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Abstract. This paper presents the set of all classes of integral representa-
tions rationally equivalent to a certain Z-representatinon of 4,¢;.
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§1. Introduction.

For the symmetric group S,4; of degree n + 1,
Fo((kk+1)) =Bap1+2E4 4 + B py1 ~ L, 1<k<n

gives a Z-representation of degree n, which is absolutely irreducible by
Young’s representation theory. Define the matrix U,(d)} by

U,(d) = nZ_:(dE;.- +(=1)*"*YE;,) + Ean

i=1
for a positive integer d. The following result was shown by M.Craig.

TuEOREM (CRAIG[1]). The F¢ = U, (d) 'F,U,(d) ford |n+1 are
Z-inequivalent Z-representations of S,1, and give all classes of integral
representations rationally equivalent to F,,.

By the way, F,, which is regarded as a representation of the alternating
group A,y of degree n + 1 is as follows

Fo((1,2,3)) — I, =-E11+ B3+ E13s —Ez; —2E; 2 — Ep 3,
F.((1,2)(k,k+1)) -1, = —2E; 3 — By 5 — B a1 — 2E4 4 — Eg iy
(3<k<n).
It is well known that, above F, for n > 3 is an absolutely irreducible

representation. In this paper, we will determine the set of all classes of
integral representations rationally equivalent to the representation F, of

Ania.
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§2. Preliminaries.

Let G be a finite group of order g and F : G — GL,(Z) be an
absolutely irreducible representation of degree n. For U = (u;;) € GL,(Q),

#(h)=U'F(h)U, heG

is a Q-representation of G which is Q-equivalent to F. We may clearly
suppose the u;; to be integers, such that

GCD.('II.,,J) =1.
We will make use of the following five results which are due to Craig [1].

LEMMA 2.1. If ¥ = V-IFV is a second such representation, then
&, ¥ are Z-equivalent iff for some unimodular W, we have V=UW.

For A € M,(R), we denote the i-th column by a; and define
(A)="Za; +---+ Za,.
The actior of G as a group of linear transformations of R™ is given by

(h,x) — F(h)x, forh e G,x€R".

LEMMA 2.2. The condition for ® to be a Z-representation, is that (U)
should be a G-submodule (invariant sublattice) of (I,).

COROLLARY. Eguivalently, ® is integral iff all columns of F(h)U lie
in (U), for all h € Gy, where Gy denotes a fized sei of generators for G.
(That is, instead of testing F(h)x € (U) for all h € G and x € (U), it is
enough to ezamine the action of generators for G upon generators for (U).)

LEMMA 2.3. If & is a Z-representation, then (U) has ((g/n)I,,,) as a
sublatlice.

LEMMA 2.4. Suppose m = pi'...pe" is the factorization of m = g/n in
powers of distinct primes, and set ¢; = m[p;*. Then the G-invariant lattices
(U) with (I,) D (U) D (ml,), are precisely the (U) = 3] q;(U;), where for '
each i, {U;) denote a G-invariant lattice such that (I,) D (U;) D (p*L,).
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§3. All Classes of Integral Representations Rationnally Equivalent to F.,.

In this section our purpose is to establish:

THEOREM. The FE = U,(d)"'F,U,(d) ford | n+1 are Z-inequivalent
Z-representations of A, 41, and give all classes of integral representations
rationally equivalent to F,,.

Our proof will be based on the treatment given by Craig{l]. The integral
representations Q-equivalent to F,, will be determined by finding the A, 1-
invariant lattices (U,) D (mI,), where m = (n 4- 1)}/2n = p{* ---p?*. We
first determine those (U,) D (p°I,), where p is any prime and ¢ > 0.
Because (U, ) = (U, W) for any W € GL,(Z), we may assume that u;; > 0
for every i, and u;; = 0 for ¢ > j. Hence U, can be expressed as

_ (Va1 ¥
U,,_( : u)

LemMA 3.1. U, (normalized as described above) has the property that
u; =0 (mod ups), 1<4,j< 0

Proof. Clearly, F,,((1,2)(k,k +1))U, has columns in (U, ) if and only
if (F.((1,2)(k,k + 1)) — I,)U,, has. Therefore, by the simple calculation,
it is easily shown that the statement is correct in the case n = 3. Suppose
inductively, that every U, _; has above property.

