). Since (11.10) ensures that c3 :=
∫∞
0
(1 + σ−n

2
( 1
p
− 1

q
)) · e−σdσ is finite,

this implies that

‖z(·, t)‖Lq(Ω) ≤ c2‖z0‖L∞(Ω) + c1c3M for all t ∈ (0, T )

and thereby proves (11.12).
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Next, a boundedness property of z of the above form entails a certain regularity

property for ∇v.
Lemma 11.8. Let q ≥ 1 and

(11.13)

{
r ∈ [1, nq

n−q ) if q ≤ n,

r ∈ [1,∞] if q > n.

Then for all M > 0 there exists Cv(q, r,M) > 0 with the property that if T ∈ (0, Tmax)

is such that

(11.14) ‖z(·, t)‖Lq(Ω) ≤M for all t ∈ (0, T ),

then

‖∇v(·, t)‖Lr(Ω) ≤ Cv(q, r,M) for all t ∈ (0, T ).

Proof. Again in view of the Hölder inequality, we need to consider the case r ≥ q only,

in which according to known regularization properties of (etΔ)t≥0, as contained in [104,

Lemma 1.3], for all s ∈ [1, q] we can find c1(s) > 0 such that

(11.15) ‖∇eτΔϕ‖Lr(Ω) ≤ c1(s)
(
1 + τ−

1
2
−n

2
( 1
s
− 1

r
)
)
‖ϕ‖Ls(Ω)

for all τ > 0 and each ϕ ∈ Ls(Ω), and moreover there exists c2 > 0 satisfying

(11.16) ‖∇eτΔϕ‖Lr(Ω) ≤ c2‖ϕ‖W 1,∞(Ω) for all τ > 0 and any ϕ ∈ W 1,∞(Ω).

We now fix a nonnegative integer k and represent v(·, t) according to

(11.17) v(·, t) = e(t−k)Δv(·, k)+
∫ t

k

e(t−s)Δw(·, s)z(·, s)ds for all t ∈ (k,∞)∩(0, T ).

Here if k ≥ 1, we may apply (11.15) to s := 1 and use Lemma 11.6 to estimate

‖∇e(t−k)Δv(·, k)‖Lr(Ω) ≤ c1(1)
(
1 + (t− k)−

1
2
−n

2
(1− 1

r
)
)
‖v(·, k)‖L1(Ω)(11.18)

≤ c1(1)c3

(
1 + (t− k)−

1
2
−n

2
(1− 1

r
)
)

≤ 2c1(1)c3 for all t ∈ [k + 1,∞) ∩ (0, T )

with c3 :=
∫
Ω
v0 +

∫
Ω
w0. In the case k = 0, we instead employ (11.16) to obtain

‖∇e(t−k)Δv(·, k)‖Lr(Ω) = ‖∇etΔv0‖Lr(Ω)(11.19)

≤ c2‖v0‖W 1,∞(Ω) for all t > 0.
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In the second summand on the right-hand side of (11.17) we use (11.15) with s := q to

see that ∥∥∥∥∇ ∫ t

k

e(t−s)Δw(·, s)z(·, s)ds
∥∥∥∥
Lr(Ω)

(11.20)

≤ c1(q)

∫ t

k

(
1 + (t− s)−

1
2
−n

2
( 1
q
− 1

r
)
)
‖w(·, s)z(·, s)‖Lq(Ω)ds

for all t ∈ (k,∞) ∩ (0, T ),

where thanks to the hypothesis (11.14) and Lemma 11.5 we know that

‖w(·, s)z(·, s)‖Lq(Ω) ≤ ‖w(·, s)‖L∞(Ω)‖z(·, s)‖Lq(Ω)

≤ c4M for all s ∈ (0, T )

with c4 := ‖w0‖L∞(Ω). Therefore, (11.20) entails that∥∥∥∥∇ ∫ t

k

e(t−s)Δw(·, s)z(·, s)ds
∥∥∥∥
Lr(Ω)

(11.21)

≤ c1(q)c4M

∫ t

k

(
1 + (t− s)−

1
2
−n

2
( 1
q
− 1

r
)
)
ds

≤ c1(q)c4M · c5 for all t ∈ (k, k + 2) ∩ (0, T ),

where the assumption (11.13) on r warrants that

c5 :=

∫ 2

0

(
1 + σ− 1

2
−n

2
( 1
q
− 1

r
)
)
dσ

is finite. Hence, in the case t ∈ (0, 2)∩ (0, T ) we infer from (11.17), (11.19) and (11.21)

that

‖∇v(·, t)‖Lr(Ω) ≤ c2‖v0‖W 1,∞(Ω) + c1(q)c4c5M,

whereas whenever t ∈ (0, T ) is such that t ≥ 2, we can pick an integer k ≥ 1 such that

t ∈ [k + 1, k + 2) and thereupon obtain from (11.17), (11.18) and (11.21) that

‖∇v(·, t)‖Lr(Ω) ≤ c1(1)c3 + c1(q)c4c5M.

The proof is thus complete.

We can now prepare a closure of the regularity reasoning by deriving an estimate

for u from a supposedly present appropriate boundedness property of ∇v.
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Lemma 11.9. Suppose that r > n. Then for all M > 0 there exists Cu(r,M) > 0 such

that if

(11.22) ‖∇v(·, t)‖Lr(Ω) ≤M for all t ∈ (0, T )

with some T ∈ (0, Tmax), then

‖u(·, t)‖L∞(Ω) ≤ Cu(r,M) for all t ∈ (0, T ).

Proof. Since r > n, we can fix a number θ such that

(11.23) θ >
r

r + 1

and

(11.24) n < θ < r.

Then according to Lemma 2.2 (iv) there exists c1 > 0 fulfilling

‖eτΔ∇ · ϕ‖L∞(Ω) ≤ c1τ
− 1

2
− n

2θ ‖ϕ‖Lθ(Ω)(11.25)

for all ϕ ∈ C1(Ω;Rn) such that ϕ · ν = 0 on ∂Ω.

Moreover, standard Lp-Lq estimates yield c2 > 0 satisfying

‖eτΔϕ‖L∞(Ω) ≤ c2τ
−n

2 ‖ϕ‖L1(Ω)(11.26)

for all τ > 0 and each ϕ ∈ L1(Ω) such that

∫
Ω

ϕ = 0.

Now proceeding in a way similar to that in the proof of Lemma 11.8, for a given integer

k ≥ 0 we use a variation-of-constants representation of u to estimate

‖u(·, t)‖L∞(Ω)(11.27)

=

∥∥∥∥e(t−k)Δu(·, k)− ∫ t

k

e(t−s)Δ∇ ·
(
u(·, s)∇v(·, s)

)
ds

∥∥∥∥
L∞(Ω)

≤ ‖e(t−k)Δu(·, k)‖L∞(Ω) +

∫ t

k

∥∥∥e(t−s)Δ∇ · (u(·, s)∇v(·, s)
∥∥∥
L∞(Ω)

ds

for all t > k. Here when k = 0, by the maximum principle we obtain

‖e(t−k)Δu(·, k)‖L∞(Ω) = ‖etΔu0‖L∞(Ω)(11.28)

≤ ‖u0‖L∞(Ω) for all t > 0,
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while in the case k ≥ 1 we use (11.26) and recall (11.7) to see that

‖e(t−k)Δu(·, k)‖L∞(Ω) ≤ ‖e(t−k)Δ(u(·, k)− u0)‖L∞(Ω) + u0(11.29)

≤ c2(t− k)−
n
2 ‖u(·, k)− u0‖L1(Ω) + u0

≤ 2c2(t− k)−
n
2 ‖u0‖L1(Ω) + u0

≤ 2c2‖u0‖L1(Ω) + u0 for all t ≥ k + 1,

due to the relation etΔu0 ≡ u0 for all t > 0. In the rightmost integral in (11.27), we

invoke (11.25) to find that∫ t

k

∥∥∥e(t−s)Δ∇ ·
(
u(·, s)∇v(·, s)

)∥∥∥
L∞(Ω)

ds(11.30)

≤ c1

∫ t

k

(t− s)−
1
2
− n

2θ ‖u(·, s)∇v(·, s)‖Lθ(Ω)ds

for all t ∈ (k,∞) ∩ (0, T ),

where an application of the Hölder inequality combined with the hypothesis (11.22)

shows that

‖u(·, s)∇v(·, s)‖Lθ(Ω) ≤ ‖∇v(·, s)‖Lr(Ω) · ‖u(·, s)‖
L

rθ
r−θ (Ω)

(11.31)

≤M · ‖u(·, s)‖
L

rθ
r−θ (Ω)

for all s ∈ (0, T ).

Since the property (11.23) ensures that rθ
r−θ > 1 and that hence κ := r−θ

rθ
∈ (0, 1), we

may once again use the Hölder inequality and (11.7) to estimate

‖u(·, s)‖
L

rθ
r−θ (Ω)

≤ ‖u(·, s)‖κL1(Ω) · ‖u(·, s)‖1−κL∞(Ω)

= ‖u0‖κL1(Ω) · ‖u(·, s)‖1−κL∞(Ω) for all s ∈ (0, T ),

so that (11.30) and (11.31) imply that∫ t

k

∥∥∥e(t−s)Δ∇ ·
(
u(·, s)∇v(·, s)

)∥∥∥
L∞(Ω)

ds(11.32)

≤ c1M · ‖u0‖κL1(Ω) ·
∫ t

k

(t− s)−
1
2
− n

2θ ‖u(·, s)‖1−κL∞(Ω)ds

for all t ∈ (k,∞) ∩ (0, T ). Thus, writing

K ≡ K(T ) := sup
t∈(0,T )

‖u(·, t)‖L∞(Ω),
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from (11.27), (11.28) and (11.32) we obtain that if t ∈ (0, 2) ∩ (0, T ) then

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + c1M‖u0‖κL1(Ω) ·K1−κ ·
∫ t

0

(t− s)−
1
2
− n

2θ ds(11.33)

≤ ‖u0‖L∞(Ω) + c1c3M‖u0‖κL1(Ω) ·K1−κ

holds with c3 :=
∫ 2

0
σ− 1

2
− n

2θ dσ being finite due to the left inequality in (11.24). On

the other hand, if t ∈ (0, T ) is such that t ≥ 2 then for some integer k ≥ 1 we have

t ∈ [k + 1, k + 2) and hence infer from (11.27), (11.29) and (11.32) that

‖u(·, t)‖L∞(Ω)(11.34)

≤ 2c2‖u0‖L1(Ω) + u0 + c1M‖u0‖κL1(Ω) ·K1−κ ·
∫ t

k

(t− s)−
1
2
− n

2θ ds

≤ 2c2‖u0‖L1(Ω) + u0 + c1c3M‖u0‖κL1(Ω) ·K1−κ.

Combining (11.33) with (11.34) thus shows that

K ≤ c4 + c5MK1−κ,

where c4 := max{‖u0‖L∞(Ω), 2c2‖u0‖L1(Ω) + u0} and c5 := c1c3‖u0‖κL1(Ω), from which

upon an elementary argument we conclude that

K ≤ max

{
(2c5M)

1
κ ,

( c4
c5M

) 1
1−κ

}
,

as desired.

Combining Lemmas 11.7, 11.8 and 11.9 and using the mass conservation property

(11.7) as a starting point, we can now prove that u in fact must be bounded when

n ≤ 3.

Lemma 11.10. Suppose that n ≤ 3. Then there exists C > 0 such that

(11.35) ‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax).

Proof. Since n ≤ 3, we have n
2
< n

(n−2)+
, so that it is possible to find q ∈ [1, n] satisfying

(11.36)
n

2
< q <

n

(n− 2)+
.