Inspection of F,, above, shows that for 2 <k <n-—1,

Bt oa 1) - (FraGA0EED) Dikk 1)),

Hence for 2 < k < n—1, and for suitable column vectors w((1, 2)(k,k+1)),

F.((1,2)(k, k +1))U,

_ (Fn—l((1)2)(k) E+1))UL_, w((1,2)(kE+ 1)))
: 0 Unn )

Therefore, if F,((1,2)(k, k+1))U, has columns in (U,), Fn_1((1,2)(k, k+
1))U: _, has columns in (U _,). Thus, there exist an A,-invariant lattiace
U,,—1 and an integer A such that

U, _; =AU,_;.
By the inductive hypothesis, we obtain

(3.1) u;; =0 (mod p—1n-1), 1<4,j<n—1.
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Next, the m~ 1-th colamn of (F,;((1,2)(n,n + 1)) — I,)U, belongs to
(U,), so that Up_1n-1 =0 (mod u,,). Thus, by (3. 1), we get

(3.2) u,,_O(modu,.,.), 1<z,J<n—1

Addltlonlly, {or 2 <k < n,the n-th column of (F,,((l 2)(k k+1)) I,,)U
belongs to (U, ), so that we conclude

(3.3) Uh—1,n + 2Uh,n + Ukp1,0 =0 (1110d ‘ul.l.)

Letting & run through the values 2, 3 ,m m reverse order, w; obtain -
(3.4) uin =0 (mod ‘u.,,,.), 1<i<u

Hence, by (3.2) (3.4), we get

u;; =0 (mod %,,), 1<4,5< 0.
COROLLARY. The coefficient u,, is 1.

ExAMPLE. We shall determine all posibilities for Us. The lattice (Us)
contains the columns of the (Fs((1,2)(k,k + 1)) — I;)Us, for k = 2,3.
Therefore, we obtain

(Us) = (Us(d)) ford=1,2 or 4.

(We remark that the above example proves the Lemma 3.2 in the case
n=3. )

LemMMaA 3.2. Let (U,) be an A, 1q-invariant lattice containing (p°L,),
and let G.C.D.(u;;) = 1. Then (U,) = (U,(p")) for some b (a > b > 0)
such that p* | n + 1.

Proof. Previously, the case n=3 was verified. Suppose inductively,
that the statement is correct with 2 — 1 in place of n.

(i) Suppose that p does not divide n. Therefore (U 1) = (p’I,—1),
where @ > b > 0. The last column (F,((1,2,3)) — I,)U,, is element of
(U,). Thus,

2uy, + u2, =0 (mod p").

Hence, by (3.3), we have

(35) U1+ 20+ U410 =0 (modp®), 1<k<n—1.
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‘By induction on k, (3.5) gives -
(3-6) Uh+1,m = (-1)*(k+ uy, (mod p*), 0<k<m-—1
In particular,

Un—1,n = (—1)""}(n — 1)uy, (mod %),

3.7 1= (-1)""'nu1, (mod p°),
so that, we have
(3.8) U1 = (=1 (2n_1,n + 1) (mod p%).

Because (U,) contains the last column of (F,((1,2)(n,n + 1)) - I,)U,,
we get U1n(Un—1,4 +2) =0 (mod p*). Multiplying by (—1)*~n and using
(3.7), we conclude that u,_1,, = —2 (mod p%). Thus, by (3.8), we obtain

(3.9) U1 = (—1)" (mod p%).
Hence, (3.6) and (3.9) imply (U,) = (U.(p%)).
(ii) Suppose p | n. By the inductive hypothesis,
(Us_y) = (U 1)),

for some b,c where @ > b > ¢ > 0. As before (cf. (3.7)), we obtain that
(-1)* 'nu;, =1 (mod p*~°). This implies G.C.D.(n,p*¢) = 1. Therefore,
p | n shows b = ¢, so that (U} _;) = (U,_1(°)). In particular, up_1,-1 =
1, hence we may assume u,_;,, = 0. Setting k = 1 in (3.5), we see 2uy,, +
%2, = 0 (mod p°). The last column of (F,((1,2)(n—1,2)) — L,)U, belongs
to (U,). This implies

(3.10) Up—2,n +1=0 (mod p°).

Additionally, (U,,) contains the n — 1-th column of (F,((1,2)(n,n +1)) —

I,)U,, that is —e,, so that, we find

(3.11) Up—2,n = 0 (mod p°).
Hence, (3.10) and (3.11) give that 1 = 0 (mod p°). This shows that
(Un) = (In).

LEMMA 3.3. Let (U,) be invariant over (ml,), where G.C.D.(u;;) =1
~and m = (n+1)!/2n. Then (U,) = (U,(d)) for some d > 1 such that
din+1.

Proof. See(Craig [1]).
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COROLLARY. Every (U,(d)) for whick d | n 4 1 is indeed invariant
over (mL,).

Proof. Straightforward.

LEMMA 3.4. Suppose, for divisors d1,d; of n + 1, the representations
Fi: Fd2 are Z-equivalent. Then dy = d;.

Proof. See(Craig [1]).

This completes the proof of the theorem.
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