Here the left inequality warrants that nq
n−q > n, whence we can pick a number r fulfilling

(11.37) n < r <
nq

n− q
.
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We now write M1 := ‖u0‖L1(Ω), let

M2 := Cz(1, q,M1)

be as provided by Lemma 11.7 and

M3 := Cv(q, r,M2)

be as given by Lemma 11.8, and claim that then for any choice of T ∈ (0, Tmax) we

have

(11.38) ‖u(·, t)‖L∞(Ω) ≤ Cu(r,M3) for all t ∈ (0, T )

with Cu(r,M3) taken from Lemma 11.9. Indeed, for any such T , thanks to the right

inequality in (11.36) we may apply Lemma 11.7 which in view of (11.7) and the defi-

nitions of M1 and M2 shows that

‖z(·, t)‖Lq(Ω) ≤M2 for all t ∈ (0, T ).

Due to the right inequality in (11.37), we thus obtain from Lemma 11.8 that

‖∇v(·, t)‖Lr(Ω) ≤M3 for all t ∈ (0, T ),

whereupon Lemma 11.9 implies (11.38), because r > n by (11.37). Since T ∈ (0, Tmax)

was arbitrary, this directly yields (11.35).

In light of the extensibility statement in Lemma 11.3, the above readily shows that

the local solution actually exists globally in time and has some further boundedness

properties.

Lemma 11.11. Let n ≤ 3. Then the solution (u, v, w, z) of (11.3) is global in time;

that is, Tmax = ∞. Moreover, there exist α ∈ (0, 1) and C > 0 such that

(11.39) ‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖w(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω) ≤ C

for all t > 0, as well as

(11.40) ‖u‖
C2+α,1+α

2 (Ω×[t,t+1])
+ ‖v‖

C2+α,1+α
2 (Ω×[t,t+1])

+ ‖z‖
C2+α,1+α

2 (Ω×[t,t+1])
≤ C

for all t ≥ 1.
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Proof. As shown in Lemma 11.10, we know that supt∈(0,Tmax) ‖u(·, t)‖L∞(Ω) is finite,

whence applying Lemma 11.7 to some conveniently large p ≥ 1 and then Lemma

11.8 to suitably large q ≥ 1 we can observe that also supt∈(0,Tmax) ‖z(·, t)‖L∞(Ω) and

supt∈(0,Tmax) ‖∇v(·, t)‖L∞(Ω) are finite. In conjunction with Lemma 11.5 and the exten-

sibility criterion (11.6) in Lemma 11.3, this shows that Tmax = ∞ and, by independence

of the obtained estimate with respect to t ∈ (0, Tmax) = (0,∞), establishes (11.39).

Thereupon, straightforward bootstrap arguments involving standard interior parabolic

regularity theory (Lemma 2.7) readily yield (11.40).

Now the proof of the main result on global well-posedness and boundedness is

obvious.

Proof of Theorem 11.1. We only need to combine Lemma 11.3 with Lemma 11.11.

11.4. Large time behavior. Proof of Theorem 11.2

The core of the proof of the stabilization result in Theorem 11.2 consists in the

following observation.

Lemma 11.12. The solution of (11.3) has the property that

(11.41)

∫ ∞

0

∫
Ω

w(x, t)z(x, t)dxdt <∞.

Proof. For arbitrary t > 0, integrating the third equation in (11.3) over Ω × (0, t) we

obtain ∫ t

0

∫
Ω

w(x, s)z(x, s)dxds =

∫
Ω

w0(x)dx−
∫
Ω

w(x, t)dx.

Since w is nonnegative, this implies (11.41).

When combined with appropriate compactness properties such as e.g. implied by

Lemma 11.11, the above integrability statement can step by step be turned into the

convergence results from Theorem 11.2. We first derive a weak version of the claimed

stabilization property of v.

Lemma 11.13. There exists a constant L ≥ 0 such that

(11.42) ‖v(·, t)− L‖L1(Ω) → 0 as t→ ∞.
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Proof. According to Lemma 11.11 and e.g. the Arzelà-Ascoli theorem, we can find

(tk)k∈N ⊂ (1,∞) and a nonnegative function v∞ ∈ C0(Ω) such that tk → ∞ and

(11.43) v(·, tk) → v∞ in L1(Ω)

as k → ∞. To show that we actually have

(11.44) v(·, t) → v∞ :=
1

|Ω|
∫
Ω

v∞ in L1(Ω) as k → ∞,

we let ε > 0 be given. Then in view of (11.43) and Lemma 11.12 we can fix k ∈ N

large enough such that

(11.45) ‖v(·, tk)− v∞‖L1(Ω) <
ε

3

and

(11.46)

∫ ∞

tk

∫
Ω

w(x, t)z(x, t) dxdt <
ε

3
.

Moreover, using the well-known fact that for any ϕ ∈ L1(Ω) we have eτΔϕ → 1
|Ω|

∫
Ω
ϕ

in L1(Ω) as τ → ∞, we can choose some suitably large τ0 > 0 fulfilling

(11.47) ‖eτΔv∞ − v∞‖L1(Ω) <
ε

3
for all τ > τ0.

Then by means of the variation-of-constants representation of v we see that

v(·, t)− v∞ = e(t−tk)Δ
(
v(·, tk)− v∞

)
+
(
e(t−tk)Δv∞ − v∞

)
(11.48)

+

∫ t

tk

e(t−s)Δw(·, s)z(·, s)ds for all t > tk,

where from (11.47) we obtain

(11.49) ‖e(t−tk)Δv∞ − v∞‖L1(Ω) <
ε

3
for all t > tk + τ0.

Next, since eτΔ acts as a contraction on L1(Ω), we can use (11.45) to estimate∥∥∥e(t−tk)Δ(v(·, tk)− v∞
)∥∥∥

L1(Ω)
≤ ‖v(·, tk)− v∞‖L1(Ω)(11.50)

<
ε

3
for all t > tk,
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and invoke (11.46) to infer that∥∥∥∥ ∫ t

tk

e(t−s)Δw(·, s)z(·, s)ds
∥∥∥∥
L1(Ω)

≤
∫ t

tk

‖w(·, s)z(·, s)‖L1(Ω)ds(11.51)

≤
∫ ∞

tk

∫
Ω

w(x, s)z(x, s) dxds

<
ε

3
.

Collecting (11.48)-(11.51) shows that

‖v(·, t)− v∞‖L1(Ω) < ε for all t > tk + τ0,

which establishes (11.44) and thereby proves (11.42) with L := v∞ ≥ 0.

According to Lemma 11.11 and the Arzelà-Ascoli theorem, the above convergence

actually takes place in the space W 1,∞(Ω).

Lemma 11.14. With L ≥ 0 as in Lemma 11.13, we have

(11.52) ‖v(·, t)− L‖W 1,∞(Ω) → 0 as t→ ∞.

In particular,

(11.53) ‖∇v(·, t)‖L∞(Ω) → 0 as t→ ∞.

Proof. Since Lemma 11.11 asserts that (v(·, t))t≥1 is bounded in C2(Ω) and hence

relatively compact in C1(Ω) thanks to the Arzelà-Ascoli theorem, (11.52) and thus

also (11.53) immediately result from Lemma 11.13.

Having asserted appropriate decay of the gradient responsible for cross-diffusion in

(11.3), we can proceed to make sure that u approaches its spatial mean in the large

time limit.

Lemma 11.15. The first component of the solution of (11.3) satisfies

‖u(·, t)− u0‖L∞(Ω) → 0 as t→ ∞.

where u0 is given by (11.5).

Proof. In view of Lemma 11.11 and the Arzelà-Ascoli theorem, it is sufficient to show

that

(11.54) ‖u(·, t)− u0‖L2(Ω) → 0 as t→ ∞.
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To accomplish this, we first recall that if λ1 > 0 denotes the first nonzero eigenvalue of

the Neumann Laplacian in Ω, then

‖eτΔϕ‖L2(Ω) ≤ e−λ1τ‖ϕ‖L2(Ω)(11.55)

for all τ > 0 and all ϕ ∈ L2(Ω) fulfilling

∫
Ω

ϕ = 0,

because for any such ϕ, by the variational characterization of λ1 a standard testing

procedure shows that

d

dτ

∫
Ω

|eτΔϕ|2 = −2

∫
Ω

|∇eτΔϕ|2

≤ −2λ1

∫
Ω

|eτΔϕ|2 for all τ > 0.

Moreover, with some c1 > 0 we have

‖eτΔ∇ · ϕ‖L2(Ω) ≤ c1(1 + τ−
1
2 ) · e−λ1τ · ‖ϕ‖L2(Ω)(11.56)

for all τ > 0 and any ϕ ∈ C1(Ω;Rn)

such that ϕ · ν = 0 on ∂Ω

(cf. e.g. [104, Lemma 1.3]). We next let

h(x, t) := u(x, t)∇v(x, t) for x ∈ Ω and t > 0,

and note that according to Lemma 11.11 we can find c2 > 0 such that

(11.57) ‖h(·, t)‖L2(Ω) ≤ c2 for all t > 0,

whereas Lemma 11.11 combined with Lemma 11.14 entails that

(11.58) ‖h(·, t)‖L2(Ω) → 0 as t→ ∞.

Now in order to prove (11.54) we let ε > 0 be given and can thereupon choose t0 > 0

large enough such that

(11.59) e−λ1t‖u0 − u0‖L2(Ω) <
ε

3
for all t > t0

as well as

(11.60) c1c2 ·
∫ ∞

t
2

(1 + σ− 1
2 ) · e−λ1σdσ < ε

3
for all t > t0,
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and such that furthermore

(11.61) c1‖h(·, t)‖L2(Ω) ·
∫ ∞

0

(1 + σ− 1
2 ) · e−λ1σdσ < ε

3
for all t >

t0
2
,

where in achieving the latter we make use of (11.58). Then since constants are invariant

under the action of etΔ, we have etΔu0 ≡ u0 for all t > 0 and thus can represent u

according to

u(·, t)− u0 = etΔ(u0 − u0)−
∫ t

0

e(t−s)Δ∇ · h(·, s)ds, for all t > 0.

Here we apply (11.56) to estimate

‖u(·, t)− u0‖L2(Ω)(11.62)

≤ ‖etΔ(u0 − u0)‖L2(Ω) + c1

∫ t

0

(
1 + (t− s)−

1
2

)
· e−λ1(t−s) · ‖h(·, s)‖L2(Ω)ds

for all t > 0, where due to (11.55) and (11.59) we have

‖etΔ(u0 − u0)‖L2(Ω) ≤ e−λ1t‖u0 − u0‖L2(Ω) <
ε

3
for all t > t0.(11.63)

Moreover, (11.57) and (11.60) ensure that

c1

∫ t
2

0

(
1 + (t− s)−

1
2

)
· e−λ1(t−s) · ‖h(·, s)‖L2(Ω)ds(11.64)

≤ c1c2

∫ t
2

0

(
1 + (t− s)−

1
2

)
· e−λ1(t−s)ds

= c1c2

∫ t

t
2

(
1 + σ− 1

2

) · e−λ1σdσ
<
ε

3
for all t > t0,

while from (11.58) and (11.61) we infer that

c1

∫ t

t
2

(
1 + (t− s)−

1
2

)
· e−λ1(t−s) · ‖h(·, s)‖L2(Ω)ds

≤ c1 · sup
s> t

2

‖h(·, s)‖L2(Ω) ·
∫ t

t
2

(
1 + (t− s)−

1
2

)
· e−λ1(t−s)ds

= c1 · sup
s> t

2

‖h(·, s)‖L2(Ω) ·
∫ t

2

0

(
1 + σ− 1

2

) · e−λ1σdσ
≤ c1 · sup

s> t
2

‖h(·, s)‖L2(Ω) ·
∫ ∞

0

(
1 + σ− 1

2

) · e−λ1σdσ
≤ ε

3
for all t > t0.
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Along with (11.63), (11.64) and (11.62), this shows (11.54) and thus completes the

proof.

Now the above convergence property has a straightforward consequence for z.

Lemma 11.16. The fourth component of the solution of (11.3) satisfies

(11.65) ‖z(·, t)− u0‖L∞(Ω) → 0 as t→ ∞

with u0 determined by (11.5).

Proof. As a consequence of Lemma 11.11, we can find c1 > 0 such that

(11.66) ‖u(·, t)− u0‖L∞(Ω) ≤ c1 for all t > 0.

Now Lemma 11.15 says that given ε > 0 we can fix some sufficiently large t0 > 0 such

that

(11.67) ‖u(·, t)− u0‖L∞(Ω) <
ε

4
for all t >

t0
2
,

where enlarging t0 if necessary we can also achieve that

(11.68) ‖z0‖L∞(Ω) · e−t < ε

4
for all t > t0

and

(11.69) u0 · e−t < ε

4
for all t > t0

as well as

(11.70) c1 · e− t
2 <

ε

4
for all t > t0.

By the variation-of-constants representation of z, we can write

z(·, t)− u0 = e−tetΔz0 +
∫ t

0

e−(t−s)e(t−s)Δ
(
u(·, s)− u0

)
ds(11.71)

+

∫ t

0

e−(t−s)e(t−s)Δu0ds − u0 for all t > 0,

and use the maximum principle and (11.68) in estimating

‖e−tetΔz0‖L∞(Ω) ≤ e−t‖z0‖L∞(Ω)(11.72)

<
ε

4
for all t > t0.
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As e(t−s)Δu0 ≡ u0, by (11.69) we moreover have∥∥∥∥ ∫ t

0

e−(t−s)e(t−s)Δu0ds − u0

∥∥∥∥
L∞(Ω)

=

∣∣∣∣ ∫ t

0

e−(t−s)ds− 1

∣∣∣∣ · u0(11.73)

= e−tu0

<
ε

4
for all t > t0.

Finally, again by means of the maximum principle we obtain∥∥∥∥ ∫ t

0

e−(t−s)e(t−s)Δ
(
u(·, s)− u0

)
ds

∥∥∥∥
L∞(Ω)

(11.74)

≤
∫ t

0

e−(t−s)‖u(·, s)− u0‖L∞(Ω)ds

for all t > 0, where from (11.66) and (11.70) we know that∫ t
2

0

e−(t−s)‖u(·, s)− u0‖L∞(Ω)ds ≤ c1

∫ t
2

0

e−(t−s)ds(11.75)

= c1(e
− t

2 − e−t)

<
ε

4
for all t > t0,

and where (11.67) guarantees that∫ t

t
2

e−(t−s)‖u(·, s)− u0‖L∞(Ω)ds ≤ ε

4
·
∫ t

t
2

e−(t−s)ds(11.76)

=
ε

4
· (1− e−

t
2 )

<
ε

4
for all t > t0.

Inserting (11.72)-(11.76) into (11.71) yields (11.65).

Whenever the limit in Lemma 11.16 is nontrivial, we can finally show that the

monotone limit of w(·, t) as t→ ∞ actually must be zero.

Lemma 11.17. Suppose that u0 
≡ 0. Then

(11.77) ‖w(·, t)‖L∞(Ω) → 0 as t→ ∞.

Proof. Since
∫
Ω
u0 > 0, the uniform stabilization of z, as asserted by Lemma 11.16,

enables us to find c1 > 0 and t0 > 0 such that

z(x, t) ≥ c1 for all x ∈ Ω and t > t0.
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Integrating the third equation in (11.3) with respect to the time variable, in view of

Lemma 11.5 we thus infer that

w(x, t) = w(x, t0) · exp
(
−
∫ t

t0

z(x, s)ds
)

≤ ‖w0‖L∞(Ω) · e−c1(t−t0) for all x ∈ Ω and t > t0,

which immediately implies (11.77).

For completing the knowledge on the asymptotic of solutions, it remains to deter-

mine the value of the above number L. If u0 
≡ 0, this can easily be achieved by using

Lemma 11.17 in conjunction with (11.9) and Lemma 11.14.

Lemma 11.18. Suppose that u0 
≡ 0. Then the number L provided by Lemma 11.13

satisfies

(11.78) L = v0 + w0,

where v0 and w0 are given by (11.5).

Proof. According to (11.9) and Lemma 11.17, we obtain that∫
Ω

v(x, t)dx→
∫
Ω

v0(x)dx+

∫
Ω

w0(x)dx as t→ ∞.

On the other hand, Lemma 11.14 shows that∫
Ω

v(x, t)dx→ |Ω|L as t→ ∞.

Combining these relations immediately yields (11.78).

Now the main result on stabilization is evident.

Proof of Theorem 11.2. We only need to collect Lemmas 11.15, 11.14, 11.18, 11.17

and 11.16.

Remark 11.1. An interesting question left open in this chapter concerns the respec-

tive rates of convergence in Theorem 11.2, which is basically due to the fact that the

approach in this chapter is based on a compactness method. The only evident im-

plication of the results concerns the solution component w, for which it is clear that

according to the uniform convergence property of z, given any ε > 0 one can find

Cε > 0 such that

w(x, t) ≤ Cε · e−(u0−ε)t for all t > t0.
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Remark 11.2. By straightforward adaptation, for the corresponding variant of (11.3)

given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = duΔu− λ∇ · (u∇v), x ∈ Ω, t > 0,

vt = dvΔv + awz, x ∈ Ω, t > 0,

wt = −awz, x ∈ Ω, t > 0,

zt = dzΔz − bz + cu, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

w(x, 0) = w0(x), z(x, 0) = z0(x), x ∈ Ω,

with positive parameters du, dv, dz, λ, a, b, c > 0, one can derive similar statements on

global existence and asymptotic stabilization. In this general setting, the convergence

results then read

u(x, t) → u0, v(x, t) → v0 + w0, w(x, t) → 0 and z(x, t) → c

b
u0,

uniformly with respect to x ∈ Ω, whenever u0 
≡ 0.

11.5. Further results on nonlinear diffusion cases

In this chapter the linear diffusion case was studied via the Duhamel formula using

the heat semigroup, whereas this method cannot be applied to the case of nonlinear

diffusion as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u, w)∇u)− λ∇ · (u∇v), x ∈ Ω, t > 0,

vt = Δv + wz, x ∈ Ω, t > 0,

wt = −wz, x ∈ Ω, t > 0,

zt = Δz − z + u, x ∈ Ω, t > 0,

where the diffusion coefficient function D is a smooth function. This section is devoted

to introducing results of Fujie–Ishida–Ito–Yokota [22], whose subject is to develop an

approach to the system with some variants of nonlinear diffusion depending on both u

and w in the two cases nondegenerate and degenerate.
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In this section we consider the following initial-boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u, w)∇u)− λ∇ · (u∇v), x ∈ Ω, t > 0,

vt = dvΔv + awz, x ∈ Ω, t > 0,

wt = −awz, x ∈ Ω, t > 0,

zt = dzΔz − bz + cu, x ∈ Ω, t > 0,

D(u, w)∂u
∂ν

= ∂v
∂ν

= ∂z
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

w(x, 0) = w0(x), z(x, 0) = z0(x), x ∈ Ω,

(11.79)

where Ω ⊂ R
n (1 ≤ n ≤ 3) is a bounded domain with smooth boundary ∂Ω; ν is an

outer unit normal vector on ∂Ω; D is a nonnegative function on R×R; λ, dv, dz, a, b, c

are prescribed positive constants; u0, v0, w0, z0 are prescribed nonnegative initial data.

11.5.1. The case of nondegenerate diffusion

In this subsection we consider the case that there exists some constant c0 > 0

fulfilling

D(u, w) ≥ c0 > 0 ∀ u, w ≥ 0.(11.80)

Assuming the regularity of initial data

(11.81)

{
(u0, v0, w0, z0) ∈ C0(Ω)×W 1,∞(Ω)× C1(Ω)× C0(Ω),

u0, v0, w0, z0 ≥ 0,

we will deduce stabilization in (11.79). The first main result reads as follows.

Theorem 11.19 ([22]). Suppose that (11.80) and (11.81) hold. Then there exists a

uniquely determined quadruple (u, v, w, z) of nonnegative functions

u, v, z ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) and

w ∈ C0(Ω× [0,∞)) ∩ C0,1(Ω× (0,∞)),

which solves (11.79) in the classical sense in Ω× (0,∞). Moreover there exists C > 0

such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖w(·, t)‖L∞(Ω) + ‖z(·, t)‖L∞(Ω) ≤ C ∀ t > 0.
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We next determine the large time behavior of these solutions whenever u0 is non-

trivial.

Theorem 11.20 ([22]). Suppose that (11.80) holds. Assume that u0, v0, w0 and z0
comply with (11.81), and that u0 
≡ 0. Then the solution (u, v, w, z) of (11.79) satisfies

u(·, t) → u0 in Lp(Ω) (t→ ∞) ∀ p ∈ [1,∞),

v(·, t) → v0 + w0, w(·, t) → 0 and z(·, t) → c

b
u0 in L∞(Ω) (t→ ∞),

where

u0 :=
1

|Ω|
∫
Ω

u0, v0 :=
1

|Ω|
∫
Ω

v0 and w0 :=
1

|Ω|
∫
Ω

w0.

Remark 11.3. Unfortunately, as compared with the convergence result in Section

11.4, the above theorem does not assure convergence of u in L∞(Ω). Nevertheless,

convergences of v, w, z take place in L∞(Ω).

Sketch of Proof of large time behavior. The case of linear diffusion is analyzed

by a straightforward estimate for u(t) − u0 via the Duhamel formula. In the case

of nonlinear diffusion we need other methods. If the diffusion is of nondegenerate, we

invoke enough smoothness of u to establish the decaying property ‖∇f(u(t))‖L2(Ω) → 0

as t → ∞, where f is an increasing function determined by D(u, w). Then we have

the convergence u(t) → f−1(L) as t → ∞ with some constant L ≥ 0. Finally noting

the mass conservation law in the problem (11.79), we can precisely determine the limit

function such that f−1(L) = u0.

11.5.2. The case of degenerate diffusion

This subsection is devoted to considering the case of degenerate diffusion such that

D ∈ C1([0,∞) × [0,∞)) requires the conditions that D(0, r2) = 0 or all r2 ≥ 0 and

there exist c1, γ > 0 and m > 1 fulfilling

D(r1, r2) ≥ D̃(r1) :=

{
c1r1

m−1 (r1 ≤ γ),

c1γ
m−1 (r1 > γ).

(11.82)

Moreover we assume that there exist p0 > max{1,m − 1} and {D(r2) ; r2 ≥ 0} such

that

G(r1, r2) := lim
(r1,r2)→(r1,r2)

D(r1, r2)

r1
p0−2 =

⎧⎪⎨⎪⎩
D(r1, r2)

r1p0−2
(r1 > 0 and r2 ≥ 0),

D(r2) (r1 = 0 and r2 ≥ 0).

(11.83)
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Under the regularity of initial data

(11.84)

{
(u0, v0, w0, z0) ∈ L∞(Ω)×W 1,∞(Ω)×W 1,∞(Ω)× L∞(Ω),

u0, v0, w0, z0 ≥ 0,

we will study large time behavior in (11.79). Before stating the main results, we give the

definition of weak solutions of (11.79). We adopt a natural concept of weak solutions

by testing procedures.

A quadruple (u, v, w, z) of nonnegative functions defined on Ω × (0,∞) is called a

weak solution of (11.79) on [0,∞) if for all T > 0,

(i) u ∈ L∞(0, T ;L∞(Ω)) with

∫ u

0

D(σ, w) dσ ∈ L2(0, T ;H1(Ω)),

(ii) v ∈ L∞(0, T ;W 1,∞(Ω)),

(iii) w ∈ L∞(0, T ;L∞(Ω)),

(iv) z ∈ L∞(0, T ;L∞(Ω)) ∩ L2(0, T ;H1(Ω)),

(v) (u, v, w, z) satisfies (11.79) in the following sense: for all ϕ ∈ C∞
0 (Ω× [0,∞)),∫ ∞

0

∫
Ω

([
∇
(∫ u

0

D(σ, w) dσ

)
−
∫ u

0

∂D

∂r2
(σ, w)∇w

]
· ∇ϕ− λu∇v · ∇ϕ− uϕt

)
=

∫
Ω

u0ϕ(0),∫ ∞

0

∫
Ω

(dv∇v · ∇ϕ+ awzϕ− vϕt) =

∫
Ω

v0ϕ(0),

w(x, t) = w0(x) exp

(
−a

∫ t

0

z(x, s) ds

)
a.e. (x, t) ∈ Ω× (0,∞),∫ ∞

0

∫
Ω

(dz∇z · ∇ϕ− bzϕ+ cuϕ− zϕt) =

∫
Ω

z0ϕ(0).

The first main result reads as follows.

Theorem 11.21 ([22]). Suppose that (11.82), (11.83), (11.84) hold. Then there exists

a uniquely determined quadruple (u, v, w, z) of nonnegative functions which is a weak

solution of (11.79) on [0,∞). Moreover the weak solution (u, v, w, z) of (11.79) is

bounded in the sense that there exists C > 0 such that

‖u(t)‖L∞(Ω) + ‖v(t)‖W 1,∞(Ω) + ‖w(t)‖L∞(Ω) + ‖z(t)‖L∞(Ω) ≤ C a.e. t > 0.
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Furthermore, the solution has the following properties:

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω) a.e. t > 0,

‖v(t)‖L1(Ω) + ‖w(t)‖L1(Ω) = ‖v0‖L1(Ω) + ‖w0‖L1(Ω) ∀ t > 0.(11.85)

Remark 11.4. Since the nonlinear terms in the second, third and fourth equations in

the problem belong to L∞(0, T ;L∞(Ω)), we can confirm that the solutions v, w and z

are in C0([0,∞);L∞(Ω)). From this reason, the conservation law (11.85) is valid for

all t > 0.

We shall next discuss the large time behavior of these solutions whenever u0 is

nontrivial.

Theorem 11.22 ([22]). Assume (11.82), (11.83), (11.84) and u0 
≡ 0. Then for each

p ∈ [1,∞) the weak solution (u, v, w, z) of (11.79) satisfies either (1) or (2) stated below

holds:

(1) For any δ > 0 and ξ > 0 there exists Tp,δ,ξ > 0 such that |Lp,δ ∩ (Tp,δ,ξ,∞)| ≤ ξ,

where Lp,δ is a measurable set given by Lp,δ := {t ∈ (0,∞) | ‖u(t)−u0‖Lp(Ω) ≥ δ}.
(2) There exist a constant δp > 0 and a sequence {sk}k∈N such that for all k ∈ N,

|Lp,δp ∩ (sk, sk+1)| = 1 and lim
k→∞

(sk+1 − sk) = ∞.

Moreover, if the above (1) is satisfied, then

v(t) → v0 + w0, w(t) → 0, z(t) → c

b
u0 in L∞(Ω) (t→ ∞).

Difficulty and key lemma. In the case of nondegenerate diffusion, we invoke some

integrability in time and space and a uniform continuity argument to discuss conver-

gence of u. Unfortunately, due to the lack of regularity of the solution, this method

cannot be applied to the case of degenerate diffusion. Indeed, for a just integrable

function f : (0,∞) → [0,∞) with ∫ ∞

0

f(t) dt <∞,

we only have that there exists some sequence {tk}k such that f(tk) → 0 as k → ∞.

Instead of the uniform continuity argument, we generalized the usual subsequence

technique (c.f. [53, Proof of Lemma 2.5 (a)]).
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Lemma 11.23 ([22]). Let (X, ‖ · ‖X) be a Banach space. Let x∞ be any element of

X and x : [0,∞) → X a measurable function satisfying that there exists a null set

N so that N ⊃ {t ∈ (0,∞) | ‖x(t)‖X = ∞}. For any δ > 0 define a measurable set

Lδ ⊂ (0,∞) \ N by Lδ := {t ∈ (0,∞) \ N | ‖x(t) − x∞‖X ≥ δ}. Assume that for

any sequence {tk}k∈N ⊂ (1,∞) \ N satisfying tk → ∞ (k → ∞) there exists a null set

N ({tk}k∈N) ⊂ (0, 1) such that the following property (�) holds:

(�)

(
for any τ ∈ (0, 1) \ N ({tk}k∈N) there exists a subsequence {tk�(τ)}
∈N of {tk}k∈N
such that x(tk�(τ) + τ) → x∞ in X (�→ ∞).

Then either (1) or (2) stated below holds:

(1) For any δ > 0 and ξ > 0 there exists Tδ,ξ > 0 such that |Lδ ∩ (Tδ,ξ,∞)| ≤ ξ.

(2) There exist a constant δ0 > 0 and a sequence {sk}k∈N such that the following

properties are satisfied:

|Lδ0 ∩ (sk, sk+1)| = 1 ∀ k ∈ N, lim
k→∞

(sk+1 − sk) = ∞.
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Notation

General notations

N = {1, 2, 3, · · · } = natural number.

R
n n-dimensional real Euclidean space (n ∈ N), R = R

1.

U c {x ∈ R
n | x 
∈ U}, where U is a subset of Rn.

U \ V = U ∩ V c, where U, V are subsets of Rn.

|U | measure of U.

∂U boundary of U.

U = U ∪ ∂U = closure of U.

U ⊂⊂ V U is a compact subset of V.

Br(x) = open ball with center x, radius r > 0.

Ω denotes domain, i.e. a nonempty, connected, open subset of Rn.

Dα =
∂|α|

∂α1x1 · · · ∂αnxn
, α = (α1, · · · , αn), |α| =

n∑
i=1

αi.

∇u = (ux1 , · · · , uxn) = gradient of u.

Δu =
n∑
i=1

∂2u

∂x2i
= Laplacian of u.

∇ · u =
n∑
i=1

∂ui
∂xi

= divu, where u = (u1, · · · , un).

∂u

∂ν
= ∇u · ν = outward normal derivative.

00 = 1.
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Function spaces

C0(Ω) = {u : Ω → R | u is continuous on Ω} .
C0
c (Ω) =

{
u ∈ C0(Ω) | u has a compact support in Ω

}
.

Cm(Ω) = {u : Ω → R | u is m times continuously differentiable on Ω} .
C∞(Ω) =

⋂
m≥1

Cm(Ω).

Cm(Ω) =
{
u ∈ Cm(Ω) | for every multi-index α with |α| ≤ m,

the function x �→ Dαu(x) admits a continuous extension to ∂Ω
}
.

‖u‖Cm(Ω) =
∑
|α|≤m

sup
x∈Ω

|Dαu(x)|.

Cm+θ(Ω) =

{
u ∈ Cm(Ω)

∣∣∣∣∣ sup
x,y∈Ω, x �=y

|Dαu(x)−Dαu(y)|
|x− y|θ <∞ for all |α| ≤ m

}
(m ∈ N ∪ {0}, θ ∈ (0, 1)).

‖u‖Cm+θ(Ω) = ‖u‖Cm(Ω) +
∑
|α|≤m

sup
x,y∈Ω, x �=y

|Dαu(x)−Dαu(y)|
|x− y|θ .

Cm+θ
loc (Ω) =

⋂
ω⊂⊂Ω

Cm+θ(ω).

Lp(Ω) =

{
u : Ω → R | u is measurable on Ω such that

∫
Ω

|u|p <∞
}

(1 ≤ p <∞).

‖u‖Lp(Ω) =

(∫
Ω

|u|p
) 1

p

(1 ≤ p <∞).

L∞(Ω) =
{
u : Ω → R | u is measurable on Ω such that esssupx∈Ω|u(x)| <∞}

.

‖u‖L∞(Ω) = esssupx∈Ω|u(x)|.
Wm,p(Ω) = {u ∈ Lp(Ω) | Dαu ∈ Lp(Ω) for all |α| ≤ m} .
‖u‖Wm,p(Ω) =

∑
|α|≤m

‖Dαu‖Lp(Ω).

Hm(Ω) = Wm,2(Ω).

‖u‖Hm(Ω) = ‖u‖Wm,2(Ω).
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Let U ⊂ R
n, J ⊂ R be open bounded subsets, m ∈ N ∪ {0}, θ ∈ (0, 1) and X be a

Banach space.

C2m,m(U × J) =
{
u : U × J → R | Dα

x∂
j
tu ∈ C0(U × J) for |α|+ 2j ≤ 2m

}
.

‖u‖C2m,m(U×J) =
∑

|α|+2j≤2m

‖Dα
x∂

j
tu‖C0(U×J).

C2m+θ,m+ θ
2 (U × J) =

{
u ∈ C2m,m(U × J)

∣∣∣ ‖u‖
C2m+θ,m+ θ

2 (U×J) <∞
}
,

where

‖u‖
C2m+θ,m+ θ

2 (U×J) = ‖u‖C2m,m(U×J)

+
∑

|α|+2j≤2m

sup
x,y∈U, x �=y, t,s∈J

|Dα
x∂

j
tu(x, t)−Dα

x∂
j
tu(y, s)|

|x− y|θ

+
∑

0<2m+θ−|α|−2j<2

sup
x,y∈U, t,s∈J, t �=s,

|Dα
x∂

j
tu(x, t)−Dα

x∂
j
tu(y, s)|

|t− s| 2m+θ−|α|−2j
2

.

C2m,m(U × I) =
⋃

open bounded subsets U ′⊂⊂U, J ′⊂⊂J
C2m,m(U × J).

Cm(J ;X) =
{
u : J → X

∣∣∣ dj

dtj
u exists and is uniformly continuous on J

for j ≤ m
}
.

Lp(J ;X) =
{
u : J → X

∣∣∣ u is strongly measurable and∥∥ ‖u‖X
∥∥
Lp(J)

<∞
}
.

Let k ∈ N. We shall say that Ω is class Ck (see [10]), if for every x ∈ ∂U there exist a

neighborhood U of x in R
n and a bijective mapping H : Q→ U such that

H ∈ Cm(Q), H−1 ∈ Cm(U), H(Q+) = U ∩ Ω, H(Q0) = U ∩ ∂Ω,
where

Q = {x = (x′, xn) | |x′| < 1 and |xn| < 1},
Q+ = {x = (x′, xn) ∈ Q | xn > 0},
Q0 = {x = (x′, xn) | |x′| < 1 and xn = 0}.

In this thesis we always assume that Ω is of class C2.
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[46] W. Jäger, S. Luckhaus, On explosions of solutions to a system of partial

differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992),

819–824.

[47] H.-Y. Jin, J. Li, Z.-A. Wang, Asymptotic stability of traveling waves of a

chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013),

193–219.

[48] K. Kang, A. Stevens, J.J.L. Velázquez, Qualitative behavior of a Keller–

Segel model with non-diffusive memory, Commun. Partial Differ. Equations, 35

(2010), 245–274.

[49] R. Kano, The existence of solutions for tumor invasion models with time and

space dependent diffusion, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 63–74.

[50] R. Kano, A. Ito, The existence of time global solutions for tumor invasion mod-

els with constraints, Dynamical Systems, Differential Equations and Applications,

8th AIMS Conference, Discrete Contin. Dyn. Syst., Suppl. Vol. II (2011), 774–783.

[51] R. Kano, A. Ito, Tumor invasion model with a random motility of tumor cells

depending upon extracellular matrix, Adv. Math. Sci. Appl., 23 (2013), 397–411.

[52] R. Kano, A. Ito, K. Yamamoto, H. Nakayama, Quasi-variational inequality

approach to tumor invasion models with constraints, Current advances in nonlinear

analysis and related topics, 365–388, GAKUTO Internat. Ser. Math. Sci. Appl.,
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